+

WO2012039175A1 - 金属板低抵抗チップ抵抗器の製造方法 - Google Patents

金属板低抵抗チップ抵抗器の製造方法 Download PDF

Info

Publication number
WO2012039175A1
WO2012039175A1 PCT/JP2011/064966 JP2011064966W WO2012039175A1 WO 2012039175 A1 WO2012039175 A1 WO 2012039175A1 JP 2011064966 W JP2011064966 W JP 2011064966W WO 2012039175 A1 WO2012039175 A1 WO 2012039175A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
strip
chip resistor
resistance
protective film
Prior art date
Application number
PCT/JP2011/064966
Other languages
English (en)
French (fr)
Inventor
平野 立樹
Original Assignee
釜屋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 釜屋電機株式会社 filed Critical 釜屋電機株式会社
Priority to CN201180045471.9A priority Critical patent/CN103201801B/zh
Priority to JP2012516242A priority patent/JPWO2012039175A1/ja
Priority to KR1020137007074A priority patent/KR101435351B1/ko
Priority to TW100126079A priority patent/TWI433170B/zh
Publication of WO2012039175A1 publication Critical patent/WO2012039175A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/02Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistors with envelope or housing

Definitions

  • the present invention relates to a method for manufacturing a chip resistor using a resistive metal plate.
  • a means for detecting current is required.
  • electronic components such as a shunt resistor are often used.
  • a chip resistor is known as a resistor applied to such a shunt resistor.
  • a resistive metal plate is mainly applied to manufacture a chip resistor having a very low resistance value such as several m ⁇ .
  • a low resistance chip resistor manufactured using such a resistance metal plate is generally called a metal plate low resistance chip resistor.
  • the metal plate low resistance chip resistor 1 has a rectangular parallelepiped appearance, and is manufactured using the resistance metal plate 2.
  • Protective films 3a and 3b are formed on the front surface 2a and the back surface 2b of the resistance metal plate 2, respectively. These protective films 3a and 3b are electrically insulating films. Further, the surfaces (that is, the width of the surface 2a) of both end portions 2e and 2f in the length direction of the resistance metal plate 2 on which the protective films 3a and 3b are not formed (left and right directions in FIGS. 16B and 16C).
  • Electrode plating films 4a and 4b are formed on both end portions 2a-1 and 2a-2 in the direction, both end portions 2b-1 and 2b-2 in the width direction of the back surface 2b, and both end surfaces 2c and 2d). .
  • each dimension (unit: mm) of the chip resistor 1 for example, the total length L1 of the chip resistor 1 is 1.6 ⁇ 0.1 (tolerance), and the length C of the electrode plating films 4a and 4b is 0.2. ⁇ 0.1 (tolerance), the width W of the chip resistor 1 is 0.8 ⁇ 0.1 (tolerance), and the thickness H of the chip resistor 1 is 0.3 ⁇ 0.1 (tolerance) It is prescribed.
  • Each dimension of the chip resistor 1 including these tolerances is defined based on dimensional restrictions when the chip resistor 1 is mounted on the circuit board.
  • the length L2 of the protective films 3a and 3b is a difference (L1-2 ⁇ C) between the total length L1 of the chip resistor 1 and the length (total length) 2 ⁇ C of the electrode plating films 4a and 4b on both sides. .
  • L2 is also the length of the portion of the resistance metal plate 2 covered by the protective films 3a and 3b.
  • T is the thickness of the resistance metal plate 2
  • L3 is the length of the resistance metal plate 2.
  • the metal plate low resistance chip resistor 1 having the structure as shown in FIG. 16 is formed by the strip-like resistance metal plate cutting step (step S1) and the slit forming step (step S2) shown in the process flowchart of FIG.
  • step S3 the protective film forming step
  • step S4 the electrode plating film forming step
  • step S5 the strip portion cutting step
  • step S6 the strip portion cutting step
  • the slit forming step (step S2) and the protective film forming step (step S3) will be further described with reference to FIGS.
  • the strip-shaped resistance metal plate cutting step (step S1), the electrode plating film forming step (step S4), the strip-shaped portion cutting step (step S5), and the strip-shaped portion cutting step (step S6) are shown in FIG.
  • a plurality of (six in the illustrated example) slits 6 are formed in the rectangular resistance metal plate 2B.
  • the resistive metal plate 2B is cut from the strip-shaped resistive metal plate 2A (see FIG. 2) in the strip-shaped resistive metal plate cutting step (step S1).
  • the slits 6 extend in the length direction of the resistance metal plate 2B (up and down direction in FIG. 18B), and are parallel to each other in the width direction of the resistance metal plate 2B (left and right direction in FIG. 18B). ing.
  • the position where the slit 6 is formed is set with the positioning mark 5 as a reference.
  • the resistance metal plate 2 ⁇ / b> B has a plurality (four in the illustrated example) of strip-like portions 7 extending in the length direction of the resistance metal plate 2 ⁇ / b> B and the plurality of strip-like shapes. It becomes a shape which has the connection part 8 which connects the both ends of the length direction (up-down direction of FIG.18 (b)) of the part 7 respectively.
  • a plurality of (four in the illustrated example) protective films 3A and 3B are formed by screen printing or the like.
  • Each strip 7 is formed on the front surface 2B-1 and the back surface 2B-2 of the resistance metal plate 2B, respectively.
  • These protective films 3A and 3B extend in the length direction of the resistance metal plate 2B, and are parallel to each other in the width direction of the resistance metal plate 2B. The positions where the protective films 3A and 3B are formed are set with the positioning mark 5 as a reference.
  • Patent Documents 1 and 2 there are the following Patent Documents 1 and 2.
  • the slit 6 is formed before the protective films 3A and 3B. That is, after forming the strip-shaped portion 7 by forming the slit 6 in the resistive metal plate 2B, the protective films 3A and 3B are formed on the strip-shaped portion 7. Therefore, the conventional method for manufacturing a metal plate low resistance chip resistor has the following problems.
  • the protective films 3A and 3B are formed on the front surface 2B-1 and the back surface 2B-2 of the very narrow resistance metal plate 2B in the strip-shaped portion 7. I have to do it. For this reason, it is difficult to form the protective films 3A and 3B.
  • the width of the resistance metal plate 2B in the strip portion 7 is further narrowed, so that it becomes more difficult to form the protective films 3A and 3B.
  • the paste is generally patterned by a screen printing method.
  • a photolithography method is applied. And when applying this photolithography method, if the slit 6 is formed ahead of the protective films 3A and 3B, this complicates the construction method.
  • the strip-shaped resistive metal plate 2A (see FIG. 2) used for manufacturing the chip resistor 1 is manufactured by repeating the annealing process and the rolling process in order to obtain a desired thickness.
  • the thickness of the manufactured strip-shaped resistance metal plate 2A is not completely uniform, and the thickness varies particularly in the width direction of the resistance metal plate 2A. For this reason, the thickness variation in the width direction also occurs in the resistance metal plate 2B cut from the strip-shaped resistance metal plate 2A.
  • the resistance value of the chip resistor 1 is determined by the width W, length L2, and thickness T (see FIG. 16) of the portion of the resistive metal plate 2 covered with the protective films 3a and 3b. That is, it is determined by the later-described equations (1) and (3). For this reason, in the manufacturing process of the chip resistor 1, the widths L2 1 , L2 2 , L2 3 , L2 of the protective films 3A, 3B shown in FIG. 19 according to the thickness variation in the width direction of the resistive metal plate 2B. By adjusting 4 , it is necessary to reduce the variation in resistance value of the chip resistor 1.
  • the allowable range of adjustment for the widths L2 1 , L2 2 , L2 3 and L2 4 of the protective films 3A and 3B should be as large as possible. desirable.
  • the allowable adjustment range of the length L2 of the protective films 3a and 3b in the conventional manufacturing method is 0.4 mm. . That is, since the slit 6 is formed before the protective films 3A and 3B, the length L3 of the resistive metal plate 2 is determined before the length L2 of the protective films 3a and 3b in the chip resistor 1, The total length L1 of the chip resistor 1 is determined.
  • the variation in the resistance value of the chip resistor 1 due to the variation in the thickness in the width direction of the resistance metal plate 2B is not a method of trimming the resistance metal plate 2B, but the width L2 1 , of the protective films 3A and 3B. It is necessary to carry out the method by adjusting L2 2 , L2 3 , and L2 4 .
  • the present invention can easily form a protective film without being affected by the width of the resistive metal plate in the strip-shaped portion, and according to the thickness variation in the width direction of the resistive metal plate.
  • the width of the protective film (the length of the protective film in the chip resistor) can be adjusted, and further, the allowable range of adjustment of the width of the protective film (the length of the protective film in the chip resistor) can be increased. It is an object of the present invention to provide a method for manufacturing a metal plate low resistance chip resistor.
  • the manufacturing method of the metal plate low resistance chip resistor of the first invention that solves the above problem is a manufacturing method of a chip resistor using a rectangular or strip-shaped resistance metal plate, A protective film forming step of forming a plurality of protective films extending in the length direction of the resistive metal plate in the width direction of the resistive metal plate with respect to each of the front and back surfaces of the resistive metal plate; Forming a slit extending in the length direction of the resistive metal plate between the adjacent protective films in the width direction and outside the protective film located on both sides of the width direction in the resistive metal plate; The plurality of strip-shaped portions having a width wider than the protective film and extending in the length direction of the resistance metal plate, and both ends in the length direction of the plurality of strip-shaped portions, respectively.
  • a slit forming step to form a connecting portion to be connected An electrode plating film forming step for forming an electrode plating film on the surfaces of both end portions in the width direction of the strip-shaped part where the protective metal plate is not formed and the resistance metal plate is exposed;
  • a strip-shaped portion cutting step of cutting the strip-shaped portion from the connecting portion A strip-shaped portion cutting step for cutting the strip-shaped portion into a plurality of pieces, The chip resistor is manufactured by performing sequentially.
  • the manufacturing method of the metal plate low resistance chip resistor of the second invention is the manufacturing method of the metal plate low resistance chip resistor of the first invention, Conducting a resistance metal plate thickness measurement step of measuring the thickness at each position in the width direction of the resistance metal plate forming the plurality of protective films before the protective film formation step, In the protective film forming step, the width of each of the plurality of protective films is set according to the thickness at each position in the width direction of the resistive metal plate measured in the resistive metal plate thickness measuring step.
  • the manufacturing method of the metal plate low resistance chip resistor of the third invention is a manufacturing method of a chip resistor using a rectangular or strip-shaped resistance metal plate, A protective film forming step of forming a plurality of protective films extending in the length direction of the resistive metal plate in the width direction of the resistive metal plate with respect to each of the front and back surfaces of the resistive metal plate; Cutting the resistive metal plate at a cutting position extending in the length direction of the resistive metal plate between the protective films adjacent in the width direction and outside the protective film located on both sides of the width direction.
  • the manufacturing method of the metal plate low resistance chip resistor of the fourth invention is the manufacturing method of the metal plate low resistance chip resistor of the third invention, Conducting a resistance metal plate thickness measurement step of measuring the thickness at each position in the width direction of the resistance metal plate forming the plurality of protective films before the protective film formation step, In the protective film forming step, the width of each of the plurality of protective films is set according to the thickness at each position in the width direction of the resistive metal plate measured in the resistive metal plate thickness measuring step.
  • a chip resistor manufacturing method using a rectangular or strip-shaped resistance metal plate for each of the front surface and the back surface of the resistance metal plate.
  • a slit forming step for forming a shape having a plurality of strip-shaped portions extending in the length direction of the resistance metal plate and connecting portions respectively connecting both ends in the length direction of the plurality of strip-shaped portions, and the protection A film is formed
  • An electrode plating film forming step for forming an electrode plating film on the surfaces of both end portions in the width direction of the strip-shaped portion where the resistance metal plate is exposed, and a strip-shaped configuration in which the strip-shaped portion is cut from the connecting portion. Since the chip resistor is manufactured by sequentially performing a part cutting process and a strip part cutting process for cutting the strip part into a plurality of pieces, a slit (that is, a strip shape) The protective film is formed before the part.
  • a protective film can be formed.
  • the allowable range of adjustment of the width of the protective film (the length of the protective film in the chip resistor) can be increased (see FIG. 8: details will be described later).
  • the metal plate low resistance chip resistor manufacturing method of the second invention in the metal plate low resistance chip resistor manufacturing method of the first invention, in the width direction of the resistance metal plate forming the plurality of protective films
  • the resistance metal plate thickness measurement step for measuring the thickness at each position is performed before the protective film formation step, and the resistance metal plate measured in the resistance metal plate thickness measurement step in the protective film formation step Since the width of each of the plurality of protective films is set according to the thickness at each position in the width direction, the thickness of the resistance metal plate in the width direction is added to the effect of the first invention.
  • the width of the protective film (the length of the protective film in the chip resistor) can also be adjusted according to the variation in thickness. For this reason, the variation in the resistance value of the chip resistor due to the variation in the thickness in the width direction of the resistance metal plate can be reduced.
  • the resistance metal plate is wider than the protection film by cutting the resistance metal plate at a cutting position extending in the length direction of the resistance metal plate outside the protection film located on both sides of the resistance metal plate.
  • an electrode plating film is formed. Since the chip resistor is manufactured by sequentially performing the electrode plating film forming step and the individual piece cutting step of cutting the strip portion into a plurality of pieces, the strip portion A protective film is formed prior to cutting off. For this reason, for example, even if the chip resistor is required to be further reduced in size and the width of the resistive metal plate in the strip portion is further narrowed, it is easily affected by the width of the resistive metal plate in the strip portion.
  • a protective film can be formed. In addition, the allowable range of adjustment of the width of the protective film (the length of the protective film in the chip resistor) can be increased (see FIG. 8: details will be described later).
  • the metal plate low resistance chip resistor manufacturing method of the fourth invention in the metal plate low resistance chip resistor manufacturing method of the third invention, in the width direction of the resistance metal plate forming the plurality of protective films
