+

WO2012163847A1 - Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz - Google Patents

Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz Download PDF

Info

Publication number
WO2012163847A1
WO2012163847A1 PCT/EP2012/059869 EP2012059869W WO2012163847A1 WO 2012163847 A1 WO2012163847 A1 WO 2012163847A1 EP 2012059869 W EP2012059869 W EP 2012059869W WO 2012163847 A1 WO2012163847 A1 WO 2012163847A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption column
carbon dioxide
liquid absorbent
stream
gas stream
Prior art date
Application number
PCT/EP2012/059869
Other languages
German (de)
English (en)
Inventor
Hans Hasse
Inga TONNIES
Sebastian Hoch
Original Assignee
Evonik Industries Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries Ag filed Critical Evonik Industries Ag
Publication of WO2012163847A1 publication Critical patent/WO2012163847A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a process for the separation of carbon dioxide from a gas stream and to an apparatus for carrying out the process comprising an absorption column equipped with one or more side reactors.
  • aqueous solutions of organic bases for example, aqueous solutions of alkanolamines
  • absorbents to remove carbon dioxide from gas streams.
  • C0 2 is thereby chemically bound in the absorbent, generally as bicarbonate and as carbamate.
  • the absorbent may be regenerated in a subsequent desorption step by heating, depressurizing to a lower pressure and / or stripping with a stripping gas - generally steam - to re-release C0 2 from the absorbent.
  • amine for the C0 2 - separation from process gases is monoethanolamine, which is generally used as 15 to 30 wt .-% aqueous solution. This absorbent has a high energy requirement for regeneration.
  • Other alkanolamines such as diethanolamine or methyldiethanolamine have a lower energy requirement for regeneration, but the reactions proceed with C0 2 much slower, so that they are only partially suitable for the separation of carbon dioxide at atmospheric pressure.
  • DE 10 2008 010 367 A1 describes three commercially available absorption processes which can be used for the separation of carbon dioxide from flue gases. These are based on aqueous solutions of monoethanolamine or sterically hindered amines. Absorbents suitable for separating carbon dioxide from flue gases are furthermore described in EP-A 558 019, EP-A 647 462, EP-A 879 631, WO 2005/087350, WO 2007/144372 and WO 2009/156273.
  • Carbamate formation takes place here only with primary and secondary amines, but not with tertiary amines, and with hindered primary or secondary amines only to a small extent.
  • a disadvantage of the known processes is that the absorbers used are not optimized with regard to the chemical reactions taking place between carbon dioxide and the constituents of the absorption medium.
  • the absorption columns used are equipped with internals, packed beds or structured packings, which ensure a high surface area between gas and liquid with at the same time only low pressure loss.
  • the residence time of the absorbent in the absorption column is very short, so that reactions between C0 2 and the components of the absorbent can not proceed to equilibrium conversion.
  • the maximum possible C0 2 loading of the absorbent is not achieved. Because of the lower loading than the equilibrium loading is in the desorption step increased use of thermal energy is required to release a certain amount of C0 2 from a given amount of absorbent.
  • the object of the invention is to provide a method and an apparatus for absorbing carbon dioxide from gas streams, in which carbon dioxide absorbs more efficiently, achieves a higher C0 2 loading of the absorbent, a reduced use of thermal energy in the desorption step and thus an overall reduced energy requirement the C0 2 separation is realized.
  • the object is achieved by a method for the separation of carbon dioxide from a gas stream, in which
  • steps (v) to (vii) can also be carried out at several points of the absorption column and in a plurality of side reactors.
  • At least part or all of the absorbent stream is withdrawn at one or more locations of the absorption column and fed to at least one side reactor in which the liquid absorbent reacts with the carbon dioxide dissolved therein.
  • the invention also relates to a device for the separation of carbon dioxide from a gas stream, comprising an absorption column and a desorber, wherein the absorption column comprises:
  • the absorption column may contain trays, structured packings or packed beds.
  • the liquid absorbent is fed to the head of the absorption column, but a feed can also be carried out below the top of the column. Then, the upper part of the column between upper feed point for the liquid absorbent and column head may function as a washing section in which vapor phase-containing amines are absorbed from the absorbent in a hydrous stream.
  • the carbon dioxide-rich gas mixture is generally fed in above the bottom of the absorption column.
