+

WO2012008432A1 - Solar power generation module and light-concentrating solar power generation system - Google Patents

Solar power generation module and light-concentrating solar power generation system Download PDF

Info

Publication number
WO2012008432A1
WO2012008432A1 PCT/JP2011/065853 JP2011065853W WO2012008432A1 WO 2012008432 A1 WO2012008432 A1 WO 2012008432A1 JP 2011065853 W JP2011065853 W JP 2011065853W WO 2012008432 A1 WO2012008432 A1 WO 2012008432A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
light
axis
solar
mirror
Prior art date
Application number
PCT/JP2011/065853
Other languages
French (fr)
Japanese (ja)
Inventor
中村 勝重
脇元 一政
洋史 石川
勅 家本
敦 田村
吉田 一雄
Original Assignee
Jfeエンジニアリング株式会社
三鷹光器株式会社
財団法人 エネルギー総合工学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社, 三鷹光器株式会社, 財団法人 エネルギー総合工学研究所 filed Critical Jfeエンジニアリング株式会社
Priority to AU2011277501A priority Critical patent/AU2011277501A1/en
Publication of WO2012008432A1 publication Critical patent/WO2012008432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/60Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
    • H10F77/63Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling
    • H10F77/68Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling using gaseous or liquid coolants, e.g. air flow ventilation or water circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/458Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes with inclined primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/484Refractive light-concentrating means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar power generation module and a concentrating solar power generation system.
  • a normal silicon solar battery cell can obtain a power generation efficiency of about 15% by applying non-condensing sunlight.
  • III-V solar cells such as GaAs used for artificial satellites have high material costs but high conversion efficiency.
  • a multi-junction cell structure has a conversion efficiency of 33%, and can also achieve a conversion efficiency of 40% or more by applying condensed sunlight. It is called concentrated solar power generation (CPV) and is attracting attention to generate high-efficiency power by applying concentrated sunlight to such high conversion efficiency solar cells.
  • CPV concentrated solar power generation
  • a dish type that always keeps facing the sun while tracking the sun.
  • Mirrors are used.
  • a plurality of mirror elements are formed in a dish shape, and a solar battery cell is fixed at the focal position.
  • the temperature of the solar battery cell increases as the concentration degree increases, but the solar battery cell has an allowable upper limit temperature.
  • the light concentration is about 500 times, but when it is to be increased to 800 times to 2000 times beyond that, the solar cells are brought to a temperature at which there is no problem even under such high light concentration conditions.
  • conventionally there has been no cooling technology that can be simply cooled by air or water, and has a reliable cooling technique in which high temperature measures are taken due to high concentration.
  • the light collecting device is a dish type
  • the light collecting degree is about 500 times, and there is a limit to the amount of power generated. That is, when the dish type is increased in size, the mirror surface is distorted by its own weight, which makes it difficult to increase the size, and the light collection degree of about 500 times is the limit. For this reason, if the light condensing degree is increased to about 800 to 2000 times, higher power generation efficiency can be obtained, but concentrating solar power generation for realizing it has not been proposed.
  • the present invention has been made by paying attention to the problems of the related technology, and a solar power generation module having a cooling technology in which a countermeasure against high temperature due to high concentration is applied, and a concentrating type capable of obtaining high concentration. It is an object to provide a solar power generation system.
  • a solar power generation module includes a solar battery cell assembly in which a plurality of solar battery cells, in which a part of the surface side is a light receiving element, are arranged in a rectangular shape, and the solar battery.
  • a cooling body made of an integral casting having a refrigerant passage therein and covering the entire back surface of the cell assembly; provided on the surface side of the solar cell assembly; It is characterized by comprising one or a plurality of light collectors for concentrating light on the light receiving element of the battery cell.
  • the cooling body is provided so as to cover the entire back surface of the solar cell assembly in which a plurality of solar cells are juxtaposed in a rectangular shape. Heat can be cooled.
  • the cooling body is an integral casting having a coolant passage therein. Because it is a cast body, it is also resistant to thermal shocks when it is suddenly exposed to sunlight.
  • the solar cells are rectangular with sides of about 20 to 30 mm, but the cooling body is the smallest size that can be practically produced with rectangles with sides of about 100 to 150 mm. It is also possible to produce a rectangle of about 1 m. Therefore, by setting the size of the plurality of solar battery cells and the size of the cooling body to substantially the same size, the solar battery cell can be efficiently cooled by the cooling body.
  • the perspective view which shows the concentrating solar power generation system which concerns on this embodiment The top view which shows a concentrating solar power generation system.
  • the perspective view which shows a photovoltaic power generation module The figure which shows the structure of a solar power generation module.
  • FIG. 14 is a cross-sectional view of the cooling body taken along line SA-SA in FIG.
  • FIG. 1 to 14 are views showing a preferred embodiment of the present invention.
  • a small pilot plant class concentrating solar power generation will be described as an example.
  • the direction of east, west, south, and north will be explained using an example of the mid-latitude region of the northern hemisphere as in Japan.
  • the tower 1 has a height of 10 m, and a slope 1a facing diagonally downward is formed on the north side of the top.
  • a power generation area 3 is provided on the slope 1 a of the tower 1.
  • solar power generation modules 101 described later are juxtaposed in a rectangular shape with 9 pieces (3 rows and 3 columns) without a gap.
  • This heliostat 5 is of a multi-mirror type in which the reflection function is distributed to four mirrors 2 as mirror elements.
  • a bar 7 is erected on the tower 1 side, and a sensor 8 is fixed to the upper end thereof.
  • a support column 9 is provided on the opposite side of the base 6 from the bar 7, and a first drive unit 10 is provided on the upper end thereof.
  • the first drive unit 10 is provided with a first shaft 11 that is parallel to the rotation axis of the earth and has a predetermined angle with respect to the ground.
  • the first shaft 11 can be rotated by the first driving unit 10 in the ascending direction A (see FIG. 6) related to the diurnal motion around the axis.
  • a U-shaped frame 12 is fixed to the tip of the first shaft 11.
  • a second shaft 13 passes through the flanges on both sides of the frame 12 in a direction perpendicular to the first shaft 11.
  • the second shaft 13 is a metal pipe, and both sides protrude to the outside of the flange.
  • a second drive unit 14 that rotates the second shaft 13 in the declination direction B (see FIG. 6) related to seasonal motion.
  • Another support pipe 15 penetrates in the orthogonal direction at both ends of the second shaft 13 protruding outward from the frame 12.
  • the second shaft 13 and the support pipe 15 form an H shape, and the mirrors 2 are respectively attached to both ends of the support pipe 15 at the four corners by metal fittings 16.
  • the mirror 2 is circular with a diameter of 50 cm, and the surface thereof is a concave spherical surface having a focal length corresponding to the distance to the power generation area 3 of the tower 1.
  • a sensor mirror 18 is attached to the second shaft 13 inside the frame 12 via a pair of brackets 17.
  • the sensor mirror 18 is a horizontally long rectangle and has a flat surface.
  • the sunlight L reflected by the sensor mirror 18 is received by the sensor 8.
  • the sensor 8 is located between the sensor mirror 18 and the power generation area 3, and the power generation area 3 exists on the extended line connecting the sensor mirror 18 and the sensor 8. Therefore, when the rotation of the mirror 2 in the longitude and declination direction A and declination direction B is controlled so that the sunlight L reflected by the sensor mirror 18 is always received by the sensor 8, the sunlight L is reflected by the sensor 8. You will definitely head to the previous power generation area 3.
  • the four mirrors 2 are angled in advance so that the light path of the sunlight L reflected by the sensor mirror 18 is a representative optical axis, and is completely overlapped as one condensing spot P at the focal length position on the optical axis. Has been adjusted.
  • a light detection element that detects a neutral position of the sunlight L in the left-right direction (red meridian direction) and the up-down direction (declination direction).
  • a signal is output to the second drive unit 14.
  • the first drive unit 10 and the second drive unit 14 are feedback-controlled so that the sunlight L reflected by the sensor mirror 18 is always received by the sensor 8 (toward the direction of the sensor 8),
  • the first shaft 11 and the second shaft 13 are rotated in the ecliptic direction A and the declination direction B by the equator method, and the four sunlights L reflected by the four mirrors 2 are reflected on the surface of the power generation area 3.
  • a single focused spot P is applied (see FIG. 8).
  • the shape of the focused spot P depends on the surface shape accuracy of the mirror 2, the size of the focused spot P depends on the focal length, and the position of the focused spot P depends on the position of the sensor 8. Therefore, the sunlight L can be applied almost uniformly to the power generation area 3 by adjusting the positions of the plurality of condensing spots P present on the power generation area 3.
  • each mirror 2 since each mirror 2 is small, the surface shape accuracy at the time of manufacture is maintained as it is, and a condensing spot P with less distortion can be formed.
  • the condensing spot P having a shape with less distortion is advantageous when calculating the intensity and range of the sunlight L falling on the power generation area 3, and adjustment for uniformly applying the sunlight L to the power generation area 3 is easy.
  • the mirror 2 of the heliostat 5 is easy to track the sun because of the equatorial method that rotates in a diurnal motion around the first axis 11 and a seasonal motion around the second axis 13. That is, the movement of the mirror 2 in one day is governed exclusively by the diurnal movement, and the seasonal movement is very slight. Therefore, for example, when the sun S is hidden by a cloud during the tracking of the sun S by the sensor 8, the state is detected from a numerical value such as an illuminometer, and the real-time control by the sensor 8 is used to detect the normal sun. Switch to clock control that reproduces constant speed rotation according to movement.
  • the control by the sensor 8 detects the optical path position of the sunlight L actually reflected by the sensor mirror 18 in real time, so that it becomes a so-called secondary side control (outgoing side control), and an external factor applied to the heliostat 5 ( Wind pressure, backlash, etc.) can be controlled, and the condensed spot P of sunlight L reflected by the heliostat 5 and hitting the power generation area 3 is completely stopped and does not move. Therefore, the intensity of the sunlight L adjusted to be uniform in advance in the power generation area 3 does not vary, and the variation in the power generation output can be reduced.
  • the power generation area 3 includes nine (three rows and three columns) solar power generation modules 101.
  • the solar power generation module 101 includes a solar cell assembly 102, a cooling body 103, and a light collector 104.
  • 36 solar cells 120 each having a light receiving element 119 on the surface are juxtaposed in a 6-row 6-column rectangular shape without any gap.
  • the solar battery cell 120 is a square, and the center light receiving element 119 is also a small square.
  • the part other than the light receiving element 119 of the solar battery cell 120 is an electrode for extracting electric power generated by the light receiving element 119.
