+

WO2012033014A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012033014A1
WO2012033014A1 PCT/JP2011/070009 JP2011070009W WO2012033014A1 WO 2012033014 A1 WO2012033014 A1 WO 2012033014A1 JP 2011070009 W JP2011070009 W JP 2011070009W WO 2012033014 A1 WO2012033014 A1 WO 2012033014A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal display
light
display device
Prior art date
Application number
PCT/JP2011/070009
Other languages
French (fr)
Japanese (ja)
Inventor
仲西 洋平
真伸 水▲崎▼
健史 野間
祐一郎 山田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180043371.2A priority Critical patent/CN103109229B/en
Priority to US13/821,322 priority patent/US20130169906A1/en
Publication of WO2012033014A1 publication Critical patent/WO2012033014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which a polymer layer is formed on an alignment film in order to increase the alignment regulating force of the liquid crystal.
  • Liquid crystal display devices are widely used as display devices such as televisions, personal computers, and PDAs because they are thin, light, and have low power consumption.
  • the size of liquid crystal display devices has been rapidly increasing, as represented by liquid crystal display devices for television.
  • a multi-domain vertical alignment mode (MVA) that can be manufactured with a high yield even in a large area and has a wide viewing angle is preferably used.
  • the liquid crystal molecules are aligned perpendicular to the substrate surface when no voltage is applied to the liquid crystal layer, so that a high contrast ratio is obtained compared to the conventional TN mode (TN: Twisted Nematic). be able to.
  • TN Twisted Nematic
  • the MVA mode uses ribs (projections), the aperture ratio is lowered, and as a result, white brightness is lowered.
  • the rib arrangement interval may be sufficiently widened.
  • the number of ribs that are alignment regulating structures is reduced, it takes time to stabilize the alignment even when a predetermined voltage is applied to the liquid crystal. This causes a problem that the response speed becomes slow.
  • a pretilt angle providing technique using a polymer (hereinafter also referred to as a PSA (Polymer Sustained Alignment) layer) has been proposed (for example, see Patent Documents 1 to 5.)
  • a liquid crystal composition in which polymerizable components such as monomers and oligomers (hereinafter abbreviated as monomers) are mixed between liquid crystals is sealed between substrates, and a voltage is applied between the substrates to tilt the liquid crystal molecules. In this state, monomers and the like are polymerized to form a polymer.
  • the liquid crystal has a predetermined pretilt angle, and the liquid crystal alignment azimuth can be defined.
  • Polymerization of monomers and the like is performed by heat or light (ultraviolet) irradiation.
  • a rib is not required and the aperture ratio is improved.
  • a pretilt angle smaller than 90 ° is given over the entire display area, and high-speed response is possible.
  • a liquid crystal layer composition containing a liquid crystal material, a monomer, a polymerization initiator, and the like is injected between a pair of substrates, and a polymerization reaction is caused under a predetermined condition to cause an upper surface of the alignment film.
  • the conventional PSA technology may cause “burn-in” that remains thin even if the displayed image is switched when the same pattern is displayed for a long time. there were.
  • One of the causes of image sticking is that a DC offset voltage is generated inside the cell due to the presence of a charged substance (ion, radical generator, etc.), so that a desired liquid crystal can be obtained even when a voltage is applied in the liquid crystal layer. It is mentioned that the orientation state is not obtained.
  • the inventors of the present invention have studied various methods for preventing image sticking, and have focused on a polymer layer (PSA layer) for improving the alignment regulating force formed on the alignment film.
  • PSA layer polymer layer
  • FIG. 8 is a graph showing an example of the absorbance (au) of the monomer. As shown in FIG. 8, the following chemical formula (2):
  • a substrate having an alignment film on a surface generally used for a liquid crystal display device tends to hardly transmit light having a wavelength of less than 330 nm due to the influence of a polymer main chain and side chains constituting the alignment film.
  • many high-pressure mercury lamps used as general light sources irradiate light having a small emission line peak at 313 nm and a large emission intensity at 330 nm or more. Therefore, in order to sufficiently photopolymerize the reference monomer, it is necessary to irradiate ultraviolet light of 313 nm for a long time or a plurality of times.
  • the present inventors have the following chemical formula (3) having absorption characteristics even for light having a wavelength of 330 nm or more;
  • the polymerization initiator remains, and when the unreacted monomer and the polymerization initiator remain in the liquid crystal layer, for example, the influence of backlight light in a general use mode after completion, Or, due to the influence of the inspection aging process after the assembly process, the unreacted monomer slowly starts the polymerization reaction, and as a result, the shape of the PSA layer formed following the liquid crystal molecules in the alignment state is changed. As a result, defects such as image sticking occur.
  • the phenanthrene-based monomer has a wide absorption wavelength range compared to the biphenyl-based monomer, and has an advantage that the speed of the polymerization reaction is high, but on the other hand, against the backlight light used in a general usage mode. It is also clear that, in order to form a new polymer layer, it also includes a factor that increases the probability of occurrence of seizure.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device in which image sticking due to residual monomers in a liquid crystal layer hardly occurs.
  • the inventors of the present invention have studied various methods for preventing burn-in, and have focused on the type of light source used for the backlight.
  • a general cold cathode fluorescent lamp CCFL: Cold Cathode Fluorescent Lamp
  • the light emitted from the CCFL contains ultraviolet light, so the absorption wavelength in the ultraviolet light region.
  • a phenanthrene monomer having a polymerization reaction was found to have undergone a polymerization reaction, and a light emitting diode (LED: Light Emitting Diode) was used as a backlight light source, and the light emitted from the LED was designed not to contain ultraviolet light.
  • LED Light Emitting Diode
  • FIG. 9 is a graph showing an example of emission spectra of CCFLs and LEDs.
  • FIG. 10 is an enlarged graph of 350 to 420 nm in the CCFL emission spectrum of FIG. Since CCFL emits light by exciting mercury, in principle, it has a plurality of small peaks in the vicinity of 313 nm, 365 nm, and 405 nm, that is, in the ultraviolet region. CCFL has a plurality of large peaks in the vicinity of 440 nm, 490 nm, 550 nm, 590 nm, and 610 nm. On the other hand, the LED has a large peak around 450 nm and a gentle peak around 570 nm. The LED does not have a peak in the ultraviolet region.
  • the light is attenuated by the influence of a member such as a sheet disposed on the front side of the light source.
  • a member such as a sheet disposed on the front side of the light source.
  • TAC Tri Acetyl Cellulose
  • the transmittance at 405 nm is 80% or more, and only members such as a sheet positioned in front of the light source It is practically difficult to eliminate seizure.
  • an LED broadens a single spectrum so as to have a predetermined spectrum with a phosphor. Therefore, in principle there is no emission spectrum in the ultraviolet region, and unnecessary wavelengths can be cut.
  • the present inventors have made various studies on means for preventing the ultraviolet light contained in the backlight light from being irradiated into the liquid crystal layer of the completed liquid crystal display device.
  • FIG. 11 is a graph showing an example of a transmission spectrum of a color filter composed of red, green, and blue. As shown in FIG. 11, the transmittance of the color filter gradually increases from around the wavelength of 350 nm, reaches the vicinity of 500 nm, once decreases to around 580 nm, rises again to around 600 nm, and is almost flat up to 780 nm. A simple graph.
  • the color filter exhibits a characteristic of absorbing ultraviolet light having a wavelength of 350 nm or less, and in this case, the polymerization rate of the residual monomer is reduced.
  • one aspect of the present invention is a liquid crystal display device including a pair of substrates, a liquid crystal display panel including a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel.
  • at least one of the pair of substrates includes an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules.
  • the layer is formed by polymerization of a monomer added to the liquid crystal layer, and the monomer has the following general formula (I): P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I) (In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different.
  • the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.
  • the light source of the backlight is composed of at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more (hereinafter referred to as a liquid crystal display device). , Also referred to as a first liquid crystal display device of the present invention.
  • a liquid crystal display panel including a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel.
  • at least one of the pair of substrates includes an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules,
  • the polymer layer is formed by polymerization of a monomer added to the liquid crystal layer, and the monomer has the following general formula (I): P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I) (In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group.
  • Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2.
  • a 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different.
  • the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.
  • a substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters substantially has a wavelength of 350 nm or more.
  • a liquid crystal display device that transmits only light hereinafter also referred to as a second liquid crystal display device of the present invention).
  • front indicates a direction in which the observer is positioned when the observer looks at the liquid crystal display screen in a general usage mode
  • backward indicates a general usage mode in the viewer The direction in which the liquid crystal display device is located when the liquid crystal display screen is viewed is shown.
  • At least one of the pair of substrates included in the first and second liquid crystal display devices of the present invention has an alignment film that controls alignment of adjacent liquid crystal molecules.
  • the alignment film may be either one not subjected to alignment treatment or one subjected to alignment treatment.
  • Examples of the alignment treatment means for performing the alignment treatment include rubbing treatment and photo-alignment treatment.
  • At least one of the pair of substrates included in the first and second liquid crystal display devices of the present invention has a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules, and the polymer layer includes a liquid crystal It is formed by polymerization of the monomer added in the layer.
  • the initial inclination of the liquid crystal molecules adjacent to the alignment film and the polymer layer can be tilted in a certain direction even if the alignment film is not subjected to alignment treatment.
  • the polymer layer is pretilt with respect to the liquid crystal molecules regardless of whether or not the alignment film is aligned. It is formed in a form having a structure to be oriented.
  • the monomer is a compound represented by the general formula (I), and the condensed aromatic ring structure represented by the chemical formulas (1-1) to (1-4) has a characteristic of absorbing light up to nearly 370 nm. Have.
  • the light utilization efficiency can be increased, the PSA layer can be sufficiently formed even in a short time and once irradiation, and the residual DC voltage in the liquid crystal layer can be hardly generated.
  • the reliability of the liquid crystal display device can be improved.
  • the light source of the backlight includes at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more. That is, in the first liquid crystal display device, an LED is used instead of the CCFL generally used as a backlight light source, and an LED that does not substantially irradiate ultraviolet light having a wavelength of less than 400 nm is selected as the LED. It is a form made. By using such a light source, the polymerization reaction of the monomer does not proceed in a general usage mode after completion of the liquid crystal display device, so that the occurrence of image sticking can be suppressed.
  • the light emitting diode irradiates only light having a wavelength of substantially 420 nm or more.
  • the wavelength range emitted from the light emitting diode can be changed depending on the type and thickness of the phosphor.
  • a light source that emits light having a wavelength of 405 nm can be obtained using an InGaAs light emitting diode.
  • the light converted by the phosphor is light having a longer wavelength than the emitted light.
  • a substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters is substantially 350 nm or more. Transmits only light having a wavelength.
  • each of the color filters of the plurality of colors substantially transmits only light having a wavelength of 420 nm or more.
  • the “color filter” refers to a filter that can transmit only a specific wavelength component.
  • the “red color filter” transmits a wavelength component having a dominant wavelength in the range of 605 to 700 nm
  • the “green color filter” transmits a wavelength component having a dominant wavelength in the range of 500 to 560 nm.
  • the “blue color filter” transmits a wavelength component having a dominant wavelength in the range of 435 to 480 nm.
  • the color filters for each color transmit only the wavelength component of each color and reflect or absorb the other wavelength components. Therefore, by arranging the color filter for each color between the liquid crystal layer and the backlight, ultraviolet light can be obtained. Can be effectively prevented from being irradiated into the liquid crystal layer. By using the color filter in this manner, the polymerization reaction of the monomer does not proceed in a general usage mode after completion of the liquid crystal display device, so that the occurrence of image sticking can be suppressed.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
  • a preferable form of the liquid crystal display device of the present invention includes a form in which the features of the first and second liquid crystal display devices of the present invention are combined. That is, in the first liquid crystal display device of the present invention, the substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters is substantially 350 nm. It is preferable to transmit only light having the above wavelength, and more preferably, only light having substantially a wavelength of 420 nm or more is transmitted.
  • the light source of the backlight is composed of at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more. More preferably, only light having a wavelength of substantially 420 nm or more is emitted.
  • the liquid crystal display device of the present invention it is possible to prevent ultraviolet light from being irradiated into the liquid crystal layer of the completed liquid crystal display device, so that the residual monomer while ensuring the advantage of using the phenanthrene monomer It is possible to suppress the occurrence of image sticking due to the occurrence of seizure.
  • FIG. 1 It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows before a PSA polymerization process. It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows after a PSA polymerization process. It is a plane schematic diagram of the board
  • FIG. 1 It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows before a PSA polymerization process. It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows after a PSA polymerization process. It is a plane schematic diagram of the board
  • Embodiment 1 1 and 2 are schematic cross-sectional views of the liquid crystal display device of Embodiment 1.
  • FIG. FIG. 1 shows before the PSA polymerization step
  • FIG. 2 shows after the PSA polymerization step.
  • the liquid crystal display device of Embodiment 1 includes an array substrate 10, a counter substrate 20, and a liquid crystal layer 30 sandwiched between a pair of substrates including the array substrate 10 and the counter substrate 20.
  • a liquid crystal display panel having A backlight 50 is provided behind the liquid crystal display panel.
  • the liquid crystal display device of Embodiment 1 performs display using the light emitted from the backlight 50. That is, the liquid crystal display device of Embodiment 1 is a transmissive liquid crystal display device.
  • the array substrate 10 includes an insulating transparent substrate 11 made of glass or the like, wiring formed on the transparent substrate 11, pixel electrodes 45, TFTs (Thin Film Transistors) 44, TFTs 44, and pixel electrodes 45.
  • a conductive member such as a contact portion 47 to be connected, a plurality of insulating films 14, and an alignment film 12 are provided.
  • the material of the pixel electrode 45 include ITO (Indium Tin Oxide).
  • the structure is made efficient by using the same material for the pixel electrode 45 and the conductive member of the contact portion.
  • the alignment film 12 is made of, for example, a polymer compound (polyimide) having a main chain including an imide structure.
  • the pretilt angle of the liquid crystal molecules can be oriented vertically or horizontally (initially tilted).
  • the alignment film 12 may be a vertical alignment film or a horizontal alignment film that defines the alignment direction of adjacent liquid crystal molecules without being subjected to alignment treatment. Further, an alignment process may be further performed on the vertical alignment film or the horizontal alignment film.
  • An insulating film 14 is formed between the TFT 44 and the pixel electrode 45, and the alignment film 12 is formed on the pixel electrode 45 and the insulating film 14 exposed without the pixel electrode 45.
  • the counter substrate 20 includes an insulating transparent substrate 21 made of glass or the like, a color filter 24, a black matrix 26, a common electrode 25, and an alignment film 22.
  • an alignment film 22 provided on the counter substrate 20 side an alignment film having the same characteristics as the alignment film 12 provided on the array substrate 10 side described above can be used.
  • FIG. 1 and FIG. 2 show a filter using three color filters of red 24R, green 24G, and blue 24B.
  • the type, number, and arrangement order of the colors are not particularly limited. It is not limited. For example, four colors including yellow may be used.
  • An example of a method for producing a color filter is a photolithography method in which a color resist based on a pigment is applied on glass, followed by exposure and development. Specifically, first, a black matrix is formed on the transparent substrate for preventing light leakage of the backlight and preventing color mixture of the color filters. Next, a color resist is applied on the transparent substrate and the black matrix.
  • the liquid crystal layer 30 is filled with a liquid crystal material.
