WO2012160694A1 - モータ制御装置 - Google Patents
モータ制御装置 Download PDFInfo
- Publication number
- WO2012160694A1 WO2012160694A1 PCT/JP2011/062099 JP2011062099W WO2012160694A1 WO 2012160694 A1 WO2012160694 A1 WO 2012160694A1 JP 2011062099 W JP2011062099 W JP 2011062099W WO 2012160694 A1 WO2012160694 A1 WO 2012160694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- motor
- power supply
- phase
- supply voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/02—Details of stopping control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
- B62D5/0487—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/06—Rotor flux based control involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/026—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power fluctuation
Definitions
- the present invention relates to a motor control device used in an electric power steering device for a vehicle, and more particularly to a motor control device for effectively performing a failure determination due to an abnormality in a motor current detection value.
- This type of conventional motor control device determines that the motor current command value is a failure state when the current deviation between the measured motor current detection value and the stored motor current command value exceeds a predetermined determination threshold.
- Has been proposed in which the motor output is cut off by setting “0” to “0” see, for example, Patent Document 1 and Patent Document 2).
- An object of the present invention is to obtain a motor control device that realizes appropriate protection of circuit elements while preventing a failure determination from being stopped due to a decrease in power supply voltage caused by an overcurrent.
- motor drive means for supplying a motor current to the motor, motor current detection means for detecting the motor current, and a motor current detection value from the motor current detection means are inputted.
- a controller for outputting a drive signal to the motor drive means, a power supply voltage detection means, a voltage control means for controlling a voltage applied to the motor, and a maximum drive duty ratio of the PWM circuit at the time of power supply voltage drop determination Means for limiting the value (%) to a smaller value than normal, and failure determination means for determining a failure when the motor current value is abnormal.
- the failure determination operation when an overcurrent flows in a motor failure state, the failure determination operation is prevented from being stopped due to a decrease in power supply voltage caused by the overcurrent, and the failure determination is executed reliably. Circuit elements can be properly protected.
- FIG. 2 is a block diagram illustrating a detailed circuit configuration of FIG. 1.
- FIG. 2 it is a detailed electric circuit diagram for demonstrating the functional structure of a motor driver, a controller, and a motor.
- FIG. 4 is a circuit diagram showing a state when a short circuit fault occurs in the circuit of FIG. 3.
- It is a flowchart which shows the processing content of the controller by Embodiment 1 of this invention. It is an operation
- FIG. 6 is a control characteristic diagram of a maximum value (%) of a drive duty ratio of a PWM circuit at the time of determining a power supply voltage drop according to the first embodiment of the present invention.
- FIG. 1 shows a general schematic configuration of an electric power steering control device for a vehicle which is an object of the present invention
- FIG. 2 is a functional configuration diagram showing the details thereof.
- FIG. 1 shows a relationship between a controller C that inputs detection values of various sensors and controls the electric power steering control device, and a motor M that is controlled by the controller C.
- the motor M supplementarily supplies torque to the electric power steering control device, and is driven by a motor driver 52 controlled by the controller C.
- the controller C includes a vehicle speed V acquired by the vehicle speed sensor 42, a steering torque T detected by the torque sensor 43 and phase-compensated via the phase compensation circuit 44, a resolver R and a rotor connected to the motor M.
- the rotor angle ⁇ re of the motor M detected by the angle detection circuit 45 is input, and the controller C receives the motor current detection value detected by the motor current detector 41 in order to control the voltage applied to the motor M. Have been entered.
- the vehicle speed V detected by the vehicle speed sensor 42 and the steering torque T detected by the torque sensor 43 and phase-compensated via the phase compensation circuit 44 are input to the controller C. Further, the motor control device determines a target current command value I′a * (effective value of the three-phase current flowing in the U phase, the V phase, and the W phase) that is a command value of the three-phase current that is supplied to the motor M.
- a target current calculation unit 61 is provided.
- the rotor angle ⁇ re of the motor M detected by the resolver R and the rotor angle detection circuit 45 is converted into the rotor angular velocity ⁇ re via the rotor angular velocity calculator 65, and the converted rotor angular velocity ⁇ re is converted.
- the convergence correction value ICO * is calculated by the convergence correction unit 64 from the vehicle speed V and the vehicle speed V, and the convergence correction value Ico * is given to the addition unit 62.
- the target current command value I′a * input from the target current calculation unit 61 and the convergence correction value Ico * input from the convergence correction unit 64 are added, and the U phase and V phase of the motor M are added.
