WO2012018746A1 - Addition of endothermic fire retardants to provide near neutral ph pulp fiber webs - Google Patents
Addition of endothermic fire retardants to provide near neutral ph pulp fiber webs Download PDFInfo
- Publication number
- WO2012018746A1 WO2012018746A1 PCT/US2011/046169 US2011046169W WO2012018746A1 WO 2012018746 A1 WO2012018746 A1 WO 2012018746A1 US 2011046169 W US2011046169 W US 2011046169W WO 2012018746 A1 WO2012018746 A1 WO 2012018746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulp fiber
- fiber web
- fire
- fire retardants
- endothermic
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 274
- 239000003063 flame retardant Substances 0.000 title claims abstract description 217
- 230000007935 neutral effect Effects 0.000 title abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 49
- 230000009970 fire resistant effect Effects 0.000 claims abstract description 37
- 238000012360 testing method Methods 0.000 claims description 51
- 239000004094 surface-active agent Substances 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 29
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- HSEYYGFJBLWFGD-UHFFFAOYSA-N 4-methylsulfanyl-2-[(2-methylsulfanylpyridine-3-carbonyl)amino]butanoic acid Chemical compound CSCCC(C(O)=O)NC(=O)C1=CC=CN=C1SC HSEYYGFJBLWFGD-UHFFFAOYSA-N 0.000 claims description 10
- 239000011122 softwood Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 150000001298 alcohols Chemical class 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000004254 Ammonium phosphate Substances 0.000 claims description 6
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 6
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011121 hardwood Substances 0.000 claims description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 3
- HHSPVTKDOHQBKF-UHFFFAOYSA-J calcium;magnesium;dicarbonate Chemical compound [Mg+2].[Ca+2].[O-]C([O-])=O.[O-]C([O-])=O HHSPVTKDOHQBKF-UHFFFAOYSA-J 0.000 claims description 3
- UOVKYUCEFPSRIJ-UHFFFAOYSA-D hexamagnesium;tetracarbonate;dihydroxide;pentahydrate Chemical compound O.O.O.O.O.[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O UOVKYUCEFPSRIJ-UHFFFAOYSA-D 0.000 claims description 3
- 229940031958 magnesium carbonate hydroxide Drugs 0.000 claims description 3
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000391 magnesium silicate Substances 0.000 claims description 3
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 3
- 235000019792 magnesium silicate Nutrition 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 2
- -1 for example Substances 0.000 description 49
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 31
- 239000000463 material Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 10
- 229920002994 synthetic fiber Polymers 0.000 description 10
- 239000012209 synthetic fiber Substances 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 235000010216 calcium carbonate Nutrition 0.000 description 8
- 239000001913 cellulose Substances 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 8
- 239000002657 fibrous material Substances 0.000 description 8
- 239000013055 pulp slurry Substances 0.000 description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229940037003 alum Drugs 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 229910021532 Calcite Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 229920001131 Pulp (paper) Polymers 0.000 description 4
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 229920006277 melamine fiber Polymers 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 4
- 235000021286 stilbenes Nutrition 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001748 polybutylene Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- UQZLXZWXCZGLSW-UHFFFAOYSA-N 2-[2-[2-sulfo-4-(triazin-4-ylamino)phenyl]ethenyl]-5-(triazin-4-ylamino)benzenesulfonic acid Chemical class C=1C=C(C=CC=2C(=CC(NC=3N=NN=CC=3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC1=CC=NN=N1 UQZLXZWXCZGLSW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 2
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical group 0.000 description 2
- 235000011124 aluminium ammonium sulphate Nutrition 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229920001276 ammonium polyphosphate Polymers 0.000 description 2
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical class N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000006081 fluorescent whitening agent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229940015043 glyoxal Drugs 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical group OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- YMIUHIAWWDYGGU-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-[2,3,5,6-tetrabromo-4-(2,3,4,5,6-pentabromophenoxy)phenoxy]benzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC(C(=C1Br)Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br YMIUHIAWWDYGGU-UHFFFAOYSA-N 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- IJAAWBHHXIWAHM-UHFFFAOYSA-N 1,4-bis(2-phenylethenyl)benzene Chemical class C=1C=CC=CC=1C=CC(C=C1)=CC=C1C=CC1=CC=CC=C1 IJAAWBHHXIWAHM-UHFFFAOYSA-N 0.000 description 1
- NJXKLEIKNDPXAE-UHFFFAOYSA-N 1h-benzimidazole;1-benzofuran Chemical class C1=CC=C2OC=CC2=C1.C1=CC=C2NC=NC2=C1 NJXKLEIKNDPXAE-UHFFFAOYSA-N 0.000 description 1
- CASHWAGXBJSQDV-UHFFFAOYSA-N 2-(1,3,5-triazin-2-yl)-1,3,5-triazine Chemical group C1=NC=NC(C=2N=CN=CN=2)=N1 CASHWAGXBJSQDV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GJFNNZBYCMUAHY-ZHACJKMWSA-N 2-[(e)-2-phenylethenyl]-1,3-benzoxazole Chemical compound N=1C2=CC=CC=C2OC=1/C=C/C1=CC=CC=C1 GJFNNZBYCMUAHY-ZHACJKMWSA-N 0.000 description 1
- IOIVJDCXFSKYKU-UHFFFAOYSA-N 2-[2-[2-sulfo-4-(triazol-2-yl)phenyl]ethenyl]-5-(triazol-2-yl)benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC(N2N=CC=N2)=CC=C1C=CC(C(=C1)S(O)(=O)=O)=CC=C1N1N=CC=N1 IOIVJDCXFSKYKU-UHFFFAOYSA-N 0.000 description 1
- WTYIOUUBRHRFOP-UHFFFAOYSA-N 2-[4-[2-(4-phenylphenyl)ethenyl]phenyl]-1,3-benzoxazole Chemical class C=1C=C(C=2OC3=CC=CC=C3N=2)C=CC=1C=CC(C=C1)=CC=C1C1=CC=CC=C1 WTYIOUUBRHRFOP-UHFFFAOYSA-N 0.000 description 1
- YTVQIZRDLKWECQ-UHFFFAOYSA-N 2-benzoylcyclohexan-1-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1=O YTVQIZRDLKWECQ-UHFFFAOYSA-N 0.000 description 1
- FPFSGDXIBUDDKZ-UHFFFAOYSA-N 3-decyl-2-hydroxycyclopent-2-en-1-one Chemical compound CCCCCCCCCCC1=C(O)C(=O)CC1 FPFSGDXIBUDDKZ-UHFFFAOYSA-N 0.000 description 1
- DYIZJUDNMOIZQO-UHFFFAOYSA-N 4,5,6,7-tetrabromo-2-[2-(4,5,6,7-tetrabromo-1,3-dioxoisoindol-2-yl)ethyl]isoindole-1,3-dione Chemical compound O=C1C(C(=C(Br)C(Br)=C2Br)Br)=C2C(=O)N1CCN1C(=O)C2=C(Br)C(Br)=C(Br)C(Br)=C2C1=O DYIZJUDNMOIZQO-UHFFFAOYSA-N 0.000 description 1
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 244000283070 Abies balsamea Species 0.000 description 1
- 235000004710 Abies lasiocarpa Nutrition 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- WZUKKIPWIPZMAS-UHFFFAOYSA-K Ammonium alum Chemical compound [NH4+].O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O WZUKKIPWIPZMAS-UHFFFAOYSA-K 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- REJHVSOVQBJEBF-UHFFFAOYSA-N DSD-acid Natural products OS(=O)(=O)C1=CC(N)=CC=C1C=CC1=CC=C(N)C=C1S(O)(=O)=O REJHVSOVQBJEBF-UHFFFAOYSA-N 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- YPQFGPAPEMMGRU-UHFFFAOYSA-N N1N(N=CC=C1)NC1(CC(=C(C=C1)C=CC=1C(=CC=CC1)S(=O)(=O)O)S(=O)(=O)O)NN1NC=CC=N1 Chemical compound N1N(N=CC=C1)NC1(CC(=C(C=C1)C=CC=1C(=CC=CC1)S(=O)(=O)O)S(=O)(=O)O)NN1NC=CC=N1 YPQFGPAPEMMGRU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000008124 Picea excelsa Nutrition 0.000 description 1
- 240000000020 Picea glauca Species 0.000 description 1
- 235000008127 Picea glauca Nutrition 0.000 description 1
- 241000218594 Picea pungens Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000218680 Pinus banksiana Species 0.000 description 1
- 235000008565 Pinus banksiana Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000218606 Pinus contorta Species 0.000 description 1
- 241000142776 Pinus elliottii Species 0.000 description 1
- 235000011334 Pinus elliottii Nutrition 0.000 description 1
- 241000218621 Pinus radiata Species 0.000 description 1
- 235000008577 Pinus radiata Nutrition 0.000 description 1
- 241000218679 Pinus taeda Species 0.000 description 1
- 235000008566 Pinus taeda Nutrition 0.000 description 1
- 229920002257 Plurafac® Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920002347 Polypropylene succinate Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 240000001416 Pseudotsuga menziesii Species 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 235000016976 Quercus macrolepis Nutrition 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- RSBNPUNXBGVNNB-UHFFFAOYSA-M S(=O)(=O)([O-])[O-].[NH4+].[Co+] Chemical compound S(=O)(=O)([O-])[O-].[NH4+].[Co+] RSBNPUNXBGVNNB-UHFFFAOYSA-M 0.000 description 1
- 241000347485 Silurus glanis Species 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- 229940063656 aluminum chloride Drugs 0.000 description 1
- 229910001377 aluminum hypophosphite Inorganic materials 0.000 description 1
- 229940103272 aluminum potassium sulfate Drugs 0.000 description 1
- 229940010048 aluminum sulfate Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- DAPUDVOJPZKTSI-UHFFFAOYSA-L ammonium nickel sulfate Chemical compound [NH4+].[NH4+].[Ni+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DAPUDVOJPZKTSI-UHFFFAOYSA-L 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RAGLTCMTCZHYEJ-UHFFFAOYSA-K azanium;chromium(3+);disulfate Chemical compound [NH4+].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RAGLTCMTCZHYEJ-UHFFFAOYSA-K 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910001382 calcium hypophosphite Inorganic materials 0.000 description 1
- 229940064002 calcium hypophosphite Drugs 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- CXUJOBCFZQGUGO-UHFFFAOYSA-F calcium trimagnesium tetracarbonate Chemical compound [Mg++].[Mg++].[Mg++].[Ca++].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O CXUJOBCFZQGUGO-UHFFFAOYSA-F 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- VODGJKZAAVKBAL-UHFFFAOYSA-L diazanium;manganese(2+);disulfate Chemical compound [NH4+].[NH4+].[Mn+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VODGJKZAAVKBAL-UHFFFAOYSA-L 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- ZSFDBVJMDCMTBM-UHFFFAOYSA-N ethane-1,2-diamine;phosphoric acid Chemical class NCCN.OP(O)(O)=O ZSFDBVJMDCMTBM-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003621 hammer milling Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical class O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229910000515 huntite Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 235000014684 lodgepole pine Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- CPQCSJYYDADLCZ-UHFFFAOYSA-N n-methylhydroxylamine Chemical compound CNO CPQCSJYYDADLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- LIYKJALVRPGQTR-UHFFFAOYSA-M oxostibanylium;chloride Chemical compound [Cl-].[Sb+]=O LIYKJALVRPGQTR-UHFFFAOYSA-M 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- XFZRQAZGUOTJCS-UHFFFAOYSA-N phosphoric acid;1,3,5-triazine-2,4,6-triamine Chemical class OP(O)(O)=O.NC1=NC(N)=NC(N)=N1 XFZRQAZGUOTJCS-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000682 polycarbomethylsilane Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000000673 shore pine Nutrition 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- CNALVHVMBXLLIY-IUCAKERBSA-N tert-butyl n-[(3s,5s)-5-methylpiperidin-3-yl]carbamate Chemical compound C[C@@H]1CNC[C@@H](NC(=O)OC(C)(C)C)C1 CNALVHVMBXLLIY-IUCAKERBSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/07—Nitrogen-containing compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/22—Agents rendering paper porous, absorbent or bulky
- D21H21/24—Surfactants
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/34—Ignifugeants
Definitions
- the present invention broadly relates to a process for treating a partially delignified pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less, wherein at least about 5% of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed to provide a treated pulp fiber web having a near neutral pH (i.e., from about 5 to about 9).
- the present invention also broadly relates to a fire resistant pulp fiber web having a near neutral pH and comprising a partially delignified pulp fiber web; and a fire retardant component present in and/or on the pulp fiber web, wherein the fire retardant component comprises at least about 10% by weight of the fire retardant component of one or more endothermic fire retardants.
- Fire resistant fibrous materials may be used in upholstery, cushions, mattress ticking, panel fabric, padding, bedding, insulation, materials for parts in devices or appliances, etc. Such materials may be formed from natural and/or synthetic fibers, and then treated with fire retardant chemicals which may include halogen-based and/or phosphorous- based chemicals, along with certain metal oxides such as ferric oxide, stannic oxide, antimony trioxide, titanium dioxide, etc. These fire resistant materials may be produced by depositing these metal oxides, within or on the fibers, for example, by the successive precipitation of ferric oxides and a mixture of tungstic acid and stannic oxide, by the successive deposition of antimony trioxide and stannic oxide, by the successive deposition of antimony trioxide and titanium dioxide.
- a single processing bath may be used wherein a dispersion of a chlorinated hydrocarbon and finely divided antimony oxide is padded on the fabric material. Near the fibrous material's combustion temperature, the antimony oxide reacts with hydrogen chloride (generated by degradation of the chlorinated hydrocarbon) to form antimony oxychloride which acts to suppress the flame.
- the fire retardant chemicals may be reacted with the cellulose or protein functionalities of the natural fibers in the material.
- the cellulose in the fabric fibers may be esterified with diammonium hydrogen orthophosphate.
- amidophosphates may be reacted with trimethylol melamine to form a thermosetting resin within the fibrous materials (see U.S. Pat. No. 2,832,745 (Hechenblefkner), issued April 29, 1958) or a phosphorous containing N-hydroxy-methyl amide and tetrakis(hydroxymethyl)phosphonium chloride may be incorporated in the fibrous materials by thermal induced pad curing (see U.S. Pat. No. 4,026,808 (Duffy), issued May 31, 1977).
- Fire retardant chemicals may also be coated onto the fibrous materials.
- U.S. Pat. No. 3,955,032 (Mischutin), issued May 4, 1976, which discloses a process using chlorinated-cyclopentadieno compounds and chlorobrominated-cyclpentadieno compounds, either alone or in combination with metal oxides, which are suspended in a latex medium and then cured to render natural and synthetic fibrous materials and blends of thereof fire retardant.
- U.S. Pat. No. 3,955,032 Mischutin
- an article comprising a fire resistant pulp fiber web having a pH of from about 5 to about 9, and comprising: an at least partially delignified pulp fiber web having a Kappa number of less than about 130; and a fire retardant component present in and/or on the pulp fiber web in an amount of at least about 20 lbs fire retardant component per ton of the pulp fiber web, the fire retardant component comprising: at least about 10% by weight of the fire retardant component of one or more endothermic fire retardants; and up to about 90% by weight of the fire retardant component of one or more other fire retardants; and one or more fire retardant distributing surfactants in an amount sufficient to distribute the fire retardant component in and/or on the pulp fiber web; wherein the fire retardant component is in an amount and is distributed in and/or on the pulp fiber web in a manner so that the fire resistant pulp fiber web passes one or more of the following tests: the UL 94 HBF test, the Horizontal Burn Through test,
- FIG. 1 is a schematic diagram which shows an illustrative process for providing a fire resistant pulp fiber web having a near neutral pH according to an embodiment of the present invention.
- FIG. 2 is side sectional view of an air-laid fibrous structure which comprises a fire resistant pulp fiber web according to an embodiment of the present invention as the respective outer layers of the air-laid fibrous core of the structure.
- directional terms such as “top,” “bottom,” “upper,” “lower,” “side,” “front,” “frontal,” “forward,” “rear,” “rearward,” “back,” “trailing,” “above”, “below,” “left,” “right,” “horizontal,” “vertical,” “upward,” “downward,” etc. are merely used for convenience in describing the various embodiments of the present invention.
- the embodiments shown in FIGS. 1 through 2 may be flipped over, rotated by 90° in any direction, etc.
- pulp fibers refers to a wood pulp fibers which may be softwood pulp fibers, hardwood pulp fibers or a mixture of softwood and hardwood pulp fibers.
- the pulp fiber web may be in the form of, for example, sheets, strips, pieces, batts/battings, blankets, etc., which may be in the form of a continuous roll, a discrete sheet, etc.
- flufluff pulp refers to pulp fibers which may be comminuted to provide an air-laid fibrous structure. Fluff pulps may also be referred to as "fluffy pulp,” or “comminution pulp.” Some illustrative examples of commercially available fluff pulp may include one or more of: RW SupersoftTM, Supersoft LTM, RW Supersoft PlusTM, GT Supersoft PlusTM, RW Fluff LITETM, RW Fluff 110TM, RW Fluff 150TM, RW Fluff 160TM, GP 4881TM, GT PulpTM, RW SSPTM, GP 4825TM, etc.
- Pulp fiber web refers to a fibrous cellulosic matrix comprising wood pulp fibers. Pulp fiber webs may be in the form of, for example, sheets, strips, pieces, batts/battings, blankets, etc., which may be in the form of a continuous roll, a discrete sheet, etc.
- softwood pulp fibers refers to fibrous pulps derived from the woody substance of coniferous trees (gymnosperms) such as varieties of fir, spruce, pine, etc., for example, loblolly pine, slash pine, Colorado spruce, balsam fir, Douglas fir, jack pine, radiata pine, white spruce, lodgepole pine, redwood, etc. North American southern softwoods and northern softwoods may be used to provide softwood fibers, as well as softwoods from other regions of the world.