  • the type of liquid crystal material is not particularly limited, and any of those having a positive dielectric anisotropy and those having a negative dielectric anisotropy can be used, and can be appropriately selected according to the display mode of the liquid crystal. it can. For example, in a twisted nematic (TN) mode in which the liquid crystal layer is twisted in the thickness direction, a liquid crystal material having positive dielectric anisotropy is used, and the liquid crystal molecules are aligned horizontally with respect to the substrate surface.
  • TN twisted nematic
  • IPS In-Plane Switching or FFS: Fringe-Field Switching
  • a liquid crystal material having positive or negative dielectric anisotropy is used.
  • VA vertical alignment
  • one or more monomers 31 are present in the liquid crystal layer 30 before the PSA polymerization step. Then, the monomer 31 starts to be polymerized by the PSA polymerization process, and PSA layers 13 and 23 are formed on the alignment films 12 and 22 as shown in FIG.
  • the PSA layers 13 and 23 are formed by injecting a composition for forming a liquid crystal layer containing one or more monomers 31 and a liquid crystal material between the array substrate 10 and the counter substrate 20. 30, for example, by irradiating the liquid crystal layer 30 with a certain amount of light to photopolymerize the monomer 31.
  • the PSA layers 13 and 23 are shown as being formed on the entire surface of the alignment films 12 and 22. However, actually, a plurality of PSA layers 13 and 23 may be formed in a dot shape, and the film thickness varies. There may be.
  • the monomer 31 used in Embodiment 1 absorbs light with the monomer 31 alone and generates radicals to start chain polymerization, it is not necessary to administer a polymerization initiator.
  • a polymerization initiator that effectively uses light having a wavelength of 365 nm or more may be added. Examples of such a polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • the liquid crystal layer 30 is irradiated with light in a state where a voltage equal to or higher than the threshold is applied. Since the polymer is formed in such a shape, the PSA layers 13 and 23 to be formed have a structure that functions as an alignment film that defines an initial pretilt angle with respect to liquid crystal molecules even when a voltage is not applied later. It will be.
  • the light irradiation may not be performed in a state where a voltage equal to or higher than the threshold is applied to the liquid crystal layer 30.
  • the PSA layers 13 and 23 formed on the alignment films 12 and 22 further enhance the alignment stability of the alignment film. Functions as a membrane.
  • the alignment films 12 and 22 are subjected to alignment treatment, and then light irradiation is performed with a voltage higher than a threshold applied to the liquid crystal layer 30 to form the PSA layers 13 and 23.
  • a combination of alignment films 12 and 22 and PSA layers 13 and 23 with higher alignment stability can be obtained.
  • the alignment of the liquid crystal molecules is defined by, for example, a linear slit provided in the pixel electrode 45 included in the array substrate 10 or the common electrode 25 included in the counter substrate 20 (PVA (Patterned Vertical) Alignment) mode).
  • PVA Plasma Vertical
  • the liquid crystal molecules have a uniform alignment toward the linear slits when a voltage is applied.
  • a PSA layer that imparts a pretilt angle to the liquid crystal molecules can be formed.
  • the monomer used in Embodiment 1 is represented by the following general formula (I): P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I) (In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different.
  • the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.
  • the monomer containing the groups represented by the above chemical formulas (1-1) to (1-4) is a bifunctional monomer, and forms a PSA layer that is more stable than a monofunctional monomer when mixed with a liquid crystal material. be able to.
  • the phenanthrene-based condensed aromatic compound containing three or more benzene rings represented by the above chemical formulas (1-1) to (1-4) has an absorption wavelength range up to nearly 370 nm.
  • a substrate having an alignment film on the surface used for a liquid crystal display device tends to absorb a large amount of light of less than 330 nm due to the influence of the polymer main chain and side chains constituting the alignment film.
  • the light use efficiency can be increased, and even a short-time ultraviolet irradiation is sufficient.
  • a PSA layer can be produced.
  • FIG. 3 and 4 are schematic plan views of a substrate provided in the liquid crystal display device of Embodiment 1.
  • FIG. FIG. 3 shows an array substrate
  • FIG. 4 shows a counter substrate.
  • each of the pixel electrodes 45 included in the array substrate in the liquid crystal display device of Embodiment 1 has a substantially rectangular shape, and a plurality of pixel electrodes 45 are arranged in a matrix shape or a delta shape to form one display surface.
  • substantially rectangular indicates that a part of the rectangle may include a protruding portion or a cutout portion as shown in FIG. 3.
  • the array substrate has a plurality of gate signal lines 41, a plurality of source signal lines 42, and a plurality of auxiliary capacitance (Cs) wirings 43 extending in parallel with each other via an insulating film. And the auxiliary capacitance (Cs) wiring 43 extend in parallel to each other and intersect the plurality of source signal lines 42. Further, the gate signal line 41 and the source signal line 42 are connected to the respective electrodes of the thin film transistor (TFT) 44.
  • the TFT 44 is a three-terminal field effect transistor, and has three electrodes including a gate electrode, a source electrode, and a drain electrode in addition to the semiconductor layer.
  • the TFT 44 serves as a switching element that performs pixel drive control. In the first embodiment, one pixel electrode 45 is divided into a plurality of subpixel electrodes, a TFT is provided for each subpixel electrode, and two subpixel electrodes are controlled by one gate signal line. It is good.
  • the counter substrate 20 includes a light-shielding BM (black matrix) 26, a red color filter 24R that transmits only light of a specific wavelength, and a blue color filter 24R. It has a color filter 24B and a green color filter 24G.
  • BMs 26 are formed in the gaps between the color filters 24, and have a lattice shape as a whole. Each color filter 24 is disposed so as to overlap each pixel electrode of the array substrate.
  • FIG. 5 is a schematic plan view illustrating a modification example of the pixel electrode of the liquid crystal display device according to the first embodiment.
  • the pixel electrode 45 shown in FIG. 5 is an electrode in which a plurality of thin slits are formed from the outer periphery to the inside of a rectangular electrode, and the cross-shaped trunk portion 45a and obliquely outward from both sides of the trunk portion 45a. It comprises a plurality of branch portions 45b that extend. From the viewpoint of improving the viewing angle characteristics, each branch portion 45b preferably extends in a different direction for each region.
  • the four types extend in the 45 ° direction, the 135 ° direction, the 225 ° direction, and the 315 ° direction, respectively.
  • Branch portion 45b is formed.
  • alignment treatment such as rubbing treatment and photo-alignment treatment is not necessary.
  • the liquid crystal molecules are tilted toward the center of the pixel. Therefore, the alignment of the liquid crystal can be stabilized even when no voltage is applied by forming a PSA layer by exposing in a voltage applied state.
  • there is an MVA (Multi-domain Vertical Alignment) mode in which ribs and slits in electrodes are provided as an alignment control structure to control the alignment of liquid crystal molecules.
  • the alignment films 12 and 22 may be subjected to any alignment treatment such as rubbing treatment or photo-alignment treatment.
  • Any alignment treatment such as rubbing treatment or photo-alignment treatment.
  • the possibility of breakage etc. can be reduced.
  • the orientation division of the pixel it can be performed more easily than when the rubbing process is used.
  • the alignment division include a 4D-RTN (4-Domain Reverse Reverse Twisted Nematic) mode in which the alignment processing directions are made to be orthogonal to each other on a pair of substrates and one pixel is divided into four domains. The corner is greatly improved.
  • the array substrate 10, the liquid crystal layer 30, and the counter substrate 20 are stacked in this order from the back surface side to the observation surface side of the liquid crystal display device.
  • a polarizing plate is provided on the back side of the array substrate 10.
  • a polarizing plate is provided on the observation surface side of the counter substrate 20.
  • a retardation plate may be further arranged for these polarizing plates, and the polarizing plate may be a circularly polarizing plate.
  • the liquid crystal display device is a transmissive liquid crystal display device.
  • the backlight is disposed further on the back side of the array substrate 10 and is disposed so that light is transmitted through the array substrate 10, the liquid crystal layer 30, and the counter substrate 20 in this order.
  • the array substrate 10 includes a reflection plate for reflecting outside light.
  • the polarizing plate of the counter substrate 20 needs to be a circularly polarizing plate provided with a so-called ⁇ / 4 retardation plate.
  • the type of the backlight is not particularly limited, such as an edge light type or a direct type.
  • an edge light type that can display with low power consumption with a small number of light sources and is suitable for thinning is widely used.
  • the type of light source used in Embodiment 1 is a light emitting diode (LED).
  • the LED is adjusted so as not to emit light having a wavelength of substantially less than 400 nm.
  • the LED is preferably adjusted so as not to emit light having a wavelength of substantially less than 420 nm.
  • a white LED as shown in the graph of FIG. 12 does not emit light having a wavelength of substantially 420 nm or less, which greatly contributes to the reduction of image sticking.
  • Examples of the member constituting the backlight include a light source, a reflection sheet, a diffusion sheet, a prism sheet, and a light guide plate.
  • a light source emitted from the light source enters the light guide plate from the side surface of the light guide plate, is reflected, diffused, etc., and is emitted as planar light from the main surface of the light guide plate, Further, the light passes through a prism sheet or the like and is emitted as display light.
  • a direct type backlight light emitted from a light source passes directly through a reflection sheet, a diffusion sheet, a prism sheet, etc. without passing through a light guide plate, and is emitted as display light.
  • the liquid crystal display device disassembles a liquid crystal display device (for example, a liquid crystal TV (television)), collects an alignment film, 13 C-Nuclear Magnetic Resonance (NMR), mass Analyzing the components of the alignment film, analyzing the components of the PSA layer forming monomer (monomer) present in the PSA layer, and including it in the liquid crystal layer by performing chemical analysis using an analysis method (MS: Mass Spectrometry), etc.
  • MS Mass Spectrometry
  • Example 1 A liquid crystal display panel according to Embodiment 1 was actually manufactured, and display burn-in was confirmed.
  • the light source used in Example 1 is an LED having the emission spectrum shown in FIGS. 9 and 10 and has substantially no light having a wavelength of less than 400 nm.
  • a very small peak (about 0.04 ⁇ W / cm 2 ) was observed near 365 nm.
  • a pair of substrates including an array substrate and a counter substrate was prepared, and after a liquid crystal layer forming composition containing a liquid crystal material and a monomer for forming a PSA layer was dropped, it was bonded to the other substrate.
  • the color filter is manufactured on the counter substrate.
  • Example 1 the following chemical formula (3) is used as a monomer for forming the PSA layer;
  • the compound represented by this was used.
  • the compound represented by the chemical formula (3) is a phenanthrene-based bifunctional methacrylate monomer.
  • the liquid crystal layer forming composition was prepared so that the bifunctional phenanthrene monomer represented by the chemical formula (3) was contained by 0.6 wt%.
  • the liquid crystal layer sandwiched between the pair of substrates is irradiated with 1 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the liquid crystal in which the PSA layer is formed on the vertical alignment film Each cell was completed.
  • the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes.
  • the ultraviolet light source a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour.
  • the liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
  • the burn-in rate of the liquid crystal display panel in Example 1 was 4%.
  • Comparative Example 1 In order to confirm the difference between the LED and the CCFL, a liquid crystal display panel similar to that in Example 1 was actually manufactured, and the completed liquid crystal display panel was placed on the CCFL backlight having the emission spectrum shown in FIG. The display was performed and the burn-in rate was measured. The definition and evaluation method of the burn-in rate are the same as those in Example 1.
  • the burn-in rate of the liquid crystal display panel in Comparative Example 1 was 6%.
  • CCFL CCFL was used, it was shown that the monomer slightly remaining in the liquid crystal layer polymerizes to cause image sticking.
  • Embodiment 2 The liquid crystal display device of Embodiment 2 is in the form of a color filter on array (COA) in which color filters are formed on an array substrate instead of a counter substrate, and the light source is not limited to LEDs. The same as in the first embodiment.
  • COA color filter on array
  • FIGS. 6 and 7 are schematic cross-sectional views of the liquid crystal display device according to the second embodiment.
  • FIG. 6 shows before the PSA polymerization step
  • FIG. 7 shows after the PSA polymerization step.
  • the color filter 24 and the black matrix 26 are formed on the array substrate 10. More specifically, a TFT 44 and a bus line (not shown) are disposed on an insulating transparent substrate 11 made of glass or the like, and a black matrix 26 and a color filter are formed thereon via an insulating film (not shown). 24 is arranged. In some cases, another insulating film may be provided on the color filter 24.
  • the black matrix may be provided only on the counter substrate side.
  • a pixel electrode 45 is disposed at a position overlapping the color filter 24.
  • the pixel electrode 45 and the TFT 44 are connected through a contact portion 47 formed in the color filter 24.
  • the alignment film 12 is formed on the insulating film.
  • FIGS. 6 and 7 show a color filter using three color filters of red 24R, green 24G, and blue 24B.
  • the color filter emits light having a wavelength substantially less than 350 nm. As long as a filter that does not transmit light is selected, the type, number, and arrangement order of colors are not particularly limited.
  • the color filter does not transmit light having a wavelength of substantially less than 420 nm.
  • a color filter having a characteristic of absorbing light having a wavelength of less than 420 nm as shown in the graph of FIG. 13 when used, light having a wavelength in the ultraviolet region is almost eliminated, thereby reducing the occurrence of image sticking. Contribute greatly.
  • the problem of misalignment due to the pixel electrode and the color filter being formed on different substrates is solved.
  • the kind of light source of the backlight 50 used in Embodiment 2 is a light emitting diode (LED) or a cold cathode tube (CCFL).
  • LED light emitting diode
  • CCFL cold cathode tube
  • Example 2 A liquid crystal display panel according to Embodiment 2 was actually manufactured and display burn-in was confirmed.
  • the light source used in Example 2 is a CCFL having an emission spectrum shown in FIGS. 9 and 10 and slightly contains ultraviolet light.
  • a pair of substrates comprising an array substrate and a counter substrate is prepared, and after dropping a composition for forming a liquid crystal layer containing a liquid crystal material and a monomer for forming a PSA layer represented by the chemical formula (3), the other substrate Bonding to the substrate was performed.
  • the color filter is fabricated on the array substrate.
  • the color filter used in Example 2 has the transmission spectrum shown in FIG. 11 and does not transmit light having a wavelength of substantially less than 350 nm.
  • the liquid crystal layer sandwiched between the pair of substrates is irradiated with 3 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the PSA layer is formed on the vertical alignment film.
  • Each cell was completed.
  • the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes.
  • the ultraviolet light source a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour.
  • the liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
  • the completed liquid crystal display panel was placed on a CCFL backlight for display, and the burn-in rate was measured.
  • the definition and evaluation method of the burn-in rate are the same as those in Example 1.
  • the burn-in rate of the liquid crystal display panel in Example 2 was 5%.
  • Example 3 A liquid crystal display panel according to Embodiment 2 was actually manufactured and display burn-in was confirmed.
  • the light source used in Example 3 is an LED having the emission spectrum shown in FIG. 9 and FIG. 10, and has substantially no light having a wavelength of less than 400 nm.
  • a pair of substrates comprising an array substrate and a counter substrate is prepared, and after dropping a composition for forming a liquid crystal layer containing a liquid crystal material and a monomer for forming a PSA layer represented by the chemical formula (3), the other substrate Bonding to the substrate was performed.
  • the color filter is fabricated on the array substrate.
  • the color filter used in Example 3 has the transmission spectrum shown in FIG. 11 and does not transmit light having a wavelength of substantially less than 350 nm.
  • the liquid crystal layer sandwiched between the pair of substrates is irradiated with 3 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the PSA layer is formed on the vertical alignment film.
  • Each cell was completed.
  • the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes.
