+

WO2012160694A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2012160694A1
WO2012160694A1 PCT/JP2011/062099 JP2011062099W WO2012160694A1 WO 2012160694 A1 WO2012160694 A1 WO 2012160694A1 JP 2011062099 W JP2011062099 W JP 2011062099W WO 2012160694 A1 WO2012160694 A1 WO 2012160694A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
power supply
phase
supply voltage
Prior art date
Application number
PCT/JP2011/062099
Other languages
English (en)
French (fr)
Inventor
克哉 池本
藤本 千明
和田 俊一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112011105281.2T priority Critical patent/DE112011105281T5/de
Priority to PCT/JP2011/062099 priority patent/WO2012160694A1/ja
Priority to JP2013516147A priority patent/JP5653516B2/ja
Priority to US13/983,198 priority patent/US9065364B2/en
Priority to CN201180069974.XA priority patent/CN103460597B/zh
Publication of WO2012160694A1 publication Critical patent/WO2012160694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details of stopping control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/026Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power fluctuation

Definitions

  • the present invention relates to a motor control device used in an electric power steering device for a vehicle, and more particularly to a motor control device for effectively performing a failure determination due to an abnormality in a motor current detection value.
  • This type of conventional motor control device determines that the motor current command value is a failure state when the current deviation between the measured motor current detection value and the stored motor current command value exceeds a predetermined determination threshold.
  • Has been proposed in which the motor output is cut off by setting “0” to “0” see, for example, Patent Document 1 and Patent Document 2).
  • An object of the present invention is to obtain a motor control device that realizes appropriate protection of circuit elements while preventing a failure determination from being stopped due to a decrease in power supply voltage caused by an overcurrent.
  • motor drive means for supplying a motor current to the motor, motor current detection means for detecting the motor current, and a motor current detection value from the motor current detection means are inputted.
  • a controller for outputting a drive signal to the motor drive means, a power supply voltage detection means, a voltage control means for controlling a voltage applied to the motor, and a maximum drive duty ratio of the PWM circuit at the time of power supply voltage drop determination Means for limiting the value (%) to a smaller value than normal, and failure determination means for determining a failure when the motor current value is abnormal.
  • the failure determination operation when an overcurrent flows in a motor failure state, the failure determination operation is prevented from being stopped due to a decrease in power supply voltage caused by the overcurrent, and the failure determination is executed reliably. Circuit elements can be properly protected.
  • FIG. 2 is a block diagram illustrating a detailed circuit configuration of FIG. 1.
  • FIG. 2 it is a detailed electric circuit diagram for demonstrating the functional structure of a motor driver, a controller, and a motor.
  • FIG. 4 is a circuit diagram showing a state when a short circuit fault occurs in the circuit of FIG. 3.
  • It is a flowchart which shows the processing content of the controller by Embodiment 1 of this invention. It is an operation
  • FIG. 6 is a control characteristic diagram of a maximum value (%) of a drive duty ratio of a PWM circuit at the time of determining a power supply voltage drop according to the first embodiment of the present invention.
  • FIG. 1 shows a general schematic configuration of an electric power steering control device for a vehicle which is an object of the present invention
  • FIG. 2 is a functional configuration diagram showing the details thereof.
  • FIG. 1 shows a relationship between a controller C that inputs detection values of various sensors and controls the electric power steering control device, and a motor M that is controlled by the controller C.
  • the motor M supplementarily supplies torque to the electric power steering control device, and is driven by a motor driver 52 controlled by the controller C.
  • the controller C includes a vehicle speed V acquired by the vehicle speed sensor 42, a steering torque T detected by the torque sensor 43 and phase-compensated via the phase compensation circuit 44, a resolver R and a rotor connected to the motor M.
  • the rotor angle ⁇ re of the motor M detected by the angle detection circuit 45 is input, and the controller C receives the motor current detection value detected by the motor current detector 41 in order to control the voltage applied to the motor M. Have been entered.
  • the vehicle speed V detected by the vehicle speed sensor 42 and the steering torque T detected by the torque sensor 43 and phase-compensated via the phase compensation circuit 44 are input to the controller C. Further, the motor control device determines a target current command value I′a * (effective value of the three-phase current flowing in the U phase, the V phase, and the W phase) that is a command value of the three-phase current that is supplied to the motor M.
  • a target current calculation unit 61 is provided.
  • the rotor angle ⁇ re of the motor M detected by the resolver R and the rotor angle detection circuit 45 is converted into the rotor angular velocity ⁇ re via the rotor angular velocity calculator 65, and the converted rotor angular velocity ⁇ re is converted.
  • the convergence correction value ICO * is calculated by the convergence correction unit 64 from the vehicle speed V and the vehicle speed V, and the convergence correction value Ico * is given to the addition unit 62.
  • the target current command value I′a * input from the target current calculation unit 61 and the convergence correction value Ico * input from the convergence correction unit 64 are added, and the U phase and V phase of the motor M are added.
  • a target current command value Ia * after convergence correction indicating the amplitude of the three-phase current to be applied to the W phase is set. Further, in order to make it possible to handle the current value as a direct current amount unrelated to the rotor angle ⁇ re of the motor M, the q-axis current command value calculation unit 66 sets the above-mentioned convergence corrected target current command value Ia * to d Perform q-coordinate transformation and set q-axis current command value iqa * . On the other hand, the d-axis current command value ida * is set to zero.
  • the d-axis current command value Ida * and the q-axis current command value Iqa * are input to the subtraction units 67d and 67q, respectively.
  • These subtractors 67d and 67q respectively receive a U-phase current detector 41u for detecting a U-phase current iua that is actually energized in the U-phase of the motor M, and a V-phase current iva that actually flows in the V-phase.
  • the output of the V-phase current detection unit 41v for detection and the output of the W-phase current detection unit 41w for detecting the W-phase current iwa that actually flows in the W-phase are detected.
  • the d-axis current detection value Ida and the q-axis current detection value Iqa to be obtained are given.
  • the subtraction units 67d and 67q output the deviation between the d-axis current command value Ida * and the d-axis current detection value Ida and the deviation between the q-axis current command value Iqa * and the q-axis current detection value Iqa, respectively.
  • Deviations output from the subtracting units 67d and 67q are respectively supplied to a d-axis current PI (proportional integration) control unit 69d and a q-axis current PI control unit 69q, and d-axis voltage command value Vda * and q-axis voltage command, respectively.
  • the value Vqa * is determined.
  • the d-axis voltage command value Vda * and the q-axis voltage command value Vqa * obtained as described above are input to the dq / three-phase AC coordinate conversion unit 72.
  • the dq / three-phase AC coordinate conversion unit 72 also receives the rotor angle ⁇ re detected by the rotor angle detection circuit 45.
  • the dq / three-phase AC coordinate conversion unit 72 According to the equation (1), the d-axis voltage command value Vda * and the q-axis voltage command value Vqa * are converted into command values Vua * and Vva * of the three-phase AC coordinate system. Then, the obtained U-phase voltage command value Vua * and V-phase voltage command value Vva * are input to the three-phase PWM modulation unit 51.