- a target current command value Ia * after convergence correction indicating the amplitude of the three-phase current to be applied to the W phase is set. Further, in order to make it possible to handle the current value as a direct current amount unrelated to the rotor angle ⁇ re of the motor M, the q-axis current command value calculation unit 66 sets the above-mentioned convergence corrected target current command value Ia * to d Perform q-coordinate transformation and set q-axis current command value iqa * . On the other hand, the d-axis current command value ida * is set to zero.
- the d-axis current command value Ida * and the q-axis current command value Iqa * are input to the subtraction units 67d and 67q, respectively.
- These subtractors 67d and 67q respectively receive a U-phase current detector 41u for detecting a U-phase current iua that is actually energized in the U-phase of the motor M, and a V-phase current iva that actually flows in the V-phase.
- the output of the V-phase current detection unit 41v for detection and the output of the W-phase current detection unit 41w for detecting the W-phase current iwa that actually flows in the W-phase are detected.
- the d-axis current detection value Ida and the q-axis current detection value Iqa to be obtained are given.
- the subtraction units 67d and 67q output the deviation between the d-axis current command value Ida * and the d-axis current detection value Ida and the deviation between the q-axis current command value Iqa * and the q-axis current detection value Iqa, respectively.
- Deviations output from the subtracting units 67d and 67q are respectively supplied to a d-axis current PI (proportional integration) control unit 69d and a q-axis current PI control unit 69q, and d-axis voltage command value Vda * and q-axis voltage command, respectively.
- the value Vqa * is determined.
- the d-axis voltage command value Vda * and the q-axis voltage command value Vqa * obtained as described above are input to the dq / three-phase AC coordinate conversion unit 72.
- the dq / three-phase AC coordinate conversion unit 72 also receives the rotor angle ⁇ re detected by the rotor angle detection circuit 45.
- the dq / three-phase AC coordinate conversion unit 72 According to the equation (1), the d-axis voltage command value Vda * and the q-axis voltage command value Vqa * are converted into command values Vua * and Vva * of the three-phase AC coordinate system. Then, the obtained U-phase voltage command value Vua * and V-phase voltage command value Vva * are input to the three-phase PWM modulation unit 51.
- W-phase voltage command value Vwa * is not calculated by the dq / three-phase AC coordinate conversion unit 72, but the U-phase voltage command value Vua * and V calculated by the dq / three-phase AC coordinate conversion unit 72.
- W phase voltage command value calculation unit 73 calculates the phase voltage command value Vva * .
- the W-phase voltage command value calculation unit 73 receives the U-phase voltage command value Vua * and the V-phase voltage command value Vva * from the dq / three-phase AC coordinate conversion unit 72, and the W-phase voltage command value calculation unit 73 Value calculation unit 73 obtains W-phase voltage command value Vwa * by subtracting U-phase voltage command value Vua * and V-phase voltage command value Vva * from zero.
- the W-phase voltage command value Vwa * calculated by the W-phase voltage command value calculation unit 73 is given to the three-phase PWM modulation unit 51 in the same manner as the U-phase voltage command value Vua * and the V-phase voltage command value Vva * .
- the three-phase PWM modulation unit 51 creates PWM signals Su, Sv, and Sw corresponding to the U-phase voltage command value Vua * , the V-phase voltage command value Vva *, and the W-phase voltage command value Vwa * , respectively.
- the signals Su, Sv and Sw are output to the motor driver 52.
- the controller C receives a power supply voltage from the vehicle battery power supply 1 and includes a power supply voltage detection means 2, a power supply voltage drop determination means 3, a failure determination prohibition means 4, and a failure determination means 5.
- the power supply voltage detection means 2 detects the voltage value of the vehicle battery power supply 1 supplied to a vehicle motor control device, that is, a circuit section (not shown) including a constant voltage circuit for the controller C and the surrounding voltage control means. To do.
- the power supply voltage drop determination means 3 determines a drop in the voltage value of the vehicle battery power supply 1 supplied to the motor controller of the vehicle, and transmits a signal to the three-phase PWM modulation unit 51.
- the failure determination prohibiting unit 4 determines whether or not the operation of each component circuit component of the controller C is within a voltage range in which the operation of each component circuit of the controller C is possible based on at least the detection voltage value of the power supply voltage detection unit 2, and The signal is transmitted to the failure determination means 5.