- hardwood pulp fibers refers to fibrous pulps derived from the woody substance of deciduous trees (angiosperms) such as birch, oak, beech, maple, eucalyptus, poplars, etc.
- the term "at least partially delignified pulp fibers” refers to pulp fibers which have been subjected to chemical and/or mechanical processing (e.g., kraft pulping processes) to at least partially remove lignin from the pulp fibers so that the pulp fibers have a Kappa number (also referred to as "K number") of about 130 or less, such as about 50 or less (e.g., about 35 or less). Kappa numbers may be determined by the ISO 302:2004 method. See G. A.
- basis weight refers to the grammage of the pulp fibers, pulp web, etc., as determined by TAPPI test T410. See G. A. Smook, Handbook for Pulp and Paper Technologists (2 nd Edition, 1992), page 342, Table 22- 11 , the entire contents and disclosure of which is herein incorporated by reference, which describes the physical test for measuring basis weight.
- Basis weight variability refers to the statistical variation from the target basis weight value. For example, if the target basis weight is 750 gsm and the area of the sample being evaluated is 755 gsm, the basis weight variability would be 0.06%. Basis weight variability may be measured in the machine direction (MD) or the cross machine direction (CD).
- the term "caliper,” refers to the thickness of a web (e.g., pulp fiber web) in mils, as determined by measuring the distance between smooth, flat plates at a defined pressure.
- moisture content refers to the amount of water present in the pulp fiber web as measured by TAPPI test T210 cm-03.
- the term "fiberization energy,” refers to the amount of energy (in kJ/kg) required to comminute (e.g., defiberize, disintegrate, shred, fragment, etc.) a pulp fiber web to individualized pulp fibers by using a hammermill (such as a Kamas Type H 01 Laboratory Defribrator manufactured by Kamas Industri AB).
- the energy required to comminute the pulp web is normally measured and displayed by the hammermill in, for example, watt hours (wH).
- the term "pulp filler” refers commonly to mineral products (e.g., calcium carbonate, kaolin clay, calcium sulfate hemihydrate, calcium sulfate dehydrate, chalk, etc.) which may be used in pulp fiber web making to reduce materials cost per unit mass of the web, increase opacity, etc. These mineral products may be finely divided, for example, in the size range of from about 0.5 to about 5 microns.
- pulp pigment refers to a material (e.g., a finely divided particulate matter) which may be used or may be intended to be used to affect optical properties of the pulp fiber web.
- Pulp pigments may include one or more of: calcium carbonate, kaolin clay, calcined clay, modified calcined clay, aluminum trihydrate, titanium dioxide, talc, plastic pigment, amorphous silica, aluminum silicate, zeolite, aluminum oxide, colloidal silica, colloidal alumina slurry, etc.
- calcium carbonate refers various calcium carbonates which may be used as pulp pigments, such as precipitated calcium carbonate (PCC), ground calcium carbonate (GCC), modified PCC and/or GCC, etc.
- the term "precipitated calcium carbonate (PCC)” refers to a calcium carbonate which may be manufactured by a precipitation reaction and which may used as a pulp pigment.
- PCC may comprise almost entirely of the calcite crystal form of CaC0 3 .
- the calcite crystal may have several different macroscopic shapes depending on the conditions of production.
- Precipitated calcium carbonates may be prepared by the carbonation, with carbon dioxide (CO 2 ) gas, of an aqueous slurry of calcium hydroxide ("milk of lime”).
- the starting material for obtaining PCC may comprise limestone, but may also be calcined (i.e., heated to drive off CO 2 ), thus producing burnt lime, CaO.
- PCC may be not continuously agitated or stored for many days, it may be necessary to add more than a trace of such anionic dispersants as polyphosphates.
- Wet PCC may have a weak cationic colloidal charge.
- dried PCC may be similar to most ground CaCC ⁇ products in having a negative charge, depending on whether dispersants have been used.
- the calcium carbonate may be precipitated from an aqueous solution in three different crystal forms: the vaterite form which is thermodynamically unstable, the calcite form which is the most stable and the most abundant in nature, and the aragonite form which is metastable under normal ambient conditions of temperature and pressure, but which may convert to calcite at elevated temperatures.
- the aragonite form has an orthorhombic shape that crystallizes as long, thin needles that may be either aggregated or unaggregated.
- the calcite form may exist in several different shapes of which the most commonly found are the rhombohedral shape having crystals that may be either aggregated or unaggregated and the scalenohedral shape having crystals that are generally unaggregated.
- pulp binders refers to a binder agent for pulp fibers which may be used to improve the binding strength of the pulp fibers in the web.
- Suitable pulp binders may include one or more synthetic or naturally occurring polymers (or a combination of different polymers), for example, a polyvinyl alcohol (PVOH), polyacrylamide, modified polyacrylamide, starch binders, proteinaceous adhesives such as, for example, casein or soy proteins, etc; polymer latexes such as styrene butadiene rubber latexes, acrylic polymer latexes, polyvinyl acetate latexes, styrene acrylic copolymer latexes, wet strength resins such as Amres (a Kymene type), Bayer Parez, etc, polychloride emulsions, polyols, polyol carbonyl adducts, ethanedial/polyol condensates, poly
- PVOH polyvinyl alcohol
- air-laid fibrous structure refers to a nonwoven, bulky, porous, soft, fibrous structure obtained by air-laying comminuted pulp fiber webs and/or pulp fibers, and which may optionally comprise synthetic fibers such as bicomponent fibers.
- Air-laid fibrous structures may include air-laid fibrous cores, air-laid fibrous layers, etc
- the term “comminuting” refers to defibrizing, disintegrating, shredding, fragmenting, etc, a pulp fiber web and/or pulp fibers to provide an air-laid fibrous structure.
- synthetic fibers refers to fibers other than wood pulp fibers (e.g., other than pulp fibers) and which be made from, for example, cellulose acetate, acrylic, polyamides (such as, for example, Nylon 6, Nylon 6/6, Nylon 12, polyaspartic acid, polyglutamic acid, etc.), polyamines, polyimides, polyamides, polyacrylics (such as, for example, polyacrylamide, polyacrylonitrile, esters of methacrylic acid and acrylic acid, etc.), polycarbonates (such as, for example, polybisphenol A carbonate, polypropylene carbonate, etc.), polydienes (such as, for example, polybutadiene, polyisoprene, polynorbomene, etc.), polyepoxides, polyesters (such as, for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polycaprol
- bicomponent fibers refers to fibers comprising a core and sheath configuration.
- the core and sheath portions of bicomponent fibers may be made from various polymers.
- bicomponent fibers may comprise a PE (polyethylene) or modified PE sheath which may have a PET (polyethylene terephthalate) or PP (polypropylene) core.
- the bicomponent fiber may have a core made of polyester and sheath made of polyethylene.
- Various geometric configurations may be used for the bicomponent fiber, including concentric, eccentric, islands-in-the-sea, side-by-side, etc.
- the relative weight percentages and/or proportions of the core and sheath portions of the bicomponent fiber may also be varied.
- trivalent metal refers to a metal which may have a positive charge of three (e.g., boron, zinc, an iron (ferric), cobalt, nickel, aluminum, manganese, chromium, etc), and may include combinations of one or more of these trivalent metals.
- Sources of trivalent metals may include one or more of organic or inorganic salts, for example, from one or more of the following anions: acetate, lactate, EDTA, halide, chloride, bromide, nitrate, chlorate, perchlorate, sulfate, acetate, carboxylate, hydroxide, nitrite, etc.
- the salt may be a simple salt, wherein the trivalent metal forms a salt with one or more of the same anion, or a complex salt, wherein the trivalent metal forms a salt with two or more different anions.
- the salt may be aluminum chloride, aluminum carbonate, aluminum sulfate, alum (e.g., aluminum ammonium sulfate, aluminum potassium sulfate, aluminum sulfate, etc.), etc.
- debonder surfactant refers to surfactants which are useful in the treatment of pulp fibers to reduce inter-fiber bonding.
- Suitable debonder surfactants may include one or more of: cationic surfactants or nonionic surfactants, such as linear or branched monoalkyl amines, linear or branched dialkyl amines, linear or branched tertiary alkyl amines, linear or branched quaternary alkyl amines, linear or branched, saturated or unsaturated hydrocarbon surfactants, fatty acid amides, fatty acid amide quaternary ammonium salts, dialkyl dimethyl quaternary ammonium salts, dialkylimidazolinium quaternary ammonium salts, dialkyl ester quaternary ammonium salts, triethanolamine-ditallow fatty acids, fatty acid ester of ethoxylated primary amines, ethoxyl
- fire resistant article refers to an article (e.g., pulp fiber web, air-laid fibrous structure, etc.) which has been treated with a fire retardant in an amount sufficient to make the treated material resistant to fire, flame, burning, etc., as determined by certain fire resistance test(s), such as the UL 94 test, the Horizontal Burn Through method test, the ASTM D 5132-04 test, etc.
- fire resistance test refers to a test which measures the fire resistant characteristics, properties, etc., of an article, a material, etc. These tests may include the UL 94 test, the Horizontal Burn Through method test, the ASTM D 5132-04 test, etc.
- the term "UL 94 HBF test” (also known as the "Horizontal Burning Foamed Material Test”) refers to a fire resistance test (authored by Underwriters Laboratories) which is used to measure the flammability of articles, such as foamed plastic materials, used in parts in devices or appliances, etc.
- the UL HBF 94 test measures the ability of such articles to prevent flame propagation.
- the UL HBF 94 test may be conducted on specimens which are 150 ( ⁇ 5) mm long x 50 ( ⁇ 1) mm wide and having a minimum/maximum covering the thickness range of materials to be tested. See pages 27-33 and FIG.
- the term "Horizontal Burn Through test” refers to fire resistance test which measures the ability of the article being tested to resist burning by forming, for example, a stable char that insulates the remaining uncharred material of the article from heat. Articles, materials, etc., are considered to have passed the Horizontal Burn Through test is there is no burn through after the specimen being tested is exposed to a flame for at least 15 minutes.
- the Horizontal Burn Through test may be conducted on specimens which are 10 cm x 10 cm square and which are then centrally positioned on a 6.35 mm (0.25 inch) thick square steel plate approximately 15 cm.times.15 cm (6.times.6 inches).
- the plate has a circular hole of a diameter of 50.8 mm (or 2 inches) machined concentrically through the center portion.
- the specimen is mounted level over a Bunsen burner which is fed with a natural gas flow rate of 415 ml/min. so that when moved under the specimen, the tip of the flame just touches the underside of the barrier in the center of the hole, the flame being held in contact with the specimen for a total of 15 minutes after which the condition of the specimen is assessed for burn through.
- Specimen preparation for specimens used in carrying out the Horizontal Burn Through test method according to the present invention are described in the section below entitled "Fire Resistant Test Specimen Preparation.”
- ASTM D 5132-04 test also known as the "Horizontal Burning Rate of Polymeric Materials Used in Occupant Compartments of Motor Vehicles” test
- This test method employs a test specimen having test dimensions of 100 ( ⁇ 5) mm wide by 300 mm in length with a thickness of up to 13 mm which is mounted on a U-shaped metal frame.
- the test specimen is ignited by using a 38-mm flame from an appropriate burner, with burning rate of the material then being determined.
- the rate of burning is calculated by measuring the distance, D, (in mm.) the flame travels on the test specimen, divided by the time, T, (in seconds) required to travel the distance, D, multiplied by 60.
- fire retardant refers to one or more substances (e.g., composition, compound, etc.) which are able to reduce, impart resistance to, etc., the flammability, the ability to burn, etc., of a material, article, etc.
- Fire retardants may include one or more endothermic fire retardants, and optionally one or more other (nonendothermic) fire retardants.
- Endothermic fire retardant refers to fire retardants which absorb heat when exposed to a source of flame.
- Endothermic fire retardants may include one or more of: boron-containing fire retardants such as borate fire retardants (e.g., boric acid, borax, sodium tetraborate decahydrate, zinc borate, etc.), borosilicate (i.e., condensates of boron oxides and silica with other metal oxides, for example sodium oxide and aluminum oxide) fire retardants (e.g., may include borosilicates used in making glass, etc.), other substances which retain water or water vapor at room temperature such as alum (aluminum ammonium sulfate), talc (magnesium silicate), aluminum hydroxide (as known as alumina trihydrate), magnesium hydroxide (also known as magnesium dihydroxide), mixtures (e.g., equal mixtures) of huntite (calcium magnesium carbonate
- borate fire retardants e.g.,
- other fire retardant refers to fire retardants which are not endothermic fire retardants.
- Other fire retardants may include one or more of phosphorous fire retardants, halogenated hydrocarbon fire retardants, metal oxide fire retardants, etc.
- these other fire retardants may comprise a mixture, blend, etc., of one or more phosphorous fire retardants, one or more halogenated hydrocarbon fire retardants, and one or more metal oxide fire retardants.
- phosphorous fire retardant refers to a fire retardant substance, compound, molecule, etc., which comprises one or more phosphorous atoms.
- Phosphorous fire retardants may include one or more of: phosphates, such as sodium phosphates, ammonium phosphates, sodium polyphosphates, ammonium polyphosphates, melamine phosphates, ethylenediamine phosphates etc.; red phosphorus; metal hypophosphites, such as aluminum hypophosphite and calcium hypophosphite; phosphate esters; etc.
- the phosphorus fire retardant disperses on and/or in the cellulosic fibers and may, in some embodiments (e.g., ammonium phosphates) form a bond (i.e., crosslink) to cellulose which forms a stable char during exposure to the flame.
- Some proprietary phosphorous fire retardants may include, for example: SpartanTM AR 295 Flame Retardant from Spartan Flame Retardants Inc. of Crystal Lake, III, include both organic and inorganic constituents, GLO-TARD FFR2, which is an ammonium polyphosphate fire retardant from GLO-TEX International, Inc.
- Fire Retard 3496 which is a phosphate ester supplied by Manufacturers Chemicals, L.P. of Cleveland, Tenn, Flovan CGN, a multi-purpose phosphate-based flame retardant supplied by Huntsman (Salt Lake City, Utah); SPARTANTM AR 295, a diammonium phosphate based flame retardant from Spartan Flame Retardants, Inc. (Crystal Lake, 111.), FRP 12TM, FR 165TM, and FR 8500TM supplied by Cellulose Solutions, LLC (Daphne, Alabama), etc.
- halogenated organic fire retardant refers to a halogenated organic compound which alone, or in combination with other substances, compounds, molecules, etc., are capable of functioning as a fire retardant.
- Halogenated organic fire retardants may include one or more of: halogenated (e.g., chlorinated, brominated, etc.) hydrocarbons, such as halogenated aliphatics (e.g., haloalkanes), halogenated aromatics, etc.
- Halogenated organic fire retardants may include chloroparaffins, Dechorane Plus (a chlorine-containing halogenated fire retardant), decabromodiphenyl oxide, tetradecabromodiphenoxybenzene, ethylenebispentabromobenzene (EBPB); tetrabromobisphenol A (TBBA), tetrabromobisphenol A bis-hexabromocyclododecane, ethylenebis-(tetrabromophthalimide). These halogenated organic fire retardants may work by eliminating oxygen from the burn zone which quenches, extinguishes, smothers, puts out, etc., the flame.
- EBPB ethylenebispentabromobenzene
- TBBA tetrabromobisphenol A
- tetrabromobisphenol A bis-hexabromocyclododecane ethylenebis-(tetrabromophthalimide).
- metal oxide fire retardant refers to metal oxides which alone, or in combination with other substances, are capable of functioning as a fire retardant.
- Metal oxide fire retardants may include one or more of: aluminum oxide (alumina), antimony trioxide, ferric oxide, titanium dioxide, stannic oxide, etc.
- fire retardant distributing surfactant refers to surfactants which function to distribute, disperse, etc., the fire retardant over, through, etc., the fibrous matrix of the pulp fiber web.
- Suitable fire retardant distributing surfactants may be ionic or nonionic, have a rheology which permits the surfactant to be dispersed on and/or through the pulp fiber web being treated with the fire retardant component, carries the fire retardant component on and/or through the pulp fiber web (i.e., the fire retardant component is not fully dissolved in the surfactant), enables or at least does not inhibit crosslinking between fire retardants (e.g., crosslinkable phosphorous fire retardants such as the ammonium phosphates) in the fire retardant component and the cellulosic fibers in the pulp fiber web, etc.
- fire retardants e.g., crosslinkable phosphorous fire retardants such as the ammonium phosphates
- Suitable fire retardant distributing surfactants may include one or more of: alkoxylated alcohols/alcohol alkoxylates (e.g., BASF's Plurafac® alcohol alkoxylates) which may include ethoxylated alcohols (e.g., Eka Chemical's F60 surfactant, etc.
- alkoxylated alcohols/alcohol alkoxylates e.g., BASF's Plurafac® alcohol alkoxylates
- ethoxylated alcohols e.g., Eka Chemical's F60 surfactant, etc.
- Suitable ethoxylated alcohols for use as fire retardant distributing surfactants may comprise from about 1 to about 30 ethylene oxide (EO) units, for example, from about 4 to about 25 EO units, with an alcohol carbon chain length of from about 6 to about 30 carbon atoms, for example, from about 6 to about 22 carbon atoms, such as from about 12 to about 18 carbon atoms (e.g., from about 16 to 18 carbon atoms).
- EO ethylene oxide
- near neutral pH refers to a pH in the range of from about 5 to about 9, for example, from about 6 to about 8, such as about 7.
- pH adjusting agent refers a composition, compound, etc., which may be included to raise or lower the pH of the endothermic fire retardant solution, the pulp slurry to which the endothermic fire retardant solution, as well as other fire retardants, fire retardant distributing surfactants, etc., are added, etc., to provide a treated pulp fiber web having a near neutral pH.