  • W-phase voltage command value Vwa * is not calculated by the dq / three-phase AC coordinate conversion unit 72, but the U-phase voltage command value Vua * and V calculated by the dq / three-phase AC coordinate conversion unit 72.
  • W phase voltage command value calculation unit 73 calculates the phase voltage command value Vva * .
  • the W-phase voltage command value calculation unit 73 receives the U-phase voltage command value Vua * and the V-phase voltage command value Vva * from the dq / three-phase AC coordinate conversion unit 72, and the W-phase voltage command value calculation unit 73 Value calculation unit 73 obtains W-phase voltage command value Vwa * by subtracting U-phase voltage command value Vua * and V-phase voltage command value Vva * from zero.
  • the W-phase voltage command value Vwa * calculated by the W-phase voltage command value calculation unit 73 is given to the three-phase PWM modulation unit 51 in the same manner as the U-phase voltage command value Vua * and the V-phase voltage command value Vva * .
  • the three-phase PWM modulation unit 51 creates PWM signals Su, Sv, and Sw corresponding to the U-phase voltage command value Vua * , the V-phase voltage command value Vva *, and the W-phase voltage command value Vwa * , respectively.
  • the signals Su, Sv and Sw are output to the motor driver 52.
  • the controller C receives a power supply voltage from the vehicle battery power supply 1 and includes a power supply voltage detection means 2, a power supply voltage drop determination means 3, a failure determination prohibition means 4, and a failure determination means 5.
  • the power supply voltage detection means 2 detects the voltage value of the vehicle battery power supply 1 supplied to a vehicle motor control device, that is, a circuit section (not shown) including a constant voltage circuit for the controller C and the surrounding voltage control means. To do.
  • the power supply voltage drop determination means 3 determines a drop in the voltage value of the vehicle battery power supply 1 supplied to the motor controller of the vehicle, and transmits a signal to the three-phase PWM modulation unit 51.
  • the failure determination prohibiting unit 4 determines whether or not the operation of each component circuit component of the controller C is within a voltage range in which the operation of each component circuit of the controller C is possible based on at least the detection voltage value of the power supply voltage detection unit 2, and The signal is transmitted to the failure determination means 5.
  • a motor driver 52, a three-phase PWM modulation unit 51, a W-phase voltage command value calculation unit 73, a dq / three-phase AC coordinate conversion unit 72, a d-axis current PI control unit 69d, a q-axis current PI Control unit 69q and subtraction units 67d and 67q are collectively referred to as voltage control means 100.
  • the target current command value I′a * specified by the target current calculation unit 61 and the convergence correction value Ico * are added by the addition unit 62 and subjected to dq coordinate conversion .
  • a three-phase current detection value determination unit 101 is installed in this motor control device.
  • a U-phase current detection unit 41u that detects a U-phase current
  • a V-phase current detection unit 41v that detects a V-phase current
  • a motor current detection unit 41 configured by a W-phase current detection unit 41w that detects a W-phase current is provided.
  • the three-phase current detection value determination unit 101 uses the U-phase current detection value Iua to determine a failure of the motor control device.
  • the U-phase current detection value determination unit 101u and the V-phase current detection value Iva use this motor.
  • a V-phase current detection value determination unit 101v for determining a failure of the control device and a W-phase current detection value determination unit 101w for determining a failure of the motor control device using the W-phase current detection value Iwa are configured.
  • the failure determination means 5 determines whether or not the motor control device is in failure.
  • the q-axis current command value iqa *, the d-axis current command value ida * , the d-axis current detection value Ida, and the q-axis current detection value Iqa are also transmitted to the failure determination means 5, and the d-axis current command value ida * and q If the difference between the detected d-axis current value Ida or the detected q-axis current value Iqa with respect to the shaft current command value iqa * is equal to or greater than a predetermined failure determination value, the motor control device is determined to be in failure.
  • FIG. 3 is a detailed electric circuit diagram for explaining functional configurations of the motor driver 52, the controller C, and the motor M described above.
  • the PWM signals Su, Sv, and Sw output from the controller C are six switching elements that constitute a bridge circuit 52a for controlling a three-phase current supplied to the motor M via a pre-driver 52b included in the motor driver 52.
  • the bridge circuit 52a, the pre-driver 52b, and the polarized capacitor 52c are supplied with power by the same power source 1, and switches 54 and 55 are used for switching the power supply to the motor driver 52, respectively.
  • a switch 56 is provided to switch the power supply.
  • a motor current detection unit 41 including a current detection resistor is arranged on the common side of the switching element connected to the negative side of the DC voltage.
  • a U-phase current detection unit 41u, a V-phase current detection unit 41v, and a W-phase current detection unit 41w are arranged as current detection means.
  • FIG. 4 is a circuit diagram showing an example when a failure occurs, and shows a case where the W phase of the motor of the electric circuit of FIG. 3 has a ground fault in the path of the ground wire 6 due to the failure. In this case, the phase current of the motor that flows in the W phase in the normal state is detected by passing through the W phase current detection unit 41w. However, since there is a ground fault in the path of the ground wire 6, the W phase current detection unit 41w is The detected W-phase current value 101w is detected as a current value close to zero.
  • the voltage control means 100 operates to increase the U-phase and V-phase voltages so that the current value becomes the original target current value, and increases the U-phase and V-phase PWM duty ratios. To be controlled.
  • the drive current of the circuit unit including the electric power steering control device supplied from the battery power source 1 and the controller C for controlling the electric power steering control device and the surrounding voltage control means increases.
  • the drop also increases, and the power supply voltage input to the circuit unit including the constant voltage circuit for the controller C and the surrounding voltage control means is lowered.
  • the motor current is detected by the motor current detector 41 in S2.
  • the U-phase current detection unit 41u, the V-phase current detection unit 41v, and the W-phase current detection unit 41w as current detection means detect all the phase currents of the three-phase current detection values that are supplied to the motor M.
  • the motor current of the brush motor can be detected by a simpler one-phase current detector.
  • the power supply voltage is detected.
  • the power supply voltage detection means 2 performs A / D conversion on the detected voltage value corresponding to the power supply voltage value and reads it as the power supply voltage detection value.
  • the controller C and the peripheral circuit components are within a voltage range in which the operation is possible.
  • the minimum operation guarantee voltage value of an operational amplifier (not shown) constituting the current detection circuit or the like and its power supply circuit is generally 8 V or more, so if it is 8 V or less, the process proceeds to S6.
  • the motor S8 resets the current failure determination process and proceeds to S11. In this case, it is needless to say that the driving of the motor may be stopped if necessary, although not shown.