- a motor driver 52, a three-phase PWM modulation unit 51, a W-phase voltage command value calculation unit 73, a dq / three-phase AC coordinate conversion unit 72, a d-axis current PI control unit 69d, a q-axis current PI Control unit 69q and subtraction units 67d and 67q are collectively referred to as voltage control means 100.
- the target current command value I′a * specified by the target current calculation unit 61 and the convergence correction value Ico * are added by the addition unit 62 and subjected to dq coordinate conversion .
- a three-phase current detection value determination unit 101 is installed in this motor control device.
- a U-phase current detection unit 41u that detects a U-phase current
- a V-phase current detection unit 41v that detects a V-phase current
- a motor current detection unit 41 configured by a W-phase current detection unit 41w that detects a W-phase current is provided.
- the three-phase current detection value determination unit 101 uses the U-phase current detection value Iua to determine a failure of the motor control device.
- the U-phase current detection value determination unit 101u and the V-phase current detection value Iva use this motor.
- a V-phase current detection value determination unit 101v for determining a failure of the control device and a W-phase current detection value determination unit 101w for determining a failure of the motor control device using the W-phase current detection value Iwa are configured.
- the failure determination means 5 determines whether or not the motor control device is in failure.
- the q-axis current command value iqa *, the d-axis current command value ida * , the d-axis current detection value Ida, and the q-axis current detection value Iqa are also transmitted to the failure determination means 5, and the d-axis current command value ida * and q If the difference between the detected d-axis current value Ida or the detected q-axis current value Iqa with respect to the shaft current command value iqa * is equal to or greater than a predetermined failure determination value, the motor control device is determined to be in failure.
- FIG. 3 is a detailed electric circuit diagram for explaining functional configurations of the motor driver 52, the controller C, and the motor M described above.
- the PWM signals Su, Sv, and Sw output from the controller C are six switching elements that constitute a bridge circuit 52a for controlling a three-phase current supplied to the motor M via a pre-driver 52b included in the motor driver 52.
- the bridge circuit 52a, the pre-driver 52b, and the polarized capacitor 52c are supplied with power by the same power source 1, and switches 54 and 55 are used for switching the power supply to the motor driver 52, respectively.
- a switch 56 is provided to switch the power supply.
- a motor current detection unit 41 including a current detection resistor is arranged on the common side of the switching element connected to the negative side of the DC voltage.
- a U-phase current detection unit 41u, a V-phase current detection unit 41v, and a W-phase current detection unit 41w are arranged as current detection means.
- FIG. 4 is a circuit diagram showing an example when a failure occurs, and shows a case where the W phase of the motor of the electric circuit of FIG. 3 has a ground fault in the path of the ground wire 6 due to the failure. In this case, the phase current of the motor that flows in the W phase in the normal state is detected by passing through the W phase current detection unit 41w. However, since there is a ground fault in the path of the ground wire 6, the W phase current detection unit 41w is The detected W-phase current value 101w is detected as a current value close to zero.
- the voltage control means 100 operates to increase the U-phase and V-phase voltages so that the current value becomes the original target current value, and increases the U-phase and V-phase PWM duty ratios. To be controlled.
- the drive current of the circuit unit including the electric power steering control device supplied from the battery power source 1 and the controller C for controlling the electric power steering control device and the surrounding voltage control means increases.
- the drop also increases, and the power supply voltage input to the circuit unit including the constant voltage circuit for the controller C and the surrounding voltage control means is lowered.
- the motor current is detected by the motor current detector 41 in S2.
- the U-phase current detection unit 41u, the V-phase current detection unit 41v, and the W-phase current detection unit 41w as current detection means detect all the phase currents of the three-phase current detection values that are supplied to the motor M.
- the motor current of the brush motor can be detected by a simpler one-phase current detector.
- the power supply voltage is detected.
- the power supply voltage detection means 2 performs A / D conversion on the detected voltage value corresponding to the power supply voltage value and reads it as the power supply voltage detection value.
- the controller C and the peripheral circuit components are within a voltage range in which the operation is possible.
- the minimum operation guarantee voltage value of an operational amplifier (not shown) constituting the current detection circuit or the like and its power supply circuit is generally 8 V or more, so if it is 8 V or less, the process proceeds to S6.
- the motor S8 resets the current failure determination process and proceeds to S11. In this case, it is needless to say that the driving of the motor may be stopped if necessary, although not shown.