  • Each solar battery cell 120 is connected in series. Therefore, the voltage obtained in the entire photovoltaic power generation module 101 is obtained by multiplying the generated voltage of the solar battery cell 120 by the number juxtaposed.
  • the generated voltage of the germanium / gallium-based three-layer junction solar cell is 2.7V
  • the generated voltage of the solar power generation module 101 is 97.2V.
  • the operating voltage of an electric device is generally 100 V, 200 V, or 400 V
  • a desired voltage can be obtained by arbitrarily combining two or four sets of solar power generation modules 101 in series. But it is not essential to connect all the photovoltaic cells 120 juxtaposed to the photovoltaic power generation module 101 in series, and the number to be connected in series can be arbitrarily determined.
  • the solar power generation module 101 is provided with a light collector 104 on the surface side of the solar battery cell 120.
  • This condensing body 104 is formed by integrally forming prisms made of substantially square pyramid glass 121 in the same height and in the same direction in six rows. Since the light collector 104 is an integrally molded product, attachment to the solar battery cell 120 is facilitated as compared to a case where individual prisms are assembled. Further, since it is integrally molded, there is no joint surface with adjacent prisms, so there is no possibility of rainwater entering from the joint surface or damage to the joint surface.
  • the surface on the light entrance side of the light collecting body 104 as an integral body is approximately the same size as the solar cell assembly 102.
  • Each surface serving as an exit of light has the same size as the light receiving element 119 of the solar battery cell 120 and is disposed close to the light receiving element 119.
  • the condensing body 104 has a small cross-sectional area, so that the sunlight L incident from the front side is condensed six times while being reflected by the inner surface, and is emitted from the end surface on the back side. That is, the total area on the outlet side is 1/6 of the area on the inlet side.
  • the sunlight L incident on the inner side of the light collector 104 is in a rectangular range that matches the light receiving element 19.
  • the light is condensed and dispersed and strikes the light receiving element 119.
  • a transparent glass member 122 is provided on the further front side (light entrance side) of the light collector 104.
  • the sunlight L condensed on the glass member 122 is incident and reflected and refracted inside, whereby the intensity of the incident sunlight L can be made uniform within the shape range of the glass member 122.
  • the ultraviolet region of sunlight L can be absorbed when passing through the inside. Since ultraviolet rays are in a wavelength region that causes the light receiving element 119 to deteriorate, the light receiving element 119 is protected.
  • ultraviolet rays are similarly absorbed.
  • the area of power generation area 3 in which nine photovoltaic power generation modules 101 having such a structure are combined (3 rows and 3 columns) is 0.16 square meters.
  • each of the 34 heliostats 5 has four circular mirrors 2 each having a diameter of 50 cm, the total number of mirrors 2 is 136, and the total reflection area of the mirrors 2 is about 27 square meters.
  • All of the sunlight L reflected by the group of mirrors 2 enters the range of the power generation area 3.
  • the light collection degree is about 170 times.
  • the sunlight L collected about 170 times is further condensed 6 times by the above-described light collector 104.
  • the concentration of sunlight L that passes through the condenser 104 and enters the light receiving element 119 of the solar battery cell 120 is about 1000 times.
  • the power generation efficiency of the power generation element 19 is increased to 40% or more.
  • the cooling body 103 is provided in close contact with the back surface of the solar battery cell assembly 102 to lower the temperature of the solar battery cell 120.
  • the cooling body 103 is made of copper metal having a high thermal conductivity, and is an integral casting in which two systems of refrigerant passages 123 are formed. At both ends of the refrigerant passage 123, an inlet 124 and an outlet 125 are formed on the back side of the cooling body 103, respectively, and a circulation pipe 126 is connected to the refrigerant 124 so that water W as a refrigerant can be circulated.
  • the heated solar battery cell 120 is deprived of heat by the cooling body 103, and the heat transmitted to the cooling body 103 is sequentially taken out by the water W, so that the temperature of the solar battery cell 120 is maintained at 100 ° C. or lower.
  • the cooling body 103 is made of copper having good thermal conductivity and the fluid is water W having a large specific heat, the thermal resistance is small and a sufficient temperature difference can be secured at all times, and the heat received by the solar battery cell 120 is reliably transferred to the heat. And can be recovered by heat transport.
  • it since it is an integral cast body, it is possible to cope with a high heat load by increasing the flow rate of the water W, and the pressure loss of the water W is reduced by reducing the turn part 127. Since the growth of deposits is suppressed, the cooling capacity is hardly lowered.
  • the refrigerant passage 123 is two independent passages, even if one passage is clogged or the cooling body 103 is partially burned, the cooling function may be lost completely. Is low. Furthermore, the water W flowing to the cooling body 103 can be cut off and the flow rate can be controlled autonomously. Therefore, even if a problem such as damage to the solar battery cell 120 or trouble in the refrigerant passage 123 (clogging, water leakage, etc.) occurs in the photovoltaic power generation module 101, the water W can be shut off or the flow rate can be controlled independently of the others. The power generation can be continued by the photovoltaic power generation module 101 in which no malfunction occurs. In addition, since the water W that has passed through the cooling body 103 is heated, the heat can be effectively used for other purposes.
  • the solar power generation module 101 having the light collecting function and the cooling function is condensed so that the sunlight L reflected by the heliostat 5 installed on the ground is superimposed. For this reason, the light collection efficiency of the solar battery cell 120 can be significantly increased and highly efficient power generation can be achieved. More specifically, the following effects can also be pointed out.
  • the light receiving element of the solar battery cell is a compound crystal multijunction cell structure, power generation efficiency is high. Since the cooling body is made of copper or a copper alloy, the thermal conductivity is high and the cooling capacity can be increased.
  • the refrigerant passages provided in the cooling body are two or more independent passages, even if one passage is clogged or the cooling body is partially burned out, the cooling function is completely lost. The risk of being broken is low. It is also possible to generate electricity by stopping the circulation of the refrigerant in only one system.
  • the light collecting body is integrally formed in a state in which substantially square pyramid prisms having a narrow cross section on the light exit side are arranged side by side in a rectangular shape. Therefore, it becomes easier to attach to the solar battery cell as compared to a prism in a disjoint state. Further, since it is integrally molded, there is no joint surface with adjacent prisms, so there is no possibility of rainwater entering from the joint surface or damage to the joint surface.
  • the glass member Since the glass member is provided on the surface side of the light collector, the intensity of sunlight condensed by the glass member can be made uniform, and ultraviolet rays that cause deterioration of the solar battery cell can be absorbed.
  • a power generation area where one or more photovoltaic power generation modules are installed is provided at a predetermined height position of the tower, and the sunlight reflected by a plurality of heliostats installed on the ground is condensed so as to overlap.
  • the degree of light collection with respect to the solar cells can be increased by the number of mirrors in the stat and the number of heliostats themselves.
  • the cooling body can autonomously shut off the refrigerant or control the flow rate, even if a problem such as damage to the solar battery cell or trouble in the water channel (refrigerant passage) (clogging, water leakage, etc.) occurs in the solar power generation module, Since only the refrigerant flowing through the cooling body of the module in which the problem has occurred can be shut off or the flow rate can be controlled, power generation can be continued by the photovoltaic power generation module in which no other problem has occurred.
  • the conversion efficiency of the solar battery cell is increased and the power generation amount can be improved.
  • the Heliostat is a multi-mirror type in which the reflection function is distributed to multiple mirror elements, each mirror element is smaller than when reflected by a single large mirror, so the surface shape accuracy is maintained and distortion is achieved. It is possible to form a light condensing spot with less.
  • a condensing spot having a shape with less distortion is advantageous in calculating the intensity and range of sunlight falling on the solar cell. When the shape of the focused spot is irregularly distorted, it becomes very difficult to calculate the intensity and range of sunlight that strikes the solar cells.
  • the mirror element of the heliostat is an equatorial method that rotates with a diurnal motion around the first axis and a seasonal motion around the second axis, making it easy to track the sun. Also, the sunlight actually reflected by the sensor mirror is received by the sensor and the movement of the mirror element is controlled, so it becomes so-called secondary side control (outside control), and external factors (wind pressure, backlash, etc.) added to the heliostat ), And the condensed spot of sunlight reflected by the heliostat and hitting the solar cell completely stops and does not move. Therefore, the intensity of sunlight adjusted to be uniform in advance in the solar battery cell does not fluctuate, and the fluctuation in the power generation output of the solar battery cell can be reduced.
  • the example which provides the solar power generation module 101 in the tower 1 was shown in the above embodiment, it is not limited to this.
  • FIG. When the photovoltaic power generation module 101 is installed in this tracker type solar tracking mechanism, the degree of light collection is increased by a Fresnel lens or the like.
  • the multi-mirror type in which the reflection function of the heliostat 5 is distributed to the plurality of mirrors 2 has been taken as an example, if the size is such that the surface shape accuracy can be maintained, or the surface shape accuracy can be maintained. If measures are taken, it is possible to implement with one large mirror.
  • the number of mirrors 2 is not limited to four, and can be five or more.
  • the condensing body 104 may be a tapered metal tube whose inner surface is a mirror surface.
  • the cooling body 103 Although copper is taken as an example of the material of the cooling body 103, other metal having good thermal conductivity may be used, and the fluid circulating there may be a liquid other than water or a gas such as air.
  • the number of solar cells constituting the solar cell assembly, the number of integrally formed prisms constituting the light collector, and the number of light collectors constituting the solar power generation module are not limited to the exemplified numbers. .
  • the light collectors have the same size as that of the solar cell assembly or the cooling body, it is possible to arrange smaller light collectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In the present disclosures, heat from solar cells and the like arising when receiving light can be cooled by a cooling body (103) being provided in a manner so as to cover the entire back surface of a solar cell assembly (102) to which a plurality of solar cells (120) are rectangularly arranged. The cooling body (103) is an integral cast body having a coolant duct (123) inside, and so is robust with respect to heat shock in situations such as when suddenly hit by sunlight, and can reliably handle high temperatures resulting from a level of light concentration that is increased by around 800-2000 times.