  • the process proceeds to S7, and the failure determination unit 5 determines whether the motor current value detected by the three-phase current detection value determination unit 101 is equal to or greater than the failure determination value. Regardless of whether the method of the motor M is a brush type motor or a motor driven by a three-phase alternating current, if the detected motor current detection value is equal to or greater than a specified failure determination value, the process proceeds to S9, and this failure determination If the state exceeding the value continues for a predetermined time or more, the failure determination means 5 determines that there is a failure and proceeds to S10, stops the motor drive, cuts off the relay, and proceeds to S15.
  • the failure determination means 5 includes a d-axis current command value and a q-axis current command value set by the dq command value setting means, and a d-axis current output from the three-phase / dq-axis conversion means.
  • the detected value and the q-axis current detected value are compared, and if the difference is equal to or greater than a predetermined failure determination value, the process proceeds to S9. If the state equal to or greater than the failure determination value continues for a predetermined time or more, the above-described failure determination means 5 Is determined to be a failure, the process proceeds to S10, the motor drive is stopped, the relay is cut off, and the process proceeds to S15. If NO is determined in S7 and S8, the process proceeds to S11.
  • the phase current of the motor that flows in the W phase in the normal state is detected by passing through the W phase current detection unit 41w.
  • the W phase current detection unit 41w is The W-phase current detection value determination unit 101w is detected as a current value close to zero.
  • the voltage control means 100 operates to increase the U-phase and V-phase voltages so that this current value becomes the original target current value, and is controlled to increase the U-phase and V-phase PWM duty ratios. .
  • the drive current of the control circuit section supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C and the surrounding constituent circuit components decreases due to an increase in voltage drop due to the increase in the supply current. If the failure is not eliminated, the drive current of the control circuit unit supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C and each of the peripheral circuit components is lowered to the failure determination possible voltage lower limit value or less. Then, YES is determined in S5 and S6, and the motor current failure determination process is reset in S8, and the motor is driven without being determined as a failure.
  • the switching element is instantaneously destroyed, or the voltage drops to stop the operation of the motor control device, so that the motor current stops and the voltage drop decreases. Return until the lower limit is exceeded.
  • the drive current of the control circuit section supplied from the battery power supply 1 increases, and the power supply voltage decreases to the failure determination possible voltage lower limit value X3 or less.
  • the failure determination prohibiting unit 4 determines that the failure determination possible voltage lower limit value X3 or less, the result is sent to the failure determination unit 5 to prohibit the determination of the failure of the motor control apparatus. Such a cycle is repeated until the switching element that drives the motor is destroyed or stopped.
  • Embodiment 1 of the present invention has been made to solve such a problem, and hereinafter, S11 and subsequent steps in FIG. 5 will be described with reference to FIG.
  • FIG. 8 shows a method of setting the maximum value (%) of the drive duty ratio of the PWM circuit at the time of determining the power supply voltage drop according to the first embodiment of the present invention.
  • S11 first, it is determined whether or not the power supply voltage is equal to or lower than the voltage drop determination value. In this determination, as shown in FIG. 8, when the voltage increases, it is determined NO when the power supply voltage decrease determination value X1 is higher than the voltage increase, the PWM duty maximum value is set to the first specified value in S12, and the motor is determined in S14. Drive the voltage with the calculated control amount.
  • the PWM duty maximum value is set to a second specified value smaller than the first specified value in S13, and the motor is set in S14. Drive the voltage with the calculated control amount. It goes without saying that the same operation can be expected even when the first specified value is 100%, which is the maximum value of the PWM duty.
  • the operations from S11 to S14 are performed by the power supply voltage drop determination unit 3 and the three-phase PWM modulation unit 51 of the controller C.
  • the power supply voltage drop determination unit 3 determines the power supply voltage drop determination values X1 and X2 in FIG. 8 and sends the result to the three-phase PWM modulation unit 51.
  • the three-phase PWM modulation unit 51 limits the maximum value of the drive duty ratio of the PWM circuit to the first specified value when the power supply voltage increases, and sets the maximum value of the drive duty ratio of the PWM circuit to the first specified value when the power supply voltage decreases.
  • the PWM duty maximum value is controlled so as to be limited to a second specified value smaller than the value.
  • FIG. 7 shows the operation waveform of the power supply voltage when the present invention is implemented.
  • the power supply voltage on the horizontal axis in FIG. 8 is the same as the power supply voltage on the vertical axis in FIG.
  • the phase current of the motor flowing in the W phase is the W phase current detection unit 41w. Without passing through, the W-phase current detection value determination unit 101w detects a current value close to zero.
  • the voltage control means 100 operates to increase the U-phase and V-phase voltages so that the current value becomes the original target current value, and is controlled to increase the U-phase and V-phase PWM duty ratios.
  • the drive current of the control circuit unit supplied from the battery power supply 1 increases, and the power supply voltage input to the controller C decreases due to an increase in voltage drop due to the increase in the supply current.
  • the maximum value of the PWM duty ratio is limited by the second specified value in FIG. 8 due to the operation of the embodiment of the present invention described in S11 and S14 in FIG. Limited by a small motor current value.
  • the voltage drop is also limited and the motor current is controlled in a state where the voltage does not drop to the lower limit value where failure can be determined.
  • the failure detection is confirmed, the motor drive is stopped, and the relay is cut off. There is an effect of preventing destruction of the switching elements of the apparatus.
  • the failure determination example based on the W-phase ground fault has been described, but it is needless to say that the same fault detection can be performed even at the time of the V-phase or U-phase ground fault.
  • the same failure detection can be performed in the event of a power failure to the W-phase battery power source, a V-phase or U-phase power failure, and a short-circuit failure between two phases such as the W-phase and the V-phase. Needless to say, you can.
  • C controller M motor, R resolver, 1 battery power, 2 power supply voltage detection means, 3 power supply voltage drop determination means, 4 failure determination prohibition means, 5 failure determination means, 41 motor current detection unit, 41u U-phase current detector, 41v V-phase current detector, 41w W-phase current detector, 42 vehicle speed sensor, 43 torque sensor, 44 phase compensation circuit, 45 rotor angle detection circuit, 51 three-phase PWM modulation unit, 52 motor driver, 52a bridge circuit, 52b pre-driver, 52c polarized capacitor, 61, 81 Target current calculation unit, 64, 82 Convergence value correction unit, 66 q-axis current command value calculation unit, 68 three-phase AC / dq coordinate conversion unit, 69d d-axis current PI control unit, 69q q-axis current PI control unit, 72 dq / three-phase AC coordinate conversion unit, 73 W-phase voltage command value calculation unit, 101 three-phase current detection value determination unit, 101u U-phase current detection value determination unit, 101v V-phase current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ制御装置において制御系の故障判定を確実に実施する具体的な実現手段を提供することを目的としている。 モータ制御装置は、モータに対してモータ電流を供給するモータ駆動手段と、前記モータ電流を検出するモータ電流検出手段と、前記モータ電流検出手段からのモータ電流検出値が入力されるとともに、前記モータ駆動手段に対する駆動信号を出力するコントローラとを備え、前記コントローラは、モータに印加される電圧を制御する電圧制御手段と、電源電圧検出手段と、電源電圧低下判定時にPWM回路の駆動デューティ比の最大値(%)をより小さい値に制限する手段と、前記モータ電流値が異常である場合に故障と判定するための故障判定手段とを備えるものである。