- Suitable pH adjusting agents may include acids or bases, buffering agents which may be may be weak acids or weak bases (i.e., proton acceptors) and may include one or more of: trivalent metal ammonium sulfates, such as aluminum ammonium sulfate (e.g., alum), ferric ammonium sulfate, chromium ammonium sulfate, cobalt ammonium sulfate, manganese ammonium sulfate, nickel ammonium sulfate, etc., other ammonium salts which function as weak bases such as ammonium sulfate, etc.
- endothermic fire retardants by themselves may also function as the pH adjusting (e.g., buffering) agent.
- the term "at a point prior to when the pulp fiber web is formed” refers any point any point prior to when the pulp fiber web is formed (e.g., prior to forming the pulp fiber web on a forming wire) and may include the forming the pulp slurry in the blend chest, after the pulp slurry is formed by the blend chest and prior to transfer to the head box, after transfer of the pulp slurry to the head box but prior to depositing a furnish from the headbox, e.g., prior to depositing on the a forming wire, etc.
- the term "at a point after the pulp fiber web is formed and prior to drying of the fibrous web” refers any point any point after the pulp fiber web is formed and prior to the point when the pulp fiber web is dried, and may include forming pulp fiber web on a forming wire, passing the pulp fiber web through a size press, passing the pulp fiber web past or through a sprayer or other applicating device (e.g., coater), etc.
- the term "at a point after drying of the fibrous web” refers any point any point after the pulp fiber web is dried and up to and including when an air-laid fibrous structure is constructed from the dried pulp fiber web.
- solids basis refers to the weight percentage of each of the respective solid materials (e.g., fire retardants, surfactants, dispersants, etc.) present in the pulp fibers, web, composition, etc., in the absence of any liquids (e.g., water). Unless otherwise specified, all percentages given herein for the solid materials, compounds, substances, etc., are on a solids basis.
- solids content refers to the percentage of non-volatile, non-liquid components (by weight) that are present in the pulp fibers, web, composition,, etc.
- grams is used in the conventional sense of referring to grams per square meter.
- the term "mil(s)" is used in the conventional sense of referring to thousandths of an inch.
- liquid refers to a non-gaseous fluid composition, compound, material, etc., which may be readily flowable at the temperature of use (e.g., room temperature) with little or no tendency to disperse and with a relatively high compressibility.
- room temperature refers to the commonly accepted meaning of room temperature, i.e., an ambient temperature of 20° to 25°C.
- optical brightness refers to the diffuse reflectivity of the pulp fiber web/pulp fibers, for example, at a mean wavelength of light of 457 nm.
- optical brightness of pulp fiber webs may be measured in terms of ISO Brightness which measures brightness using, for example, an ELREPHO Datacolor 450 spectrophotometer, according to test method ISO 2470-1, using a C illuminant with UV included.
- optical brightener agent refers to certain fluorescent materials which may increase the brightness (e.g., white appearance) of pulp fiber web surfaces by absorbing the invisible portion of the light spectrum (e.g., from about 340 to about 370 nm) and converting this energy into the longer- wavelength visible portion of the light spectrum (e.g., from about 420 to about 470 nm).
- the OBA converts invisible ultraviolet light and re-emits that converted light into blue to blue-violet light region through fluorescence.
- OBAs may also be referred to interchangeably as fluorescent whitening agents (FWAs) or fluorescent brightening agents (FBAs).
- OBAs are often for the purpose of compensating for a yellow tint or cast of paper pulps which have, for example, been bleached to moderate levels.
- This yellow tint or cast is produced by the absorption of short-wavelength light (violet-to-blue) by the pulp fiber webs.
- this short-wavelength light that causes the yellow tint or cast is partially replaced, thus improving the brightness and whiteness of the pulp fiber web.
- OBAs are desirably optically colorless when present on the pulp fiber web surface, and do not absorb light in the visible part of the spectrum.
- OBAs may be anionic, cationic, anionic (neutral), etc., and may include one or more of: stilbenes, such as 4,4 '-bis- (triazinylamino)-stilbene-2,2'-disulfonic acids, 4,4'-bis-(triazol-2-yl)stilbene-2,2'-disulfonic acids, 4,4'-dibenzofuranyl-biphenyls, 4,4'-(diphenyl)-stilbenes, 4,4'-distyryl-biphenyls, 4- phenyl-4'-benzoxazolyl-stilbenes, stilbenzyl-naphthotriazoles, 4-styryl-stilbenes, bis- (benzoxazol-2-yl) derivatives, bis-(benzimidazol-2-yl) derivatives, coumarins, pyrazolines, naphthalimides, triazinyl-pyrenes, 2-styryl
- these OBAs may comprise, for example, one or more stilbene-based sulfonates (e.g., disulfonates, tetrasulfonates, or hexasulfonates) which may comprise one or two stilbene residues.
- stilbene-based sulfonates e.g., disulfonates, tetrasulfonates, or hexasulfonates
- Illustrative examples of such anionic stilbene-based sulfonates may include 1,3,5-triazinyl derivatives of 4,4'-diaminostilbene-2,2'-disulphonic acid (including salts thereof), and in particular the bistriazinyl derivatives (e.g., 4,4-bis(triazine-2- ylamino)stilbene-2,2'-disulphonic acid), the disodium salt of distyrlbiphenyl disulfonic acid, the disodium salt of 4,4'-di-triazinylamino-2,2'-di-sulfostilbene, etc.
- the bistriazinyl derivatives e.g., 4,4-bis(triazine-2- ylamino)stilbene-2,2'-disulphonic acid
- disodium salt of distyrlbiphenyl disulfonic acid e.g., 4,4-bis(triazine-2- ylamino
- disulfonate, tetrasulfonate and hexasulfonate stilbene-based OBAs may also be obtained, for example, from Ciba Geigy under the trademark TINOPAL®, from Clariant under the trademark LEUCOPHOR®, from Lanxess under the trademark BLANKOPHOR®, and from 3V under the trademark OPTIBLANC®.
- the term "treating" with reference to the fire retardant compositions may include adding, depositing, applying, spraying, coating, daubing, spreading, wiping, dabbing, dipping, etc., to the pulp fibers, pulp fiber web, air-laid fibrous structure, etc.
- the term "applicator” refers to a device, equipment, machine, etc., which may be used to treat, apply, coat, etc., one or more sides or surfaces of a pulp fiber web, air-laid fibrous structure, etc., with the fire retardant composition.
- Applicators may include air-knife coaters, rod coaters, blade coaters, size presses, etc. See G. A. Smook, Handbook for Pulp and Paper Technologists (2 nd Edition, 1992), pages 289-92, the entire contents and disclosure of which is herein incorporated by reference, for a general description of coaters that may be useful herein.
- Size presses may include a puddle size press, a metering size press, etc. See G. A. Smook, Handbook for Pulp and Paper Technologists (2 nd Edition, 1992), pages 283-85, the entire contents and disclosure of which is herein incorporated by reference, for a general description of size presses that may be useful herein.
- flooded nip size press refers to a size press having a flooded nip (pond), also referred to as a "puddle size press.”
- Flooded nip size presses may include vertical size presses, horizontal size presses, etc.
- metering size press refers to a size press that includes a component for spreading, metering, etc., deposited, applied, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc.
- Metering size presses may include a rod metering size press, a gated roll metering size press, a doctor blade metering size press, etc.
- the term “rod metering size press” refers to metering size press that uses a rod to spread, meter, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc.
- the rod may be stationary or movable relative to the web.
- the term “gated roll metering size press” refers to a metering size press that may use a gated roll, transfer roll, soft applicator roll, etc.
- the gated roll, transfer roll, soft applicator roll, etc. may be stationery relative to the web, may rotate relative to the web, etc.
- doctor blade metering size press refers to a metering press which may use a doctor blade to spread, meter, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc.
- Embodiments of the process of the present invention comprise providing an at least partially delignified pulp fiber web having a Kappa number of less than about 130 (e.g., less than about 50).
- the pulp fiber web may comprise at least about 50% (for example, from about 50 to about 70%, such as from about 70 to about 80%) softwood pulp fibers and up to about 50% (for example, from about 30 to about 50%, such as from about 20 to about 30%) hardwood pulp fibers.
- Embodiments of the process of the present invention also comprise treating the pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less (e.g., a pH of from about 5 to about 9, such as from about 6 to about 8) and comprising at least about 10% (e.g., from about 10 to about 70% based on the total solids in the solution) of one or more endothermic fire retardants.
- an aqueous endothermic fire retardant solution having a pH of about 10 or less (e.g., a pH of from about 5 to about 9, such as from about 6 to about 8) and comprising at least about 10% (e.g., from about 10 to about 70% based on the total solids in the solution) of one or more endothermic fire retardants.
- the pulp fiber web is treated with a total amount of endothermic fire retardants of at least about 20 lbs (e.g., from about 20 to about 250 lbs) of endothermic fire retardants per ton of the pulp fiber web, wherein at least about 5% (e.g., an initial portion of from about 5 to about 33%) of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed. In some embodiments, the remaining portion of from about 67 to about 95% of the total amount of endothermic fire retardants are added at a point after the pulp fiber web is formed, for example, at a point after the pulp fiber web is dried.
- the pulp fiber web may also be treated with one or more other fire retardants in an amount up to about 90% (e.g., from about 10 to about 90%) of the total fire retardants used to treat the pulp fiber web); and optionally one or more fire retardant distributing surfactants in an amount sufficient to distribute the other fire retardants in and/or on the pulp fiber web.
- Treatment with the endothermic fire retardant solution provides a treated pulp fiber web having a near neutral pH (e.g., a pH of from about 5 to about 9, such as from about 6 to about 8).
- Providing a fire retardant treated pulp fiber web having a near neutral pH enables the resultant web, for example, to be to provide an air-laid fibrous structure, avoids/minimizes corrosion of metal components the retardant treated pulp fiber web comes into contact with, avoids/minimizes skin irritation, etc.
- the other optional fire retardants and optional fire retardant distributing surfactants are added to the pulp fiber web at a point after the pulp fiber web is formed and prior to drying of the fibrous web.
- any remaining endothermic fire retardant is added (e.g., sprayed, dosed, etc.) on the pulp fiber web at a point after drying of the fibrous web.
- one type of endothermic fire retardant e.g., aluminum ammonium sulfate or alum
- a different type of endothermic fire retardant e.g., ammonium phosphate or borosilicate
- ammonium phosphate or borosilicate is added (e.g., sprayed, dosed, etc.) on the pulp fiber web at a point after drying of the fibrous web.
- Embodiments of the fire resistant pulp fiber webs of the present invention having a near neutral pH comprise: an at least partially delignified pulp fiber web having a Kappa number as previously described; a fire retardant component present in and/or on the pulp fiber web in an amount of at least about 20 lbs (e.g., from about 20 to about 250 lbs) of fire retardant component per ton of the pulp fiber web; and one or more fire retardant distributing surfactants in an amount sufficient (e.g., from about 1 to about 10 lbs per ton of the pulp fiber web) to distribute the fire retardant component in and/or on the pulp fiber web.
- the fire retardant component comprises at least about 10% (e.g., from about 10 to about 90%, such as from about 40 to about 60%) by weight of the fire retardant component of one or more endothermic fire retardants; and up to about 90% (e.g., from about 10 to about 90%, such as from about 40 to about 60%) by weight of the fire retardant component of one or more other fire retardants.
- the fire retardant component is also present in an amount and is distributed in and/or on the pulp fiber web in a manner so that the fire resistant pulp fiber web passes one or more of the following tests: the UL 94 HBF test, the Horizontal Burn Through test, or the ASTM D 5132-04 test.
- Embodiments of the fire resistant pulp fiber webs of the present invention may also be used in air-laid fibrous structures which may comprise: an air-laid fibrous core having an upper surface and a lower surface; a first fire resistant outer layer positioned over the upper surface; and a second fire resistant outer layer positioned under the lower surface.
- the air- laid fibrous core may comprise: from about 50 to about 97% (e.g., from about 80 to about 95%) by weight of the core of comminuted pulp fibers; and from about 3 to about 50% (e.g., from about 5 to about 20%) by weight of the core of bicomponent fibers.
- Each of the upper and lower outer layers may comprise: from about 50 to about 95% (e.g., from about 80 to about 95%) by weight of the core of comminuted fire resistant pulp fiber fibers according to embodiments of the present invention; and from about 5 to about 50% (e.g., from about 5 to about 20%) by weight of the core of bicomponent fibers, and may comprise the same proportions by weight of fire resistant pulp fiber fibers and bicomponent fibers, or may comprise different proportions by weight of fire resistant pulp fiber fibers and bicomponent fibers.
- These outer layers may also optionally comprise up to about 20% (for example, up to about 10%, such as up to about 3%) by weight of the outer layer of melamine fibers or melamine resin powder to increase the fire resistant properties of these outer layers.
- outer layers may also be treated with additional fire retardant in amounts of up to about 5% (for example, up to about 3%, such as up to about 2%) by weight of the outer layer to further increase the fire resistance of the outer layer.
- This additional fire retardant may be the same or a may be different from the fire retardant used to treat the pulp fiber web to provide the fire resistant pulp fiber web.
- Embodiments of these fire retardant air-laid fibrous structures may be used, for example, in upholstery cushions, mattress ticking, panel fabric, padding, bedding, insulation, materials for parts in devices and appliances, etc.
- the pulp fiber web may be prepared from the pulp fiber by any suitable process for providing pulp fiber webs.
- the pulp fiber web may be formed from a pulp fiber mixture into a single or multi-ply web on a papermaking machine such as a Fourdrinier machine or any other suitable papermaking machine known in the art for making pulp fiber webs. See, for example, U.S. Pat. No. 4,065,347 (Aberg et al.), issued December 27, 1997; U.S. Pat. No. 4,081,316 (Aberg et al), issued March 28, 1978; U.S. Pat. No. 5,262,005 (Ericksson et al.), issued November 16, 1993, the entire contents and disclosure of which are herein incorporated by reference.
- the pulp fiber mixture may also be treated with one or more debonder surfactants (as described above) to make the process of comminuting such pulp fiber webs (e.g., for providing air-laid fibrous structures) easier to carry out.
- the resulting pulp fiber web which is formed may be dried to remove a portion, most or all of the water from the web, with the dried web being optionally treated with one or more additional debonder surfactants to again enhance the process of comminuting such pulp fiber webs.
- the pulp fiber web may be dried in a drying section prior to and/or after treatment with an aqueous solution of the endothermic fire retardant and/or other fire retardants.
- Any suitable method for drying pulp fiber webs known in the making art may be used.
- the drying section may include a drying can, flotation dryer, cylinder drying, Condebelt drying, infrared (IR) drying, etc.
- the treated and/or untreated pulp fiber web may be dried to a moisture content of about 10% or less, such as about 7% or less.
- the pulp fiber web may be dried to a moisture content of between 0 and about 10% (which includes any value and subrange, for example, values or subranges including 3, 4, 5, 6, 7, 8, 9, 10, etc.).
- the pulp fiber web may have a basis weight in the range of from about 500 to about 850 gsm (which includes any value and subrange, for example, values or subranges including about 500, 550 600, 650, 700, 750, 800, 850 gsm, etc.).
- the pulp fiber web may have a density of about 0.3 g/cc or less, and in the range of from about 0.1 to about 0.3 g/cc (which includes any value and subrange, for example, values or subranges including about 0.1, 0.15, 0.2, 0.25, and 0.3 g/cc, etc.).
- the pulp fiber web may have a caliper of at least about 30 mils, for example in the range of from about 30 to about 85 mils, such as from about 45 to about 65 mils (which includes any value and subrange, for example, values or subranges including about 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85 mils, etc.).
- the pulp fiber may have a fiberization (shred) energy of less than about 170 kJ/kg (which includes any value and subrange, for example, values or subranges including about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165 kJ/kg, etc.).
- the pulp fiber web may have a fiberization energy in the range of from about 120 to less than about 145 kJ/kg, in the range of from about 100 to less than about 120 kJ/kg.
- the pulp fiber web may have a fiberization energy of less than about 135 kJ/kg for example, a fiberization energy of less than about 120 kJ/kg, such as less than about 100 kJ/kg, or less than about 90 kJ/kg. In other embodiments, the pulp fiber web may have a fiberization energy in the range of from about 120 to less than about 145 kJ kg, in the range of from about 100 to less than about 120 kJ kg.
- the pulp fiber web may comprise debonder surfactant in an amount of about 1 lb solids or greater per ton of the pulp fibers (which includes any value and subrange, for example, values or subranges including about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.0, 5, 5.0, 6, 7, 8, 9, 10, 15, 20 lbs solids debonder surfactant per ton of the pulp fibers, etc., or higher).
- the pulp fiber web may comprise a trivalent metal (or salt thereof) in an amount of about 1 lb solids or greater per ton of the pulp fiber fibers (which includes any value and subrange, for example, values or subranges including about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.0, 5, 5.0, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 lbs cationic trivalent metal/salt thereof, etc., or higher).
- the pulp fiber web may comprise the trivalent metal in an amount of about 150 ppm or greater per ton of the pulp fibers (which includes any value and subrange, for example, values or subranges including about 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 300, 330, 400, 450, 500, 550, 750, 1000 ppm, etc., or higher).
- Embodiments of the fire resistant pulp fiber web of the present invention may be used, for example, to provide air-laid fibrous structures, including air-laid fibrous cores, air- laid fibrous layers (including outer layers for air-laid fibrous cores), etc. See, for example, U.S. Pat. Appln. No. 20080050565 (Gross et al), published February 28, 2008; U.S. Pat. No. 6,059,924 (Hoskins), issued May 9, 2000); U.S. Pat. No. 7,549,853 (Fegelman et al), issued June 23, 2009, the entire disclosure and contents of which are herein incorporated by reference.
- the fire resistant pulp fiber webs may be comminuted (e.g., defiberized, disintegrated, shredded, fragmented, etc.) to provide such air-laid fibrous structures using known methods for making such structures. See, for example, U.S. Pat. No. 3,591,450 (Murphy et al.), issued July 6, 1971, the entire contents and disclosure of which is herein incorporated by reference.