Description

太陽光発電モジュールおよび集光型太陽光発電システムSolar power generation module and concentrating solar power generation system

 本発明は、太陽光発電モジュールおよび集光型太陽光発電システムに関するものである。 The present invention relates to a solar power generation module and a concentrating solar power generation system.

 通常のシリコン系の太陽電池セルは、非集光の太陽光を当てることにより15%程度の発電効率が得られる。一方、人工衛星などに用いられているGaAsなどのIII-V族太陽電池セルは、材料コストが高いが、変換効率が高い。多接合セル構造のものは変換効率33%が得られ、さらに集光した太陽光を当てることにより40%以上の変換効率も可能となる。このような高い変換効率の太陽電池セルに集光した太陽光を当てて高効率で発電を行うことは集光型太陽光発電(CPV)と呼ばれ着目されている。 A normal silicon solar battery cell can obtain a power generation efficiency of about 15% by applying non-condensing sunlight. On the other hand, III-V solar cells such as GaAs used for artificial satellites have high material costs but high conversion efficiency. A multi-junction cell structure has a conversion efficiency of 33%, and can also achieve a conversion efficiency of 40% or more by applying condensed sunlight. It is called concentrated solar power generation (CPV) and is attracting attention to generate high-efficiency power by applying concentrated sunlight to such high conversion efficiency solar cells.

 集光型太陽光発電で使用される集光装置としては、日本国特許公開公報特開2000-227573号に例示されるように、太陽を追尾しながら常に太陽に向いた状態を維持するディッシュ型のミラーが使用されている。複数のミラー要素をディッシュ型に形成して、その焦点位置に太陽電池セルを固定した構造である。 As a concentrating device used in concentrating solar power generation, as illustrated in Japanese Patent Application Laid-Open No. 2000-227573, a dish type that always keeps facing the sun while tracking the sun. Mirrors are used. A plurality of mirror elements are formed in a dish shape, and a solar battery cell is fixed at the focal position.

 しかしながら、このような関連する技術にあっては、集光度が高くなるのに伴い太陽電池セルの温度が上昇するが、太陽電池セルには許容上限温度がある。通常は500倍程度の集光度であるが、それを超えて800倍~2000倍程度まで高めようとする場合は、そのような高集光度条件下においても太陽電池セルを問題がない温度にまで確実に冷却できる技術がなかった。すなわち、従来は単なる空冷や水冷による冷却で、高集光度による高温対策が施された信頼性のおける冷却技術がなかった。 However, in such a related technique, the temperature of the solar battery cell increases as the concentration degree increases, but the solar battery cell has an allowable upper limit temperature. Usually, the light concentration is about 500 times, but when it is to be increased to 800 times to 2000 times beyond that, the solar cells are brought to a temperature at which there is no problem even under such high light concentration conditions. There was no technology that could reliably cool. In other words, conventionally, there has been no cooling technology that can be simply cooled by air or water, and has a reliable cooling technique in which high temperature measures are taken due to high concentration.

 また、従来は集光装置がディッシュ型のため、集光度が500倍程度であり、得られる発電量に限界があった。すなわち、ディッシュ型は大型化すると自重によりミラー表面が歪むため大型化が困難であり、500倍程度の集光度が限界であった。そのため、集光度を800倍~2000倍程度にまで高めれば、より高い発電効率が得られるにもかかわらず、それを実現するための集光型太陽光発電が提案されずにいた。 In addition, since the light collecting device is a dish type, the light collecting degree is about 500 times, and there is a limit to the amount of power generated. That is, when the dish type is increased in size, the mirror surface is distorted by its own weight, which makes it difficult to increase the size, and the light collection degree of about 500 times is the limit. For this reason, if the light condensing degree is increased to about 800 to 2000 times, higher power generation efficiency can be obtained, but concentrating solar power generation for realizing it has not been proposed.

 本発明は、このような関連する技術の課題に着目してなされたものであり、高集光度による高温対策が施された冷却技術を有する太陽光発電モジュールおよび高集光度が得られる集光型太陽光発電システムを提供することを課題とする。 The present invention has been made by paying attention to the problems of the related technology, and a solar power generation module having a cooling technology in which a countermeasure against high temperature due to high concentration is applied, and a concentrating type capable of obtaining high concentration. It is an object to provide a solar power generation system.

 本発明の技術的側面によれば、太陽光発電モジュールは、表面側の一部が受光素子となっている複数の太陽電池セルが矩形状に並置された太陽電池セル集合体と、前記太陽電池セル集合体の裏面全体を覆う様に設けられ、内部に冷媒用通路を有する一体的な鋳造体で構成された冷却体と、前記太陽電池セル集合体の表面側に設けられ、各々の前記太陽電池セルの受光素子に光を集中させる1または複数の集光体とを具備することを特徴とする。 According to the technical aspect of the present invention, a solar power generation module includes a solar battery cell assembly in which a plurality of solar battery cells, in which a part of the surface side is a light receiving element, are arranged in a rectangular shape, and the solar battery. A cooling body made of an integral casting having a refrigerant passage therein and covering the entire back surface of the cell assembly; provided on the surface side of the solar cell assembly; It is characterized by comprising one or a plurality of light collectors for concentrating light on the light receiving element of the battery cell.

 本発明の技術的側面によれば、複数の太陽電池セルが矩形状に並置された太陽電池セル集合体の裏面全体を覆う様に冷却体が設けられるので、受光時に発生した太陽電池セルなどの熱を冷却できる。冷却体は、内部に冷媒用通路を有する一体的な鋳造体である。鋳造体なので、急に太陽光が当たった場合などの熱衝撃にも強い。 According to the technical aspect of the present invention, the cooling body is provided so as to cover the entire back surface of the solar cell assembly in which a plurality of solar cells are juxtaposed in a rectangular shape. Heat can be cooled. The cooling body is an integral casting having a coolant passage therein. Because it is a cast body, it is also resistant to thermal shocks when it is suddenly exposed to sunlight.

 しかし、太陽電池セルは各辺が20~30mm程度の矩形であるが、冷却体は各辺が100~150mm程度の矩形が実用的に製作できる最小の大きさであり、大きいものは各辺が1m程度の矩形を製作することも可能である。そこで、複数の太陽電池セルを並べた大きさと、冷却体の大きさをほぼ同じ大きさとすることにより、太陽電池セルを冷却体で効率的に冷却できる。 However, the solar cells are rectangular with sides of about 20 to 30 mm, but the cooling body is the smallest size that can be practically produced with rectangles with sides of about 100 to 150 mm. It is also possible to produce a rectangle of about 1 m. Therefore, by setting the size of the plurality of solar battery cells and the size of the cooling body to substantially the same size, the solar battery cell can be efficiently cooled by the cooling body.

