WO2012033266A1 - Novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof - Google Patents
Novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof Download PDFInfo
- Publication number
- WO2012033266A1 WO2012033266A1 PCT/KR2011/000043 KR2011000043W WO2012033266A1 WO 2012033266 A1 WO2012033266 A1 WO 2012033266A1 KR 2011000043 W KR2011000043 W KR 2011000043W WO 2012033266 A1 WO2012033266 A1 WO 2012033266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artemisinin
- glycolipid
- deoxoartemisinin
- hybrid
- chemical formula
- Prior art date
Links
- BLUAFEHZUWYNDE-NNWCWBAJSA-N artemisinin Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC(=O)[C@@H]4C BLUAFEHZUWYNDE-NNWCWBAJSA-N 0.000 title claims abstract description 56
- 229960004191 artemisinin Drugs 0.000 title claims abstract description 54
- 229930101531 artemisinin Natural products 0.000 title claims abstract description 54
- 230000001772 anti-angiogenic effect Effects 0.000 title abstract description 24
- 239000000126 substance Substances 0.000 claims description 45
- 150000001875 compounds Chemical class 0.000 claims description 30
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- -1 Q-Q Chemical group 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 230000002491 angiogenic effect Effects 0.000 claims description 16
- 201000010099 disease Diseases 0.000 claims description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 229930186217 Glycolipid Natural products 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 14
- 125000003545 alkoxy group Chemical group 0.000 claims description 13
- 206010028980 Neoplasm Diseases 0.000 claims description 12
- 201000011510 cancer Diseases 0.000 claims description 12
- 125000001072 heteroaryl group Chemical group 0.000 claims description 12
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 150000002367 halogens Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 7
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 7
- 201000001320 Atherosclerosis Diseases 0.000 claims description 6
- 206010018364 Glomerulonephritis Diseases 0.000 claims description 6
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 6
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 5
- 230000033115 angiogenesis Effects 0.000 claims description 5
- 201000005202 lung cancer Diseases 0.000 claims description 5
- 208000020816 lung neoplasm Diseases 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 4
- 210000004204 blood vessel Anatomy 0.000 claims description 4
- 208000023275 Autoimmune disease Diseases 0.000 claims description 3
- 208000003732 Cat-scratch disease Diseases 0.000 claims description 3
- 208000011231 Crohn disease Diseases 0.000 claims description 3
- 208000007342 Diabetic Nephropathies Diseases 0.000 claims description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 3
- 206010063560 Excessive granulation tissue Diseases 0.000 claims description 3
- 208000010412 Glaucoma Diseases 0.000 claims description 3
- 206010061218 Inflammation Diseases 0.000 claims description 3
- 208000002260 Keloid Diseases 0.000 claims description 3
- 206010023330 Keloid scar Diseases 0.000 claims description 3
- 208000031481 Pathologic Constriction Diseases 0.000 claims description 3
- 201000004681 Psoriasis Diseases 0.000 claims description 3
- 206010038933 Retinopathy of prematurity Diseases 0.000 claims description 3
- 206010038934 Retinopathy proliferative Diseases 0.000 claims description 3
- 208000034841 Thrombotic Microangiopathies Diseases 0.000 claims description 3
- 208000025865 Ulcer Diseases 0.000 claims description 3
- 208000027418 Wounds and injury Diseases 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 208000033679 diabetic kidney disease Diseases 0.000 claims description 3
- 210000001126 granulation tissue Anatomy 0.000 claims description 3
- 201000011066 hemangioma Diseases 0.000 claims description 3
- 208000031209 hemophilic arthropathy Diseases 0.000 claims description 3
- 230000004054 inflammatory process Effects 0.000 claims description 3
- 210000001117 keloid Anatomy 0.000 claims description 3
- 230000003211 malignant effect Effects 0.000 claims description 3
- 201000009925 nephrosclerosis Diseases 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- 230000000306 recurrent effect Effects 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 230000036262 stenosis Effects 0.000 claims description 3
- 208000037804 stenosis Diseases 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 231100000397 ulcer Toxicity 0.000 claims description 3
- 238000005809 transesterification reaction Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 6
- SGPGESCZOCHFCL-UHFFFAOYSA-N Tilisolol hydrochloride Chemical compound [Cl-].C1=CC=C2C(=O)N(C)C=C(OCC(O)C[NH2+]C(C)(C)C)C2=C1 SGPGESCZOCHFCL-UHFFFAOYSA-N 0.000 claims 2
- 229940079593 drug Drugs 0.000 abstract description 10
- 239000003814 drug Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 10
- 230000007541 cellular toxicity Effects 0.000 abstract 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 54
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 24
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 16
- KBTQMAFDKPKMEJ-UYNYGYNWSA-N ascr#1 Chemical compound OC(=O)CCCC[C@@H](C)O[C@@H]1O[C@@H](C)[C@H](O)C[C@H]1O KBTQMAFDKPKMEJ-UYNYGYNWSA-N 0.000 description 15
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- BOQMASYCUFVXCR-LHJKONGQSA-N deoxoartemisinin Chemical compound C([C@@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC[C@@H]4C BOQMASYCUFVXCR-LHJKONGQSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000012267 brine Substances 0.000 description 9
- 235000013601 eggs Nutrition 0.000 description 9
- 238000003818 flash chromatography Methods 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 239000000741 silica gel Substances 0.000 description 9
- 229910002027 silica gel Inorganic materials 0.000 description 9
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 8
- 230000001093 anti-cancer Effects 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- 230000003389 potentiating effect Effects 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 0 *C(C(*)OC12)C3C11*22OC2(*)CCC1NC(*)CC3 Chemical compound *C(C(*)OC12)C3C11*22OC2(*)CCC1NC(*)CC3 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- NGGMYCMLYOUNGM-UHFFFAOYSA-N (-)-fumagillin Natural products O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)C=CC=CC=CC=CC(O)=O)CCC21CO2 NGGMYCMLYOUNGM-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 150000001241 acetals Chemical class 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- NGGMYCMLYOUNGM-CSDLUJIJSA-N fumagillin Chemical compound C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)\C=C\C=C\C=C\C=C\C(O)=O)C[C@@]21CO2 NGGMYCMLYOUNGM-CSDLUJIJSA-N 0.000 description 5
- 229960000936 fumagillin Drugs 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 229960003433 thalidomide Drugs 0.000 description 4
- QMGHHBHPDDAGGO-IIWOMYBWSA-N (2S,4R)-1-[(2S)-2-[[2-[3-[4-[3-[4-[[5-bromo-4-[3-[cyclobutanecarbonyl(methyl)amino]propylamino]pyrimidin-2-yl]amino]phenoxy]propoxy]butoxy]propoxy]acetyl]amino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide Chemical compound CN(CCCNC1=NC(NC2=CC=C(OCCCOCCCCOCCCOCC(=O)N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)NCC3=CC=C(C=C3)C3=C(C)N=CS3)C(C)(C)C)C=C2)=NC=C1Br)C(=O)C1CCC1 QMGHHBHPDDAGGO-IIWOMYBWSA-N 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 3
- 239000004037 angiogenesis inhibitor Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- OSVHLUXLWQLPIY-KBAYOESNSA-N butyl 2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydrobenzo[c]chromen-3-yl]-2-methylpropanoate Chemical compound C(CCC)OC(C(C)(C)C1=CC(=C2[C@H]3[C@H](C(OC2=C1)(C)C)CC[C@H](C3)CO)O)=O OSVHLUXLWQLPIY-KBAYOESNSA-N 0.000 description 3
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- FANCTJAFZSYTIS-IQUVVAJASA-N (1r,3s,5z)-5-[(2e)-2-[(1r,3as,7ar)-7a-methyl-1-[(2r)-4-(phenylsulfonimidoyl)butan-2-yl]-2,3,3a,5,6,7-hexahydro-1h-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol Chemical compound C([C@@H](C)[C@@H]1[C@]2(CCCC(/[C@@H]2CC1)=C\C=C\1C([C@@H](O)C[C@H](O)C/1)=C)C)CS(=N)(=O)C1=CC=CC=C1 FANCTJAFZSYTIS-IQUVVAJASA-N 0.000 description 2
- IZGDXVLRMHXOJV-SFHVURJKSA-N (3s)-4-[2-[2-(4-fluoro-3-methylphenyl)-4-methyl-6-propan-2-ylphenyl]ethyl-hydroxyphosphoryl]-3-hydroxybutanoic acid Chemical compound CC(C)C1=CC(C)=CC(C=2C=C(C)C(F)=CC=2)=C1CCP(O)(=O)C[C@@H](O)CC(O)=O IZGDXVLRMHXOJV-SFHVURJKSA-N 0.000 description 2
- WHQUHTXULUACFD-KRWDZBQOSA-N (3s)-4-[[2-(4-fluoro-3-methylphenyl)-4-methyl-6-propan-2-ylphenyl]methoxy-hydroxyphosphoryl]-3-hydroxybutanoic acid Chemical compound CC(C)C1=CC(C)=CC(C=2C=C(C)C(F)=CC=2)=C1COP(O)(=O)C[C@@H](O)CC(O)=O WHQUHTXULUACFD-KRWDZBQOSA-N 0.000 description 2
- MNIPVWXWSPXERA-IDNZQHFXSA-N (6r,7r)-1-[(4s,5r)-4-acetyloxy-5-methyl-3-methylidene-6-phenylhexyl]-4,7-dihydroxy-6-(11-phenoxyundecanoyloxy)-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylic acid Chemical compound C([C@@H](C)[C@H](OC(C)=O)C(=C)CCC12[C@@H]([C@@H](OC(=O)CCCCCCCCCCOC=3C=CC=CC=3)C(O1)(C(O)=O)C(O)(C(O2)C(O)=O)C(O)=O)O)C1=CC=CC=C1 MNIPVWXWSPXERA-IDNZQHFXSA-N 0.000 description 2
- UEJJHQNACJXSKW-VIFPVBQESA-N (S)-thalidomide Chemical compound O=C1C2=CC=CC=C2C(=O)N1[C@H]1CCC(=O)NC1=O UEJJHQNACJXSKW-VIFPVBQESA-N 0.000 description 2
- QLVGHFBUSGYCCG-UHFFFAOYSA-N 2-amino-n-(1-cyano-2-phenylethyl)acetamide Chemical compound NCC(=O)NC(C#N)CC1=CC=CC=C1 QLVGHFBUSGYCCG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229940126650 Compound 3f Drugs 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- BJDCWCLMFKKGEE-KDTBHNEXSA-N Dihydroartemisinin (DHA) Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2O[C@@H](O)[C@@H]4C BJDCWCLMFKKGEE-KDTBHNEXSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KGPGFQWBCSZGEL-ZDUSSCGKSA-N GSK690693 Chemical compound C=12N(CC)C(C=3C(=NON=3)N)=NC2=C(C#CC(C)(C)O)N=CC=1OC[C@H]1CCCNC1 KGPGFQWBCSZGEL-ZDUSSCGKSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940125648 antineoplastic drug candidate Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 229940125796 compound 3d Drugs 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- MUTCAPXLKRYEPR-ITWZMISCSA-N methyl (e,3r,5s)-7-[4-bromo-2,3-bis(4-fluorophenyl)-5-propan-2-ylpyrrol-1-yl]-3,5-dihydroxyhept-6-enoate Chemical compound COC(=O)C[C@H](O)C[C@H](O)\C=C\N1C(C(C)C)=C(Br)C(C=2C=CC(F)=CC=2)=C1C1=CC=C(F)C=C1 MUTCAPXLKRYEPR-ITWZMISCSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 208000037972 tropical disease Diseases 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- YRMUTQRWVGDUBW-LURJTMIESA-N (5s)-5-hydroxyhexanal Chemical class C[C@H](O)CCCC=O YRMUTQRWVGDUBW-LURJTMIESA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 235000001405 Artemisia annua Nutrition 0.000 description 1
- 240000000011 Artemisia annua Species 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- DPMGIUNDMUDIDP-JGVFFNPUSA-N C[C@@H](CC1)OC[C@@H]1[O](C)=C Chemical compound C[C@@H](CC1)OC[C@@H]1[O](C)=C DPMGIUNDMUDIDP-JGVFFNPUSA-N 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000035327 Oestrogen receptor positive breast cancer Diseases 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 101100395824 Solanum lycopersicum HSC-2 gene Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- BJDCWCLMFKKGEE-ISOSDAIHSA-N artenimol Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2O[C@H](O)[C@@H]4C BJDCWCLMFKKGEE-ISOSDAIHSA-N 0.000 description 1
- 229960002521 artenimol Drugs 0.000 description 1
- KDIFLHQRDPSWHT-IYKVGLELSA-N ascr#2 Chemical compound CC(=O)CC[C@@H](C)O[C@@H]1O[C@@H](C)[C@H](O)C[C@H]1O KDIFLHQRDPSWHT-IYKVGLELSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000035572 chemosensitivity Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHRMWHYJGLIEV-UHFFFAOYSA-N desoxy Chemical group COC1=CC(CCN)=CC(OC)=C1C LLHRMWHYJGLIEV-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 229930016266 dihydroartemisinin Natural products 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 201000007281 estrogen-receptor positive breast cancer Diseases 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000004195 gingiva Anatomy 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 231100000171 higher toxicity Toxicity 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000012750 in vivo screening Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/18—Acyclic radicals, substituted by carbocyclic rings
Definitions
- the present invention relates to a novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof.
