WO2012036021A1 - Woody synthetic resin material and production method therefor - Google Patents
Woody synthetic resin material and production method therefor Download PDFInfo
- Publication number
- WO2012036021A1 WO2012036021A1 PCT/JP2011/070251 JP2011070251W WO2012036021A1 WO 2012036021 A1 WO2012036021 A1 WO 2012036021A1 JP 2011070251 W JP2011070251 W JP 2011070251W WO 2012036021 A1 WO2012036021 A1 WO 2012036021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wood
- synthetic resin
- woody
- resin material
- thermoplastic resin
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 193
- 229920003002 synthetic resin Polymers 0.000 title claims abstract description 84
- 239000000057 synthetic resin Substances 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 238000002156 mixing Methods 0.000 claims abstract description 42
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 39
- 238000004898 kneading Methods 0.000 claims abstract description 34
- 238000000748 compression moulding Methods 0.000 claims abstract description 32
- 238000002844 melting Methods 0.000 claims abstract description 23
- 230000008018 melting Effects 0.000 claims abstract description 23
- 238000003756 stirring Methods 0.000 claims abstract description 12
- 239000002023 wood Substances 0.000 claims description 126
- 239000000835 fiber Substances 0.000 claims description 15
- 239000004566 building material Substances 0.000 claims description 14
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 23
- 239000002994 raw material Substances 0.000 abstract description 6
- 229920003043 Cellulose fiber Polymers 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000005452 bending Methods 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 7
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229920002522 Wood fibre Polymers 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000002025 wood fiber Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000008577 Pinus radiata Nutrition 0.000 description 1
- 241000218621 Pinus radiata Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- AUNAPVYQLLNFOI-UHFFFAOYSA-L [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O Chemical compound [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O AUNAPVYQLLNFOI-UHFFFAOYSA-L 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- UIERETOOQGIECD-ARJAWSKDSA-N angelic acid Chemical compound C\C=C(\C)C(O)=O UIERETOOQGIECD-ARJAWSKDSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- UCNNJGDEJXIUCC-UHFFFAOYSA-L hydroxy(oxo)iron;iron Chemical compound [Fe].O[Fe]=O.O[Fe]=O UCNNJGDEJXIUCC-UHFFFAOYSA-L 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- NVKTUNLPFJHLCG-UHFFFAOYSA-N strontium chromate Chemical compound [Sr+2].[O-][Cr]([O-])(=O)=O NVKTUNLPFJHLCG-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/44—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with paddles or arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7461—Combinations of dissimilar mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
- B29B7/92—Wood chips or wood fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/34—Feeding the material to the mould or the compression means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/21—Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
- B01F27/2123—Shafts with both stirring means and feeding or discharging means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/34—Feeding the material to the mould or the compression means
- B29C2043/3433—Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/12—Thermoplastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2201/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as reinforcement
Definitions
- the present invention relates to a wood-based synthetic resin material composed of a wood-based material such as wood chips and a thermoplastic resin, and more particularly to a wood-based synthetic resin material in which the two materials are uniformly mixed.
- wood-based materials have high specific strength and have been used in various fields including building materials.
- plastic is a material that can be freely molded using various means such as extrusion molding and compression molding, but its strength is not sufficient, and the raw material cost of the plastic itself is high, so it is used as a material for building materials. It was unsuitable for. Therefore, a wood-based synthetic resin material (wood plastic) in which a wood-based material and a synthetic resin are mixed has been proposed as a material from which the advantages of the wood-based material and the synthetic resin are extracted.
- thermoplastic resin waste such as polypropylene and polyethylene is put into a mixing device equipped with blades that rotate at high speed, and melted by frictional heat generated by the stirring to gel.
- a method for producing a wood-based synthetic resin plate which is put into a state such as wood, waste paper, fiber and other cellulosic material powders, and is put into an extruder and heated through a pressure chamber after the resin mixed material is heated to 180-200 ° C. has been proposed (Patent Document 1).
- the wood plastic using wood powder of several hundred microns like the wood-based material used in the wood-based synthetic resin plate described in Patent Document 1 inherits the property of plastic having a low bending elastic modulus and is easily deformed. Not suitable for use on wood and pallets.
- the same molding method (extruding, injection, pressing) as that of general plastics is possible, there is a business disadvantage that the processing cost to dry wood flour is high.
- a mixed melting method using a wood raw material having a size of about 1 mm has been proposed, omitting the processing step to wood flour, and according to this, a material having a high bending elastic modulus and hardly deforming, leaving wood fibers, is proposed. it can.
- a material having a high bending elastic modulus and hardly deforming, leaving wood fibers is proposed. It can.
- the ratio of wood and plastic changes at each part when the product is molded, and the material becomes inhomogeneous at the time of product molding, so the appearance is poor, the strength is reduced, and the wooden material is raised on the surface.
- the present invention provides that even when a relatively large wood raw material is used in the wood-based synthetic resin by the mixed melting method, the wood-based material and the thermoplastic resin material are uniformly mixed, and the surface is made of the wood material.
- An object of the present invention is to provide a wood-based synthetic resin material having a good appearance and a high strength.
- the present invention (1) is a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin.
- a mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
- a pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step; After the pressure kneading process, the material is put into a mold and compression molded, and a compression molding process, It is a wood-based synthetic resin material characterized by being obtained through
- the present invention (2) is characterized in that the wood-based material retains a cell structure, and the cell structure is filled with the thermoplastic resin. It is a synthetic resin material.
- the present invention (3) is a transport pallet characterized by comprising the woody synthetic resin material of the invention (1) or (2).
- the present invention (4) is a building material characterized by comprising the woody synthetic resin material of the invention (1) or (2).
- the present invention (5) is a method for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
- a mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
- a pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step; After the pressure kneading step, the material is put into a mold and compression molded, and a compression molding step, It is a manufacturing method of the wood type synthetic resin material characterized by having.
- the present invention (6) is the method for producing a woody synthetic resin material according to the invention (5), wherein the compression pressure in the compression molding is 80 kgf / cm 2 or more.
- the present invention (7) is an apparatus for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
- a mixing apparatus comprising a wood material and a thermoplastic resin, provided with rotating blades, and melted by frictional heat generated by the stirring to a gel state;
- a pressure kneader for kneading the gel material under pressure conditions;
- a compression molding machine for compressing and molding the material into a mold; Is a wood-based synthetic resin material manufacturing apparatus having
- a wood-based synthetic resin material can be obtained in which the fiber of the wood is filled with plastic and the surface is smooth while retaining the properties of the wood fiber.
- the wood-based synthetic resin material obtained by this method is 1) the fiber of wood remains, so that it has a high flexural modulus and is difficult to deform, and 2) the surface is smooth and the wood material is difficult to peel off, and dust and dust are generated. Hateful.
- the manufacturing method according to the present invention does not require a processing step to wood flour, can be formed into a different shape, has high productivity, has high strength, and has various strengths and additional functions by changing the type of resin used. There is a feature that can be added. Because of these characteristics, there is a wide range of industrial applications including logistics materials and building materials.
- FIG. 1 is a conceptual diagram showing an example of an apparatus that can be used in the manufacturing method according to the present invention.
- FIG. 2 is a schematic configuration diagram of the mixing apparatus.
- FIG. 3 is a schematic configuration diagram of a pressure kneading apparatus.
- FIG. 4 is a schematic configuration diagram of the compression molding apparatus.
- Fig.5 (a) is a schematic structure figure of the pallet for conveyance based on this invention, (b) is A sectional drawing.
- FIG. 6 is a schematic configuration diagram of a building material according to the present invention.
- FIG. 7 is a photograph of the surface of the wood-based synthetic resin material according to the example.
- FIG. 8 is an optical micrograph of the wood-based synthetic resin material according to the example.
- FIG. 9 is a diagram showing the results of the surface condition evaluation test.
- the production method according to the present invention is a production method of a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin, which comprises a mixing melting step, a pressure kneading step, and a compression molding Process.
- a mixing melting step the wood-based material and the thermoplastic resin are put into a mixing apparatus provided with rotating blades, and are melted by frictional heat generated by the stirring to form a gel state.
- the pressure kneading step the gel material is further kneaded under pressure conditions.
- the compression molding process the kneaded material is put into a mold and compression molded.
- the manufacturing method according to the present invention uses a relatively large wood raw material such as planer waste by further combining a pressure kneading step after the mixing and melting step and omitting the processing step to wood flour. Further, a wood-based synthetic resin material in which the wood-based material and the thermoplastic synthetic resin are uniformly mixed and the wood-based material is less lifted can be obtained.
- FIG. 1 is a schematic configuration diagram of an apparatus for producing a wood-based synthetic resin material used in the best mode.
- the manufacturing apparatus includes a mixing apparatus 1, a pressure kneading apparatus 2, and a compression molding apparatus 4.
- FIG. 2 is a schematic configuration diagram of the mixing apparatus.
- the mixing apparatus 1 includes a horizontal cylindrical chamber 120 and high-speed rotating blades 111 provided in the chamber.
- wing 111 is provided on the rotating shaft 110, and the said blade
- a material supply box 130 containing a supply screw 113 provided on the rotating shaft 110 is provided upstream of the chamber 120.
- a hopper 140 is provided above the material supply box 130, and a material such as a wood-based material or a thermoplastic resin is supplied from the portion.
- FIG. 3 is a schematic configuration diagram of a pressure kneading apparatus.
- the pressure kneading apparatus includes a casing 210 for charging material, a pressurizing means 220 for pressurizing the inside of the casing 210, and two screws 230 for kneading the material in the casing.
- Have The screw 230 is connected to a motor and is configured to be rotatable (not shown).
- FIG. 4 is a schematic configuration diagram of the compression molding apparatus.
- the compression molding apparatus 4 can use a known compression molding machine.
- the compression molding apparatus 4 has an upper mold 410 and a lower mold 420, and introduces a material into the cavities of the upper mold and the lower mold. , Compression is performed by the compression mechanism 430.
- a wood-based material containing a cellulose-based fiber and a thermoplastic resin are used as raw materials.
- the woody material is a small piece made of wood.
- the cellulosic fiber contained in the wood-based material is not particularly limited as long as the fiber contains cellulose.
- the woody material retains the cellular structure of the tree and has a cavity therein.
- the cavity is, for example, a straw-shaped cavity derived from a cell constituting a woody material.
- the wood-based material may be a scrap body such as sawdust or a wood crushing chip.
- pellets obtained by pressing and solidifying the woody material may be used.
- the size of the wood-based material is not particularly limited as long as it has a size enough to hold the fiber structure of the wood, but it has a thickness of 0.01 to 0.5 mm, a width and a length of 1 ⁇ 5 mm (eg, planar scrap) is preferred.
- the tree species of the woody material is not particularly limited, and examples thereof include conifers such as cedar, cypress, spruce, fur, and radiatapine, and broad-leaved trees such as birch, apiton, chamelere, sengonlaut, and aspen.
- the thermoplastic resin is not particularly limited.
- olefinic resins such as polypropylene, polystyrene, low density polyethylene, medium density polyethylene, and high density polyethylene, polyisoprene, ethylene propylene rubber, acrylonitrile-butadiene-styrene.
- rubber resins such as copolymers, acrylonitrile-ethylenepropylene rubber-styrene copolymers, and ethylene vinyl acetate copolymers, and these can be used alone or in combination of two or more.
- a thermosetting resin may be mixed so as not to interfere with the process in the mixing and melting process described later.
- the wood-based synthetic resin material according to the present invention may contain an additive.