 さらに、内部に冷媒用通路を有する一体的な鋳造体で構成されているので、(冷却体として一般的な)ジャケット構造のものと比べ、(ア)(冷媒用通路の断面を狭くできるので)冷媒の流速を速くすることができ、高い熱負荷にも対応できる、(イ)冷媒用通路のターン部を少なくできるため、冷媒の圧力損失が低くなる、(ウ)冷媒用通路のターン部での淀みが生じなくなるため、通路内部での付着物の成長が抑制され、冷却能力が低下しにくい、といった効果が得られ、800倍~2000倍程度まで高めた集光度による高温にも対応できる。また、各々の受光素子に光を集中させる1または複数の集光体を設けているので、太陽光発電モジュールが受光した光を無駄なく発電に利用することができ、発電量が増加する。 Furthermore, since it is composed of an integral cast body having a refrigerant passage inside, (a) (because the cross section of the refrigerant passage can be narrowed) as compared with a jacket structure (common as a cooling body). The flow rate of the refrigerant can be increased, and it can cope with a high heat load. (A) Since the turn part of the refrigerant passage can be reduced, the pressure loss of the refrigerant is reduced. (C) The turn part of the refrigerant passage Since no stagnation occurs, the growth of deposits inside the passage is suppressed and the cooling capacity is hardly lowered, and it is possible to cope with high temperatures due to the light collection degree increased to about 800 to 2000 times. In addition, since one or more light collectors that concentrate light on each light receiving element are provided, the light received by the photovoltaic power generation module can be used for power generation without waste, and the amount of power generation increases.

本実施形態に係る集光型太陽光発電システムを示す斜視図。The perspective view which shows the concentrating solar power generation system which concerns on this embodiment. 集光型太陽光発電システムを示す平面図。The top view which shows a concentrating solar power generation system. 集光型太陽光発電システムを示す側面図。The side view which shows a concentrating solar power generation system. ヘリオスタットを示す斜視図。The perspective view which shows a heliostat. ヘリオスタットを示す分解斜視図。The disassembled perspective view which shows a heliostat. ヘリオスタットのミラーの支持構造を示す概略説明図。Schematic explanatory drawing which shows the support structure of the mirror of a heliostat. 発電エリアの取付状態を示す図。The figure which shows the attachment state of an electric power generation area. 発電エリアに当たる集光スポットを示す図。The figure which shows the condensing spot which hits a power generation area. 太陽光発電モジュールを示す斜視図。The perspective view which shows a photovoltaic power generation module. 太陽光発電モジュールの構成を示す図。The figure which shows the structure of a solar power generation module. 集光体を示す斜視図。The perspective view which shows a condensing body. 太陽光発電モジュールの集光状態を示す断面図。Sectional drawing which shows the condensing state of a solar power generation module. 冷却体を示す裏面図。The back view which shows a cooling body. 図13中矢示SA-SA線に沿う冷却体の断面図。FIG. 14 is a cross-sectional view of the cooling body taken along line SA-SA in FIG.

 図1~図14は本発明の好適な実施形態を示す図である。この実施形態では、小型のパイロットプラント級の集光型太陽光発電を例に説明する。また東西南北の方向性は日本のように北半球の中緯度の地域を例にして説明する。 1 to 14 are views showing a preferred embodiment of the present invention. In this embodiment, a small pilot plant class concentrating solar power generation will be described as an example. The direction of east, west, south, and north will be explained using an example of the mid-latitude region of the northern hemisphere as in Japan.

 タワー1は高さ10mで、その頂部の北側には斜め下を向いた斜面1aが形成されている。このタワー1の斜面1aには発電エリア3が設けられている。発電エリア3は、後述する太陽光発電モジュール101が9個(3行3列)の矩形状に隙間なく並置されたものである。 The tower 1 has a height of 10 m, and a slope 1a facing diagonally downward is formed on the north side of the top. A power generation area 3 is provided on the slope 1 a of the tower 1. In the power generation area 3, solar power generation modules 101 described later are juxtaposed in a rectangular shape with 9 pieces (3 rows and 3 columns) without a gap.

 タワー1の北側の地上には、図2に示す如く、タワー1を中心とした角度θ(方位角30度)の扇形エリアE内に、円弧状に複数の層状になって並んだ合計34基のヘリオスタット5が設置されている。 On the north side of the tower 1, as shown in FIG. 2, a total of 34 units arranged in a plurality of layers in an arc shape in a sector area E having an angle θ (azimuth angle of 30 degrees) centered on the tower 1. Heliostat 5 is installed.

 このヘリオスタット5は、ミラー要素としての4枚のミラー2に反射機能を分散させたマルチミラー型のものである。各ヘリオスタット5のベース6にはタワー1側にバー7が立設され、その上端にセンサー8が固定されている。ベース6のバー7とは反対側に支柱9が設けられ、その上端に第1駆動部10が設けられている。第1駆動部10には、地球の自転軸と平行で地面に対して所定の角度を有する第1軸11が設けられている。この第1軸11は第1駆動部10により軸心を中心に日周運動に関連する赤経方向A(図6参照)へ回転自在である。 This heliostat 5 is of a multi-mirror type in which the reflection function is distributed to four mirrors 2 as mirror elements. On the base 6 of each heliostat 5, a bar 7 is erected on the tower 1 side, and a sensor 8 is fixed to the upper end thereof. A support column 9 is provided on the opposite side of the base 6 from the bar 7, and a first drive unit 10 is provided on the upper end thereof. The first drive unit 10 is provided with a first shaft 11 that is parallel to the rotation axis of the earth and has a predetermined angle with respect to the ground. The first shaft 11 can be rotated by the first driving unit 10 in the ascending direction A (see FIG. 6) related to the diurnal motion around the axis.

 第1軸11の先端にはU字形のフレーム12が固定されている。このフレーム12の両側のフランジには第1軸11と直交する方向に第2軸13が貫通している。第2軸13は金属パイプで、フランジの外側へ両側が突出している。フレーム12と第2軸13との間には、第2軸13を季節運動に関連する赤緯方向B(図6参照)へ回転させる第2駆動部14が設けられている。 A U-shaped frame 12 is fixed to the tip of the first shaft 11. A second shaft 13 passes through the flanges on both sides of the frame 12 in a direction perpendicular to the first shaft 11. The second shaft 13 is a metal pipe, and both sides protrude to the outside of the flange. Between the frame 12 and the second shaft 13, there is provided a second drive unit 14 that rotates the second shaft 13 in the declination direction B (see FIG. 6) related to seasonal motion.

 フレーム12から外側へ突出した第2軸13の両端には別の支持パイプ15が直交方向に貫通している。第2軸13と支持パイプ15でH形を形成し、その四隅となる支持パイプ15の両端にミラー2がそれぞれ金具16により取り付けられている。ミラー2は直径50cmの円形で、その表面はそれぞれタワー1の発電エリア3までの距離に応じた焦点距離を有する凹球面になっている。 Another support pipe 15 penetrates in the orthogonal direction at both ends of the second shaft 13 protruding outward from the frame 12. The second shaft 13 and the support pipe 15 form an H shape, and the mirrors 2 are respectively attached to both ends of the support pipe 15 at the four corners by metal fittings 16. The mirror 2 is circular with a diameter of 50 cm, and the surface thereof is a concave spherical surface having a focal length corresponding to the distance to the power generation area 3 of the tower 1.

 フレーム12の内側の第2軸13には一対のブラケット17を介してセンサーミラー18が取付けられている。センサーミラー18は横長の長方形で、表面はフラットである。 A sensor mirror 18 is attached to the second shaft 13 inside the frame 12 via a pair of brackets 17. The sensor mirror 18 is a horizontally long rectangle and has a flat surface.

 センサーミラー18で反射された太陽光Lはセンサー8により受光される。センサー8は、センサーミラー18と発電エリア3の間に位置しており、センサーミラー18とセンサー8を結ぶ線の延長線上に発電エリア3が存在する。従って、センサーミラー18で反射された太陽光Lを常にセンサー8にて受光されるようにミラー2の赤経方向A及び赤緯方向Bへの回転を制御すると、その太陽光Lはセンサー8の先の発電エリア3に必ず向かうことになる。4枚のミラー2は、センサーミラー18にて反射された太陽光Lの光路を代表的光軸として、その光軸上における焦点距離位置で1つの集光スポットPとして完全に重なり合うように予め角度が調整されている。 The sunlight L reflected by the sensor mirror 18 is received by the sensor 8. The sensor 8 is located between the sensor mirror 18 and the power generation area 3, and the power generation area 3 exists on the extended line connecting the sensor mirror 18 and the sensor 8. Therefore, when the rotation of the mirror 2 in the longitude and declination direction A and declination direction B is controlled so that the sunlight L reflected by the sensor mirror 18 is always received by the sensor 8, the sunlight L is reflected by the sensor 8. You will definitely head to the previous power generation area 3. The four mirrors 2 are angled in advance so that the light path of the sunlight L reflected by the sensor mirror 18 is a representative optical axis, and is completely overlapped as one condensing spot P at the focal length position on the optical axis. Has been adjusted.

 センサー8の内部には太陽光Lの左右方向(赤経方向)及び上下方向(赤緯方向)での中立位置を検出する光検出素子が設けられており、センサー8から第1駆動部10及び第2駆動部14へ信号を出力している。そして、センサーミラー18で反射される太陽光Lが必ずセンサー8にて受光されるように(センサー8の方向に向かうように)、第1駆動部10及び第2駆動部14をフィードバック制御し、第1軸11及び第2軸13を赤道儀方式により赤経方向A及び赤緯方向Bへ回転させて、4枚のミラー2で反射された4本の太陽光Lを発電エリア3の表面において1つの集光スポットPとなるように当てている(図8参照)。 Inside the sensor 8 is provided a light detection element that detects a neutral position of the sunlight L in the left-right direction (red meridian direction) and the up-down direction (declination direction). A signal is output to the second drive unit 14. The first drive unit 10 and the second drive unit 14 are feedback-controlled so that the sunlight L reflected by the sensor mirror 18 is always received by the sensor 8 (toward the direction of the sensor 8), The first shaft 11 and the second shaft 13 are rotated in the ecliptic direction A and the declination direction B by the equator method, and the four sunlights L reflected by the four mirrors 2 are reflected on the surface of the power generation area 3. A single focused spot P is applied (see FIG. 8).