  • the resistance metal plate thickness measurement step for measuring the thickness at each position is performed before the protective film formation step, and the resistance metal plate measured in the resistance metal plate thickness measurement step in the protective film formation step Since the width of each of the plurality of protective films is set according to the thickness at each position in the width direction, the thickness of the resistance metal plate in the width direction is added to the effect of the third invention.
  • the width of the protective film (the length of the protective film in the chip resistor) can also be adjusted according to the variation in thickness. For this reason, the variation in the resistance value of the chip resistor due to the variation in the thickness in the width direction of the resistance metal plate can be reduced.
  • A is a perspective view of the strip
  • (b) is a top view of the rectangular-shaped resistance metal plate for demonstrating a strip
  • (A) is a perspective view of a resistance metal plate for explaining the resistance metal plate thickness measurement step
  • (b) is a plan view of the resistance metal plate for explaining the resistance metal plate thickness measurement step
  • (c) is a plan view of the resistance metal plate.
  • FIG. 5 is an enlarged cross-sectional view of a resistance metal plate and the like (for example, an enlarged cross-sectional view taken along line BB in FIG. 5B).
  • FIG. 5 is an enlarged cross-sectional view of the resistance metal plate and the like (a cross-sectional enlarged view taken along the line CC in FIG. 5B).
  • (A) is a perspective view of a resistance metal plate or the like for explaining the electrode plating film forming step
  • (b) is a plan view of the resistance metal plate or the like for explaining the electrode plating film forming step
  • (c) is an electrode plating.
  • FIG. 6 is an enlarged cross-sectional view of a resistive metal plate and the like for explaining the film forming process (cross-sectional enlarged view taken along the line DD in FIG. 5B).
  • A is a perspective view of a resistance metal plate or the like for explaining the strip-shaped portion cutting step
  • (b) is a perspective view of the strip-shaped portion for explaining the strip-shaped portion cutting step and the strip-shaped portion cutting step
  • ( c) is a perspective view of a metal plate low resistance chip resistor (individual piece) for explaining a strip portion cutting step. It is a table
  • FIG. 1 is a perspective view of the strip
  • (b) is a top view of the rectangular-shaped resistance metal plate for demonstrating a strip
  • (A) is a perspective view of a resistance metal plate for explaining the resistance metal plate thickness measurement step
  • (b) is a plan view of the resistance metal plate for explaining the resistance metal plate thickness measurement step
  • (c) is a plan view of the resistance metal plate.
  • FIG. 5 is an enlarged cross-sectional view of a resistive metal plate and the like (for example, an enlarged cross-sectional view taken along line B1-B1 in (b)).
  • FIG. 5 is an enlarged cross-sectional view of a strip-like portion for explanation (enlarged cross-sectional view taken along line C1-C1 in (b)).
  • (A) is a perspective view of a strip-shaped portion for explaining the electrode plating film forming step
  • (c) is an enlarged sectional view of the strip-shaped portion for explaining the electrode plating film forming step (D1-D1 in (a)).
  • FIG. 6 is a cross-sectional view taken along line EE in (b) showing the structure. It is a flowchart which shows the manufacturing process of the conventional metal plate low resistance chip resistor.
  • FIG. 6 is an enlarged cross-sectional view of the resistance metal plate (an enlarged cross-sectional view taken along line FF in FIG. 5B).
  • (A) is a perspective view of a resistance metal plate or the like for explaining the protective film forming step
  • (b) is a plan view of the resistor metal plate or the like for explaining the protective film forming step
  • (c) is a protective film forming step.
  • FIG. 6 is an enlarged cross-sectional view of a resistance metal plate and the like (a cross-sectional enlarged view taken along the line GG in FIG. 5B). It is a table
  • the structure of the metal plate low resistance chip resistor manufactured by the chip resistor manufacturing method of the present embodiment is as already described with reference to FIG. 16, and thus detailed description thereof is omitted here. To do.
  • the metal plate low resistance chip resistor 1 having the structure as shown in FIG. 16 is cut into the strip-like resistance metal plate cutting step (step S11) shown in the process flowchart of FIG. 1 and the resistance metal plate thickness measurement.
  • Step S12 protective film formation step (Step S13), slit formation step (Step S14), electrode plating film formation step (Step S15), strip portion cutting step (Step S16), strip shape It manufactures by implementing a partial cutting process (step S17) in order.
  • the strip-shaped resistive metal plate 2A conveyed in the direction of arrow J by the transport device (not shown) is converted into a laser.
  • cutting is performed at a cutting line position indicated by a one-dot chain line (virtual line) K by a cutting device such as a wire discharge or a cutting blade.
  • the strip-shaped resistance metal plate 2A is made of a material such as FeCrAl-based, CuNi-based or CuMn-based, and in order to obtain a desired thickness, the material in the slab state is subjected to various processes, an annealing process and a rolling process. It is manufactured by repeating the process.
  • a rectangular resistance metal plate 2B as shown in FIG. 2B is obtained.
  • positioning marks 5 are provided on the strip-shaped resistive metal plate 2A at regular intervals in the length direction on both sides in the width direction. As shown in FIG. 2B, these positioning marks 5 are located on both sides in the width direction at the front end in the length direction of the rectangular resistance metal plate 2B.
  • the positioning mark 5 is not limited to this, and may be only on one side in the width direction, or may be on the rear end portion or the center portion in the length direction of the resistance metal plate 2B.
  • a plurality of (four in the illustrated example) protective films 3A, 3B (virtual lines (one point) Thicknesses T 1 , T 2 , T 3 , T 4 at respective positions in the width direction (left and right direction in FIG. 3B) of the resistance metal plate 2B forming (Omitted)
  • Each position in the width direction of the resistance metal plate 2B where the plate thickness is measured is set with the positioning mark 5 as a reference.
  • each position in the width direction of the resistance metal plate 2B where the plate thickness is measured is set for each of the protective films 3A and 3B one by one.
  • the present invention is not limited to this.
  • the respective positions in the width direction of the resistance metal plate 2B where the thickness is measured are set at a plurality of locations, and the thickness of the resistance metal plate 2B measured at these plurality of locations. May be the thicknesses T 1 , T 2 , T 3 , T 4 at each position in the width direction of the resistive metal plate 2B.
  • a plurality of (four in the illustrated example) protective films 3A and 3B are formed by screen printing or photolithography. By the method or the like, it is formed on the front surface 2B-1 and the back surface 2B-2 of the resistance metal plate 2B, respectively.
  • These protective films 3A and 3b extend in the length direction of the resistance metal plate 2B and are parallel to each other in the width direction of the resistance metal plate 2B. The positions where the protective films 3A and 3B are formed are set with the positioning mark 5 as a reference.
  • the widths of the protective films 3A and 3B (that is, the lengths of the protective films 3a and 3b in the chip resistor 1) L2 1 , L2 2 , L2 3 and L2 4
  • the resistance metal plate thickness is measured according to the thicknesses T 1 , T 2 , T 3 , and T 4 at the respective positions in the width direction of the resistance metal plate 2B measured in the resistance metal plate thickness measurement step (step S12).
  • the widths L2 1 , L2 2 , L2 3 , L2 4 of the protective films 3A, 3B are calculated based on the following equation (2). Equation (2) is a modification of Equation (1).
  • R is the resistance value (target resistance value) of the chip resistor 1
  • L2 is the length of the protective films 3a and 3b in the chip resistor 1 (that is, the protective film 3a of the resistive metal plate 2).
  • W is the width (target value) of the chip resistor 1 (ie, the width of the resistive metal plate 2)
  • T n is the thickness of the resistive metal plate 2
  • is the resistive metal plate. 2 volume resistivity. That is, the resistance value R of the chip resistor 1 is the width W, length L2, and thickness Tn (L2 / (W ⁇ Tn )) of the portion of the resistive metal plate 2 covered with the protective films 3a and 3b. , Determined by the volume resistivity ⁇ of the resistive metal plate 2.
  • the resistance value R (target resistance value), the width W (target value) determined in the strip portion cutting step (step 17), and the volume resistivity ⁇ are known, and the thickness T n (that is, the anti-metal plate 2B).
  • the thicknesses T 1 , T 2 , T 3 , and T 4 ) at the respective positions in the width direction are also measured and known in the previous resistance metal plate thickness measurement step (step S12), and these values are used.
  • each protective film 3A, 3B according to the thickness T 1 , T 2 , T 3 , T 4 at each position in the width direction of the anti-metal plate 2B (that is, the chip resistor 1) L2 1 , L2 2 , L2 3 , and L2 4 can be calculated.
  • the protective film 3A, 3B is formed by printing the paste of the epoxy resin on the front surface 2B-1 and the back surface 2B-2 of the resistance metal plate 2B and baking the screen-printed paste.
  • a pattern corresponding to the calculated values of the widths L2 1 , L2 2 , L2 3 , and L2 4 of the protective films 3A and 3B is set, and the protective films 3A and 3B are set.
  • a plurality of (six in the illustrated example) slits 6 are formed in the resistance metal plate 2B. These slits 6 extend in the length direction of the resistance metal plate 2B (vertical direction in FIG. 5B), and are adjacent protective films in the width direction of the resistance metal plate 2B (left and right direction in FIG. 5B).
  • 3A and 3B that is, between the protective films 3A and 3A on the front surface 2B-1 side and between the protective films 3B and 3B on the back surface 2B-2 side) and on both sides in the width direction of the resistive metal plate 2B It is formed outside 3A and 3B (that is, outside the protective film 3A on both sides in the width direction on the surface 2B-1 side and outside the protective film 3B on both sides in the width direction on the back surface 2B-2 side).
  • the position where the slit 6 is formed is set with the positioning mark 5 as a reference.
  • the resistance metal plate 2 ⁇ / b> B has a plurality of (four in the illustrated example) strip-like portions 7 extending in the length direction of the resistance metal plate 2 ⁇ / b> B and the plurality of strip-like shapes. It becomes the shape which has the connection part 8 which connects the both ends of the length direction (up-down direction of FIG.5 (b)) of the part 7 respectively.
  • L4 1 , L4 2 , L4 3 , L4 4 , and L4 5 are the widths of the slits 6, and L3 1 , L3 2 , L3 3 , and L3 4 are the widths of the resistance metal plate 2 B in the strip-shaped portion 7. (The length L3 of the resistance metal plate 2 in the chip resistor 1).
  • the slit 6 is formed on the front and back sides 2B- of the resistance metal plate 2B by a dry film exposed and developed so as to leave a portion corresponding to the connecting portion 8 and the strip-like portion 7 wider than the protective films 3A and 3B. 1 and 2B-2 including the protective films 3A and 3B are covered, and in this state, an etching solution suitable for each type (various materials) of the resistance metal plate 2B is applied to both the front and back surfaces 2B-1, 2B- of the resistance metal plate 2B.
  • the resistance metal plate 2B is formed by etching with an etching method of spraying to 2.
  • the side surface (surface on the slit 6 side) 2B-5 of the resistive metal plate 2B in the strip-shaped portion 7 becomes the front and back both surfaces 2B-1 and 2B-2 of the resistive metal plate 2B. It becomes a flat surface perpendicular to the rectangular shape, and the width L3 1 , L3 2 , L3 3 , L3 4 (the length L3 of the resistive metal plate 2 in the chip resistor 1) of the resistive metal plate 2B in the strip portion 7 is set with high accuracy. can do.
  • the means for forming the slit 6 is not necessarily limited to the etching method, and means such as laser processing can also be used.
  • the connecting portions 8 are formed at both ends of the strip-shaped portion 7 in the length direction. However, the present invention is not limited thereto, and the connecting portions 8 are formed only at one end in the length direction of the strip-shaped portion 7. May be.
  • Electrode plating films 4A and 4B are formed by electroplating on the surfaces of both end portions 2B-3 and 2B-4 in the width direction of the resistance metal plate 2B (left and right direction in FIG. 6C).
  • a plating film 4C (shown in a perspective view of a one-dot chain line for convenience of explanation) is also formed on the peripheral edge portion of the resistance metal plate 2B such as the connecting portion 8.
  • a nickel plating film and a tin plating film are formed as the electrode plating films 4A and 4B.
  • the electrode plating films 4A and 4B may be formed by forming nickel strike plating, copper plating, nickel plating, and tin plating film in this order.
  • step S16 the laser and wire discharge are performed at the cutting position M indicated by the alternate long and short dash line (virtual line).
  • the strip portion 7 is cut from the connecting portion 8 by cutting with a cutting device such as a cutting blade.
  • FIG. 7B shows an enlarged view of one of the plurality of strip-like portions 7 cut out from the connecting portion 8.
  • the strip-shaped portion 7 is cut at a cutting position N indicated by a one-dot chain line (virtual line).
  • a plurality of (in the illustrated example, 10) pieces are cut by a cutting device such as wire discharge or a cutting blade.
  • the metal plate low resistance chip resistor 1 as shown in FIG. 7C is manufactured. That is, by cutting the strip-shaped portion 7 into a plurality of pieces, the resistance metal plate 2B in the strip-shaped portion 7, the protective films 3A and 3B, and the electrode plating films 4A and 4B are used to form the resistance metal in the chip resistor 1.
  • a plate 2, protective films 3a and 3b, and electrode plating films 4a and 4b are formed, respectively.
  • the width L1 of the resistive metal plate 2B and the electrode plating films 4B and 4B in the strip-shaped portion 7 corresponds to the total length L1 of the chip resistor 1.
  • the width C of the electrode plating films 4A and 4B in the strip portion 7 corresponds to the length C of the electrode plating films 4a and 4b in the chip resistor 1
  • the width L2 of the protective films 3A and 3B in the strip portion 7 Is equivalent to the length L2 of the protective films 3a, 3b in the chip resistor 1
  • the width L3 of the resistive metal plate 2B in the strip-like portion 7 is equivalent to the length L3 of the resistive metal plate 2 in the chip resistor 1.
  • the chip resistor manufacturing process including the resistance metal plate thickness measurement process as described above is performed on any of the rectangular resistance metal plates 2B sequentially cut from the strip-like resistance metal plate 2A. This is because the thickness variation may occur in the length direction of the strip-shaped resistance metal plate 2A. In this case, the thickness variation in the width direction is different for each resistance metal plate 2B.
  • the thickness measurement is performed only on the rectangular resistive metal plate 2B that is first cut from the strip-shaped resistive metal plate 2A.
  • the protective film 3A is formed on the rectangular resistive metal plate 2B which is cut out from the strip-shaped resistive metal plate 2A on the second and subsequent widths. , 3B may be applied.
  • the resistance metal plate 2B By forming the resistance metal plate 2B on the metal plate 2B, the plurality of strip portions 7 having a width wider than the protective films 3A and 3B and extending in the length direction of the resistance metal plate 2B, and the plurality of strips
  • the protective films 3A and 3B are formed before the slit 6 (that is, the strip-shaped portion 7).
  • the width of the resistive metal plate 2B in the strip portion 7 is reduced.
  • the protective films 3A and 3B can be easily formed without being affected by L3. That is, it is easy to form the protective films 3A and 3B by screen printing or photolithography.
  • the allowable range of adjustment of the width L2 of the protective films 3A and 3B (the length of the protective films 3a and 3b in the chip resistor 1) L2 can be increased.
  • L2 the width of the protective films 3A and 3B
  • a description will be given based on FIG. 8, for example, when the length L2 of the protective films 3a and 3b is set to 0.9 mm, the total length of the electrode plating films 4a and 4b.