  • the liquid absorbent is recycled after a certain residence time in the side reactor back into the middle part of the absorption column.
  • the absorbent stream is recycled back to the absorption column at substantially the same level as it was withdrawn from the absorption column.
  • Suitable average residence times in the side reactors may be from 1 to 240 minutes, preferably from 1 to 20 minutes and in particular from 1 to 10 minutes per reactor. A certain effect can already be achieved with just one side reactor. In general, however, several side reactors, generally up to 30 side reactors, fed from different tapping points at different heights of the absorption column are provided. In general, at least two side reactors are provided, which are fed by at least two sampling points at different heights of the absorption column. Preferably, the absorption column is connected to 2 to 20 side reactors, for example 4 to 15 side reactors.
  • substantially all of the liquid absorbent stream is withdrawn and fed to the respective side reactor.
  • the absorption column can be equipped with any internals, preferably structured packings with low pressure loss and high specific surface area.
  • the withdrawal of the solvent at a certain height of the absorption column can be carried out by means of liquid collectors, which are available in many different types.
  • the liquid is collected in trays on roofed gas chambers or in channels where the gas can flow past the side.
  • liquid distributors which are available in many different types. Examples are box channel distributors, perforated floor distributors with gas chimneys, spout floor distributors with gas chimneys or spray distributors.
  • Suitable liquid distributors include, for example, a plurality of perforated tubes or a bottom with holes for the liquid and wells for the gas. Suitable liquid distributors are described, for example, in Green, DW and Perry, RH: Ferry's Chemical Engineers' Handbook, 8th Edition, McGrawHill, 2008.
  • the promotion of the absorbent in the side reactors or can be done by means of pumps or under the influence of gravity. Pumps may be installed upstream of the inlet of a side reactor, downstream of the outlet of a side reactor, or upstream of the inlet and downstream of the outlet.
  • the absorption column is operated at ambient pressure, depending on the temperature of the feed streams and the solvent used in the column set temperatures, which are usually in the range between 30 ° C and 80 ° C, with a temperature profile formed.
  • Lower temperatures are advantageous because the C0 2 solubility in the solvents of interest generally increases with decreasing temperature. Therefore, the process is often described with intermediate cooling, ie a part of the liquid is withdrawn from the column and cooled.
  • the intermediate cooling and the side reactors can be advantageously combined.
  • the side reactors can be designed as stirred tank reactors, as reactors with static mixing elements or without mixing device.
  • the side reactors can be equipped with coolers, for example with pipe coils.
  • at least one of the side reactors comprises a cooling element.
  • the side reactors may be stacked as a tower with the tower near the absorption column. Such a tower of superimposed side reactors may have a cylinder jacket and for dividing into individual reactors circular plates.
  • Absorbents suitable for the process according to the invention comprise an aqueous solution of amines. Suitable are primary amines such as monoethanolamine, ethylenediamine or diglycolamine or secondary amines such as piperazine, 2-piperidineethanol, diethanolamine or diisopropanolamine.
  • tertiary amines such as methyldiethanolamine, triethanolamine, dimethylaminoethanol, diethylaminoethanol or methyldiisopropanolamine or mixtures thereof, especially in admixture with primary or secondary amines as activators. Also particularly suitable are mixtures of sterically hindered amines such.
  • Aqueous solutions of amines and amine mixtures which are suitable as absorbents are described inter alia in EP-A 558 019, EP-A 647 462, EP-A 879 631, WO 2005/087350, WO 2007/144372 and WO 2009/156273.
  • the present invention is particularly suitable for absorbents which contain aqueous solutions of tertiary alkanolamines or sterically hindered amines, since these bind C0 2 only in the form of bicarbonate and react only slowly with C0 2 .
  • the inventive method is particularly suitable for the separation of carbon dioxide from carbon dioxide-containing gas mixtures, which are produced by combustion of fossil fuels, such as flue gases from fossil-fired power plants.
  • the inventive method is particularly suitable for the separation of carbon dioxide from gas mixtures at atmospheric pressure.
  • the carbon dioxide partial pressure of the carbon dioxide-rich gas stream fed into the absorption column can be for example only 30 to 200 mbar. But there are also other process gas streams containing carbon dioxide, as well as carbon dioxide-containing natural gas or biogas as feed gas streams into consideration.