 集光スポットPの形はミラー2の表面形状精度に依存し、集光スポットPの大きさは焦点距離に依存し、集光スポットPの位置はセンサー8の位置に依存する。従って、発電エリア3に上に複数存在する集光スポットPの位置を調整することにより、太陽光Lを発電エリア3に対してほぼ均等に当てることができる。 The shape of the focused spot P depends on the surface shape accuracy of the mirror 2, the size of the focused spot P depends on the focal length, and the position of the focused spot P depends on the position of the sensor 8. Therefore, the sunlight L can be applied almost uniformly to the power generation area 3 by adjusting the positions of the plurality of condensing spots P present on the power generation area 3.

 この際、各ミラー2が小さいため、製造時の表面形状精度がそのまま維持され、歪みの少ない集光スポットPを形成することができる。歪みの少ない形状の集光スポットPは発電エリア3に当たる太陽光Lの強度及び範囲を計算する際に有利で、発電エリア3に均一に太陽光Lを当てる調整が容易である。 At this time, since each mirror 2 is small, the surface shape accuracy at the time of manufacture is maintained as it is, and a condensing spot P with less distortion can be formed. The condensing spot P having a shape with less distortion is advantageous when calculating the intensity and range of the sunlight L falling on the power generation area 3, and adjustment for uniformly applying the sunlight L to the power generation area 3 is easy.

 また、ヘリオスタット5のミラー2が、第1軸11を中心にした日周運動と、第2軸13を中心とした季節運動で回転する赤道儀方式のため、太陽を追尾し易い。すなわち、一日のミラー2の動きは専ら日周運動に支配され、季節運動はほんの僅かである。従って、例えば、センサー8による太陽Sの追尾中に、太陽Sが雲で隠された場合には、照度計などの数値からその状態を検知して、センサー8によるリアルタイム制御から、通常の太陽の動きに応じた定速回転を再現するクロック制御に切り換える。そうすれば、ミラー2は概ねセンサー8で制御している場合と同様の回転を進めるため、雲が無くなって再び太陽Sが現れた時には、センサーミラー18で反射された太陽光Lは必ずセンサー8に当たり、センサー8による制御が復帰して、センサー8によるリアルタイム追尾制御をそこから継続することができる。 In addition, the mirror 2 of the heliostat 5 is easy to track the sun because of the equatorial method that rotates in a diurnal motion around the first axis 11 and a seasonal motion around the second axis 13. That is, the movement of the mirror 2 in one day is governed exclusively by the diurnal movement, and the seasonal movement is very slight. Therefore, for example, when the sun S is hidden by a cloud during the tracking of the sun S by the sensor 8, the state is detected from a numerical value such as an illuminometer, and the real-time control by the sensor 8 is used to detect the normal sun. Switch to clock control that reproduces constant speed rotation according to movement. Then, since the mirror 2 is rotated in the same manner as that controlled by the sensor 8, the sunlight L reflected by the sensor mirror 18 is always detected by the sensor 8 when the cloud S disappears and the sun S appears again. In this case, the control by the sensor 8 is restored, and the real-time tracking control by the sensor 8 can be continued from there.

 更に、センサー8による制御は、センサーミラー18で実際に反射された太陽光Lの光路位置をリアルタイムで検出するため、いわゆる二次側制御(出側制御)となり、ヘリオスタット5に加わった外因(風圧やガタなど)も含めて制御することができ、ヘリオスタット5で反射されて発電エリア3に当たった太陽光Lの集光スポットPが完全に停止した状態となり動かない。従って、発電エリア3において予め均一に なるように調整された太陽光Lの強度が変動せず、発電出力の変動も小さくすることができる。 Furthermore, the control by the sensor 8 detects the optical path position of the sunlight L actually reflected by the sensor mirror 18 in real time, so that it becomes a so-called secondary side control (outgoing side control), and an external factor applied to the heliostat 5 ( Wind pressure, backlash, etc.) can be controlled, and the condensed spot P of sunlight L reflected by the heliostat 5 and hitting the power generation area 3 is completely stopped and does not move. Therefore, the intensity of the sunlight L adjusted to be uniform in advance in the power generation area 3 does not vary, and the variation in the power generation output can be reduced.

 発電エリア3は、前述の如く、9個(3行3列)の太陽光発電モジュール101から構成されている。太陽光発電モジュール101は、太陽電池セル集合体102と冷却体103と集光体104とから構成されている。太陽電池セル集合体102は、表面に受光素子119を有する36枚の太陽電池セル120が、6行6列の矩形状に隙間なく並置されている。太陽電池セル120は四角形で、中央の受光素子119も小さい四角形である。太陽電池セル120の受光素子119以外の部分は、受光素子119で発生した電力を取り出す電極になっている。各々の太陽電池セル120は、直列に接続されている。そのため、太陽光発電モジュール101全体で得られる電圧は、太陽電池セル120の発生電圧に並置されている数を乗じたものとなる。 As described above, the power generation area 3 includes nine (three rows and three columns) solar power generation modules 101. The solar power generation module 101 includes a solar cell assembly 102, a cooling body 103, and a light collector 104. In the solar cell assembly 102, 36 solar cells 120 each having a light receiving element 119 on the surface are juxtaposed in a 6-row 6-column rectangular shape without any gap. The solar battery cell 120 is a square, and the center light receiving element 119 is also a small square. The part other than the light receiving element 119 of the solar battery cell 120 is an electrode for extracting electric power generated by the light receiving element 119. Each solar battery cell 120 is connected in series. Therefore, the voltage obtained in the entire photovoltaic power generation module 101 is obtained by multiplying the generated voltage of the solar battery cell 120 by the number juxtaposed.

 ゲルマニウム・ガリウム系の3層接合型太陽電池セルの発生電圧は2.7Vなので、太陽光発電モジュール101の発生電圧は97.2Vとなる。電気機器の使用電圧は100V、200Vまたは400Vが一般的なので、太陽光発電モジュール101の単独または二組もしくは四組を任意に直列に組み合わせることにより、希望する電圧を得ることができる。もっとも、太陽光発電モジュール101に並置されている太陽電池セル120の全てを直列に接続することは必須ではなく、直列接続する数は任意に決めることができる。 Since the generated voltage of the germanium / gallium-based three-layer junction solar cell is 2.7V, the generated voltage of the solar power generation module 101 is 97.2V. Since the operating voltage of an electric device is generally 100 V, 200 V, or 400 V, a desired voltage can be obtained by arbitrarily combining two or four sets of solar power generation modules 101 in series. But it is not essential to connect all the photovoltaic cells 120 juxtaposed to the photovoltaic power generation module 101 in series, and the number to be connected in series can be arbitrarily determined.

 太陽光発電モジュール101には、太陽電池セル120の表面側に、集光体104が設けられている。この集光体104は、略四角錐のガラス製のプリズム121を縦横6列に同じ高さで同じ向きに並べた形状に一体成形したものである。集光体104が一体成型品のため、個々のプリズムを集合して構成する場合と比較して、太陽電池セル120への取り付けが容易になる。また、一体成形されているので、隣り合ったプリズムとの接合面がないので、接合面から雨水が浸入したり、接合面が破損したりするおそれがない。 The solar power generation module 101 is provided with a light collector 104 on the surface side of the solar battery cell 120. This condensing body 104 is formed by integrally forming prisms made of substantially square pyramid glass 121 in the same height and in the same direction in six rows. Since the light collector 104 is an integrally molded product, attachment to the solar battery cell 120 is facilitated as compared to a case where individual prisms are assembled. Further, since it is integrally molded, there is no joint surface with adjacent prisms, so there is no possibility of rainwater entering from the joint surface or damage to the joint surface.

 この一体物としての集光体104の光の入口側の面は、太陽電池セル集合体102と略同じ大きさである。光の出口になる各々の面は、太陽電池セル120の受光素子119と同じ大きさで、受光素子119に近接配置されている。この集光体104は、断面積が小さくなることにより、表側から入光した太陽光Lが内面で反射されながら6倍に集光されて裏側の端面より出射される。すなわち、出口側の面積の合計が入口側の面積の1/6になっている。集光体104の出口側の端面が太陽電池セル120の受光素子119に相応した形状及びサイズのため、集光体104の内側に入射した太陽光Lは受光素子19に合致した四角形状範囲に集光され且つ分散されて受光素子119に当たる。 The surface on the light entrance side of the light collecting body 104 as an integral body is approximately the same size as the solar cell assembly 102. Each surface serving as an exit of light has the same size as the light receiving element 119 of the solar battery cell 120 and is disposed close to the light receiving element 119. The condensing body 104 has a small cross-sectional area, so that the sunlight L incident from the front side is condensed six times while being reflected by the inner surface, and is emitted from the end surface on the back side. That is, the total area on the outlet side is 1/6 of the area on the inlet side. Since the end face on the exit side of the light collector 104 has a shape and size corresponding to the light receiving element 119 of the solar battery cell 120, the sunlight L incident on the inner side of the light collector 104 is in a rectangular range that matches the light receiving element 19. The light is condensed and dispersed and strikes the light receiving element 119.