- an additive for example, the polyolefin resin modified with unsaturated carboxylic acid or its derivative (s), a coloring agent, antioxidant, a ultraviolet absorber, an antistatic agent, a lubricant, etc. are mentioned.
- the unsaturated carboxylic acid examples include, but are not limited to, maleic anhydride, itaconic anhydride, citraconic anhydride, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, mesaconic acid, angelic acid, sorbic acid, Acrylic acid, methacrylic acid, and combinations of two or more of these may be mentioned. Moreover, it does not specifically limit as a derivative
- the colorant is not particularly limited.
- yellow titanium oxide, stalk (iron oxide) and the like are preferable in order to bring out a natural wood texture.
- the amount of the wood-based material added is not particularly limited. For example, 20 to 80% by weight is preferable with respect to the total weight of the wood-based synthetic resin material. It is.
- the addition amount of the synthetic resin is not particularly limited, but for example, 20 to 80% by weight is preferable.
- the amount of the modified polyolefin resin added is not particularly limited. For example, it is preferably 0.1 to 7% by weight, more preferably 2 to 4% by weight based on the total weight of the wood-based synthetic resin material. Is preferred.
- the addition amount of the colorant is not particularly limited, but for example, it is preferably 0.1 to 7% by weight with respect to the total weight of the woody synthetic resin material.
- the amount of other additives to be added is not particularly limited. For example, 0.1 to 7% by weight is preferable with respect to the total weight of the woody synthetic resin material.
- a wood-based material and a thermoplastic resin are put into a mixing device equipped with rotating blades and melted by frictional heat generated by the stirring to form a gel state.
- the present invention is characterized in that a wood-based material and a thermoplastic resin are put into a mixing apparatus and stirred in the same system to form a gel state.
- the water in the wood-based material evaporates because the system becomes hot when melting in the mixing apparatus, and the resulting woody It becomes possible to reduce the water content of the synthetic resin material.
- the wood-based material and the thermoplastic resin are put into the hopper 140 of the mixing apparatus 1 described in the best mode.
- the supplied wood-based material and thermoplastic resin enter the material supply box 130 and are introduced into the chamber 120 by the supply screw 113.
- the material is agitated by the blade 111 rotating at high speed by the motor 112. By stirring in this way, frictional heat is generated, the thermoplastic resin is melted, and the material is in a gel state.
- the high-speed rotation is not particularly limited.
- the blade is rotated at a speed at which the blade tip speed increases to about 20 to 50 m / s.
- Pressure kneading step In the pressure kneading step, the gel material produced in the mixing and melting step is kneaded.
- the mixing melting step when the wood-based material and the thermoplastic resin are mixed, it is not necessary to further knead.
- a kneader such as a twin-screw kneader, the wood-based material and the thermoplastic resin are homogeneously mixed, so the strength of the finally produced material is increased, Furthermore, the material surface becomes smooth.
- the gel material generated by the mixing apparatus 1 is put into the casing 210 of the pressure kneading apparatus 2, and the screw 230 is rotated by operating the motor to knead the gel material.
- the pressurized state means a pressure state higher than normal pressure (0.1 MPa). Specifically, 0.5 to 1 MPa is preferable, and 0.6 to 0.8 MPa is more preferable.
- the surface of the obtained wood-based synthetic resin material becomes smooth, the roughness is reduced, and a wood-based synthetic resin material having a high tensile strength can be obtained.
- the kneaded material is put into a mold and compression molded.
- the resin is cooled and molded while filling the wood fiber with pressure.
- compression molding of wood-based synthetic resin materials compression molding under such high-pressure conditions makes it possible to fill the fibers of the wood-based material with a high density of thermoplastic resin, so the strength of the wood-based synthetic resin material Will increase.
- the high pressure condition is suitably at least 30 kgf / cm 2 or more, 100 kgf / cm 2 or more is more preferred, 120 kgf / cm 2 or more is particularly preferred.
- an upper limit is not specifically limited, For example, it is 500 kgf / cm ⁇ 2 >.
- the temperature condition is preferably 40 to 180 ° C., for example.
- the kneaded material is transported by a transportation means and put into the mold cavity of the compression molding apparatus 4.
- the target woody synthetic resin material can be obtained by compression molding with the mold.
- the wood-based synthetic resin material obtained by the production method according to the present invention can be obtained through a mixing melting step, a pressure kneading step, and a compression molding step to obtain a material exhibiting high compressive strength and high wear resistance. . That is, in the mixing melting step, the wood-based material holding the cell structure is also mixed, whereby the water present in the cavity of the cellular structure of the wood-based material is evaporated and the inside of the cavity is emptied. There, the material that is kneaded with the thermoplastic resin and homogeneously mixed is subjected to high-pressure compression molding, so that the thermoplastic resin enters the cavity and a wood-based synthetic resin material filled with the resin is obtained. be able to.
- the density of the resin in the cellulose tube is usually filled with the thermoplastic resin in the cavity of the wood-based material filled with a fluid material such as water or air. It is considered that the strength and wear resistance of the cellulose tube are increased by joining the cellulose tube and the tube with resin instead of lignin.
- the woody synthetic resin material according to the present invention has a high flexural modulus.
- the bending strength of the wood-based synthetic resin material according to the present invention is preferably 20 to 70 PMa, and more preferably 30 to 50 MPa. Further, the bending elastic modulus of the wood-based synthetic resin material is preferably 1 to 5 GPa, and more preferably 1.7 to 3 GPa. The tensile strength of the wood-based synthetic resin material is preferably 15 to 50 MPa, more preferably 18 to 30 MPa, and further preferably 21 to 30 MPa.
- the woody synthetic resin material according to the present invention can be used as, for example, a transportation pallet or a building material. According to the wood-based synthetic resin material and the manufacturing method according to the present invention, for example, even a material having a large area of 1 m ⁇ 1 m or more can be made a homogeneous material, so that it can be applied to the above-mentioned use. Become. In the following, application examples will be described by taking transportation pallets and building materials as examples.
- FIG.5 (a) is a schematic perspective view of the pallet 500 for conveyance which concerns on this form
- FIG.5 (b) is A sectional drawing.
- the transport pallet 500 according to the present invention has a top deck plate 501 and a bottom deck plate 502, and a side surface 503, and a fork insertion hole 506 for a forklift is provided on the front surface 504 and the rear surface 505.
- Frames for increasing the strength of the deck plate are formed on the upper surface and the back surface of the bottom deck plate, and more specifically, a vertical frame 511 and a horizontal frame 512 are formed as shown in the A sectional view. ing.
- the transport pallet can be manufactured by, for example, separately manufacturing the upper part and the bottom part in two and joining both parts. Thereby, the said pallet for conveyance can be manufactured with the manufacturing method which concerns on this invention.
- a member such as a frame can be formed integrally with the deck board, which is preferable.
- the wood-based synthetic resin material according to the present invention By using the wood-based synthetic resin material according to the present invention, the wood-based material and the synthetic resin are sufficiently kneaded, so that there is no surface roughness and a high-strength transport pallet can be obtained. .
- a wood-based material is partially used, the cost of the material can be suppressed as compared with the case where the pallet is manufactured entirely from synthetic resin.
- the wood-based synthetic resin material has high strength under low temperature conditions, the pallet is suitable for use in a refrigerated / frozen environment.
- a functional resin such as a weather-resistant plastic or an antistatic plastic as a synthetic resin of the wood-based synthetic resin material according to the present invention.
- FIG. 6 is a schematic block diagram of the surface of the building material which concerns on this invention
- FIG. 6 is a schematic block diagram of a back surface.
- the building material 700 includes a wall surface 701, a lower frame 702 formed on the back surface thereof, an upper frame 703 provided in parallel with the lower frame, and perpendicular to the lower frame and the upper frame so as to connect them.
- a plurality of vertical frames 704 formed on the surface.
- a plurality of transverse frames 705 may be provided.
- These structures are preferably formed integrally using the wood-based synthetic resin material according to the present invention. That is, if the woody synthetic resin material according to the present invention is used, it can be molded freely, so that the wall base can be integrally formed. This eliminates the need to produce a wall foundation at the construction site, which is useful because it reduces work on site and shortens the construction period.
- the present invention can also be applied as a ceiling material or a floor material integrated with a base material.
- the wood-based synthetic resin material according to the present invention By using the wood-based synthetic resin material according to the present invention as the above-mentioned building material, the wood-based material and the synthetic resin are sufficiently kneaded, so there is no surface roughness and the building material has high strength. It can be.
- Example 1 The mixing apparatus shown in FIG. 2 in a mixing ratio of 40% by weight of high-density polyethylene (Hi-Zex (registered trademark) 2208J) and wood pellets (wood material pressed and compacted to a diameter of 6 mm and a length of 10 mm) of 60% by weight. And 3% by weight of an additive (maleic anhydride-modified polyethylene) was added to the high-density polyethylene and the blades were rotated at high speed to melt and knead these materials into a gel ( Mixing melting process). Thereafter, the material was kneaded biaxially under a pressurizing condition of 0.54 MPa by the apparatus shown in FIG.
- Hi-Zex registered trademark
- wood pellets wood material pressed and compacted to a diameter of 6 mm and a length of 10 mm
- an additive maleic anhydride-modified polyethylene
- Comparative Example 1 A woody synthetic resin material according to Comparative Example 1 was obtained under the same conditions as in Example 1 except that the pressure kneading was not performed.
- Example 2 A woody synthetic resin material according to Example 2 was obtained under the same conditions as in Example 1 except that the pressure during compression molding was set to 125 kgf / cm 2 .
- Comparative Example 2 A wood-based synthetic resin material according to Comparative Example 2 was obtained under the same conditions as Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were not used for pressure kneading. .
- Example 3 A wood-based synthesis according to Example 3 under the same conditions as in Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were used and the pressure at the time of compression molding was 125 kgf / cm 2. A resin material was obtained.
- Example 4 Except for coloring the wood material, a wood-based synthetic resin material was produced by the method shown in Example 1, and the material was sliced thinly and observed with an optical microscope (FIG. 8). This confirmed that the cellular structure of the woody material remained. Moreover, it has been observed that the thermoplastic resin is filled in the voids in the cell structure.
- Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to the following bending strength / bending elasticity test, tensile strength test, and impact strength test. The results are shown in Table 1. According to these results, it can be seen that the tensile strength can be increased by adding a kneader process (pressure kneading) to the process.
- a kneader process pressure kneading
- Mixing device 2 Pressure kneading device 4: Compression molding device
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
The present invention addresses the problem of providing woody synthetic resin materials of good appearance and high strength wherein woody material and thermoplastic resin material are uniformly mixed and there is little floating of woody material to the surface, even when relatively large woody raw materials are used in woody synthetic resins obtained by melt-mixing. The woody synthetic resin material comprising cellulose fiber-containing woody material and thermoplastic resin that solves the problem is obtained through a melt-mixing process of placing woody material and thermoplastic resin in a mixing device provided with a rotating blade and forming a gel by melting same using the frictional heat generated by the stirring thereof; a pressurized kneading process after the melt-mixing process wherein the gelled material is further kneaded under pressurized conditions; and a compression molding process after the pressurized kneading process of placing the material in a mold and compression-molding.
Description
本発明は、木片等の木質系材料と熱可塑性樹脂とからなる木質系合成樹脂材料に関し、特に、前記両材料が均質に混合された木質系合成樹脂材料に関する。
The present invention relates to a wood-based synthetic resin material composed of a wood-based material such as wood chips and a thermoplastic resin, and more particularly to a wood-based synthetic resin material in which the two materials are uniformly mixed.