  • the chip resistor 1 The total length L1 is 1.5 mm and 1.1 mm, respectively.
  • the chip resistor 1 is used when the total length 2 ⁇ C of the electrode plating films 4a and 4b is 0.6 mm at the longest and 0.2 mm at the shortest.
  • the total length L1 is 1.8 mm and 1.4 mm, respectively. Therefore, the total length L1 of the chip resistor 1 may be set in the range of 1.5 to 1.7 mm.
  • the chip resistor 1 When the length L2 of the protective films 3a and 3b is set to 1.5 mm, the chip resistor 1 is used when the total length 2 ⁇ C of the electrode plating films 4a and 4b is 0.6 mm at the longest and 0.2 mm at the shortest.
  • the total length L1 is 2.1 mm and 1.7 mm, respectively. Therefore, the total length L1 of the chip resistor 1 may be set in a range of 1.7 mm which is the longest allowable dimension. Therefore, the adjustment allowable range of the length L2 of the protective films 3a and 3b is 0.6 mm, which is larger than the adjustment allowable range of 0.4 mm (see FIG. 20) in the conventional manufacturing method.
  • the thicknesses T 1 and T 2 at the respective positions in the width direction of the resistance metal plate 2B forming the plurality of protective films 3A and 3B. , T 3 and T 4 are measured before the protective film forming step (step S13), and the resistance metal plate thickness measuring step (step S13) is performed.
  • the respective protective films 3A, 3B Since the widths L2 1 , L2 2 , L2 3 , and L2 4 are set, the widths of the protective films 3A and 3B (in the chip resistor 1 in accordance with the thickness variation in the width direction of the resistive metal plate 2B). Adjusting the length of the protective films 3a, 3b) It can be. For this reason, variation in the resistance value of the chip resistor 1 due to variation in the thickness in the width direction of the resistive metal plate 2B can be reduced.
  • the rectangular resistive metal plate 2B is cut from the strip-shaped resistive metal plate 2A, and the protective films 3A and 3B are applied to the rectangular resistive metal plate 2B.
  • the strip-shaped portion 7 is cut out, but the present invention is not necessarily limited thereto. That is, the rectangular resistive metal plate 2B is not cut, and the protective films 3A and 3B, the slit 6 (strip-shaped portion 7), and the electrode plating films 4A and 4B are formed on the strip-shaped resistive metal plate 2A.
  • the strip portion 7 may be cut out.
  • the structure of the metal plate low resistance chip resistor manufactured by the chip resistor manufacturing method of this embodiment is as already described with reference to FIG. Is omitted.
  • the metal plate low resistance chip resistor 1 having the structure as shown in FIG. 16 is manufactured by the strip-like resistance metal plate cutting step (step S21) shown in the process flowchart of FIG. Measuring step (step S22), protective film forming step (step S23), strip cutting step (step S24), electrode plating film forming step (step S25), and individual piece cutting step (step S26). , Manufactured in order.
  • the strip-shaped resistive metal plate cutting step (step S21) the strip-shaped resistive metal plate 12A transported in the direction of arrow J1 by the transport device (not shown) is converted into a laser. Then, cutting is performed at a cutting line position indicated by a one-dot chain line (virtual line) K1 by a cutting device such as a wire discharge or a cutting blade.
  • the strip-shaped resistance metal plate 12A is made of a material such as FeCrAl-based, CuNi-based or CuMn-based, and in order to obtain a desired thickness, the material in the slab state is subjected to various processes, an annealing process and a rolling process. It is manufactured by repeating the process.
  • a rectangular resistance metal plate 12B as shown in FIG. 10B is obtained.
  • positioning marks 15 are provided on the strip-shaped resistance metal plate 12A at regular intervals in the length direction on both sides in the width direction.
  • these positioning marks 15 are located on both sides in the width direction at the front end portion in the length direction of the rectangular resistance metal plate 12B.
  • the positioning mark 15 may be only on one side in the width direction, or may be on the rear end portion or the center portion of the resistance metal plate 12B in the length direction.
  • a plurality (seven in the illustrated example) of protective films 13A and 13B (virtual lines (one point) Thickness T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T at each position in the width direction (left and right direction in FIG. 11B) of the resistance metal plate 12B forming 7 is measured by a plate thickness measuring device (not shown).
  • a plate thickness measuring device not shown.
  • Each position in the width direction of the resistance metal plate 12B where the plate thickness is measured is set with the positioning mark 15 as a reference.
  • each position in the width direction of the resistance metal plate 12B where the plate thickness is measured is set for each of the protective films 13A and 13B one by one.
  • the present invention is not limited to this.
  • the respective positions in the width direction of the resistance metal plate 12B where the plate thickness is measured are set at a plurality of locations, and the thickness of the resistance metal plate 12B measured at these plurality of locations. May be the thicknesses T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 at each position in the width direction of the resistive metal plate 12B.
  • a plurality of (seven in the illustrated example) protective films 13A and 13B are formed by screen printing or photolithography. By the method or the like, it is formed on the front surface 12B-1 and the back surface 12B-2 of the resistance metal plate 12B, respectively.
  • These protective films 13A and 13b extend in the length direction of the resistance metal plate 12B and are parallel to each other in the width direction of the resistance metal plate 12B. The positions where the protective films 13A and 13B are formed are set with the positioning mark 15 as a reference.
  • the widths of the protective films 13A and 13B are the thicknesses T 1 , T 2 , T 3 , T 4 , T at each position in the width direction of the resistive metal plate 12B measured in the previous resistive metal plate thickness measurement step (step S22). 5, in response to T 6, T 7, sets.
  • Equation (4) is a modification of Equation (3).
  • R is the resistance value (target resistance value) of the chip resistor 1
  • L2 is the length of the protective films 3a and 3b in the chip resistor 1 (that is, the protective film 3a of the resistive metal plate 2).
  • W is the width (target value) of the chip resistor 1 (ie, the width of the resistive metal plate 2)
  • T n is the thickness of the resistive metal plate 2
  • is the resistive metal plate. 2 volume resistivity. That is, the resistance value R of the chip resistor 1 is the width W, length L2, and thickness Tn (L2 / (W ⁇ Tn )) of the portion of the resistive metal plate 2 covered with the protective films 3a and 3b. , Determined by the volume resistivity ⁇ of the resistive metal plate 2.
  • the resistance value R (target resistance value), the width W (target value) determined in the piece cutting step (step 26), and the volume resistivity ⁇ are known, and the thickness T n (that is, the resistance metal plate 12B)
  • the thicknesses T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 ) at the respective positions in the width direction are also measured and known in the previous resistance metal plate thickness measurement step (step S22). Therefore, using these values, the thicknesses T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 at each position in the width direction of the anti-metal plate 12B are obtained from the above equation (4).
  • the widths of the protective films 13A and 13B (that is, the lengths of the protective films 3a and 3b in the chip resistor 1) L2 1 , L2 2 , L2 3 , L2 4 , L2 5 , L2 6 and L2 7 are calculated. be able to.
  • the resistance metal plate 12B is subjected to laser and wire discharge at a cutting position M1 indicated by a one-dot chain line (virtual line).
  • a cutting device such as a cutting blade
  • FIG. 13B shows an enlarged view of one of the plurality of strip-shaped portions 17 cut from the resistance metal plate 12B
  • FIG. 13C shows a cross section of the single strip-shaped portion 17. Is shown enlarged. L3 shown in FIG.
  • 13B is the width of the resistive metal plate 12B in the strip-shaped portion 17 (the length L3 of the resistive metal plate 2 in the chip resistor 1), and L2 is the protective films 13A and 13B in the strip-shaped portion 17. (In the chip resistor 1, the length L2 of the protective films 3a and 3b).
  • the cutting position (cutting line) M1 extends in the length direction of the resistance metal plate 12B (vertical direction in FIG. 12B), and the width direction of the resistance metal plate 12B (FIG. 13). 12 (b) in the left-right direction), between the adjacent protective films 3A and 3B (that is, between the protective films 13A and 13A on the front surface 12B-1 side and between the protective films 13B and 13B on the back surface 12B-2 side), and the resistance The outer side of the protective films 13A and 13B located on both sides in the width direction of the metal plate 12B (that is, the outer side of the protective film 13A on both sides in the width direction on the front surface 12B-1 side and the protective films 13B on both sides in the width direction on the back surface 12B-2 side).
  • These cutting positions (cutting lines) M1 are set on the basis of the positioning mark 15 so that the width L3 of the resistance metal plate 12B in the strip-shaped portion 17 becomes a predetermined value.
  • the width L3 of the resistive metal plate 12B in the strip-shaped portion 17 is determined by a cutting allowance (ie, a laser beam width, a wire thickness, a cutting blade thickness, etc.) by a laser, wire discharge, or a cutting device such as a cutting blade. It can also be adjusted by appropriately adjusting the cutting position (width of cutting line M1).
  • the protective film 13A is formed in the strip portion 17.
  • 13B are not formed and are exposed to the surface of both end portions 12B-3, 12B-4 in the width direction (left-right direction in FIG. 13 (b)) of the exposed resistance metal plate 12B by electroplating.
  • Electrode plating films 14A and 14B are formed.
  • the plating films 14C and 14D are also formed at both ends in the length direction of the strip-shaped portion 17 where the protective films 13A and 13B are not formed.
  • the electrode plating films 14A and 14B for example, a nickel plating film and a tin plating film are formed. Further, the electrode plating films 14A and 14B may be formed by forming nickel strike plating, copper plating, nickel plating, and tin plating film in this order.
  • the strip-like portion 17 is made of laser, wire discharge, cutting blade, etc. at a cutting position N1 indicated by a one-dot chain line (virtual line).
  • a plurality of pieces (12 pieces in the illustrated example) are cut by a cutting device.
  • the metal plate low resistance chip resistor 1 as shown in FIG. 15B is manufactured. That is, by cutting the strip-shaped portion 17 into a plurality of pieces, the resistance metal plate 12B, the protective films 13A and 13B, and the electrode plating films 14A and 14B in the strip-shaped portion 17 are used.
  • a plate 2, protective films 3a and 3b, and electrode plating films 4a and 4b are formed, respectively.
  • the width L1 of the resistive metal plate 12B and the electrode plating films 14B and 14B in the strip-shaped portion 17 corresponds to the total length L1 of the chip resistor 1.
  • the width C of the electrode plating films 14A and 14B in the strip-shaped part 17 corresponds to the length C of the electrode plating films 4a and 4b in the chip resistor 1
  • the width L2 of the protective films 13A and 13B in the strip-shaped part 17 Is equivalent to the length L2 of the protective films 3a and 3b in the chip resistor 1
  • the width L3 of the resistive metal plate 12B in the strip-like portion 17 is equivalent to the length L3 of the resistive metal plate 2 in the chip resistor 1.
  • the chip resistor manufacturing process including the resistance metal plate thickness measurement process as described above is performed on any of the rectangular resistance metal plates 12B sequentially cut from the strip-shaped resistance metal plate 12A. This is because the thickness variation may occur in the length direction of the strip-shaped resistance metal plate 12A, and in this case, the thickness variation in the width direction differs for each resistance metal plate 12B. When there is almost no thickness variation in the length direction of the strip-shaped resistive metal plate 12A, the thickness measurement is performed only on the rectangular resistive metal plate 12B that is first cut from the strip-shaped resistive metal plate 12A.
  • the protective film 13A is formed to determine the widths of the protective films 13A and 13B, and the protective films 13A and 13B are formed on the rectangular resistive metal plate 12B cut from the strip-shaped resistive metal plate 12A on the second and subsequent sides. , 13B may be applied.
  • the manufacturing method of the chip resistor 1 using the rectangular resistance metal plate 12B, the surface of the resistance metal plate 12B A protective film forming step of forming a plurality of protective films 13A and 13B extending in the length direction of the resistive metal plate 12 in the width direction of the resistive metal plate 12B on each of the 12B-1 and the back surface 12B-2 (step S23). And a resistance at a cutting position M1 extending in the length direction of the resistive metal plate 12B between the protective films 13A and 13B adjacent in the width direction and outside the protective films 13A and 13B located on both sides in the width direction.
  • a strip-shaped cutting step (a step of cutting a plurality of strip-shaped portions 17 having a width wider than the protective films 13A and 13B and extending in the length direction of the resistance metal plate 12B). Electrode S24) and the surface of both end portions 12B-3 and 12B-4 in the width direction of the strip portion 17 where the protective metal plates 13A and 13B are not formed and the resistance metal plate 12B is exposed. Chip resistance is achieved by sequentially performing an electrode plating film forming step (step S25) for forming the plating films 14A and 14B and an individual piece cutting step (step S26) for cutting the strip portion 17 into a plurality of pieces. Since the container 1 is manufactured, the protective films 13A and 13B are formed before the strip portion 17 is cut out.
  • the width of the resistance metal plate 12B in the strip portion 17 is reduced.
  • the protective films 13A and 13B can be easily formed without being affected by L3. That is, it is easy to form the protective films 13A and 13B by screen printing or photolithography.
  • the allowable range of adjustment of the width of the protective films 13A and 13B (the length of the protective films 3a and 3b in the chip resistor 1) L2 can be increased (see FIG. 8).
  • the width of each of the 13B L2 1, L2 2, L2 3, L2 4, L2 5, L2 6, L2 7, resistors The protective film 13A according to the thickness variation in the width direction of the metal plate 12B 13B the width (protection in the chip resistor 1 film 3a, the length of the 3b) can be adjusted. For this reason, the variation in the resistance value of the chip resistor 1 due to the variation in the thickness in the width direction of the resistance metal plate 12B can be reduced.
  • the rectangular resistive metal plate 12B is cut from the strip-shaped resistive metal plate 12A, and the protective films 13A and 13B are applied to the rectangular resistive metal plate 12B.
  • the strip-shaped portion 17 is cut out after forming the film, but the present invention is not necessarily limited thereto. That is, the rectangular resistance metal plate 12B is not cut out, and the strip-shaped portion 17 may be cut out after the protective films 13A and 13B are formed on the strip-like resistance metal plate 12A.
  • the present invention relates to a method of manufacturing a chip resistor using a resistance metal plate, and is particularly useful when applied to a case where the width of the resistance metal plate of the strip-shaped portion becomes very narrow in the manufacturing process of the chip resistor. is there.
  • 1 metal plate low resistance chip resistor 2 resistance metal plate, 2A strip-shaped resistance metal plate, 2B rectangular resistance metal plate, 2B-1 front surface, 2B-2 back surface, 2B-3, 2B-4 end, 2B -5 side, 2a front, 2a-1, 2a-2 end, 2b back, 2b-1, 2b-2 end, 2c, 2d end, 2e, 2f end, 3a, 3b protective film, 3A, 3B Protective film, 4a, 4b electrode plating film, 4A, 4B electrode plating film, 4C plating film, 5 positioning mark, 6 slit, 7 strip-shaped part, 8 connecting part, 12A strip-shaped resistive metal plate, 12B rectangular resistive metal Plate, 12B-1 front surface, 12B-2 back surface, 12B-3, 12B-4 edge, 14A, 14B electrode plating film, 14C 14D plated film 15 positioning mark, 17 the strip-shaped part