- Angiogenesis is a physical process in which new blood vessels are formed from preexisting vessels.
- the blockade of vascular endothelial growth factor results in regression of the disease and prolongation of survival when used for anti-cancer therapy. 1
- Discovery of new antiangiogenic agents based on small molecules is an attractive approach for the treatment of cancer.
- Artemisinin a sesquiterpene endoperoxide isolated from Artemisia annua L 2 , is represented by the following chemical formula:
- Daumone originally isolated from Caenorhabditis elegans, was identified by our laboratory and its total synthesis was presented. 7 Daumone is represented by the following chemical formula:
- the present inventors have made intensive research to develop a novel compound having excellent antiangiogenic and anticancer activity. As a result, the inventors have synthesized various artemisinin or deoxoartemisinin-glycolipid hybrid derivatives which exhibit two or more times stronger activity than that of the existing drugs, thus completed the present invention. Accordingly, it is an object of this invention to provide a novel artemisinin or deoxoartemisinin-glycolipid hybrid derivative.
- Fig. 1 represents the method of synthesizing compound 3i, one of the chemical compounds prepared in Example, by coupling reaction of deoxoartemisinin and glycolipid.
- Fig. 2 represents the chemical structure of the deoxoartemisinin-glycolipid hybrid derivative of the present invention prepared in Example.
- Rg. 3 is an image showing the antiangiogenic activity of artemisinin or deoxoartemisinin-glycolipid hybrid derivatives to the CAM (chick chorioallantoic membrane), (a) an image of control CAM, (b) an image of CAM treated with the artemisinin or deoxoartemisinin-glycolipid hybrid derivative of the present invention at a concentration of 2.5 nmol/egg.
- an artemisinin or deoxoartemisinin-glycolipid hybrid derivative represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 1-3:
- each Ri and R 2 is independently hydrogen, halogen, Ci-C 10 alkyl, Ci-Ci 0 alkenyl, Ci-Cioalkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl;
- each of R 3 -R6 is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Ci- CioalkyI, Q-Cioalkenyl, d-Qoalkynyl, C5-C50 aryl, Q-Ceo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl;
- X and Yare each independently substituted or unsubstituted linear or branched Q-Qo alkylene, or substituted or unsubstituted linear or branched Q-Q 0 alkenylene; and each of m, n and k is independently 0 or 1.
- the present inventors have made intensive research to develop a novel compound having excellent antiangiogenic and anticancer activity. As a result, the inventors have synthesized various artemisinin or deoxoartemisinin-glycolipid hybrid derivatives which exhibit two or more times stronger activity than that of the existing drugs, thus completed the present invention.
- the artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by reacting various artemisinin or deoxoartemisinin derivatives with various glycoprotein derivatives.
- Deoxoartemisinin means a form of artemisinin in which an oxygen connected to a carbon at position 12 by a double bond is missed. If the hybrid of the present invention is synthesized from a deoxoartemisinin, the hybrid gets to have a nonacetal form at the 12 th carbon position.
- One of the distinctive features of the deoxoartemisinin-glycolipid hybrid derivatives is to have a nonacetal form at the 12* carbon position.
- the C-12 nonacetal-type artemisinin- glycolipid hybrids show more excellent antiangiogenic activity than the C-12 acetal-type artemisinin-glycolipid hybrids.
- the substituent indicated as Ri or R 2 which is bound to the oxygen is each independently hydrogen, halogen, Q-Cioalkyl, CrQ 0 alkenyl, Q-Cioalkynyl, QrQo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl; preferably hydrogen, substituted or unsubstituted linear or branched Ci-C 5 alkyl, or benzyl.
- Q-Q 0 alkyl as used herein in conjunction with R group of the Formulas, means linear or branched monovalent saturated hydrocarbon having 1-10 carbon atoms, which includes methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyi, or various isomers thereof, but not limited to.
- Q-Qo alkenyl refers to branched or unbranched unsaturated hydrocarbon having 1-10 carbon atoms and one or more carbon-carbon double bonds. Alkenyl may comprise two or more carbon-carbon double bonds, and the double bonds may be conjugated or nonconjugated with each other.
- Alkenyl includes vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, petadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3- butene)-pentenyl, heptenyl, octenyl, nonenyi, decenyl, or isomers thereof, but not limited to.
- Q-Qo alkynyl refers to randomly substituted ⁇ e.g., substituted one or more) hydrocarbon radical (monovalent hydrocarbon) comprising 1 to 10 carbon atoms and one or more carbon-carbon triple bond.
- Q-Qo aryl refers to wholly or partially substituted or unsubstituted unsaturated monocyclic or polycyclic carbon ring having 6-60 carbon atoms, which satisfies the law of Hiickel.
- Aryl ⁇ e.g., phenyl
- arylalkyl ⁇ e.g. benzyl
- alkyl group which is substituted by one or more aryl groups.
- alkylaryl alkaryl
- alkyl groups aryl group which is substituted by one or more alkyl groups.
- heteroaryl means heterocyclic aromatic group containing heteroatoms such as N, O and S. Heteroaryl may be substituted at various positions by various substituent, for example by halo, hydroxyl, nitro, cyano, substituted or unsubstituted linear or branched Q-Q alkyl, or linear or branched Q-Q alkoxy, but not limited to.
- the substituent indicated as the one of R 3 -Re which is directly bound to the ring carbon is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Q-Q 0 alkyl, Q-Q 0 alkenyl, Q-Q 0 alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl; preferably hydrogen, hydroxyl, alkoxy, carboxyl, or substituted or unsubstituted linear or branched Q-Q alkyl.
- X and Y are each independently substituted or unsubstituted linear or branched Q-Q 0 alkylene, or substituted or unsubstituted linear or branched Q-Q 0 alkenylene; preferably substituted or unsubstituted linear or branched Q-Q 0 alkylene.
- Q-Q 0 alkylene refers to linear or branched divalent alkyl radical having 1-10 carbon atoms, which includes but not limited to methylene, ethylene, iso- propylene, butylene, sec-butylene, pentylene, 1-methyl pentylene, 5-methyl pentylene, hexylene, heptylene, octylene, nonylene, decylene, or isomers theroof.
- Q-Q 0 alkenylene refers to linear or branched divalent unsaturated alkyl radical having 1-10 carbon atoms and one or more carbon-carbon double bonds. Alkenylene may comprise two or more carbon-carbon double bonds, and the double bonds may be conjugated or nonconjugated with each other.
- each of m, n and k is independently 0 or 1.
- the artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by coupling various artemisinin or deoxoartemisinin derivatives with diverse glycolipid derivatives. If the carboxyl acid or ester of the artemisinin or deoxoartemisinin derivative reacts with the hydroxyl or alkoxy of the glycolipid derivative to form the one of the hybrids of the present invention, n is 1.
- n 0.
- the hybrid of the present invention is C-12 acetal-type artemisinin-glycolipid hybrid. If the m is 0 and the k is 1, the hybrid of the present invention is C-12 nonacetal-type artemisinin-glycolipid hybrid. Even though the m is 0, the hybrid of the present invention is C-12 acetal-type artemisinin-glycolipid hybrid if the k and the n are both 0.
- the artemisinin or deoxoartemisinin-glycolipid hybrids of the present invention may comprise 12 or more chiral centers and the various stereoisomers of the hybrids are intended to be included within the scope of the invention.
- artemisinin or deoxoartemisinin-glycolipid hybrid derivative of the present invention may be represented by the one of the following Chemical Formulas 4-12:
- the compounds represented by the chemical formulas 1-12 are novel chemical compounds and exhibit still more excellent antiangiogenic activity than existing drugs.
- each of Ri, R 2 , R' and R" is independently hydrogen, halogen, Q-Qoalkyl, Q- C 10 alkenyl, Ci-C 10 alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyi, or Q-Qo heteroaryl; each of R3-R5 is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Q-
- Cioalkyl Q-Qoalkenyl, Ci-Q 0 alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyi, or Q-Qo heteroaryl;
- X and Yare each independently substituted or unsubstituted linear or branched Ci-Q 0 alkylene, or substituted or unsubstituted linear or branched Q-Ci 0 alkenylene; and each m and k is independently 0 or 1.
- the coupling is earned out by a transesterification reaction.
- the carboxyl acid or ester of the artemisinin or deoxoartemisinin derivative may react with the hydroxyl or alkoxy of the glycolipid derivative to form the one of the hybrids of the present invention, or the hydroxyl or alkoxy of the artemisinin or deoxoartemisinin derivative may react with the carboxyl add or ester of the glycolipid derivative to form the one of the hybrids of the present invention.
- one of the artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by the coupling reaction depicted in Figure 1.
- a pharmaceutical composition for preventing or treating an angiogenic disease comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative; and (b) a pharmaceutically acceptable carrier.
- a method for preventing or treating an angiogenic disease comprising administering to a subject in need thereof a pharmaceutical composition comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative; and (b) a pharmaceutically acceptable carrier.