木質系材料は、周知のとおり、高い比強度を有するため建築材料をはじめとして様々な分野で用いられてきた。これに対してプラスチックは、押出成形、圧縮成形など様々な手段を用いて自由に成形できる材料であるが、強度が十分でなく、更に、プラスチック自体の原料コストが高く建築材料などの材料として用いるには不向きであった。そこで、これらの木質系材料と合成樹脂の長所を抽出した材料として、木質系材料と合成樹脂を混合した木質系合成樹脂材料(ウッドプラスチック)が提案されている。
As is well known, wood-based materials have high specific strength and have been used in various fields including building materials. On the other hand, plastic is a material that can be freely molded using various means such as extrusion molding and compression molding, but its strength is not sufficient, and the raw material cost of the plastic itself is high, so it is used as a material for building materials. It was unsuitable for. Therefore, a wood-based synthetic resin material (wood plastic) in which a wood-based material and a synthetic resin are mixed has been proposed as a material from which the advantages of the wood-based material and the synthetic resin are extracted.
木質系合成樹脂材料の製造方法の一つとして、ポリプロピレン、ポリエチレン等の熱可塑性樹脂の廃材を高速回転する羽根を備えたミキシング装置に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態として、木材、古紙、繊維等のセルロース系材料の粉体等と、押出成形機に投入し、樹脂混合材料を180~200℃に加熱した後に圧力室を通して押し出す木質系合成樹脂板の製造方法が提案されている(特許文献1)。
As one of the methods for producing wood-based synthetic resin materials, thermoplastic resin waste such as polypropylene and polyethylene is put into a mixing device equipped with blades that rotate at high speed, and melted by frictional heat generated by the stirring to gel. A method for producing a wood-based synthetic resin plate, which is put into a state such as wood, waste paper, fiber and other cellulosic material powders, and is put into an extruder and heated through a pressure chamber after the resin mixed material is heated to 180-200 ° C. Has been proposed (Patent Document 1).
特許文献1記載の木質系合成樹脂板に使用される木質系材料のように数百ミクロンの木粉を用いるウッドプラスチックは、曲げ弾性率が低いというプラスチックの性質を引き継いでおり変形しやすく、構造材やパレットへの使用には向いていない。また、一般的なプラスチックと同じ成型方法(押し出し、射出、プレス)が可能であるものの、乾燥した木粉への加工コストが高いという事業上の欠点があった。
The wood plastic using wood powder of several hundred microns like the wood-based material used in the wood-based synthetic resin plate described in Patent Document 1 inherits the property of plastic having a low bending elastic modulus and is easily deformed. Not suitable for use on wood and pallets. In addition, although the same molding method (extruding, injection, pressing) as that of general plastics is possible, there is a business disadvantage that the processing cost to dry wood flour is high.
木粉への加工工程を省略し、1mm程度の大きさの木質原料を用いる混合溶融法が提案されており、これによれば、木の繊維を残して曲げ弾性率を高く変形しにくい材料ができる。しかし、異質の材料が交じっており製品成型時に木とプラスチックの比率が部分毎に変化し材料が不均質となる欠点があるため、外観が悪い、強度が落ちる、表面に木質材料が浮き出てざらつくといった製品化に向けた大きな欠点があった。
A mixed melting method using a wood raw material having a size of about 1 mm has been proposed, omitting the processing step to wood flour, and according to this, a material having a high bending elastic modulus and hardly deforming, leaving wood fibers, is proposed. it can. However, there is a disadvantage that the ratio of wood and plastic changes at each part when the product is molded, and the material becomes inhomogeneous at the time of product molding, so the appearance is poor, the strength is reduced, and the wooden material is raised on the surface. There were major drawbacks for commercialization.
そこで、本発明は、混合溶融法による木質系合成樹脂において比較的大きな木質原料を用いた場合であっても、木質系材料と熱可塑性樹脂材料とが均一に混合されており、表面に木質材料の浮き上がりの少なく外観が良く、且つ、高い強度を有する木質系合成樹脂材料を提供することを目的とする。
Therefore, the present invention provides that even when a relatively large wood raw material is used in the wood-based synthetic resin by the mixed melting method, the wood-based material and the thermoplastic resin material are uniformly mixed, and the surface is made of the wood material. An object of the present invention is to provide a wood-based synthetic resin material having a good appearance and a high strength.
本発明(1)は、セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料において、
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を経て得られることを特徴とする、木質系合成樹脂材料である。 The present invention (1) is a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading process, the material is put into a mold and compression molded, and a compression molding process,
It is a wood-based synthetic resin material characterized by being obtained through
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を経て得られることを特徴とする、木質系合成樹脂材料である。 The present invention (1) is a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading process, the material is put into a mold and compression molded, and a compression molding process,
It is a wood-based synthetic resin material characterized by being obtained through
本発明(2)は、前記木質系材料が細胞構造を保持しており、当該細胞構造の中に、前記熱可塑性樹脂が充填されていることを特徴とする、前記発明(1)の木質系合成樹脂材料である。
The present invention (2) is characterized in that the wood-based material retains a cell structure, and the cell structure is filled with the thermoplastic resin. It is a synthetic resin material.
本発明(3)は、前記発明(1)又は(2)の木質系合成樹脂材料からなることを特徴とする運搬用パレットである。
The present invention (3) is a transport pallet characterized by comprising the woody synthetic resin material of the invention (1) or (2).
本発明(4)は、前記発明(1)又は(2)の木質系合成樹脂材料からなることを特徴とする建築材料である。
The present invention (4) is a building material characterized by comprising the woody synthetic resin material of the invention (1) or (2).
本発明(5)は、セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料の製造方法において、
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工程後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を有することを特徴とする、木質系合成樹脂材料の製造方法である。 The present invention (5) is a method for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading step, the material is put into a mold and compression molded, and a compression molding step,
It is a manufacturing method of the wood type synthetic resin material characterized by having.
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工程後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を有することを特徴とする、木質系合成樹脂材料の製造方法である。 The present invention (5) is a method for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading step, the material is put into a mold and compression molded, and a compression molding step,
It is a manufacturing method of the wood type synthetic resin material characterized by having.
本発明(6)は、前記圧縮成形における、圧縮圧力が、80kgf/cm2以上であることを特徴とする、前記発明(5)の木質系合成樹脂材料の製造方法である。
The present invention (6) is the method for producing a woody synthetic resin material according to the invention (5), wherein the compression pressure in the compression molding is 80 kgf / cm 2 or more.
本発明(7)は、セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料の製造装置において、
木質系材料と熱可塑性樹脂とを、回転する羽根を備え、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング装置と、
前記ゲル状態の材料を加圧条件の下で混練する、加圧混練機と、
前記材料を型に入れて圧縮成形する、圧縮成形機と、
を有する木質系合成樹脂材料製造装置である。 The present invention (7) is an apparatus for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing apparatus comprising a wood material and a thermoplastic resin, provided with rotating blades, and melted by frictional heat generated by the stirring to a gel state;
A pressure kneader for kneading the gel material under pressure conditions;
A compression molding machine for compressing and molding the material into a mold;
Is a wood-based synthetic resin material manufacturing apparatus having
木質系材料と熱可塑性樹脂とを、回転する羽根を備え、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング装置と、
前記ゲル状態の材料を加圧条件の下で混練する、加圧混練機と、
前記材料を型に入れて圧縮成形する、圧縮成形機と、
を有する木質系合成樹脂材料製造装置である。 The present invention (7) is an apparatus for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin.
A mixing apparatus comprising a wood material and a thermoplastic resin, provided with rotating blades, and melted by frictional heat generated by the stirring to a gel state;
A pressure kneader for kneading the gel material under pressure conditions;
A compression molding machine for compressing and molding the material into a mold;
Is a wood-based synthetic resin material manufacturing apparatus having
本発明に係る製造方法によって、木の繊維の性質を残しつつ、当該木の繊維にプラスチックを充填し、かつ、表面がなめらかである木質系合成樹脂材料を得ることができる。当該方法によって得られる木質系合成樹脂材料は、1)木の繊維が残っているため曲げ弾性率が高く変形しにくく、かつ、2)表面はなめらかで木質材料がはがれにくく塵・埃が発生しにくい。また、本発明に係る製造方法は、木粉への加工工程がいらない、異型成型が可能である、生産性が高い、強度が強く、使用する樹脂の種類を変えることで様々な強度・付加機能を加えられるという特徴がある。これらの特徴から、物流資材や建材をはじめとして、産業上の利用範囲は広い。
By the production method according to the present invention, a wood-based synthetic resin material can be obtained in which the fiber of the wood is filled with plastic and the surface is smooth while retaining the properties of the wood fiber. The wood-based synthetic resin material obtained by this method is 1) the fiber of wood remains, so that it has a high flexural modulus and is difficult to deform, and 2) the surface is smooth and the wood material is difficult to peel off, and dust and dust are generated. Hateful. In addition, the manufacturing method according to the present invention does not require a processing step to wood flour, can be formed into a different shape, has high productivity, has high strength, and has various strengths and additional functions by changing the type of resin used. There is a feature that can be added. Because of these characteristics, there is a wide range of industrial applications including logistics materials and building materials.
本発明に係る製造方法は、セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料の製造方法であって、ミキシング溶融工程と、加圧混練工程と、圧縮成形工程とを有する。ここで、ミキシング溶融工程では、前記木質系材料と、熱可塑性樹脂とを、回転する羽根を供えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする。続いて、加圧混練工程では、更に前記ゲル状態の材料を加圧条件の下で混練する。圧縮成形工程では、混練された材料を型に入れて圧縮成形する。本発明に係る製造方法は、ミキシング溶融工程後、更に、加圧混練工程を組み合わせることにより、木粉への加工工程を省略しプレナー屑等の比較的大きな木質原料を用いた場合であっても、木質系材料と熱可塑性合成樹脂とが均一に混合されており、更に木質系材料の浮き上がりの少ない、木質系合成樹脂材料を得ることができる。
The production method according to the present invention is a production method of a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin, which comprises a mixing melting step, a pressure kneading step, and a compression molding Process. Here, in the mixing melting step, the wood-based material and the thermoplastic resin are put into a mixing apparatus provided with rotating blades, and are melted by frictional heat generated by the stirring to form a gel state. Subsequently, in the pressure kneading step, the gel material is further kneaded under pressure conditions. In the compression molding process, the kneaded material is put into a mold and compression molded. Even if the manufacturing method according to the present invention uses a relatively large wood raw material such as planer waste by further combining a pressure kneading step after the mixing and melting step and omitting the processing step to wood flour. Further, a wood-based synthetic resin material in which the wood-based material and the thermoplastic synthetic resin are uniformly mixed and the wood-based material is less lifted can be obtained.
本明細書においては、本発明に係る製造方法において使用する装置について説明し、続いて本発明に係る製造方法について説明し、更に本発明に係る製造方法によって得られる木質系合成樹脂材料の特徴について説明する。
In this specification, the apparatus used in the manufacturing method according to the present invention will be described, followed by the description of the manufacturing method according to the present invention, and further on the characteristics of the wood-based synthetic resin material obtained by the manufacturing method according to the present invention. explain.
<装置>
図1は、本最良形態において使用する木質系合成樹脂材料の製造装置の概略構成図である。製造装置は、ミキシング装置1と、加圧混練装置2と、圧縮成形装置4とを有する。 <Device>
FIG. 1 is a schematic configuration diagram of an apparatus for producing a wood-based synthetic resin material used in the best mode. The manufacturing apparatus includes amixing apparatus 1, a pressure kneading apparatus 2, and a compression molding apparatus 4.