 集光体104の更に表側(光の入口側)には透明なガラス部材122が設けられている。このガラス部材122に集光された太陽光Lが入射し、内部で反射及び屈折することにより、入射した太陽光Lの強度をガラス部材122の形状範囲内において均一化することができる。また、透明ガラス製のため、内部を透過する時に、太陽光Lの紫外線領域を吸収することができる。紫外線は受光素子119の劣化の原因になる波長領域のため、受光素子119の保護となる。尚、集光体104を透過する場合も、同じ透明ガラス製のため、同様に紫外線が吸収されている。 A transparent glass member 122 is provided on the further front side (light entrance side) of the light collector 104. The sunlight L condensed on the glass member 122 is incident and reflected and refracted inside, whereby the intensity of the incident sunlight L can be made uniform within the shape range of the glass member 122. Moreover, since it is made of transparent glass, the ultraviolet region of sunlight L can be absorbed when passing through the inside. Since ultraviolet rays are in a wavelength region that causes the light receiving element 119 to deteriorate, the light receiving element 119 is protected. In addition, since it is made of the same transparent glass when passing through the light collector 104, ultraviolet rays are similarly absorbed.

 このような構造の太陽光発電モジュール101を9個(3行3列)組み合わせた発電エリア3の面積は0.16平方メートルである。また、34基のヘリオスタット5はそれぞれ直径50cmの円形ミラー2を4枚ずつ持っているため、ミラー2の総数は136枚で、ミラー2の総反射面積は約27平方メートルとなる。そのミラー2群により反射された太陽光Lの全てが発電エリア3の範囲内に入射する。発電エリア3の面積内に太陽光Lが全て集光することにより約170倍の集光度となる。約170倍に集光された太陽光Lは前述の集光体104により更に6倍に集光される。従って、集光体104を透過して太陽電池セル120の受光素子119に入射する太陽光Lの集光度は、約1000倍となる。約1000倍の太陽光Lが入射することにより、発電素子19の発電効率は40%以上に高まる。 The area of power generation area 3 in which nine photovoltaic power generation modules 101 having such a structure are combined (3 rows and 3 columns) is 0.16 square meters. In addition, since each of the 34 heliostats 5 has four circular mirrors 2 each having a diameter of 50 cm, the total number of mirrors 2 is 136, and the total reflection area of the mirrors 2 is about 27 square meters. All of the sunlight L reflected by the group of mirrors 2 enters the range of the power generation area 3. By collecting all the sunlight L within the area of the power generation area 3, the light collection degree is about 170 times. The sunlight L collected about 170 times is further condensed 6 times by the above-described light collector 104. Therefore, the concentration of sunlight L that passes through the condenser 104 and enters the light receiving element 119 of the solar battery cell 120 is about 1000 times. When the sunlight L about 1000 times is incident, the power generation efficiency of the power generation element 19 is increased to 40% or more.

 太陽光Lの集光度が1000倍程度になると、太陽電池セル120は強く加熱される。そのために、冷却体103を太陽電池セル集合体102の裏面に密着状態で設けて、太陽電池セル120の温度を下げている。冷却体103は、熱伝導率の高い銅金属製で、内部に2系統の冷媒用通路123が形成された一体的な鋳造体である。冷媒用通路123の両端には、それぞれ冷却体103の裏面側に入口124と出口125が形成され、そこに循環パイプ126が連結され、冷媒としての水Wが循環できるようになっている。 When the concentration of sunlight L is about 1000 times, the solar battery cell 120 is strongly heated. For this purpose, the cooling body 103 is provided in close contact with the back surface of the solar battery cell assembly 102 to lower the temperature of the solar battery cell 120. The cooling body 103 is made of copper metal having a high thermal conductivity, and is an integral casting in which two systems of refrigerant passages 123 are formed. At both ends of the refrigerant passage 123, an inlet 124 and an outlet 125 are formed on the back side of the cooling body 103, respectively, and a circulation pipe 126 is connected to the refrigerant 124 so that water W as a refrigerant can be circulated.

 従って、加熱された太陽電池セル120は冷却体103に熱を奪われ、冷却体103に伝わった熱は水Wにより順次取り出されるために、太陽電池セル120の温度は100℃以下に維持される。冷却体103が熱伝導性の良い銅製で、流体が比熱の大きな水Wであるため、熱抵抗が小さく常に十分な温度差を確保することができ、太陽電池セル120が受ける熱を確実に熱流として除去し、且つ、熱輸送によって回収することができる。さらに、一体的な鋳造体なので、水Wの流速を速くすることにより高い熱負荷にも対応できる、ターン部127を少なくすることで水Wの圧力損失が低くなる、冷媒通路123の内部での付着物の成長が抑制されるので冷却能力が低下しにくい。 Accordingly, the heated solar battery cell 120 is deprived of heat by the cooling body 103, and the heat transmitted to the cooling body 103 is sequentially taken out by the water W, so that the temperature of the solar battery cell 120 is maintained at 100 ° C. or lower. . Since the cooling body 103 is made of copper having good thermal conductivity and the fluid is water W having a large specific heat, the thermal resistance is small and a sufficient temperature difference can be secured at all times, and the heat received by the solar battery cell 120 is reliably transferred to the heat. And can be recovered by heat transport. Furthermore, since it is an integral cast body, it is possible to cope with a high heat load by increasing the flow rate of the water W, and the pressure loss of the water W is reduced by reducing the turn part 127. Since the growth of deposits is suppressed, the cooling capacity is hardly lowered.

 また、冷媒通路123は2系統の独立した通路なので、1系統の通路が詰まったり、冷却体103が部分的に焼損したりした場合であっても、冷却機能が全面的に失われてしまう危険が低い。さらに、冷却体103に流れる水Wは、自律して遮断や流量制御ができる様になっている。従って、太陽電池セル120の破損、冷媒通路123のトラブル(詰まり、水漏れなど)といった不具合が太陽光発電モジュール101に発生しても、他とは独立して水Wを遮断または流量制御できるので、不具合が生じていない太陽光発電モジュール101によって発電を継続することができる。尚、冷却体103を通過した水Wは加温されるので、その熱を他の用途に有効利用することもできる。 Further, since the refrigerant passage 123 is two independent passages, even if one passage is clogged or the cooling body 103 is partially burned, the cooling function may be lost completely. Is low. Furthermore, the water W flowing to the cooling body 103 can be cut off and the flow rate can be controlled autonomously. Therefore, even if a problem such as damage to the solar battery cell 120 or trouble in the refrigerant passage 123 (clogging, water leakage, etc.) occurs in the photovoltaic power generation module 101, the water W can be shut off or the flow rate can be controlled independently of the others. The power generation can be continued by the photovoltaic power generation module 101 in which no malfunction occurs. In addition, since the water W that has passed through the cooling body 103 is heated, the heat can be effectively used for other purposes.

 以上説明したように、本実施形態によれば、集光機能と冷却機能を備えた太陽光発電モジュール101に、地上に設置したヘリオスタット5により反射した太陽光Lを重ね合わせるように集光させるため、太陽電池セル120の集光度を大幅に高めて高効率の発電が可能となる。より具体的には以下の効果も指摘することができる。 As described above, according to the present embodiment, the solar power generation module 101 having the light collecting function and the cooling function is condensed so that the sunlight L reflected by the heliostat 5 installed on the ground is superimposed. For this reason, the light collection efficiency of the solar battery cell 120 can be significantly increased and highly efficient power generation can be achieved. More specifically, the following effects can also be pointed out.

 太陽電池セルの受光素子が化合物結晶系の多接合セル構造なので、発電効率が高い。冷却体を銅または銅合金製としたため、熱伝導率が高く冷却能力を高めることができる。 Since the light receiving element of the solar battery cell is a compound crystal multijunction cell structure, power generation efficiency is high. Since the cooling body is made of copper or a copper alloy, the thermal conductivity is high and the cooling capacity can be increased.

 冷却体に設けられた冷媒用通路が2系統以上の独立した通路なので、1系統の通路が詰まったり、冷却体が部分的に焼損したりした場合であっても、冷却機能が全面的に失われてしまう危険が低い。また1系統のみ冷媒の流通を止めて発電することも可能である。 Since the refrigerant passages provided in the cooling body are two or more independent passages, even if one passage is clogged or the cooling body is partially burned out, the cooling function is completely lost. The risk of being broken is low. It is also possible to generate electricity by stopping the circulation of the refrigerant in only one system.

 さらに、集光体は、光の出口側の断面が狭まった略四角錐のプリズムが矩形状に並置された状態で一体成形されている。そのため、バラバラの状態のプリズムと比較して、太陽電池セルへの取り付けが容易になる。また、一体成形されているので、隣り合ったプリズムとの接合面がないので、接合面から雨水が浸入したり、接合面が破損したりするおそれがない。 Furthermore, the light collecting body is integrally formed in a state in which substantially square pyramid prisms having a narrow cross section on the light exit side are arranged side by side in a rectangular shape. Therefore, it becomes easier to attach to the solar battery cell as compared to a prism in a disjoint state. Further, since it is integrally molded, there is no joint surface with adjacent prisms, so there is no possibility of rainwater entering from the joint surface or damage to the joint surface.