- pharmaceutically effective amount refers to an amount enough to show and accomplish efficades and activities of the compound of this invention for preventing or treating an angiogenic disease.
- the pharmaceutical composition of this invention comprises a pharmaceutically acceptable carrier besides the active ingredient compound.
- the pharmaceutically acceptable earner contained in the pharmaceutical composition of the present invention which is commonly used in pharmaceutical formulations, but is not limited to, includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, rubber arable, potassium phosphate, arginate, gelatin, potassium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate, and mineral oils.
- the pharmaceutical composition according to the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, and a preservative.
- a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannito
- the pharmaceutical composition of this invention may be administered orally or parenterally.
- parenterally for non-oral administration, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection or transdermal administration may be employed.
- a suitable dose of the pharmaceutical composition of the present invention may vary depending on pharmaceutical formulation methods, administration methods, the patient's age, body weight, sex, severity of diseases, diet, administration time, administration route, an excretion rate and sensitivity for a used pharmaceutical composition. Physicians of ordinary skill in the art can determine an effective amount of the pharmaceutical composition for desired treatment Preferably, the pharmaceutical composition of the present invention is administered with a daily dose of 0.001-1000 mg/kg (body weight).
- the pharmaceutical composition according to the present invention may be formulated with pharmaceutically acceptable carrier and/or vehicle as described above, finally providing several forms including a unit dose form and a multi-dose form.
- the formulations include, but not limited to, a solution, a suspension or an emulsion in oil or aqueous medium, an elixir, a powder, a granule, a tablet and a capsule, and may further comprise a dispersion agent or a stabilizer.
- the pharmaceutical composition is used to prevent or treat an angiogenic disease, for example cancer, hemangiomas, diabetic retinopathy, retinopathy of prematurity, rejection after corneal transplant, angiogenic glaucoma, erythromelanosis follicularis faciei et coli, proliferative retinopathy, psoriasis, hemophilic arthritis, plaque angiogenesis in atherosclerosis, keloid, granulation tissue in wound, blood vessel adhesion, rheumatoid arthritis, osteoarthritis, autoimmune disease, Crohn's disease, recurrent stenosis, atherosclerosis, enteroadhesion, cat scratch disease, ulcer, liver cirrhosis, glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy, rejection after organ transplant, glomerulonephritis, diabetes, or inflammation.
- an angiogenic disease for example cancer,
- the artemisinin or deoxoartemisinin-glycolipid hybrid derivative which is an active ingredient in the pharmaceutical composition of the present invention is preferably represented by the one of trie above Chemical Formulas 7-10, most preferably by the Chemical Formula 10.
- the compound of the Chemical Formula 10 shows no cytotoxicity, even though it has especially strong inhibiting activity to angiogenesis.
- the pharmaceutical composition of the present invention may be used to treat an angiogenic disease including cancer, preferably, breast cancer, lung cancer, or oral cancer, most preferably oral cancer.
- an angiogenic disease including cancer, preferably, breast cancer, lung cancer, or oral cancer, most preferably oral cancer.
- the chemical compound represented by the one of the above Chemical Formulas 7-10 has an excellent antiangiogenic activity so that it can effectively treat breast cancer, lung cancer, or oral cancer.
- NMR spectra were obtained on Bruker AC250 spectrometer using Me4Si as an internal standard and 13 C NMR spectra (100 MHz) were measured on the same instrument.
- the GC-MS and direct mass were operated on an HP 5980 ⁇ GC-HP 5988 and JMS-700 Mstation spectrometer in FAB mode.
- Infrared spectra were taken on a Nicolet Impact 400 spectrometer.
- Anhydrous solvents were either obtained from commercial sources or dried and distilled immediately prior to use under a constant flow of dry nitrogen. All other reagents were used as received from Sigma Adrich, TO, or Hsher.
- fertilized eggs (Pulmuone Co., Kyungki-do, Korea) were incubated at 37 °C with 80-90% relative humidity. At day 3, a window was opened after the removal of 2 ml albumin in the eggs (Rgure 3).
- test samples loaded on a quarter size Thermanox coverslip (Nunc, Roskilde, Denmark) was applied to the CAM of each individual embryo at a concentration of 2.5 nmol/egg. After 2 incubation days, a 20% fat emulsion was injected into the CAM for observation of the inhibition avascular zone. If an avascular zone of about 3-6 mm diameter, as indicated with an arrow in Rgure 4, was observed, then it was considered to represent effective inhibition on neovascularization.
- the results of these experiments are listed in Table 1.
- the standard drugs used for comparison were (-)-fumagillin and (-)-thalidomide. Table 1
- Control 0 0 /10 - 0 inhibition effect Antiangiogenic effect of plus (+) is similar to thalidomide or fumagillin, double plus (++) is stronger and triple plus (+++) is the strongest.
- b Number in parentheses describes eggs in which the embryo died.
- Artemisinin showed a weak inhibitory effect at the given concentration, while glycolipid (daumone) remained stronger than standard drugs. Generally hybrids showed higher antiangiogenic activity than artemisinin and comparable to that of glycolipid (daumone).
- C-12 acetal-type artemisinin-glycolipid hybrids (3a and 3d) exhibited weaker activity than non-acetal type hybrids.
- a benzoyl protected hybrid (3d) with acetal function at C- 12 of artemsinin displayed the weakest inhibitory activity, while a hybrid (3i) with free hydroxy! groups of glycolipid with non-acetal function of artemisinin showed complete (100%) inhibition of angiogenesis.
- terminal olefin of the aliphatic side chain of a compound (3h) that has a good antitumor activity displayed dramatically increased toxicity, and 50 % of tested chicken embryos died at the given concentration.
- hybrid compound (3i) that does not exhibit cytotoxicity has the most potent antiangiogenic activity in this assay.
- the requirement for the presence of the peroxide bond for antiangiogenesis needs to be determined by preparation and in vivo screening of desoxy derivatives of artemisinin .
- hybrids of nonacetal and acetal types of artemisinin and glycolipid were synthesized in one-step reactions and most showed one to two times more potent in vivo antiangiogenic activity than standard drugs.
- hybrids 3f, 3g and 3i showed the most potent antiangiogenic activity, twice as much potency as fumagilin and thalidomide, known as antiangiogenic agents.
- hybrid 3i showed complete inhibition at 2.5 nm/egg with no toxicity.
- Compounds 3a and 3h showed similar activity to that of fumagillin.
- nonacetal 12 ⁇ (C-C)-type derivatives of artemisinin- glycolipid hybrids deserve further evaluation as possible anticancer drug candidates because of their high acid stability, 3 low toxicity and high in wVoantiangiogenesis.
- Example 1 The anticancer activity of the artemisinin or deoxoartemisinin-glycolipid hybrids synthesized in Example 1 was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay according to the previously described procedure (Carmichel, J. et al., Evaluation of a Tetrazolium-based Semiautomated Colorimetric Assay: Assessment of Chemosensitivity testing, Cancer Res., 47:936-42(1987)).
- MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- MDA-MB-231 Korean Cell Line Bank, Seoul, Korea
- metastatic breast cancer cells estrogen receptor-negative
- MCF7 Korean Cell Line Bank, Seoul, Korea: estrogen receptor-positive breast cancer cells
- A549 Korean Cell Line Bank, Seoul, Korea: lung cancer cells
- HSC-2 Japanese Collection of Research Bioresources (JCRB), Japan
- JCRB Japanese Collection of Research Bioresources (JCRB), Japan
- oral squamous carcinoma cells (gingiva origin)
- the artemisinin or deoxoartemisinin-glycolipid hybrids of the present invention were found to have an anticancer activity to the various cancer cells, and showed especially excellent efficacy to oral cancer cell.
- compound 3b also exhibited more excellent anticancer activity to all the cancer cell lines than artemisinin or daumone alone.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to a novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof. The artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention exhibit two or more times stronger activity than the existing drugs and little or no cellular toxicity to address safety to human body.
Description
NOVEL ARTEMISININ OR DEOXOARTEMISININ-GLYCOLIPID HYBRID DERIVATIVES AND ANTIANGIOGENIC USE THEREOF
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
The present invention relates to a novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof.
DESCRIPTION OF THE RELATED ART
Angiogenesis is a physical process in which new blood vessels are formed from preexisting vessels. The blockade of vascular endothelial growth factor results in regression of the disease and prolongation of survival when used for anti-cancer therapy.1 Discovery of new antiangiogenic agents based on small molecules is an attractive approach for the treatment of cancer.
Artemisinin, a sesquiterpene endoperoxide isolated from Artemisia annua L2, is represented by the following chemical formula:
Artemisinin and its derivatives have been reported as potential antitumor agents,3 and also been known to have antiangiogenic activity.4 In a previous report, we described the potent antiangiogenic effects of artemisinin derivatives.5 Non acetal-type derivates at C-12 of artemisinin and their dimers including a fullerene conjugate were synthesized and some of them showed potent in vivo antiangiogenic activity on the chorioallantoic membrane that was higher than or comparable to those of fumagillin and thalidomide.5 Furthermore, novel amide derivatives of a C-12 non acetal deoxoartemisinin trimer were synthesized and showed potent in vivo antiangiogenic activity according to the results of mouse matrigel plug assays.3'1
Recently, some studies have reported the antiangiogenic activity of glycolipids.6
Daumone, originally isolated from Caenorhabditis elegans, was identified by our laboratory and its total synthesis was presented.7 Daumone is represented by the following chemical formula:
In a continuation of the investigation, we studied the anticancer activity of daumone against human cell lines.6 Daumone and tri-deoxyrhamnose derivatives containing amide side chains were the most potent anticancer compounds that we surveyed, with effective concentrations in the nanomolar range, which is comparable to that of doxorubicin.8
Although various antiangiogenic agents have been developed, adverse side effects and limitations associated with antitumor therapies have recently become apparent. Cancer is a complex disease. In order to improve the activity of anticancer agents, treatment using hybrid dnjgs, an approach that incorporates two drugs in a single molecule, has been developed.9 The use of hybrid drugs can impact multiple targets simultaneously. Throughout this application, several patents and publications are referenced and citations are provided in parentheses. The disclosure of these patents and publications is incorporated into this application in order to more fully describe this invention and the state of the art to which this invention pertains. SUMMARY OF THE INVENTION
The present inventors have made intensive research to develop a novel compound having excellent antiangiogenic and anticancer activity. As a result, the inventors have synthesized various artemisinin or deoxoartemisinin-glycolipid hybrid derivatives which exhibit two or more times stronger activity than that of the existing drugs, thus completed the present invention.
Accordingly, it is an object of this invention to provide a novel artemisinin or deoxoartemisinin-glycolipid hybrid derivative.
It is another object of this invention to provide a pharmaceutical composition for preventing or treating an angiogenic disease.
It is still another object of this invention to provide a method for preventing or treating an angiogenic disease.
Other objects and advantages of the present invention will become apparent from the detailed description to follow taken in conjugation with the appended claims and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 represents the method of synthesizing compound 3i, one of the chemical compounds prepared in Example, by coupling reaction of deoxoartemisinin and glycolipid.