Description

モータ制御装置
 この発明は、車両用の電動パワーステアリング装置などに用いられるモータ制御装置に関し、特に、モータ電流検出値の異常による故障判定を効果的に行うためのモータ制御装置に関するものである。
 従来のこの種のモータ制御装置は、測定されたモータ電流検出値と記憶されたモータ電流指令値との電流偏差が所定の判定閾値を超えた場合に故障状態と判定して、モータ電流指令値を「0」に設定してモータ出力を遮断するものが提案されている(例えば、特許文献1および特許文献2を参照)。
 上記特許文献に記載された従来のモータ制御装置においては、電機子巻線の短絡故障や、制御装置とモータとの間の配線の地絡故障などの故障状態になっても、故障時の異常電流による電圧降下に起因する電源電圧低下が少なく、車両用の電動パワーステアリング装置の動作に必要十分な電圧値にある場合には、上記正常運転状態と故障状態との識別は依然可能である。
特公平6-29031号公報 特開2006-76332号公報
 しかしながら、従来のモータ制御装置では、故障状態になって過電流が流れると、その電圧効果により電源電圧が低下して車両用の電動パワーステアリング装置の動作に必要な電源電圧値以下になる場合には、正常運転状態と異常運転状態の識別が容易でなくなり、故障によりモータ制御装置の回路部品が破壊されるか、あるいは、故障状態の検出可能な電圧範囲外と判断して故障の判定が停止したり、故障の判定が即時に正しく行われないことがあった。これらの現象は近年の車載モータの大電流化によって、故障状態の過電流値が益々大きくなる傾向から、より深刻で重要な課題となってきている。
 この発明は、上記のような課題を解決するためになされたもので、モータの電機子巻線の短絡故障や、制御装置とモータとの間の配線の地絡故障などの故障状態において、過電流が流れ、その過電流に起因する電源電圧の低下などによる故障の判定の停止を防止しつつ、回路要素の適切な保護を実現したモータ制御装置を得ることを目的とする。
この発明による車両用モータ制御装置は、モータに対してモータ電流を供給するモータ駆動手段と、前記モータ電流を検出するモータ電流検出手段と、前記モータ電流検出手段からのモータ電流検出値が入力されるとともに、前記モータ駆動手段に対する駆動信号を出力するコントローラと、電源電圧検出手段と、前記モータに印加される電圧を制御する電圧制御手段と、電源電圧低下判定時にPWM回路の駆動デューティ比の最大値(%)を通常より小さい値に制限する手段と、前記モータ電流値が異常である場合に故障と判定するための故障判定手段とを備えるものである。
 この発明によれば、モータの故障状態において過電流が流れた場合に、その過電流に起因する電源電圧の低下などによる故障の判定動作の停止を防止し、故障の判定を確実に実行して回路要素を適切に保護することができる。
一般的な電動パワーステアリング制御装置を制御するモータとそのモータを制御するコントローラとの関係を示す図である。 図1の詳細な回路構成を示すブロック図である。 図2において、モータドライバ、コントローラおよびモータの機能構成を説明するための詳細な電気回路図である。 図3の回路において、短絡故障発生時の状態を示す回路図である。 本発明の実施の形態1によるコントローラの処理内容を示すフローチャートである。 本発明を実施しない場合の電源電圧の動作波形図である。 本発明を実施した場合の電源電圧の動作波形図である。 本発明の実施の形態1による電源電圧低下判定時におけるPWM回路の駆動デューティ比の最大値(%)の制御特性図を示している。
実施の形態1.
図1は本発明の対象となる車両用の電動パワーステアリング制御装置の一般的な概略構成を示すもので、図2はその詳細を示す機能構成図である。なお、図中、同一または相当部分には同一符号を付している。
 図1は、各種センサの検出値を入力し、電動パワーステアリング制御装置を制御するコントローラCと、このコントローラCにより制御されるモータMとの関係を示している。モータMは電動パワーステアリング制御装置にトルクを補助的に供給するものであり、コントローラCが制御するモータドライバ52により駆動される。
 なお、コントローラCには、車速センサ42により取得した自動車の車速V、トルクセンサ43で検知され位相補償回路44を介することで位相補償された操舵トルクT、モータMに接続されたレゾルバRとロータ角度検出回路45により検出されたモータMのロータ角度θreが入力され、さらにコントローラCには、モータMに印加する電圧を制御するために、モータ電流検出部41により検出されたモータ電流検出値が入力されている。
 続いて、図2について説明する。このモータ制御装置では、車速センサ42で検知された車速Vと、トルクセンサ43で検知され位相補償回路44を介すことで位相補償された操舵トルクTが、コントローラCに入力されている。またモータ制御装置はモータMに通電される三相電流の指令値となる目標電流指令値I’a*(U相、V相、W相に流す三相電流の実効値)を決定するための目標電流演算部61を備えている。
 操舵フィーリングを向上させるために、レゾルバRとロータ角度検出回路45で検出されたモータMのロータ角度θreを、ロータ角速度演算部65を介してロータ角速度ωreに変換し、変換されたロータ角速度ωreと車速Vとから収斂性補正部64により収斂性補正値ICO*を演算し、その収斂性補正値Ico*を加算部62に与える。加算部62では、目標電流演算部61から入力される目標電流指令値I’a*と収斂性補正部64から入力される収斂性補正値Ico*が足し合わされ、モータMのU相、V相およびW相に与えるべき三相電流の振幅を示す収斂性補正後目標電流指令値Ia*が設定される。さらに、モータMのロータ角度θreに無関係な直流量として電流値を扱うことを可能とするために、q軸電流指令値演算部66で、上述した収斂性補正後目標電流指令値Ia*にd-q座標変換を施して、q軸電流指令値iqa*を設定する。一方、d軸電流指令値ida*は零に設定される。
 d軸電流指令値Ida*およびq軸電流指令値Iqa*は、それぞれ減算部67d、67qに入力される。これらの減算部67d、67qには、それぞれ、モータMのU相に実際に通電されるU相電流iuaを検出するためのU相電流検出部41u、V相に実際に流れるV相電流ivaを検出するためのV相電流検出部41v、およびW相に実際に流れるW相電流iwaを検出するためのW相電流検出部41wの出力を三相交流/d-q座標変換部68を介して求められるd軸電流検出値Idaおよびq軸電流検出値Iqaが与えられるようになっている。
 したがって、減算部67d、67qからは、それぞれd軸電流指令値Ida*とd軸電流検出値Idaの偏差およびq軸電流指令値Iqa*とq軸電流検出値Iqaの偏差が出力されることになる。この減算部67dおよび67qから出力される偏差は、それぞれd軸電流PI(比例積分)制御部69dおよびq軸電流PI制御部69qに与えられ、それぞれd軸電圧指令値Vda*およびq軸電圧指令値Vqa*を求める。
 上記により求められたd軸電圧指令値Vda*およびq軸電圧指令値Vqa*は、d-q/三相交流座標変換部72に入力されるようになっている。このd-q/三相交流座標変換部72には、また、ロータ角度検出回路45で検出されるロータ角度θreが入力されており、d-q/三相交流座標変換部72は、下記第(1)式に従って、d軸電圧指令値Vda*およびq軸電圧指令値Vqa*を三相交流座標系の指令値Vua*、Vva*に変換する。そして、その得られたU相電圧指令値Vua*およびV相電圧指令値Vva*を、三相PWM変調部51に入力する。
Figure JPOXMLDOC01-appb-M000001