- the process proceeds to S7, and the failure determination unit 5 determines whether the motor current value detected by the three-phase current detection value determination unit 101 is equal to or greater than the failure determination value. Regardless of whether the method of the motor M is a brush type motor or a motor driven by a three-phase alternating current, if the detected motor current detection value is equal to or greater than a specified failure determination value, the process proceeds to S9, and this failure determination If the state exceeding the value continues for a predetermined time or more, the failure determination means 5 determines that there is a failure and proceeds to S10, stops the motor drive, cuts off the relay, and proceeds to S15.
- the failure determination means 5 includes a d-axis current command value and a q-axis current command value set by the dq command value setting means, and a d-axis current output from the three-phase / dq-axis conversion means.
- the detected value and the q-axis current detected value are compared, and if the difference is equal to or greater than a predetermined failure determination value, the process proceeds to S9. If the state equal to or greater than the failure determination value continues for a predetermined time or more, the above-described failure determination means 5 Is determined to be a failure, the process proceeds to S10, the motor drive is stopped, the relay is cut off, and the process proceeds to S15. If NO is determined in S7 and S8, the process proceeds to S11.
- the phase current of the motor that flows in the W phase in the normal state is detected by passing through the W phase current detection unit 41w.
- the W phase current detection unit 41w is The W-phase current detection value determination unit 101w is detected as a current value close to zero.
- the voltage control means 100 operates to increase the U-phase and V-phase voltages so that this current value becomes the original target current value, and is controlled to increase the U-phase and V-phase PWM duty ratios. .
- the drive current of the control circuit section supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C and the surrounding constituent circuit components decreases due to an increase in voltage drop due to the increase in the supply current. If the failure is not eliminated, the drive current of the control circuit unit supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C and each of the peripheral circuit components is lowered to the failure determination possible voltage lower limit value or less. Then, YES is determined in S5 and S6, and the motor current failure determination process is reset in S8, and the motor is driven without being determined as a failure.
- the switching element is instantaneously destroyed, or the voltage drops to stop the operation of the motor control device, so that the motor current stops and the voltage drop decreases. Return until the lower limit is exceeded.
- the drive current of the control circuit section supplied from the battery power supply 1 increases, and the power supply voltage decreases to the failure determination possible voltage lower limit value X3 or less.
- the failure determination prohibiting unit 4 determines that the failure determination possible voltage lower limit value X3 or less, the result is sent to the failure determination unit 5 to prohibit the determination of the failure of the motor control apparatus. Such a cycle is repeated until the switching element that drives the motor is destroyed or stopped.
- Embodiment 1 of the present invention has been made to solve such a problem, and hereinafter, S11 and subsequent steps in FIG. 5 will be described with reference to FIG.
- FIG. 8 shows a method of setting the maximum value (%) of the drive duty ratio of the PWM circuit at the time of determining the power supply voltage drop according to the first embodiment of the present invention.
- S11 first, it is determined whether or not the power supply voltage is equal to or lower than the voltage drop determination value. In this determination, as shown in FIG. 8, when the voltage increases, it is determined NO when the power supply voltage decrease determination value X1 is higher than the voltage increase, the PWM duty maximum value is set to the first specified value in S12, and the motor is determined in S14. Drive the voltage with the calculated control amount.
- the PWM duty maximum value is set to a second specified value smaller than the first specified value in S13, and the motor is set in S14. Drive the voltage with the calculated control amount. It goes without saying that the same operation can be expected even when the first specified value is 100%, which is the maximum value of the PWM duty.
- the operations from S11 to S14 are performed by the power supply voltage drop determination unit 3 and the three-phase PWM modulation unit 51 of the controller C.
- the power supply voltage drop determination unit 3 determines the power supply voltage drop determination values X1 and X2 in FIG. 8 and sends the result to the three-phase PWM modulation unit 51.
- the three-phase PWM modulation unit 51 limits the maximum value of the drive duty ratio of the PWM circuit to the first specified value when the power supply voltage increases, and sets the maximum value of the drive duty ratio of the PWM circuit to the first specified value when the power supply voltage decreases.
- the PWM duty maximum value is controlled so as to be limited to a second specified value smaller than the value.
- FIG. 7 shows the operation waveform of the power supply voltage when the present invention is implemented.
- the power supply voltage on the horizontal axis in FIG. 8 is the same as the power supply voltage on the vertical axis in FIG.
- the phase current of the motor flowing in the W phase is the W phase current detection unit 41w. Without passing through, the W-phase current detection value determination unit 101w detects a current value close to zero.
- the voltage control means 100 operates to increase the U-phase and V-phase voltages so that the current value becomes the original target current value, and is controlled to increase the U-phase and V-phase PWM duty ratios.