図1は、本最良形態において使用する木質系合成樹脂材料の製造装置の概略構成図である。製造装置は、ミキシング装置1と、加圧混練装置2と、圧縮成形装置4とを有する。 <Device>
FIG. 1 is a schematic configuration diagram of an apparatus for producing a wood-based synthetic resin material used in the best mode. The manufacturing apparatus includes a
図2は、ミキシング装置の概略構成図である。ミキシング装置1は、横方向円筒形状のチャンバ120と、前記チャンバ内に設けられた高速回転する羽根111を備えている。ここで、当該羽根111は、回転軸110上に設けられており、当該回転軸が接続されているモータ112が回転することにより、当該羽根111が回転する。また、チャンバ120の上流には、回転軸110上に設けられた供給スクリュ113を内包する材料供給箱130が設けられている。また、材料供給箱130の上方には、ホッパ140が設けられており、当該部分から、木質系材料や熱可塑性樹脂など材料を供給する。
FIG. 2 is a schematic configuration diagram of the mixing apparatus. The mixing apparatus 1 includes a horizontal cylindrical chamber 120 and high-speed rotating blades 111 provided in the chamber. Here, the said blade | wing 111 is provided on the rotating shaft 110, and the said blade | wing 111 rotates when the motor 112 to which the said rotating shaft is connected rotates. Further, a material supply box 130 containing a supply screw 113 provided on the rotating shaft 110 is provided upstream of the chamber 120. In addition, a hopper 140 is provided above the material supply box 130, and a material such as a wood-based material or a thermoplastic resin is supplied from the portion.
図3は、加圧混練装置の概略構成図である。加圧混練装置は、材料を投入する筐体210と、前記筐体210内を加圧にするための加圧手段220と、前記筐体内の材料を混練するための、二本のスクリュ230とを有する。スクリュ230はモータに接続されており、回転可能に構成されている(図示しない)。
FIG. 3 is a schematic configuration diagram of a pressure kneading apparatus. The pressure kneading apparatus includes a casing 210 for charging material, a pressurizing means 220 for pressurizing the inside of the casing 210, and two screws 230 for kneading the material in the casing. Have The screw 230 is connected to a motor and is configured to be rotatable (not shown).
図4は、圧縮成形装置の概略構成図である。圧縮成形装置4は、公知の圧縮成形機を使用することが可能であるが、例えば、上型410と下型420とを有し、当該上型と下型のキャビティー内に材料を導入し、圧縮機構430により圧縮する。
FIG. 4 is a schematic configuration diagram of the compression molding apparatus. The compression molding apparatus 4 can use a known compression molding machine. For example, the compression molding apparatus 4 has an upper mold 410 and a lower mold 420, and introduces a material into the cavities of the upper mold and the lower mold. , Compression is performed by the compression mechanism 430.
<製造方法>
本発明に係る製造方法においては、少なくとも、セルロース系の繊維を含む木質系材料と熱可塑性樹脂とを原料として用いる。木質系材料とは、木材を原料とする小片である。木質系材料に含まれるセルロース系の繊維は、セルロースを含む繊維であれば、特に限定されない。ここで、本発明において木質系材料は、木の細胞構造を保持しており、その内部に空洞を有することが好適である。ここで空洞とは、例えば、木質系材料を構成する細胞由来のストロー状の空洞である。このように細胞の形状を保持している程度の大きさを有するような材料を使用することにより、材料としての強度を高めることが可能となる。木質系材料として、より具体的には、鉋屑等の屑体であっても、木材破砕チップであってもどのような形状であってもよい。また、本発明に係る製造方法において、上記の木質系材料を押し固めたペレットを使用してもよい。 <Manufacturing method>
In the production method according to the present invention, at least a wood-based material containing a cellulose-based fiber and a thermoplastic resin are used as raw materials. The woody material is a small piece made of wood. The cellulosic fiber contained in the wood-based material is not particularly limited as long as the fiber contains cellulose. Here, in the present invention, it is preferable that the woody material retains the cellular structure of the tree and has a cavity therein. Here, the cavity is, for example, a straw-shaped cavity derived from a cell constituting a woody material. Thus, by using a material having such a size as to retain the shape of the cell, the strength as the material can be increased. More specifically, the wood-based material may be a scrap body such as sawdust or a wood crushing chip. Moreover, in the manufacturing method according to the present invention, pellets obtained by pressing and solidifying the woody material may be used.
本発明に係る製造方法においては、少なくとも、セルロース系の繊維を含む木質系材料と熱可塑性樹脂とを原料として用いる。木質系材料とは、木材を原料とする小片である。木質系材料に含まれるセルロース系の繊維は、セルロースを含む繊維であれば、特に限定されない。ここで、本発明において木質系材料は、木の細胞構造を保持しており、その内部に空洞を有することが好適である。ここで空洞とは、例えば、木質系材料を構成する細胞由来のストロー状の空洞である。このように細胞の形状を保持している程度の大きさを有するような材料を使用することにより、材料としての強度を高めることが可能となる。木質系材料として、より具体的には、鉋屑等の屑体であっても、木材破砕チップであってもどのような形状であってもよい。また、本発明に係る製造方法において、上記の木質系材料を押し固めたペレットを使用してもよい。 <Manufacturing method>
In the production method according to the present invention, at least a wood-based material containing a cellulose-based fiber and a thermoplastic resin are used as raw materials. The woody material is a small piece made of wood. The cellulosic fiber contained in the wood-based material is not particularly limited as long as the fiber contains cellulose. Here, in the present invention, it is preferable that the woody material retains the cellular structure of the tree and has a cavity therein. Here, the cavity is, for example, a straw-shaped cavity derived from a cell constituting a woody material. Thus, by using a material having such a size as to retain the shape of the cell, the strength as the material can be increased. More specifically, the wood-based material may be a scrap body such as sawdust or a wood crushing chip. Moreover, in the manufacturing method according to the present invention, pellets obtained by pressing and solidifying the woody material may be used.
ここで、木質系材料の大きさとしては、木の繊維構造を保持している程度の大きさを有すれば、特に限定されないが、厚さ0.01~0.5mm、幅・長さ1~5mm(例えばプレナー屑)が好適である。また、木質系材料の樹種は特に限定されないが、例えば、スギ、ヒノキ、スプルース、ファー、ラジアータパイン等の針葉樹や、シラカバ、アピトン、カメレレ、センゴンラウト、アスペン等の広葉樹が挙げられる。
Here, the size of the wood-based material is not particularly limited as long as it has a size enough to hold the fiber structure of the wood, but it has a thickness of 0.01 to 0.5 mm, a width and a length of 1 ˜5 mm (eg, planar scrap) is preferred. The tree species of the woody material is not particularly limited, and examples thereof include conifers such as cedar, cypress, spruce, fur, and radiatapine, and broad-leaved trees such as birch, apiton, chamelere, sengonlaut, and aspen.
一方、熱可塑性樹脂としては、特に限定されないが、例えば、ポリプロピレン、ポリスチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、等のオレフィン系樹脂や、ポリイソプレン、エチレンプロピレンゴム、アクリロニトリル‐ブタジエン‐スチレン共重合体、アクリロニトリル‐エチレンプロピレンゴム‐スチレン共重合体、エチレン酢酸ビニル共重合体等のゴム系樹脂が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することが可能である。これらの中でも、オレフィン系樹脂を使用することが好適である。その他、当該熱可塑性樹脂のほかに、後述するミキシング溶融工程において当該工程の妨げにならない程度に熱硬化性樹脂が混在していてもよい。
On the other hand, the thermoplastic resin is not particularly limited. For example, olefinic resins such as polypropylene, polystyrene, low density polyethylene, medium density polyethylene, and high density polyethylene, polyisoprene, ethylene propylene rubber, acrylonitrile-butadiene-styrene. Examples thereof include rubber resins such as copolymers, acrylonitrile-ethylenepropylene rubber-styrene copolymers, and ethylene vinyl acetate copolymers, and these can be used alone or in combination of two or more. Among these, it is preferable to use an olefin resin. In addition to the thermoplastic resin, a thermosetting resin may be mixed so as not to interfere with the process in the mixing and melting process described later.
本発明に係る木質系合成樹脂材料において、添加剤が含まれていてもよい。添加剤としては、特に限定されないが、例えば、不飽和カルボン酸又はその誘導体で変性されたポリオレフィン樹脂や、着色剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤等が挙げられる。
The wood-based synthetic resin material according to the present invention may contain an additive. Although it does not specifically limit as an additive, For example, the polyolefin resin modified with unsaturated carboxylic acid or its derivative (s), a coloring agent, antioxidant, a ultraviolet absorber, an antistatic agent, a lubricant, etc. are mentioned.
不飽和カルボン酸としては、特に限定されないが、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、マレイン酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、メサコン酸、アンゲリカ酸、ソルビン酸、アクリル酸、メタクリル酸や、これらの2種類以上の組み合わせが挙げられる。また、不飽和カルボン酸の誘導体としては、特に限定されず、前記不飽和カルボン酸の金属塩、アミド、イミド、エステル等や、これらの2種類以上の組み合わせが挙げられる。
Examples of the unsaturated carboxylic acid include, but are not limited to, maleic anhydride, itaconic anhydride, citraconic anhydride, maleic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, mesaconic acid, angelic acid, sorbic acid, Acrylic acid, methacrylic acid, and combinations of two or more of these may be mentioned. Moreover, it does not specifically limit as a derivative | guide_body of unsaturated carboxylic acid, The metal salt of the said unsaturated carboxylic acid, amide | amido, imide, ester etc., These 2 or more types of combinations are mentioned.
着色剤としては、特に限定されないが、例えば、二酸化チタン、酸化コバルト、群青、紺青、弁柄、銀朱、鉛白、鉛丹、黄鉛、ストロンチウムクロメート、チタニウムイエロー、チタンブラック、ジンククロメート、鉄黒、モリブデン赤、モリブデンホワイト、リサージ、リトポン、カーボンブラック、エメラルドグリーン、ギネー緑、カドミウム黄、カドミウム赤、コバルト青、アゾ顔料、フタロシアニンブルー、イソインドリノン、キナクリドン、ジオキサジンバイオレット、ペリノンペリレン等や、これらの2種類以上の組み合わせが挙げられる。これらの中でも、天然の木質感を出すためには黄色酸化チタン、弁柄(酸化鉄)等が好ましい。
The colorant is not particularly limited. For example, titanium dioxide, cobalt oxide, ultramarine, bitumen, dial, silver vermilion, white lead, red lead, yellow lead, strontium chromate, titanium yellow, titanium black, zinc chromate, iron black , Molybdenum Red, Molybdenum White, Resurge, Lithopone, Carbon Black, Emerald Green, Guinea Green, Cadmium Yellow, Cadmium Red, Cobalt Blue, Azo Pigment, Phthalocyanine Blue, Isoindolinone, Quinacridone, Dioxazine Violet, Perinone Perylene, etc. , And a combination of two or more of these. Among these, yellow titanium oxide, stalk (iron oxide) and the like are preferable in order to bring out a natural wood texture.