- the fire resistant pulp fiber webs may be defiberized, disintegrated, shredded, fragmented, etc., by using a hammermill.
- hammer milling is carried out in a manner which does not induce significant dust creation in the comminuted fire resistant pulp fibers.
- the resultant air-laid fibrous structure may be used in a variety of products, for example, upholstery cushions, mattress ticking, panel fabric, padding, bedding, insulation, materials for parts in devices and appliances, etc.
- the air-laid fibrous structures may comprise a mixture, blend, etc., of comminuted fire resistant pulp fibers and synthetic fibers (e.g., bicomponent fibers).
- the air-laid fibrous structure may be in the form of an air-laid fibrous core which comprises a mixture, blend, etc., of comminuted fire resistant pulp fibers and synthetic fibers (e.g., bicomponent fibers).
- these structures may comprise about 50% or greater (for example, about 75% or greater) by weight fire resistant pulp fiber, about 50% or less (for example, about 15% or less) synthetic fiber (e.g., bicomponent fiber), and optionally up to about 20% (e.g., from about 3 to about 10%) melamine fiber/powder.
- fire resistant pulp fiber about 50% or less (for example, about 15% or less)
- synthetic fiber e.g., bicomponent fiber
- optionally up to about 20% e.g., from about 3 to about 10%
- melamine fiber/powder Air- laid fibrous structures without melamine fiber may pass the UL 94 TMVB test when those structures comprise, for example, about 90% fire resistant pulp fiber and about 10% bicomponent fiber, and are sprayed with about 3% fire retardant on the surface of the outer layers of such structures.
- Embodiments of the air-laid fibrous structures may be prepared by comminuting (e.g., disintegrating, defibrizing, etc.) a pulp fiber web (e.g., a pulp fiber sheet), for example, by using a hammermill (such as a Kamas Hammermill), to provide individualized comminuted pulp fibers.
- the comminuted pulp fibers may then be air conveyed to forming heads on an air-laid web-forming machine.
- a number of manufacturers provide air-laid web forming machines suitable for use in embodiments of the air-laid fibrous structures of the present invention, including Dan- Web Forming of Aarhus, Denmark, M&J Fibretech A/S of Horsens, Denmark, Rando Machine Corporation of Cincinnati, N.Y. (for example, as described in U.S. Pat. No. 3,972,092 to Wood, issued August 3, 1976, the entire contents and disclosure of which is herein incorporated by reference), Margasa Textile Machinery of Cerdanyola del Valles, Spain, and DOA International of Wels, Austria. While these various forming machines may differ in how the comminuted pulp fiber is opened and air-conveyed to the forming wire, all of these machines are capable of producing webs useful for forming embodiments of air-laid fibrous structures.
- the Dan- Web forming heads may include rotating or agitated perforated drums, which serve to maintain fiber separation until the fibers are pulled by vacuum onto a foraminous forming conveyor, forming wire, etc.
- the forming head may basically be a rotary agitator above a screen.
- the rotary agitator may comprise a series or cluster of rotating propellers or fan blades.
- Synthetic fibers e.g., bicomponent fibers
- a fiber dosing system such as a textile feeder supplied by Laroche S.A. of Cours-La Ville, France.
- the synthetic fibers may be air conveyed to the forming heads of the air-laid machine where those synthetic fibers are further mixed with the comminuted pulp fibers from the hammermill(s) and may be deposited on a continuously moving forming wire.
- the forming heads may be used for each type of fiber.
- the air-laid fibrous web may be transferred from the forming wire to a calender or other densification stage to densify the air-laid fibrous web, if necessary, to increase its strength and to control web thickness.
- the fibers of the air-laid fibrous web may then be bonded by passage through an oven set to a temperature high enough to fuse any included thermoplastic synthetic fibers or other binder materials. Secondary binding from the drying or curing of a latex spray or foam application may also occur in the same oven.
- the oven may be a conventional through-air oven or may be operated as a convection oven, but may also achieve the necessary heating by infrared or even microwave irradiation.
- FIG. 1 is a schematic diagram which shows an illustrative process for providing a fire resistant pulp fiber web according to an embodiment of the present invention, which is indicated generally as 100.
- the at least partially delignified pulp fibers (indicated as Delignified Pulp Fibers 102) are used, as indicated by arrow 104, in formulating Pulp Slurry 106.
- an aqueous endothermic fire retardant solution comprising an initial portion of endothermic fire retardant such as aluminum ammonium sulphate or alum (indicated as Initial Endothermic FR 1 12, which may also provide a source trivalent metal ions), is added to Pulp Slurry 106, as indicated by arrow 114.
- Pulp Slurry 106 is then deposited (e.g., using a headbox), as indicated by arrow 108, onto Forming Wire 1 10 to form the fire retardant-treated pulp fiber web.
- the pulp fiber web is eventually transferred from Forming Wire 110 to Dryer 1 18.
- other fire retardants such as a phosphorous fire retardant (indicated as Other FRs 120), along with a fire retardant distributing surfactant (indicated as Surfactant 122), are added, as indicated, respectively, by arrows 124 and 126.
- Other FRs 120 and Surfactant 122 may be mixed together before being added to the pulp fiber web, or may added separately to the pulp fiber web.
- Air-Laid Structure 134 may be treated (e.g., sprayed with, dosed with, etc.) any of the remaining endothermic fire retardant, such as a borate fire retardant (indicated as Remaining Endothermic FR 138) along with any additional and optional fire retardant distributing surfactant (indicated as Surfactant 140), as indicated by arrow 142.
- a borate fire retardant indicated as Remaining Endothermic FR 138
- Surfactant 140 any additional and optional fire retardant distributing surfactant
- Dried Web 130 may be directly treated with (e.g., sprayed with, dosed with, etc.) Remaining Endothermic FR 138 (when, for example, not being formed into Air-Laid Structure 134 or prior to being formed into Air-Laid Structure 134).
- some or all of the other fire retardants, plus fire retardant distributing surfactant may also be added (e.g., sprayed with, dosed with, etc.) to Dried Web 130.
- FIG. 2 is side sectional view of an air-laid fibrous structure which comprises a fire resistant pulp fiber web according to an embodiment of the present invention as the respective outer layers of the air-laid fibrous core of the structure, which is indicated generally as 200.
- Structure 200 comprises an air-laid fibrous core, indicated generally as 204, and two outer fire retardant outer air-laid fibrous layers, indicated respectively as upper layer 208 and lower layer 212.
- Upper outer layer 208 is positioned on or adjacent upper surface 216 of core 204, while lower outer layer 212 is positioned on or adjacent lower surface 220 of core 204.
- Outer layers 208 and/or 212 of structure 200 may be treated with additional fire retardant (for example, the additional fire retardant may be diluted with water and/or other solvent(s), with the water/solvent(s) being removed, for example, by heating after treatment).
- additional fire retardant for example, the additional fire retardant may be diluted with water and/or other solvent(s), with the water/solvent(s) being removed, for example, by heating after treatment.
- the specimens for the fire resistance tests are prepared as follows: Fire retardant- treated pulp fiber web sheets are defiberized in a lab hammermill (Kamas Type H 01 Laboratory Defribrator) by shredding 2 inch width strips at 3300 rpm using a 10 mm screen opening and 7 cm/sec. feed speed. The defiberized pulp fibers are mixed in the plastic bag by hand and by vigorously shaking the sealed bag which contains air space, to achieve as uniform a distribution of fiber fractions as possible, i.e., to achieve a representative test specimen. Approximately 3.4 g of the mixed pulp fibers are weighed out to provide a target weight of 3.16 g ⁇ 0.1 g (300 g/m 2 ).
- a piece of the nonwoven barrier material is inserted into a collection basket/cup of an 11 cm diameter forming funnel which is attached in the hammermill.
- the weighed pulp fibers are refiberized in the hammermill using the front chute with a rotor setting at -750 rpm and with a 14 mm screen in place.
- the refiberized pulp in the funnel is evenly spaced using long handle tweezers, and then pressed firmly into the funnel with a tamping tool.
- the resultant specimen is then removed and weighed.
- the weighed specimen is then placed without the nonwoven barrier material between two blotters and feed through a press.
- the thickness of the resultant specimen is then measured with the target density of the specimen being 0.1 g/cm 3 which equals a thickness of 1.32 mm or 0.052" (i.e., 52 mils).
- the fiberization energy of the specimen may be calculated as described above based on energy measured and displayed by the Kamas Type H 01 Laboratory Defribrator (converted, if necessary from watt hours or wH), divided by the fiberized fiber weight, to provide a value in kJ/kg.
- Pulp fiber webs treated with endothermic fire retardants are prepared as described below:
- a fluff pulp (which contains 20 lbs per ton of aluminum ammonium sulfate (alum) as an endothermic fire retardant) is treated with 60 lbs/air dried metric ton of FR165 (phosphorus fire retardant, distributed by Cellulose Solutions) and 2 lbs/ton F60 surfactant (an ethoxylated alcohol surfactant, distributed by Eka Chemical).
- FR165 phosphorus fire retardant, distributed by Cellulose Solutions
- 2 lbs/ton F60 surfactant an ethoxylated alcohol surfactant, distributed by Eka Chemical
- This air- laid fibrous core is sprayed with a solution of a neutral pH endothermic fire retardant (Pre- Tec 3000 SF, a borosilicate endothermic fire retardant, distributed by Pre-Tec) at a 6% dose by weight of the core.
- a neutral pH endothermic fire retardant Pre- Tec 3000 SF, a borosilicate endothermic fire retardant, distributed by Pre-Tec
- the surface-treated air-laid fibrous core is tested according to the UL 94 HBF test method and passes this test without any after burn.
- the air-laid core has a pH of 6.9.
- a fluff pulp (which contains 20 lbs per ton of aluminum ammonium sulfate (alum) as an endothermic fire retardant) is treated with 60 lbs/air dried metric ton of FR165 phosphorus fire retardant and 2 lb/ton F60 surfactant.
- This treated fluff pulp is used in preparing an air-laid fibrous core which comprises 90% of the treated fluff pulp and 10% bicomponent PE/PE 6 mm fibers.
- this air-laid fibrous core is sprayed with a solution of a neutral pH blend of endothermic fire retardant and other (phosphorous) fire retardant (CS-FR 30-S, a silica and ammonium phosphate fire retardant distributed by Cellulose Solutions) at a 10% dose by weight of the core.
- CS-FR 30-S endothermic fire retardant and other (phosphorous) fire retardant
- silica and ammonium phosphate fire retardant distributed by Cellulose Solutions
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
Abstract
A process in which an at least partially delignified pulp fiber web having a Kappa number of less than about 130 is treated with an aqueous endothermic fire retardant solution having a pH of about 10 or less. The treated pulp fiber web has a near neutral pH of from about 5 to about 9, and is treated with at least about 20 lbs of endothermic fire retardants per ton of the pulp fiber web, with at least about 5% of the total amount of endothermic fire retardants being added at a point prior to when the pulp fiber web is formed. Also a fire resistant pulp fiber web having a near neutral pH.
Description
ADDITION OF ENDOTHERMIC FIRE RETARD ANTS TO PROVIDE NEAR NEUTRAL PH PULP FIBER WEBS
Field of the Invention
[0001] The present invention broadly relates to a process for treating a partially delignified pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less, wherein at least about 5% of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed to provide a treated pulp fiber web having a near neutral pH (i.e., from about 5 to about 9). The present invention also broadly relates to a fire resistant pulp fiber web having a near neutral pH and comprising a partially delignified pulp fiber web; and a fire retardant component present in and/or on the pulp fiber web, wherein the fire retardant component comprises at least about 10% by weight of the fire retardant component of one or more endothermic fire retardants.
BACKGROUND
[0002] Fire resistant fibrous materials may be used in upholstery, cushions, mattress ticking, panel fabric, padding, bedding, insulation, materials for parts in devices or appliances, etc. Such materials may be formed from natural and/or synthetic fibers, and then treated with fire retardant chemicals which may include halogen-based and/or phosphorous- based chemicals, along with certain metal oxides such as ferric oxide, stannic oxide, antimony trioxide, titanium dioxide, etc. These fire resistant materials may be produced by depositing these metal oxides, within or on the fibers, for example, by the successive precipitation of ferric oxides and a mixture of tungstic acid and stannic oxide, by the successive deposition of antimony trioxide and stannic oxide, by the successive deposition of antimony trioxide and titanium dioxide. In another process for imparting fire retardancy to such materials, a single processing bath may be used wherein a dispersion of a chlorinated hydrocarbon and finely divided antimony oxide is padded on the fabric material. Near the fibrous material's combustion temperature, the antimony oxide reacts with hydrogen chloride (generated by degradation of the chlorinated hydrocarbon) to form antimony oxychloride which acts to suppress the flame.
[0003] In another process for making such fibrous materials semi-permanently to permanently fire resistant, the fire retardant chemicals may be reacted with the cellulose or
protein functionalities of the natural fibers in the material. For example, the cellulose in the fabric fibers may be esterified with diammonium hydrogen orthophosphate. Alternatively, amidophosphates may be reacted with trimethylol melamine to form a thermosetting resin within the fibrous materials (see U.S. Pat. No. 2,832,745 (Hechenblefkner), issued April 29, 1958) or a phosphorous containing N-hydroxy-methyl amide and tetrakis(hydroxymethyl)phosphonium chloride may be incorporated in the fibrous materials by thermal induced pad curing (see U.S. Pat. No. 4,026,808 (Duffy), issued May 31, 1977).
[0004] Fire retardant chemicals may also be coated onto the fibrous materials. See, for example, U.S. Pat. No. 3,955,032 (Mischutin), issued May 4, 1976, which discloses a process using chlorinated-cyclopentadieno compounds and chlorobrominated-cyclpentadieno compounds, either alone or in combination with metal oxides, which are suspended in a latex medium and then cured to render natural and synthetic fibrous materials and blends of thereof fire retardant. See also U.S. Pat. No. 4,600,606 (Mischutin), issued July 15, 1986, which discloses a method for flame retarding textile and related fibrous materials which uses a water-insoluble, non-phosphorous containing brominated aromatic or cycloaliphatic compounds along with a metal oxide to treat fabrics for protection against splashes of molten metals or glass, as well as a U.S. Pat. No. 4,702,861 (Farnum), issued October 27, 1987, which discloses a flame retardant composition comprising a dispersion of phosphorous- containing compounds and metal oxides in latex which, upon exposure to elevated temperatures and/or flame, reportedly creates a substantially continuous protective film generally encapsulating and/or enveloping the surface of the article onto which it is applied, the film-forming materials being based upon an aqueous latex dispersion of polyvinylchloride-acrylic copolymer, which is inherently fire retardant.
SUMMARY
[0005] According to a first broad aspect of the present invention, there is provided a process comprising the following steps:
a. providing an at least partially delignified pulp fiber web having a Kappa number of less than about 130; and b. treating the at least partially delignified pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less and
comprising at least about 10% of one or more endothermic fire retardants based on the solids in the solution; wherein the pulp fiber web treated with the endothermic fire retardant solution has a pH of from about 5 to about 9, wherein the pulp fiber web is treated with a total amount of endothermic fire retardants of at least about 20 lbs of endothermic fire retardants per ton of the pulp fiber web, and wherein at least about 5% of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed.
[0006] According to a second broad aspect of the present invention, there is provided an article comprising a fire resistant pulp fiber web having a pH of from about 5 to about 9, and comprising: an at least partially delignified pulp fiber web having a Kappa number of less than about 130; and a fire retardant component present in and/or on the pulp fiber web in an amount of at least about 20 lbs fire retardant component per ton of the pulp fiber web, the fire retardant component comprising: at least about 10% by weight of the fire retardant component of one or more endothermic fire retardants; and up to about 90% by weight of the fire retardant component of one or more other fire retardants; and one or more fire retardant distributing surfactants in an amount sufficient to distribute the fire retardant component in and/or on the pulp fiber web; wherein the fire retardant component is in an amount and is distributed in and/or on the pulp fiber web in a manner so that the fire resistant pulp fiber web passes one or more of the following tests: the UL 94 HBF test, the Horizontal Burn Through test, or the ASTM D 5132-04 test.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The invention will be described in conjunction with the accompanying drawings, in which:
[0008] FIG. 1 is a schematic diagram which shows an illustrative process for providing a fire resistant pulp fiber web having a near neutral pH according to an embodiment of the present invention; and
[0009] FIG. 2 is side sectional view of an air-laid fibrous structure which comprises a fire resistant pulp fiber web according to an embodiment of the present invention as the respective outer layers of the air-laid fibrous core of the structure.
DETAILED DESCRIPTION
[0010] It is advantageous to define several terms before describing the invention. It should be appreciated that the following definitions are used throughout this application.
Definitions
[0011] Where the definition of terms departs from the commonly used meaning of the term, applicant intends to utilize the definitions provided below, unless specifically indicated.
[0012] For the purposes of the present invention, directional terms such as "top," "bottom," "upper," "lower," "side," "front," "frontal," "forward," "rear," "rearward," "back," "trailing," "above", "below," "left," "right," "horizontal," "vertical," "upward," "downward," etc. are merely used for convenience in describing the various embodiments of the present invention. The embodiments shown in FIGS. 1 through 2 may be flipped over, rotated by 90° in any direction, etc.
[0013] For the purposes of the present invention, the term "pulp fibers" refers to a wood pulp fibers which may be softwood pulp fibers, hardwood pulp fibers or a mixture of softwood and hardwood pulp fibers. The pulp fiber web may be in the form of, for example, sheets, strips, pieces, batts/battings, blankets, etc., which may be in the form of a continuous roll, a discrete sheet, etc.