Fig. 2 represents the chemical structure of the deoxoartemisinin-glycolipid hybrid derivative of the present invention prepared in Example.
Rg. 3 is an image showing the antiangiogenic activity of artemisinin or deoxoartemisinin-glycolipid hybrid derivatives to the CAM (chick chorioallantoic membrane), (a) an image of control CAM, (b) an image of CAM treated with the artemisinin or deoxoartemisinin-glycolipid hybrid derivative of the present invention at a concentration of 2.5 nmol/egg.
DETAILED DESCRIPTION OF THIS INVETNION
In one aspect of the present invention, there is provided an artemisinin or deoxoartemisinin-glycolipid hybrid derivative represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 1-3:
wherein each Ri and R2 is independently hydrogen, halogen, Ci-C10alkyl, Ci-Ci0alkenyl, Ci-Cioalkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl;
each of R3-R6 is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Ci- CioalkyI, Q-Cioalkenyl, d-Qoalkynyl, C5-C50 aryl, Q-Ceo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl;
X and Yare each independently substituted or unsubstituted linear or branched Q-Qo alkylene, or substituted or unsubstituted linear or branched Q-Q0alkenylene; and
each of m, n and k is independently 0 or 1.
The present inventors have made intensive research to develop a novel compound having excellent antiangiogenic and anticancer activity. As a result, the inventors have synthesized various artemisinin or deoxoartemisinin-glycolipid hybrid derivatives which exhibit two or more times stronger activity than that of the existing drugs, thus completed the present invention.
The artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by reacting various artemisinin or deoxoartemisinin derivatives with various glycoprotein derivatives. Deoxoartemisinin means a form of artemisinin in which an oxygen connected to a carbon at position 12 by a double bond is missed. If the hybrid of the present invention is synthesized from a deoxoartemisinin, the hybrid gets to have a nonacetal form at the 12th carbon position.
One of the distinctive features of the deoxoartemisinin-glycolipid hybrid derivatives is to have a nonacetal form at the 12* carbon position. The C-12 nonacetal-type artemisinin- glycolipid hybrids show more excellent antiangiogenic activity than the C-12 acetal-type artemisinin-glycolipid hybrids.
In the Chemical Formulas 1-3, the substituent indicated as Ri or R2 which is bound to the oxygen is each independently hydrogen, halogen, Q-Cioalkyl, CrQ0 alkenyl, Q-Cioalkynyl, QrQo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl; preferably hydrogen, substituted or unsubstituted linear or branched Ci-C5alkyl, or benzyl.
The term "Q-Q0 alkyl" as used herein in conjunction with R group of the Formulas, means linear or branched monovalent saturated hydrocarbon having 1-10 carbon atoms, which includes methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyi, or various isomers thereof, but not limited to.
The term "Q-Qo alkenyl" as used herein refers to branched or unbranched unsaturated hydrocarbon having 1-10 carbon atoms and one or more carbon-carbon double bonds. Alkenyl may comprise two or more carbon-carbon double bonds, and the double bonds may be conjugated or nonconjugated with each other. Alkenyl includes vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, petadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-
butene)-pentenyl, heptenyl, octenyl, nonenyi, decenyl, or isomers thereof, but not limited to.
The term "Q-Qo alkynyl" as used herein refers to randomly substituted {e.g., substituted one or more) hydrocarbon radical (monovalent hydrocarbon) comprising 1 to 10 carbon atoms and one or more carbon-carbon triple bond.
The term "Q-Qo aryl" as used herein refers to wholly or partially substituted or unsubstituted unsaturated monocyclic or polycyclic carbon ring having 6-60 carbon atoms, which satisfies the law of Hiickel. Aryl {e.g., phenyl) may be substituted at various positions by various substituent* for example by halo, hydroxy!, nitro, cyano, substituted or unsubstituted linear or branched Q-Q alkyl, or linear or branched Q-Q alkoxy, but not limited to.
The term "arylalkyl {e.g. benzyl)" means alkyl group which is substituted by one or more aryl groups. The term "alkylaryl (alkaryl)" means aryl group which is substituted by one or more alkyl groups.
The term "heteroaryl" means heterocyclic aromatic group containing heteroatoms such as N, O and S. Heteroaryl may be substituted at various positions by various substituent, for example by halo, hydroxyl, nitro, cyano, substituted or unsubstituted linear or branched Q-Q alkyl, or linear or branched Q-Q alkoxy, but not limited to.
In the Chemical Formulas 1-3, the substituent indicated as the one of R3-Re which is directly bound to the ring carbon is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Q-Q0 alkyl, Q-Q0 alkenyl, Q-Q0 alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl; preferably hydrogen, hydroxyl, alkoxy, carboxyl, or substituted or unsubstituted linear or branched Q-Q alkyl.
In the Chemical Formulas 1-3, X and Y are each independently substituted or unsubstituted linear or branched Q-Q0 alkylene, or substituted or unsubstituted linear or branched Q-Q0alkenylene; preferably substituted or unsubstituted linear or branched Q-Q0 alkylene.
The term "Q-Q0 alkylene" as used herein refers to linear or branched divalent alkyl radical having 1-10 carbon atoms, which includes but not limited to methylene, ethylene, iso- propylene, butylene, sec-butylene, pentylene, 1-methyl pentylene, 5-methyl pentylene, hexylene, heptylene, octylene, nonylene, decylene, or isomers theroof.
The term "Q-Q0 alkenylene" refers to linear or branched divalent unsaturated alkyl
radical having 1-10 carbon atoms and one or more carbon-carbon double bonds. Alkenylene may comprise two or more carbon-carbon double bonds, and the double bonds may be conjugated or nonconjugated with each other.
In the Chemical Formulas 1-3, each of m, n and k is independently 0 or 1. The artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by coupling various artemisinin or deoxoartemisinin derivatives with diverse glycolipid derivatives. If the carboxyl acid or ester of the artemisinin or deoxoartemisinin derivative reacts with the hydroxyl or alkoxy of the glycolipid derivative to form the one of the hybrids of the present invention, n is 1. On the other hand, if the hydroxyl or alkoxy of the artemisinin or deoxoartemisinin derivative reacts with the carboxyl acid or ester of the glycolipid derivative to form the one of the hybrids of the present invention, n is 0.
If the m is 1 in the Chemical Formulas 1-3, the hybrid of the present invention is C-12 acetal-type artemisinin-glycolipid hybrid. If the m is 0 and the k is 1, the hybrid of the present invention is C-12 nonacetal-type artemisinin-glycolipid hybrid. Even though the m is 0, the hybrid of the present invention is C-12 acetal-type artemisinin-glycolipid hybrid if the k and the n are both 0.
The artemisinin or deoxoartemisinin-glycolipid hybrids of the present invention may comprise 12 or more chiral centers and the various stereoisomers of the hybrids are intended to be included within the scope of the invention.
In an preferred embodiment, the artemisinin or deoxoartemisinin-glycolipid hybrid derivative of the present invention may be represented by the one of the following Chemical Formulas 4-12:
The compounds represented by the chemical formulas 1-12 are novel chemical compounds and exhibit still more excellent antiangiogenic activity than existing drugs.
In another aspect of the present invention, there is provided a method of synthesizing the artemisinin or deoxoartemisinin-glycolipid hybrid derivative of claim 1 or 2, which comprises: coupling the compound of the following Chemical Formula 13 with the compound of the following Chemical Formula 14; or coupling the compound of the following Chemical Formula 15 with the compound of the following Chemical Formula 16:
5)
wherein each of Ri, R2, R' and R" is independently hydrogen, halogen, Q-Qoalkyl, Q- C10alkenyl, Ci-C10alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyi, or Q-Qo heteroaryl; each of R3-R5 is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Q-
Cioalkyl, Q-Qoalkenyl, Ci-Q0alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyi, or Q-Qo heteroaryl;
X and Yare each independently substituted or unsubstituted linear or branched Ci-Q0 alkylene, or substituted or unsubstituted linear or branched Q-Ci0alkenylene; and
each m and k is independently 0 or 1.
In an preferred embodiment, the coupling is earned out by a transesterification reaction. The carboxyl acid or ester of the artemisinin or deoxoartemisinin derivative may react with the hydroxyl or alkoxy of the glycolipid derivative to form the one of the hybrids of the present invention, or the hydroxyl or alkoxy of the artemisinin or deoxoartemisinin derivative may react with the carboxyl add or ester of the glycolipid derivative to form the one of the hybrids of the present invention. For example, one of the artemisinin or deoxoartemisinin-glycolipid hybrid derivatives of the present invention may be synthesized by the coupling reaction depicted in Figure 1.
In still another aspect of the present invention, there is provided a pharmaceutical composition for preventing or treating an angiogenic disease comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative; and (b) a pharmaceutically acceptable carrier.
In a further aspect of the present invention, there is provided a method for preventing or treating an angiogenic disease, comprising administering to a subject in need thereof a pharmaceutical composition comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative; and (b) a pharmaceutically acceptable carrier.
The term "pharmaceutically effective amount" refers to an amount enough to show and accomplish efficades and activities of the compound of this invention for preventing or treating an angiogenic disease. The pharmaceutical composition of this invention comprises a pharmaceutically acceptable carrier besides the active ingredient compound.
The pharmaceutically acceptable earner contained in the pharmaceutical composition of the present invention, which is commonly used in pharmaceutical formulations, but is not limited to, includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, rubber arable, potassium phosphate, arginate, gelatin, potassium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate, and mineral oils. The pharmaceutical
composition according to the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, and a preservative. Details of suitable pharmaceutically acceptable earners and formulations can be found in Remingtons' Pharmaceutical Sciences (19th ed., 1995), which is incorporated herein by reference.
The pharmaceutical composition of this invention may be administered orally or parenterally. For non-oral administration, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection or transdermal administration may be employed.
A suitable dose of the pharmaceutical composition of the present invention may vary depending on pharmaceutical formulation methods, administration methods, the patient's age, body weight, sex, severity of diseases, diet, administration time, administration route, an excretion rate and sensitivity for a used pharmaceutical composition. Physicians of ordinary skill in the art can determine an effective amount of the pharmaceutical composition for desired treatment Preferably, the pharmaceutical composition of the present invention is administered with a daily dose of 0.001-1000 mg/kg (body weight).
According to the conventional techniques known to those skilled in the art, the pharmaceutical composition according to the present invention may be formulated with pharmaceutically acceptable carrier and/or vehicle as described above, finally providing several forms including a unit dose form and a multi-dose form. Non-limiting examples of the formulations include, but not limited to, a solution, a suspension or an emulsion in oil or aqueous medium, an elixir, a powder, a granule, a tablet and a capsule, and may further comprise a dispersion agent or a stabilizer.
According to a preferred embodiment, the pharmaceutical composition is used to prevent or treat an angiogenic disease, for example cancer, hemangiomas, diabetic retinopathy, retinopathy of prematurity, rejection after corneal transplant, angiogenic glaucoma, erythromelanosis follicularis faciei et coli, proliferative retinopathy, psoriasis, hemophilic arthritis, plaque angiogenesis in atherosclerosis, keloid, granulation tissue in wound, blood vessel adhesion, rheumatoid arthritis, osteoarthritis, autoimmune disease, Crohn's disease, recurrent stenosis, atherosclerosis, enteroadhesion, cat scratch disease, ulcer, liver cirrhosis, glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic
microangiopathy, rejection after organ transplant, glomerulonephritis, diabetes, or inflammation.