  • the ultraviolet light source a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour.
  • the liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
  • the completed liquid crystal display panel was placed on the LED backlight for display, and the burn-in rate was measured.
  • the definition and evaluation method of the burn-in rate are the same as those in Example 1.
  • the burn-in rate of the liquid crystal display panel in Example 3 was 3%.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to a liquid crystal display device which has a polymer layer that is formed on an alignment film and controls the alignment of liquid crystal molecules adjacent thereto. The polymer layer is formed by polymerizing monomers that are added into a liquid crystal layer, and the monomers are compounds represented by general formula (I). P1-A1-(Z1-A2)n-P2 (I) (In the formula, P1 and P2 may be the same as or different from each other and each represents an acrylate group or a methacrylate group; in cases where there are a plurality of Z1 moieties, the Z1 moieties may be the same as or different from each other and each represents COO, OCO or O, or alternatively represents that A1 and A2 or A2 and A2 are directly bonded with each other; a hydrogen atom may be substituted by a halogen atom, a methyl group, an ethyl group or a propyl group; and A1 and A2 may be the same as or different from each other and each represents a specific phenanthrene group.) The light source of a backlight is composed of at least one light emitting diode, and each light emitting diode substantially emits only such light that has a wavelength of 400 nm or more.

Description

液晶表示装置Liquid crystal display
本発明は、液晶表示装置に関する。より詳しくは、液晶の配向規制力を高めるために配向膜上にポリマー層が形成された液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which a polymer layer is formed on an alignment film in order to increase the alignment regulating force of the liquid crystal.
液晶表示装置は薄型、軽量及び低消費電力であることから、テレビ、パソコン、PDA等の表示機器として広く使用されている。特に近年、テレビ用液晶表示装置等に代表されるように、液晶表示装置の大型化が急速に進んでいる。大型化を行うにあたっては、大きな面積であっても高い歩留まりで製造でき、かつ広視野角を有するマルチドメイン垂直配向モード(MVA:Multi-domain Vertical Alignment)が好適に用いられる。マルチドメイン垂直配向モードでは、液晶層内に電圧が印加されていない時点において液晶分子が基板面に対して垂直に配向するため、従来のTNモード(TN:Twisted Nematic)と比べ高いコントラスト比を得ることができる。 Liquid crystal display devices are widely used as display devices such as televisions, personal computers, and PDAs because they are thin, light, and have low power consumption. Particularly in recent years, the size of liquid crystal display devices has been rapidly increasing, as represented by liquid crystal display devices for television. In increasing the size, a multi-domain vertical alignment mode (MVA) that can be manufactured with a high yield even in a large area and has a wide viewing angle is preferably used. In the multi-domain vertical alignment mode, the liquid crystal molecules are aligned perpendicular to the substrate surface when no voltage is applied to the liquid crystal layer, so that a high contrast ratio is obtained compared to the conventional TN mode (TN: Twisted Nematic). be able to.
しかしながらMVAモードはリブ(突起物)を用いているため、開口率が低下しその結果白輝度が低くなるという欠点を有している。この欠点を改善するため、リブの配置間隔を十分広くすればよいが、配向規制用構造物であるリブの数が少なくなるため、液晶に所定電圧を印加しても配向が安定するまでに時間がかかるようになり、応答速度が遅くなるという問題が生じる。このような問題を改善し、高輝度及び高速応答を可能にするためにポリマーを用いたプレチルト角付与技術(以下、PSA(Polymer Sustained Alignment:配向維持)層ともいう。)が提案されている(例えば、特許文献1~5参照。)。PSA技術では、液晶にモノマー、オリゴマー等の重合性成分(以下、モノマー等と略称する。)を混合した液晶組成物を基板間に封入し、基板間に電圧を印加して液晶分子を傾斜させた状態でモノマー等を重合してポリマー化させる。これにより、電圧印加を取り去っても液晶は所定のプレチルト角を有し、液晶配向方位を規定することが可能となる。モノマー等の重合は熱又は光(紫外線)照射で行われる。PSA技術を用いることにより、リブが不要となり開口率が向上すると同時に、表示領域全般に渡って90°より小さいプレチルト角が付与されており、高速応答が可能となる。 However, since the MVA mode uses ribs (projections), the aperture ratio is lowered, and as a result, white brightness is lowered. In order to remedy this drawback, the rib arrangement interval may be sufficiently widened. However, since the number of ribs that are alignment regulating structures is reduced, it takes time to stabilize the alignment even when a predetermined voltage is applied to the liquid crystal. This causes a problem that the response speed becomes slow. In order to improve such problems and to enable high brightness and high-speed response, a pretilt angle providing technique using a polymer (hereinafter also referred to as a PSA (Polymer Sustained Alignment) layer) has been proposed ( For example, see Patent Documents 1 to 5.) In the PSA technology, a liquid crystal composition in which polymerizable components such as monomers and oligomers (hereinafter abbreviated as monomers) are mixed between liquid crystals is sealed between substrates, and a voltage is applied between the substrates to tilt the liquid crystal molecules. In this state, monomers and the like are polymerized to form a polymer. Thereby, even if the voltage application is removed, the liquid crystal has a predetermined pretilt angle, and the liquid crystal alignment azimuth can be defined. Polymerization of monomers and the like is performed by heat or light (ultraviolet) irradiation. By using the PSA technique, a rib is not required and the aperture ratio is improved. At the same time, a pretilt angle smaller than 90 ° is given over the entire display area, and high-speed response is possible.
特開2003-307720号公報JP 2003-307720 A 特開2009-132718号公報JP 2009-132718 A 国際公開第2009/118086号パンフレットInternational Publication No. 2009/118086 Pamphlet 中国特許第101008784号明細書Chinese Patent No. 101008784 米国特許出願公開第2008/179565号明細書US Patent Application Publication No. 2008/179565
しかしながら、本発明者らが検討を行ったところ、液晶材料、モノマー、重合開始剤等を含む液晶層組成物を一対の基板間に注入し、所定の条件で重合反応を生じさせて配向膜上に配向規制力を高めるためのポリマー層を形成したとしても、従来のPSA技術では、長時間同じパターンの表示を行うと表示した画像が表示を切り替えても薄く残る「焼き付き」が発生することがあった。焼き付きの原因の一つとしては、電荷を持つ物質(イオン、ラジカル発生剤等)が存在することにより直流オフセット電圧がセル内部で発生するため、液晶層内に電圧を印加しても所望の液晶の配向状態が得られないことが挙げられる。 However, as a result of studies by the present inventors, a liquid crystal layer composition containing a liquid crystal material, a monomer, a polymerization initiator, and the like is injected between a pair of substrates, and a polymerization reaction is caused under a predetermined condition to cause an upper surface of the alignment film. Even if a polymer layer for increasing the orientation regulating power is formed, the conventional PSA technology may cause “burn-in” that remains thin even if the displayed image is switched when the same pattern is displayed for a long time. there were. One of the causes of image sticking is that a DC offset voltage is generated inside the cell due to the presence of a charged substance (ion, radical generator, etc.), so that a desired liquid crystal can be obtained even when a voltage is applied in the liquid crystal layer. It is mentioned that the orientation state is not obtained.
本発明者らは、焼き付きを防止することができる方法について種々検討したところ、配向膜上に形成する配向規制力向上のためのポリマー層(PSA層)に着目した。 The inventors of the present invention have studied various methods for preventing image sticking, and have focused on a polymer layer (PSA layer) for improving the alignment regulating force formed on the alignment film.
図8は、モノマーの吸光度(a.u.)の一例を示すグラフである。図8に示されるように、下記化学式(2); FIG. 8 is a graph showing an example of the absorbance (au) of the monomer. As shown in FIG. 8, the following chemical formula (2):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表されるビフェニル系のモノマーは、320nm以下の波長をもつ光の照射によりラジカルを発生するモノマーである。しかしながら、一般的に液晶表示装置に用いられる配向膜を表面に有する基板は、配向膜を構成する高分子主鎖及び側鎖の影響により330nm未満の波長をもつ光を透過させにくい傾向にある。一方、一般的な光源として使用される高圧水銀ランプは、313nmに小さな輝線ピークを有し、かつ330nm以上で大きな発光強度を有する光を照射するものが多い。そのため、参考用のモノマーを充分に光重合させるためには、313nmの紫外光を長時間又は複数回照射する必要がある。しかしながら、このような紫外光を長時間又は複数回照射すると、液晶表示装置の構成部材(例えば、配向膜及び液晶層)の劣化が進行し、焼き付き等の欠陥を生じさせる場合がある。一方で、配向膜及び液晶層の劣化の進行を止めるために短時間の紫外線照射を行った場合、モノマーが充分に重合せず、不完全なPSA層ができ、焼き付き等の欠陥を生じさせる場合がある。そこで本発明者らは、例えば、図8に示すように、330nm以上の波長をもつ光に対しても吸収特性をもつ下記化学式(3); Is a monomer that generates radicals upon irradiation with light having a wavelength of 320 nm or less. However, a substrate having an alignment film on a surface generally used for a liquid crystal display device tends to hardly transmit light having a wavelength of less than 330 nm due to the influence of a polymer main chain and side chains constituting the alignment film. On the other hand, many high-pressure mercury lamps used as general light sources irradiate light having a small emission line peak at 313 nm and a large emission intensity at 330 nm or more. Therefore, in order to sufficiently photopolymerize the reference monomer, it is necessary to irradiate ultraviolet light of 313 nm for a long time or a plurality of times. However, when such ultraviolet light is irradiated for a long time or a plurality of times, deterioration of components of the liquid crystal display device (for example, an alignment film and a liquid crystal layer) proceeds, and defects such as image sticking may occur. On the other hand, when UV irradiation is performed for a short time to stop the progress of the deterioration of the alignment film and the liquid crystal layer, the monomer is not sufficiently polymerized and an incomplete PSA layer is formed, causing defects such as image sticking. There is. Therefore, for example, as shown in FIG. 8, the present inventors have the following chemical formula (3) having absorption characteristics even for light having a wavelength of 330 nm or more;
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
で表されるフェナントレン系のモノマーを用いることで光利用効率を高めることができることに着目し、短時間かつ一回の照射であっても安定なPSA層を形成することができることを見いだした。その結果、液晶層内の残留DC電圧を発生させにくくすることができ、表示の焼き付きを低減することができることが見いだされた。 Focusing on the fact that the light utilization efficiency can be increased by using a phenanthrene-based monomer represented by the following formula, it has been found that a stable PSA layer can be formed even in a short time and with a single irradiation. As a result, it has been found that it is possible to make it difficult to generate a residual DC voltage in the liquid crystal layer, and to reduce display burn-in.
しかし、本発明者らが更なる検討を行ったところ、上記フェナントレン系のモノマーを用いたとしても、新たに以下の課題が発生することが明らかとなった。その課題とは、液晶材料、モノマー、重合開始剤等を含む液晶層組成物を一対の基板間に注入し光照射を行う一連の重合反応が完了した後に、液晶層中には未反応のモノマー及び重合開始剤が残存している点であり、未反応のモノマー及び重合開始剤が液晶層中に残存していると、例えば、完成後の一般的な使用態様でのバックライト光の影響、又は、組立工程後の検査用エージング工程の影響により、未反応のモノマーがゆっくりと重合反応を開始し、その結果、配向状態にある液晶分子にならって形成されたPSA層の形状を変化させてしまい、焼き付き等の欠陥を生じさせてしまう。 However, as a result of further studies by the present inventors, it has become clear that the following problems are newly generated even when the phenanthrene-based monomer is used. The problem is that after a series of polymerization reactions in which a liquid crystal layer composition containing a liquid crystal material, a monomer, a polymerization initiator, etc. is injected between a pair of substrates and light irradiation is completed, an unreacted monomer is present in the liquid crystal layer. And the point where the polymerization initiator remains, and when the unreacted monomer and the polymerization initiator remain in the liquid crystal layer, for example, the influence of backlight light in a general use mode after completion, Or, due to the influence of the inspection aging process after the assembly process, the unreacted monomer slowly starts the polymerization reaction, and as a result, the shape of the PSA layer formed following the liquid crystal molecules in the alignment state is changed. As a result, defects such as image sticking occur.
すなわち、フェナントレン系のモノマーはビフェニル系のモノマーと比べて広い吸収波長域を有し、重合反応の速度が速いという利点を有する反面、一般的な使用態様の中で用いられるバックライト光に対しても反応性を示し、新たにポリマー層を形成するため、逆に焼き付きを発生させる確率を高くする要因も包含していることが明らかとなった。 In other words, the phenanthrene-based monomer has a wide absorption wavelength range compared to the biphenyl-based monomer, and has an advantage that the speed of the polymerization reaction is high, but on the other hand, against the backlight light used in a general usage mode. It is also clear that, in order to form a new polymer layer, it also includes a factor that increases the probability of occurrence of seizure.
本発明は、上記現状に鑑みてなされたものであり、液晶層中の残存モノマーに起因する焼き付きが発生しにくい液晶表示装置を提供することを目的とするものである。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device in which image sticking due to residual monomers in a liquid crystal layer hardly occurs.
本発明者らは、焼き付きを防止する方法について種々検討したところ、バックライトに用いられる光源の種類に着目した。そして、バックライトに用いる光源として一般的な冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)を用いた場合に、CCFLから出射される光が紫外光を含んでいるために、紫外光域に吸収波長をもつフェナントレン系モノマーが重合反応を起こしていたことを見いだすとともに、バックライト光源として発光ダイオード(LED:Light Emitting Diode)を用い、LEDから出射される光が紫外光を含まないような設計を行うことで、バックライト光によるモノマーの重合反応を抑制することが可能となることを見いだした。 The inventors of the present invention have studied various methods for preventing burn-in, and have focused on the type of light source used for the backlight. When a general cold cathode fluorescent lamp (CCFL: Cold Cathode Fluorescent Lamp) is used as a light source for the backlight, the light emitted from the CCFL contains ultraviolet light, so the absorption wavelength in the ultraviolet light region. A phenanthrene monomer having a polymerization reaction was found to have undergone a polymerization reaction, and a light emitting diode (LED: Light Emitting Diode) was used as a backlight light source, and the light emitted from the LED was designed not to contain ultraviolet light. As a result, it has been found that the polymerization reaction of the monomer by backlight light can be suppressed.
図9は、CCFL及びLEDの発光スペクトルの一例を示すグラフである。また、図10は、図9のCCFLの発光スペクトルのうち350~420nmの範囲を拡大したグラフである。CCFLは水銀を励起させて発光させているため、原理的には313nm付近、365nm付近、及び、405nm付近、すなわち、紫外域に複数の小さなピークを有する。また、CCFLは、440nm付近、490nm付近、550nm付近、590nm付近、及び、610nm付近に複数の大きなピークを有する。一方、LEDは、450nm付近に大きなピークを有し、570nm付近にゆるやかなピークを有する。LEDは、紫外域にピークを有しない。 FIG. 9 is a graph showing an example of emission spectra of CCFLs and LEDs. FIG. 10 is an enlarged graph of 350 to 420 nm in the CCFL emission spectrum of FIG. Since CCFL emits light by exciting mercury, in principle, it has a plurality of small peaks in the vicinity of 313 nm, 365 nm, and 405 nm, that is, in the ultraviolet region. CCFL has a plurality of large peaks in the vicinity of 440 nm, 490 nm, 550 nm, 590 nm, and 610 nm. On the other hand, the LED has a large peak around 450 nm and a gentle peak around 570 nm. The LED does not have a peak in the ultraviolet region.