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

 本発明は短冊状部における抵抗金属板の幅に影響されずに容易に保護膜を形成することができ、また、抵抗金属板の幅方向における厚さのバラツキに応じて保護膜の幅を調整することができ、更には保護膜の幅の調整の自由度を大きくすることもできる金属板低抵抗チップ抵抗器の製造方法を提供することを目的とする。そのため、抵抗金属板の表面及び裏面に保護膜を形成する保護膜形成工程(ステップS13)を、先に実施し、抵抗金属板にスリットを形成して、抵抗金属板を、短冊状部と連結部とを有る形状にするスリット形成工程(ステップS14)を、後に実施する。また、保護膜を形成する抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程(ステップS12)を、保護膜形成工程(ステップS13)の前に実施し、保護膜形成工程(ステップS13)では、測定した抵抗金属板の幅方向の各位置における厚さに応じて、保護膜の幅を設定する。

Description

金属板低抵抗チップ抵抗器の製造方法
 本発明は抵抗金属板を用いるチップ抵抗器の製造方法に関するものである。
 電源装置や、モータの回転数制御回路等の各種制御回路においては、電流を検知する手段が必要である。電流を検知する手段としては、種々のものがあるが、一般にはシャント抵抗器等の電子部品が利用される場合が多い。このようなシャント抵抗器などに適用される抵抗器として、チップ抵抗器が知られている。そして、このチップ抵抗器のうち、抵抗値が数mΩのように非常に低いチップ抵抗器の製造には、抵抗金属板が主に適用される。このような抵抗金属板を用いて製造する低抵抗のチップ抵抗器は、一般に金属板低抵抗チップ抵抗器と称されている。
 図16(a)~図16(c)に示すように、金属板低抵抗チップ抵抗器1は外観が直方体状のものであり、抵抗金属板2を用いて製造されている。抵抗金属板2の表面2a及び裏面2bには、保護膜3a,3bがそれぞれ形成されている。これらの保護膜3a,3bは電気的絶縁性の膜である。また、保護膜3a,3bが形成されていない抵抗金属板2の長さ方向(図16(b)及び図16(c)の左右方向)の両端部2e,2fの表面(即ち表面2aの幅方向の両端部2a-1,2a-2と、裏面2bの幅方向の両端部2b-1,2b-2と、両端面2c,2d)には、電極めっき膜4a,4bが形成されている。
 チップ抵抗器1の各寸法(単位:mm)に関しては、例えばチップ抵抗器1の全長L1が1.6±0.1(許容差)、電極めっき膜4a,4bの長さCが0.2±0.1(許容差)、チップ抵抗器1の幅Wが0.8±0.1(許容差)、チップ抵抗器1の厚さHが0.3±0.1(許容差)に規定されている。これらの許容差を含めたチップ抵抗器1の各寸法は、チップ抵抗器1を回路基板上に実装する際の寸法上の制約などに基づいて規定されている。なお、保護膜3a,3bの長さL2は、チップ抵抗器1の全長L1と両側の電極めっき膜4a,4bの長さ(全長)2×Cとの差(L1-2×C)である。換言すれば、L2は抵抗金属板2の保護膜3a,3bによって覆われた部分の長さでもある。また、Tは抵抗金属板2の厚さ、L3は抵抗金属板2の長さである。
 そして、従来は、図16に示すような構造の金属板低抵抗チップ抵抗器1を、図17の工程フローチャートに示す帯状抵抗金属板切断工程(ステップS1)と、スリット形成工程(ステップS2)と、保護膜形成工程(ステップS3)と、電極めっき膜形成工程(ステップS4)と、短冊状部切り取り工程(ステップS5)と、短冊状部切断工程(ステップS6)とを、順に実施することによって、製造していた。
 スリット形成工程(ステップS2)と、保護膜形成工程(ステップS3)に関しては、図18及び図19に基づいて更に説明する。なお、帯状抵抗金属板切断工程(ステップS1)と、電極めっき膜形成工程(ステップS4)と、短冊状部切り取り工程(ステップS5)と、短冊状部切断工程(ステップS6)に関しては、図1に示す帯状抵抗金属板切断工程(ステップS11)と、電極めっき膜形成工程(ステップS15)と、短冊状部切り取り工程(ステップS16)と、短冊状部切断工程(ステップS17)と同様であり、これらの詳細については後述する。
 図18(a)~図18(c)に示すように、スリット形成工程(ステップS2)では、複数(図示例では5本)のスリット6を、矩形状の抵抗金属板2Bに形成する。抵抗金属板2Bは、帯状抵抗金属板切断工程(ステップS1)において、帯状の抵抗金属板2A(図2参照)から切り取ったものである。スリット6は抵抗金属板2Bの長さ方向(図18(b)の上下方向)に延びており、且つ、抵抗金属板2Bの幅方向(図18(b)の左右方向)において互いに平行となっている。なお、スリット6を形成する位置は、位置決めマーク5を基準として設定する。このような複数のスリット6が形成されることによって、抵抗金属板2Bは、抵抗金属板2Bの長さ方向に延びる複数(図示例では4本)の短冊状部7と、前記複数の短冊状部7の長さ方向(図18(b)の上下方向)の両端をそれぞれ連結する連結部8とを有する形状になる。
 図19(a)~図19(c)に示すように、次の保護膜形成工程(ステップS3)では、複数(図示例では4本)の保護膜3A,3Bを、スクリーン印刷法などにより、各短冊状部7において、抵抗金属板2Bの表面2B-1及び裏面2B-2にそれぞれ形成する。これらの保護膜3A,3Bは、抵抗金属板2Bの長さ方向に延びており、且つ、抵抗金属板2Bの幅方向において互いに平行となっている。なお、保護膜3A,3Bを形成する位置は、位置決めマーク5を基準として設定する。
 なお、チップ抵抗器の製造方法が開示されている先行技術文献としては、例えば次の特許文献1,2がある。
特開2009-218552号公報 国際公開第2008/018219号パンフレット
 上記従来の金属板低抵抗チップ抵抗器の製造方法では、保護膜3A,3Bよりも先にスリット6を形成している。即ち、抵抗金属板2Bにスリット6を形成することによって短冊状部7を形成した後、これらの短冊状部7に保護膜3A,3Bを形成している。このため、上記従来の金属板低抵抗チップ抵抗器の製造方法には、次のような問題点がある。
 即ち、保護膜3A,3Bよりも先にスリット6を形成した場合、短冊状部7における非常に幅の狭い抵抗金属板2Bの表面2B-1及び裏面2B-2に保護膜3A,3Bを形成しなけばならない。このため、保護膜3A,3Bの形成が困難である。しかも、チップ抵抗器1の更なる小型化が求められた場合には、短冊状部7における抵抗金属板2Bの幅が更に狭くなるため、保護膜3A,3Bを形成することが更に困難になる。また、保護膜3A,3Bを形成する際、一般的にはスクリーン印刷法によりペーストをパターン化するが、更に、その寸法精度を向上させるにはホトリソグラフィー法を適用する。そして、このホトリソグラフィー法を適用するとき、先に保護膜3A,3Bよりも先にスリット6を形成すると、そのことが工法を複雑にする。
 また、チップ抵抗器1の製造に用いられる帯状の抵抗金属板2A(図2参照)は、所望の厚さにするため、焼鈍工程と圧延工程とを繰り返すことにより、製造される。しかし、製造された帯状の抵抗金属板2Aの厚さは完全に均一にはならず、特に抵抗金属板2Aの幅方向において厚さのバラツキが生じる。このため、帯状の抵抗金属板2Aから切り取られた抵抗金属板2Bにも、幅方向における厚さバラツキが生じている。
 そして、このような抵抗金属板2Bの幅方向における厚さのバラツキは、チップ抵抗器1の抵抗値のバラツキを招く。一方、チップ抵抗器1の抵抗値は、抵抗金属板2の保護膜3a,3bで覆われた部分の幅W、長さL2、厚さT(図16参照)で決まる。即ち、後述の(1)式、(3)式により決定される。このため、チップ抵抗器1の製造過程では、抵抗金属板2Bの幅方向における厚さのバラツキに応じて、図19に示す各保護膜3A,3Bの幅L21,L22,L23,L24を調整することにより、チップ抵抗器1の抵抗値のバラツキを低減する必要がある。また、この場合、保護膜3A,3Bの幅L21,L22,L23,L24(即ちチップ抵抗器1における保護膜3a,3bの長さL2)に関する調整の許容範囲は、できるだけ大きいほうが望ましい。
 これに対して図20に示すように、前述のようなチップ抵抗器1の寸法例の場合、従来の製造方法における保護膜3a,3bの長さL2の調整許容範囲は、0.4mmとなる。つまり、保護膜3A,3Bよりも先にスリット6を形成するため、チップ抵抗器1においては保護膜3a,3bの長さL2よりも先に抵抗金属板2の長さL3が決定されて、チップ抵抗器1の全長L1が決定されることになる。チップ抵抗器1の全長L1を例えば1.6mmとすると、電極めっき膜4a,4bの全長2×Cが最長0.6mm(=2×(0.2+0.1))の場合と最短0.2mm(=2×(0.2-0.1))の場合とでは、保護膜3a,3bの長さL2が、それぞれ0.9mmと1.3mmになる。従って、保護膜3a,3bの長さL2の調整許容範囲は、0.4mm(=1.3-0.9)となる。チップ抵抗器1の全長L1を1.5mm(=1.6-0.1)や1.7mm(=1.6+0.1)にした場合にも、同様の調整許容範囲となる。
 なお、抵抗金属板の幅方向の厚さのバラツキによるチップ抵抗器の抵抗値のバラツキを低減する方法としては、抵抗金属板をトリミングして抵抗値を調整する方法もある。しかし、抵抗金属板をトリミングした場合には、このトリミングした抵抗金属板を適用したチップ抵抗器を負荷に接続して前記チップ抵抗器に電流を流したとき、前記チップ抵抗器にホットスポットが発生するため、チップ抵抗器の寿命特性等の負荷特性が劣化するという不具合が発生するおそれがある。このため、抵抗金属板2Bの幅方向の厚さのバラツキによるチップ抵抗器1の抵抗値のバラツキの低減は、抵抗金属板2Bをトリミングする方法ではなく、保護膜3A,3Bの幅L21,L22,L23,L24を調整する方法によって、実施する必要がある。
 従って本発明は上記の事情に鑑み、短冊状部における抵抗金属板の幅に影響されずに容易に保護膜を形成することができ、また、抵抗金属板の幅方向における厚さのバラツキに応じて保護膜の幅(チップ抵抗器における保護膜の長さ)を調整することができ、更には保護膜の幅(チップ抵抗器における保護膜の長さ)の調整の許容範囲を大きくすることもできる金属板低抵抗チップ抵抗器の製造方法を提供することを課題とする。
 上記課題を解決する第1発明の金属板低抵抗チップ抵抗器の製造方法は、矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、
 前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、
 前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において、前記抵抗金属板の長さ方向に延びるスリットを、前記抵抗金属板に形成することにより、前記抵抗金属板を、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部と、前記複数の短冊状部の長さ方向の両端をそれぞれ連結する連結部とを有る形状にするスリット形成工程と、
 前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、
 前記短冊状部を前記連結部から切り取る短冊状部切り取り工程と、
 前記短冊状部を複数の個片に切断する短冊状部切断工程とを、
順に実施することにより、前記チップ抵抗器を製造することを特徴とする。
 また、第2発明の金属板低抵抗チップ抵抗器の製造方法は、第1発明の金属板低抵抗チップ抵抗器の製造方法において、
 前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、
 前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴とする。
 また、第3発明の金属板低抵抗チップ抵抗器の製造方法は、矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、
 前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、
 前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において前記抵抗金属板の長さ方向に延びる切断位置で、前記抵抗金属板を切断することにより、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部を切り取る短冊状切断工程と、
 前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、
 前記短冊状部を複数の個片に切断する個片切断工程とを、
順に実施することにより、前記チップ抵抗器を製造することを特徴とする。
 また、第4発明の金属板低抵抗チップ抵抗器の製造方法は、第3発明の金属板低抵抗チップ抵抗器の製造方法において、
 前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、