The artemisinin or deoxoartemisinin-glycolipid hybrid derivative which is an active ingredient in the pharmaceutical composition of the present invention is preferably represented by the one of trie above Chemical Formulas 7-10, most preferably by the Chemical Formula 10. The compound of the Chemical Formula 10 shows no cytotoxicity, even though it has especially strong inhibiting activity to angiogenesis.
The pharmaceutical composition of the present invention may be used to treat an angiogenic disease including cancer, preferably, breast cancer, lung cancer, or oral cancer, most preferably oral cancer. The chemical compound represented by the one of the above Chemical Formulas 7-10 has an excellent antiangiogenic activity so that it can effectively treat breast cancer, lung cancer, or oral cancer.
The present invention will now be described in further detail by examples. It would be obvious to those skilled in the art that these examples are intended to be more concretely illustrative and the scope of the present invention as set forth in the appended claims is not limited to or by the examples.
EXAMPLES
Example 1: Preparation of Artemisinin or Deoxoartemisinin-glycolipid Hybrid Derivatives
The various derivatives of Artemisinin (dihydroartemisinin (la), hydroxyethyl deoxoartemisinin (lb), hydroxypropyl deoxoartemisinin (lc), and carboxymethyl deoxoartemisinin (Id)) were prepared according to the previously-described procedures.10 Glycolipid (daumone) and its derivatives (dibenzoyl daumone (2a) and daumone alcohol (2b)) were synthesized according to the previously-reported procedures.7,8 Then, a short series of artemisinin-glycolipid hybrids (3a-3k) covalently linked were prepared by efficient coupling reactions and their structures were confirmed by spectral analysis as follows: 1. Preparation of Compound 3a
A stirred solution of dihydroartemisinin (DHA) (20.6 mg, 0.072 mmol), EDC (139.0 mg, 0.72 mmol, Sigma Aldrich, Korea) and DMAP (88.0 mg, 0.72 mmol, Sigma Aldrich, Korea) in DMF (2 ml) was combined with daumone 2 (20.0 mg, 0.072 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC03 (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3a (28.8 mg, 0.053 mmol, 733 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, NMR spectra were obtained on Bruker AC250 spectrometer using Me4Si as an internal standard and 13C NMR spectra (100 MHz) were measured on the same instrument. The GC-MS and direct mass were operated on an HP 5980Π GC-HP 5988 and JMS-700 Mstation spectrometer in FAB mode. Infrared spectra were taken on a Nicolet Impact 400 spectrometer. Anhydrous solvents were either obtained from commercial sources or dried and distilled immediately prior to use under a constant flow of dry nitrogen. All other reagents were used as received from Sigma Adrich, TO, or Hsher.
The spectra data obtained were as follows:
*H NMR (250 MHz, CDCI3) δ ppm 0.84 (d, J=6.95 Hz, 3H), 0.96 (d, 5.69 Hz, 3H), 1.12 (d, J=6.00 Hz, 3H), 1.28 (d, J=6.00 Hz, 3H), 1.43 (s, 3H), 1.48-1.95 (m, 17H), 1.98-2.14 (m, 1H), 2.30-2.38 (m, 1H), 2.42 (dd, J=7.58 Hz, 2H), 2.50-2.64 (m, 1H), 3.53-3.86 (m, 4H), 4.70 (s, 1H), 5.44 (s, 1H), 5.76 (s, 0.5H), 5.80 (s, 0.5H). 13C NMR (63 MHz, CDCI3) δ ppm 12.10, 17.70, 18.85, 20.19, 21.03, 21.96, 24.57, 25.06, 25.92, 31.77, 34.07, 34.16, 35.21, 36.20, 36.69, 37.22, 45.22, 51.55, 68.07, 69.28, 69.86, 70.92, 80.12, 91.47, 91.78, 95.80, 104.44, 172.54. IR (KBr, cm 1) v max 3431, 2928, 2878, 2361, 2337, 1747, 1455, 1376, 1234, 1203, 1131, 1098, 1031; HRMS (FAB) calcd for [M + Na]+ m/z 565.2989, found 565.2970.
2. Preparation of Compound 3b
A stirred solution of hydroxyethyldeoxoartemisinin (22.6 mg, 0.072 mmol), EDC (139.0 mg, 0.72 mmol) and DMAP (88.0 mg, 0.72 mmol) in DMF (2 ml) was combined with daumone (20.0 mg, 0.072 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC(¾ (5 ml) and brine (5 ml). The organic layer was dried over gS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3b (24.4 mg, 0.043 mmol, 59.1 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
*H NMR (250 MHz, CDCI3) . ppm 0.87 (d, J=7.27 Hz, 3H), 0.96 (d, J=4.74 Hz, 3H),
1.12 (d, 6.00 Hz, 3H), 1.28 (d, J=5.69 Hz, 3H), 1.41 (s, 3H), 1.53-2.15 (m, 19H), 2.24-2.42 (m, 3H), 2.58-2.79 (m, 1H), 3.49-3.92 (m, 4H), 4.06-4.38 (m, 3H), 4.70 (s, 1H), 5.30 (s, 1H). 13C NMR (63 MHz, CDCI3) . ppm 12.91, 17.70, 18.90, 20.16, 24.70, 24.77, 24.89, 25.19, 26.05, 29.69, 34.00, 34.26, 34.43, 35.21, 36.53, 36.76, 37.47, 44.26, 52.30, 62.46, 68.11, 69.34, 69.88, 70.97, 71.76, 81.06, 88.96, 95.82, 103.23, 173.78. IR (KBr, cm"1) v max 3450, 2928, 2878, 2361, 2337, 1734, 1455, 1376, 1130, 1100, 1044.: HRMS (FAB) calcd for CaoHsAo [M]+ /77/Z593.3302, found 593.3382.
A stirred solution of hydroxypropyldeoxoartemisinin (23.6 mg, 0.072 mmol), EDC (139.0 mg, 0.72 mmol) and DMAP (88.0 mg, 0.72 mmol) in DMF (2 ml) was combined with daumone (20.0 mg, 0.072 mmol) at room temperature during 12 hours. Trie reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC03 (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3c (10.0 mg, 0.017 mmol, 23.6 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
*H NMR (250 MHz, CDCI3) 5 ppm 0.86 (d, 7.27 Hz, 3H), 0.96 (d, J=5.37 Hz, 3H), 1.13 (d, J=6.00 Hz, 3H), 1.28 (d, J=6.00 Hz, 3H), 1.42 (s, 3H), 1.55-2.17 (m, 25H), 2.24-2.41 (m, 3H), 2.60-2.74 (m, 1H) 3.48-3.88 (m, 4H), 4.11 (t, 6.32 Hz, 2H), 4.16 29 (m, 1H), 4.71 (s, 1H), 5.30 (s, 1H). ¾ NMR (63 MHz, CDCI3) 5 ppm 12.87, 17.72, 18.90, 20.16, 24.73, 24.91, 24.97, 25.20, 25.98, 26.68, 30.28, 31.21, 34.27, 34.43, 35.21, 36.57, 36.78, 37.48, 44.25, 52.26, 62.76, 68.07, 69.32, 69.85, 70.89, 74.74, 81.12, 89.15, 95.78, 103.14, 173.88.: IR (KBr, cm 1) v max 3440, 2928, 2873, 2364, 2342, 1732, 1455, 1376, 1175, 1138, 1102, 1043. : HRMS (FAB) calcd for
[M + Na]+ m/z 607.3458, found 607.3436.
A stirred solution of D dihydroartemisinin (DHA) (11.2 mg, 0.039 mmol), EDC (75.0 mg, 0.39 mmol) and DMAP (47.9 mg, 0.39 mmol) in DMF (2 ml) was combined with dibenzoyl daumone (19.0 mg, 0.039 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured dtric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC03 (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3d (18.4 mg, 0.025 mmol, 62.5 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
*H NMR (250 MHz, CDCI3) 5 ppm 0.84 (d, J=7.27 Hz, 3H), 0.96 (d, J=6.00 Hz, 3H), 1.19 (d, J=6.00 Hz, 3H), 1.29 (d, 6.00 Hz, 3H), 1.43 (s, 3H), 1.48-2.70 (m, 17H), 3.82-3.91 (m, 1H), 3.92 (m, 1H), 4.13^.07 (m, 2H), 4.95 (s, 1H), 5.40 (s, 1H), 5.78 (s, 0.5H), 5,82 (s, 0.5H), 7.40-7.55 (m, 4H), 7.59 (t, 7.27 Hz, 2H), 8.01-8.16 (m, 4H). 13C NMR (63 MHz, CDCI3) 8 ppm 12.12, 17.88, 19.06, 20.16, 21.93, 24.55, 24.65, 25.19, 25.93, 29.69, 31.78, 34.04, 34.26, 36.20, 36.77, 37.18, 45.20, 51.53, 66.97, 70.66, 71.20, 72.28, 80.08, 91.45, 91.70, 93.69, 104.39, 128.40, 128.44, 129.53, 129.64, 129.83, 129.99, 133.14, 133.18, 165.65, 165.74, 172.28. IR (KBr, cm"1) v max 2930, 2873, 2364, 2337, 1721, 1451, 1368, 1310, 1266, 1107, 1025. : HRMS (FAB) calcd for
[M + Na]+ m/z 773.3513, found 773.3510 .
5. Preparation of Compound 3e
A stirred solution of hydroxyemyldeoxoartemisinin (11.0 mg, 0.035 mmol), EDC (67.3 mg, 0.35 mmol) and D AP (42.9 mg, 0.35 mmol) in DMF (2 ml) was combined with dibenzoyl daumone (17.0 mg, 0.035 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC03 (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3e (14.0 mg, 0.018 mmol, 51.2 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
*H NMR (250 MHz, CDCI3) 5 ppm 0.86 (d, J=721 Hz, 3H), 0.95 (d, J=5.37 Hz, 3H), 1.19 (d, =6.00 Hz, 3H), 1.28 (d, J=6.32 Hz, 3H), 1.40 (s, 3H), 1.52-2.30 (m, 20H), 2.24-2.58 (m, 3H), 2.58-2.82 (m, 1H), 3.78-3.95 (m, 1H), 4.04-4.17 (m, 1H), 4.17-4.46 (m, 3H), 4.95 (s, 1H), 5.08-5.25 (m, 2H), 5.30 (s, 1H), 7.47 (t, J=7.42 Hz, 4H), 7.59 (t, J=7.27 Hz, 2H), 8.09 (dd, 14.06, 7.42 Hz, 4H).: IR (KBr, cm"1) v max 2934, 2873, 2360, 2342, 1722, 1452, 1381, 1310, 1267, 1175, 1104, 1068, 1025. : HRMS (FAB) calcd for CwHsjNaC [M + Na]+ m/z 801.3826, found 801.3862.