 ただし、W相電圧指令値Vwa*はd-q/三相交流座標変換部72では算出されず、d-q/三相交流座標変換部72で算出されたU相電圧指令値Vua*およびV相電圧指令値Vva*に基づいて、W相電圧指令値演算部73において算出される。すなわち、W相電圧指令値演算部73には、d-q/三相交流座標変換部72からU相電圧指令値Vua*およびV相電圧指令値Vva*が入力されており、W相電圧指令値演算部73は、零からU相電圧指令値Vua*およびV相電圧指令値Vva*を減算することによりW相電圧指令値Vwa*を求める。
 W相電圧指令値演算部73で算出されたW相電圧指令値Vwa*は、U相電圧指令値Vua*およびV相電圧指令値Vva*と同様に三相PWM変調部51に与えられる。三相PWM変調部51は、それぞれU相電圧指令値Vua*、V相電圧指令値Vva*およびW相電圧指令値Vwa*に対応したPWM信号Su、SvおよびSwを作成し、その作成したPWM信号Su、SvおよびSwをモータドライバ52に向けて出力する。これにより、モータドライバ52からモータMのU相、V相およびW相に、それぞれPWM信号Su、SvおよびSwに応じた電圧Vua、VvaおよびVwaが印加され、モータMから操舵補助に必要なトルクが発生される。
コントローラCには車両のバッテリー電源1から電源電圧が入力され、電源電圧検出手段2、電源電圧低下判定手段3、故障判定禁止手段4、及び故障判定手段5を備える。電源電圧検出手段2は車両のモータ制御装置すなわちコントローラC用の定電圧回路やその周辺の電圧制御手段を含む回路部(図示していない)に供給される車両のバッテリー電源1の電圧値を検出する。電源電圧低下判定手段3は車両のモータ制御装置に供給される車両のバッテリー電源1の電圧値の低下を判定し、上記三相PWM変調部51に信号を伝える。
 故障判定禁止手段4は、少なくとも電源電圧検出手段2の検出電圧値からコントローラCの各構成回路部品の動作が可能な電圧範囲内かどうかを判定し、動作が可能な電圧範囲外と判断した場合にその信号を故障判定手段5に伝える。
なお図2中において、モータドライバ52、三相PWM変調部51、W相電圧指令値演算部73、d-q/三相交流座標変換部72、d軸電流PI制御部69d、q軸電流PI制御部69q、および減算部67d、67qを総称して電圧制御手段100と称する。
 目標電流演算部61で指定された目標電流指令値I’a*と収斂性補正値Ico*が加算部62で足し合わされd-q座標変換を施された収斂性補正後目標電流指定値Iqa*がモータMに正確に通電されているか否かを判定するために、このモータ制御装置には三相電流検出値判定部101が設置されている。モータMに通電される三相電流検出値の全ての相電流に基づき判定を行うために、U相電流を検出するU相電流検出部41u、V相電流を検出するV相電流検出部41vおよびW相電流を検出するW相電流検出部41wで構成されるモータ電流検出部41が設けられる。
 三相電流検出値判定部101は、U相電流検出値Iuaを用いてこのモータ制御装置の故障を判定するためのU相電流検出値判定部101u、V相電流検出値Ivaを用いてこのモータ制御装置の故障を判定するためのV相電流検出値判定部101v、およびW相電流検出値Iwaを用いてこのモータ制御装置の故障を判定するためのW相電流検出値判定部101wで構成される。
 三相電流検出値判定部101に入力された三相電流検出値iua、iva、およびiwaのうちの少なくとも1つが所定の許容範囲外であることを検知した場合、その結果が故障判定手段5に伝えられ、故障判定手段5でこのモータ制御装置は故障であるかどうか判定される。q軸電流指令値iqa*およびd軸電流指令値ida*、d軸電流検出値Idaおよびq軸電流検出値Iqaも同様に故障判定手段5に伝えられ、前記d軸電流指令値ida*ならびにq軸電流指令値iqa*に対する前記d軸電流検出値Idaあるいはq軸電流検出値Iqaの差異が規定の故障判定値以上であればこのモータ制御装置は故障であると判定される。
 図3は、上述したモータドライバ52、コントローラCおよびモータMの機能構成を説明するための詳細な電気回路図である。コントローラCから出力されるPWM信号Su、SvおよびSwは、モータドライバ52が有するプリドライバ52bを介し、モータMに通電される三相電流を制御するためのブリッジ回路52aを構成する6つのスイッチング素子の制御端子に送られる。このブリッジ回路52a、プリドライバ52b、および有極コンデンサ52cは、同一の電源1により給電されており、モータドライバ52への給電の有無を切り替えるためにそれぞれスイッチ54および55が、またモータMへの給電の有無を切り替えるためにスイッチ56が具備されている。
 直流電圧の負側に接続されたスイッチング素子のコモン側に電流検出用の抵抗からなるモータ電流検出部41を配置している。電流検出手段としてU相電流検出部41u、V相電流検出部41vおよびW相電流検出部41wが配置される。
 図4は故障発生時の一例を示す回路図で、図3の電気回路のモータのW相が故障によるアース線6の経路で地絡故障となった場合を示している。この場合、正常時にはW相に流れるモータの相電流はW相電流検出部41wを通ることによって検出されるが、アース線6の経路で地絡故障となっているためW相電流検出部41wを通らず、W相電流検出値判定部101wは零に近い電流値として検出される。
 この時、前記電圧制御手段100は、上記電流値を本来の目標電流値になるようにU相、V相の電圧を増やす方向に作動し、U相、V相のPWMのデューティ比を増やすように制御されるようになっている。これによりバッテリー電源1から供給される電動パワーステアリング制御装置およびそれを制御するコントローラC並びにその周辺の電圧制御手段を含む回路部(以下、制御回路部と称する)の駆動電流が増加する結果、電圧降下も増加し、上記コントローラC用の定電圧回路やその周辺の電圧制御手段を含む回路部に入力される電源電圧が低下する。
 以下、本発明の実施の形態1の動作について、図5を参照してコントローラCの処理内容を示すフローチャートに従って説明する。
図5において、先ずS1で制御開始すると、S2ではモータ電流検出部41によりモータ電流を検出する。電流検出手段としてのU相電流検出部41u、V相電流検出部41vおよびW相電流検出部41wにより、モータMに通電される三相電流検出値の全ての相電流が検出される。なお、ブラシ式モータの場合には、より単純な1相の電流検出部でブラシ式モータのモータ電流を検出出来ることは言うまでもない。
S3では電源電圧が検出され、例えば電源電圧検出手段2により電源電圧値に対応した検出電圧値をA-D変換して電源電圧検出値として読み込む。
 S4では前述のコントローラCに入力された車速センサ42による自動車の車速V、トルクセンサ43によって検出され位相補償回路44を介すことで位相補償された操舵トルクT、およびモータMに接続されたレゾルバRとロータ角度検出回路45により検出されたモータMのロータ角度θre等の情報から、上述した電圧制御回路100の動作を介して、モータドライバ52からモータMのU相、V相およびW相に、それぞれPWM信号Su、SvおよびSwに応じた電圧Vua、VvaおよびVwaが印加され、モータMから操舵補助に必要なトルクが発生されるようにモータに印加される電圧を制御するための電圧制御量を計算する。
 S5では電源電圧検出手段2の検出電圧値からコントローラCとその周辺の各構成回路部品の動作が可能な電圧範囲内かどうかを判定する。例えば、電流検出回路等を構成する図示しない演算増幅器およびその電源回路の最低作動保障電圧値は一般的には8V以上なので、8V以下ではS6に進み、S6で規定の時間以上継続した場合S8に進み、モータS8で電流故障判定処理をリセットしてS11に進む。なお、この場合、図示していないが必要に応じてモータの駆動を停止しても良いことは言うまでもない。