なお、光源の前面側に配置されるシート等の部材の影響により、光は減衰する。しかしながら、例えば、TAC(Tri Acetyl Cellulose)フィルムの365nmでの透過率は0.1%であるものの、405nmでの透過率は80%以上であり、光源よりも前方に位置するシート等の部材のみで焼き付きをなくすことは実質的には困難である。一方、LEDは単一スペクトルを蛍光体で所定のスペクトルになるように広げている。そのため、紫外域に原理的に発光スペクトルがなく、不要な波長をカットすることができる。 The light is attenuated by the influence of a member such as a sheet disposed on the front side of the light source. However, for example, although the transmittance of TAC (Tri Acetyl Cellulose) film at 365 nm is 0.1%, the transmittance at 405 nm is 80% or more, and only members such as a sheet positioned in front of the light source It is practically difficult to eliminate seizure. On the other hand, an LED broadens a single spectrum so as to have a predetermined spectrum with a phosphor. Therefore, in principle there is no emission spectrum in the ultraviolet region, and unnecessary wavelengths can be cut.
また一方で、本発明者らは、完成後の液晶表示装置の液晶層内にバックライト光に含まれる紫外光が照射されない手段について種々検討したところ、液晶表示装置に一般的に用いられるカラーフィルタを利用して紫外光を防ぐ方法に着目した。具体的には、液晶層よりもバックライト側に位置する基板に対してカラーフィルタを設けて焼き付き試験を行ったところ、焼き付きの発生を抑制することが可能となることを見いだした。 On the other hand, the present inventors have made various studies on means for preventing the ultraviolet light contained in the backlight light from being irradiated into the liquid crystal layer of the completed liquid crystal display device. We paid attention to the method of preventing ultraviolet light by using the. Specifically, when a burn-in test was performed with a color filter provided on the substrate located on the backlight side of the liquid crystal layer, it was found that the occurrence of burn-in could be suppressed.
図11は、赤、緑及び青で構成されるカラーフィルタの透過スペクトルの一例を示すグラフである。図11に示すように、カラーフィルタは、波長350nm付近から徐々に透過率が上昇し、500nm付近まで達した後、一旦580nm付近まで減少するが、600nm付近まで再度上昇し、780nmまではほぼ平坦なグラフを示す。 FIG. 11 is a graph showing an example of a transmission spectrum of a color filter composed of red, green, and blue. As shown in FIG. 11, the transmittance of the color filter gradually increases from around the wavelength of 350 nm, reaches the vicinity of 500 nm, once decreases to around 580 nm, rises again to around 600 nm, and is almost flat up to 780 nm. A simple graph.
このように、カラーフィルタは、350nm以下の波長をもつ紫外光を吸収する特性を示すので、この場合に、残存モノマーの重合速度は減少する。 As described above, the color filter exhibits a characteristic of absorbing ultraviolet light having a wavelength of 350 nm or less, and in this case, the polymerization rate of the residual monomer is reduced.
こうして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 Thus, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
すなわち、本発明の一側面は、一対の基板、及び、上記一対の基板間に挟持された液晶層を備える液晶表示パネルと、液晶表示パネルの後方に配置されたバックライトとを備える液晶表示装置であって、上記一対の基板の少なくとも一方は、近接する液晶分子を配向制御する配向膜、及び、上記配向膜上に形成され、近接する液晶分子を配向制御するポリマー層を有し、上記ポリマー層は、液晶層中に添加されたモノマーが重合することによって形成されたものであり、上記モノマーは、下記一般式(I):
-A-(Z-A-P    (I)
(式中、P及びPは、同一又は異なって、アクリレート基又はメタクリレート基を表す。Zは、複数ある場合は同一又は異なって、COO、OCO若しくはO、又は、AとA若しくはAとAとが直接結合していることを表す。水素原子は、ハロゲン原子、メチル基、エチル基又はプロピル基に置換されていてもよい。A及びAは、同一又は異なって、下記化学式(1-1)~(1-4);
That is, one aspect of the present invention is a liquid crystal display device including a pair of substrates, a liquid crystal display panel including a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel. And at least one of the pair of substrates includes an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules. The layer is formed by polymerization of a monomer added to the liquid crystal layer, and the monomer has the following general formula (I):
P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I)
(In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different. The following chemical formulas (1-1) to (1-4);
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(水素原子は、フッ素原子、塩素原子、OCF基、CF基、CH基、CHF基、又は、CHF基に置換されていてもよい。)で表されるいずれかの基を表す。)で表される化合物であり、上記バックライトの光源は、少なくとも一つの発光ダイオードからなり、上記発光ダイオードはいずれも、実質的に400nm以上の波長をもつ光のみを出射する液晶表示装置(以下、本発明の第一の液晶表示装置ともいう。)である。 (The hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.) Represents. The light source of the backlight is composed of at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more (hereinafter referred to as a liquid crystal display device). , Also referred to as a first liquid crystal display device of the present invention.
また、本発明の他の一側面は、一対の基板、及び、上記一対の基板間に挟持された液晶層を備える液晶表示パネルと、液晶表示パネルの後方に配置されたバックライトとを備える液晶表示装置であって、上記一対の基板の少なくとも一方は、近接する液晶分子を配向制御する配向膜、及び、上記配向膜上に形成され、近接する液晶分子を配向制御するポリマー層を有し、上記ポリマー層は、液晶層中に添加されたモノマーが重合することによって形成されたものであり、上記モノマーは、下記一般式(I):
-A-(Z-A-P    (I)
(式中、P及びPは、同一又は異なって、アクリレート基又はメタクリレート基を表す。Zは、複数ある場合は同一又は異なって、COO、OCO若しくはO、又は、AとA若しくはAとAとが直接結合していることを表す。水素原子は、ハロゲン原子、メチル基、エチル基又はプロピル基に置換されていてもよい。A及びAは、同一又は異なって、下記化学式(1-1)~(1-4);
According to another aspect of the present invention, a liquid crystal display panel including a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel. In the display device, at least one of the pair of substrates includes an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules, The polymer layer is formed by polymerization of a monomer added to the liquid crystal layer, and the monomer has the following general formula (I):
P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I)
(In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different. The following chemical formulas (1-1) to (1-4);
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(水素原子は、フッ素原子、塩素原子、OCF基、CF基、CH基、CHF基、又は、CHF基に置換されていてもよい。)で表されるいずれかの基を表す。)で表される化合物であり、上記一対の基板のうち上記バックライトにより近い基板は、複数色のカラーフィルタを有し、上記複数色のカラーフィルタはいずれも、実質的に350nm以上の波長をもつ光のみを透過する液晶表示装置(以下、本発明の第二の液晶表示装置ともいう。)である。 (The hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.) Represents. And a substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters substantially has a wavelength of 350 nm or more. A liquid crystal display device that transmits only light (hereinafter also referred to as a second liquid crystal display device of the present invention).
以下、本発明の第一及び第二の液晶表示装置について詳述する。 Hereinafter, the first and second liquid crystal display devices of the present invention will be described in detail.
本明細書において「前方」とは、観察者が一般的な使用態様で液晶表示画面を見たときに観察者が位置する方向を示し、「後方」とは、観察者が一般的な使用態様で液晶表示画面を見たときに液晶表示装置が位置する方向を示す。 In this specification, “front” indicates a direction in which the observer is positioned when the observer looks at the liquid crystal display screen in a general usage mode, and “backward” indicates a general usage mode in the viewer The direction in which the liquid crystal display device is located when the liquid crystal display screen is viewed is shown.
本発明の第一及び第二の液晶表示装置が備える一対の基板の少なくとも一方は、近接する液晶分子を配向制御する配向膜を有する。本発明において配向膜は、配向処理がなされていないもの、及び、配向処理がなされたもののいずれであってもよい。配向処理を施す場合の配向処理の手段としては、例えば、ラビング処理、光配向処理が挙げられる。 At least one of the pair of substrates included in the first and second liquid crystal display devices of the present invention has an alignment film that controls alignment of adjacent liquid crystal molecules. In the present invention, the alignment film may be either one not subjected to alignment treatment or one subjected to alignment treatment. Examples of the alignment treatment means for performing the alignment treatment include rubbing treatment and photo-alignment treatment.
本発明の第一及び第二の液晶表示装置が備える一対の基板の少なくとも一方は、上記配向膜上に形成され、近接する液晶分子を配向制御するポリマー層を有し、上記ポリマー層は、液晶層中に添加されたモノマーが重合することによって形成されたものである。上記ポリマー層を形成することにより、上記配向膜に対して配向処理を施さなかったとしても、配向膜及びポリマー層に近接する液晶分子の初期傾斜を一定の方向に傾かせることができる。例えば、液晶分子がプレチルト配向している状態でモノマーを重合させ、ポリマー層を形成した場合には、上記配向膜が配向処理されているか否かに関わらず、ポリマー層は液晶分子に対してプレチルト配向させる構造を有する形で形成されることになる。 At least one of the pair of substrates included in the first and second liquid crystal display devices of the present invention has a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules, and the polymer layer includes a liquid crystal It is formed by polymerization of the monomer added in the layer. By forming the polymer layer, the initial inclination of the liquid crystal molecules adjacent to the alignment film and the polymer layer can be tilted in a certain direction even if the alignment film is not subjected to alignment treatment. For example, when a polymer layer is formed by polymerizing a monomer in a state where the liquid crystal molecules are pretilt aligned, the polymer layer is pretilt with respect to the liquid crystal molecules regardless of whether or not the alignment film is aligned. It is formed in a form having a structure to be oriented.
上記モノマーは、上記一般式(I)で表される化合物であり、上記化学式(1-1)~(1-4)で表される縮合芳香環構造は、370nm近くまで光を吸収する特性を有している。そのため、光利用効率を高めることができ、短時間かつ一回の照射であっても充分にPSA層が形成され、液晶層内の残留DC電圧を発生させにくくすることができる。また、短時間の光照射で済むので、長時間の光照射による構成部材の劣化を防ぐことができ、液晶表示装置の信頼性を改善することができる。 The monomer is a compound represented by the general formula (I), and the condensed aromatic ring structure represented by the chemical formulas (1-1) to (1-4) has a characteristic of absorbing light up to nearly 370 nm. Have. As a result, the light utilization efficiency can be increased, the PSA layer can be sufficiently formed even in a short time and once irradiation, and the residual DC voltage in the liquid crystal layer can be hardly generated. In addition, since light irradiation for a short time is sufficient, deterioration of components due to light irradiation for a long time can be prevented, and the reliability of the liquid crystal display device can be improved.
本発明の第一の液晶表示装置において、上記バックライトの光源は、少なくとも一つの発光ダイオードからなり、上記発光ダイオードはいずれも、実質的に400nm以上の波長をもつ光のみを出射する。すなわち、第一の液晶表示装置においては、一般的にバックライト光源として用いられるCCFLの代わりにLEDを用いており、かつLEDとして400nm未満の波長をもつ紫外光を実質的に照射しないものが選択された形態である。このような光源を用いることにより、液晶表示装置完成後の一般的な使用態様においてモノマーの重合反応が進行することがなくなるので、焼き付きの発生を抑制することができる。なお、本発明の効果をより確実に得る観点からは、上記発光ダイオードは、実質的に420nm以上の波長をもつ光のみを照射することが好ましい。発光ダイオードから出射される波長範囲は、蛍光体の種類や厚みによって変更することができる。例えば、InGaAs系の発光ダイオードを用いて405nmの波長をもつ光を出射する光源が得られる。なお、原理的に、蛍光体により変換される光は発光する光よりも長波長の光となる。 In the first liquid crystal display device of the present invention, the light source of the backlight includes at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more. That is, in the first liquid crystal display device, an LED is used instead of the CCFL generally used as a backlight light source, and an LED that does not substantially irradiate ultraviolet light having a wavelength of less than 400 nm is selected as the LED. It is a form made. By using such a light source, the polymerization reaction of the monomer does not proceed in a general usage mode after completion of the liquid crystal display device, so that the occurrence of image sticking can be suppressed. From the viewpoint of obtaining the effect of the present invention more reliably, it is preferable that the light emitting diode irradiates only light having a wavelength of substantially 420 nm or more. The wavelength range emitted from the light emitting diode can be changed depending on the type and thickness of the phosphor. For example, a light source that emits light having a wavelength of 405 nm can be obtained using an InGaAs light emitting diode. In principle, the light converted by the phosphor is light having a longer wavelength than the emitted light.
本発明の第二の液晶表示装置において、上記一対の基板のうち上記バックライトにより近い基板は、複数色のカラーフィルタを有し、上記複数色のカラーフィルタはいずれも、実質的に350nm以上の波長をもつ光のみを透過する。好ましくは、上記複数色のカラーフィルタはいずれも、実質的に420nm以上の波長をもつ光のみを透過する。本明細書において「カラーフィルタ」とは、特定の波長成分のみを透過させることができるフィルタをいう。例えば、「赤のカラーフィルタ」は、主波長が605~700nmの範囲にある波長成分を透過し、「緑のカラーフィルタ」は、主波長が500~560nmの範囲にある波長成分を透過し、「青のカラーフィルタ」は、主波長が435~480nmの範囲にある波長成分を透過する。上記各色のカラーフィルタは、各色の波長成分のみを透過させ、それ以外の波長成分は反射又は吸収するので、上記各色のカラーフィルタを液晶層とバックライトとの間に配置することにより、紫外光が液晶層内に照射されることを効果的に防ぐことができる。このようにカラーフィルタを利用することにより、液晶表示装置完成後の一般的な使用態様においてモノマーの重合反応が進行することがなくなるので、焼き付きの発生を抑制することができる。 In the second liquid crystal display device of the present invention, a substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters is substantially 350 nm or more. Transmits only light having a wavelength. Preferably, each of the color filters of the plurality of colors substantially transmits only light having a wavelength of 420 nm or more. In this specification, the “color filter” refers to a filter that can transmit only a specific wavelength component. For example, the “red color filter” transmits a wavelength component having a dominant wavelength in the range of 605 to 700 nm, and the “green color filter” transmits a wavelength component having a dominant wavelength in the range of 500 to 560 nm. The “blue color filter” transmits a wavelength component having a dominant wavelength in the range of 435 to 480 nm. The color filters for each color transmit only the wavelength component of each color and reflect or absorb the other wavelength components. Therefore, by arranging the color filter for each color between the liquid crystal layer and the backlight, ultraviolet light can be obtained. Can be effectively prevented from being irradiated into the liquid crystal layer. By using the color filter in this manner, the polymerization reaction of the monomer does not proceed in a general usage mode after completion of the liquid crystal display device, so that the occurrence of image sticking can be suppressed.
本発明の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
本発明の液晶表示装置の好ましい形態としては、本発明の第一及び第二の液晶表示装置のそれぞれの特徴を組み合わせた形態が挙げられる。すなわち、本発明の第一の液晶表示装置において、上記一対の基板のうち上記バックライトにより近い基板は、複数色のカラーフィルタを有し、上記複数色のカラーフィルタはいずれも、実質的に350nm以上の波長をもつ光のみを透過することが好ましく、より好ましくは、実質的に420nm以上の波長をもつ光のみを透過する。また、本発明の第二の液晶表示装置において、上記バックライトの光源は、少なくとも一つの発光ダイオードからなり、上記発光ダイオードはいずれも、実質的に400nm以上の波長をもつ光のみを出射することが好ましく、より好ましくは、実質的に420nm以上の波長をもつ光のみを出射する。 A preferable form of the liquid crystal display device of the present invention includes a form in which the features of the first and second liquid crystal display devices of the present invention are combined. That is, in the first liquid crystal display device of the present invention, the substrate closer to the backlight among the pair of substrates has a plurality of color filters, and each of the plurality of color filters is substantially 350 nm. It is preferable to transmit only light having the above wavelength, and more preferably, only light having substantially a wavelength of 420 nm or more is transmitted. In the second liquid crystal display device of the present invention, the light source of the backlight is composed of at least one light emitting diode, and each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more. More preferably, only light having a wavelength of substantially 420 nm or more is emitted.