- the drive current of the control circuit unit supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C decreases due to an increase in voltage drop due to the increase in the supply current.
- the maximum value of the PWM duty ratio is limited by the second specified value in FIG. 8 due to the operation of the embodiment of the present invention described in S11 and S14 in FIG. Limited by a small motor current value.
- the voltage drop is also limited and the motor current is controlled in a state where the voltage does not drop to the lower limit value where failure can be determined.
- the failure detection is confirmed, the motor drive is stopped, and the relay is cut off. There is an effect of preventing destruction of the switching elements of the apparatus.
- the failure determination example based on the W-phase ground fault has been described, but it is needless to say that the same fault detection can be performed even at the time of the V-phase or U-phase ground fault.
- the same failure detection can be performed in the event of a power failure to the W-phase battery power source, a V-phase or U-phase power failure, and a short-circuit failure between two phases such as the W-phase and the V-phase. Needless to say, you can.
- C controller M motor, R resolver, 1 battery power, 2 power supply voltage detection means, 3 power supply voltage drop determination means, 4 failure determination prohibition means, 5 failure determination means, 41 motor current detection unit, 41u U-phase current detector, 41v V-phase current detector, 41w W-phase current detector, 42 vehicle speed sensor, 43 torque sensor, 44 phase compensation circuit, 45 rotor angle detection circuit, 51 three-phase PWM modulation unit, 52 motor driver, 52a bridge circuit, 52b pre-driver, 52c polarized capacitor, 61, 81 Target current calculation unit, 64, 82 Convergence value correction unit, 66 q-axis current command value calculation unit, 68 three-phase AC / dq coordinate conversion unit, 69d d-axis current PI control unit, 69q q-axis current PI control unit, 72 dq / three-phase AC coordinate conversion unit, 73 W-phase voltage command value calculation unit, 101 three-phase current detection value determination unit, 101u U-phase current detection value determination unit, 101v V-phase current
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Power Steering Mechanism (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
図1は本発明の対象となる車両用の電動パワーステアリング制御装置の一般的な概略構成を示すもので、図2はその詳細を示す機能構成図である。なお、図中、同一または相当部分には同一符号を付している。
図1は、各種センサの検出値を入力し、電動パワーステアリング制御装置を制御するコントローラCと、このコントローラCにより制御されるモータMとの関係を示している。モータMは電動パワーステアリング制御装置にトルクを補助的に供給するものであり、コントローラCが制御するモータドライバ52により駆動される。
なお図2中において、モータドライバ52、三相PWM変調部51、W相電圧指令値演算部73、d-q/三相交流座標変換部72、d軸電流PI制御部69d、q軸電流PI制御部69q、および減算部67d、67qを総称して電圧制御手段100と称する。
図4は故障発生時の一例を示す回路図で、図3の電気回路のモータのW相が故障によるアース線6の経路で地絡故障となった場合を示している。この場合、正常時にはW相に流れるモータの相電流はW相電流検出部41wを通ることによって検出されるが、アース線6の経路で地絡故障となっているためW相電流検出部41wを通らず、W相電流検出値判定部101wは零に近い電流値として検出される。