 S5でNOの場合及びS6でNOの場合はS7に進み、三相電流検出値判定部101により検出したモータ電流値が故障判定値以上かどうかを故障判定部5により判定する。モータMの方式がブラシ式のモータであっても三相交流電流で駆動するモータであっても、検出されたモータ電流検出値が規定の故障判定値以上であればS9に進み、この故障判定値以上の状態が所定の時間以上継続すると前述の故障判定手段5が故障と判断してS10に進み、モータ駆動を停止しリレーを遮断してS15に進む。
 また、故障判定手段5は、前記d-q指令値設定手段により設定されるd軸電流指令値およびq軸電流指令値と、前記三相/d-q軸変換手段から出力されるd軸電流検出値なおよびq軸電流検出値とを比較し、その差異が規定の故障判定値以上であればS9に進み、この故障判定値以上の状態が所定の時間以上継続すると前述の故障判定手段5が故障と判断してS10に進み、モータ駆動を停止しリレーを遮断しS15に進む。S7並びにS8でNOと判定された場合はS11に進む。
 S11はモータの電機子巻線の短絡故障や、制御装置とモータとの間の配線の地絡故障などの故障状態において、過電流が流れ、その過電流に起因する電源電圧の低下が発生した場合、その低下が電圧低下判定値以下かどうかの判定を行うステップであり、本発明の特徴部を構成するものである。ここで先ず、S11の判定とその作用が無い場合、即ち本発明を実施しない場合の電源電圧の動作波形を説明する。
図6は本発明を実施しない場合の電源電圧の動作波形を示しており、故障発生と同時にW相が故障によるアース線6の経路で地絡故障となった場合を想定している。
 この場合、正常時にはW相に流れるモータの相電流はW相電流検出部41wを通ることによって検出されるが、アース線6の経路で地絡故障となっているのでW相電流検出部41wを通らず、W相電流検出値判定部101wは零に近い電流値と検出される。この電流値を本来の目標電流値になるようにU相、V相の電圧を増やす方向に前記電圧制御手段100が作動し、U相、V相のPWMのデューティ比を増やす方向に制御される。
 これによりバッテリー電源1から供給される前記制御回路部の駆動電流が増えてその供給電流の増加による電圧降下の増加によりコントローラCとその周辺の各構成回路部品に入力される電源電圧が低下する。故障が解消されないとバッテリー電源1から供給される前記制御回路部の駆動電流が増えて故障判定可能電圧下限値以下までコントローラCとその周辺の各構成回路部品に入力される電源電圧が低下する。するとS5、S6でYESと判定され、S8でモータ電流故障判定処理をリセットされて故障と判定されずにモータを駆動する。
 この結果、スイッチング素子が瞬時に破壊されたり、もしくは電圧が低下してモータ制御装置の作動を停止することで、モータ電流が停止して電圧降下が減少する結果、電源電圧が上記故障判定可能電圧下限値を越えるまで復帰する。ところが、モータ制御装置の作動が再度開始すると、バッテリー電源1から供給される前記制御回路部の駆動電流が増えて故障判定可能電圧下限値X3以下まで上記電源電圧が低下する。なお、故障判定禁止手段4が故障判定可能電圧下限値X3以下を判定した場合は、その結果が故障判定手段5に送られて本モータ制御装置の故障の判定を禁止する。このようなサイクルをモータを駆動するスイッチング素子が破壊されるか停止するまで繰り返す。
 本発明の実施の形態1はこのような問題を解消するためになされたもので、以下図5のS11以降について図8を参照して説明する。図8は本発明の実施の形態1による電源電圧低下判定時におけるPWM回路の駆動デューティ比の最大値(%)の設定方法を示している。S11において、先ず電源電圧が電圧低下判定値以下かどうかの判定を行う。この判定は、図8に示すように電圧上昇時は電圧上昇時の電源電圧低下判定値X1以上でNOと判定され、S12でPWMデューティ最大値を第1の規定値に設定し、S14でモータ電圧を計算された制御量で駆動する。
 一方、電圧下降時は電圧降下時の電源電圧低下判定値X2以下でYESと判定し、S13でPWMデューティ最大値を第1の規定値よりも小さい第2の規定値に設定し、S14でモータ電圧を計算された制御量で駆動する。ここで第1の規定値はPWMデューティの最大値となる100%であっても同様の動作が期待できることは言うまでもない。
上記S11からS14の操作は、コントローラCの電源電圧低下判定部3と三相PWM変調部51で行われる。
 電源電圧低下判定部3は図8の電源電圧低下判定値X1、X2を判定しその結果を三相PWM変調部51に送る。三相PWM変調部51は、電源電圧上昇時にPWM回路の駆動デューティ比の最大値を第1の規定値に制限し、電源電圧下降時にPWM回路の駆動デューティ比の最大値を上記第1の規定値より小さい第2の規定値に制限するようにPWMデューティ最大値を制御するものである。
 図7に本発明を実施した場合の電源電圧の動作波形を示す。図8の横軸の電源電圧は図7の縦軸の電源電圧と同一である。図7の故障判定可能電圧下限値X3と図8のX1、X2とはX3<X2<X1の関係になり、X1は図7の電圧上昇時、電圧下降時の最大値以上に設定される。前述と同様に故障発生と同時にW相が故障によるアース線6の経路で地絡故障となった場合を想定しており、この場合、W相に流れるモータの相電流はW相電流検出部41wを通らずW相電流検出値判定部101wは零に近い電流値と検出される。
 電圧制御手段100はこの電流値を本来の目標電流値になるようにU相、V相の電圧を増やす方向に作動し、U相、V相のPWMのデューティ比を増やす方向に制御される。これによりバッテリー電源1から供給される制御回路部の駆動電流が増えてその供給電流の増加による電圧降下の増加によりコントローラCに入力される電源電圧が低下する。
 電源電圧が低下すると図5のS11以降S14で説明した本発明の実施例の作用によりPWMのデューティ比の最大値が図8の第2の規定値で制限されるので、図6に比べてより少ないモータ電流値で制限される。これにより電圧降下も制限されて故障判定可能電圧下限値まで電圧低下しない状態でモータ電流が制御され、S7、S9、S10で故障検出が確定し、モータ駆動停止、リレー遮断が実行されてモータ制御装置のスイッチング素子等の破壊を防止できる効果がある。
 上記実施例では、W相地絡故障に基づいた故障判定例を示したが、V相あるいはU相地絡故障時でも同様の故障検出を行うことができることは言うまでもない。
また、W相のバッテリー電源への天絡故障時やV相あるいはU相の天絡故障時、更にはW相とV相のような2相間のショート故障時にも同様の故障検出を行うことができることは言うまでもない。
 C コントローラ、 M モータ、 R レゾルバ、
 1 バッテリー電源、 2 電源電圧検出手段、
 3 電源電圧低下判定手段、 4 故障判定禁止手段、
 5 故障判定手段、 41 モータ電流検出部、
 41u U相電流検出部、 41v V相電流検出部、
 41w W相電流検出部、 42 車速センサ、
 43 トルクセンサ、 44 位相補償回路、
 45 ロータ角度検出回路、 51 三相PWM変調部、
 52 モータドライバ、 52a ブリッジ回路、
 52b プリドライバ、 52c 有極コンデンサ、
 61 、81 目標電流演算部、 64 、82 収斂値補正部、
 66 q軸電流指令値演算部、 68 三相交流/d-q座標変換部、
 69d d軸電流PI制御部、 69q q軸電流PI制御部、
 72 d-q/三相交流座標変換部、 73 W相電圧指令値演算部、
 101 三相電流検出値判定部、 101u U相電流検出値判定部、
 101v V相電流検出値判定部、 101w W相電流検出値判定部。