6. Preparation of Compound 3f
A stirred solution of hydroxyprapyldeoxoartemisinin (11.5 mg, 0.035 mmol), EDC (67.3 mg, 0.35 mmol) and DMAP (42.9 mg, 0.35 mmol) in DMF (2 ml) was combined with dibenzoyi daumone (17.0 mg, 0.035 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC(¾ (5 ml) and brine (5 ml). The organic layer was dried over gS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3f (13.4 mg, 0.017 mmol, 48.2 % yield).
To confirm the chemical structure of the artemisinin-glycolipid hybrid synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
*H NMR (250 MHz, CDCI3) . ppm 0.85 (d, 7.58 Hz, 3H), 0.94 (d, J=5.05 Hz, 3H), 1.20 (d, J=6.32 Hz, 3H), 1.26 (d, J=4.42 Hz, 3H), 1.41 (s, 3H), 1.44-2.34 (m, 22H), 2.34-2.56 (m, 3H), 2.65 (dd, J= 13.58, 6.63 Hz, 1H), 3.79-3.93 (m, 1H), 4.04-4.26 (m, 4H), 4.95 (s, 1H), 5.10-5.26 (m, 2H), 5.29 (s, 1H), 7.47 (t, J=7.27 Hz, 4H), 7.59 (t, J=7.11 Hz, 2H), 8.09 (dd, _ = 14.22, 7.27 Hz, 4H).: IR (KBr, cm"1) v max 2929, 2864, 2355, 2337, 1722, 1451, 1377, 1310, 1266, 1176, 1151, 1106, 1068, 1025. : HRMS (FAB) calcd for QjHeoNaOjz [M + Na]+ mjz 815.3982, found 815.3953.
(3g) (3h)
A stirred solution of cartxjxymethyldeoxoarternisinin (15.0 mg, 0.046 mmol), EDC (88.0 mg, 0.46 mmol) and DMAP (56.1 mg, 0.46 mmol) in DMF (2 ml) was combined with olefinic daumone (15.0 mg, 0.046 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC(¾ (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (1:1 v/v) as eluant to give compound 3g (2.0 mg, 0.004 mmol, 7.7 % yield) and Compound 3h (4.1 mg, 0.007 mmol, 15.7 % yield).
To confirm the chemical structures of the artemisinin-glycolipid hybrids synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
Compound 3g. JH NMR (250 MHz, CDCI3) . ppm 0.87 (d, J=7.58 Hz, 3H,) 0.97 (d,
J=5.69 Hz, 3H), 1.11 (d, J=6.00 Hz, 3H), 1.16-1.27 (m, 4H), 1.28 (d, 5.69 Hz, 3H), 1.41 (s, 3H), 1.49-2.23 (m, 17H), 2.25-2.49 (m, 2H), 2.61-2.83 (m, 1H), 3.58-3.85 (m, 3H), 3.63-3.71 (m, 1H), 4.70-4.82 (m, 1H), 4.73 (s, 1H), 4.91 (br. s., 1H), 4.94 (d, J= 10.19 Hz, 1H), 5.00 (d, J= 16.98 Hz, 1H), 5.34 (s, 1H), 5.70-5.93 (tdd, J= 16.98, 10.19, 6.63, 6.63 Hz, 1H). IR (KBr, cm"1) v max 2924, 2851, 2369, 2337, 1734, 1456, 1368.: HRMS (FAB) calcd for C30H5A0 [M + H]+ 77/Z567.9899, found 567.9833
Compound 3h: JH NMR (250 MHz, CDd3) . ppm 0.87 (d, J=7.58 Hz, 3H), 0,96 (d, J=5.37, 3H), 1.07-1.24 (m, 4H), 1.12 (d, J=6.32 Hz, 3H), 1.21 (d, J=6.00 Hz, 3H), 1.40 (s, 3H), 1.48-2.23 (m, 17H), 2.24-2.56 (m, 2H), 2.60-2.84 (m, 2H), 3.72-3.85 (m, 2H), 3.89 (m, 1H), 4.67-4.82 (m, 1H), 4.71 (s, 1H), 4.83-4.92 (m, 1H), 4.95 (d, J= 10.23 Hz, 1H), 5.00 (d,
J= 16.94 Hz, IH), 5.32 (s, IH), 5.82 (tdd, J= 16.94, 10.23, 6.79, 6.79 Hz, IH).: IR (KBr, cm"1) v max 3473, 2927, 2873, 2360, 2342, 1736, 1463, 1373, 1202, 1130, 1103, 1039.: HRMS (FAB) calcd for C3iH5oNa09 [M + Na]+ m/z 589.3353., found 589.3377. 8. Preparation of Compounds 3i and 3j
(3i) (3j)
A stirred solution of carboxymethyldeoxoartemisinin (24.8 mg, 0.076 mmol), EDC (146.0 mg, 0.76 mmol) and DMAP (93.0 mg, 0.76 mmol) in DMF (2 ml) was combined with daumone alcohol (24.8 mg, 0.076 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC(¾ (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3i (13.0 mg, 0.023 mmol, 29.9 % yield) and compound 3j (2.9 mg, 0.005 mmol, 6.7 % yield).
To confirm the chemical structures of the artemisinin-glycolipid hybrids synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
Compound 3i: *H NMR (250 MHz, CDCL3) . ppm 0.87 (d, J=7.58 Hz, 3H), 0.96 (d, J=5.37 Hz, 3H), 1.11 (d, 4.42 Hz, 3H), 1.27 (d, J=6.46 Hz, 3H), 1.42 (s, 3H), 1.55-2.57 (m, 21H), 2.57-2.83 (m, 2H), 3.59-3.95 (m, 4H), 4.06^.20 (m, J=5.37 Hz, 3H), 4.67^.84 (m, IH), 4.84-4.98 (m, IH), 5.32 (s, IH). IR (KBr, cm 1) v max 3497, 2927, 2873, 1736, 1452, 1376, 1315, 1234, 1268, 1176, 1105, 1054, 1014.: HRMS (FAB) calcd for QoHs o [M + Na]+ m/z570.3404, found 570.3430
Compound 3j: *H NMR (400 MHz, CDCI3) . ppm 0.87 (d, J=7.52 Hz, 3H), 0.97 (d,
J=5.78, 3H), 1.04-1.55 (m, 8H), 1.12 (d, 5.91 Hz, 3H), 1.27 (d, 6.42 Hz, 3H), 1.40 (s,
3H), 1.73-2.39 (m, 13H), 2.39-2.58 (m, IH), 2.58-2.83 (m, 2H), 3.61-3.72 (m, 3H), 3.73-3.95 (m, 2H), 4.66-4.81 (m, 2H), 4.89 (s, IH), 5.32 (s, IH). IR (KBr, cm"1) v max 3423, 2929, 2859, 2360, 2341, 1720, 1453, 1376, 1316, 1267, 1178, 1105, 1047, 1017.: HRMS (FAB) calcd for C30H50O10 [M + Na]+ 77/Z570.3404, found 570.3423.
9. Preparation of Compound 3k
A stirred solution of carboxymethyldeoxoartemisinin (13.9 mg, 0.043 mmol), EDC (81.0 mg, 0.43 mmol) and DMAP (51.9 mg, 0.43 mmol) in DMF (2 ml) was combined with dibenzoyldaumone aldehyde (20.0 mg, 0.043 mmol) at room temperature during 12 hours. The reaction mixture was quenched with slow addition of satured citric acid (2 ml), extracted with ethyl acetate (3x5 ml) and washed with NaHC(¾ (5 ml) and brine (5 ml). The organic layer was dried over MgS04, filtered and concentrated in vacuo. The mixture was purified by flash column chromatography on silica gel with ethyl acetate as eluant to give compound 3k (9.8 mg, 0.013 mmol, 29.6 % yield).
To confirm the chemical structures of the artemisinin-glycolipid hybrids synthesized, the spectra data were obtained in the same manner as described above, and the resulting data were as follows:
H NMR (250 MHz, CDCI3) . ppm 0.86 (d, J=7.58 Hz, 3Η), 0.96 (d, 3.48 Hz, 3Η), 1.20 (d, J=6.00 Hz, 3H), 1.29 (d, 6.32 Hz, 3H), 1.41 (s, 3H), 1.48-2.35 (m, 20H), 2.36-2.57 (m, 2H), 2.57-2.86 (m, 2H), 3.78-3.96 (m, IH), 4.02-4.24 (m, 3H), 4.74-4.89 (m, IH), 4.95 (s, IH), 5.10-5.27 (m, 2H), 5.32 (s, IH), 7.47 (t, J=7.27 Hz, 4H), 7.59 (t, J=6.79 Hz, 2H), 8.08 (dd, J=16.27, 7.11 Hz, 4H). 13C NMR (63 MHz, CDCI3) . ppm 13.02, 17.89, 19.17, 20.13, 24.65, 24.70, 25.43, 25.95, 25.98, 28.66, 29.73, 34.42, 36.04, 36.51, 37.01, 37.45, 44.23, 52.26, 67.02, 70.66, 71.27, 71.43, 71.62, 72.63, 80.84, 89.05, 89.14, 93.82, 103.21, 128.43, 129.62, 129.85, 129.88, 130.01, 133.15, 133.21, 165.67, 165.78, 171.66.: . IR (KBr, cm 1) v max 3062, 2936, 2859, 1601, 1452, 1376, 1315, 1267, 1177, 1151, 1106, 1068, 1025.: HRMS (FAB) calcd
for CMHssNaOtf [M + Na]+ /77/z801.3826, found 801.3801
Example 2: Evaluation of Antiangiogenic Activity
The in vivo antiangiogenic activity of the various hybrid compounds was evaluated using the CAM (chick chorioallantoic membrane) vessel development assay as previously described.5,11
Briefly, fertilized eggs (Pulmuone Co., Kyungki-do, Korea) were incubated at 37 °C with 80-90% relative humidity. At day 3, a window was opened after the removal of 2 ml albumin in the eggs (Rgure 3).
At day 5 of incubation, test samples loaded on a quarter size Thermanox coverslip (Nunc, Roskilde, Denmark) was applied to the CAM of each individual embryo at a concentration of 2.5 nmol/egg. After 2 incubation days, a 20% fat emulsion was injected into the CAM for observation of the inhibition avascular zone. If an avascular zone of about 3-6 mm diameter, as indicated with an arrow in Rgure 4, was observed, then it was considered to represent effective inhibition on neovascularization. The results of these experiments are listed in Table 1. The standard drugs used for comparison were (-)-fumagillin and (-)-thalidomide. Table 1
ion Inhibition
Compounds Positive eggs Inhibit
/ eggs tested effect' (%)
Artemisinin 3 /10 - 30
Daumone 7/10 ++ 70
3a 5 /10 (l)b + 50
3b 6/10 (2) + 60
3c 6/10 (2) + 60
3d 1 /10 (2) - 10
3e 6 /10 (2) + 60
3f 8 /10 +++ 80
3g 7 /10 (2) ++ 70
3h 5 /10 (5) Low toxic 50
3i 10 /10 +++ 100
3j 5 /10 + 50
3k 5 /10 (2) + 50
(-)- Fumagillin 4 /10 (1) - 40
(-)- Thalidomide 4/10 (4) Low toxic 40
Control0 0 /10 - 0
inhibition effect; Antiangiogenic effect of plus (+) is similar to thalidomide or fumagillin, double plus (++) is stronger and triple plus (+++) is the strongest. bNumber in parentheses describes eggs in which the embryo died. ccontrol; solvent only (chloroform) to embryo. As shown in Table 1, it is interesting to note that most hybrids exhibited twice the antiangiogenic activity at a concentration of 2.5 nmol/egg than that of fumagilin or thalidomide as the standard drug.