本発明の液晶表示装置によれば、完成後の液晶表示装置の液晶層内に紫外光が照射されることを防ぐことができるので、フェナントレン系モノマーを用いることによる利点を確保しつつ、残存モノマーに起因する焼き付きの発生を抑えることができる。 According to the liquid crystal display device of the present invention, it is possible to prevent ultraviolet light from being irradiated into the liquid crystal layer of the completed liquid crystal display device, so that the residual monomer while ensuring the advantage of using the phenanthrene monomer It is possible to suppress the occurrence of image sticking due to the occurrence of seizure.
実施形態1の液晶表示装置の断面模式図であり、PSA重合工程前を示す。It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows before a PSA polymerization process. 実施形態1の液晶表示装置の断面模式図であり、PSA重合工程後を示す。It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 1, and shows after a PSA polymerization process. 実施形態1の液晶表示装置が備える基板の平面模式図であり、アレイ基板を示す。It is a plane schematic diagram of the board | substrate with which the liquid crystal display device of Embodiment 1 is provided, and shows an array board | substrate. 実施形態1の液晶表示装置が備える基板の平面模式図であり、対向基板を示す。It is a plane schematic diagram of the board | substrate with which the liquid crystal display device of Embodiment 1 is provided, and shows a counter substrate. 実施形態1の液晶表示装置の画素電極の変形例を示す平面模式図である。6 is a schematic plan view illustrating a modification of the pixel electrode of the liquid crystal display device of Embodiment 1. FIG. 実施形態2の液晶表示装置の断面模式図であり、PSA重合工程前を示す。It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 2, and shows before a PSA polymerization process. 実施形態2の液晶表示装置の断面模式図であり、PSA重合工程後を示す。It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 2, and shows after a PSA polymerization process. モノマーの吸光度(a.u.)の一例を示すグラフである。It is a graph which shows an example of the light absorbency (au) of a monomer. CCFL及びLEDの発光スペクトルの一例を示すグラフである。It is a graph which shows an example of the emission spectrum of CCFL and LED. 図9のCCFLの発光スペクトルのうち350~420nmの範囲を拡大したグラフである。10 is a graph obtained by enlarging the range of 350 to 420 nm in the emission spectrum of CCFL in FIG. 赤、緑及び青で構成されるカラーフィルタの透過スペクトルの一例を示すグラフである。It is a graph which shows an example of the transmission spectrum of the color filter comprised by red, green, and blue. 白色LEDの発光スペクトルの一例を示すグラフである。It is a graph which shows an example of the emission spectrum of white LED. 赤、緑及び青で構成されるカラーフィルタの透過スペクトルの他の一例を示すグラフである。It is a graph which shows another example of the transmission spectrum of the color filter comprised by red, green, and blue.
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these embodiments.
実施形態1
図1及び図2は、実施形態1の液晶表示装置の断面模式図である。図1はPSA重合工程前を示し、図2はPSA重合工程後を示す。図1及び図2に示すように実施形態1の液晶表示装置は、アレイ基板10と、対向基板20と、アレイ基板10及び対向基板20からなる一対の基板間に狭持された液晶層30とを有する液晶表示パネルを備える。また、液晶表示パネルの後方には、バックライト50を備えている。実施形態1の液晶表示装置は、バックライト50から出射された光を利用して表示を行う。すなわち、実施形態1の液晶表示装置は、透過型の液晶表示装置である。
Embodiment 1
1 and 2 are schematic cross-sectional views of the liquid crystal display device of Embodiment 1. FIG. FIG. 1 shows before the PSA polymerization step, and FIG. 2 shows after the PSA polymerization step. As shown in FIGS. 1 and 2, the liquid crystal display device of Embodiment 1 includes an array substrate 10, a counter substrate 20, and a liquid crystal layer 30 sandwiched between a pair of substrates including the array substrate 10 and the counter substrate 20. A liquid crystal display panel having A backlight 50 is provided behind the liquid crystal display panel. The liquid crystal display device of Embodiment 1 performs display using the light emitted from the backlight 50. That is, the liquid crystal display device of Embodiment 1 is a transmissive liquid crystal display device.
アレイ基板10は、ガラス等を材料とする絶縁性の透明基板11と、透明基板11上に形成された配線、画素電極45、TFT(Thin Film Transistor:薄膜トランジスタ)44、TFT44と画素電極45とをつなぐコンタクト部47等の導電部材と、複数の絶縁膜14と、配向膜12とを備える。画素電極45の材料としては、ITO(Indium Tin Oxide:インジウム酸化スズ)が挙げられる。なお、画素電極45とコンタクト部の導電部材とで同じ材料を用いることで構造が効率化される。配向膜12は、例えば、イミド構造を含む主鎖をもつ高分子化合物(ポリイミド)で構成される。配向膜12の表面に対し、ラビング処理、光配向処理等の配向処理を施すことで、液晶分子のプレチルト角を垂直又は水平に方向付ける(初期傾斜させる)ことができる。なお、配向膜12として、配向処理が施されなくとも、近接する液晶分子の配向方向を規定する垂直配向膜や水平配向膜を用いてもよい。また、垂直配向膜や水平配向膜に対して更に配向処理を行ってもよい。TFT44と画素電極45との間には絶縁膜14が形成されており、画素電極45上及び画素電極45がなく露出した絶縁膜14上に配向膜12が形成されている。 The array substrate 10 includes an insulating transparent substrate 11 made of glass or the like, wiring formed on the transparent substrate 11, pixel electrodes 45, TFTs (Thin Film Transistors) 44, TFTs 44, and pixel electrodes 45. A conductive member such as a contact portion 47 to be connected, a plurality of insulating films 14, and an alignment film 12 are provided. Examples of the material of the pixel electrode 45 include ITO (Indium Tin Oxide). The structure is made efficient by using the same material for the pixel electrode 45 and the conductive member of the contact portion. The alignment film 12 is made of, for example, a polymer compound (polyimide) having a main chain including an imide structure. By performing an alignment process such as a rubbing process or a photo-alignment process on the surface of the alignment film 12, the pretilt angle of the liquid crystal molecules can be oriented vertically or horizontally (initially tilted). The alignment film 12 may be a vertical alignment film or a horizontal alignment film that defines the alignment direction of adjacent liquid crystal molecules without being subjected to alignment treatment. Further, an alignment process may be further performed on the vertical alignment film or the horizontal alignment film. An insulating film 14 is formed between the TFT 44 and the pixel electrode 45, and the alignment film 12 is formed on the pixel electrode 45 and the insulating film 14 exposed without the pixel electrode 45.
対向基板20は、ガラス等を材料とする絶縁性の透明基板21と、カラーフィルタ24と、ブラックマトリクス26と、共通電極25と、配向膜22とを備える。対向基板20側に設けられる配向膜22としては、上述の、アレイ基板10側に設けられる配向膜12と同様の特徴をもつ配向膜を用いることができる。 The counter substrate 20 includes an insulating transparent substrate 21 made of glass or the like, a color filter 24, a black matrix 26, a common electrode 25, and an alignment film 22. As the alignment film 22 provided on the counter substrate 20 side, an alignment film having the same characteristics as the alignment film 12 provided on the array substrate 10 side described above can be used.
図1及び図2では、赤24R、緑24G及び青24Bの三色のカラーフィルタを用いたものを示しているが、これらの三色を少なくとも有する限り、色の種類、数及び配置順は特に限定されない。例えば、黄を加えた4色でも構わない。カラーフィルタの製造方法の一例としては、顔料をベースとしたカラーレジストをガラス上に塗布し、露光や現像を伴うフォトリソグラフィ法が挙げられる。具体的には、まず、透明基板上にバックライトの光漏れ防止やカラーフィルタの混色防止のためのブラックマトリクスを形成する。次に、透明基板上及びブラックマトリクス上に、カラーレジストを塗布する。次に、フォトマスクを介してパターン露光してUV硬化し、不溶化させる。次に、現像液によりカラーレジストの不要な部分を除去したあと、ベークにて硬化させる。以上の一連の工程をカラーフィルタの色数分繰り返す。続いて、スパッタリング法を用いてカラーフィルタ上及びブラックマトリクス上に共通電極となるITO膜を形成する。 1 and FIG. 2 show a filter using three color filters of red 24R, green 24G, and blue 24B. However, as long as at least these three colors are included, the type, number, and arrangement order of the colors are not particularly limited. It is not limited. For example, four colors including yellow may be used. An example of a method for producing a color filter is a photolithography method in which a color resist based on a pigment is applied on glass, followed by exposure and development. Specifically, first, a black matrix is formed on the transparent substrate for preventing light leakage of the backlight and preventing color mixture of the color filters. Next, a color resist is applied on the transparent substrate and the black matrix. Next, pattern exposure is performed through a photomask, UV curing is performed, and insolubilization is performed. Next, unnecessary portions of the color resist are removed with a developer, and then cured by baking. The above series of steps is repeated for the number of colors of the color filter. Subsequently, an ITO film serving as a common electrode is formed on the color filter and the black matrix by using a sputtering method.
液晶層30には、液晶材料が充填されている。液晶材料の種類は特に限定されず、正の誘電率異方性を有するもの、負の誘電率異方性を有するもののいずれも用いることができ、液晶の表示モードに応じて適宜選択することができる。例えば、液晶層の厚み方向に捩れさせながら配向させた捩れネマチック(TN:Twisted Nematic)モードでは、正の誘電率異方性を有する液晶材料が用いられ、液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching、又は、FFS:Fringe-Field Switching)モードでは、正又は負の誘電率異方性を有する液晶材料が用いられ、基板面に対して垂直配向させた垂直配向(VA:Vertical Alignment)モードでは、負の誘電率異方性を有する液晶材料が用いられる。 The liquid crystal layer 30 is filled with a liquid crystal material. The type of liquid crystal material is not particularly limited, and any of those having a positive dielectric anisotropy and those having a negative dielectric anisotropy can be used, and can be appropriately selected according to the display mode of the liquid crystal. it can. For example, in a twisted nematic (TN) mode in which the liquid crystal layer is twisted in the thickness direction, a liquid crystal material having positive dielectric anisotropy is used, and the liquid crystal molecules are aligned horizontally with respect to the substrate surface. In in-plane switching (IPS: In-Plane Switching or FFS: Fringe-Field Switching) mode in which a lateral electric field is applied to the liquid crystal layer, a liquid crystal material having positive or negative dielectric anisotropy is used. In the vertical alignment (VA) mode in which the substrate is vertically aligned with the substrate surface, a liquid crystal material having negative dielectric anisotropy is used.
図1に示すように、PSA重合工程前において液晶層30中には、1種又は2種以上のモノマー31が存在している。そして、PSA重合工程によってモノマー31は重合を開始し、図2に示すように、配向膜12、22上にPSA層13、23が形成される。 As shown in FIG. 1, one or more monomers 31 are present in the liquid crystal layer 30 before the PSA polymerization step. Then, the monomer 31 starts to be polymerized by the PSA polymerization process, and PSA layers 13 and 23 are formed on the alignment films 12 and 22 as shown in FIG.
具体的にはPSA層13、23は、1種又は2種以上のモノマー31と、液晶材料とを含む液晶層形成用組成物をアレイ基板10と対向基板20との間に注入して液晶層30を形成し、例えば、一定量の光を液晶層30に照射してモノマー31を光重合させることによって、形成することができる。なお、図2においてPSA層13、23は、配向膜12、22上に一面に形成された図を示しているが、実際には、点状に複数形成されていてもよく、膜厚にバラツキがあってもよい。 Specifically, the PSA layers 13 and 23 are formed by injecting a composition for forming a liquid crystal layer containing one or more monomers 31 and a liquid crystal material between the array substrate 10 and the counter substrate 20. 30, for example, by irradiating the liquid crystal layer 30 with a certain amount of light to photopolymerize the monomer 31. In FIG. 2, the PSA layers 13 and 23 are shown as being formed on the entire surface of the alignment films 12 and 22. However, actually, a plurality of PSA layers 13 and 23 may be formed in a dot shape, and the film thickness varies. There may be.
実施形態1で用いるモノマー31は、モノマー31単独で光吸収を行い、ラジカルを発生して連鎖重合を開始するので、重合開始剤を投与する必要がない。ただし、より重合速度を高くするため、365nm以上の波長をもつ光を有効に利用する重合開始剤を添加させてもよい。そのような重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。 Since the monomer 31 used in Embodiment 1 absorbs light with the monomer 31 alone and generates radicals to start chain polymerization, it is not necessary to administer a polymerization initiator. However, in order to increase the polymerization rate, a polymerization initiator that effectively uses light having a wavelength of 365 nm or more may be added. Examples of such a polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one.
実施形態1においては、例えば、PSA重合工程を行う際に、液晶層30に対し閾値以上の電圧を印加した状態で光照射を行うことで、閾値以上の電圧印加状態で配向した液晶分子にならった形で重合体が形成されるので、形成されるPSA層13、23が、後に電圧無印加状態となっても液晶分子に対し初期プレチルト角を規定する配向膜として機能するような構造をもつことになる。 In the first embodiment, for example, when performing the PSA polymerization step, the liquid crystal layer 30 is irradiated with light in a state where a voltage equal to or higher than the threshold is applied. Since the polymer is formed in such a shape, the PSA layers 13 and 23 to be formed have a structure that functions as an alignment film that defines an initial pretilt angle with respect to liquid crystal molecules even when a voltage is not applied later. It will be.
実施形態1においては、液晶層30に対し閾値以上の電圧が印加された状態で光照射が行われなくてもよい。例えば、配向膜12、22自体が液晶分子に対しプレチルト配向を付与する特性を有する場合、配向膜12、22上に形成されるPSA層13、23は、配向膜のもつ配向安定性をより高める膜として機能する。配向膜12、22のもつ配向規制力が向上することで、液晶分子はより均一に配向制御され、配向の時間的な変化が少なくなる上、表示に焼き付きが生じにくくなる。なお、実施形態1においては、配向膜12、22に対し配向処理がなされた上で、更に液晶層30に対し閾値以上の電圧を印加した状態で光照射が行われてPSA層13、23が形成されてもよく、これにより、より配向安定性の高い配向膜12、22及びPSA層13、23の組み合わせを得ることができる。 In the first embodiment, the light irradiation may not be performed in a state where a voltage equal to or higher than the threshold is applied to the liquid crystal layer 30. For example, when the alignment films 12 and 22 themselves have a property of imparting pretilt alignment to liquid crystal molecules, the PSA layers 13 and 23 formed on the alignment films 12 and 22 further enhance the alignment stability of the alignment film. Functions as a membrane. By improving the alignment regulating force of the alignment films 12 and 22, the liquid crystal molecules are more uniformly controlled, the change in alignment with time is reduced, and the display is less likely to be burned. In the first embodiment, the alignment films 12 and 22 are subjected to alignment treatment, and then light irradiation is performed with a voltage higher than a threshold applied to the liquid crystal layer 30 to form the PSA layers 13 and 23. Thus, a combination of alignment films 12 and 22 and PSA layers 13 and 23 with higher alignment stability can be obtained.