[0014] For the purposes of the present invention, the term "fluff pulp" refers to pulp fibers which may be comminuted to provide an air-laid fibrous structure. Fluff pulps may also be
referred to as "fluffy pulp," or "comminution pulp." Some illustrative examples of commercially available fluff pulp may include one or more of: RW Supersoft™, Supersoft L™, RW Supersoft Plus™, GT Supersoft Plus™, RW Fluff LITE™, RW Fluff 110™, RW Fluff 150™, RW Fluff 160™, GP 4881™, GT Pulp™, RW SSP™, GP 4825™, etc.
[0015] For the purposes of the present invention, the term "pulp fiber web" refers to a fibrous cellulosic matrix comprising wood pulp fibers. Pulp fiber webs may be in the form of, for example, sheets, strips, pieces, batts/battings, blankets, etc., which may be in the form of a continuous roll, a discrete sheet, etc.
[0016] For the purposes of the present invention, the term "softwood pulp fibers" refers to fibrous pulps derived from the woody substance of coniferous trees (gymnosperms) such as varieties of fir, spruce, pine, etc., for example, loblolly pine, slash pine, Colorado spruce, balsam fir, Douglas fir, jack pine, radiata pine, white spruce, lodgepole pine, redwood, etc. North American southern softwoods and northern softwoods may be used to provide softwood fibers, as well as softwoods from other regions of the world.
[0017] For the purposes of the present invention, the term "hardwood pulp fibers" refers to fibrous pulps derived from the woody substance of deciduous trees (angiosperms) such as birch, oak, beech, maple, eucalyptus, poplars, etc.
[0018] For the purposes of the present invention, the term "at least partially delignified pulp fibers" refers to pulp fibers which have been subjected to chemical and/or mechanical processing (e.g., kraft pulping processes) to at least partially remove lignin from the pulp fibers so that the pulp fibers have a Kappa number (also referred to as "K number") of about 130 or less, such as about 50 or less (e.g., about 35 or less). Kappa numbers may be determined by the ISO 302:2004 method. See G. A. Smook, Handbook for Pulp and Paper Technologists (2nd Edition, 1992), page 336, the entire contents and disclosure of which is herein incorporated by reference, for a general description of Kappa Numbers, how to measure Kappa numbers, and how Kappa numbers relate to the lignin content of pulp fibers. See also G. A. Smook, Handbook for Pulp and Paper Technologists (2nd Edition, 1992), pages 75-84, the entire contents and disclosure of which is herein incorporated by reference, for a general description of kraft pulping processes for carrying out delignification of pulp fibers.
[0019] For the purposes of the present invention, the term "basis weight," refers to the grammage of the pulp fibers, pulp web, etc., as determined by TAPPI test T410. See G. A. Smook, Handbook for Pulp and Paper Technologists (2nd Edition, 1992), page 342, Table 22- 11 , the entire contents and disclosure of which is herein incorporated by reference, which describes the physical test for measuring basis weight.
[0020] For the purposes of the present invention, the term "basis weight variability," refers to the statistical variation from the target basis weight value. For example, if the target basis weight is 750 gsm and the area of the sample being evaluated is 755 gsm, the basis weight variability would be 0.06%. Basis weight variability may be measured in the machine direction (MD) or the cross machine direction (CD).
[0021] For the purposes of the present invention, the term "caliper," refers to the thickness of a web (e.g., pulp fiber web) in mils, as determined by measuring the distance between smooth, flat plates at a defined pressure.
[0022] For the purposes of the present invention, the term "moisture content," refers to the amount of water present in the pulp fiber web as measured by TAPPI test T210 cm-03.
[0023] For the purposes of the present invention, the term "fiberization energy," (also sometimes called the "shred energy") refers to the amount of energy (in kJ/kg) required to comminute (e.g., defiberize, disintegrate, shred, fragment, etc.) a pulp fiber web to individualized pulp fibers by using a hammermill (such as a Kamas Type H 01 Laboratory Defribrator manufactured by Kamas Industri AB). The energy required to comminute the pulp web is normally measured and displayed by the hammermill in, for example, watt hours (wH). The fiberization energy may be calculated by using the following equation: fiberization energy (in kJ/kg) = 3600 x energy measured (in wH) ÷ fiberized fiber weight (in grams). See U.S. Pat. No. 6,719,862 (Quick et al), issued April 13, 2004, the entire contents and disclosure of which is incorporated by reference, especially column 1 1, lines 25-32.
[0024] For the purposes of the present invention, the term "pulp filler" refers commonly to mineral products (e.g., calcium carbonate, kaolin clay, calcium sulfate hemihydrate, calcium sulfate dehydrate, chalk, etc.) which may be used in pulp fiber web making to reduce materials cost per unit mass of the web, increase opacity, etc. These mineral products may be finely divided, for example, in the size range of from about 0.5 to about 5 microns.
[0025] For the purposes of the present invention, the term "pulp pigment" refers to a material (e.g., a finely divided particulate matter) which may be used or may be intended to be used to affect optical properties of the pulp fiber web. Pulp pigments may include one or more of: calcium carbonate, kaolin clay, calcined clay, modified calcined clay, aluminum trihydrate, titanium dioxide, talc, plastic pigment, amorphous silica, aluminum silicate, zeolite, aluminum oxide, colloidal silica, colloidal alumina slurry, etc.
[0026] For the purposes of the present invention, the term "calcium carbonate" refers various calcium carbonates which may be used as pulp pigments, such as precipitated calcium carbonate (PCC), ground calcium carbonate (GCC), modified PCC and/or GCC, etc.
[0027] For the purposes of the present invention, the term "precipitated calcium carbonate (PCC)" refers to a calcium carbonate which may be manufactured by a precipitation reaction and which may used as a pulp pigment. PCC may comprise almost entirely of the calcite crystal form of CaC03. The calcite crystal may have several different macroscopic shapes depending on the conditions of production. Precipitated calcium carbonates may be prepared by the carbonation, with carbon dioxide (CO2) gas, of an aqueous slurry of calcium hydroxide ("milk of lime"). The starting material for obtaining PCC may comprise limestone, but may also be calcined (i.e., heated to drive off CO2), thus producing burnt lime, CaO. Water may added to "slake" the lime, with the resulting "milk of lime," a suspension of Ca(OH)2, being then exposed to bubbles of CO2 gas. Cool temperatures during addition of the CO2 tend to produce rhombohedral (blocky) PCC particles. Warmer temperatures during addition of the CO2 tend to produce scalenohedral (rosette-shaped) PCC particles. In either case, the end the reaction occurs at an optimum pH where the milk of lime has been effectively converted to CaC03, and before the concentration of CO2 becomes high enough to acidify the suspension and cause some of it to redissolve. In cases where the PCC is not continuously agitated or stored for many days, it may be necessary to add more than a trace of such anionic dispersants as polyphosphates. Wet PCC may have a weak cationic colloidal charge. By contrast, dried PCC may be similar to most ground CaCC^ products in having a negative charge, depending on whether dispersants have been used. The calcium carbonate may be precipitated from an aqueous solution in three different crystal forms: the vaterite form which is thermodynamically unstable, the calcite form which is the most stable and the most abundant in nature, and the aragonite form which is metastable under normal ambient conditions of temperature and pressure, but which may convert to calcite at elevated
temperatures. The aragonite form has an orthorhombic shape that crystallizes as long, thin needles that may be either aggregated or unaggregated. The calcite form may exist in several different shapes of which the most commonly found are the rhombohedral shape having crystals that may be either aggregated or unaggregated and the scalenohedral shape having crystals that are generally unaggregated.
[0028] For the purposes of the present invention, the term "pulp binders" refers to a binder agent for pulp fibers which may be used to improve the binding strength of the pulp fibers in the web. Suitable pulp binders may include one or more synthetic or naturally occurring polymers (or a combination of different polymers), for example, a polyvinyl alcohol (PVOH), polyacrylamide, modified polyacrylamide, starch binders, proteinaceous adhesives such as, for example, casein or soy proteins, etc; polymer latexes such as styrene butadiene rubber latexes, acrylic polymer latexes, polyvinyl acetate latexes, styrene acrylic copolymer latexes, wet strength resins such as Amres (a Kymene type), Bayer Parez, etc, polychloride emulsions, polyols, polyol carbonyl adducts, ethanedial/polyol condensates, polyamides, epichlorohydrin, glyoxal, glyoxal ureas, aliphatic polyisocyanates, 1,6 hexamethylene diisocyanates, polyesters, polyester resins, etc
[0029] For the purposes of the present invention, the term "air-laid fibrous structure" refers to a nonwoven, bulky, porous, soft, fibrous structure obtained by air-laying comminuted pulp fiber webs and/or pulp fibers, and which may optionally comprise synthetic fibers such as bicomponent fibers. Air-laid fibrous structures may include air-laid fibrous cores, air-laid fibrous layers, etc
[0030] For the purposes of the present invention, the term "comminuting" refers to defibrizing, disintegrating, shredding, fragmenting, etc, a pulp fiber web and/or pulp fibers to provide an air-laid fibrous structure.
[0031] For the purposes of the present invention, the term "synthetic fibers" refers to fibers other than wood pulp fibers (e.g., other than pulp fibers) and which be made from, for example, cellulose acetate, acrylic, polyamides (such as, for example, Nylon 6, Nylon 6/6, Nylon 12, polyaspartic acid, polyglutamic acid, etc.), polyamines, polyimides, polyamides, polyacrylics (such as, for example, polyacrylamide, polyacrylonitrile, esters of methacrylic acid and acrylic acid, etc.), polycarbonates (such as, for example, polybisphenol A carbonate, polypropylene carbonate, etc.), polydienes (such as, for example, polybutadiene,
polyisoprene, polynorbomene, etc.), polyepoxides, polyesters (such as, for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polycaprolactone, polyglycolide, polylactide, polyhydroxybutyrate, polyhydroxyvalerate, polyethylene adipate, polybutylene adipate, polypropylene succinate, etc.), polyethers (such as, for example, polyethylene glycol(polyethylene oxide), polybutylene glycol, polypropylene oxide, polyoxymethylene(paraformaldehyde), polytetramethylene ether(polytetrahydrofuran), polyepichlorohydrin, and so forth), polyfluorocarbons, formaldehyde polymers (such as, for example, urea-formaldehyde, melamine-formaldehyde, phenol formaldehyde, etc.), polyolefins (such as, for example, polyethylene, polypropylene, polybutylene, polybutene, polyoctene, etc.), polyphenylenes (such as, for example, polyphenylene oxide, polyphenylene sulfide, polyphenylene ether sulfone, etc.), silicon containing polymers (such as, for example, polydimethyl siloxane, polycarbomethyl silane, etc.), polyurethanes, polyvinyls (such as, for example, polyvinyl butyral, polyvinyl alcohol, esters and ethers of polyvinyl alcohol, polyvinyl acetate, polystyrene, polymethylstyrene, polyvinyl chloride, polyvinyl pryrrolidone, polymethyl vinyl ether, polyethyl vinyl ether, polyvinyl methyl ketone, etc.), polyacetals, polyarylates, and copolymers (such as, for example, polyethylene-co-vinyl acetate, polyethylene-co-acrylic acid, polybutylene terephthalate-co-polyethylene terephthalate, polylauryllactam-block-polytetrahydrofuran, vinyl chloride, regenerated cellulose such as viscose rayon, glass fibers, ceramic fibers, bicomponent fibers, melamine fibers (e.g., fibers obtained from melamine-formaldehyde resin), etc.
[0032] For the purposes of the present invention, the term "bicomponent fibers" refers to fibers comprising a core and sheath configuration. The core and sheath portions of bicomponent fibers may be made from various polymers. For example, bicomponent fibers may comprise a PE (polyethylene) or modified PE sheath which may have a PET (polyethylene terephthalate) or PP (polypropylene) core. In one embodiment, the bicomponent fiber may have a core made of polyester and sheath made of polyethylene. Alternatively, a multi-component fiber with a PP (polypropylene) or modified PP or PE sheath or a combination of PP and modified PE as the sheath or a copolyester sheath wherein the copolyester is isophthalic acid modified PET (polyethylene terephthalate) with a PET or PP core, or a PP sheath-PET core and PE sheath-PP core and co-PET sheath fibers may be employed. Various geometric configurations may be used for the bicomponent fiber, including concentric, eccentric, islands-in-the-sea, side-by-side, etc. The relative weight
percentages and/or proportions of the core and sheath portions of the bicomponent fiber may also be varied.
[0033] For the purposes of the present invention, the term "trivalent metal" refers to a metal which may have a positive charge of three (e.g., boron, zinc, an iron (ferric), cobalt, nickel, aluminum, manganese, chromium, etc), and may include combinations of one or more of these trivalent metals. Sources of trivalent metals may include one or more of organic or inorganic salts, for example, from one or more of the following anions: acetate, lactate, EDTA, halide, chloride, bromide, nitrate, chlorate, perchlorate, sulfate, acetate, carboxylate, hydroxide, nitrite, etc. The salt may be a simple salt, wherein the trivalent metal forms a salt with one or more of the same anion, or a complex salt, wherein the trivalent metal forms a salt with two or more different anions. In one embodiment, the salt may be aluminum chloride, aluminum carbonate, aluminum sulfate, alum (e.g., aluminum ammonium sulfate, aluminum potassium sulfate, aluminum sulfate, etc.), etc.
[0034] For the purposes of the present invention, the term "debonder surfactant" refers to surfactants which are useful in the treatment of pulp fibers to reduce inter-fiber bonding. Suitable debonder surfactants may include one or more of: cationic surfactants or nonionic surfactants, such as linear or branched monoalkyl amines, linear or branched dialkyl amines, linear or branched tertiary alkyl amines, linear or branched quaternary alkyl amines, linear or branched, saturated or unsaturated hydrocarbon surfactants, fatty acid amides, fatty acid amide quaternary ammonium salts, dialkyl dimethyl quaternary ammonium salts, dialkylimidazolinium quaternary ammonium salts, dialkyl ester quaternary ammonium salts, triethanolamine-ditallow fatty acids, fatty acid ester of ethoxylated primary amines, ethoxylated quaternary ammonium salts, dialkyl amide of fatty acids, dialkyl amide of fatty acids, ethoxylated alcohols, such as Ci6-Ci8 unsaturated alkyl alcohol ethoxylates, commercially available compound having CAS Registry No. 68155-01-1, commercially available compound having CAS Registry No. 26316-40-5, commercially available Eka Chemical F60™ (an ethoxylated alcohol surfactant), commercially available Cartaflex TS LIQ™, commercially available F639™, commercially available Hercules PS9456 ™, commercially available Cellulose Solutions 840™, commercially available Cellulose Solutions 1009™, commercially available EKA 509H™, commercially available EKA 639™, etc. See also U.S. Pat. No. 4,425, 186 (May et al), issued January 10, 1984, the entire contents and disclosure of which is hereby incorporated by reference, which discloses a
combination of a cationic surfactant and a dimethylamide of a straight chain carbon carboxylic acid containing 12 to 18 carbon atoms which may be useful as a debonder surfactant.
[0035] For the purposes of the present invention, the term "fire resistant article" refers to an article (e.g., pulp fiber web, air-laid fibrous structure, etc.) which has been treated with a fire retardant in an amount sufficient to make the treated material resistant to fire, flame, burning, etc., as determined by certain fire resistance test(s), such as the UL 94 test, the Horizontal Burn Through method test, the ASTM D 5132-04 test, etc.
[0036] For the purposes of the present invention, the term "fire resistance test" refers to a test which measures the fire resistant characteristics, properties, etc., of an article, a material, etc. These tests may include the UL 94 test, the Horizontal Burn Through method test, the ASTM D 5132-04 test, etc.
[0037] For the purposes of the present invention, the term "UL 94 HBF test" (also known as the "Horizontal Burning Foamed Material Test") refers to a fire resistance test (authored by Underwriters Laboratories) which is used to measure the flammability of articles, such as foamed plastic materials, used in parts in devices or appliances, etc. The UL HBF 94 test measures the ability of such articles to prevent flame propagation. The UL HBF 94 test may be conducted on specimens which are 150 (± 5) mm long x 50 (± 1) mm wide and having a minimum/maximum covering the thickness range of materials to be tested. See pages 27-33 and FIG. 12-1 on page 32, UL 94 "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" published by Underwriters Laboratories Inc., Standard for Safety (2009), the entire contents and disclosure of which is herein incorporated by reference, for how to carry out the UL 94 HBF test method, including apparatus used and specimen preparation.
[0038] For the purposes of the present invention, the term "Horizontal Burn Through test" (also known as the "California test") refers to fire resistance test which measures the ability of the article being tested to resist burning by forming, for example, a stable char that insulates the remaining uncharred material of the article from heat. Articles, materials, etc., are considered to have passed the Horizontal Burn Through test is there is no burn through after the specimen being tested is exposed to a flame for at least 15 minutes. The Horizontal Burn Through test may be conducted on specimens which are 10 cm x 10 cm square and
which are then centrally positioned on a 6.35 mm (0.25 inch) thick square steel plate approximately 15 cm.times.15 cm (6.times.6 inches). The plate has a circular hole of a diameter of 50.8 mm (or 2 inches) machined concentrically through the center portion. The specimen is mounted level over a Bunsen burner which is fed with a natural gas flow rate of 415 ml/min. so that when moved under the specimen, the tip of the flame just touches the underside of the barrier in the center of the hole, the flame being held in contact with the specimen for a total of 15 minutes after which the condition of the specimen is assessed for burn through. See paragraphs [0158]-[0160] of U.S. Pat. Appln. No. 20080050565 (Gross et al.), published February 28, 2008, the entire disclosure and contents of which is herein incorporated by reference, which describes how to carry out the Horizontal Burn Through test. Specimen preparation for specimens used in carrying out the Horizontal Burn Through test method according to the present invention are described in the section below entitled "Fire Resistant Test Specimen Preparation."