尚、本発明に係る木質系合成樹脂材料を製造するにあたって、木質系材料の添加量は、特に限定されないが、例えば、木質系合成樹脂材料の全重量に対して、20~80重量%が好適である。合成樹脂の添加量は、特に限定されないが、例えば、20~80重量%が好適である。また、変性されたポリオレフィン樹脂の添加量は、特に限定されないが、例えば、木質系合成樹脂材料の全重量に対して、0.1~7重量%が好適であり、2~4重量%がより好適である。着色剤の添加量は、特に限定されないが、例えば、木質系合成樹脂材料の全重量に対して、0.1~7重量%が好適である。その他の添加剤の添加量は、特に限定されないが、例えば、木質系合成樹脂材料の全重量に対して、0.1~7重量%が好適である。
In the production of the wood-based synthetic resin material according to the present invention, the amount of the wood-based material added is not particularly limited. For example, 20 to 80% by weight is preferable with respect to the total weight of the wood-based synthetic resin material. It is. The addition amount of the synthetic resin is not particularly limited, but for example, 20 to 80% by weight is preferable. The amount of the modified polyolefin resin added is not particularly limited. For example, it is preferably 0.1 to 7% by weight, more preferably 2 to 4% by weight based on the total weight of the wood-based synthetic resin material. Is preferred. The addition amount of the colorant is not particularly limited, but for example, it is preferably 0.1 to 7% by weight with respect to the total weight of the woody synthetic resin material. The amount of other additives to be added is not particularly limited. For example, 0.1 to 7% by weight is preferable with respect to the total weight of the woody synthetic resin material.
ミキシング溶融工程
はじめに、木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程を行なう。ここで、本発明においては、木質系材料と熱可塑性樹脂とをミキシング装置内に投入し、同じ系内で攪拌してゲル状態とすることを一特徴としている。すなわち、このように同じ系内で攪拌してゲル状態とすることによって、ミキシング装置内で溶融する際に、系が高温となるため木質系材料内に存在する水が蒸発するため、得られる木質系合成樹脂材料の水分含有量を少なくすることが可能となる。 Mixing and melting process First, a wood-based material and a thermoplastic resin are put into a mixing device equipped with rotating blades and melted by frictional heat generated by the stirring to form a gel state. . Here, the present invention is characterized in that a wood-based material and a thermoplastic resin are put into a mixing apparatus and stirred in the same system to form a gel state. In other words, by stirring in the same system in this way to form a gel state, the water in the wood-based material evaporates because the system becomes hot when melting in the mixing apparatus, and the resulting woody It becomes possible to reduce the water content of the synthetic resin material.
はじめに、木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程を行なう。ここで、本発明においては、木質系材料と熱可塑性樹脂とをミキシング装置内に投入し、同じ系内で攪拌してゲル状態とすることを一特徴としている。すなわち、このように同じ系内で攪拌してゲル状態とすることによって、ミキシング装置内で溶融する際に、系が高温となるため木質系材料内に存在する水が蒸発するため、得られる木質系合成樹脂材料の水分含有量を少なくすることが可能となる。 Mixing and melting process First, a wood-based material and a thermoplastic resin are put into a mixing device equipped with rotating blades and melted by frictional heat generated by the stirring to form a gel state. . Here, the present invention is characterized in that a wood-based material and a thermoplastic resin are put into a mixing apparatus and stirred in the same system to form a gel state. In other words, by stirring in the same system in this way to form a gel state, the water in the wood-based material evaporates because the system becomes hot when melting in the mixing apparatus, and the resulting woody It becomes possible to reduce the water content of the synthetic resin material.
より詳細には、本最良形態において説明した、ミキシング装置1のホッパ140の中に、木質系材料及び熱可塑性樹脂を投入する。ここで、投入された木質系材料及び熱可塑性樹脂は、材料供給箱130内に入り供給スクリュ113により、チャンバ120内へと導入される。ここで、当該材料はモータ112により高速回転している羽根111により攪拌される。このように攪拌されることにより、摩擦熱が発生し熱可塑性樹脂が溶融して材料がゲル状態となる。ここで高速回転とは、特に限定されないが、例えば、羽根の先端速度が20~50m/s程度まで上昇する速度により回転させる。
More specifically, the wood-based material and the thermoplastic resin are put into the hopper 140 of the mixing apparatus 1 described in the best mode. Here, the supplied wood-based material and thermoplastic resin enter the material supply box 130 and are introduced into the chamber 120 by the supply screw 113. Here, the material is agitated by the blade 111 rotating at high speed by the motor 112. By stirring in this way, frictional heat is generated, the thermoplastic resin is melted, and the material is in a gel state. Here, the high-speed rotation is not particularly limited. For example, the blade is rotated at a speed at which the blade tip speed increases to about 20 to 50 m / s.
加圧混練工程
加圧混練工程においては、前記ミキシング溶融工程において生成したゲル状態の材料を混練する。通常、ミキシング溶融工程において、木質系材料と熱可塑性樹脂とを混合した場合には、更に混練する必要はない。しかし、このように、二軸混練機のようなニーダによって更に混練することによって、木質系材料と熱可塑性樹脂とが均質に混合されるため、最終的に製造される材料の強度が高くなり、更に、材料表面が滑らかになる。 Pressure kneading step In the pressure kneading step, the gel material produced in the mixing and melting step is kneaded. Usually, in the mixing melting step, when the wood-based material and the thermoplastic resin are mixed, it is not necessary to further knead. However, in this way, by further kneading with a kneader such as a twin-screw kneader, the wood-based material and the thermoplastic resin are homogeneously mixed, so the strength of the finally produced material is increased, Furthermore, the material surface becomes smooth.
加圧混練工程においては、前記ミキシング溶融工程において生成したゲル状態の材料を混練する。通常、ミキシング溶融工程において、木質系材料と熱可塑性樹脂とを混合した場合には、更に混練する必要はない。しかし、このように、二軸混練機のようなニーダによって更に混練することによって、木質系材料と熱可塑性樹脂とが均質に混合されるため、最終的に製造される材料の強度が高くなり、更に、材料表面が滑らかになる。 Pressure kneading step In the pressure kneading step, the gel material produced in the mixing and melting step is kneaded. Usually, in the mixing melting step, when the wood-based material and the thermoplastic resin are mixed, it is not necessary to further knead. However, in this way, by further kneading with a kneader such as a twin-screw kneader, the wood-based material and the thermoplastic resin are homogeneously mixed, so the strength of the finally produced material is increased, Furthermore, the material surface becomes smooth.
より詳細には、ミキシング装置1により生成したゲル状態の材料を加圧混練装置2の筐体210内に投入し、モータを動作させることによりスクリュ230を回転させてゲル状態の材料を混練する。この際、加圧手段220により、筐体内を加圧状態にして混練することにより、木質材料と樹脂とがより均一に混合される。
加圧状態とは、常圧(0.1MPa)よりも高い圧力状態を意味する。具体的には、0.5~1MPaであるのが好ましく、0.6~0.8MPaであるのがより好ましい。上記範囲であると、得られる木質系合成樹脂材料の表面が滑らかになり、ざらつきの程度が低くなり、更に、高い引張強度を有する木質系合成樹脂材料を得ることができる。 More specifically, the gel material generated by the mixingapparatus 1 is put into the casing 210 of the pressure kneading apparatus 2, and the screw 230 is rotated by operating the motor to knead the gel material. At this time, the woody material and the resin are more uniformly mixed by kneading the casing with the pressurizing means 220 in a pressurized state.
The pressurized state means a pressure state higher than normal pressure (0.1 MPa). Specifically, 0.5 to 1 MPa is preferable, and 0.6 to 0.8 MPa is more preferable. Within the above range, the surface of the obtained wood-based synthetic resin material becomes smooth, the roughness is reduced, and a wood-based synthetic resin material having a high tensile strength can be obtained.
加圧状態とは、常圧(0.1MPa)よりも高い圧力状態を意味する。具体的には、0.5~1MPaであるのが好ましく、0.6~0.8MPaであるのがより好ましい。上記範囲であると、得られる木質系合成樹脂材料の表面が滑らかになり、ざらつきの程度が低くなり、更に、高い引張強度を有する木質系合成樹脂材料を得ることができる。 More specifically, the gel material generated by the mixing
The pressurized state means a pressure state higher than normal pressure (0.1 MPa). Specifically, 0.5 to 1 MPa is preferable, and 0.6 to 0.8 MPa is more preferable. Within the above range, the surface of the obtained wood-based synthetic resin material becomes smooth, the roughness is reduced, and a wood-based synthetic resin material having a high tensile strength can be obtained.
圧縮成形工程
圧縮成形工程では、混練された材料を型に入れて圧縮成形する。本工程において、圧力をかけて樹脂を木の繊維に充填させつつ、冷却して成型する。本工程においては、80kgf/cm2以上の高圧で圧縮成形することが好適である。木質系合成樹脂材料の圧縮成形においてこのような高圧条件下で圧縮成形することにより、木質系材料の繊維内に熱可塑性樹脂を高密度で充填させることができるため、木質系合成樹脂材料の強度が高まる。ここで、当該高圧条件は、少なくとも30kgf/cm2以上が好適であり、100kgf/cm2以上が更に好適であり、120kgf/cm2以上が特に好適である。尚、上限は、特に限定されないが、例えば、500kgf/cm2である。また、本工程において温度条件は、例えば、40~180℃が好適である。 Compression molding process In the compression molding process, the kneaded material is put into a mold and compression molded. In this step, the resin is cooled and molded while filling the wood fiber with pressure. In this step, it is preferable to perform compression molding at a high pressure of 80 kgf / cm 2 or more. In compression molding of wood-based synthetic resin materials, compression molding under such high-pressure conditions makes it possible to fill the fibers of the wood-based material with a high density of thermoplastic resin, so the strength of the wood-based synthetic resin material Will increase. Here, the high pressure condition is suitably at least 30 kgf / cm 2 or more, 100 kgf / cm 2 or more is more preferred, 120 kgf / cm 2 or more is particularly preferred. In addition, although an upper limit is not specifically limited, For example, it is 500 kgf / cm < 2 >. In this step, the temperature condition is preferably 40 to 180 ° C., for example.
圧縮成形工程では、混練された材料を型に入れて圧縮成形する。本工程において、圧力をかけて樹脂を木の繊維に充填させつつ、冷却して成型する。本工程においては、80kgf/cm2以上の高圧で圧縮成形することが好適である。木質系合成樹脂材料の圧縮成形においてこのような高圧条件下で圧縮成形することにより、木質系材料の繊維内に熱可塑性樹脂を高密度で充填させることができるため、木質系合成樹脂材料の強度が高まる。ここで、当該高圧条件は、少なくとも30kgf/cm2以上が好適であり、100kgf/cm2以上が更に好適であり、120kgf/cm2以上が特に好適である。尚、上限は、特に限定されないが、例えば、500kgf/cm2である。また、本工程において温度条件は、例えば、40~180℃が好適である。 Compression molding process In the compression molding process, the kneaded material is put into a mold and compression molded. In this step, the resin is cooled and molded while filling the wood fiber with pressure. In this step, it is preferable to perform compression molding at a high pressure of 80 kgf / cm 2 or more. In compression molding of wood-based synthetic resin materials, compression molding under such high-pressure conditions makes it possible to fill the fibers of the wood-based material with a high density of thermoplastic resin, so the strength of the wood-based synthetic resin material Will increase. Here, the high pressure condition is suitably at least 30 kgf / cm 2 or more, 100 kgf / cm 2 or more is more preferred, 120 kgf / cm 2 or more is particularly preferred. In addition, although an upper limit is not specifically limited, For example, it is 500 kgf / cm < 2 >. In this step, the temperature condition is preferably 40 to 180 ° C., for example.
より詳細には、混練された材料が、輸送手段により運搬されて、圧縮成形装置4の型のキャビティー内に投入される。当該型によって圧縮成形することにより、目的とする木質系合成樹脂材料を得ることができる。
More specifically, the kneaded material is transported by a transportation means and put into the mold cavity of the compression molding apparatus 4. The target woody synthetic resin material can be obtained by compression molding with the mold.