  • the feed gas streams contain from 0.01 to 60% by volume of carbon dioxide and are under a pressure of from 0.5 to 100 bar.
  • the method allows the improvement of C0 2 separation from carbon dioxide-containing gas mixtures with any absorbent systems, especially those that react only slowly with C0 2 .
  • the increase in the C0 2 loading of the absorbent leads to significant energy savings in the C0 2 release in the desorption step.
  • the optionally required electric pump power for conveying the absorption medium into the side reactors is low compared to these energy savings. Since the heating power requirement for the C0 2 separation from flue gas must be covered by the power plant, the saving of heating power of the evaporator in the desorption step leads to an increase in the overall efficiency of the power plant with C0 2 separation.
  • Fig. 1 shows schematically an embodiment of the inventive method for the absorption of carbon dioxide from flue gas.
  • the flue gas 1 is fed via the bottom of the absorption column 5 and the regenerated absorbent 3 is fed to the top of the absorption column.
  • the C0 2 -arm gas stream 2 is withdrawn at the top of the column, the adsorbed with C0 2 4 is withdrawn at the bottom of the column.
  • the absorption column 5 is equipped with structured packings.
  • the absorption column has a total of 14 side reactors, of which only four (R1 to R4) are shown for simplicity in Figure 1.
  • FIG. 2 shows a corresponding variant of the absorber with side reactors arranged as a tower.
  • the absorbent stream is pumped with pumps P1-P4 in the side reactors R1-R4.
  • Desorber head pressure 1.96 bar
  • the evaporator of the desorber must be supplied under these assumptions 382 MW of thermal energy.
  • the temperature in the evaporator is 122 ° C.
  • Example 1 the absorber is equipped with 14 side reactors each with 500 m 3 volume. The total additional reaction volume is thus 7000 m 3 .
  • the total absorbent stream of 6095 t / h is withdrawn at the respective withdrawal point and guided by a pump to the respective side reactor.
  • the absorbent flows back into the absorber under the action of gravity and is returned to the packing installed in the absorber near the withdrawal point. Inlets and outlets are arranged evenly between 1.5 m and 9 m of the package height in the absorber.
  • the total residence time of the absorbent in the reactors is 64 minutes.
  • the concentration of bicarbonate in the bottom of the absorber could be increased by 138% compared to the reference process without side reactors. This leads to a 3.2% increased total loading of C0 2 in the sump of the absorber. As a result, the thermal energy requirement in the evaporator was reduced by 3.8%.
  • Example 2 the absorber is equipped with a side reactor with 7500 m 3 volume.
  • the total absorbent stream of 6095 t / h is withdrawn at a withdrawal point at a height of 7.5 m and fed by means of a pump to the side reactor.
  • the absorbent flows back into the absorber under the action of gravity and is returned to the packing installed in the absorber near the withdrawal point.
  • the residence time of the absorbent in the side reactor is 79 minutes. Important changes in the process variables compared to the reference process are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Procédé destiné à séparer du dioxyde de carbone contenu dans un flux de gaz, consistant à (i) introduire, à un site d'introduction inférieur, un flux de gaz dans une colonne d'absorption, (ii) introduire dans ladite colonne d'absorption, à un site d'introduction supérieure, un flux liquide d'agent d'absorption réagissant avec le dioxyde de carbone et le mettre en contact avec le flux de gaz montant, (iii) prélever, au pied de la colonne d'absorption, un flux liquide d'agent d'agents d'absorption chargé de dioxyde de carbone, et (iv) prélever, à la tête de la colonne d'absorption, un flux de gaz pauvre en dioxyde de carbone, caractérisé en ce que (v) l'on extrait, dans la partie inteermédiaire de la colonne d'absorption entre le site d'introduction inférieur destiné au flux de gaz riche en dioxyde de carbone et le site d'introduction supérieur destiné au flux liquide d'agent d'absorption, au moins une partie du flux liquide d'agent d'absorption pour l'acheminer vers un réacteur latéral, (vi) l'agent d'absorption liquide continue de réagir avec le dioxyde de carbone dans ledit réacteur latéral, (vii) l'on recycle le flux liquide d'agent d'absorption depuis le réacteur latéral dans ladite partie intermédiaire de la colonne d'absorption, les étapes (v) à (vii) pouvant également être mises en œuvre à plusieurs sites de la colonne d'absorption et dans une pluralité de réacteurs latéraux.
PCT/EP2012/059869 2011-05-27 2012-05-25 Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz WO2012163847A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076598.0 2011-05-27
DE102011076598 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012163847A1 true WO2012163847A1 (fr) 2012-12-06