Artemisinin showed a weak inhibitory effect at the given concentration, while glycolipid (daumone) remained stronger than standard drugs. Generally hybrids showed higher antiangiogenic activity than artemisinin and comparable to that of glycolipid (daumone).
However, C-12 acetal-type artemisinin-glycolipid hybrids (3a and 3d) exhibited weaker activity than non-acetal type hybrids. A benzoyl protected hybrid (3d) with acetal function at C- 12 of artemsinin displayed the weakest inhibitory activity, while a hybrid (3i) with free hydroxy! groups of glycolipid with non-acetal function of artemisinin showed complete (100%) inhibition of angiogenesis.
Interestingly, terminal olefin of the aliphatic side chain of a compound (3h) that has a good antitumor activity displayed dramatically increased toxicity, and 50 % of tested chicken embryos died at the given concentration.
The regioisomers (3h, 3j) showed only comparable antiangiogenic activity, thus suggesting the coupling position of the C-12 side function of artemisinin should link with the terminal carboxylic acids of glycolipids.
It is noteworthy that the hybrid compound (3i) that does not exhibit cytotoxicity has the most potent antiangiogenic activity in this assay. The requirement for the presence of the peroxide bond for antiangiogenesis needs to be determined by preparation and in vivo screening of desoxy derivatives of artemisinin .
In summary, hybrids of nonacetal and acetal types of artemisinin and glycolipid were synthesized in one-step reactions and most showed one to two times more potent in vivo antiangiogenic activity than standard drugs. Among the 11 synthetic compounds tested, hybrids 3f, 3g and 3i showed the most potent antiangiogenic activity, twice as much potency as fumagilin and thalidomide, known as antiangiogenic agents. In particular, hybrid 3i showed
complete inhibition at 2.5 nm/egg with no toxicity. Compounds 3a and 3h showed similar activity to that of fumagillin. Evidence that acetal-type analogs at C-12 of artemisinin are more neurotoxic in animal studies than non acetal-type analogs is also emerging,12 and may thus lead to the future abandonment of the currently clinically used acetal-type potential anticancer drug candidates. Therefore, nonacetal 12β (C-C)-type derivatives of artemisinin- glycolipid hybrids deserve further evaluation as possible anticancer drug candidates because of their high acid stability,3 low toxicity and high in wVoantiangiogenesis.
Example 3: Evaluation of Anticancer Activity
The anticancer activity of the artemisinin or deoxoartemisinin-glycolipid hybrids synthesized in Example 1 was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay according to the previously described procedure (Carmichel, J. et al., Evaluation of a Tetrazolium-based Semiautomated Colorimetric Assay: Assessment of Chemosensitivity testing, Cancer Res., 47:936-42(1987)).
The in vitro cytotoxicity (I o) of the artemisinin or deoxoartemisinin-glycolipid hybrid derivatives to cancer cell was measured and the results are represented in Table 2.
Table 2
MDA-MB-231 (Korean Cell Line Bank, Seoul, Korea): metastatic breast cancer cells (estrogen receptor-negative)
MCF7 (Korean Cell Line Bank, Seoul, Korea): estrogen receptor-positive breast cancer cells
A549 (Korean Cell Line Bank, Seoul, Korea): lung cancer cells
HSC-2 (Japanese Collection of Research Bioresources (JCRB), Japan): oral squamous carcinoma cells (gingiva origin)
Ca.9.22 (Japanese Collection of Research Bioresources (JCRB), Japan): oral squamous carcinoma cell (mouth origin)
As shown in Table 2, the artemisinin or deoxoartemisinin-glycolipid hybrids of the present invention were found to have an anticancer activity to the various cancer cells, and showed especially excellent efficacy to oral cancer cell. In the actual experiment, compound 3b also exhibited more excellent anticancer activity to all the cancer cell lines than artemisinin or
daumone alone.
Having described a preferred embodiment of the present invention, it is to be understood that variants and modifications thereof falling within the spirit of the invention may become apparent to those skilled in this art, and the scope of this invention is to be determined by appended claims and their equivalents.
References
1. Ali, A. M.; Toi, M.; Ueno, T., Current Molecular Medidne2009, 9(8), 954.
2. Klayman, D. L, Science (Washington, D. C.) 1985, 228(4703), 1049.
3. (a) Jung, M.; Lee, S.; Ham, J.; Lee, K.; Kim, H.; Kim, S. K., Journal of Medicinal Chemistry 003, 46 (6), 987. (b) Jung, M.; Lee, S., Boonganic & Medicinal Chemistry Letters 1998, 8(9), 1003. (c) Willoughby, J. A.; Sundar, S. N.; Cheung, M.; Tin, A. S.; Modiano, J.; Firestone, G. L, J. Biol. Chem. 2009, 284(4), 2203. (d) Jung, .; Park, N.; Moon, H.-L; Lee, Y.; Chung, W -Y.; Park, K.-K., Bi∞ng. Med. Chem. Lett 2009, 19(22), 6303.
4. (a) Chen, H.-H.; Zhou, H.-J.; Fang, X., Pharmacological Research ' 2003, 48(3), 231. (b) Chen, H.-h.; You, L-L; Li, S.-b., Cancer Letters 004, 211 (2), 163. (c) Chen, H.-H.; Zhou, H.-J.; Wang, W.-Q.; Wu, G.-D., Cancer Chemotherapy and Pharmacolog ' 2004, ^5), 423. (d) Oh, S.; Jeong, I. H.; Ahn, C. M.; Shin, W.-S.; Lee, S., Bioorg. Med. Chem. 2004, 12(14), 3783. (e) Dell'Eva, R.; Pfeffer, U.; Vene, R.; Anfosso, L; Foriani, A.; Albini, A.; Efferth, T., Biochem. Pharmacol. 2004, 68 (12), 2359.
5. Jung, M.; Tak, J.; Chung, W.-Y.; Park, K.-K., Bioorganic 8L Medicinal Chemistry Letters 2006, 16(5), 1227.
6. (a) Matsubara, K.; Matsumoto, H.; Mizushina, Y.; Mori, M.; Nakajima, N.; Fuchigami, M.; Yoshida, H.; Hada, T., Oncology Reports 2005, 14 (1), 157.(b) Miura, M.; Sakimoto, I.;
Ohta, K.; Sugawara, F.; Sakaguchi, K., Αηΰ-Cancer Drugs 2007, 18(1), 1.
7. Jeong, P.-Y.; Jung, M.; Yim, Y.-H.; Kim, H.; Park, M.; Hong, E.; Lee, W.; Kim Young, H.; Kim, K.; Paik, Y.-K., Nature2005, 433(7025), 541.
8. Jung, M.; Lee, Y.; Moon, H.-L; Jung, Y.; Jung, H.; Oh, M., Eur. J. Med. Chem. 2009, 44(8), 3120.
9. Gediya, L. K.; Njar, V. C. 0., Expert Opinion on Drug Discover 2009, 4 (11), 1099.
10. (a) Chadwick, J.; Mercer, A. E.; Park, B. K.; Cosstick, R.; O'Neill, P. M., Bioorg. Med. Chem. 2009, 17(3), 1325.(b) Jung, M.; Yu, D.; Bustos, D.; ElSohly, H. N.; McChesney, J. D., Bioorganic & Medidnal Chemistry Letters 1991, 1 (12), 741. (c) Jung, M.; Freitas, A. C. C; McChesney, J. D.; ElSohly, H. N., Hetemcydes 1994, 39(1), 23.
11. Staton, C. A.; Reed, M. W. R.; Brown, N. J., International Journal of Experimental PathologylOm, 90(3), 195.
12. Tropical Disease Research Progressl995-1996, Thirteenth Program Report of UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (WHO), World Health Organization, 1997 p 51.
Claims
1. An artemisinin or deoxoartemisinin-glycolipid hybrid derivative represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 1-3:
wherein each f¾ and R2 is independently hydrogen, halogen, Ci-C10alkyl, Ci-Q0alkenyl, Ci-C10alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Ceo arylalkyi, or QrQo heteroaryl;
each of R3-Re is independently hydrogen, hydroxyl, alkoxy, carboxyl, halogen, nitro, Q- Cioalkyl, Ci-Ci0alkenyl, CrCi0alkynyl, QrQo aryl, Q-Q, alkylaryl, Q-Qo arylalkyi, or Q-Qo heteroaryl;
X and Yare each independently substituted or unsubstituted linear or branched Ci-Qo alkylene, or substituted or unsubstituted linear or branched Ci-Ci0alkenylene; and
each of m, n and k is independently 0 or 1.
2. The artemisinin or deoxoartemisinin-glycolipid hybrid derivative according to claim 1,
wherein each Rj and R2 is independently hydrogen, substituted or unsubstituted linear or branched Cr alkyl, or benzyl;
each of R3-R5 is independently hydrogen, hydroxyl, alkoxy, carboxyl, or substituted or unsubstituted linear or branched Q- alkyl;
X and the Yare each independently substituted or unsubstituted linear or branched Q- Cio alkylene; and
each of m, n and k is independently 0 or 1.
3. The artemisinin or deoxoartemisinin-glycolipid hybrid derivative according to daim 1, wherein the artemisinin or deoxoartemisinin-glycolipid hybrid derivative is represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 4- · 12:
10
4. A method of synthesizing the artemisinin or deoxoartemisinin-glycolipid hybrid derivative of daim 1 or 2, which comprises:
coupling the compound of the following Chemical Formula 13 with the compound of the following Chemical Formula 14; or
coupling the compound of the following Chemical Formula 15 with the compound of the following Chemical Formula 16:
wherein each of Ri, R2l R' and R" is independently hydrogen, halogen, Ci-Q0alkyl, Q- C10alkenyl, Ci-Ci0alkynyl, Q-Qo aryl, Q-Qo alkytaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl; each of R3-R6 is independently hydrogen, hydroxyl, alkoxy, carboxyf, halogen, nitro, Q- C10alkyl, Ci-C10alkenyl, Ci-Ci0alkynyl, Q-Qo aryl, Q-Qo alkylaryl, Q-Qo arylalkyl, or Q-Qo heteroaryl;
X and Yare each independently substituted or unsubstituted linear or branched Ci-Q0 alkylene, or substituted or unsubstituted linear or branched Q-Qoalkenylene; and
each m and k is independently 0 or 1.
5. The method according to claim 4, wherein the coupling is carried out by a transesterification reaction.
6. A pharmaceutical composition for preventing or treating an angiogenic disease comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative as defined in any one of claims 1-3; and (b) a pharmaceutically acceptable carrier.