実施形態1は、液晶分子の配向が、例えば、アレイ基板10が有する画素電極45、又は、対向基板20が有する共通電極25に設けられた線状のスリットによって規定される形態(PVA(Patterned Vertical Alignment)モード)であってもよい。画素電極45及び/又は共通電極25に細い線状のスリットを形成した場合、液晶分子は電圧印加時において線状のスリットに向かって一律に並んだ配向性を有するので、液晶層30に対し閾値以上の電圧が印加された状態でモノマーを重合させることで、液晶分子に対しプレチルト角を付与するPSA層を形成することができる。 In the first embodiment, the alignment of the liquid crystal molecules is defined by, for example, a linear slit provided in the pixel electrode 45 included in the array substrate 10 or the common electrode 25 included in the counter substrate 20 (PVA (Patterned Vertical) Alignment) mode). When thin linear slits are formed in the pixel electrode 45 and / or the common electrode 25, the liquid crystal molecules have a uniform alignment toward the linear slits when a voltage is applied. By polymerizing the monomer in a state where the above voltage is applied, a PSA layer that imparts a pretilt angle to the liquid crystal molecules can be formed.
実施形態1において用いるモノマーは、下記一般式(I):
-A-(Z-A-P    (I)
(式中、P及びPは、同一又は異なって、アクリレート基又はメタクリレート基を表す。Zは、複数ある場合は同一又は異なって、COO、OCO若しくはO、又は、AとA若しくはAとAとが直接結合していることを表す。水素原子は、ハロゲン原子、メチル基、エチル基又はプロピル基に置換されていてもよい。A及びAは、同一又は異なって、下記化学式(1-1)~(1-4);
The monomer used in Embodiment 1 is represented by the following general formula (I):
P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I)
(In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different. The following chemical formulas (1-1) to (1-4);
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(水素原子は、フッ素原子、塩素原子、OCF基、CF基、CH基、CHF基、又は、CHF基に置換されていてもよい。)で表されるいずれかの基を表す。)で表されるいずれかの縮合芳香族化合物である。 (The hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.) Represents. ). Any condensed aromatic compound represented by
上記化学式(1-1)~(1-4)で表される基を含むモノマーは二官能モノマーであり、液晶材料と混合させたときに、単官能モノマーと比べて安定なPSA層を形成することができる。また、上記化学式(1-1)~(1-4)で表されるようなベンゼン環を3つ以上含むフェナントレン系縮合芳香族化合物は、370nm近くまで吸収波長域を有する。一般的に液晶表示装置に用いられる配向膜を表面に有する基板は、配向膜を構成する高分子主鎖及び側鎖の影響により330nm未満の光を多く吸収する傾向にあるので、370nm近くまで吸収波長域を有する上記化学式(1-1)~(1-4)で表される基を含むモノマーを用いることで、光利用効率を高めることができ、短時間の紫外線照射であっても充分なPSA層を作製することができる。 The monomer containing the groups represented by the above chemical formulas (1-1) to (1-4) is a bifunctional monomer, and forms a PSA layer that is more stable than a monofunctional monomer when mixed with a liquid crystal material. be able to. In addition, the phenanthrene-based condensed aromatic compound containing three or more benzene rings represented by the above chemical formulas (1-1) to (1-4) has an absorption wavelength range up to nearly 370 nm. In general, a substrate having an alignment film on the surface used for a liquid crystal display device tends to absorb a large amount of light of less than 330 nm due to the influence of the polymer main chain and side chains constituting the alignment film. By using a monomer containing a group represented by the above chemical formulas (1-1) to (1-4) having a wavelength range, the light use efficiency can be increased, and even a short-time ultraviolet irradiation is sufficient. A PSA layer can be produced.
実施形態1に係る液晶表示装置の他の構成要素について詳述する。図3及び図4は、実施形態1の液晶表示装置が備える基板の平面模式図である。図3はアレイ基板を示し、図4は対向基板を示す。 Other components of the liquid crystal display device according to Embodiment 1 will be described in detail. 3 and 4 are schematic plan views of a substrate provided in the liquid crystal display device of Embodiment 1. FIG. FIG. 3 shows an array substrate, and FIG. 4 shows a counter substrate.
図3に示すように、実施形態1の液晶表示装置においてアレイ基板が有する画素電極45は、各々が実質的に矩形の形状を有し、マトリクス状又はデルタ状に複数配置されて1つの表示面を構成する。なお、「実質的に矩形」とは、図3のように、矩形の一部に突出部や切り欠き部が含まれていてもよいことを示す。 As shown in FIG. 3, each of the pixel electrodes 45 included in the array substrate in the liquid crystal display device of Embodiment 1 has a substantially rectangular shape, and a plurality of pixel electrodes 45 are arranged in a matrix shape or a delta shape to form one display surface. Configure. Note that “substantially rectangular” indicates that a part of the rectangle may include a protruding portion or a cutout portion as shown in FIG. 3.
また、アレイ基板は、相互に平行に伸びる複数のゲート信号線41、複数のソース信号線42、及び、複数の補助容量(Cs)配線43をそれぞれ絶縁膜を介して有し、ゲート信号線41と補助容量(Cs)配線43とは相互に平行に伸びており、かつ複数のソース信号線42と交差している。また、ゲート信号線41及びソース信号線42は、それぞれ薄膜トランジスタ(TFT)44が有する各電極に接続されている。TFT44は、三端子型の電界効果トランジスタであり、半導体層のほかに、ゲート電極、ソース電極及びドレイン電極の3つの電極を有する。TFT44は、画素の駆動制御を行うスイッチング素子となる。なお、実施形態1においては、一つの画素電極45を複数の副画素電極に分け、それぞれの副画素電極に対してTFTを設け、一つのゲート信号線で二つの副画素電極を制御するマルチ駆動としてもよい。 The array substrate has a plurality of gate signal lines 41, a plurality of source signal lines 42, and a plurality of auxiliary capacitance (Cs) wirings 43 extending in parallel with each other via an insulating film. And the auxiliary capacitance (Cs) wiring 43 extend in parallel to each other and intersect the plurality of source signal lines 42. Further, the gate signal line 41 and the source signal line 42 are connected to the respective electrodes of the thin film transistor (TFT) 44. The TFT 44 is a three-terminal field effect transistor, and has three electrodes including a gate electrode, a source electrode, and a drain electrode in addition to the semiconductor layer. The TFT 44 serves as a switching element that performs pixel drive control. In the first embodiment, one pixel electrode 45 is divided into a plurality of subpixel electrodes, a TFT is provided for each subpixel electrode, and two subpixel electrodes are controlled by one gate signal line. It is good.
図4に示すように、実施形態1の液晶表示装置において対向基板20は、遮光性を有するBM(ブラックマトリクス)26と、それぞれ特定の波長の光のみを透過する赤のカラーフィルタ24R、青のカラーフィルタ24B、及び、緑のカラーフィルタ24Gを有する。各カラーフィルタ24の間隙には、BM26が形成され、全体として格子状となっている。各カラーフィルタ24は、アレイ基板の画素電極のそれぞれと重なるように配置されている。 As shown in FIG. 4, in the liquid crystal display device according to the first embodiment, the counter substrate 20 includes a light-shielding BM (black matrix) 26, a red color filter 24R that transmits only light of a specific wavelength, and a blue color filter 24R. It has a color filter 24B and a green color filter 24G. BMs 26 are formed in the gaps between the color filters 24, and have a lattice shape as a whole. Each color filter 24 is disposed so as to overlap each pixel electrode of the array substrate.
実施形態1において、画素電極の形状は、図5に示すような形状であってもよい。図5は、実施形態1の液晶表示装置の画素電極の変形例を示す平面模式図である。図5に示す画素電極45は、矩形の電極の外周から内部に向かって複数の細いスリットが形成された電極であり、十字状の幹部45aと、幹部45aの両側から外側に向かって斜め方向に伸びる複数の枝部45bとから構成される。視野角特性を向上させる観点から、各枝部45bは領域ごとに互いに異なる方向に伸びていることが好ましい。具体的には、十字状の幹部45aの延伸方向を0°、90°、180°、270°としたときに、45°方向、135°方向、225°方向及び315°方向にそれぞれ伸びる4種の枝部45bが形成されている。画素電極がこのような形状を有する場合には、ラビング処理、光配向処理等の配向処理は不要である。また、電圧を印加すると液晶分子は画素中央部に向かって倒れるため、電圧印加状態で露光しPSA層を形成することで、電圧無印加時においても液晶の配向を安定させることができる。なお、実施形態1の他の変形例としては、配向制御構造としてリブ及び電極内スリットを設けて液晶分子の配向を制御するMVA(Multi-domain Vertical Alignment)モードが挙げられる。 In the first embodiment, the shape of the pixel electrode may be as shown in FIG. FIG. 5 is a schematic plan view illustrating a modification example of the pixel electrode of the liquid crystal display device according to the first embodiment. The pixel electrode 45 shown in FIG. 5 is an electrode in which a plurality of thin slits are formed from the outer periphery to the inside of a rectangular electrode, and the cross-shaped trunk portion 45a and obliquely outward from both sides of the trunk portion 45a. It comprises a plurality of branch portions 45b that extend. From the viewpoint of improving the viewing angle characteristics, each branch portion 45b preferably extends in a different direction for each region. Specifically, when the extending direction of the cross-shaped trunk portion 45a is 0 °, 90 °, 180 °, and 270 °, the four types extend in the 45 ° direction, the 135 ° direction, the 225 ° direction, and the 315 ° direction, respectively. Branch portion 45b is formed. When the pixel electrode has such a shape, alignment treatment such as rubbing treatment and photo-alignment treatment is not necessary. In addition, when a voltage is applied, the liquid crystal molecules are tilted toward the center of the pixel. Therefore, the alignment of the liquid crystal can be stabilized even when no voltage is applied by forming a PSA layer by exposing in a voltage applied state. As another modification of the first embodiment, there is an MVA (Multi-domain Vertical Alignment) mode in which ribs and slits in electrodes are provided as an alignment control structure to control the alignment of liquid crystal molecules.
また、図3等に示す画素を有する実施形態1において配向膜12、22は、ラビング処理、光配向処理等のいずれの配向処理を行ってもよいが、光配向処理によれば、例えば、TFTの破損等の可能性を減らすことができる。また、画素の配向分割を行う場合にはラビング処理を用いる場合よりも簡便に行うことができる。配向分割としては、配向処理方向を一対の基板で互いに直交するよう異ならせ、かつ、一つの画素が4つのドメインに分割される4D-RTN(4-Domain Reverse Twisted Nematic)モードが挙げられ、視野角が大きく改善される。4D-RTNにおいては、高精度なプレチルト制御が求められるが、実施形態1の液晶表示装置によれば、配向膜上に形成されたPSA層の影響により、安定性に優れたプレチルトを得ることができるため、4D-RTNを用いたとしても充分な配向安定性を得ることができる。 In the first embodiment having the pixels shown in FIG. 3 and the like, the alignment films 12 and 22 may be subjected to any alignment treatment such as rubbing treatment or photo-alignment treatment. The possibility of breakage etc. can be reduced. Further, when the orientation division of the pixel is performed, it can be performed more easily than when the rubbing process is used. Examples of the alignment division include a 4D-RTN (4-Domain Reverse Reverse Twisted Nematic) mode in which the alignment processing directions are made to be orthogonal to each other on a pair of substrates and one pixel is divided into four domains. The corner is greatly improved. In 4D-RTN, high-precision pretilt control is required, but according to the liquid crystal display device of Embodiment 1, a pretilt with excellent stability can be obtained due to the influence of the PSA layer formed on the alignment film. Therefore, even if 4D-RTN is used, sufficient alignment stability can be obtained.
実施形態1に係る液晶表示装置においては、アレイ基板10、液晶層30及び対向基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されている。アレイ基板10の背面側には、偏光板が備え付けられる。また、対向基板20の観察面側にも、偏光板が備え付けられる。これらの偏光板に対しては、更に位相差板が配置されていてもよく、上記偏光板は、円偏光板であってもよい。 In the liquid crystal display device according to the first embodiment, the array substrate 10, the liquid crystal layer 30, and the counter substrate 20 are stacked in this order from the back surface side to the observation surface side of the liquid crystal display device. A polarizing plate is provided on the back side of the array substrate 10. In addition, a polarizing plate is provided on the observation surface side of the counter substrate 20. A retardation plate may be further arranged for these polarizing plates, and the polarizing plate may be a circularly polarizing plate.
実施形態1に係る液晶表示装置は、透過型の液晶表示装置である。バックライトは、アレイ基板10の更に背面側に配置され、アレイ基板10、液晶層30及び対向基板20の順に光が透過するように配置される。反射透過両用型であれば、アレイ基板10は、外光を反射するための反射板を備える。また、少なくとも反射光を表示光として用いる領域においては、対向基板20の偏光板は、いわゆるλ/4位相差板を備える円偏光板である必要がある。 The liquid crystal display device according to the first embodiment is a transmissive liquid crystal display device. The backlight is disposed further on the back side of the array substrate 10 and is disposed so that light is transmitted through the array substrate 10, the liquid crystal layer 30, and the counter substrate 20 in this order. In the case of the reflection / transmission type, the array substrate 10 includes a reflection plate for reflecting outside light. Further, at least in a region where reflected light is used as display light, the polarizing plate of the counter substrate 20 needs to be a circularly polarizing plate provided with a so-called λ / 4 retardation plate.
バックライトの種類は、エッジライト型、直下型等、特に限定されない。小型の画面を備える液晶表示装置では、少ない数の光源により低消費電力で表示を行うことが可能であり、かつ薄型化にも適したエッジライト型が広く利用されている。 The type of the backlight is not particularly limited, such as an edge light type or a direct type. In a liquid crystal display device having a small screen, an edge light type that can display with low power consumption with a small number of light sources and is suitable for thinning is widely used.
実施形態1において用いられる光源の種類は、発光ダイオード(LED)である。また、実施形態1においてLEDは実質的に400nm未満の波長をもつ光を出射しないように調節されている。なお、実施形態1においてLEDは実質的に420nm未満の波長をもつ光を出射しないように調節されていることが好ましい。例えば、図12のグラフに示すような白色LEDであれば、実質的に420nm以下の波長をもつ光を出射しないため、焼き付きの発生の低減に大きく貢献する。 The type of light source used in Embodiment 1 is a light emitting diode (LED). In the first embodiment, the LED is adjusted so as not to emit light having a wavelength of substantially less than 400 nm. In the first embodiment, the LED is preferably adjusted so as not to emit light having a wavelength of substantially less than 420 nm. For example, a white LED as shown in the graph of FIG. 12 does not emit light having a wavelength of substantially 420 nm or less, which greatly contributes to the reduction of image sticking.
バックライトを構成する部材としては、光源の他、反射シート、拡散シート、プリズムシート、導光板等が挙げられる。エッジライト型のバックライトでは、光源から出射された光は、導光板の側面から導光板内に入射し、反射、拡散等されて導光板の主面から面状の光となって出射され、更にプリズムシート等を通過し、表示光として出射される。直下型のバックライトでは、光源から出射された光は、導光板を経ずにダイレクトに反射シート、拡散シート、プリズムシート等を通過し、表示光として出射される。 Examples of the member constituting the backlight include a light source, a reflection sheet, a diffusion sheet, a prism sheet, and a light guide plate. In the edge light type backlight, light emitted from the light source enters the light guide plate from the side surface of the light guide plate, is reflected, diffused, etc., and is emitted as planar light from the main surface of the light guide plate, Further, the light passes through a prism sheet or the like and is emitted as display light. In a direct type backlight, light emitted from a light source passes directly through a reflection sheet, a diffusion sheet, a prism sheet, etc. without passing through a light guide plate, and is emitted as display light.