Claims (7)

  1. モータを駆動するモータ駆動手段と、前記モータ電流を検出するPWM変調部と、前記モータ電流検出手段によるモータ電流検出値が入力されると共に前記モータ駆動手段に対する駆動信号を出力するコントローラとからなり、前記コントローラは、電源電圧を検出する電源電圧検出手段と、前記電源電圧の低下を判定する電源電圧低下判定手段と、前記モータ駆動手段に対しPWM変調によりモータ電流を供給するPWM変調部を備えたモータ制御装置において、前記電源電圧低下判定手段は、電源電圧が所定の電圧低下判定値以下かどうかの判定を行い、前記電源電圧低下判定値以上の場合はPWMデューティ比の最大値を第1の規定値に設定し、前記電源電圧低下判定値以下の場合は前記PWMデューティ比の最大値を前記第1の規定値より小さい第2の規定値に設定することにより前記モータ駆動手段を制御することを特徴とするモータ制御装置。
  2. 前記PWM変調部は、電源電圧上昇時にPWM回路の駆動デューティ比の最大値を第1の規定値に制限し、電源電圧下降時にPWM回路の駆動デューティ比の最大値を上記第1の規定値より小さい第2の規定値に制限するようにしたことを特徴とする請求項1に記載のモータ制御装置。
  3. 前記電源電圧上昇時の電源電圧低下判定値は電源電圧下降時の電源電圧低下判定値より大きいことを特徴とする請求項2に記載のモータ制御装置。
  4. 規定の電源電圧で故障の監視を禁止する故障判定禁止手段を更に備えたことを特徴とする請求項1に記載のモータ制御装置。
  5. 三相交流電流で駆動するコントローラと、三相モータに実際に流れる相電流を検出する電流検出手段と、前記相電流検出値が所定の許容範囲外である場合に故障と判定するための故障判定手段を備えることを特徴とする請求項1に記載のモータ制御装置。
  6. 前記モータに与えるべき電流として、d-q座標系のd軸電流指令値およびq軸電流指令値を設定するd-q指令値設定手段と、前記モータに実際に流れる相電流を検出する電流検出手段と、この電流検出手段によって検出される相電流検出値をd-q座標系のd軸電流検出値およびq軸電流検出値に変換する三相/d-q軸変換手段と、前記d-q指令値設定手段により設定されるd軸電流指令値およびq軸電流指令値、ならびに前記三相/d-q軸変換手段から出力されるd軸電流検出値およびq軸電流検出値に基づいて、前記モータに印加される電圧を制御する電圧制御手段を備えることを特徴とする請求項1乃至請求項5に記載のモータ制御装置。
  7. 前記d軸電流指令値に対する前記d軸電流検出値の差異またはq軸電流指令値に対する前記q軸電流検出値の差異に基づいて故障と判定するための故障判定手段を備えたことを特徴とする請求項6に記載のモータ制御装置。
PCT/JP2011/062099 2011-05-26 2011-05-26 モータ制御装置 WO2012160694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011105281.2T DE112011105281T5 (de) 2011-05-26 2011-05-26 Motorsteuervorrichtung
PCT/JP2011/062099 WO2012160694A1 (ja) 2011-05-26 2011-05-26 モータ制御装置
JP2013516147A JP5653516B2 (ja) 2011-05-26 2011-05-26 モータ制御装置
US13/983,198 US9065364B2 (en) 2011-05-26 2011-05-26 Motor control device
CN201180069974.XA CN103460597B (zh) 2011-05-26 2011-05-26 电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062099 WO2012160694A1 (ja) 2011-05-26 2011-05-26 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2012160694A1 true WO2012160694A1 (ja) 2012-11-29