7. The composition according to claim 6, wherein the angiogenic disease is selected from the group consisting of cancer, hemangiomas, diabetic retinopathy, retinopathy of prematurity, rejection after comeal transplant, angiogenic glaucoma, erythromelanosis follicularis faciei et coli, proliferative retinopathy, psoriasis, hemophilic arthritis, plaque angiogenesis in atherosclerosis, keloid, granulation tissue in wound, blood vessel adhesion, rheumatoid arthritis, osteoarthritis, autoimmune disease, Crohn's disease, recurrent stenosis, atherosclerosis, enteroadhesion, cat scratch disease, ulcer, liver cirrhosis, glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy, rejection after organ transplant, glomerulonephritis, diabetes, and inflammation.
8. The composition according to claim 6, wherein the artemisinin or deoxoartemisinin- glycolipid hybrid derivative is represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 7-10:
9. The composition according to claim 7, wherein the angiogenic disease is breast cancer, lung cancer, or oral cancer.
10. The composition according to claim 9, wherein the artemisinin or deoxoartemisinin- glycolipid hybrid derivative is represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 7-10:
11. A method for preventing or treating an angiogenic disease, comprising administering to a subject in need thereof a pharmaceutical composition comprising (a) a pharmaceutically effective amount of the artemisinin or deoxoartemisinin-glycolipid hybrid derivative as defined in any one of daims 1-3; and (b) a pharmaceutically acceptable carrier.
12. The method according to claim 11, wherein the angiogenic disease is selected from the group consisting of cancer, hemangiomas, diabetic retinopathy, retinopathy of prematurity, rejection after corneal transplant, angiogenic glaucoma, erythromelanosis follicularis faciei et coli, proliferative retinopathy, psoriasis, hemophilic arthritis, plaque angiogenesis in atherosclerosis, keloid, granulation tissue in wound, blood vessel adhesion, rheumatoid arthritis, osteoarthritis, autoimmune disease, Crohn's disease, recurrent stenosis, atherosclerosis, enteroadhesion, cat scratch disease, ulcer, liver cirrhosis, glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy, rejection after organ transplant, glomerulonephritis, diabetes, and inflammation.
13. The method according to claim 11, wherein the artemisinin or deoxoartemisinin- glycolipid hybrid derivative is represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 7-10:
14. The method according to claim 12, wherein the angiogenic disease is breast cancer, lung cancer, or oral cancer.
15. The method according to claim 13, wherein the artemisinin or deoxoartemisinin- glycolipid hybrid derivative is represented by the Chemical Formula selected from the group consisting of the following Chemical Formulas 7-10:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100087565A KR101277710B1 (en) | 2010-09-07 | 2010-09-07 | Novel Artemisinin or Deoxoartemisinin-glycolipid Hybrid Derivatives and Antiangiogenic Use Thereof |
KR10-2010-0087565 | 2010-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033266A1 true WO2012033266A1 (en) | 2012-03-15 |
Family
ID=45810841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/000043 WO2012033266A1 (en) | 2010-09-07 | 2011-01-05 | Novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101277710B1 (en) |
WO (1) | WO2012033266A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103230392A (en) * | 2013-04-10 | 2013-08-07 | 上海交通大学 | Purposes of artemisinin compounds in preparing anti-atherosclerotic medicaments |
WO2014090306A1 (en) * | 2012-12-12 | 2014-06-19 | Queen Mary & Westfield College, University Of London | Artemisinin and its derivatives for use in the treatment of kidney disease |
KR20150115108A (en) * | 2014-04-02 | 2015-10-14 | 연세대학교 산학협력단 | Composition for treating and preventing of bone disease comprising extract of Artemisia annua Linne |
EP2929881A1 (en) * | 2014-04-11 | 2015-10-14 | CeMM - Forschungszentrum für Molekulare Medizin GmbH | Medical use of artemisinin compounds and gephyrin agonists |
US9623005B2 (en) | 2011-06-10 | 2017-04-18 | Queen Mary University Of London | Artemisinin and its derivatives for use in the treatment of trauma haemorrhage and associated conditions |
CN114423774A (en) * | 2019-05-17 | 2022-04-29 | 加利福尼亚技术学院 | Ascaroside derivatives and methods of use |
US11673908B2 (en) | 2011-08-08 | 2023-06-13 | California Institute Of Technology | Utility of nematode small molecules |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110507700A (en) * | 2019-09-19 | 2019-11-29 | 重庆市中药研究院 | A pharmaceutical composition, preparation and preparation method containing artemisinin and torch flower |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080103192A1 (en) * | 2006-10-13 | 2008-05-01 | Washington, University Of | Conjugates of artemisinin-related endoperoxides and hydrazone derivatives for the treatment of cancer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160004A (en) | 1997-12-30 | 2000-12-12 | Hauser, Inc. | C-10 carbon-substituted artemisinin-like trioxane compounds having antimalarial, antiproliferative and antitumor activities |
-
2010
- 2010-09-07 KR KR1020100087565A patent/KR101277710B1/en not_active Expired - Fee Related
-
2011
- 2011-01-05 WO PCT/KR2011/000043 patent/WO2012033266A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080103192A1 (en) * | 2006-10-13 | 2008-05-01 | Washington, University Of | Conjugates of artemisinin-related endoperoxides and hydrazone derivatives for the treatment of cancer |
Non-Patent Citations (3)
Title |
---|
BATTY, KEVIN T. ET AL.: "Assessment of the effect of malaria infection on he patic clearance of dihydroartemisinin using rat liver perfusions and microso mes", BRITISH JOURNAL OF PHARMACOLOGY, vol. 125, no. 1, 1998, pages 159 - 167 * |
MAGGS, JAMES L. ET AL.: "Biliary metabolites of b-artemether in rats: biotra nsformations of an antimalarial endoperoxide", DRUG METABOLISM AND DISPOSITION, vol. 28, no. 2, 2000, pages 209 - 217 * |
RICCI, JEREMY ET AL.: "Concise synthesis and antiangiogenic activity of arte misinin-glycolipid hybrids on chorioallantoic membranes", BIOORG. & MED. CHEM. LETT., vol. 20, 8 August 2010 (2010-08-08), pages 6858 - 6860 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9623005B2 (en) | 2011-06-10 | 2017-04-18 | Queen Mary University Of London | Artemisinin and its derivatives for use in the treatment of trauma haemorrhage and associated conditions |
US9949948B2 (en) | 2011-06-10 | 2018-04-24 | Queen Mary University Of London | Artemisinin and its derivatives for use in the treatment of trauma haemorrhage and associated conditions |
US11673908B2 (en) | 2011-08-08 | 2023-06-13 | California Institute Of Technology | Utility of nematode small molecules |
US12180246B2 (en) | 2011-08-08 | 2024-12-31 | California Institute Of Technology | Utility of nematode small molecules |
WO2014090306A1 (en) * | 2012-12-12 | 2014-06-19 | Queen Mary & Westfield College, University Of London | Artemisinin and its derivatives for use in the treatment of kidney disease |
JP2016507486A (en) * | 2012-12-12 | 2016-03-10 | クイーン マリー アンド ウエストフィールド カレッジ, ユニバーシティー オブ ロンドン | Artemisinin and its derivatives used in the treatment of kidney disease |
US9603831B2 (en) | 2012-12-12 | 2017-03-28 | Queen Mary & Westfield College, University Of London | Artemisinin and its derivatives for use in the treatment of kidney disease |
CN103230392A (en) * | 2013-04-10 | 2013-08-07 | 上海交通大学 | Purposes of artemisinin compounds in preparing anti-atherosclerotic medicaments |
KR20150115108A (en) * | 2014-04-02 | 2015-10-14 | 연세대학교 산학협력단 | Composition for treating and preventing of bone disease comprising extract of Artemisia annua Linne |
KR101656306B1 (en) * | 2014-04-02 | 2016-09-12 | 연세대학교 산학협력단 | Composition for treating and preventing of bone disease comprising extract of Artemisia annua Linne |
WO2015155303A3 (en) * | 2014-04-11 | 2016-02-04 | Cemm - Forschungszentrum Für Molekulare Medizin Gmbh | Medical use of artemisinin compounds and gephyrin agonists |
US9999621B2 (en) | 2014-04-11 | 2018-06-19 | CeMM—FORSCHUNGSZENTRUM FÜR MOLEKULARE MEDIZIN GmbH | Medical use of artemisinin compounds and gephyrin agonists |
EP2929881A1 (en) * | 2014-04-11 | 2015-10-14 | CeMM - Forschungszentrum für Molekulare Medizin GmbH | Medical use of artemisinin compounds and gephyrin agonists |
CN114423774A (en) * | 2019-05-17 | 2022-04-29 | 加利福尼亚技术学院 | Ascaroside derivatives and methods of use |
EP3969460A4 (en) * | 2019-05-17 | 2023-03-08 | California Institute Of Technology | ASCAROSIDE DERIVATIVES AND METHODS OF USE |
US11845770B2 (en) | 2019-05-17 | 2023-12-19 | California Institute Of Technology | Ascaroside derivatives and methods of use |
CN114423774B (en) * | 2019-05-17 | 2024-11-08 | 加利福尼亚技术学院 | Ascaroside derivatives and methods of use |
Also Published As
Publication number | Publication date |
---|---|
KR101277710B1 (en) | 2013-06-24 |
KR20120025272A (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012033266A1 (en) | Novel artemisinin or deoxoartemisinin-glycolipid hybrid derivatives and antiangiogenic use thereof | |
US10954249B2 (en) | Macrocyclic compound and uses thereof | |
JP7400025B2 (en) | Macrocycles and their uses | |
Versini et al. | Chemical biology of salinomycin | |
Piperno et al. | Chemistry and biology of salinomycin and its analogues | |
KR101478758B1 (en) | Halogenated dideoxy saccharide derivatives, preparation method and use thereof | |
EP3772355A1 (en) | Bifunctional compound and its use in immunotherapy | |
EP3074382B1 (en) | Peloruside analogs | |
JP2023524457A (en) | CD33 ligands suitable for incorporation into carriers | |
US8481757B2 (en) | Compounds and compositions useful in the treatment of malaria | |
Princiotto | Synthesis of intermediates for the preparation of Active Pharmaceutical Ingredients (APIs) | |
RU2783238C2 (en) | Macrocyclic compound and its use | |
JP2000229977A (en) | Tridecanolide derivatives and anticancer agents | |
KR20220005013A (en) | Cytidine derivatives and methods of forming cytidine derivatives | |
Laha | Novel Isosteviol Derivatives as Potential Anticancer Agents | |
KR20220164216A (en) | Novel ergostenol derivatives, and uses thereof | |
CN118852283A (en) | Compound for preventing and treating tumors and its preparation method and application | |
WO2010014240A2 (en) | Novel bioactive small molecules derived from sea sponges | |
EA040298B1 (en) | MACROCYCLIC COMPOUND AND ITS APPLICATIONS FOR INHIBITION OF TUMOR OR CANCER GROWTH | |
CN106146537A (en) | Isoxazole beautiful jade and the substituted artemisinin derivative of isoxazolidine, its preparation method and application | |
JP2004161728A (en) | Nakiterpiosin derivative and anticancer agent containing the derivative as active component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823699 Country of ref document: EP Kind code of ref document: A1 |