実施形態1に係る液晶表示装置は、液晶表示装置(例えば、液晶TV(テレビジョン))を分解して配向膜を採取し、13C-核磁気共鳴分析法(NMR:Nuclear Magnetic Resonance)、質量分析法(MS:Mass Spectrometry)等を用いた化学分析を行うことにより、配向膜の成分の解析、PSA層中に存在するPSA層形成用モノマー(モノマー)の成分の解析、液晶層中に含まれるPSA層形成用モノマー(モノマー)の混入量、PSA層中のPSA層形成用モノマー(モノマー)の存在比等を確認することができる。 The liquid crystal display device according to Embodiment 1 disassembles a liquid crystal display device (for example, a liquid crystal TV (television)), collects an alignment film, 13 C-Nuclear Magnetic Resonance (NMR), mass Analyzing the components of the alignment film, analyzing the components of the PSA layer forming monomer (monomer) present in the PSA layer, and including it in the liquid crystal layer by performing chemical analysis using an analysis method (MS: Mass Spectrometry), etc. The amount of the PSA layer forming monomer (monomer) mixed, the abundance ratio of the PSA layer forming monomer (monomer) in the PSA layer, and the like can be confirmed.
実施例1
実際に実施形態1に係る液晶表示パネルを作製し、表示の焼き付きの確認を行った。実施例1で用いた光源は、図9及び図10に示す発光スペクトルをもつLEDであり、実質的に400nm未満の波長をもつ光を有さない。一方、図9及び図10に示す発光スペクトルをもつCCFLでは365nm付近に極めて微小なピーク(約0.04μW/cm)が観測された。
Example 1
A liquid crystal display panel according to Embodiment 1 was actually manufactured, and display burn-in was confirmed. The light source used in Example 1 is an LED having the emission spectrum shown in FIGS. 9 and 10 and has substantially no light having a wavelength of less than 400 nm. On the other hand, in the CCFL having the emission spectrum shown in FIGS. 9 and 10, a very small peak (about 0.04 μW / cm 2 ) was observed near 365 nm.
まず、アレイ基板及び対向基板からなる一対の基板を用意し、液晶材料と、PSA層形成用のモノマーとを含む液晶層形成用組成物を滴下後、他方の基板と貼り合わせを行った。カラーフィルタは対向基板に作製されている。 First, a pair of substrates including an array substrate and a counter substrate was prepared, and after a liquid crystal layer forming composition containing a liquid crystal material and a monomer for forming a PSA layer was dropped, it was bonded to the other substrate. The color filter is manufactured on the counter substrate.
実施例1では、PSA層形成用のモノマーとして下記化学式(3); In Example 1, the following chemical formula (3) is used as a monomer for forming the PSA layer;
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表される化合物を用いた。上記化学式(3)で表される化合物は、フェナントレン系の二官能メタクリレートモノマーである。実施例1では、液晶層形成用組成物中に、上記化学式(3)で表される二官能フェナントレン系モノマーが0.6wt%含まれるように調製を行った。 The compound represented by this was used. The compound represented by the chemical formula (3) is a phenanthrene-based bifunctional methacrylate monomer. In Example 1, the liquid crystal layer forming composition was prepared so that the bifunctional phenanthrene monomer represented by the chemical formula (3) was contained by 0.6 wt%.
次に、一対の基板によって挟持された液晶層に対し、AC10Vの電圧印加状態で紫外光を1J/cm照射し、重合反応を行うことで、PSA層が垂直配向膜上に形成された液晶セルをそれぞれ完成させた。なお、液晶セルに対する紫外線の照射時間は3分間とした。紫外光光源としては、高圧水銀ランプ(オーク製作所社製)を用いた。その後、電圧を印加せず、光源FHF32-BLB(東芝ライテック社製)の光を1時間照射した。なお、配向処理を施した配向膜を用いた液晶表示パネルは電圧を印加する工程を省略した。 Next, the liquid crystal layer sandwiched between the pair of substrates is irradiated with 1 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the liquid crystal in which the PSA layer is formed on the vertical alignment film Each cell was completed. In addition, the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes. As the ultraviolet light source, a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour. The liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
続いて、完成した液晶表示パネルをLEDバックライト上に配置して表示を行い、焼き付き率の測定を行った。実施例1においては、焼き付き率を以下のように定義し、以下の方法で定量評価を行った。まず、白黒チェッカーパターンを表示領域に600時間表示させた。その後、表示領域全域に所定の中間調(グレー)を表示させ、白表示であった領域の輝度βと、黒表示であった領域の輝度γとの差β-γを、黒表示であった領域の輝度γで割り、焼き付き率を算出した。すなわち、焼き付き率の式は、以下の式で表される。
焼き付き率α=((β-γ)/γ)×100(%)
Subsequently, the completed liquid crystal display panel was placed on the LED backlight for display, and the burn-in rate was measured. In Example 1, the image sticking rate was defined as follows, and quantitative evaluation was performed by the following method. First, the black and white checker pattern was displayed in the display area for 600 hours. Thereafter, a predetermined halftone (gray) was displayed over the entire display area, and the difference β−γ between the brightness β of the area that was white and the brightness γ of the area that was black was black. The burn-in rate was calculated by dividing by the luminance γ of the area. That is, the burn-in rate formula is expressed by the following formula.
Burn-in rate α = ((β−γ) / γ) × 100 (%)
その結果、実施例1における液晶表示パネルの焼き付き率は、4%であった。 As a result, the burn-in rate of the liquid crystal display panel in Example 1 was 4%.
比較例1
また、LEDとCCFLとの差異を確認するために、実際に実施例1と同様の液晶表示パネルを作製し、完成した液晶表示パネルを、図9に示す発光スペクトルをもつCCFLバックライト上に配置して表示を行い、焼き付き率の測定を行った。焼き付き率の定義及び評価方法は、実施例1と同じである。
Comparative Example 1
In order to confirm the difference between the LED and the CCFL, a liquid crystal display panel similar to that in Example 1 was actually manufactured, and the completed liquid crystal display panel was placed on the CCFL backlight having the emission spectrum shown in FIG. The display was performed and the burn-in rate was measured. The definition and evaluation method of the burn-in rate are the same as those in Example 1.
その結果、比較例1における液晶表示パネルの焼き付き率は、6%であった。CCFLを用いた場合、液晶層内にわずかに残存するモノマーが重合し焼き付きを生じさせることが示された。 As a result, the burn-in rate of the liquid crystal display panel in Comparative Example 1 was 6%. When CCFL was used, it was shown that the monomer slightly remaining in the liquid crystal layer polymerizes to cause image sticking.
実施形態2
実施形態2の液晶表示装置は、カラーフィルタを対向基板ではなくアレイ基板に形成するカラーフィルタオンアレイ(COA:Color Filter On Array)の形態としたこと、及び、光源がLEDに限定されないこと以外は実施形態1と同様である。
Embodiment 2
The liquid crystal display device of Embodiment 2 is in the form of a color filter on array (COA) in which color filters are formed on an array substrate instead of a counter substrate, and the light source is not limited to LEDs. The same as in the first embodiment.
図6及び図7は、実施形態2の液晶表示装置の断面模式図である。図6はPSA重合工程前を示し、図7はPSA重合工程後を示す。図6及び図7に示すように、実施形態2においてカラーフィルタ24及びブラックマトリクス26は、アレイ基板10に形成されている。より詳しくは、ガラス等を材料とする絶縁性の透明基板11上にTFT44及びバスライン(図示せず)が配置され、絶縁膜(図示せず)を介してその上にブラックマトリクス26及びカラーフィルタ24が配置される。カラーフィルタ24の上に他の絶縁膜が設けられる場合もある。また、ブラックマトリクスは対向基板側にのみ設けられる場合もある。カラーフィルタ24と重なる位置には画素電極45が配置される。カラーフィルタ24内に形成されたコンタクト部47を介して、画素電極45とTFT44とが接続される。画素電極45上、及び、画素電極45がなく表面が露出したカラーフィルタ24上又はカラーフィルタ24の上に絶縁膜がある場合はその絶縁膜上に配向膜12が形成される。図6及び図7では、赤24R、緑24G及び青24Bの三色のカラーフィルタを用いたものを示しているが、実施形態2においてカラーフィルタは、実質的に350nm未満の波長をもつ光を透過しないフィルタが選択されている限り、色の種類、数及び配置順は特に限定されない。なお、実施形態2においてカラーフィルタは実質的に420nm未満の波長をもつ光を透過しないことがより好ましい。例えば、図13のグラフに示すような420nm未満の波長をもつ光を吸収する特性を示すカラーフィルタを用いた場合には、紫外域の波長をもつ光がほとんどなくなるため、焼き付きの発生の低減に大きく貢献する。 6 and 7 are schematic cross-sectional views of the liquid crystal display device according to the second embodiment. FIG. 6 shows before the PSA polymerization step, and FIG. 7 shows after the PSA polymerization step. As shown in FIGS. 6 and 7, in the second embodiment, the color filter 24 and the black matrix 26 are formed on the array substrate 10. More specifically, a TFT 44 and a bus line (not shown) are disposed on an insulating transparent substrate 11 made of glass or the like, and a black matrix 26 and a color filter are formed thereon via an insulating film (not shown). 24 is arranged. In some cases, another insulating film may be provided on the color filter 24. The black matrix may be provided only on the counter substrate side. A pixel electrode 45 is disposed at a position overlapping the color filter 24. The pixel electrode 45 and the TFT 44 are connected through a contact portion 47 formed in the color filter 24. When there is an insulating film on the pixel electrode 45 and on the color filter 24 where the surface is exposed without the pixel electrode 45 or on the color filter 24, the alignment film 12 is formed on the insulating film. FIGS. 6 and 7 show a color filter using three color filters of red 24R, green 24G, and blue 24B. However, in the second embodiment, the color filter emits light having a wavelength substantially less than 350 nm. As long as a filter that does not transmit light is selected, the type, number, and arrangement order of colors are not particularly limited. In the second embodiment, it is more preferable that the color filter does not transmit light having a wavelength of substantially less than 420 nm. For example, when a color filter having a characteristic of absorbing light having a wavelength of less than 420 nm as shown in the graph of FIG. 13 is used, light having a wavelength in the ultraviolet region is almost eliminated, thereby reducing the occurrence of image sticking. Contribute greatly.
カラーフィルタオンアレイによれば、画素電極とカラーフィルタとがそれぞれ異なる基板に形成されることによるアライメントズレの課題が解消される。 According to the color filter on array, the problem of misalignment due to the pixel electrode and the color filter being formed on different substrates is solved.
実施形態2において用いられるバックライト50の光源の種類は、発光ダイオード(LED)又は冷陰極管(CCFL)である。 The kind of light source of the backlight 50 used in Embodiment 2 is a light emitting diode (LED) or a cold cathode tube (CCFL).
実施例2
実際に実施形態2に係る液晶表示パネルを作製し、表示の焼き付きの確認を行った。実施例2で用いた光源は、図9及び図10に示す発光スペクトルをもつCCFLであり、わずかに紫外光を含む。
Example 2
A liquid crystal display panel according to Embodiment 2 was actually manufactured and display burn-in was confirmed. The light source used in Example 2 is a CCFL having an emission spectrum shown in FIGS. 9 and 10 and slightly contains ultraviolet light.
まず、アレイ基板及び対向基板からなる一対の基板を用意し、液晶材料と、上記化学式(3)で表されるPSA層形成用のモノマーとを含む液晶層形成用組成物を滴下後、他方の基板と貼り合わせを行った。カラーフィルタはアレイ基板に作製されている。また、実施例2で用いたカラーフィルタは、図11で示される透過スペクトルをもち、実質的に350nm未満の波長をもつ光を透過しない。 First, a pair of substrates comprising an array substrate and a counter substrate is prepared, and after dropping a composition for forming a liquid crystal layer containing a liquid crystal material and a monomer for forming a PSA layer represented by the chemical formula (3), the other substrate Bonding to the substrate was performed. The color filter is fabricated on the array substrate. The color filter used in Example 2 has the transmission spectrum shown in FIG. 11 and does not transmit light having a wavelength of substantially less than 350 nm.
次に、一対の基板によって挟持された液晶層に対し、AC10Vの電圧印加状態で紫外光を3J/cm照射し、重合反応を行うことで、PSA層が垂直配向膜上に形成された液晶セルをそれぞれ完成させた。なお、液晶セルに対する紫外線の照射時間は3分間とした。紫外光光源としては、高圧水銀ランプ(オーク製作所社製)を用いた。その後、電圧を印加せず、光源FHF32-BLB(東芝ライテック社製)の光を1時間照射した。なお、配向処理を施した配向膜を用いた液晶表示パネルは電圧を印加する工程を省略した。 Next, the liquid crystal layer sandwiched between the pair of substrates is irradiated with 3 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the PSA layer is formed on the vertical alignment film. Each cell was completed. In addition, the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes. As the ultraviolet light source, a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour. The liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
続いて、完成した液晶表示パネルをCCFLバックライト上に配置して表示を行い、焼き付き率の測定を行った。焼き付き率の定義及び評価方法は、実施例1と同じである。 Subsequently, the completed liquid crystal display panel was placed on a CCFL backlight for display, and the burn-in rate was measured. The definition and evaluation method of the burn-in rate are the same as those in Example 1.
その結果、実施例2における液晶表示パネルの焼き付き率は、5%であった。 As a result, the burn-in rate of the liquid crystal display panel in Example 2 was 5%.
実施例3
実際に実施形態2に係る液晶表示パネルを作製し、表示の焼き付きの確認を行った。実施例3で用いた光源は、図9及び図10に示す発光スペクトルをもつLEDであり、実質的に400nm未満の波長をもつ光を有さない。
Example 3
A liquid crystal display panel according to Embodiment 2 was actually manufactured and display burn-in was confirmed. The light source used in Example 3 is an LED having the emission spectrum shown in FIG. 9 and FIG. 10, and has substantially no light having a wavelength of less than 400 nm.
まず、アレイ基板及び対向基板からなる一対の基板を用意し、液晶材料と、上記化学式(3)で表されるPSA層形成用のモノマーとを含む液晶層形成用組成物を滴下後、他方の基板と貼り合わせを行った。カラーフィルタはアレイ基板に作製されている。また、実施例3で用いたカラーフィルタは、図11で示される透過スペクトルをもち、実質的に350nm未満の波長をもつ光を透過しない。 First, a pair of substrates comprising an array substrate and a counter substrate is prepared, and after dropping a composition for forming a liquid crystal layer containing a liquid crystal material and a monomer for forming a PSA layer represented by the chemical formula (3), the other substrate Bonding to the substrate was performed. The color filter is fabricated on the array substrate. The color filter used in Example 3 has the transmission spectrum shown in FIG. 11 and does not transmit light having a wavelength of substantially less than 350 nm.