Family

ID=47216796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062099 WO2012160694A1 (ja) 2011-05-26 2011-05-26 モータ制御装置

Country Status (5)

Country Link
US (1) US9065364B2 (ja)
JP (1) JP5653516B2 (ja)
CN (1) CN103460597B (ja)
DE (1) DE112011105281T5 (ja)
WO (1) WO2012160694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法
CN114325382A (zh) * 2021-12-17 2022-04-12 珠海格力电器股份有限公司 一种三相交流电机缺相故障检测方法、系统及用电设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603360B2 (ja) * 2011-06-24 2014-10-08 三菱電機株式会社 モータ制御装置およびそれを用いた電動パワーステアリング装置
JP6153860B2 (ja) * 2013-12-25 2017-06-28 日立オートモティブシステムズ株式会社 電動機駆動装置
JP6015693B2 (ja) * 2014-03-07 2016-10-26 株式会社デンソー 制御装置、および、これを用いた電動パワーステアリング装置
JP6291352B2 (ja) * 2014-05-26 2018-03-14 日本電産サンキョー株式会社 モータ制御装置およびモータ制御方法
JP6740777B2 (ja) 2016-07-27 2020-08-19 株式会社デンソー 電動パワーステアリング装置
CN106130434B (zh) * 2016-08-04 2018-11-27 国网江西省电力公司电力科学研究院 一种利用太阳能供电的水泵电机控制系统
JP6575458B2 (ja) 2016-08-10 2019-09-18 株式会社デンソー 異常診断装置
US20190248408A1 (en) * 2016-08-30 2019-08-15 Thyssenkrupp Presta Ag Moisture sensing in electric motors of motor vehicle steering systems based on galvanic potential
CN107470370B (zh) * 2017-08-11 2019-10-01 马鞍山钢铁股份有限公司 一种防止型钢开坯机主传动电动机持续轧卡的控制方法
CN110061674B (zh) * 2019-03-29 2020-08-18 奥克斯空调股份有限公司 一种压缩机ipm驱动电流异常的控制方法、装置及空调器
GB2592556B (en) 2019-10-11 2022-10-26 Cmr Surgical Ltd Fault detection response in a robot arm
CN112367006B (zh) * 2020-11-04 2022-05-20 深圳市云视机器人有限公司 直流电机故障识别方法、装置及清洁设备
CN112927484B (zh) * 2021-02-01 2022-02-25 国家能源集团国源电力有限公司 高压电动机扫膛故障的报警方法及报警装置
CN114142789B (zh) * 2021-11-30 2024-06-21 江苏经纬轨道交通设备有限公司 电机控制方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058833A1 (fr) * 1997-06-20 1998-12-30 Mitsubishi Denki Kabushiki Kaisha Dispositif de direction assistee entraine par un moteur electrique
JP2004338619A (ja) * 2003-05-16 2004-12-02 Denso Corp 電動パワーステアリング装置
JP2005193751A (ja) * 2004-01-06 2005-07-21 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2009136093A (ja) * 2007-11-30 2009-06-18 Jtekt Corp モータ制御装置及び電動パワーステアリング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727832A1 (de) 1997-06-23 1998-12-24 Petri Ag Flammschutzvorrichtung für Gassäcke von Airbagmodulen
JPH11113283A (ja) * 1997-09-30 1999-04-23 Toshiba Corp モータの駆動装置
US6808043B2 (en) * 2002-02-15 2004-10-26 Nsk Ltd. Electric power steering device
JP4501599B2 (ja) * 2004-09-01 2010-07-14 株式会社ジェイテクト 電動パワーステアリング装置
JP2006211825A (ja) * 2005-01-28 2006-08-10 Nsk Ltd 電動パワーステアリング装置
JP5108584B2 (ja) * 2007-03-27 2012-12-26 本田技研工業株式会社 電動パワーステアリング装置
JP4760850B2 (ja) * 2008-04-07 2011-08-31 三菱電機株式会社 電動パワーステアリング装置
US8892296B2 (en) * 2010-11-09 2014-11-18 Nsk Ltd. Power state diagnosis method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058833A1 (fr) * 1997-06-20 1998-12-30 Mitsubishi Denki Kabushiki Kaisha Dispositif de direction assistee entraine par un moteur electrique
JP2004338619A (ja) * 2003-05-16 2004-12-02 Denso Corp 電動パワーステアリング装置
JP2005193751A (ja) * 2004-01-06 2005-07-21 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2009136093A (ja) * 2007-11-30 2009-06-18 Jtekt Corp モータ制御装置及び電動パワーステアリング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法
CN114325382A (zh) * 2021-12-17 2022-04-12 珠海格力电器股份有限公司 一种三相交流电机缺相故障检测方法、系统及用电设备
CN114325382B (zh) * 2021-12-17 2023-08-22 珠海格力电器股份有限公司 一种三相交流电机缺相故障检测方法、系统及用电设备

Also Published As

Publication number Publication date
US20130307448A1 (en) 2013-11-21
JPWO2012160694A1 (ja) 2014-07-31
DE112011105281T5 (de) 2014-03-06
CN103460597A (zh) 2013-12-18
JP5653516B2 (ja) 2015-01-14
CN103460597B (zh) 2016-05-11
US9065364B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
JP5653516B2 (ja) モータ制御装置
JP4289458B2 (ja) 電動パワーステアリング制御装置
JP5653386B2 (ja) モータ制御装置およびそれを用いた電動パワーステアリング装置
JP4772116B2 (ja) 電動機制御装置
JP4539218B2 (ja) 電動パワーステアリング装置
JP4319112B2 (ja) 電動パワーステアリング装置
US8710775B2 (en) Electric power steering apparatus
US11018611B2 (en) Control apparatus for multi-phase rotating electric machine
JP5621598B2 (ja) モータ制御装置及び電動パワーステアリング装置
US10286949B2 (en) Electric power steering apparatus
US20080017439A1 (en) Power steering apparatus
US8892296B2 (en) Power state diagnosis method and apparatus
US20180154931A1 (en) Motor control apparatus and electric power steering apparatus provided the same
EP2731257A1 (en) Motor control device and steering device for vehicle
CN106961237B (zh) 电机控制装置以及包括电机控制装置的电动力转向装置
US11205988B2 (en) Motor control device
JP4739290B2 (ja) 電動パワーステアリング制御装置
JP2005153570A (ja) 電動パワーステアリング装置
JP5927858B2 (ja) モータ制御装置及び車両の電動パワーステアリング装置
US20220315098A1 (en) Electric power steering device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180069974.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516147

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983198

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105281

Country of ref document: DE

Ref document number: 1120111052812

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866202

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载