 前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴とする。
 第1発明の金属板低抵抗チップ抵抗器の製造方法によれば、矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において、前記抵抗金属板の長さ方向に延びるスリットを、前記抵抗金属板に形成することにより、前記抵抗金属板を、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部と、前記複数の短冊状部の長さ方向の両端をそれぞれ連結する連結部とを有る形状にするスリット形成工程と、前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、前記短冊状部を前記連結部から切り取る短冊状部切り取り工程と、前記短冊状部を複数の個片に切断する短冊状部切断工程とを、順に実施することにより、前記チップ抵抗器を製造することを特徴としているため、スリット(即ち短冊状部)よりも先に保護膜が形成される。
 このため、例えばチップ抵抗器の更なる小型化が求められて、短冊状部における抵抗金属板の幅が更に狭くなったとしても、この短冊状部における抵抗金属板の幅に影響されずに容易に保護膜を形成することができる。また、保護膜の幅(チップ抵抗器における保護膜の長さ)の調整の許容範囲を大きくすることもできる(図8参照:詳細後述)。
 第2発明の金属板低抵抗チップ抵抗器の製造方法によれば、第1発明の金属板低抵抗チップ抵抗器の製造方法において、前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴としているため、上記第1発明の効果に加えて、抵抗金属板の幅方向における厚さのバラツキに応じて保護膜の幅(チップ抵抗器における保護膜の長さ)を調整することもできる。このため、抵抗金属板の幅方向の厚さのバラツキによるチップ抵抗器の抵抗値のバラツキを低減することができる。
 第3発明の金属板低抵抗チップ抵抗器の製造方法によれば、矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において前記抵抗金属板の長さ方向に延びる切断位置で、前記抵抗金属板を切断することにより、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部を切り取る短冊状切断工程と、前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、前記短冊状部を複数の個片に切断する個片切断工程とを、順に実施することにより、前記チップ抵抗器を製造することを特徴としているため、短冊状部を切り取るよりも先に保護膜が形成される。
 このため、例えばチップ抵抗器の更なる小型化が求められて、短冊状部における抵抗金属板の幅が更に狭くなったとしても、この短冊状部における抵抗金属板の幅に影響されずに容易に保護膜を形成することができる。また、保護膜の幅(チップ抵抗器における保護膜の長さ)の調整の許容範囲を大きくすることもできる(図8参照:詳細後述)。
 第4発明の金属板低抵抗チップ抵抗器の製造方法によれば、第3発明の金属板低抵抗チップ抵抗器の製造方法において、前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴としているため、上記第3発明の効果に加えて、抵抗金属板の幅方向における厚さのバラツキに応じて保護膜の幅(チップ抵抗器における保護膜の長さ)を調整することもできる。このため、抵抗金属板の幅方向の厚さのバラツキによるチップ抵抗器の抵抗値のバラツキを低減することができる。
本発明の実施の形態例に係る金属板低抵抗チップ抵抗器の製造工程を示すフローチャートである。 (a)は帯状抵抗金属板切断工程について説明するための帯状抵抗金属板の斜視図、(b)は帯状抵抗金属板切断工程を説明するための矩形状抵抗金属板の平面図である。 (a)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の斜視図、(b)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の平面図、(c)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の断面拡大図((b)のA-A線矢視断面拡大図)である。 (a)は保護膜形成工程について説明するための抵抗金属板等の斜視図、(b)は保護膜形成工程について説明するための抵抗金属板等の平面図、(c)は保護膜形成工程について説明するための抵抗金属板等の断面拡大図((b)のB-B線矢視断面拡大図)である。 (a)はスリット形成工程について説明するための抵抗金属板等の斜視図、(b)はスリット形成工程について説明するための抵抗金属板等の平面図、(c)はスリット形成工程について説明するための抵抗金属板等の断面拡大図((b)のC-C線矢視断面拡大図)である。 (a)は電極めっき膜形成工程について説明するための抵抗金属板等の斜視図、(b)は電極めっき膜形成工程について説明するための抵抗金属板等の平面図、(c)は電極めっき膜形成工程について説明するための抵抗金属板等の断面拡大図((b)のD-D線矢視断面拡大図)である。 (a)は短冊状部切り取り工程について説明するための抵抗金属板等の斜視図、(b)は短冊状部切り取り工程及び短冊状部切断工程について説明するための短冊状部の斜視図、(c)は短冊状部切断工程について説明するための金属板低抵抗チップ抵抗器(個片)の斜視図である。 本発明の実施の形態例に係る金属板低抵抗チップ抵抗器の製造方法に関する金属板低抵抗チップ抵抗器の各寸法関係を示す表である。 本発明の他の実施の形態例に係る金属板低抵抗チップ抵抗器の製造工程を示すフローチャートである。 (a)は帯状抵抗金属板切断工程について説明するための帯状抵抗金属板の斜視図、(b)は帯状抵抗金属板切断工程を説明するための矩形状抵抗金属板の平面図である。 (a)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の斜視図、(b)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の平面図、(c)は抵抗金属板厚さ測定工程について説明するための抵抗金属板の断面拡大図((b)のA1-A1線矢視断面拡大図)である。 (a)は保護膜形成工程について説明するための抵抗金属板等の斜視図、(b)は保護膜形成工程について説明するための抵抗金属板等の平面図、(c)は保護膜形成工程について説明するための抵抗金属板等の断面拡大図((b)のB1-B1線矢視断面拡大図)である。 (a)は短冊状切断工程について説明するための抵抗金属板等の斜視図、(b)は短冊状切断工程について説明するための短冊状部の斜視図、(c)は短冊状切断工程について説明するための短冊状部の断面拡大図((b)のC1-C1線矢視断面拡大図)である。 (a)は電極めっき膜形成工程について説明するための短冊状部の斜視図、(c)は電極めっき膜形成工程について説明するための短冊状部の断面拡大図((a)のD1-D1線矢視断面拡大図)である。 (a)は個片切断工程について説明するための短冊状部の斜視図、(b)は個片切断工程について説明するための金属板低抵抗チップ抵抗器(個片)の斜視図である。 (a)は金属板低抵抗チップ抵抗器の構造を示す斜視図、(b)は前記金属板低抵抗チップ抵抗器の構造を示す平面図、(c)は前記金属板低抵抗チップ抵抗器の構造を示す(b)のE-E線矢視断面図である。 従来の金属板低抵抗チップ抵抗器の製造工程を示すフローチャートである。 (a)はスリット形成工程について説明するための抵抗金属板の斜視図、(b)はスリット形成工程について説明するための抵抗金属板の平面図、(c)はスリット形成工程について説明するための抵抗金属板の断面拡大図((b)のF-F線矢視断面拡大図)である。 (a)は保護膜形成工程について説明するための抵抗金属板等の斜視図、(b)は保護膜形成工程について説明するための抵抗金属板等の平面図、(c)は保護膜形成工程について説明するための抵抗金属板等の断面拡大図((b)のG-G線矢視断面拡大図)である。 従来の金属板低抵抗チップ抵抗器の製造方法に関する金属板低抵抗チップ抵抗器の各寸法関係を示す表である。
 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。
 図1~図7及び図16に基づき、本発明の実施の形態例に係るチップ抵抗器の製造方法について説明する。なお、本実施の形態例のチップ抵抗器の製造方法によって製造する金属板低抵抗チップ抵抗器の構造については、図16に基づいて既に説明したとおりであるため、ここでの詳細な説明は省略する。
 本実施の形態例では、図16に示すような構造の金属板低抵抗チップ抵抗器1を、図1の工程フローチャートに示す帯状抵抗金属板切断工程(ステップS11)と、抵抗金属板厚さ測定工程(ステップS12)と、保護膜形成工程(ステップS13)と、スリット形成工程(ステップS14)と、電極めっき膜形成工程(ステップS15)と、短冊状部切り取り工程(ステップS16)と、短冊状部切断工程(ステップS17)とを、順に実施することによって、製造する。
 詳述すると、図2(a)に示すように、帯状抵抗金属板切断工程(ステップS11)では、搬送装置(図示省略)によって矢印J方向に搬送されてくる帯状の抵抗金属板2Aを、レーザ、ワイヤ放電、切断刃などの切断装置により、一点鎖線(仮想線)Kで示す切断線位置で切断する。帯状の抵抗金属板2Aは、FeCrAl系、CuNi系又はCuMn系などの材料から成るものであり、所望の厚さにするため、スラブ状態の前記材料から、種々の工程を経て、焼鈍工程と圧延工程とを繰り返すことにより、製造される。
 帯状の抵抗金属板2Aを前記切断位置で切断した結果、図2(b)に示すような矩形状の抵抗金属板2Bが得られる。図2(a)に示すように、帯状の抵抗金属板2Aには位置決めマーク5が、幅方向の両側において、長さ方向に一定の間隔で設けられている。これらの位置決めマーク5は、図2(b)に示すように矩形状の抵抗金属板2Bの長さ方向の前端部において幅方向の両側に位置する。なお、これに限らず、位置決めマーク5は、前記幅方向の片側のみにあってもよく、また、抵抗金属板2Bの長さ方向の後端部や中央部などにあってもよい。
 図3(a)~図3(c)に示すように、次の抵抗金属板厚さ測定工程(ステップS12)では、複数(図示例では4本)の保護膜3A,3B(仮想線(一点鎖線)で示す)を形成する抵抗金属板2Bの幅方向(図3(b)の左右方向)の各位置における厚さT1,T2,T3,T4を、板厚測定装置(図示省略)によって測定する。この板厚が測定される抵抗金属板2Bの幅方向の各位置は、位置決めマーク5を基準として設定する。
 なお、図示例では各保護膜3A,3Bに対して、板厚が測定される抵抗金属板2Bの幅方向の各位置を、一箇所ずつ設定しているが、これに限定するものではない。例えば、各保護膜3A,3Bに対してそれぞれ、板厚が測定される抵抗金属板2Bの幅方向の各位置を、複数箇所ずつ設定し、これら複数箇所で測定した抵抗金属板2Bの厚さの平均値を、抵抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4としてもよい。
 図4(a)~図4(c)に示すように、次の保護膜形成工程(ステップS13)では、複数(図示例では4本)の保護膜3A,3Bを、スクリーン印刷法又はホトリソグラフィー法などにより、抵抗金属板2Bの表面2B-1及び裏面2B-2にそれぞれ形成する。これらの保護膜3A,3bは、抵抗金属板2Bの長さ方向に延びており、且つ、抵抗金属板2Bの幅方向において互いに平行となっている。なお、保護膜3A,3Bを形成する位置は、位置決めマーク5を基準として設定する。
 そして、本保護膜形成工程では、複数の保護膜3A,3Bのそれぞれの幅(即ちチップ抵抗器1における保護膜3a,3bの長さ)L21,L22,L23,L24を、前段の抵抗金属板厚さ測定工程(ステップS12)で測定した抵抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4に応じて、設定する。具体的には下記の(2)式に基づいて、各保護膜3A,3Bの幅L21,L22,L23,L24を算出する。(2)式は(1)式を変形したものである。
Figure JPOXMLDOC01-appb-M000001
 (1),(2)式において、Rはチップ抵抗器1の抵抗値(目標抵抗値)、L2はチップ抵抗器1における保護膜3a,3bの長さ(即ち抵抗金属板2の保護膜3a,3bに覆われた部分の長さ)、Wはチップ抵抗器1の幅(目標値)(即ち抵抗金属板2の幅)、Tnは抵抗金属板2の厚さ、ρは抵抗金属板2の体積抵抗率である。即ち、チップ抵抗器1の抵抗値Rは、抵抗金属板2の保護膜3a,3bで覆われた部分の幅W、長さL2、厚さTn(L2/(W×Tn))と、抵抗金属板2の体積抵抗率ρによって決まる。