次に、一対の基板によって挟持された液晶層に対し、AC10Vの電圧印加状態で紫外光を3J/cm照射し、重合反応を行うことで、PSA層が垂直配向膜上に形成された液晶セルをそれぞれ完成させた。なお、液晶セルに対する紫外線の照射時間は3分間とした。紫外光光源としては、高圧水銀ランプ(オーク製作所社製)を用いた。その後、電圧を印加せず、光源FHF32-BLB(東芝ライテック社製)の光を1時間照射した。なお、配向処理を施した配向膜を用いた液晶表示パネルは電圧を印加する工程を省略した。 Next, the liquid crystal layer sandwiched between the pair of substrates is irradiated with 3 J / cm 2 of ultraviolet light with a voltage of 10 V AC applied, and a polymerization reaction is performed, whereby the PSA layer is formed on the vertical alignment film. Each cell was completed. In addition, the irradiation time of the ultraviolet rays with respect to the liquid crystal cell was 3 minutes. As the ultraviolet light source, a high-pressure mercury lamp (manufactured by Oak Manufacturing Co., Ltd.) was used. Thereafter, no voltage was applied, and light from a light source FHF32-BLB (manufactured by Toshiba Lighting & Technology Corp.) was irradiated for 1 hour. The liquid crystal display panel using the alignment film subjected to the alignment treatment omits the step of applying a voltage.
続いて、完成した液晶表示パネルをLEDバックライト上に配置して表示を行い、焼き付き率の測定を行った。焼き付き率の定義及び評価方法は、実施例1と同じである。 Subsequently, the completed liquid crystal display panel was placed on the LED backlight for display, and the burn-in rate was measured. The definition and evaluation method of the burn-in rate are the same as those in Example 1.
その結果、実施例3における液晶表示パネルの焼き付き率は、3%であった。 As a result, the burn-in rate of the liquid crystal display panel in Example 3 was 3%.
なお、本願は、2010年9月8日に出願された日本国特許出願2010-201210号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 The present application claims priority based on the Paris Convention or the laws and regulations in the country to which the transition is based on Japanese Patent Application No. 2010-201210 filed on September 8, 2010. The contents of the application are hereby incorporated by reference in their entirety.
10:アレイ基板
11、21:透明基板
12、22:配向膜
13、23:PSA層(ポリマー層)
14:絶縁膜
20:対向基板
24:カラーフィルタ
24R:赤(R)のカラーフィルタ
24G:緑(G)のカラーフィルタ
24B:青(B)のカラーフィルタ
25:共通電極
26:ブラックマトリクス
30:液晶層
31:モノマー
41:ゲート信号線
42:ソース信号線
43:補助容量(Cs)配線
44:TFT
45:画素電極
47:コンタクト部
50:バックライト
10: Array substrate 11, 21: Transparent substrate 12, 22: Alignment film 13, 23: PSA layer (polymer layer)
14: Insulating film 20: Counter substrate 24: Color filter 24R: Red (R) color filter 24G: Green (G) color filter 24B: Blue (B) color filter 25: Common electrode 26: Black matrix 30: Liquid crystal Layer 31: Monomer 41: Gate signal line 42: Source signal line 43: Auxiliary capacitance (Cs) wiring 44: TFT
45: Pixel electrode 47: Contact part 50: Backlight

Claims (6)

  1. 一対の基板、及び、該一対の基板間に挟持された液晶層を備える液晶表示パネルと、液晶表示パネルの後方に配置されたバックライトとを備える液晶表示装置であって、
    該一対の基板の少なくとも一方は、近接する液晶分子を配向制御する配向膜、及び、該配向膜上に形成され、近接する液晶分子を配向制御するポリマー層を有し、
    該ポリマー層は、液晶層中に添加されたモノマーが重合することによって形成されたものであり、
    該モノマーは、下記一般式(I):
    -A-(Z-A-P    (I)
    (式中、P及びPは、同一又は異なって、アクリレート基又はメタクリレート基を表す。Zは、複数ある場合は同一又は異なって、COO、OCO若しくはO、又は、AとA若しくはAとAとが直接結合していることを表す。水素原子は、ハロゲン原子、メチル基、エチル基又はプロピル基に置換されていてもよい。A及びAは、同一又は異なって、下記化学式(1-1)~(1-4);
    Figure JPOXMLDOC01-appb-C000001
    (水素原子は、フッ素原子、塩素原子、OCF基、CF基、CH基、CHF基、又は、CHF基に置換されていてもよい。)で表されるいずれかの基を表す。)
    で表される化合物であり、
    該バックライトの光源は、少なくとも一つの発光ダイオードからなり、
    該発光ダイオードはいずれも、実質的に400nm以上の波長をもつ光のみを出射する
    ことを特徴とする液晶表示装置。
    A liquid crystal display device comprising a pair of substrates, a liquid crystal display panel comprising a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel,
    At least one of the pair of substrates has an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules,
    The polymer layer is formed by polymerization of a monomer added to the liquid crystal layer,
    The monomer has the following general formula (I):
    P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I)
    (In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different. The following chemical formulas (1-1) to (1-4);
    Figure JPOXMLDOC01-appb-C000001
    (The hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.) Represents. )
    A compound represented by
    The light source of the backlight comprises at least one light emitting diode,
    All of the light emitting diodes emit only light having a wavelength of substantially 400 nm or more.
  2. 一対の基板、及び、該一対の基板間に挟持された液晶層を備える液晶表示パネルと、液晶表示パネルの後方に配置されたバックライトとを備える液晶表示装置であって、
    該一対の基板の少なくとも一方は、近接する液晶分子を配向制御する配向膜、及び、該配向膜上に形成され、近接する液晶分子を配向制御するポリマー層を有し、
    該ポリマー層は、液晶層中に添加されたモノマーが重合することによって形成されたものであり、
    該モノマーは、下記一般式(I):
    -A-(Z-A-P    (I)
    (式中、P及びPは、同一又は異なって、アクリレート基又はメタクリレート基を表す。Zは、複数ある場合は同一又は異なって、COO、OCO若しくはO、又は、AとA若しくはAとAとが直接結合していることを表す。水素原子は、ハロゲン原子、メチル基、エチル基又はプロピル基に置換されていてもよい。A及びAは、同一又は異なって、下記化学式(1-1)~(1-4);
    Figure JPOXMLDOC01-appb-C000002
    (水素原子は、フッ素原子、塩素原子、OCF基、CF基、CH基、CHF基、又は、CHF基に置換されていてもよい。)で表されるいずれかの基を表す。)
    で表される化合物であり、
    該一対の基板のうち該バックライトにより近い基板は、複数色のカラーフィルタを有し、
    該複数色のカラーフィルタはいずれも、実質的に350nm以上の波長をもつ光のみを透過する
    ことを特徴とする液晶表示装置。
    A liquid crystal display device comprising a pair of substrates, a liquid crystal display panel comprising a liquid crystal layer sandwiched between the pair of substrates, and a backlight disposed behind the liquid crystal display panel,
    At least one of the pair of substrates has an alignment film that controls alignment of adjacent liquid crystal molecules, and a polymer layer that is formed on the alignment film and controls alignment of adjacent liquid crystal molecules,
    The polymer layer is formed by polymerization of a monomer added to the liquid crystal layer,
    The monomer has the following general formula (I):
    P 1 -A 1- (Z 1 -A 2 ) n -P 2 (I)
    (In the formula, P 1 and P 2 are the same or different and each represents an acrylate group or a methacrylate group. Z 1 is the same or different when there is a plurality, and is COO, OCO or O, or A 1 and A 2. Alternatively, A 2 and A 2 are directly bonded, and the hydrogen atom may be substituted with a halogen atom, a methyl group, an ethyl group, or a propyl group, and A 1 and A 2 are the same or different. The following chemical formulas (1-1) to (1-4);
    Figure JPOXMLDOC01-appb-C000002
    (The hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an OCF 3 group, a CF 3 group, a CH 3 group, a CH 2 F group, or a CHF 2 group.) Represents. )
    A compound represented by
    Of the pair of substrates, the substrate closer to the backlight has a plurality of color filters,
    All of the color filters of the plurality of colors transmit only light having a wavelength of substantially 350 nm or more.
  3. 前記一対の基板のうち前記バックライトにより近い基板は、複数色のカラーフィルタを有し、
    前記複数色のカラーフィルタはいずれも、実質的に350nm以上の波長をもつ光のみを透過する
    ことを特徴とする請求項1記載の液晶表示装置。
    Of the pair of substrates, the substrate closer to the backlight has a plurality of color filters,
    2. The liquid crystal display device according to claim 1, wherein each of the plurality of color filters transmits only light having a wavelength of substantially 350 nm or more.
  4. 前記バックライトの光源は、少なくとも一つの発光ダイオードからなり、
    該発光ダイオードはいずれも、実質的に400nm以上の波長をもつ光のみを出射する
    ことを特徴とする請求項2記載の液晶表示装置。
    The light source of the backlight comprises at least one light emitting diode,
    3. The liquid crystal display device according to claim 2, wherein each of the light emitting diodes emits only light having a wavelength of substantially 400 nm or more.
  5. 前記発光ダイオードはいずれも、実質的に420nm以上の波長をもつ光のみを出射することを特徴とする請求項1又は4記載の液晶表示装置。 5. The liquid crystal display device according to claim 1, wherein each of the light emitting diodes emits only light having a wavelength of substantially 420 nm or more.
  6. 前記複数色のカラーフィルタはいずれも、実質的に420nm以上の波長をもつ光のみを透過することを特徴とする請求項2又は3記載の液晶表示装置。 4. The liquid crystal display device according to claim 2, wherein each of the plurality of color filters transmits only light having a wavelength of substantially 420 nm or more.
PCT/JP2011/070009 2010-09-08 2011-09-02 Liquid crystal display device WO2012033014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180043371.2A CN103109229B (en) 2010-09-08 2011-09-02 Liquid crystal display device
US13/821,322 US20130169906A1 (en) 2010-09-08 2011-09-02 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010201210 2010-09-08
JP2010-201210 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012033014A1 true WO2012033014A1 (en) 2012-03-15

Family

ID=45810615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070009 WO2012033014A1 (en) 2010-09-08 2011-09-02 Liquid crystal display device

Country Status (3)

Country Link
US (1) US20130169906A1 (en)
CN (1) CN103109229B (en)
WO (1) WO2012033014A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219270A (en) * 2011-04-07 2012-11-12 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
JP2014130336A (en) * 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
US20150153617A1 (en) * 2013-12-02 2015-06-04 Samsung Display Co., Ltd. Liquid crystal display device and method for manufacturing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017884A1 (en) 2010-08-03 2012-02-09 シャープ株式会社 Liquid crystal display device and process for producing liquid crystal display device
US9164325B2 (en) 2010-08-03 2015-10-20 Sharp Kabushiki Kaisha Liquid crystal display device and process for producing liquid crystal display device
CN103097945B (en) 2010-08-03 2015-09-30 夏普株式会社 The manufacture method of liquid crystal indicator and liquid crystal indicator
CN103080824B (en) 2010-09-07 2016-03-09 夏普株式会社 Liquid crystal layer forms the manufacture method with composition, liquid crystal indicator and liquid crystal indicator
US9182632B2 (en) 2010-12-06 2015-11-10 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
US9239493B2 (en) 2010-12-22 2016-01-19 Sharp Kabushiki Kaisha Liquid crystal alignment agent, liquid crystal display, and method for manufacturing liquid crystal display
KR101402036B1 (en) 2011-12-19 2014-06-02 디아이씨 가부시끼가이샤 Liquid crystal display device
JP5333880B1 (en) * 2012-02-01 2013-11-06 Dic株式会社 Liquid crystal display
CN104350416B (en) 2013-06-06 2015-12-09 Dic株式会社 Liquid crystal display device
US9915775B2 (en) 2013-08-29 2018-03-13 Soraa, Inc. Circadian-friendly LED light sources
EP2983037B1 (en) 2013-09-24 2018-05-09 DIC Corporation Liquid-crystal display
JP6056983B2 (en) 2013-10-30 2017-01-11 Dic株式会社 Liquid crystal display element
EP3064991B1 (en) 2013-10-30 2018-10-03 DIC Corporation Liquid-crystal display element
KR101717465B1 (en) 2013-11-12 2017-03-17 디아이씨 가부시끼가이샤 Liquid-crystal display element
KR20170037948A (en) 2014-07-29 2017-04-05 디아이씨 가부시끼가이샤 Liquid-crystal display element
KR20170037949A (en) 2014-07-29 2017-04-05 디아이씨 가부시끼가이샤 Liquid-crystal display element
CN105204231B (en) * 2015-10-13 2019-02-22 深圳市华星光电技术有限公司 Liquid crystal display panel and its manufacturing method
US11009749B2 (en) * 2015-12-25 2021-05-18 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
WO2018133024A1 (en) * 2017-01-20 2018-07-26 Suzhou Xingshuo Nanotech Co., Ltd. Photoluminescent nanocrystals based color liquid crystal display for switchable two dimensional/three dimensional displays with wider color gamut and high energy efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309125A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Photosensitive transparent resin composition and translucent liquid crystal display
JP2009076836A (en) * 2007-08-30 2009-04-09 Toppan Printing Co Ltd Liquid crystal display and color filter used therefor
WO2009118086A1 (en) * 2008-03-25 2009-10-01 Merck Patent Gmbh Liquid crystal display
WO2010079703A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Liquid crystal display device and composition for forming liquid crystal layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663714B2 (en) * 2004-08-18 2010-02-16 Sony Corporation Backlight device and color liquid crystal display apparatus
TWI360670B (en) * 2006-03-01 2012-03-21 Toyo Ink Mfg Co Color filter and liquid crystal display device
WO2008018213A1 (en) * 2006-08-10 2008-02-14 Sharp Kabushiki Kaisha Liquid crystal display device
JP4756178B2 (en) * 2009-04-01 2011-08-24 奇美電子股▲ふん▼有限公司 Display device
CN101566755B (en) * 2009-05-27 2011-08-24 北京科技大学 A kind of method that utilizes polymer stabilized liquid crystal material to prepare light brightness enhancement film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309125A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Photosensitive transparent resin composition and translucent liquid crystal display
JP2009076836A (en) * 2007-08-30 2009-04-09 Toppan Printing Co Ltd Liquid crystal display and color filter used therefor
WO2009118086A1 (en) * 2008-03-25 2009-10-01 Merck Patent Gmbh Liquid crystal display
WO2010079703A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Liquid crystal display device and composition for forming liquid crystal layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219270A (en) * 2011-04-07 2012-11-12 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
JP2014130336A (en) * 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
US20150153617A1 (en) * 2013-12-02 2015-06-04 Samsung Display Co., Ltd. Liquid crystal display device and method for manufacturing the same

Also Published As

Publication number Publication date
CN103109229A (en) 2013-05-15
CN103109229B (en) 2015-06-17
US20130169906A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2012033014A1 (en) Liquid crystal display device
US9341893B2 (en) Liquid crystal display device and electronic device using the same
US9651828B2 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
TWI480651B (en) Liquid crystal display device and method for preparing the same
US20130271713A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2010116565A1 (en) Liquid crystal display device, method for manufacturing liquid crystal display device, composition for forming photopolymer film, and composition for forming liquid crystal layer
WO2012086715A1 (en) Liquid crystal orienting agent, lcd device, and method for producing lcd device
US20190064604A1 (en) Liquid crystal display device and alignment film
WO2012121330A1 (en) Liquid crystal display device
KR20060112568A (en) Fluorescent panel and display device having same
WO2012046608A1 (en) Liquid crystal display device
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
US20110310339A1 (en) Liquid crystal display device
WO2012086718A1 (en) Lcd device and method for producing same
US12007640B2 (en) Liquid crystal display device
CN1749836A (en) Monochrome cholesteric liquid crystal display and manufacturing method thereof
KR20170135100A (en) Liquid Crystal Display Device And Method Of Fabricating The Same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043371.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载