[0039] For the purposes of the present invention, the term "ASTM D 5132-04 test" (also known as the "Horizontal Burning Rate of Polymeric Materials Used in Occupant Compartments of Motor Vehicles" test) refers to fire resistance test used to compare relative horizontal burning rates of polymeric materials used in occupant compartments of motor vehicles. This test method employs a test specimen having test dimensions of 100 (± 5) mm wide by 300 mm in length with a thickness of up to 13 mm which is mounted on a U-shaped metal frame. The test specimen is ignited by using a 38-mm flame from an appropriate burner, with burning rate of the material then being determined. The rate of burning is calculated by measuring the distance, D, (in mm.) the flame travels on the test specimen, divided by the time, T, (in seconds) required to travel the distance, D, multiplied by 60.
[0040] For the purposes of the present invention, the term "fire retardant" refers to one or more substances (e.g., composition, compound, etc.) which are able to reduce, impart resistance to, etc., the flammability, the ability to burn, etc., of a material, article, etc. Fire retardants may include one or more endothermic fire retardants, and optionally one or more other (nonendothermic) fire retardants.
[0041] For the purposes of the present invention, the term "endothermic fire retardant" refers to fire retardants which absorb heat when exposed to a source of flame. Endothermic fire retardants may include one or more of: boron-containing fire retardants such as borate fire retardants (e.g., boric acid, borax, sodium tetraborate decahydrate, zinc borate, etc.),
borosilicate (i.e., condensates of boron oxides and silica with other metal oxides, for example sodium oxide and aluminum oxide) fire retardants (e.g., may include borosilicates used in making glass, etc.), other substances which retain water or water vapor at room temperature such as alum (aluminum ammonium sulfate), talc (magnesium silicate), aluminum hydroxide (as known as alumina trihydrate), magnesium hydroxide (also known as magnesium dihydroxide), mixtures (e.g., equal mixtures) of huntite (calcium magnesium carbonate or CaMg3(C03)4) and hydromagnesite (hydrated magnesium carbonate hydroxide or Mg54(C03)4(OH)2 · 4H20), etc. See Weil et al, Flame Retardants for Plastics and Textiles (Hanser Publishers, Munich, 2009), pp. 4-8, the entire contents and disclosures of which are herein incorporated by reference.
[0042] For the purposes of the present invention, the term "other fire retardant" refers to fire retardants which are not endothermic fire retardants. Other fire retardants may include one or more of phosphorous fire retardants, halogenated hydrocarbon fire retardants, metal oxide fire retardants, etc. For example, these other fire retardants may comprise a mixture, blend, etc., of one or more phosphorous fire retardants, one or more halogenated hydrocarbon fire retardants, and one or more metal oxide fire retardants.
[0043] For the purposes of the present invention, the term "phosphorous fire retardant" refers to a fire retardant substance, compound, molecule, etc., which comprises one or more phosphorous atoms. Phosphorous fire retardants may include one or more of: phosphates, such as sodium phosphates, ammonium phosphates, sodium polyphosphates, ammonium polyphosphates, melamine phosphates, ethylenediamine phosphates etc.; red phosphorus; metal hypophosphites, such as aluminum hypophosphite and calcium hypophosphite; phosphate esters; etc. For embodiments of the present invention, the phosphorus fire retardant disperses on and/or in the cellulosic fibers and may, in some embodiments (e.g., ammonium phosphates) form a bond (i.e., crosslink) to cellulose which forms a stable char during exposure to the flame. Some proprietary phosphorous fire retardants may include, for example: Spartan™ AR 295 Flame Retardant from Spartan Flame Retardants Inc. of Crystal Lake, III, include both organic and inorganic constituents, GLO-TARD FFR2, which is an ammonium polyphosphate fire retardant from GLO-TEX International, Inc. of Spartanburg, S.C.; Fire Retard 3496, which is a phosphate ester supplied by Manufacturers Chemicals, L.P. of Cleveland, Tenn, Flovan CGN, a multi-purpose phosphate-based flame retardant supplied by Huntsman (Salt Lake City, Utah); SPARTAN™ AR 295, a diammonium
phosphate based flame retardant from Spartan Flame Retardants, Inc. (Crystal Lake, 111.), FRP 12™, FR 165™, and FR 8500™ supplied by Cellulose Solutions, LLC (Daphne, Alabama), etc.
[0044] For the purposes of the present invention, the term "halogenated organic fire retardant" refers to a halogenated organic compound which alone, or in combination with other substances, compounds, molecules, etc., are capable of functioning as a fire retardant. Halogenated organic fire retardants may include one or more of: halogenated (e.g., chlorinated, brominated, etc.) hydrocarbons, such as halogenated aliphatics (e.g., haloalkanes), halogenated aromatics, etc. Halogenated organic fire retardants may include chloroparaffins, Dechorane Plus (a chlorine-containing halogenated fire retardant), decabromodiphenyl oxide, tetradecabromodiphenoxybenzene, ethylenebispentabromobenzene (EBPB); tetrabromobisphenol A (TBBA), tetrabromobisphenol A bis-hexabromocyclododecane, ethylenebis-(tetrabromophthalimide). These halogenated organic fire retardants may work by eliminating oxygen from the burn zone which quenches, extinguishes, smothers, puts out, etc., the flame.
[0045] For the purposes of the present invention, the term "metal oxide fire retardant" refers to metal oxides which alone, or in combination with other substances, are capable of functioning as a fire retardant. Metal oxide fire retardants may include one or more of: aluminum oxide (alumina), antimony trioxide, ferric oxide, titanium dioxide, stannic oxide, etc.
[0046] For the purposes of the present invention, the term "fire retardant distributing surfactant" refers to surfactants which function to distribute, disperse, etc., the fire retardant over, through, etc., the fibrous matrix of the pulp fiber web. Suitable fire retardant distributing surfactants may be ionic or nonionic, have a rheology which permits the surfactant to be dispersed on and/or through the pulp fiber web being treated with the fire retardant component, carries the fire retardant component on and/or through the pulp fiber web (i.e., the fire retardant component is not fully dissolved in the surfactant), enables or at least does not inhibit crosslinking between fire retardants (e.g., crosslinkable phosphorous fire retardants such as the ammonium phosphates) in the fire retardant component and the cellulosic fibers in the pulp fiber web, etc. Suitable fire retardant distributing surfactants may include one or more of: alkoxylated alcohols/alcohol alkoxylates (e.g., BASF's Plurafac® alcohol alkoxylates) which may include ethoxylated alcohols (e.g., Eka Chemical's F60
surfactant, etc. Suitable ethoxylated alcohols for use as fire retardant distributing surfactants may comprise from about 1 to about 30 ethylene oxide (EO) units, for example, from about 4 to about 25 EO units, with an alcohol carbon chain length of from about 6 to about 30 carbon atoms, for example, from about 6 to about 22 carbon atoms, such as from about 12 to about 18 carbon atoms (e.g., from about 16 to 18 carbon atoms). See U.S. Pat. No. 7,604,715 (Liesen et al), issued October 20, 2009, the entire contents and disclosure of which is incorporated by reference.
[0047] For the purposes of the present invention, the term "near neutral pH" refers to a pH in the range of from about 5 to about 9, for example, from about 6 to about 8, such as about 7.
[0048] For the purposes of the present invention, the term "pH adjusting agent" refers a composition, compound, etc., which may be included to raise or lower the pH of the endothermic fire retardant solution, the pulp slurry to which the endothermic fire retardant solution, as well as other fire retardants, fire retardant distributing surfactants, etc., are added, etc., to provide a treated pulp fiber web having a near neutral pH. Suitable pH adjusting agents may include acids or bases, buffering agents which may be may be weak acids or weak bases (i.e., proton acceptors) and may include one or more of: trivalent metal ammonium sulfates, such as aluminum ammonium sulfate (e.g., alum), ferric ammonium sulfate, chromium ammonium sulfate, cobalt ammonium sulfate, manganese ammonium sulfate, nickel ammonium sulfate, etc., other ammonium salts which function as weak bases such as ammonium sulfate, etc. In some embodiments, endothermic fire retardants by themselves may also function as the pH adjusting (e.g., buffering) agent.
[0049] For the purposes of the present invention, the term "at a point prior to when the pulp fiber web is formed" refers any point any point prior to when the pulp fiber web is formed (e.g., prior to forming the pulp fiber web on a forming wire) and may include the forming the pulp slurry in the blend chest, after the pulp slurry is formed by the blend chest and prior to transfer to the head box, after transfer of the pulp slurry to the head box but prior to depositing a furnish from the headbox, e.g., prior to depositing on the a forming wire, etc.
[0050] For the purposes of the present invention, the term "at a point after the pulp fiber web is formed and prior to drying of the fibrous web" refers any point any point after the pulp fiber web is formed and prior to the point when the pulp fiber web is dried, and may include forming pulp fiber web on a forming wire, passing the pulp fiber web through a size press,
passing the pulp fiber web past or through a sprayer or other applicating device (e.g., coater), etc.
[0051] For the purposes of the present invention, the term "at a point after drying of the fibrous web" refers any point any point after the pulp fiber web is dried and up to and including when an air-laid fibrous structure is constructed from the dried pulp fiber web.
[0052] For the purposes of the present invention, the term "solids basis" refers to the weight percentage of each of the respective solid materials (e.g., fire retardants, surfactants, dispersants, etc.) present in the pulp fibers, web, composition, etc., in the absence of any liquids (e.g., water). Unless otherwise specified, all percentages given herein for the solid materials, compounds, substances, etc., are on a solids basis.
[0053] For the purposes of the present invention, the term "solids content" refers to the percentage of non-volatile, non-liquid components (by weight) that are present in the pulp fibers, web, composition,, etc.
[0054] For the purposes of the present invention, the term "gsm" is used in the conventional sense of referring to grams per square meter.
[0055] For the purposes of the present invention, the term "mil(s)" is used in the conventional sense of referring to thousandths of an inch.
[0056] For the purposes of the present invention, the term "liquid" refers to a non-gaseous fluid composition, compound, material, etc., which may be readily flowable at the temperature of use (e.g., room temperature) with little or no tendency to disperse and with a relatively high compressibility.
[0057] For the purposes of the present invention, the term "room temperature" refers to the commonly accepted meaning of room temperature, i.e., an ambient temperature of 20° to 25°C.
[0058] For the purposes of the present invention, the term "optical brightness" refers to the diffuse reflectivity of the pulp fiber web/pulp fibers, for example, at a mean wavelength of light of 457 nm. As used herein, optical brightness of pulp fiber webs may be measured in terms of ISO Brightness which measures brightness using, for example, an ELREPHO
Datacolor 450 spectrophotometer, according to test method ISO 2470-1, using a C illuminant with UV included.
[0059] For the purposes of the present invention, the term "optical brightener agent (OBA)" refers to certain fluorescent materials which may increase the brightness (e.g., white appearance) of pulp fiber web surfaces by absorbing the invisible portion of the light spectrum (e.g., from about 340 to about 370 nm) and converting this energy into the longer- wavelength visible portion of the light spectrum (e.g., from about 420 to about 470 nm). In other words, the OBA converts invisible ultraviolet light and re-emits that converted light into blue to blue-violet light region through fluorescence. OBAs may also be referred to interchangeably as fluorescent whitening agents (FWAs) or fluorescent brightening agents (FBAs). The use of OBAs is often for the purpose of compensating for a yellow tint or cast of paper pulps which have, for example, been bleached to moderate levels. This yellow tint or cast is produced by the absorption of short-wavelength light (violet-to-blue) by the pulp fiber webs. With the use of OBAs, this short-wavelength light that causes the yellow tint or cast is partially replaced, thus improving the brightness and whiteness of the pulp fiber web. OBAs are desirably optically colorless when present on the pulp fiber web surface, and do not absorb light in the visible part of the spectrum. These OBAs may be anionic, cationic, anionic (neutral), etc., and may include one or more of: stilbenes, such as 4,4 '-bis- (triazinylamino)-stilbene-2,2'-disulfonic acids, 4,4'-bis-(triazol-2-yl)stilbene-2,2'-disulfonic acids, 4,4'-dibenzofuranyl-biphenyls, 4,4'-(diphenyl)-stilbenes, 4,4'-distyryl-biphenyls, 4- phenyl-4'-benzoxazolyl-stilbenes, stilbenzyl-naphthotriazoles, 4-styryl-stilbenes, bis- (benzoxazol-2-yl) derivatives, bis-(benzimidazol-2-yl) derivatives, coumarins, pyrazolines, naphthalimides, triazinyl-pyrenes, 2-styryl-benzoxazole or -naphthoxazoles, benzimidazole- benzofurans or oxanilides, etc, See commonly assigned U.S. Pat. No. 7,381,300 (Skaggs et al), issued June 3, 2008, the entire contents and disclosure of which is herein incorporated by reference. In particular, these OBAs may comprise, for example, one or more stilbene-based sulfonates (e.g., disulfonates, tetrasulfonates, or hexasulfonates) which may comprise one or two stilbene residues. Illustrative examples of such anionic stilbene-based sulfonates may include 1,3,5-triazinyl derivatives of 4,4'-diaminostilbene-2,2'-disulphonic acid (including salts thereof), and in particular the bistriazinyl derivatives (e.g., 4,4-bis(triazine-2- ylamino)stilbene-2,2'-disulphonic acid), the disodium salt of distyrlbiphenyl disulfonic acid, the disodium salt of 4,4'-di-triazinylamino-2,2'-di-sulfostilbene, etc. Commercially available disulfonate, tetrasulfonate and hexasulfonate stilbene-based OBAs may also be obtained, for
example, from Ciba Geigy under the trademark TINOPAL®, from Clariant under the trademark LEUCOPHOR®, from Lanxess under the trademark BLANKOPHOR®, and from 3V under the trademark OPTIBLANC®.
[0060] For the purpose of the present invention, the term "treating" with reference to the fire retardant compositions may include adding, depositing, applying, spraying, coating, daubing, spreading, wiping, dabbing, dipping, etc., to the pulp fibers, pulp fiber web, air-laid fibrous structure, etc.
[0061] For the purposes of the present invention, the term "applicator" refers to a device, equipment, machine, etc., which may be used to treat, apply, coat, etc., one or more sides or surfaces of a pulp fiber web, air-laid fibrous structure, etc., with the fire retardant composition. Applicators may include air-knife coaters, rod coaters, blade coaters, size presses, etc. See G. A. Smook, Handbook for Pulp and Paper Technologists (2nd Edition, 1992), pages 289-92, the entire contents and disclosure of which is herein incorporated by reference, for a general description of coaters that may be useful herein. Size presses may include a puddle size press, a metering size press, etc. See G. A. Smook, Handbook for Pulp and Paper Technologists (2nd Edition, 1992), pages 283-85, the entire contents and disclosure of which is herein incorporated by reference, for a general description of size presses that may be useful herein.
[0062] For the purposes of the present invention, the term "flooded nip size press" refers to a size press having a flooded nip (pond), also referred to as a "puddle size press." Flooded nip size presses may include vertical size presses, horizontal size presses, etc.
[0063] For the purposes of the present invention, the term "metering size press" refers to a size press that includes a component for spreading, metering, etc., deposited, applied, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc. Metering size presses may include a rod metering size press, a gated roll metering size press, a doctor blade metering size press, etc.
[0064] For the purposes of the present invention, the term "rod metering size press" refers to metering size press that uses a rod to spread, meter, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc. The rod may be stationary or movable relative to the web.
[0065] For the purposes of the present invention, the term "gated roll metering size press" refers to a metering size press that may use a gated roll, transfer roll, soft applicator roll, etc. The gated roll, transfer roll, soft applicator roll, etc., may be stationery relative to the web, may rotate relative to the web, etc.
[0066] For the purposes of the present invention, the term "doctor blade metering size press" refers to a metering press which may use a doctor blade to spread, meter, etc., the fire retardant composition on a pulp fiber web, air-laid fibrous structure, etc.
Description
[0067] Embodiments of the process of the present invention comprise providing an at least partially delignified pulp fiber web having a Kappa number of less than about 130 (e.g., less than about 50). The pulp fiber web may comprise at least about 50% (for example, from about 50 to about 70%, such as from about 70 to about 80%) softwood pulp fibers and up to about 50% (for example, from about 30 to about 50%, such as from about 20 to about 30%) hardwood pulp fibers. Embodiments of the process of the present invention also comprise treating the pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less (e.g., a pH of from about 5 to about 9, such as from about 6 to about 8) and comprising at least about 10% (e.g., from about 10 to about 70% based on the total solids in the solution) of one or more endothermic fire retardants. The pulp fiber web is treated with a total amount of endothermic fire retardants of at least about 20 lbs (e.g., from about 20 to about 250 lbs) of endothermic fire retardants per ton of the pulp fiber web, wherein at least about 5% (e.g., an initial portion of from about 5 to about 33%) of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed. In some embodiments, the remaining portion of from about 67 to about 95% of the total amount of endothermic fire retardants are added at a point after the pulp fiber web is formed, for example, at a point after the pulp fiber web is dried.
[0068] In some embodiments of the process of the present invention, the pulp fiber web may also be treated with one or more other fire retardants in an amount up to about 90% (e.g., from about 10 to about 90%) of the total fire retardants used to treat the pulp fiber web); and optionally one or more fire retardant distributing surfactants in an amount sufficient to distribute the other fire retardants in and/or on the pulp fiber web. Treatment with the endothermic fire retardant solution (and optionally any other fire retardants and a fire
retardant distributing surfactants) provides a treated pulp fiber web having a near neutral pH (e.g., a pH of from about 5 to about 9, such as from about 6 to about 8). Providing a fire retardant treated pulp fiber web having a near neutral pH enables the resultant web, for example, to be to provide an air-laid fibrous structure, avoids/minimizes corrosion of metal components the retardant treated pulp fiber web comes into contact with, avoids/minimizes skin irritation, etc.