図5において、先ずS1で制御開始すると、S2ではモータ電流検出部41によりモータ電流を検出する。電流検出手段としてのU相電流検出部41u、V相電流検出部41vおよびW相電流検出部41wにより、モータMに通電される三相電流検出値の全ての相電流が検出される。なお、ブラシ式モータの場合には、より単純な1相の電流検出部でブラシ式モータのモータ電流を検出出来ることは言うまでもない。
S3では電源電圧が検出され、例えば電源電圧検出手段2により電源電圧値に対応した検出電圧値をA-D変換して電源電圧検出値として読み込む。
図6は本発明を実施しない場合の電源電圧の動作波形を示しており、故障発生と同時にW相が故障によるアース線6の経路で地絡故障となった場合を想定している。
上記S11からS14の操作は、コントローラCの電源電圧低下判定部3と三相PWM変調部51で行われる。
電源電圧が低下すると図5のS11以降S14で説明した本発明の実施例の作用によりPWMのデューティ比の最大値が図8の第2の規定値で制限されるので、図6に比べてより少ないモータ電流値で制限される。これにより電圧降下も制限されて故障判定可能電圧下限値まで電圧低下しない状態でモータ電流が制御され、S7、S9、S10で故障検出が確定し、モータ駆動停止、リレー遮断が実行されてモータ制御装置のスイッチング素子等の破壊を防止できる効果がある。
また、W相のバッテリー電源への天絡故障時やV相あるいはU相の天絡故障時、更にはW相とV相のような2相間のショート故障時にも同様の故障検出を行うことができることは言うまでもない。
1 バッテリー電源、 2 電源電圧検出手段、
3 電源電圧低下判定手段、 4 故障判定禁止手段、
5 故障判定手段、 41 モータ電流検出部、
41u U相電流検出部、 41v V相電流検出部、
41w W相電流検出部、 42 車速センサ、
43 トルクセンサ、 44 位相補償回路、
45 ロータ角度検出回路、 51 三相PWM変調部、
52 モータドライバ、 52a ブリッジ回路、
52b プリドライバ、 52c 有極コンデンサ、
61 、81 目標電流演算部、 64 、82 収斂値補正部、
66 q軸電流指令値演算部、 68 三相交流/d-q座標変換部、
69d d軸電流PI制御部、 69q q軸電流PI制御部、
72 d-q/三相交流座標変換部、 73 W相電圧指令値演算部、
101 三相電流検出値判定部、 101u U相電流検出値判定部、
101v V相電流検出値判定部、 101w W相電流検出値判定部。
Claims (7)
- モータを駆動するモータ駆動手段と、前記モータ電流を検出するPWM変調部と、前記モータ電流検出手段によるモータ電流検出値が入力されると共に前記モータ駆動手段に対する駆動信号を出力するコントローラとからなり、前記コントローラは、電源電圧を検出する電源電圧検出手段と、前記電源電圧の低下を判定する電源電圧低下判定手段と、前記モータ駆動手段に対しPWM変調によりモータ電流を供給するPWM変調部を備えたモータ制御装置において、前記電源電圧低下判定手段は、電源電圧が所定の電圧低下判定値以下かどうかの判定を行い、前記電源電圧低下判定値以上の場合はPWMデューティ比の最大値を第1の規定値に設定し、前記電源電圧低下判定値以下の場合は前記PWMデューティ比の最大値を前記第1の規定値より小さい第2の規定値に設定することにより前記モータ駆動手段を制御することを特徴とするモータ制御装置。
- 前記PWM変調部は、電源電圧上昇時にPWM回路の駆動デューティ比の最大値を第1の規定値に制限し、電源電圧下降時にPWM回路の駆動デューティ比の最大値を上記第1の規定値より小さい第2の規定値に制限するようにしたことを特徴とする請求項1に記載のモータ制御装置。
- 前記電源電圧上昇時の電源電圧低下判定値は電源電圧下降時の電源電圧低下判定値より大きいことを特徴とする請求項2に記載のモータ制御装置。
- 規定の電源電圧で故障の監視を禁止する故障判定禁止手段を更に備えたことを特徴とする請求項1に記載のモータ制御装置。
- 三相交流電流で駆動するコントローラと、三相モータに実際に流れる相電流を検出する電流検出手段と、前記相電流検出値が所定の許容範囲外である場合に故障と判定するための故障判定手段を備えることを特徴とする請求項1に記載のモータ制御装置。
- 前記モータに与えるべき電流として、d-q座標系のd軸電流指令値およびq軸電流指令値を設定するd-q指令値設定手段と、前記モータに実際に流れる相電流を検出する電流検出手段と、この電流検出手段によって検出される相電流検出値をd-q座標系のd軸電流検出値およびq軸電流検出値に変換する三相/d-q軸変換手段と、前記d-q指令値設定手段により設定されるd軸電流指令値およびq軸電流指令値、ならびに前記三相/d-q軸変換手段から出力されるd軸電流検出値およびq軸電流検出値に基づいて、前記モータに印加される電圧を制御する電圧制御手段を備えることを特徴とする請求項1乃至請求項5に記載のモータ制御装置。
- 前記d軸電流指令値に対する前記d軸電流検出値の差異またはq軸電流指令値に対する前記q軸電流検出値の差異に基づいて故障と判定するための故障判定手段を備えたことを特徴とする請求項6に記載のモータ制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011105281.2T DE112011105281T5 (de) | 2011-05-26 | 2011-05-26 | Motorsteuervorrichtung |
PCT/JP2011/062099 WO2012160694A1 (ja) | 2011-05-26 | 2011-05-26 | モータ制御装置 |
JP2013516147A JP5653516B2 (ja) | 2011-05-26 | 2011-05-26 | モータ制御装置 |
US13/983,198 US9065364B2 (en) | 2011-05-26 | 2011-05-26 | Motor control device |
CN201180069974.XA CN103460597B (zh) | 2011-05-26 | 2011-05-26 | 电动机控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/062099 WO2012160694A1 (ja) | 2011-05-26 | 2011-05-26 | モータ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012160694A1 true WO2012160694A1 (ja) | 2012-11-29 |
Family
ID=47216796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062099 WO2012160694A1 (ja) | 2011-05-26 | 2011-05-26 | モータ制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9065364B2 (ja) |