 集光体の表面側にガラス部材を設けたため、このガラス部材により集光された太陽光の強度を均一化できると共に、太陽電池セル劣化の原因となる紫外線を吸収することができる。 Since the glass member is provided on the surface side of the light collector, the intensity of sunlight condensed by the glass member can be made uniform, and ultraviolet rays that cause deterioration of the solar battery cell can be absorbed.

 1または複数の太陽光発電モジュールが設置された発電エリアをタワーの所定高さ位置に設け、そこに地上に設置した複数のヘリオスタットにより反射した太陽光を重ね合わせるように集光させるため、ヘリオスタットのミラー枚数やヘリオスタット自体の数を増やした分だけ、太陽電池セルに対する集光度を高めることができる。 A power generation area where one or more photovoltaic power generation modules are installed is provided at a predetermined height position of the tower, and the sunlight reflected by a plurality of heliostats installed on the ground is condensed so as to overlap. The degree of light collection with respect to the solar cells can be increased by the number of mirrors in the stat and the number of heliostats themselves.

 冷却体は、自律して冷媒を遮断または流量制御できるので、太陽電池セルの破損、水路(冷媒用通路)のトラブル(詰まり、水漏れなど)といった不具合が太陽光発電モジュールに発生しても、その不具合が生じたモジュールの冷却体に流れる冷媒のみを遮断または流量制御できるので、他の不具合が生じていない太陽光発電モジュールによって発電を継続することができる。 Since the cooling body can autonomously shut off the refrigerant or control the flow rate, even if a problem such as damage to the solar battery cell or trouble in the water channel (refrigerant passage) (clogging, water leakage, etc.) occurs in the solar power generation module, Since only the refrigerant flowing through the cooling body of the module in which the problem has occurred can be shut off or the flow rate can be controlled, power generation can be continued by the photovoltaic power generation module in which no other problem has occurred.

 システム全体の集光度を800倍以上にしたので、太陽電池セルの変換効率が上がり、発電量を向上できる。 Since the condensing degree of the entire system is increased by 800 times or more, the conversion efficiency of the solar battery cell is increased and the power generation amount can be improved.

 ヘリオスタットが複数のミラー要素に反射機能を分散させたマルチミラー型であるため、1枚の大きなミラーで反射させる場合に比べて、各ミラー要素が小さいため、その表面形状精度が維持され、歪みの少ない集光スポットを形成することができる。歪みの少ない形状の集光スポットは太陽電池セルに当たる太陽光の強度及び範囲を計算する際に有利である。集光スポットの形状が不規則に歪むと、太陽電池セルに当たる太陽光の強度及び範囲の計算が大変に困難になる。 Since the Heliostat is a multi-mirror type in which the reflection function is distributed to multiple mirror elements, each mirror element is smaller than when reflected by a single large mirror, so the surface shape accuracy is maintained and distortion is achieved. It is possible to form a light condensing spot with less. A condensing spot having a shape with less distortion is advantageous in calculating the intensity and range of sunlight falling on the solar cell. When the shape of the focused spot is irregularly distorted, it becomes very difficult to calculate the intensity and range of sunlight that strikes the solar cells.

 ヘリオスタットのミラー要素が、第1軸を中心にした日周運動と、第2軸を中心とした季節運動で回転する赤道儀方式のため、太陽を追尾しやすい。また、センサーミラーで実際に反射された太陽光をセンサーで受光してミラー要素の動きを制御するため、いわゆる二次側制御(出側制御)となり、ヘリオスタットに加わった外因(風圧やガタなど)も含めて制御することができ、ヘリオスタットで反射されて太陽電池セルに当たる太陽光の集光スポットが完全に停止して動かない。従って、太陽電池セルにおいて予め均一になるように調整された太陽光の強度が変動せず、太陽電池セルの発電出力の変動も小さくすることができる。 The mirror element of the heliostat is an equatorial method that rotates with a diurnal motion around the first axis and a seasonal motion around the second axis, making it easy to track the sun. Also, the sunlight actually reflected by the sensor mirror is received by the sensor and the movement of the mirror element is controlled, so it becomes so-called secondary side control (outside control), and external factors (wind pressure, backlash, etc.) added to the heliostat ), And the condensed spot of sunlight reflected by the heliostat and hitting the solar cell completely stops and does not move. Therefore, the intensity of sunlight adjusted to be uniform in advance in the solar battery cell does not fluctuate, and the fluctuation in the power generation output of the solar battery cell can be reduced.

 尚、以上の実施形態では、太陽光発電モジュール101をタワー1に設ける例を示したが、これに限定されない。例えば、ヘリオスタット5を使用しないトラッカー式の太陽追尾機構に設置しても良い。このトラッカー式の太陽追尾機構に太陽光発電モジュール101を設置する場合はフレネルレンズ等により集光度が高められる。また、ディッシュ型のミラーの焦点位置に太陽光発電モジュール101を設置しても良い。 In addition, although the example which provides the solar power generation module 101 in the tower 1 was shown in the above embodiment, it is not limited to this. For example, you may install in the tracker type solar tracking mechanism which does not use the heliostat 5. FIG. When the photovoltaic power generation module 101 is installed in this tracker type solar tracking mechanism, the degree of light collection is increased by a Fresnel lens or the like. Moreover, you may install the solar power generation module 101 in the focus position of a dish type mirror.

 また、ヘリオスタット5の反射機能を複数のミラー2に分散したマルチミラー型を例にしたが、表面形状精度が維持できるような程度の大きさであれば、或いは表面形状精度が維持できるような対策が施されていれば、一枚の大きなミラーで実施することも可能である。 In addition, although the multi-mirror type in which the reflection function of the heliostat 5 is distributed to the plurality of mirrors 2 has been taken as an example, if the size is such that the surface shape accuracy can be maintained, or the surface shape accuracy can be maintained. If measures are taken, it is possible to implement with one large mirror.

 更に、マルチミラー型にする場合も、ミラー2の数は4枚に限定されず、5枚以上にすることも可能である。 Furthermore, when the multi-mirror type is used, the number of mirrors 2 is not limited to four, and can be five or more.

 更に、集光体104は、内面が鏡面とされたテーパ形状の金属筒を用いても良い。 Furthermore, the condensing body 104 may be a tapered metal tube whose inner surface is a mirror surface.

 冷却体103の材質として銅を例にしたが、それ以外の熱伝導性の良い金属を用いてもよく、そこに循環する流体も水以外の液体でも良いし、空気などの気体でも良い。 Although copper is taken as an example of the material of the cooling body 103, other metal having good thermal conductivity may be used, and the fluid circulating there may be a liquid other than water or a gas such as air.

 更に、太陽電池セル集合体を構成する太陽電池セルの数、集光体を構成する一体成形されたプリズムの数、太陽光発電モジュールを構成する集光体の数は、例示した数に限定されない。 Further, the number of solar cells constituting the solar cell assembly, the number of integrally formed prisms constituting the light collector, and the number of light collectors constituting the solar power generation module are not limited to the exemplified numbers. .

 更に、集光体は、大きさが太陽電池セル集合体や冷却体の大きさと同じものを例にしたが、これらより小さなものを並べることも可能である。 Furthermore, although the light collectors have the same size as that of the solar cell assembly or the cooling body, it is possible to arrange smaller light collectors.

(米国指定)
 本国際特許出願は米国指定に関し、2010年7月12日に出願された日本国特許出願第2010-157949号(2010年7月12日出願)について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
(US designation)
This international patent application is based on US designation 119 (a) regarding Japanese Patent Application No. 2010-157949 (filed on July 12, 2010) filed on July 12, 2010 with respect to designation in the United States. Incorporate the interests of the rights and cite the disclosure.

Claims (11)