Family

ID=46229444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059869 WO2012163847A1 (fr) 2011-05-27 2012-05-25 Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz

Country Status (1)

Country Link
WO (1) WO2012163847A1 (fr)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558019A2 (fr) 1992-02-27 1993-09-01 The Kansai Electric Power Co., Inc. Méthode d'élimination de l'anhydride carbonique de gaz d'échappement de combustion
EP0647462A1 (fr) 1993-10-06 1995-04-12 The Kansai Electric Power Co., Inc. Méthode pour l'élimination du dioxyde de carbone de gaz de combustion
EP0879631A1 (fr) 1994-10-06 1998-11-25 The Kansai Electric Power Co., Inc. Procédé pour enlever de dioxyde de carbone des gaz
US6800120B1 (en) * 1998-11-23 2004-10-05 Fluor Corporation Split-flow process and apparatus
WO2005087350A1 (fr) 2004-03-09 2005-09-22 Basf Aktiengesellschaft Procede d'elimination du dioxyde de carbone dans les gaz de fumee
WO2007107004A1 (fr) * 2006-03-23 2007-09-27 University Of Regina Procede d'absorption de gaz avec recuperation de chaleur
WO2007144372A1 (fr) 2006-06-13 2007-12-21 Basf Se Élimination de dioxyde de carbone dans des fumées
WO2008107050A1 (fr) 2007-03-05 2008-09-12 Rwe Power Aktiengesellschaft Procédé sur la base de la distillation à deux phases pour utiliser de la chaleur à basse température afin de régénérer des solutions chargées de co2, lors de la séparation du co2 de gaz d'échappement par lavage
DE102008010367A1 (de) 2007-02-17 2008-10-30 Arlt, Wolfgang, Prof. Dr.-Ing. Vorteilhafte Einbindung einer Rauchgaswäsche auf Kohlendioxid in ein fossiles Kaftwerk
WO2008138054A1 (fr) 2007-05-11 2008-11-20 Co2Crc Technologies Pty Ltd Réacteur, installation et procédé
WO2009000025A1 (fr) 2007-06-22 2008-12-31 Commonwealth Scientific And Industrial Research Organisation Procede ameliore de transfert de co2 de flux gazeux vers des solutions ammoniacales
WO2009156273A1 (fr) 2008-06-23 2009-12-30 Basf Se Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
WO2010086039A1 (fr) 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile
DE102009032537A1 (de) * 2009-07-10 2011-01-13 Hitachi Power Europe Gmbh Kohlekraftwerk mit zugeordneter CO2-Wäsche und Wärmerückgewinnung
US20110041685A1 (en) * 2008-02-22 2011-02-24 Mitsubishi Heavy Industries, Ltd. Co2 recovery apparatus and co2 recovery method
US20110120309A1 (en) * 2009-11-24 2011-05-26 Alstom Technology Ltd Advanced intercooling and recycling in co2 absorption