JP (1) | JP5653516B2 (ja) |
CN (1) | CN103460597B (ja) |
DE (1) | DE112011105281T5 (ja) |
WO (1) | WO2012160694A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014073070A (ja) * | 2012-09-28 | 2014-04-21 | Samsung Electro-Mechanics Co Ltd | モータ駆動装置及びモータ駆動方法 |
CN114325382A (zh) * | 2021-12-17 | 2022-04-12 | 珠海格力电器股份有限公司 | 一种三相交流电机缺相故障检测方法、系统及用电设备 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5603360B2 (ja) * | 2011-06-24 | 2014-10-08 | 三菱電機株式会社 | モータ制御装置およびそれを用いた電動パワーステアリング装置 |
JP6153860B2 (ja) * | 2013-12-25 | 2017-06-28 | 日立オートモティブシステムズ株式会社 | 電動機駆動装置 |
JP6015693B2 (ja) * | 2014-03-07 | 2016-10-26 | 株式会社デンソー | 制御装置、および、これを用いた電動パワーステアリング装置 |
JP6291352B2 (ja) * | 2014-05-26 | 2018-03-14 | 日本電産サンキョー株式会社 | モータ制御装置およびモータ制御方法 |
JP6740777B2 (ja) | 2016-07-27 | 2020-08-19 | 株式会社デンソー | 電動パワーステアリング装置 |
CN106130434B (zh) * | 2016-08-04 | 2018-11-27 | 国网江西省电力公司电力科学研究院 | 一种利用太阳能供电的水泵电机控制系统 |
JP6575458B2 (ja) | 2016-08-10 | 2019-09-18 | 株式会社デンソー | 異常診断装置 |
US20190248408A1 (en) * | 2016-08-30 | 2019-08-15 | Thyssenkrupp Presta Ag | Moisture sensing in electric motors of motor vehicle steering systems based on galvanic potential |
CN107470370B (zh) * | 2017-08-11 | 2019-10-01 | 马鞍山钢铁股份有限公司 | 一种防止型钢开坯机主传动电动机持续轧卡的控制方法 |
CN110061674B (zh) * | 2019-03-29 | 2020-08-18 | 奥克斯空调股份有限公司 | 一种压缩机ipm驱动电流异常的控制方法、装置及空调器 |
GB2592556B (en) | 2019-10-11 | 2022-10-26 | Cmr Surgical Ltd | Fault detection response in a robot arm |
CN112367006B (zh) * | 2020-11-04 | 2022-05-20 | 深圳市云视机器人有限公司 | 直流电机故障识别方法、装置及清洁设备 |
CN112927484B (zh) * | 2021-02-01 | 2022-02-25 | 国家能源集团国源电力有限公司 | 高压电动机扫膛故障的报警方法及报警装置 |
CN114142789B (zh) * | 2021-11-30 | 2024-06-21 | 江苏经纬轨道交通设备有限公司 | 电机控制方法、系统及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998058833A1 (fr) * | 1997-06-20 | 1998-12-30 | Mitsubishi Denki Kabushiki Kaisha | Dispositif de direction assistee entraine par un moteur electrique |
JP2004338619A (ja) * | 2003-05-16 | 2004-12-02 | Denso Corp | 電動パワーステアリング装置 |
JP2005193751A (ja) * | 2004-01-06 | 2005-07-21 | Nsk Ltd | 電動パワーステアリング装置の制御装置 |
JP2009136093A (ja) * | 2007-11-30 | 2009-06-18 | Jtekt Corp | モータ制御装置及び電動パワーステアリング装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19727832A1 (de) | 1997-06-23 | 1998-12-24 | Petri Ag | Flammschutzvorrichtung für Gassäcke von Airbagmodulen |
JPH11113283A (ja) * | 1997-09-30 | 1999-04-23 | Toshiba Corp | モータの駆動装置 |
US6808043B2 (en) * | 2002-02-15 | 2004-10-26 | Nsk Ltd. | Electric power steering device |
JP4501599B2 (ja) * | 2004-09-01 | 2010-07-14 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
JP2006211825A (ja) * | 2005-01-28 | 2006-08-10 | Nsk Ltd | 電動パワーステアリング装置 |
JP5108584B2 (ja) * | 2007-03-27 | 2012-12-26 | 本田技研工業株式会社 | 電動パワーステアリング装置 |
JP4760850B2 (ja) * | 2008-04-07 | 2011-08-31 | 三菱電機株式会社 | 電動パワーステアリング装置 |
US8892296B2 (en) * | 2010-11-09 | 2014-11-18 | Nsk Ltd. | Power state diagnosis method and apparatus |
-
2011