<木質系合成樹脂材料>
本発明に係る製造方法により得られる木質系合成樹脂材料は、ミキシング溶融工程、加圧混練工程、圧縮成形工程を経ることにより、高い圧縮強度、高い耐磨耗性を示す材料を得ることができる。すなわち、ミキシング溶融工程において細胞構造を保持している木質系材料も合わせてミキシングすることにより、木質系材料の細胞構造の空洞に存在する水分が蒸発し当該空洞内が空になる。そこに、熱可塑性樹脂と混練されて均質に混ざり合った材料を高圧圧縮成形することにより、当該空洞内に熱可塑性樹脂が侵入し、当該空洞に樹脂が充填された木質系合成樹脂材料を得ることができる。このように、通常、水や空気等の流動性を有する物質が充填されている木質系材料の空洞内に、熱可塑性樹脂が充填されていることにより、セルロースの管内部に樹脂が入ると密度が高くなり圧縮に強くなり、更に、セルロースの管と管がリグニンに変わって樹脂で結合されて、強度(耐摩耗性)が増すと考えられる。また、本発明に係る木質系合成樹脂材料は、高い曲げ弾性率を有する。尚、木質材料部分を染色して、木質系合成樹脂材料を薄くスライスして、光学顕微鏡にて観察することにより、当該細胞構造の中に前記熱可塑性樹脂が充填されていることを確認することができる。 <Wooden synthetic resin material>
The wood-based synthetic resin material obtained by the production method according to the present invention can be obtained through a mixing melting step, a pressure kneading step, and a compression molding step to obtain a material exhibiting high compressive strength and high wear resistance. . That is, in the mixing melting step, the wood-based material holding the cell structure is also mixed, whereby the water present in the cavity of the cellular structure of the wood-based material is evaporated and the inside of the cavity is emptied. There, the material that is kneaded with the thermoplastic resin and homogeneously mixed is subjected to high-pressure compression molding, so that the thermoplastic resin enters the cavity and a wood-based synthetic resin material filled with the resin is obtained. be able to. In this way, the density of the resin in the cellulose tube is usually filled with the thermoplastic resin in the cavity of the wood-based material filled with a fluid material such as water or air. It is considered that the strength and wear resistance of the cellulose tube are increased by joining the cellulose tube and the tube with resin instead of lignin. Moreover, the woody synthetic resin material according to the present invention has a high flexural modulus. In addition, by confirming that the thermoplastic resin is filled in the cell structure by staining the wood material portion, slicing the wood-based synthetic resin material thinly, and observing with an optical microscope Can do.
本発明に係る製造方法により得られる木質系合成樹脂材料は、ミキシング溶融工程、加圧混練工程、圧縮成形工程を経ることにより、高い圧縮強度、高い耐磨耗性を示す材料を得ることができる。すなわち、ミキシング溶融工程において細胞構造を保持している木質系材料も合わせてミキシングすることにより、木質系材料の細胞構造の空洞に存在する水分が蒸発し当該空洞内が空になる。そこに、熱可塑性樹脂と混練されて均質に混ざり合った材料を高圧圧縮成形することにより、当該空洞内に熱可塑性樹脂が侵入し、当該空洞に樹脂が充填された木質系合成樹脂材料を得ることができる。このように、通常、水や空気等の流動性を有する物質が充填されている木質系材料の空洞内に、熱可塑性樹脂が充填されていることにより、セルロースの管内部に樹脂が入ると密度が高くなり圧縮に強くなり、更に、セルロースの管と管がリグニンに変わって樹脂で結合されて、強度(耐摩耗性)が増すと考えられる。また、本発明に係る木質系合成樹脂材料は、高い曲げ弾性率を有する。尚、木質材料部分を染色して、木質系合成樹脂材料を薄くスライスして、光学顕微鏡にて観察することにより、当該細胞構造の中に前記熱可塑性樹脂が充填されていることを確認することができる。 <Wooden synthetic resin material>
The wood-based synthetic resin material obtained by the production method according to the present invention can be obtained through a mixing melting step, a pressure kneading step, and a compression molding step to obtain a material exhibiting high compressive strength and high wear resistance. . That is, in the mixing melting step, the wood-based material holding the cell structure is also mixed, whereby the water present in the cavity of the cellular structure of the wood-based material is evaporated and the inside of the cavity is emptied. There, the material that is kneaded with the thermoplastic resin and homogeneously mixed is subjected to high-pressure compression molding, so that the thermoplastic resin enters the cavity and a wood-based synthetic resin material filled with the resin is obtained. be able to. In this way, the density of the resin in the cellulose tube is usually filled with the thermoplastic resin in the cavity of the wood-based material filled with a fluid material such as water or air. It is considered that the strength and wear resistance of the cellulose tube are increased by joining the cellulose tube and the tube with resin instead of lignin. Moreover, the woody synthetic resin material according to the present invention has a high flexural modulus. In addition, by confirming that the thermoplastic resin is filled in the cell structure by staining the wood material portion, slicing the wood-based synthetic resin material thinly, and observing with an optical microscope Can do.
ここで本発明に係る木質系合成樹脂材料の曲げ強度は、20~70PMaが好適であり、30~50MPaがより好適である。また、木質系合成樹脂材料の曲げ弾性率は、1~5GPaが好適であり、1.7~3GPaがより好適である。木質系合成樹脂材料の引張強度は、15~50MPaが好適であり、18~30MPaがより好適であり、21~30MPaが更に好適である。
Here, the bending strength of the wood-based synthetic resin material according to the present invention is preferably 20 to 70 PMa, and more preferably 30 to 50 MPa. Further, the bending elastic modulus of the wood-based synthetic resin material is preferably 1 to 5 GPa, and more preferably 1.7 to 3 GPa. The tensile strength of the wood-based synthetic resin material is preferably 15 to 50 MPa, more preferably 18 to 30 MPa, and further preferably 21 to 30 MPa.
<応用例>
本発明に係る木質系合成樹脂材料は、例えば、運搬用パレットや、建築材料として用いることができる。本発明に係る木質系合成樹脂材料及び製造方法によれば、例えば、1m×1m以上の面積の大きな材料であっても、均質な材料とすることができるため、前記用途へと応用が可能となる。以下、運搬用パレットおよび建築材料を例に取り、応用例を説明する。 <Application example>
The woody synthetic resin material according to the present invention can be used as, for example, a transportation pallet or a building material. According to the wood-based synthetic resin material and the manufacturing method according to the present invention, for example, even a material having a large area of 1 m × 1 m or more can be made a homogeneous material, so that it can be applied to the above-mentioned use. Become. In the following, application examples will be described by taking transportation pallets and building materials as examples.
本発明に係る木質系合成樹脂材料は、例えば、運搬用パレットや、建築材料として用いることができる。本発明に係る木質系合成樹脂材料及び製造方法によれば、例えば、1m×1m以上の面積の大きな材料であっても、均質な材料とすることができるため、前記用途へと応用が可能となる。以下、運搬用パレットおよび建築材料を例に取り、応用例を説明する。 <Application example>
The woody synthetic resin material according to the present invention can be used as, for example, a transportation pallet or a building material. According to the wood-based synthetic resin material and the manufacturing method according to the present invention, for example, even a material having a large area of 1 m × 1 m or more can be made a homogeneous material, so that it can be applied to the above-mentioned use. Become. In the following, application examples will be described by taking transportation pallets and building materials as examples.
運搬用パレット
本発明に係る運搬用パレットは、例えば、図5に示すような構造を有する。図5(a)は本形態に係る運搬用パレット500の概略斜視図であり、図5(b)はA断面図である。
ここで、本発明に係る運搬用パレット500は、上面デッキ板501及び底面デッキ板502と、側面503を有し、前面504及び後面505にフォークリフトのフォーク挿入用孔506が設けられている。上記の上面及び底面デッキ板の裏面にはデッキ板の強度を高めるための枠体が形成されており、より具体的には、A断面図に示すようにたて枠511とよこ枠512が形成されている。当該運搬用パレットは、例えば、上部と底部を二つに分けて別々に製造し、両パーツを接合することにより製造することができる。これにより、本発明に係る製造方法により、当該運搬用パレットを製造することができる。本発明に係る製造方法を使用することにより、枠体などのような部材についてもデッキ板に一体的に形成することができるため好適である。 Transportation Pallet The transportation pallet according to the present invention has a structure as shown in FIG. 5, for example. Fig.5 (a) is a schematic perspective view of thepallet 500 for conveyance which concerns on this form, FIG.5 (b) is A sectional drawing.
Here, thetransport pallet 500 according to the present invention has a top deck plate 501 and a bottom deck plate 502, and a side surface 503, and a fork insertion hole 506 for a forklift is provided on the front surface 504 and the rear surface 505. Frames for increasing the strength of the deck plate are formed on the upper surface and the back surface of the bottom deck plate, and more specifically, a vertical frame 511 and a horizontal frame 512 are formed as shown in the A sectional view. ing. The transport pallet can be manufactured by, for example, separately manufacturing the upper part and the bottom part in two and joining both parts. Thereby, the said pallet for conveyance can be manufactured with the manufacturing method which concerns on this invention. By using the manufacturing method according to the present invention, a member such as a frame can be formed integrally with the deck board, which is preferable.
本発明に係る運搬用パレットは、例えば、図5に示すような構造を有する。図5(a)は本形態に係る運搬用パレット500の概略斜視図であり、図5(b)はA断面図である。
ここで、本発明に係る運搬用パレット500は、上面デッキ板501及び底面デッキ板502と、側面503を有し、前面504及び後面505にフォークリフトのフォーク挿入用孔506が設けられている。上記の上面及び底面デッキ板の裏面にはデッキ板の強度を高めるための枠体が形成されており、より具体的には、A断面図に示すようにたて枠511とよこ枠512が形成されている。当該運搬用パレットは、例えば、上部と底部を二つに分けて別々に製造し、両パーツを接合することにより製造することができる。これにより、本発明に係る製造方法により、当該運搬用パレットを製造することができる。本発明に係る製造方法を使用することにより、枠体などのような部材についてもデッキ板に一体的に形成することができるため好適である。 Transportation Pallet The transportation pallet according to the present invention has a structure as shown in FIG. 5, for example. Fig.5 (a) is a schematic perspective view of the
Here, the
本発明に係る木質系合成樹脂材料を用いることにより、木質系材料と合成樹脂とが十分に混練されているため表面の粗さがなく、更に、高い強度を有する運搬用パレットとすることができる。また、一部に木質系材料を用いるため、全て合成樹脂でパレットを製造する場合と比較して、材料のコストを抑えることができる。また、木質系合成樹脂材料は、低温条件であると高い強度を有するため、当該パレットは、冷蔵・冷凍環境において使用するのに適している。また、本発明に係る木質系合成樹脂材料の合成樹脂として、耐候性プラスチック、静電気防止プラスチックなどの機能性樹脂を添加することが好適である。
By using the wood-based synthetic resin material according to the present invention, the wood-based material and the synthetic resin are sufficiently kneaded, so that there is no surface roughness and a high-strength transport pallet can be obtained. . In addition, since a wood-based material is partially used, the cost of the material can be suppressed as compared with the case where the pallet is manufactured entirely from synthetic resin. Further, since the wood-based synthetic resin material has high strength under low temperature conditions, the pallet is suitable for use in a refrigerated / frozen environment. In addition, it is preferable to add a functional resin such as a weather-resistant plastic or an antistatic plastic as a synthetic resin of the wood-based synthetic resin material according to the present invention.