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558019A2 (fr) 1992-02-27 1993-09-01 The Kansai Electric Power Co., Inc. Méthode d'élimination de l'anhydride carbonique de gaz d'échappement de combustion
EP0647462A1 (fr) 1993-10-06 1995-04-12 The Kansai Electric Power Co., Inc. Méthode pour l'élimination du dioxyde de carbone de gaz de combustion
EP0879631A1 (fr) 1994-10-06 1998-11-25 The Kansai Electric Power Co., Inc. Procédé pour enlever de dioxyde de carbone des gaz
US6800120B1 (en) * 1998-11-23 2004-10-05 Fluor Corporation Split-flow process and apparatus
WO2005087350A1 (fr) 2004-03-09 2005-09-22 Basf Aktiengesellschaft Procede d'elimination du dioxyde de carbone dans les gaz de fumee
WO2007107004A1 (fr) * 2006-03-23 2007-09-27 University Of Regina Procede d'absorption de gaz avec recuperation de chaleur
WO2007144372A1 (fr) 2006-06-13 2007-12-21 Basf Se Élimination de dioxyde de carbone dans des fumées
DE102008010367A1 (de) 2007-02-17 2008-10-30 Arlt, Wolfgang, Prof. Dr.-Ing. Vorteilhafte Einbindung einer Rauchgaswäsche auf Kohlendioxid in ein fossiles Kaftwerk
WO2008107050A1 (fr) 2007-03-05 2008-09-12 Rwe Power Aktiengesellschaft Procédé sur la base de la distillation à deux phases pour utiliser de la chaleur à basse température afin de régénérer des solutions chargées de co2, lors de la séparation du co2 de gaz d'échappement par lavage
WO2008138054A1 (fr) 2007-05-11 2008-11-20 Co2Crc Technologies Pty Ltd Réacteur, installation et procédé
WO2009000025A1 (fr) 2007-06-22 2008-12-31 Commonwealth Scientific And Industrial Research Organisation Procede ameliore de transfert de co2 de flux gazeux vers des solutions ammoniacales
US20110041685A1 (en) * 2008-02-22 2011-02-24 Mitsubishi Heavy Industries, Ltd. Co2 recovery apparatus and co2 recovery method
WO2009156273A1 (fr) 2008-06-23 2009-12-30 Basf Se Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
WO2010086039A1 (fr) 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Procédé et dispositif de séparation du dioxyde de carbone contenu dans un gaz d'échappement d'une centrale électrique à combustible fossile
DE102009032537A1 (de) * 2009-07-10 2011-01-13 Hitachi Power Europe Gmbh Kohlekraftwerk mit zugeordneter CO2-Wäsche und Wärmerückgewinnung
US20110120309A1 (en) * 2009-11-24 2011-05-26 Alstom Technology Ltd Advanced intercooling and recycling in co2 absorption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREEN, D.W.; PERRY, R. H.: "Perry's Chemical Engineers ' Handbook", 2008, MCGRAWHILL

Similar Documents

Publication Publication Date Title
Akachuku et al. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine–Methyl-diethanolamine (MEA-MDEA) solutions
EP1682638B1 (fr) Procede d'extraction d'un flux de gaz acide sous haute pression par extraction des gaz acides contenus dans un flux fluidique
EP1998870B1 (fr) Procede de mise en contact de deux phases dont le contact s'accompagne de formation de chaleur
EP2300128B1 (fr) Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
DE69726012T2 (de) Verfahren zur behandlung von gasen mittels eines ultra-armen amins
EP2717995B1 (fr) Milieu d'absorption et procédé pour l'absorption d'un gaz acide à partir d'un mélange gazeux
EP2892633B1 (fr) Procédé pour séparer des gaz acides d'un courant de fluide contenant de l'eau
WO2010086449A1 (fr) Absorbant contenant des amines cycliques pour éliminer des gaz acides
EP2032234B1 (fr) Élimination de dioxyde de carbone dans des fumées
WO2004071624A1 (fr) Agent absorbant et procede pour eliminer des gaz acides presents dans des fluides
WO2012168094A1 (fr) Procédé pour l'absorption de co2 contenu dans un mélange gazeux
WO2010100100A1 (fr) Procédé de séparation de dioxyde de carbone
EP2720777A1 (fr) Procédé pour l'absorption de co2 à partir d'un mélange gazeux
DE102016204929B4 (de) Absorptionsmedium und Verfahren zur Absorption saurer Gase aus Gasmischungen
CN101745289A (zh) 从含co2的气体混合物中选择性脱除h2s的方法
CA2856573A1 (fr) Procede comportant un absorbant dans un reacteur a cuve agitee en continu et un dispositif d'epuisement instantane a cuve
EP1633458A2 (fr) Procede de desacidification d'un flux de fluide a l'aide d'une colonne de lavage inerte et dispositif correspondant
KR20110073163A (ko) 습식 이산화탄소 분리 회수장치 및 방법
CN102151477B (zh) 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置
EP3801834B1 (fr) Procédé de production d'un courant de fluide désacidifié
CN105214450A (zh) 一种选择性吸收so2的吸收剂以及吸收so2的工艺方法
CN206823471U (zh) 一种mdea沼气节能脱碳装置
DE102009009753B4 (de) Verfahren zur chemisorptiven Reinigung von Bio- oder Klärgas
DE602004008223T2 (de) Verfahren zur rückgewinnung von kohlendioxid aus gasen
WO2012163847A1 (fr) Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12726377

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载