 抵抗値R(目標抵抗値)と、短冊状部切断工程(ステップ17)で決定される幅W(目標値)と、体積抵抗率ρは既知であり、厚さTn(即ち抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4)も、前段の抵抗金属板厚さ測定工程(ステップS12)で測定されて既知であるため、これらの値を用いて上記の(2)式から、抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4に応じた各保護膜3A,3Bの幅(即ちチップ抵抗器1における保護膜3a,3bの長さ)L21,L22,L23,L24を算出することができる。
 各保護膜3A,3Bの幅L21,L22,L23,L24を算出すると、これらの算出値に応じたスクリーンパタンーンを設定し、このスクリーンパターンに基づいてスクリーン印刷法を実施することにより、エポキシ系樹脂のペーストを抵抗金属板2Bの表面2B-1と裏面2B-2に印刷し、且つ、このスクリーン印刷したペーストを焼き付けすることによって、各保護膜3A,3Bを形成する。勿論、ホトリソグラフィー法などを用いる場合にも、各保護膜3A,3Bの幅L21,L22,L23,L24の算出値に応じたパターンを設定して、各保護膜3A,3Bを形成する。
 図5(a)~図5(c)に示すように、次のスリット形成工程(ステップS14)では、複数(図示例では5本)のスリット6を抵抗金属板2Bに形成する。これらのスリット6は抵抗金属板2Bの長さ方向(図5(b)の上下方向)に延びており、抵抗金属板2Bの幅方向(図5(b)の左右方向)において隣接する保護膜3A,3Bの間(即ち表面2B-1側の保護膜3A,3A間及び裏面2B-2側の保護膜3B,3B間)、及び、抵抗金属板2Bの幅方向の両側に位置する保護膜3A,3Bの外側(即ち表面2B-1側における幅方向両側の保護膜3Aの外側及び裏面2B-2側における幅方向両側の保護膜3Bの外側)において形成される。なお、スリット6を形成する位置は、位置決めマーク5を基準として設定する。このような複数のスリット6が形成されることにより、抵抗金属板2Bは、抵抗金属板2Bの長さ方向に延びる複数(図示例では4本)の短冊状部7と、前記複数の短冊状部7の長さ方向(図5(b)の上下方向)の両端をそれぞれ連結する連結部8とを有する形状になる。なお、図中のL41,L42,L43,L44,L45はスリット6の幅であり、L31,L32,L33,L34は短冊状部7における抵抗金属板2Bの幅(チップ抵抗器1では抵抗金属板2の長さL3)である。
 スリット6は、例えば、連結部8と、保護膜3A,3Bよりも幅の広い短冊状部7とに対応する部分が残るように露光現像したドライフィルムによって、抵抗金属板2Bの表裏両面2B-1,2B-2を保護膜3A,3Bも含めて覆い、この状態で抵抗金属板2Bの各種類(各種の材質)に適したエッチング液を抵抗金属板2Bの表裏両面2B-1,2B-2にスプレイするエッチング法により、抵抗金属板2Bをエッチングすることによって形成する。このようなエッチグ法によるスリット6の形成によって、短冊状部7における抵抗金属板2Bの側面(スリット6側の面)2B-5が、抵抗金属板2Bの表裏両面2B-1,2B-2に対して直角な平坦面となり、短冊状部7における抵抗金属板2Bの幅L31,L32,L33,L34(チップ抵抗器1では抵抗金属板2の長さL3)を高精度に設定することができる。なお、スリット6を形成する手段としては、必ずしもエッチグ法に限定するものではなく、レーザ加工などの手段を用いることもできる。また、図示例では短冊状部7の長さ方向の両端に連結部8が形成されているが、これに限らず、短冊状部7の長さ方向の何れか一端にだけ連結部8が形成されていてもよい。
 図6(a)~図6(c)に示すように、次の電極めっき膜形成工程(ステップS15)では、各短冊状部7において、保護膜3A,3Bが形成されておらず露出しているの抵抗金属板2Bの幅方向(図6(c)の左右方向)の両端部2B-3,2B-4の表面に対して、電気めっき法により、電極めっき膜4A,4Bを形成する。なお、このとき連結部8などの抵抗金属板2Bの周縁部にも、めっき膜4C(説明の便宜上、一点鎖線の透視図で示す)が形成される。電極めっき膜4A,4Bとしては、例えばニッケルめっき膜及び錫めっき膜を形成する。また、電極めっき膜4A,4Bは、ニッケルストライクめっきと、銅めっきと、ニッケルめっきと、錫めっき膜とを、この順で形成したものであってもよい。
 図7(a)及び図7(b)に示すように、次の短冊状部切り取り工程(ステップS16)では、抵抗金属板2Bを一点鎖線(仮想線)で示す切断位置Mでレーザ、ワイヤー放電、切断刃などの切断装置により、切断することによって、短冊状部7を連結部8から切り取る。図7(b)には連結部8から切り取った複数の短冊状部7のうちの1本を拡大して示している。
 図7(b)及び図7(c)に示すように、次の短冊状部切断工程(ステップS17)では、短冊状部7を、一点鎖線(仮想線)で示す切断位置Nにおいて、レーザ、ワイヤー放電、切断刃などの切断装置により、複数(図示例では10個)の個片に切断する。かくして、図7(c)に示すような金属板低抵抗チップ抵抗器1が製造される。即ち、短冊状部7が複数の個片に切断されることにより、短冊状部7における抵抗金属板2Bと保護膜3A,3Bと電極めっき膜4A,4Bとから、チップ抵抗器1における抵抗金属板2と保護膜3a,3bと電極めっき膜4a,4bとがそれぞれ形成される。
 短冊状部7の寸法とチップ抵抗器1の寸法の対応関係について説明すると、短冊状部7における抵抗金属板2Bと電極めっき膜4B,4Bの幅L1が、チップ抵抗器1の全長L1に相当し、短冊状部7における電極めっき膜4A,4Bの幅Cが、チップ抵抗器1における電極めっき膜4a,4bの長さCに相当し、短冊状部7における保護膜3A,3Bの幅L2が、チップ抵抗器1における保護膜3a,3bの長さL2に相当し、短冊状部7における抵抗金属板2Bの幅L3が、チップ抵抗器1における抵抗金属板2の長さL3に相当する。
 なお、上記のような抵抗金属板厚さ測定工程を含めたチップ抵抗器の製造工程は、帯状の抵抗金属板2Aから順次切り取られる矩形状の抵抗金属板2Bの何れに対しても実施する。これは、帯状の抵抗金属板2Aの長さ方向においても厚さのバラツキが生じることがあり、この場合には幅方向の厚さのバラツキが抵抗金属板2Bごとに異なるためである。なお、帯状の抵抗金属板2Aの長さ方向における厚さのバラツキがほとんど無い場合には、帯状の抵抗金属板2Aから最初に切り取られる矩形状の抵抗金属板2Bに対してのみ厚さ測定を実施して保護膜3A,3Bの幅を決定し、この保護膜3A,3Bの幅を、帯状の抵抗金属板2Aから2番目以降に切り取られる矩形状の抵抗金属板2Bに形成する保護膜3A,3Bに適用するようにしてもよい。
 以上のように、本実施の形態例の金属板低抵抗チップ抵抗器の製造方法によれば、矩形状の抵抗金属板2Bを用いるチップ抵抗器の製造方法であって、抵抗金属板2Bの表面2B-1及び裏面2B-2のそれぞれに対して、抵抗金属板2Bの長さ方向に延びる保護膜3A,3Bを、抵抗金属板2Bの幅方向に複数形成する保護膜形成工程(ステップS13)と、前記幅方向において隣接する保護膜3A,3Bの間、及び、前記幅方向の両側に位置する保護膜3A,3Bの外側において、抵抗金属板2Bの長さ方向に延びるスリット6を、抵抗金属板2Bに形成することにより、抵抗金属板2Bを、保護膜3A,3Bよりも広い幅を有し且つ抵抗金属板2Bの長さ方向に延びる複数の短冊状部7と、前記複数の短冊状部7の長さ方向の両端をそれぞれ連結する連結部8とを有る形状にするスリット形成工程(ステップS14)と、保護膜3A,3Bが形成されておらず抵抗金属板2Bが露出している短冊状部7の幅方向の両端部2B-3,2B-4の表面に対して、電極めっき膜4A,4Bを形成する電極めっき膜形成工程(ステップS15)と、短冊状部7を連結部8から切り取る短冊状部切り取り工程(ステップS16)と、短冊状部7を複数の個片に切断する短冊状部切断工程(ステップS17)とを、順に実施することにより、チップ抵抗器1を製造することを特徴としているため、スリット6(即ち短冊状部7)よりも先に保護膜3A,3Bが形成される。
 このため、例えばチップ抵抗器1の更なる小型化が求められて、短冊状部7における抵抗金属板2Bの幅L3が更に狭くなったとしても、この短冊状部7における抵抗金属板2Bの幅L3に影響されずに容易に保護膜3A,3Bを形成することができる。即ち、スクリーン印刷法やホトリソグラフィー法などによる保護膜3A,3Bの形成が容易である。
 また、保護膜3A,3Bの幅(チップ抵抗器1における保護膜3a,3bの長さ)L2の調整の許容範囲を大きくすることもできる。前述のようなチップ抵抗器1の寸法例の場合、図8に基づいて説明すると、例えば、保護膜3a,3bの長さL2を0.9mmに設定した場合、電極めっき膜4a,4bの全長2×Cが最長0.6mm(=2×(0.2+0.1))の場合と最短0.2mm(=2×(0.2-0.1))の場合とでは、チップ抵抗器1の全長L1が、それぞれ1.5mmと1.1mmになる。従って、チップ抵抗器1の全長L1を、許容寸法の最短である1.5mm(=1.6-0.1)に設定するればよい。保護膜3a,3bの長さL2を1.2mmに設定した場合、電極めっき膜4a,4bの全長2×Cが最長0.6mmの場合と最短0.2mmの場合とでは、チップ抵抗器1の全長L1が、それぞれ1.8mmと1.4mmになる。従って、チップ抵抗器1の全長L1を、1.5~1.7mmの範囲で設定するればよい。保護膜3a,3bの長さL2を1.5mmに設定した場合、電極めっき膜4a,4bの全長2×Cが最長0.6mmの場合と最短0.2mmの場合とでは、チップ抵抗器1の全長L1が、それぞれ2.1mmと1.7mmになる。従って、チップ抵抗器1の全長L1を、許容寸法の最長である1.7mmの範囲で設定するればよい。従って、保護膜3a,3bの長さL2の調整許容範囲は0.6mmとなり、従来の製造方法における調整許容範囲の0.4mm(図20参照)よりも大きなる。
 また、本実施の形態例の金属板低抵抗チップ抵抗器の製造方法によれば、複数の保護膜3A,3Bを形成する抵抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4を測定する抵抗金属板厚さ測定工程(ステップS12)を、保護膜形成工程(ステップS13)の前に実施し、保護膜形成工程(ステップS13)では、抵抗金属板厚さ測定工程(ステップS12)で測定した前記抵抗金属板2Bの幅方向の各位置における厚さT1,T2,T3,T4に応じて、前記複数の保護膜3A,3Bのそれぞれの幅L21,L22,L23,L24を設定することを特徴としているため、抵抗金属板2Bの幅方向における厚さのバラツキに応じて保護膜3A,3Bの幅(チップ抵抗器1における保護膜3a,3bの長さ)を調整することもできる。このため、抵抗金属板2Bの幅方向の厚さのバラツキによるチップ抵抗器1の抵抗値のバラツキを低減することができる。
 なお、上記の金属板低抵抗チップ抵抗器の製造方法では、帯状の抵抗金属板2Aから矩形状の抵抗金属板2Bを切り取り、この矩形状の抵抗金属板2Bに対して、保護膜3A,3B、スリット6(短冊状部7)及び電極めっき膜4A,4Bを形成した後、短冊状部7を切り取るようにしているが、必ずしもこれに限定するものでない。即ち、矩形状の抵抗金属板2Bの切り取りは行わず、帯状の抵抗金属板2Aに対して、保護膜3A,3B、スリット6(短冊状部7)及び電極めっき膜4A,4Bを形成した後、短冊状部7を切り取るようにしてもよい。
 図9~図16に基づき、本発明の他の実施の形態例に係るチップ抵抗器の製造方法について説明する。なお、本他の実施の形態例のチップ抵抗器の製造方法によって製造する金属板低抵抗チップ抵抗器の構造については、図16に基づいて既に説明したとおりであるため、ここでの詳細な説明は省略する。
 本他の実施の形態例では、図16に示すような構造の金属板低抵抗チップ抵抗器1を、図9の工程フローチャートに示す帯状抵抗金属板切断工程(ステップS21)と、抵抗金属板厚さ測定工程(ステップS22)と、保護膜形成工程(ステップS23)と、短冊状切断工程(ステップS24)と、電極めっき膜形成工程(ステップS25)と、個片切断工程(ステップS26)とを、順に実施することによって、製造する。
 詳述すると、図10(a)に示すように、帯状抵抗金属板切断工程(ステップS21)では、搬送装置(図示省略)によって矢印J1方向に搬送されてくる帯状の抵抗金属板12Aを、レーザ、ワイヤ放電、切断刃などの切断装置により、一点鎖線(仮想線)K1で示す切断線位置で切断する。帯状の抵抗金属板12Aは、FeCrAl系、CuNi系又はCuMn系などの材料から成るものであり、所望の厚さにするため、スラブ状態の前記材料から、種々の工程を経て、焼鈍工程と圧延工程とを繰り返すことにより、製造される。
 帯状の抵抗金属板12Aを前記切断位置で切断した結果、図10(b)に示すような矩形状の抵抗金属板12Bが得られる。図10(a)に示すように、帯状の抵抗金属板12Aには位置決めマーク15が、幅方向の両側において、長さ方向に一定の間隔で設けられている。これらの位置決めマーク15は、図10(b)に示すように矩形状の抵抗金属板12Bの長さ方向の前端部において幅方向の両側に位置する。なお、これに限らず、位置決めマーク15は、前記幅方向の片側のみにあってもよく、また、抵抗金属板12Bの長さ方向の後端部や中央部などにあってもよい。