建築用材料
本発明に係る建築用材料としては、例えば、図6に示すような、たて枠や、よこ枠等の枠と、板とが一体化された、壁下地一体型の壁材が挙げられる。図6(a)は、本発明に係る建築材料の表面の概略構成図であり、(b)は裏面の概略構成図である。本建築材料700は、壁面701と、その裏面に形成された下枠702と、前記下枠と平行に設けられた上枠703と、これらを結ぶように当該下枠と上枠に対して垂直に形成された複数のたて枠704とを有する。また更に、よこ枠705が複数本設けられていてもよい。これらの構成は、本発明に係る木質系合成樹脂材料を用いて、一体的に構成されていることが好適である。すなわち、本発明に係る木質系合成樹脂材料を用いれば、自由に成形することができるので、壁下地を一体的に形成することが可能となる。これにより、建築現場で壁下地を制作する必要なくなるので、現場の作業を軽減できると共に、建築工期短縮へとつながるため有用である。本明細書では、壁材として用いた場合を例にとり説明したが、同様に下地と一体化した天井材や、床材としても応用することができる。 Building material As a building material according to the present invention, for example, a wall base integrated wall material in which a frame such as a vertical frame or a horizontal frame and a plate are integrated as shown in FIG. Can be mentioned. Fig.6 (a) is a schematic block diagram of the surface of the building material which concerns on this invention, (b) is a schematic block diagram of a back surface. Thebuilding material 700 includes a wall surface 701, a lower frame 702 formed on the back surface thereof, an upper frame 703 provided in parallel with the lower frame, and perpendicular to the lower frame and the upper frame so as to connect them. And a plurality of vertical frames 704 formed on the surface. Furthermore, a plurality of transverse frames 705 may be provided. These structures are preferably formed integrally using the wood-based synthetic resin material according to the present invention. That is, if the woody synthetic resin material according to the present invention is used, it can be molded freely, so that the wall base can be integrally formed. This eliminates the need to produce a wall foundation at the construction site, which is useful because it reduces work on site and shortens the construction period. In this specification, the case where it is used as a wall material has been described as an example. However, the present invention can also be applied as a ceiling material or a floor material integrated with a base material.
本発明に係る建築用材料としては、例えば、図6に示すような、たて枠や、よこ枠等の枠と、板とが一体化された、壁下地一体型の壁材が挙げられる。図6(a)は、本発明に係る建築材料の表面の概略構成図であり、(b)は裏面の概略構成図である。本建築材料700は、壁面701と、その裏面に形成された下枠702と、前記下枠と平行に設けられた上枠703と、これらを結ぶように当該下枠と上枠に対して垂直に形成された複数のたて枠704とを有する。また更に、よこ枠705が複数本設けられていてもよい。これらの構成は、本発明に係る木質系合成樹脂材料を用いて、一体的に構成されていることが好適である。すなわち、本発明に係る木質系合成樹脂材料を用いれば、自由に成形することができるので、壁下地を一体的に形成することが可能となる。これにより、建築現場で壁下地を制作する必要なくなるので、現場の作業を軽減できると共に、建築工期短縮へとつながるため有用である。本明細書では、壁材として用いた場合を例にとり説明したが、同様に下地と一体化した天井材や、床材としても応用することができる。 Building material As a building material according to the present invention, for example, a wall base integrated wall material in which a frame such as a vertical frame or a horizontal frame and a plate are integrated as shown in FIG. Can be mentioned. Fig.6 (a) is a schematic block diagram of the surface of the building material which concerns on this invention, (b) is a schematic block diagram of a back surface. The
上記の建築材料として、本発明に係る木質系合成樹脂材料を用いることにより、木質系材料と合成樹脂とが十分に混練されているため表面の粗さがなく、更に、高い強度を有する建築材料とすることができる。
By using the wood-based synthetic resin material according to the present invention as the above-mentioned building material, the wood-based material and the synthetic resin are sufficiently kneaded, so there is no surface roughness and the building material has high strength. It can be.
(実施例1)
高密度ポリエチレン(ハイゼックス(登録商標)2208J)を40重量%、木質ペレット(木質原料をサイズ直径6mm、長さ10mmに押し固めたもの)を60重量%の混合比率で図2に示したミキシング装置に投入し、更に添加剤(無水マレイン酸変性ポリエチレン)を前記高密度ポリエチレンに対して3重量%添加して、羽根を高速回転させることにより、これらの材料を溶融混練してゲル状とした(ミキシング溶融工程)。その後、材料を図3に示した装置によって、0.54MPaの加圧条件の下で二軸混練した。その後、図4に示した圧縮成形装置によって、42kgf/cm2の圧力下で圧縮成形し、本発明に係る木質系合成樹脂材料を得た。
得られた木質系合成樹脂材料の表面写真を図7に示した。木質系合成樹脂材料の中には1mm以上の木片が多く存在している様子が観察できた。 Example 1
The mixing apparatus shown in FIG. 2 in a mixing ratio of 40% by weight of high-density polyethylene (Hi-Zex (registered trademark) 2208J) and wood pellets (wood material pressed and compacted to a diameter of 6 mm and a length of 10 mm) of 60% by weight. And 3% by weight of an additive (maleic anhydride-modified polyethylene) was added to the high-density polyethylene and the blades were rotated at high speed to melt and knead these materials into a gel ( Mixing melting process). Thereafter, the material was kneaded biaxially under a pressurizing condition of 0.54 MPa by the apparatus shown in FIG. Then, it compression-molded under the pressure of 42 kgf / cm < 2 > with the compression molding apparatus shown in FIG. 4, and obtained the wooden type synthetic resin material which concerns on this invention.
A surface photograph of the obtained wood-based synthetic resin material is shown in FIG. It was observed that many wood pieces of 1 mm or more existed in the woody synthetic resin material.
高密度ポリエチレン(ハイゼックス(登録商標)2208J)を40重量%、木質ペレット(木質原料をサイズ直径6mm、長さ10mmに押し固めたもの)を60重量%の混合比率で図2に示したミキシング装置に投入し、更に添加剤(無水マレイン酸変性ポリエチレン)を前記高密度ポリエチレンに対して3重量%添加して、羽根を高速回転させることにより、これらの材料を溶融混練してゲル状とした(ミキシング溶融工程)。その後、材料を図3に示した装置によって、0.54MPaの加圧条件の下で二軸混練した。その後、図4に示した圧縮成形装置によって、42kgf/cm2の圧力下で圧縮成形し、本発明に係る木質系合成樹脂材料を得た。
得られた木質系合成樹脂材料の表面写真を図7に示した。木質系合成樹脂材料の中には1mm以上の木片が多く存在している様子が観察できた。 Example 1
The mixing apparatus shown in FIG. 2 in a mixing ratio of 40% by weight of high-density polyethylene (Hi-Zex (registered trademark) 2208J) and wood pellets (wood material pressed and compacted to a diameter of 6 mm and a length of 10 mm) of 60% by weight. And 3% by weight of an additive (maleic anhydride-modified polyethylene) was added to the high-density polyethylene and the blades were rotated at high speed to melt and knead these materials into a gel ( Mixing melting process). Thereafter, the material was kneaded biaxially under a pressurizing condition of 0.54 MPa by the apparatus shown in FIG. Then, it compression-molded under the pressure of 42 kgf / cm < 2 > with the compression molding apparatus shown in FIG. 4, and obtained the wooden type synthetic resin material which concerns on this invention.
A surface photograph of the obtained wood-based synthetic resin material is shown in FIG. It was observed that many wood pieces of 1 mm or more existed in the woody synthetic resin material.
(比較例1)
加圧混練を行わなかったこと以外は、実施例1と同様の条件で、比較例1に係る木質系合成樹脂材料を得た。 (Comparative Example 1)
A woody synthetic resin material according to Comparative Example 1 was obtained under the same conditions as in Example 1 except that the pressure kneading was not performed.
加圧混練を行わなかったこと以外は、実施例1と同様の条件で、比較例1に係る木質系合成樹脂材料を得た。 (Comparative Example 1)
A woody synthetic resin material according to Comparative Example 1 was obtained under the same conditions as in Example 1 except that the pressure kneading was not performed.
(実施例2)
圧縮成形時の圧力を125kgf/cm2とした以外は、実施例1と同様の条件で、実施例2に係る木質系合成樹脂材料を得た。 (Example 2)
A woody synthetic resin material according to Example 2 was obtained under the same conditions as in Example 1 except that the pressure during compression molding was set to 125 kgf / cm 2 .
圧縮成形時の圧力を125kgf/cm2とした以外は、実施例1と同様の条件で、実施例2に係る木質系合成樹脂材料を得た。 (Example 2)
A woody synthetic resin material according to Example 2 was obtained under the same conditions as in Example 1 except that the pressure during compression molding was set to 125 kgf / cm 2 .
(比較例2)
高密度ポリエチレンを60重量%、木質ペレットを40重量%用いて、加圧混練を行わなかったこと以外は、実施例1と同様の条件で、比較例2に係る木質系合成樹脂材料を得た。 (Comparative Example 2)
A wood-based synthetic resin material according to Comparative Example 2 was obtained under the same conditions as Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were not used for pressure kneading. .
高密度ポリエチレンを60重量%、木質ペレットを40重量%用いて、加圧混練を行わなかったこと以外は、実施例1と同様の条件で、比較例2に係る木質系合成樹脂材料を得た。 (Comparative Example 2)
A wood-based synthetic resin material according to Comparative Example 2 was obtained under the same conditions as Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were not used for pressure kneading. .
(実施例3)
高密度ポリエチレンを60重量%、木質ペレットを40重量%用いて、圧縮成形時の圧力を125kgf/cm2としたこと以外は、実施例1と同様の条件で、実施例3に係る木質系合成樹脂材料を得た。 (Example 3)
A wood-based synthesis according to Example 3 under the same conditions as in Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were used and the pressure at the time of compression molding was 125 kgf / cm 2. A resin material was obtained.
高密度ポリエチレンを60重量%、木質ペレットを40重量%用いて、圧縮成形時の圧力を125kgf/cm2としたこと以外は、実施例1と同様の条件で、実施例3に係る木質系合成樹脂材料を得た。 (Example 3)
A wood-based synthesis according to Example 3 under the same conditions as in Example 1 except that 60% by weight of high-density polyethylene and 40% by weight of wood pellets were used and the pressure at the time of compression molding was 125 kgf / cm 2. A resin material was obtained.
(実施例4)
木質原料を着色した以外は、実施例1に示した方法で、木質系合成樹脂材料を製造して、当該材料を薄くスライスして、光学顕微鏡にて観察した(図8)。これにより、木質材料の細胞構造が残っている様子が確認できた。また、当該細胞構造内の空隙に、熱可塑性樹脂が充填されている様子が観察できた。 Example 4
Except for coloring the wood material, a wood-based synthetic resin material was produced by the method shown in Example 1, and the material was sliced thinly and observed with an optical microscope (FIG. 8). This confirmed that the cellular structure of the woody material remained. Moreover, it has been observed that the thermoplastic resin is filled in the voids in the cell structure.
木質原料を着色した以外は、実施例1に示した方法で、木質系合成樹脂材料を製造して、当該材料を薄くスライスして、光学顕微鏡にて観察した(図8)。これにより、木質材料の細胞構造が残っている様子が確認できた。また、当該細胞構造内の空隙に、熱可塑性樹脂が充填されている様子が観察できた。 Example 4
Except for coloring the wood material, a wood-based synthetic resin material was produced by the method shown in Example 1, and the material was sliced thinly and observed with an optical microscope (FIG. 8). This confirmed that the cellular structure of the woody material remained. Moreover, it has been observed that the thermoplastic resin is filled in the voids in the cell structure.