[0069] In some embodiments of the process of the present invention, the other optional fire retardants and optional fire retardant distributing surfactants are added to the pulp fiber web at a point after the pulp fiber web is formed and prior to drying of the fibrous web. In some embodiments of the process of the present invention, any remaining endothermic fire retardant is added (e.g., sprayed, dosed, etc.) on the pulp fiber web at a point after drying of the fibrous web. In some embodiments of the process of the present invention, one type of endothermic fire retardant (e.g., aluminum ammonium sulfate or alum) is added at a point prior to when the pulp fiber web is formed, while a different type of endothermic fire retardant (e.g., ammonium phosphate or borosilicate) is added (e.g., sprayed, dosed, etc.) on the pulp fiber web at a point after drying of the fibrous web.
[0070] Embodiments of the fire resistant pulp fiber webs of the present invention having a near neutral pH comprise: an at least partially delignified pulp fiber web having a Kappa number as previously described; a fire retardant component present in and/or on the pulp fiber web in an amount of at least about 20 lbs (e.g., from about 20 to about 250 lbs) of fire retardant component per ton of the pulp fiber web; and one or more fire retardant distributing surfactants in an amount sufficient (e.g., from about 1 to about 10 lbs per ton of the pulp fiber web) to distribute the fire retardant component in and/or on the pulp fiber web. The fire retardant component comprises at least about 10% (e.g., from about 10 to about 90%, such as from about 40 to about 60%) by weight of the fire retardant component of one or more endothermic fire retardants; and up to about 90% (e.g., from about 10 to about 90%, such as from about 40 to about 60%) by weight of the fire retardant component of one or more other fire retardants. The fire retardant component is also present in an amount and is distributed in and/or on the pulp fiber web in a manner so that the fire resistant pulp fiber web passes one or more of the following tests: the UL 94 HBF test, the Horizontal Burn Through test, or the ASTM D 5132-04 test.
[0071] Embodiments of the fire resistant pulp fiber webs of the present invention may also be used in air-laid fibrous structures which may comprise: an air-laid fibrous core having an upper surface and a lower surface; a first fire resistant outer layer positioned over the upper surface; and a second fire resistant outer layer positioned under the lower surface. The air- laid fibrous core may comprise: from about 50 to about 97% (e.g., from about 80 to about 95%) by weight of the core of comminuted pulp fibers; and from about 3 to about 50% (e.g., from about 5 to about 20%) by weight of the core of bicomponent fibers. Each of the upper and lower outer layers may comprise: from about 50 to about 95% (e.g., from about 80 to about 95%) by weight of the core of comminuted fire resistant pulp fiber fibers according to embodiments of the present invention; and from about 5 to about 50% (e.g., from about 5 to about 20%) by weight of the core of bicomponent fibers, and may comprise the same proportions by weight of fire resistant pulp fiber fibers and bicomponent fibers, or may comprise different proportions by weight of fire resistant pulp fiber fibers and bicomponent fibers. These outer layers may also optionally comprise up to about 20% (for example, up to about 10%, such as up to about 3%) by weight of the outer layer of melamine fibers or melamine resin powder to increase the fire resistant properties of these outer layers. These outer layers may also be treated with additional fire retardant in amounts of up to about 5% (for example, up to about 3%, such as up to about 2%) by weight of the outer layer to further increase the fire resistance of the outer layer. This additional fire retardant may be the same or a may be different from the fire retardant used to treat the pulp fiber web to provide the fire resistant pulp fiber web. Embodiments of these fire retardant air-laid fibrous structures (e.g., cores and associated outer layers) may be used, for example, in upholstery cushions, mattress ticking, panel fabric, padding, bedding, insulation, materials for parts in devices and appliances, etc.
[0072] The pulp fiber web may be prepared from the pulp fiber by any suitable process for providing pulp fiber webs. For example, the pulp fiber web may be formed from a pulp fiber mixture into a single or multi-ply web on a papermaking machine such as a Fourdrinier machine or any other suitable papermaking machine known in the art for making pulp fiber webs. See, for example, U.S. Pat. No. 4,065,347 (Aberg et al.), issued December 27, 1997; U.S. Pat. No. 4,081,316 (Aberg et al), issued March 28, 1978; U.S. Pat. No. 5,262,005 (Ericksson et al.), issued November 16, 1993, the entire contents and disclosure of which are herein incorporated by reference. The pulp fiber mixture may also be treated with one or more debonder surfactants (as described above) to make the process of comminuting such
pulp fiber webs (e.g., for providing air-laid fibrous structures) easier to carry out. The resulting pulp fiber web which is formed may be dried to remove a portion, most or all of the water from the web, with the dried web being optionally treated with one or more additional debonder surfactants to again enhance the process of comminuting such pulp fiber webs.
[0073] In some embodiments, the pulp fiber web may be dried in a drying section prior to and/or after treatment with an aqueous solution of the endothermic fire retardant and/or other fire retardants. Any suitable method for drying pulp fiber webs known in the making art may be used. The drying section may include a drying can, flotation dryer, cylinder drying, Condebelt drying, infrared (IR) drying, etc. The treated and/or untreated pulp fiber web may be dried to a moisture content of about 10% or less, such as about 7% or less. For example, the pulp fiber web may be dried to a moisture content of between 0 and about 10% (which includes any value and subrange, for example, values or subranges including 3, 4, 5, 6, 7, 8, 9, 10, etc.).
[0074] In some embodiments (e.g., air-laid fibrous structures), the pulp fiber web may have a basis weight in the range of from about 500 to about 850 gsm (which includes any value and subrange, for example, values or subranges including about 500, 550 600, 650, 700, 750, 800, 850 gsm, etc.). In some embodiments, the pulp fiber web may have a density of about 0.3 g/cc or less, and in the range of from about 0.1 to about 0.3 g/cc (which includes any value and subrange, for example, values or subranges including about 0.1, 0.15, 0.2, 0.25, and 0.3 g/cc, etc.). In some embodiments, the pulp fiber web may have a caliper of at least about 30 mils, for example in the range of from about 30 to about 85 mils, such as from about 45 to about 65 mils (which includes any value and subrange, for example, values or subranges including about 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85 mils, etc.). In some embodiments, the pulp fiber may have a fiberization (shred) energy of less than about 170 kJ/kg (which includes any value and subrange, for example, values or subranges including about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165 kJ/kg, etc.). In other embodiments, the pulp fiber web may have a fiberization energy in the range of from about 120 to less than about 145 kJ/kg, in the range of from about 100 to less than about 120 kJ/kg. In one embodiment, the pulp fiber web may have a fiberization energy of less than about 135 kJ/kg for example, a fiberization energy of less than about 120 kJ/kg, such as less than about 100 kJ/kg, or less than about 90 kJ/kg. In other embodiments, the pulp fiber web may have a
fiberization energy in the range of from about 120 to less than about 145 kJ kg, in the range of from about 100 to less than about 120 kJ kg.
[0075] In some embodiments, the pulp fiber web may comprise debonder surfactant in an amount of about 1 lb solids or greater per ton of the pulp fibers (which includes any value and subrange, for example, values or subranges including about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.0, 5, 5.0, 6, 7, 8, 9, 10, 15, 20 lbs solids debonder surfactant per ton of the pulp fibers, etc., or higher). In some embodiments, the pulp fiber web may comprise a trivalent metal (or salt thereof) in an amount of about 1 lb solids or greater per ton of the pulp fiber fibers (which includes any value and subrange, for example, values or subranges including about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.0, 5, 5.0, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 lbs cationic trivalent metal/salt thereof, etc., or higher). In some embodiments, the pulp fiber web may comprise the trivalent metal in an amount of about 150 ppm or greater per ton of the pulp fibers (which includes any value and subrange, for example, values or subranges including about 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 300, 330, 400, 450, 500, 550, 750, 1000 ppm, etc., or higher).
[0076] Embodiments of the fire resistant pulp fiber web of the present invention may be used, for example, to provide air-laid fibrous structures, including air-laid fibrous cores, air- laid fibrous layers (including outer layers for air-laid fibrous cores), etc. See, for example, U.S. Pat. Appln. No. 20080050565 (Gross et al), published February 28, 2008; U.S. Pat. No. 6,059,924 (Hoskins), issued May 9, 2000); U.S. Pat. No. 7,549,853 (Fegelman et al), issued June 23, 2009, the entire disclosure and contents of which are herein incorporated by reference. The fire resistant pulp fiber webs may be comminuted (e.g., defiberized, disintegrated, shredded, fragmented, etc.) to provide such air-laid fibrous structures using known methods for making such structures. See, for example, U.S. Pat. No. 3,591,450 (Murphy et al.), issued July 6, 1971, the entire contents and disclosure of which is herein incorporated by reference. For example, the fire resistant pulp fiber webs may be defiberized, disintegrated, shredded, fragmented, etc., by using a hammermill. In one embodiment, hammer milling is carried out in a manner which does not induce significant dust creation in the comminuted fire resistant pulp fibers. The resultant air-laid fibrous structure may be used in a variety of products, for example, upholstery cushions, mattress
ticking, panel fabric, padding, bedding, insulation, materials for parts in devices and appliances, etc.
[0077] In some embodiments, the air-laid fibrous structures may comprise a mixture, blend, etc., of comminuted fire resistant pulp fibers and synthetic fibers (e.g., bicomponent fibers). For example, the air-laid fibrous structure may be in the form of an air-laid fibrous core which comprises a mixture, blend, etc., of comminuted fire resistant pulp fibers and synthetic fibers (e.g., bicomponent fibers). For example, these structures may comprise about 50% or greater (for example, about 75% or greater) by weight fire resistant pulp fiber, about 50% or less (for example, about 15% or less) synthetic fiber (e.g., bicomponent fiber), and optionally up to about 20% (e.g., from about 3 to about 10%) melamine fiber/powder. (Air- laid fibrous structures without melamine fiber may pass the UL 94 TMVB test when those structures comprise, for example, about 90% fire resistant pulp fiber and about 10% bicomponent fiber, and are sprayed with about 3% fire retardant on the surface of the outer layers of such structures.)
[0078] Embodiments of the air-laid fibrous structures may be prepared by comminuting (e.g., disintegrating, defibrizing, etc.) a pulp fiber web (e.g., a pulp fiber sheet), for example, by using a hammermill (such as a Kamas Hammermill), to provide individualized comminuted pulp fibers. The comminuted pulp fibers may then be air conveyed to forming heads on an air-laid web-forming machine. A number of manufacturers provide air-laid web forming machines suitable for use in embodiments of the air-laid fibrous structures of the present invention, including Dan- Web Forming of Aarhus, Denmark, M&J Fibretech A/S of Horsens, Denmark, Rando Machine Corporation of Macedon, N.Y. (for example, as described in U.S. Pat. No. 3,972,092 to Wood, issued August 3, 1976, the entire contents and disclosure of which is herein incorporated by reference), Margasa Textile Machinery of Cerdanyola del Valles, Spain, and DOA International of Wels, Austria. While these various forming machines may differ in how the comminuted pulp fiber is opened and air-conveyed to the forming wire, all of these machines are capable of producing webs useful for forming embodiments of air-laid fibrous structures.
[0079] The Dan- Web forming heads may include rotating or agitated perforated drums, which serve to maintain fiber separation until the fibers are pulled by vacuum onto a foraminous forming conveyor, forming wire, etc. In the M&J machine, the forming head may basically be a rotary agitator above a screen. The rotary agitator may comprise a series
or cluster of rotating propellers or fan blades. Synthetic fibers (e.g., bicomponent fibers) may also be opened, weighed, and mixed in a fiber dosing system such as a textile feeder supplied by Laroche S.A. of Cours-La Ville, France. From the textile feeder, the synthetic fibers may be air conveyed to the forming heads of the air-laid machine where those synthetic fibers are further mixed with the comminuted pulp fibers from the hammermill(s) and may be deposited on a continuously moving forming wire. For providing defined air-laid fibrous layers, separate forming heads may be used for each type of fiber.
[0080] The air-laid fibrous web may be transferred from the forming wire to a calender or other densification stage to densify the air-laid fibrous web, if necessary, to increase its strength and to control web thickness. The fibers of the air-laid fibrous web may then be bonded by passage through an oven set to a temperature high enough to fuse any included thermoplastic synthetic fibers or other binder materials. Secondary binding from the drying or curing of a latex spray or foam application may also occur in the same oven. The oven may be a conventional through-air oven or may be operated as a convection oven, but may also achieve the necessary heating by infrared or even microwave irradiation.
[0081] Embodiments the process of the present invention for providing fire resistant pulp fiber webs are further illustrated in FIG. 1. FIG. 1 is a schematic diagram which shows an illustrative process for providing a fire resistant pulp fiber web according to an embodiment of the present invention, which is indicated generally as 100. In process 100, the at least partially delignified pulp fibers (indicated as Delignified Pulp Fibers 102) are used, as indicated by arrow 104, in formulating Pulp Slurry 106. As Pulp Slurry 106 is being transferred, pumped, etc., as indicated by arrow 108, to Forming Wire 1 10, an aqueous endothermic fire retardant solution comprising an initial portion of endothermic fire retardant such as aluminum ammonium sulphate or alum (indicated as Initial Endothermic FR 1 12, which may also provide a source trivalent metal ions), is added to Pulp Slurry 106, as indicated by arrow 114. After Initial Endothermic FR 1 12 is added, Pulp Slurry 106 is then deposited (e.g., using a headbox), as indicated by arrow 108, onto Forming Wire 1 10 to form the fire retardant-treated pulp fiber web. As indicated by arrow 1 16, the pulp fiber web is eventually transferred from Forming Wire 110 to Dryer 1 18. As the pulp fiber web is being transferred from Forming Wire 110 to Dryer 118, other fire retardants such as a phosphorous fire retardant (indicated as Other FRs 120), along with a fire retardant distributing surfactant (indicated as Surfactant 122), are added, as indicated, respectively, by arrows 124 and 126.
In some embodiments, Other FRs 120 and Surfactant 122 may be mixed together before being added to the pulp fiber web, or may added separately to the pulp fiber web.
[0082] Upon leaving Dryer 118, as indicated by arrow 128, the treated and dried pulp fiber web becomes Dried Web 130. As indicated by arrow 132, Dried Web 130 may be used to form Air-Laid Structure 134. As indicated by arrow 136, Air-Laid Structure 134 may be treated (e.g., sprayed with, dosed with, etc.) any of the remaining endothermic fire retardant, such as a borate fire retardant (indicated as Remaining Endothermic FR 138) along with any additional and optional fire retardant distributing surfactant (indicated as Surfactant 140), as indicated by arrow 142. Alternatively, and as indicated by dashed arrow 144, in some embodiments, Dried Web 130 may be directly treated with (e.g., sprayed with, dosed with, etc.) Remaining Endothermic FR 138 (when, for example, not being formed into Air-Laid Structure 134 or prior to being formed into Air-Laid Structure 134). Also alternatively in some embodiments, and as indicated by dashed arrow 146, some or all of the other fire retardants, plus fire retardant distributing surfactant (indicated as Endothermic FR + Surfactant 148) may also be added (e.g., sprayed with, dosed with, etc.) to Dried Web 130.
[0083] FIG. 2 is side sectional view of an air-laid fibrous structure which comprises a fire resistant pulp fiber web according to an embodiment of the present invention as the respective outer layers of the air-laid fibrous core of the structure, which is indicated generally as 200. Structure 200 comprises an air-laid fibrous core, indicated generally as 204, and two outer fire retardant outer air-laid fibrous layers, indicated respectively as upper layer 208 and lower layer 212. Upper outer layer 208 is positioned on or adjacent upper surface 216 of core 204, while lower outer layer 212 is positioned on or adjacent lower surface 220 of core 204. Outer layers 208 and/or 212 of structure 200 may be treated with additional fire retardant (for example, the additional fire retardant may be diluted with water and/or other solvent(s), with the water/solvent(s) being removed, for example, by heating after treatment).
Fire Resistant Test Specimen Preparation
[0084] The specimens for the fire resistance tests are prepared as follows: Fire retardant- treated pulp fiber web sheets are defiberized in a lab hammermill (Kamas Type H 01 Laboratory Defribrator) by shredding 2 inch width strips at 3300 rpm using a 10 mm screen opening and 7 cm/sec. feed speed. The defiberized pulp fibers are mixed in the plastic bag by
hand and by vigorously shaking the sealed bag which contains air space, to achieve as uniform a distribution of fiber fractions as possible, i.e., to achieve a representative test specimen. Approximately 3.4 g of the mixed pulp fibers are weighed out to provide a target weight of 3.16 g ±0.1 g (300 g/m2). A piece of the nonwoven barrier material is inserted into a collection basket/cup of an 11 cm diameter forming funnel which is attached in the hammermill. The weighed pulp fibers are refiberized in the hammermill using the front chute with a rotor setting at -750 rpm and with a 14 mm screen in place. With the forming funnel removed from the hammermill, the refiberized pulp in the funnel is evenly spaced using long handle tweezers, and then pressed firmly into the funnel with a tamping tool. The resultant specimen is then removed and weighed. The weighed specimen is then placed without the nonwoven barrier material between two blotters and feed through a press. The thickness of the resultant specimen is then measured with the target density of the specimen being 0.1 g/cm3 which equals a thickness of 1.32 mm or 0.052" (i.e., 52 mils). The fiberization energy of the specimen may be calculated as described above based on energy measured and displayed by the Kamas Type H 01 Laboratory Defribrator (converted, if necessary from watt hours or wH), divided by the fiberized fiber weight, to provide a value in kJ/kg.