 図11(a)~図11(c)に示すように、次の抵抗金属板厚さ測定工程(ステップS22)では、複数(図示例では7本)の保護膜13A,13B(仮想線(一点鎖線)で示す)を形成する抵抗金属板12Bの幅方向(図11(b)の左右方向)の各位置における厚さT1,T2,T3,T4,T5,T6,T7を、板厚測定装置(図示省略)によって測定する。この板厚が測定される抵抗金属板12Bの幅方向の各位置は、位置決めマーク15を基準として設定する。
 なお、図示例では各保護膜13A,13Bに対して、板厚が測定される抵抗金属板12Bの幅方向の各位置を、一箇所ずつ設定しているが、これに限定するものではない。例えば、各保護膜13A,13Bに対してそれぞれ、板厚が測定される抵抗金属板12Bの幅方向の各位置を、複数箇所ずつ設定し、これら複数箇所で測定した抵抗金属板12Bの厚さの平均値を、抵抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7としてもよい。
 図12(a)~図12(c)に示すように、次の保護膜形成工程(ステップS23)では、複数(図示例では7本)の保護膜13A,13Bを、スクリーン印刷法又はホトリソグラフィー法などにより、抵抗金属板12Bの表面12B-1及び裏面12B-2にそれぞれ形成する。これらの保護膜13A,13bは、抵抗金属板12Bの長さ方向に延びており、且つ、抵抗金属板12Bの幅方向において互いに平行となっている。なお、保護膜13A,13Bを形成する位置は、位置決めマーク15を基準として設定する。
 そして、本保護膜形成工程では、複数の保護膜13A,13Bのそれぞれの幅(即ちチップ抵抗器1における保護膜3a,3bの長さ)L21,L22,L23,L24,L25,L26,L27を、前段の抵抗金属板厚さ測定工程(ステップS22)で測定した抵抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7に応じて、設定する。具体的には下記の(4)式に基づいて、各保護膜13A,13Bの幅L21,L22,L23,L24,L25,L26,L27を算出する。(4)式は(3)式を変形したものである。
Figure JPOXMLDOC01-appb-M000002
 (3),(4)式において、Rはチップ抵抗器1の抵抗値(目標抵抗値)、L2はチップ抵抗器1における保護膜3a,3bの長さ(即ち抵抗金属板2の保護膜3a,3bに覆われた部分の長さ)、Wはチップ抵抗器1の幅(目標値)(即ち抵抗金属板2の幅)、Tnは抵抗金属板2の厚さ、ρは抵抗金属板2の体積抵抗率である。即ち、チップ抵抗器1の抵抗値Rは、抵抗金属板2の保護膜3a,3bで覆われた部分の幅W、長さL2、厚さTn(L2/(W×Tn))と、抵抗金属板2の体積抵抗率ρによって決まる。
 抵抗値R(目標抵抗値)と、個片切断工程(ステップ26)で決定される幅W(目標値)と、体積抵抗率ρは既知であり、厚さTn(即ち抵抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7)も、前段の抵抗金属板厚さ測定工程(ステップS22)で測定されて既知であるため、これらの値を用いて上記の(4)式から、抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7に応じた各保護膜13A,13Bの幅(即ちチップ抵抗器1における保護膜3a,3bの長さ)L21,L22,L23,L24,L25,L26,L27を算出することができる。
 各保護膜13A,13Bの幅L21,L22,L23,L24,L25,L26,L27を算出すると、これらの算出値に応じたスクリーンパタンーンを設定し、このスクリーンパターンに基づいてスクリーン印刷法を実施することにより、エポキシ系樹脂のペーストを抵抗金属板12Bの表面12B-1と裏面12B-2に印刷し、且つ、このスクリーン印刷したペーストを焼き付けすることによって、各保護膜13A,13Bを形成する。勿論、ホトリソグラフィー法などを用いる場合にも、各保護膜13A,13Bの幅L21,L22,L23,L24,L25,L26,L27の算出値に応じたパターンを設定して、各保護膜13A,13Bを形成する。
 図13(a)~図13(b)に示すように、次の短冊状切断工程(ステップS24)では、抵抗金属板12Bを、一点鎖線(仮想線)で示す切断位置M1でレーザ、ワイヤー放電、切断刃などの切断装置により、切断することによって、複数(図示例では7本)の短冊状部17を切り取る。図13(b)には抵抗金属板12Bから切り取った複数の短冊状部17のうちの1本を拡大して示しており、図13(c)には当該1本の短冊状部17の断面を拡大して示している。図13(b)に示すL3は短冊状部17における抵抗金属板12Bの幅(チップ抵抗器1では抵抗金属板2の長さL3)であり、L2は短冊状部17における保護膜13A,13Bの幅(チップ抵抗器1では保護膜3a,3bの長さL2)である。
 図13(a)に示すように、切断位置(切断線)M1は抵抗金属板12Bの長さ方向(図12(b)の上下方向)に延びており、抵抗金属板12Bの幅方向(図12(b)の左右方向)において隣接する保護膜3A,3Bの間(即ち表面12B-1側の保護膜13A,13A間及び裏面12B-2側の保護膜13B,13B間)、及び、抵抗金属板12Bの幅方向の両側に位置する保護膜13A,13Bの外側(即ち表面12B-1側における幅方向両側の保護膜13Aの外側及び裏面12B-2側における幅方向両側の保護膜13Bの外側)に設定される。これらの切断位置(切断線)M1は、短冊状部17における抵抗金属板12Bの幅L3が所定値となるように、位置決めマーク15を基準として設定する。なお、短冊状部17における抵抗金属板12Bの幅L3は、レーザ、ワイヤー放電、切断刃などの切断装置による切断代(即ちレーザビームの幅、ワイヤーの太さ、切断刃の厚さなどで決まる切断位置(切断線)M1の幅)を適宜調整することによっても、調整することができる。
 図13(b),図13(c)及び図14(a),図14(b)に示すように、次の電極めっき膜形成工程(ステップS25)では、短冊状部17において、保護膜13A,13Bが形成されておらず露出しているの抵抗金属板12Bの幅方向(図13(b)の左右方向)の両端部12B-3,12B-4の表面に対して、電気めっき法により、電極めっき膜14A,14Bを形成する。なお、このとき保護膜13A,13Bが形成されていない短冊状部17の長さ方向の両端部にも、めっき膜14C,14Dが形成される。電極めっき膜14A,14Bとしては、例えばニッケルめっき膜及び錫めっき膜を形成する。また、電極めっき膜14A,14Bは、ニッケルストライクめっきと、銅めっきと、ニッケルめっきと、錫めっき膜とを、この順で形成したものであってもよい。
 図15(a)に示すように、次の個片切断工程(ステップS26)では、短冊状部17を、一点鎖線(仮想線)で示す切断位置N1において、レーザ、ワイヤ放電、切断刃などの切断装置により、複数(図示例では12個)の個片に切断する。かくして、図15(b)に示すような金属板低抵抗チップ抵抗器1が製造される。即ち、短冊状部17が複数の個片に切断されることにより、短冊状部17における抵抗金属板12Bと保護膜13A,13Bと電極めっき膜14A,14Bとから、チップ抵抗器1における抵抗金属板2と保護膜3a,3bと電極めっき膜4a,4bとがそれぞれ形成される。
 短冊状部17の寸法とチップ抵抗器1の寸法の対応関係について説明すると、短冊状部17における抵抗金属板12Bと電極めっき膜14B,14Bの幅L1が、チップ抵抗器1の全長L1に相当し、短冊状部17における電極めっき膜14A,14Bの幅Cが、チップ抵抗器1における電極めっき膜4a,4bの長さCに相当し、短冊状部17における保護膜13A,13Bの幅L2が、チップ抵抗器1における保護膜3a,3bの長さL2に相当し、短冊状部17における抵抗金属板12Bの幅L3が、チップ抵抗器1における抵抗金属板2の長さL3に相当する。
 なお、上記のような抵抗金属板厚さ測定工程を含めたチップ抵抗器の製造工程は、帯状の抵抗金属板12Aから順次切り取られる矩形状の抵抗金属板12Bの何れに対しても実施する。これは、帯状の抵抗金属板12Aの長さ方向においても厚さのバラツキが生じることがあり、この場合には幅方向の厚さのバラツキが抵抗金属板12Bごとに異なるためである。なお、帯状の抵抗金属板12Aの長さ方向における厚さのバラツキがほとんど無い場合には、帯状の抵抗金属板12Aから最初に切り取られる矩形状の抵抗金属板12Bに対してのみ厚さ測定を実施して保護膜13A,13Bの幅を決定し、この保護膜13A,13Bの幅を、帯状の抵抗金属板12Aから2番目以降に切り取られる矩形状の抵抗金属板12Bに形成する保護膜13A,13Bに適用するようにしてもよい。
 以上のことから、本他の実施の形態例の金属板低抵抗チップ抵抗器の製造方法においても、上記実施の形態例の金属板低抵抗チップ抵抗器の製造方法と同様の効果が得られる。
 即ち、本他の実施の形態例の金属板低抵抗チップ抵抗器の製造方法によれば、矩形状の抵抗金属板12Bを用いるチップ抵抗器1の製造方法であって、抵抗金属板12Bの表面12B-1及び裏面12B-2のそれぞれに対して、抵抗金属板12の長さ方向に延びる保護膜13A,13Bを、抵抗金属板12Bの幅方向に複数形成する保護膜形成工程(ステップS23)と、前記幅方向において隣接する保護膜13A,13Bの間、及び、前記幅方向の両側に位置する保護膜13A,13Bの外側において抵抗金属板12Bの長さ方向に延びる切断位置M1で、抵抗金属板12Bを切断することにより、保護膜13A,13Bよりも広い幅を有し且つ抵抗金属板12Bの長さ方向に延びる複数の短冊状部17を切り取る短冊状切断工程(ステップS24)と、保護膜13A,13Bが形成されておらず抵抗金属板12Bが露出している短冊状部17の幅方向の両端部12B-3,12B-4の表面に対して、電極めっき膜14A,14Bを形成する電極めっき膜形成工程(ステップS25)と、短冊状部17を複数の個片に切断する個片切断工程(ステップS26)とを、順に実施することにより、チップ抵抗器1を製造することを特徴としているため、短冊状部17を切り取るよりも先に保護膜13A,13Bが形成される。
 このため、例えばチップ抵抗器1の更なる小型化が求められて、短冊状部17における抵抗金属板12Bの幅L3が更に狭くなったとしても、この短冊状部17における抵抗金属板12Bの幅L3に影響されずに容易に保護膜13A,13Bを形成することができる。即ち、スクリーン印刷法やホトリソグラフィー法などによる保護膜13A,13Bの形成が容易である。
 また、保護膜13A,13Bの幅(チップ抵抗器1における保護膜3a,3bの長さ)L2の調整の許容範囲を大きくすることもできる(図8参照)。
 また、本他の実施の形態例の金属板低抵抗チップ抵抗器の製造方法によれば、複数の保護膜13A,13Bを形成する抵抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7を測定する抵抗金属板厚さ測定工程(ステップS22)を、保護膜形成工程(ステップS23)の前に実施し、保護膜形成工程(ステップS23)では、抵抗金属板厚さ測定工程(ステップS22)で測定した抵抗金属板12Bの幅方向の各位置における厚さT1,T2,T3,T4,T5,T6,T7に応じて、複数の保護膜13A,13Bのそれぞれの幅L21,L22,L23,L24,L25,L26,L27を設定することを特徴としているため、抵抗金属板12Bの幅方向における厚さのバラツキに応じて保護膜13A,13Bの幅(チップ抵抗器1における保護膜3a,3bの長さ)を調整することもできる。このため、抵抗金属板12Bの幅方向の厚さのバラツキによるチップ抵抗器1の抵抗値のバラツキを低減することができる。
 なお、上記の金属板低抵抗チップ抵抗器の製造方法では、帯状の抵抗金属板12Aから矩形状の抵抗金属板12Bを切り取り、この矩形状の抵抗金属板12Bに対して、保護膜13A,13Bを形成した後、短冊状部17を切り取るようにしているが、必ずしもこれに限定するものでない。即ち、矩形状の抵抗金属板12Bの切り取りは行わず、帯状の抵抗金属板12Aに対して、保護膜13A,13Bを形成した後、短冊状部17を切り取るようにしてもよい。
 本発明は抵抗金属板を用いるチップ抵抗器の製造方法に関するものであり、特にチップ抵抗器の製造過程における短冊状部の抵抗金属板の幅が非常に狭くなる場合に適用して有用なものである。
 1 金属板低抵抗チップ抵抗器、 2 抵抗金属板、 2A 帯状の抵抗金属板、 2B 矩形状の抵抗金属板、 2B-1 表面、 2B-2 裏面、 2B-3,2B-4 端部、 2B-5 側面、 2a 表面、 2a-1,2a-2 端部、 2b 裏面、 2b-1,2b-2 端部、 2c,2d 端面、 2e,2f 端部、 3a,3b 保護膜、 3A,3B 保護膜、 4a,4b 電極めっき膜、 4A,4B 電極めっき膜、 4C めっき膜、 5 位置決めマーク、 6 スリット、 7 短冊状部、 8 連結部、 12A 帯状の抵抗金属板、 12B 矩形状の抵抗金属板、 12B-1 表面、 12B-2 裏面、 12B-3,12B-4 端部、 14A,14B 電極めっき膜、 14C,14D めっき膜、 15 位置決めマーク、 17 短冊状部