 表面側の一部が受光素子となっている複数の太陽電池セルが矩形状に並置された太陽電池セル集合体と、
 前記太陽電池セル集合体の裏面全体を覆う様に設けられ、内部に冷媒用通路を有する一体的な鋳造体で構成された冷却体と、
 前記太陽電池セル集合体の表面側に設けられ、各々の前記太陽電池セルの受光素子に光を集中させる1または複数の集光体と、
を具備することを特徴とする太陽光発電モジュール。
A plurality of solar cells in which a part of the surface side is a light receiving element, and a solar cell assembly in which the cells are arranged in a rectangular shape,
A cooling body that is provided so as to cover the entire back surface of the solar cell assembly, and is constituted by an integral casting having a refrigerant passage inside;
One or more light collectors that are provided on the surface side of the solar cell assembly and concentrate light on the light receiving element of each of the solar cells;
A photovoltaic power generation module comprising:
 前記太陽電池セルの受光素子は、化合物結晶系の多接合セル構造であることを特徴とする請求項1記載の太陽光発電モジュール。 The photovoltaic module according to claim 1, wherein the light receiving element of the solar battery cell has a compound crystal multijunction cell structure.  前記冷却体は、銅または銅合金製であることを特徴とする請求項1または2のいずれか1項に記載の太陽光発電モジュール。 3. The solar power generation module according to claim 1, wherein the cooling body is made of copper or a copper alloy.  前記冷媒用通路は、2系統以上の独立した通路であることを特徴とする請求項1~3のいずれか1項に記載の太陽光発電モジュール。 The solar power generation module according to any one of claims 1 to 3, wherein the refrigerant passages are two or more independent passages.  前記集光体は、光の出口側の断面が狭まった略四角錐のプリズムが矩形状に並置された状態で一体成形されたものであることを特徴とする請求項1~4のいずれか1項に記載の太陽光発電モジュール。 5. The light collecting body according to claim 1, wherein the condensing body is integrally formed in a state in which substantially quadrangular pyramid prisms having a narrow cross section on the light exit side are arranged side by side in a rectangular shape. The photovoltaic power generation module according to item. 前記集光体の光の入口側に、太陽光の強度を均一化し且つ紫外線を吸収するガラス部材を設けたことを特徴とする請求項1~5のいずれか1項に記載の太陽光発電モジュール。 The photovoltaic power generation module according to any one of claims 1 to 5, wherein a glass member that equalizes the intensity of sunlight and absorbs ultraviolet rays is provided on the light entrance side of the light collector. . 請求項1~6のいずれかに記載された1または複数の太陽光発電モジュールがタワーの所定高さ位置に設置された発電エリアと、
太陽光を前記発電エリアの受光面に向けて反射する1または複数のヘリオスタットと、
を含んで構成されることを特徴とする集光型太陽光発電システム。
A power generation area in which one or more photovoltaic power generation modules according to any one of claims 1 to 6 are installed at a predetermined height position of the tower;
One or more heliostats that reflect sunlight toward the light receiving surface of the power generation area;
A concentrating solar power generation system comprising:
前記冷却体は、自律して冷媒を遮断または流量制御することが可能であることを特徴とする請求項7に記載の集光型太陽光発電システム。 The concentrating solar power generation system according to claim 7, wherein the cooling body can autonomously block or control a flow rate of the refrigerant. システム全体の集光度が800倍以上であることを特徴とする請求項7または8のいずれか1項に記載の集光型太陽光発電システム。 The concentrating solar power generation system according to any one of claims 7 and 8, wherein the condensing degree of the entire system is 800 times or more.  前記ヘリオスタットが複数のミラー要素に反射機能を分散させたマルチミラー型であることを特徴とする請求項7~9のいずれか1項に記載の集光型太陽光発電システム。 10. The concentrating solar power generation system according to any one of claims 7 to 9, wherein the heliostat is a multi-mirror type in which a reflecting function is dispersed in a plurality of mirror elements.  前記ヘリオスタットは、地球の自転軸と平行で且つ軸心を中心に太陽の日周運動に関連する赤経方向で回転自在な第1軸と、第1軸の先端に固定されたU字形のフレームと、フレームを第1軸と直交する方向で貫通し且つ軸心を中心に太陽の季節運動に関連する赤緯方向で回転自在な第2軸を有し、
 第2軸におけるフレームの両外側に複数のミラー要素を支持し、第2軸におけるフレームの内側に1枚のセンサーミラーを支持すると共に、
 センサーミラーと発電エリアを結ぶ直線上に、センサーミラーにて反射された太陽光を受光するセンサーを不動状態で固定し、該センサーミラーにて反射された太陽光が常にセンサーにて受光されるように第1軸及び第2軸を回転制御する駆動部を設けたことを特徴とする請求項10記載の集光型太陽光発電システム。
The heliostat has a first axis that is parallel to the rotation axis of the earth and that is rotatable about the axis about the diurnal motion of the sun and that is freely rotatable in the meridian direction, and a U-shape that is fixed to the tip of the first axis. A frame and a second axis that passes through the frame in a direction perpendicular to the first axis and is rotatable about the axis in the declination direction related to the seasonal motion of the sun,
Supporting a plurality of mirror elements on both outer sides of the frame in the second axis, supporting one sensor mirror on the inner side of the frame in the second axis,
A sensor that receives sunlight reflected by the sensor mirror is fixed on a straight line connecting the sensor mirror and the power generation area, so that the sunlight reflected by the sensor mirror is always received by the sensor. The concentrating solar power generation system according to claim 10, further comprising a drive unit that controls rotation of the first axis and the second axis.
PCT/JP2011/065853 2010-07-12 2011-07-12 Solar power generation module and light-concentrating solar power generation system WO2012008432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011277501A AU2011277501A1 (en) 2010-07-12 2011-07-12 Solar power generation module and concentrating solar power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-157949 2010-07-12
JP2010157949A JP2012023099A (en) 2010-07-12 2010-07-12 Photovoltaic power generation module and concentrating photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2012008432A1 true WO2012008432A1 (en) 2012-01-19

Family

ID=45469430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065853 WO2012008432A1 (en) 2010-07-12 2011-07-12 Solar power generation module and light-concentrating solar power generation system

Country Status (3)

Country Link
JP (1) JP2012023099A (en)
AU (1) AU2011277501A1 (en)
WO (1) WO2012008432A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091581A1 (en) * 2015-05-05 2016-11-09 SolAero Technologies Corp. Solar cell module and method for fabricating a solar cell module
FR3074270A1 (en) * 2017-11-28 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives DEVICE FOR MEASURING NORMAL DIRECT SUNLIGHT
FR3074269A1 (en) * 2017-11-28 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives SOLAR POWER PLANT WITH NORMAL DIRECT SUNNY MEASURING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITAN20130094A1 (en) * 2013-05-15 2014-11-16 Iside S R L SOLAR TRACKING DEVICE AND CONCENTRATION FOR PHOTOVOLTAIC CELLS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029519A (en) * 1976-03-19 1977-06-14 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector having a solid transmission medium
JPH02502500A (en) * 1987-12-08 1990-08-09 フラウンホーファー‐ゲゼルシャフト ツール フェルデルング デア アンゲヴァンテン フォルシュング エー ファウ light condensing device
JP2003113771A (en) * 2001-10-04 2003-04-18 Kawasaki Heavy Ind Ltd Power generation device using solar energy
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof
JP2006064203A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Solar battery module
JP2009510739A (en) * 2005-09-30 2009-03-12 ソラーテック アー・ゲー Concentrating photovoltaic device, photovoltaic unit for use therein and manufacturing method therefor
JP2009218383A (en) * 2008-03-11 2009-09-24 Panasonic Corp Solar energy utilization device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029519A (en) * 1976-03-19 1977-06-14 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector having a solid transmission medium
JPH02502500A (en) * 1987-12-08 1990-08-09 フラウンホーファー‐ゲゼルシャフト ツール フェルデルング デア アンゲヴァンテン フォルシュング エー ファウ light condensing device
JP2003113771A (en) * 2001-10-04 2003-04-18 Kawasaki Heavy Ind Ltd Power generation device using solar energy
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof
JP2006064203A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Solar battery module
JP2009510739A (en) * 2005-09-30 2009-03-12 ソラーテック アー・ゲー Concentrating photovoltaic device, photovoltaic unit for use therein and manufacturing method therefor
JP2009218383A (en) * 2008-03-11 2009-09-24 Panasonic Corp Solar energy utilization device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091581A1 (en) * 2015-05-05 2016-11-09 SolAero Technologies Corp. Solar cell module and method for fabricating a solar cell module
FR3074270A1 (en) * 2017-11-28 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives DEVICE FOR MEASURING NORMAL DIRECT SUNLIGHT
FR3074269A1 (en) * 2017-11-28 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives SOLAR POWER PLANT WITH NORMAL DIRECT SUNNY MEASURING DEVICE
WO2019106267A1 (en) * 2017-11-28 2019-06-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solar power plant provided with a device for measuring direct normal insolation
WO2019106266A1 (en) * 2017-11-28 2019-06-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for measuring direct normal irradiance

Also Published As

Publication number Publication date
JP2012023099A (en) 2012-02-02
AU2011277501A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
US7435898B2 (en) Solar energy utilization unit and solar energy utilization system
Luque et al. Photovoltaic concentration at the onset of its commercial deployment
US9476612B2 (en) Beam-forming concentrating solar thermal array power systems
US8952238B1 (en) Concentrated photovoltaic and solar heating system
US8746236B2 (en) Solar energy collector system
JP2012038954A (en) Condensing photovoltaic power generation system
US4439020A (en) Sunrays focusing apparatus
US20070227574A1 (en) Tracking solar power system
US20080308154A1 (en) Reflective secondary optic for concentrated photovoltaic systems
US20100218807A1 (en) 1-dimensional concentrated photovoltaic systems
US8101850B2 (en) Asymmetric parabolic compound concentrator with photovoltaic cells
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
Yang et al. Optical and thermal performance analysis of a micro parabolic trough collector for building integration
WO2012008433A1 (en) Tower-type light-concentrating solar power generating system and method for light concentration thereof
CN101939848A (en) Solar energy low concentration device and method for maximizing electricity yield of photovoltaic modules
WO2012008432A1 (en) Solar power generation module and light-concentrating solar power generation system
RU2303205C1 (en) Solar power plant
JP2014052171A (en) Light collecting device, solar heat power generation device, photovoltaic power generation device
CN114096790B (en) Asymmetric solar receiver
JP2012038953A (en) Condensing photovoltaic power generation system
CN102280510B (en) Horizontal two-dimensional solar tracking type high-concentrating photovoltaic power generation device
JP2018011459A (en) Concentrating solar cell system and power generation method
WO2013005479A1 (en) Solar light collection system and solar thermal electric power generation system
WO2012107104A1 (en) Solar collection system
Liberati CSP for a cost effective process heat generation at high latitudes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011277501

Country of ref document: AU

Date of ref document: 20110712

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11806762

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载