- 2011-05-26 US US13/983,198 patent/US9065364B2/en active Active
- 2011-05-26 JP JP2013516147A patent/JP5653516B2/ja not_active Expired - Fee Related
- 2011-05-26 WO PCT/JP2011/062099 patent/WO2012160694A1/ja active Application Filing
- 2011-05-26 DE DE112011105281.2T patent/DE112011105281T5/de not_active Withdrawn
- 2011-05-26 CN CN201180069974.XA patent/CN103460597B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998058833A1 (fr) * | 1997-06-20 | 1998-12-30 | Mitsubishi Denki Kabushiki Kaisha | Dispositif de direction assistee entraine par un moteur electrique |
JP2004338619A (ja) * | 2003-05-16 | 2004-12-02 | Denso Corp | 電動パワーステアリング装置 |
JP2005193751A (ja) * | 2004-01-06 | 2005-07-21 | Nsk Ltd | 電動パワーステアリング装置の制御装置 |
JP2009136093A (ja) * | 2007-11-30 | 2009-06-18 | Jtekt Corp | モータ制御装置及び電動パワーステアリング装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014073070A (ja) * | 2012-09-28 | 2014-04-21 | Samsung Electro-Mechanics Co Ltd | モータ駆動装置及びモータ駆動方法 |
CN114325382A (zh) * | 2021-12-17 | 2022-04-12 | 珠海格力电器股份有限公司 | 一种三相交流电机缺相故障检测方法、系统及用电设备 |
CN114325382B (zh) * | 2021-12-17 | 2023-08-22 | 珠海格力电器股份有限公司 | 一种三相交流电机缺相故障检测方法、系统及用电设备 |
Also Published As
Publication number | Publication date |
---|---|
US20130307448A1 (en) | 2013-11-21 |
JPWO2012160694A1 (ja) | 2014-07-31 |
DE112011105281T5 (de) | 2014-03-06 |
CN103460597A (zh) | 2013-12-18 |
JP5653516B2 (ja) | 2015-01-14 |
CN103460597B (zh) | 2016-05-11 |
US9065364B2 (en) | 2015-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5653516B2 (ja) | モータ制御装置 | |
JP4289458B2 (ja) | 電動パワーステアリング制御装置 | |
JP5653386B2 (ja) | モータ制御装置およびそれを用いた電動パワーステアリング装置 | |
JP4772116B2 (ja) | 電動機制御装置 | |
JP4539218B2 (ja) | 電動パワーステアリング装置 | |
JP4319112B2 (ja) | 電動パワーステアリング装置 | |
US8710775B2 (en) | Electric power steering apparatus | |
US11018611B2 (en) | Control apparatus for multi-phase rotating electric machine | |
JP5621598B2 (ja) | モータ制御装置及び電動パワーステアリング装置 | |
US10286949B2 (en) | Electric power steering apparatus | |
US20080017439A1 (en) | Power steering apparatus | |
US8892296B2 (en) | Power state diagnosis method and apparatus | |
US20180154931A1 (en) | Motor control apparatus and electric power steering apparatus provided the same | |
EP2731257A1 (en) | Motor control device and steering device for vehicle | |
CN106961237B (zh) | 电机控制装置以及包括电机控制装置的电动力转向装置 | |
US11205988B2 (en) | Motor control device | |
JP4739290B2 (ja) | 電動パワーステアリング制御装置 | |
JP2005153570A (ja) | 電動パワーステアリング装置 | |
JP5927858B2 (ja) | モータ制御装置及び車両の電動パワーステアリング装置 | |
US20220315098A1 (en) | Electric power steering device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180069974.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11866202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013516147 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13983198 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011105281 Country of ref document: DE Ref document number: 1120111052812 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11866202 Country of ref document: EP Kind code of ref document: A1 |