Claims (4)

  1.  矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、
     前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、
     前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において、前記抵抗金属板の長さ方向に延びるスリットを、前記抵抗金属板に形成することにより、前記抵抗金属板を、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部と、前記複数の短冊状部の長さ方向の両端をそれぞれ連結する連結部とを有る形状にするスリット形成工程と、
     前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、
     前記短冊状部を前記連結部から切り取る短冊状部切り取り工程と、
     前記短冊状部を複数の個片に切断する短冊状部切断工程とを、
    順に実施することにより、前記チップ抵抗器を製造することを特徴とする金属板低抵抗チップ抵抗器の製造方法。
  2.  請求項1に記載する金属板低抵抗チップ抵抗器の製造方法において、
     前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、
     前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴とする金属板低抵抗チップ抵抗器の製造方法。
  3.  矩形状又は帯状の抵抗金属板を用いるチップ抵抗器の製造方法であって、
     前記抵抗金属板の表面及び裏面のそれぞれに対して、前記抵抗金属板の長さ方向に延びる保護膜を、前記抵抗金属板の幅方向に複数形成する保護膜形成工程と、
     前記幅方向において隣接する前記保護膜の間、及び、前記幅方向の両側に位置する前記保護膜の外側において前記抵抗金属板の長さ方向に延びる切断位置で、前記抵抗金属板を切断することにより、前記保護膜よりも広い幅を有し且つ前記抵抗金属板の長さ方向に延びる複数の短冊状部を切り取る短冊状切断工程と、
     前記保護膜が形成されておらず前記抵抗金属板が露出している前記短冊状部の幅方向の両端部の表面に対して、電極めっき膜を形成する電極めっき膜形成工程と、
     前記短冊状部を複数の個片に切断する個片切断工程とを、
    順に実施することにより、前記チップ抵抗器を製造することを特徴とする金属板低抵抗チップ抵抗器の製造方法。
  4.  請求項3に記載する金属板低抵抗チップ抵抗器の製造方法において、
     前記複数の保護膜を形成する前記抵抗金属板の幅方向の各位置における厚さを測定する抵抗金属板厚さ測定工程を、前記保護膜形成工程の前に実施し、
     前記保護膜形成工程では、前記抵抗金属板厚さ測定工程で測定した前記抵抗金属板の幅方向の各位置における厚さに応じて、前記複数の保護膜のそれぞれの幅を設定することを特徴とする金属板低抵抗チップ抵抗器の製造方法。
PCT/JP2011/064966 2010-09-21 2011-06-29 金属板低抵抗チップ抵抗器の製造方法 WO2012039175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180045471.9A CN103201801B (zh) 2010-09-21 2011-06-29 金属板低电阻芯片电阻器的制造方法
JP2012516242A JPWO2012039175A1 (ja) 2010-09-21 2011-06-29 金属板低抵抗チップ抵抗器の製造方法
KR1020137007074A KR101435351B1 (ko) 2010-09-21 2011-06-29 금속판 저저항 칩 저항기의 제조 방법
TW100126079A TWI433170B (zh) 2010-09-21 2011-07-22 A method for producing a metal plate chip resistor of a low resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/066313 2010-09-21
PCT/JP2010/066313 WO2012039020A1 (ja) 2010-09-21 2010-09-21 金属板低抵抗チップ抵抗器の製造方法

Publications (1)

Publication Number Publication Date
WO2012039175A1 true WO2012039175A1 (ja) 2012-03-29

Family

ID=45873535

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/066313 WO2012039020A1 (ja) 2010-09-21 2010-09-21 金属板低抵抗チップ抵抗器の製造方法
PCT/JP2011/064966 WO2012039175A1 (ja) 2010-09-21 2011-06-29 金属板低抵抗チップ抵抗器の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066313 WO2012039020A1 (ja) 2010-09-21 2010-09-21 金属板低抵抗チップ抵抗器の製造方法

Country Status (5)

Country Link
JP (1) JPWO2012039175A1 (ja)
KR (1) KR101435351B1 (ja)
CN (1) CN103201801B (ja)
TW (1) TWI433170B (ja)
WO (2) WO2012039020A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400674B (zh) * 2013-07-31 2016-06-29 南京萨特科技发展有限公司 超薄合金片感测电阻的制造方法
TWI718971B (zh) * 2020-07-07 2021-02-11 旺詮股份有限公司 大批量產生微型電阻元件的製作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049070A (ja) * 2005-08-12 2007-02-22 Rohm Co Ltd チップ抵抗器の製造方法
JP2009218552A (ja) * 2007-12-17 2009-09-24 Rohm Co Ltd チップ抵抗器およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433030A (zh) * 2002-01-14 2003-07-30 陈富强 金属板型电阻的制法及结构
CN100421190C (zh) * 2002-06-19 2008-09-24 罗姆股份有限公司 低电阻值片状电阻器及其制造方法
TWI430293B (zh) * 2006-08-10 2014-03-11 Kamaya Electric Co Ltd Production method of corner plate type chip resistor and corner plate type chip resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049070A (ja) * 2005-08-12 2007-02-22 Rohm Co Ltd チップ抵抗器の製造方法
JP2009218552A (ja) * 2007-12-17 2009-09-24 Rohm Co Ltd チップ抵抗器およびその製造方法

Also Published As

Publication number Publication date
KR20130073951A (ko) 2013-07-03
JPWO2012039175A1 (ja) 2014-02-03
WO2012039020A1 (ja) 2012-03-29
CN103201801B (zh) 2016-03-30
KR101435351B1 (ko) 2014-08-27
TWI433170B (zh) 2014-04-01
CN103201801A (zh) 2013-07-10
TW201230081A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
US9934893B2 (en) Shunt resistor and method for manufacturing same
US10957472B2 (en) Method for manufacturing shunt resistor
JP2009231359A (ja) 厚膜抵抗器
WO2018150869A1 (ja) 電流測定装置および電流検出用抵抗器
JP3971335B2 (ja) チップ抵抗器およびその製造方法
WO2012039175A1 (ja) 金属板低抵抗チップ抵抗器の製造方法
JP6956263B1 (ja) シャント抵抗器
JP2007049207A (ja) チップ抵抗器およびその製造方法
JP2011086750A (ja) 薄膜チップ抵抗器
JP6594631B2 (ja) 抵抗器及びその製造方法
WO2014155841A1 (ja) 抵抗器の製造方法及び抵抗器
KR101478969B1 (ko) 전기적 필름 구조체의 제조방법
JP2010199283A (ja) 複合抵抗器及びその製造方法
WO2005027150A1 (ja) チップ抵抗器とその製造方法
JP2004200424A (ja) チップ抵抗器
JP2009111308A (ja) 金属板低抵抗チップ抵抗器及びその製造方法
JP2004186248A (ja) チップ抵抗器およびその製造方法
JP6346487B2 (ja) 抵抗器の製造方法、抵抗値測定方法
JP2006019323A (ja) 抵抗組成物、チップ抵抗器及びその製造方法
JP2011243940A (ja) 抵抗器及び抵抗器の形成方法
JP6876731B2 (ja) シャント抵抗器
JPWO2020148972A1 (ja) 抵抗器およびその製造方法
JP2007165358A (ja) チップ型コンデンサ
JP2004014697A (ja) 抵抗体およびそのトリミング方法
JP2001257102A (ja) 多連チップ抵抗器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045471.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012516242

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007074

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826621

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载