実施例1~3、比較例1~2について、下記の曲げ強度・曲げ弾性試験及び引張強度試験、衝撃強度試験を行なった。結果を表1に示す。これらの結果によれば、ニーダ処理(加圧混練)を工程に加えることによって、引張強度を高めることができることが見て取れる。
Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to the following bending strength / bending elasticity test, tensile strength test, and impact strength test. The results are shown in Table 1. According to these results, it can be seen that the tensile strength can be increased by adding a kneader process (pressure kneading) to the process.
(曲げ強度・曲げ弾性試験)
曲げ強度及び曲げ弾性率については、JIS K7171に規定された方法により測定した。 (Bending strength and bending elasticity test)
About bending strength and a bending elastic modulus, it measured by the method prescribed | regulated to JISK7171.
曲げ強度及び曲げ弾性率については、JIS K7171に規定された方法により測定した。 (Bending strength and bending elasticity test)
About bending strength and a bending elastic modulus, it measured by the method prescribed | regulated to JISK7171.
(引張強度試験)
引張強度試験については、JIS K7161に規定された方法により測定した。 (Tensile strength test)
About the tensile strength test, it measured by the method prescribed | regulated to JISK7161.
引張強度試験については、JIS K7161に規定された方法により測定した。 (Tensile strength test)
About the tensile strength test, it measured by the method prescribed | regulated to JISK7161.
(衝撃強度試験)
衝撃強度試験については、JIS K7111に規定された方法により測定した。 (Impact strength test)
About the impact strength test, it measured by the method prescribed | regulated to JISK7111.
衝撃強度試験については、JIS K7111に規定された方法により測定した。 (Impact strength test)
About the impact strength test, it measured by the method prescribed | regulated to JISK7111.
(表面状態評価試験)
各試料に対して、ステンレス直尺(SHINWA製)の幅20mmの片を供試検体表面に直角にあて、表面をなぞるように15cmの長さに渡って引掻く動作を10回行ない、成形物の表面のざらつき度合いを評価した。結果を図9に示した。併せて、木質系合成樹脂材料の表面状態の写真を図9で示した。 (Surface condition evaluation test)
For each sample, a 20 mm width piece of stainless steel (made by SHINWA) is applied to the surface of the specimen at a right angle and scratched over a length of 15 cm so that the surface is traced. The degree of surface roughness was evaluated. The results are shown in FIG. In addition, a photograph of the surface state of the wood-based synthetic resin material is shown in FIG.
各試料に対して、ステンレス直尺(SHINWA製)の幅20mmの片を供試検体表面に直角にあて、表面をなぞるように15cmの長さに渡って引掻く動作を10回行ない、成形物の表面のざらつき度合いを評価した。結果を図9に示した。併せて、木質系合成樹脂材料の表面状態の写真を図9で示した。 (Surface condition evaluation test)
For each sample, a 20 mm width piece of stainless steel (made by SHINWA) is applied to the surface of the specimen at a right angle and scratched over a length of 15 cm so that the surface is traced. The degree of surface roughness was evaluated. The results are shown in FIG. In addition, a photograph of the surface state of the wood-based synthetic resin material is shown in FIG.
1:ミキシング装置
2:加圧混練装置
4:圧縮成形装置 1: Mixing device 2: Pressure kneading device 4: Compression molding device
2:加圧混練装置
4:圧縮成形装置 1: Mixing device 2: Pressure kneading device 4: Compression molding device
Claims (7)
- セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料において、
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工程後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を経て得られることを特徴とする、木質系合成樹脂材料。 In a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin,
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading step, the material is put into a mold and compression molded, and a compression molding step,
A wood-based synthetic resin material obtained by passing through - 前記木質材系料が細胞構造を保持しており、当該細胞構造の中に前記熱可塑性樹脂が充填されていることを特徴とする、請求項1記載の木質系合成樹脂材料。 The wood-based synthetic resin material according to claim 1, wherein the wood-based material retains a cell structure, and the cell structure is filled with the thermoplastic resin.
- 請求項1又は2記載の木質系合成樹脂材料からなることを特徴とする運搬用パレット。 A transportation pallet comprising the woody synthetic resin material according to claim 1 or 2.
- 請求項1又は2記載の木質系合成樹脂材料からなることを特徴とする建築材料。 A building material comprising the woody synthetic resin material according to claim 1 or 2.
- セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料の製造方法において、
木質系材料と熱可塑性樹脂とを、回転する羽根を備えたミキシング装置内に投入し、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング溶融工程と、
前記ミキシング溶融工程後に、更に前記ゲル状態の材料を加圧条件の下で混練する、加圧混練工程と、
前記加圧混練工程後に、前記材料を型に入れて圧縮成形する、圧縮成形工程と、
を有することを特徴とする、木質系合成樹脂材料の製造方法。 In a method for producing a wood-based synthetic resin material comprising a wood-based material containing cellulosic fibers and a thermoplastic resin,
A mixing melting step of putting a wood-based material and a thermoplastic resin into a mixing apparatus provided with rotating blades, and melting it by frictional heat generated by the stirring into a gel state;
A pressure kneading step of kneading the gel material under pressure conditions after the mixing and melting step;
After the pressure kneading step, the material is put into a mold and compression molded, and a compression molding step,
A method for producing a wood-based synthetic resin material, comprising: - 前記圧縮成形における、圧縮圧力が、80kgf/cm2以上であることを特徴とする、請求項5記載の木質系合成樹脂材料の製造方法。 The method for producing a woody synthetic resin material according to claim 5, wherein a compression pressure in the compression molding is 80 kgf / cm 2 or more.
- セルロース系の繊維を含む木質系材料と、熱可塑性樹脂とを含む木質系合成樹脂材料の製造装置において、
木質系材料と熱可塑性樹脂とを、高速回転する羽根を備え、その攪拌に伴い発生する摩擦熱により溶融させてゲル状態とする、ミキシング装置と、
前記ゲル状態の材料を加圧条件の下で混練する、加圧混練機と、
前記材料を型に入れて圧縮成形する、圧縮成形機と、
を有する木質系合成樹脂材料製造装置。 In an apparatus for producing a wood-based synthetic resin material containing a wood-based material containing cellulosic fibers and a thermoplastic resin,
A mixing apparatus comprising a wooden material and a thermoplastic resin, provided with blades that rotate at high speed, and melted by frictional heat generated by the stirring into a gel state;
A pressure kneader for kneading the gel material under pressure conditions;
A compression molding machine for compressing and molding the material into a mold;
Wood-based synthetic resin material manufacturing apparatus having
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010204951A JP2012056297A (en) | 2010-09-13 | 2010-09-13 | Woody synthetic resin material and production method therefor |
JP2010-204951 | 2010-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012036021A1 true WO2012036021A1 (en) | 2012-03-22 |
Family
ID=45831488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070251 WO2012036021A1 (en) | 2010-09-13 | 2011-09-06 | Woody synthetic resin material and production method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012056297A (en) |
WO (1) | WO2012036021A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4163075A1 (en) * | 2021-12-21 | 2023-04-12 | Mater A/S | A method for producing an article manufactured from thermoplastic and fiber waste and a composite material comprising thermoplastic and fiber waste |
CN117087071A (en) * | 2023-10-17 | 2023-11-21 | 广州先韵电子有限公司 | Forming equipment for processing acoustic silica gel shell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6508362B2 (en) * | 2018-01-12 | 2019-05-08 | セイコーエプソン株式会社 | Sheet manufacturing equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11254408A (en) * | 1998-03-12 | 1999-09-21 | Yamasho:Kk | Manufacture of product composed of woody piece and resin kneaded together and its system |
JP2004001357A (en) * | 2001-09-28 | 2004-01-08 | Katsuyuki Hasegawa | Composite wood and its manufacturing method |
-
2010
- 2010-09-13 JP JP2010204951A patent/JP2012056297A/en active Pending
-
2011
- 2011-09-06 WO PCT/JP2011/070251 patent/WO2012036021A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11254408A (en) * | 1998-03-12 | 1999-09-21 | Yamasho:Kk | Manufacture of product composed of woody piece and resin kneaded together and its system |
JP2004001357A (en) * | 2001-09-28 | 2004-01-08 | Katsuyuki Hasegawa | Composite wood and its manufacturing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4163075A1 (en) * | 2021-12-21 | 2023-04-12 | Mater A/S | A method for producing an article manufactured from thermoplastic and fiber waste and a composite material comprising thermoplastic and fiber waste |
WO2023057657A2 (en) | 2021-12-21 | 2023-04-13 | Mater A/S | A method for producing an article manufactured from thermoplastic and fiber waste and a composite material comprising thermoplastic and fiber waste |
WO2023057657A3 (en) * | 2021-12-21 | 2023-06-08 | Mater A/S | A method for producing an article manufactured from thermoplastic and fiber waste and a composite material comprising thermoplastic and fiber waste |
CN117087071A (en) * | 2023-10-17 | 2023-11-21 | 广州先韵电子有限公司 | Forming equipment for processing acoustic silica gel shell |
CN117087071B (en) * | 2023-10-17 | 2024-02-06 | 广州先韵电子有限公司 | Forming equipment for processing acoustic silica gel shell |
Also Published As
Publication number | Publication date |
---|---|
JP2012056297A (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101322598B1 (en) | Producting methode for Injection Composite Material Using Natural fiber particle | |
CN104302697B (en) | Composition polymer | |
CN108707277A (en) | Composition polymer | |
CN105713403A (en) | Wood-plastic composite and preparation method for special-shape molded member thereof | |
CN101880464A (en) | A kind of bamboo base/thermoplastics nanocomposite material | |
CN100429266C (en) | Synthetic paper made of environmental protection plastic and its preparation method | |
CN103772819A (en) | Method for preparing polypropylene and rice hull powder foamed composite tray | |
CN106084393A (en) | A kind of PE fat moulding material and preparation method thereof | |
CN102174270A (en) | Plasticized and toughened wood flour/polypropylene composite and method for preparing same | |
CN101974239A (en) | A kind of wood-plastic composite material and its preparation process | |
CN108467602A (en) | A method of preparing wood plastic composite using cherry sawdust | |
WO2012036021A1 (en) | Woody synthetic resin material and production method therefor | |
CN101967296A (en) | A kind of bamboo-plastic composite foam material and preparation method thereof | |
CN105694230A (en) | Environment-friendly plastifying biomass composite and preparation method thereof | |
Ganesan et al. | Experimental investigation and characterization of HDPE & LDPE polymer composites | |
CN100393810C (en) | Bamboo powder-polyvinyl chloride composite materials and process for preparing same | |
JP5161123B2 (en) | Manufacturing method of composite wood | |
CN101805525A (en) | Water absorption master batch for wood-plastic composite material and product and production method thereof | |
CN101240096A (en) | Wheat straw fiber/thermoplastic composite material and its manufacturing process | |
CN102093736A (en) | Wood-plastic composite material and preparation method thereof | |
Jafarian Jam et al. | Challenge to the Production of Fine Wood—Plastic Injection Molded Composites | |
CN105062110A (en) | Method for preparation of polypropylene based wood plastic composite material from walnut shell powder | |
CN104788854A (en) | Method for preparing PVC-based wood-plastic composite by using straws | |
CN109176945B (en) | Wood-plastic composite material and preparation method thereof | |
CN104312008B (en) | High-brightness PP electroplating material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11825027 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11825027 Country of ref document: EP Kind code of ref document: A1 |