EXAMPLES
[0085] Pulp fiber webs treated with endothermic fire retardants are prepared as described below:
Example 1
[0086] A fluff pulp (which contains 20 lbs per ton of aluminum ammonium sulfate (alum) as an endothermic fire retardant) is treated with 60 lbs/air dried metric ton of FR165 (phosphorus fire retardant, distributed by Cellulose Solutions) and 2 lbs/ton F60 surfactant (an ethoxylated alcohol surfactant, distributed by Eka Chemical). This treated fluff pulp is used in preparing an air-laid fibrous core which comprises 90% of the treated fluff pulp and 10% bicomponent PE/PE 6 mm diameter fibers (PE = polyethylene). The surfaces of this air- laid fibrous core are sprayed with a solution of a neutral pH endothermic fire retardant (Pre- Tec 3000 SF, a borosilicate endothermic fire retardant, distributed by Pre-Tec) at a 6% dose by weight of the core. The surface-treated air-laid fibrous core is tested according to the UL 94 HBF test method and passes this test without any after burn. The air-laid core has a pH of 6.9.
Example 2
[0087] A fluff pulp (which contains 20 lbs per ton of aluminum ammonium sulfate (alum) as an endothermic fire retardant) is treated with 60 lbs/air dried metric ton of FR165 phosphorus fire retardant and 2 lb/ton F60 surfactant. This treated fluff pulp is used in preparing an air-laid fibrous core which comprises 90% of the treated fluff pulp and 10% bicomponent PE/PE 6 mm fibers. The surfaces of this air-laid fibrous core are sprayed with a solution of a neutral pH blend of endothermic fire retardant and other (phosphorous) fire retardant (CS-FR 30-S, a silica and ammonium phosphate fire retardant distributed by Cellulose Solutions) at a 10% dose by weight of the core. The surface-treated air-laid fibrous core is tested according to the UL 94 HBF test method and passes this test without any after burn. The core has a pH of 6.9.
[0088] All documents, patents, journal articles and other materials cited in the present application are hereby incorporated by reference.
[0089] Although the present invention has been fully described in conjunction with several embodiments thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.
Claims
1. A process comprising the following steps: :
a. providing an at least partially delignified pulp fiber web having a Kappa number of less than about 130; and b. treating the at least partially delignified pulp fiber web with an aqueous endothermic fire retardant solution having a pH of about 10 or less and comprising at least about 10% of one or more endothermic fire retardants based on the solids in the solution; wherein the pulp fiber web treated with the endothermic fire retardant solution has a pH of from about 5 to about 9, wherein the pulp fiber web is treated with a total amount of endothermic fire retardants of at least about 20 lbs of endothermic fire retardants per ton of the pulp fiber web, and wherein at least about 5% of the total amount of endothermic fire retardants are added at a point prior to when the pulp fiber web is formed.
2. The process of claim I, wherein the pulp fiber web of step (a) has a Kappa number of less than about 50.
3. The process of claim I, wherein the pulp fiber web of step (a) comprises from about 50 to about 70% softwood pulp fibers and from about 30 to about 50% hardwood pulp fibers.
4. The process of claim 1 , wherein the endothermic fire retardant solution of step (b) has a pH of from about 5 to about 9.
5. The process of claim 4, wherein the endothermic fire retardant solution of step (b) has a pH of from about 6 to about 8.
6. The process of claim 1, wherein step (b) is carried out by treating the pulp fiber web with from about 20 to about 250 lbs of the endothermic fire retardant per ton of the pulp fiber web.
7. The process of claim 1, wherein step (b) is carried out by adding an initial portion of from about 5 to about 33% of the total amount of endothermic fire retardants at a point prior to when the pulp fiber web is formed, and adding a remaining portion of from about 67 to about 95% of the total amount of endothermic fire retardants at a point after the pulp fiber web is formed.
8. The process of claim 7, wherein the remaining portion of step (b) is added after the pulp fiber web of step (a) is dried to a moisture content of about 10% or less.
9. The process of claim 8, wherein the remaining portion of step (b) is added after the pulp fiber web of step (a) is dried to a moisture content of about 7% or less.
10. The process of claim 8, wherein the remaining portion of step (b) is added by spraying a solution of endothermic fire retardant on the dried pulp fiber web.
11. The process of claim 10, wherein the dried pulp fiber web of step (a) is in the form of an air-laid fibrous structure.
12. The process of claim 8, wherein the initial portion of step (b) comprises a first type of endothermic fire retardant, and wherein the remaining portion of step (b) comprises a second type of endothermic fire retardant which is different from the first type of endothermic fire retardant.
13. The process of claim 1, wherein the endothermic fire retardants of step (b) comprise one or more of: boron-containing fire retardants; aluminum ammonium sulfate; magnesium silicate; aluminum hydroxide; and mixtures of calcium magnesium carbonate and hydrated magnesium carbonate hydroxide.
14. The process of claim 13, wherein the endothermic fire retardants of step (b) comprise one or more of: borosilicates; or aluminum ammonium sulfate.
15. The process of claim 1, wherein step (b) is carried out by treating the pulp fiber web with other fire retardants in an amount from about 10 to about 90% of the total fire retardants used to treat the pulp fiber web at a point after the pulp fiber web is formed.
16. The process of claim 15, wherein step (b) is carried out by treating the pulp fiber web with from about 40 to about 60% endothermic fire retardants and from about 40 to about 60% other fire retardants.
17. The process of claim 16, wherein the other fire retardants of step (b) comprise one or more of: phosphorous fire retardants, halogenated fire retardants, or metal oxide fire retardants.
18. The process of claim 17, wherein the other fire retardants of step (b) comprise one or more phosphorous fire retardants.
19. The process of claim 18, wherein the phosphorous fire retardants of step (b) comprise ammonium phosphate.
20. The process of claim 15, wherein step (b) is carried out by treating the pulp fiber web with one or more fire retardant distributing surfactants in an amount sufficient to distribute the other fire retardants in and/or on the pulp fiber web.
21. The process of claim 20, wherein step (b) is carried out by treating the pulp fiber web with one or more fire retardant distributing surfactants in an amount of from about 1 to about 10 lbs per ton of the pulp fiber web.
22. The process of claim 21, wherein the one or more fire retardant distributing surfactants of step (b) comprise one or more ethoxylated alcohols having from about 4 to about 25 ethylene oxide units and an alcohol carbon chain length of from about 12 to about 18 carbon atoms.
23. An article comprising a fire resistant pulp fiber web having a pH of from about 5 to about 9, and comprising:
an at least partially delignified pulp fiber web having a Kappa number of less than about 130; and a fire retardant component present in and/or on the pulp fiber web in an amount of at least about 20 lbs fire retardant component per ton of the pulp fiber web, the fire retardant component comprising: at least about 10% by weight of the fire retardant component of one or more endothermic fire retardants; and up to about 90% by weight of the fire retardant component of one or more other fire retardants; and one or more fire retardant distributing surfactants in an amount sufficient to distribute the fire retardant component in and/or on the pulp fiber web; wherein the fire retardant component is in an amount and is distributed in and/or on the pulp fiber web in a manner so that the fire resistant pulp fiber web passes one or more of the following tests: the UL 94 HBF test, the Horizontal Burn Through test, or the ASTM D 5132-04 test.
24. The article of claim 23, wherein the pulp fiber web comprises an air-laid fibrous structure.
25. The article of claim 23, wherein the air-laid fibrous structure has a density of about 0.3 g/cc or less.
26. The article of claim 23, wherein the pulp fiber web has a Kappa number of less than about 50.
27. The article of claim 23, wherein the pulp fiber web comprises from about 50 to about 70% softwood pulp fibers and from about 30 to about 50% hardwood pulp fibers.
28. The article of claim 23, wherein the fire resistant pulp fiber web has a pH of from about 6 to about 8.
29. The article of claim 23, wherein fire retardant component is present in and/or on the pulp fiber web in an amount of from about 20 to about 250 lbs per ton of the pulp fiber web.
30. The article of claim 23, wherein the endothermic fire retardants comprise one or more of: boron-containing fire retardants; aluminum ammonium sulfate; magnesium silicate; aluminum hydroxide; and mixtures of calcium magnesium carbonate and hydrated magnesium carbonate hydroxide.
31. The article of claim 30, wherein the endothermic fire retardants comprise one or more of: borosilicates; or aluminum ammonium sulfate.
32. The article of claim 23, wherein the fire retardant component comprises from about 40 to about 60% endothermic fire retardants and from about 40 to about 60% other fire retardants.
33. The article of claim 32, wherein the other fire retardants comprise one or more of: phosphorous fire retardants, halogenated fire retardants, or metal oxide fire retardants.
34. The article of claim 33, wherein the other fire retardants comprise one or more phosphorous fire retardants.
35. The article of claim 23, wherein the phosphorous fire retardants comprise ammonium phosphate.
36. The article of claim 23, wherein the one or more fire retardant distributing surfactants are in an amount of from about 1 to about 10 lbs per ton of the pulp fiber web.
37. The article of claim 36, wherein the one or more fire retardant distributing surfactants comprise one or more ethoxylated alcohols having from about 4 to about 25 ethylene oxide units and an alcohol carbon chain length of from about 12 to about 18 carbon atoms.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37023610P | 2010-08-03 | 2010-08-03 | |
US61/370,236 | 2010-08-03 | ||
US13/081,759 | 2011-04-07 | ||
US13/081,759 US8663427B2 (en) | 2011-04-07 | 2011-04-07 | Addition of endothermic fire retardants to provide near neutral pH pulp fiber webs |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012018746A1 true WO2012018746A1 (en) | 2012-02-09 |
Family
ID=45559780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/046169 WO2012018746A1 (en) | 2010-08-03 | 2011-08-02 | Addition of endothermic fire retardants to provide near neutral ph pulp fiber webs |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012018746A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019099380A1 (en) * | 2017-11-17 | 2019-05-23 | ADAMOLI, James, R. | Fire-retardant for an insulation product |
WO2024049688A1 (en) | 2022-08-31 | 2024-03-07 | Packaging And Crating Technologies, Llc | Fire resistant retail product packaging materials and method of manufacturing same |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832745A (en) | 1956-08-31 | 1958-04-29 | Shea Chemical Corp | Aqueous flameproofing compositions and cellulosic materials treated therewith |
US3591450A (en) | 1967-08-30 | 1971-07-06 | Int Paper Co | Method and apparatus for conditioning and defibrating a web of paper pulp prior to air laying |
US3955032A (en) | 1972-10-25 | 1976-05-04 | White Chemical Corporation | Flame retardants for natural and synthetic materials |
US3972092A (en) | 1973-03-01 | 1976-08-03 | Rando Machine Corporation | Machine for forming fiber webs |
US4026808A (en) | 1972-03-30 | 1977-05-31 | Hooker Chemicals & Plastics Corporation | Flame retardant textile finishes |
US4065347A (en) | 1975-02-26 | 1977-12-27 | Molnlycke Ab | Method of producing fluffed pulp |
US4081316A (en) | 1974-12-05 | 1978-03-28 | Molnlycke Ab | Method for producing fluffed pulp |
US4184969A (en) * | 1978-08-04 | 1980-01-22 | Bhat Industries, Inc. | Fire- and flame-retardant composition |
US4212675A (en) * | 1978-04-03 | 1980-07-15 | Retroflame International Limited | Fireproofing |
US4425186A (en) | 1981-03-24 | 1984-01-10 | Buckman Laboratories, Inc. | Dimethylamide and cationic surfactant debonding compositions and the use thereof in the production of fluff pulp |
US4600606A (en) | 1979-04-18 | 1986-07-15 | White Chemical Corporation | Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions |
US4702861A (en) | 1986-05-14 | 1987-10-27 | Certified Technologies Corporation | Flame retardant materials |
US5056508A (en) | 1990-10-09 | 1991-10-15 | Brunell Gladys B | Neck support for cervical or whiplash problems |
US5262005A (en) | 1988-11-17 | 1993-11-16 | Sca Pulp Ab | Easily defibered web-shaped paper product |
US6059924A (en) | 1998-01-02 | 2000-05-09 | Georgia-Pacific Corporation | Fluffed pulp and method of production |
US6719862B2 (en) | 1998-10-09 | 2004-04-13 | Weyerhaeuser Company | Compressible wood pulp product |
US20050274472A1 (en) * | 2004-05-27 | 2005-12-15 | Robert Steif | Flame resistant paper product and method for manufacturing |
US7381300B2 (en) | 2006-10-31 | 2008-06-03 | International Paper Company | Process for manufacturing paper and paperboard products |
US7549853B2 (en) | 2006-11-15 | 2009-06-23 | The Procter & Gamble Company | Apparatus for making air-laid structures |
US7604715B2 (en) | 2005-11-17 | 2009-10-20 | Akzo Nobel N.V. | Papermaking process |
-
2011
- 2011-08-02 WO PCT/US2011/046169 patent/WO2012018746A1/en active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832745A (en) | 1956-08-31 | 1958-04-29 | Shea Chemical Corp | Aqueous flameproofing compositions and cellulosic materials treated therewith |
US3591450A (en) | 1967-08-30 | 1971-07-06 | Int Paper Co | Method and apparatus for conditioning and defibrating a web of paper pulp prior to air laying |
US4026808A (en) | 1972-03-30 | 1977-05-31 | Hooker Chemicals & Plastics Corporation | Flame retardant textile finishes |
US3955032A (en) | 1972-10-25 | 1976-05-04 | White Chemical Corporation | Flame retardants for natural and synthetic materials |
US3972092A (en) | 1973-03-01 | 1976-08-03 | Rando Machine Corporation | Machine for forming fiber webs |
US4081316A (en) | 1974-12-05 | 1978-03-28 | Molnlycke Ab | Method for producing fluffed pulp |
US4065347A (en) | 1975-02-26 | 1977-12-27 | Molnlycke Ab | Method of producing fluffed pulp |
US4212675A (en) * | 1978-04-03 | 1980-07-15 | Retroflame International Limited | Fireproofing |
US4184969A (en) * | 1978-08-04 | 1980-01-22 | Bhat Industries, Inc. | Fire- and flame-retardant composition |
US4600606A (en) | 1979-04-18 | 1986-07-15 | White Chemical Corporation | Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions |
US4425186A (en) | 1981-03-24 | 1984-01-10 | Buckman Laboratories, Inc. | Dimethylamide and cationic surfactant debonding compositions and the use thereof in the production of fluff pulp |
US4702861A (en) | 1986-05-14 | 1987-10-27 | Certified Technologies Corporation | Flame retardant materials |
US5262005A (en) | 1988-11-17 | 1993-11-16 | Sca Pulp Ab | Easily defibered web-shaped paper product |
US5056508A (en) | 1990-10-09 | 1991-10-15 | Brunell Gladys B | Neck support for cervical or whiplash problems |
US6059924A (en) | 1998-01-02 | 2000-05-09 | Georgia-Pacific Corporation | Fluffed pulp and method of production |
US6719862B2 (en) | 1998-10-09 | 2004-04-13 | Weyerhaeuser Company | Compressible wood pulp product |
US20050274472A1 (en) * | 2004-05-27 | 2005-12-15 | Robert Steif | Flame resistant paper product and method for manufacturing |
US7604715B2 (en) | 2005-11-17 | 2009-10-20 | Akzo Nobel N.V. | Papermaking process |
US7381300B2 (en) | 2006-10-31 | 2008-06-03 | International Paper Company | Process for manufacturing paper and paperboard products |
US7549853B2 (en) | 2006-11-15 | 2009-06-23 | The Procter & Gamble Company | Apparatus for making air-laid structures |
Non-Patent Citations (5)
Title |
---|
"Tests for Flammability of Plastic Materials for Parts in Devices and Appliances", 2009, UNDERWRITERS LABORATORIES INC., pages: 32 |
G. A. SMOOK: "Handbook for Pulp and Paper Technologists", 1992, pages: 283 - 85 |
G. A. SMOOK: "Handbook for Pulp and Paper Technologists", 1992, pages: 289 - 92 |
G. A. SMOOK: "Handbook for Pulp and Paper Technologists", 1992, pages: 342 |
WEIL ET AL.: "Flame Retardants for Plastics and Textiles", 2009, HANSER PUBLISHERS, pages: 4 - 8 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019099380A1 (en) * | 2017-11-17 | 2019-05-23 | ADAMOLI, James, R. | Fire-retardant for an insulation product |
US10815427B2 (en) | 2017-11-17 | 2020-10-27 | Branislav R. Simonovic | Fire-retardant for an insulation product |
WO2024049688A1 (en) | 2022-08-31 | 2024-03-07 | Packaging And Crating Technologies, Llc | Fire resistant retail product packaging materials and method of manufacturing same |
EP4381129A4 (en) * | 2022-08-31 | 2024-11-20 | Packaging and Crating Technologies, LLC | Fire resistant retail product packaging materials and method of manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8871058B2 (en) | Addition of endothermic fire retardants to provide near neutral pH pulp fiber webs | |
US8871053B2 (en) | Fire retardant treated fluff pulp web | |
EP1963573B1 (en) | Improved cellulose articles containing an additive composition | |
US8388807B2 (en) | Partially fire resistant insulation material comprising unrefined virgin pulp fibers and wood ash fire retardant component | |
JP5816357B2 (en) | Composition containing polyvalent cationic metal and amine-containing antistatic agent, and method for producing and using the same | |
US8871054B2 (en) | Process for preparing fluff pulp sheet with cationic dye and debonder surfactant | |
US20160237624A1 (en) | Dry fluff pulp sheet additive | |
EP3535452B1 (en) | Process for producing increased bulk pulp fibers, pulp fibers obtained, and products incorporating same | |
PL201227B1 (en) | Decorative substrate paper and decorative paper | |
CN109476129A (en) | Decoration sheet with adhesive | |
WO2012018746A1 (en) | Addition of endothermic fire retardants to provide near neutral ph pulp fiber webs | |
JPWO2019065270A1 (en) | Multi-layer sheet and its manufacturing method | |
JP2021161555A (en) | Paperboard | |
Dutt et al. | Cost reduction studies of decorative laminates | |
CN118166579A (en) | High-absorptivity and high-covering-property decorative base paper and preparation method thereof | |
MX2008007679A (en) | Improved cellulose articles containing an additive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11745866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11745866 Country of ref document: EP Kind code of ref document: A1 |