+

WO2012008191A1 - カラーフィルタ基板の製造方法 - Google Patents

カラーフィルタ基板の製造方法 Download PDF

Info

Publication number
WO2012008191A1
WO2012008191A1 PCT/JP2011/059197 JP2011059197W WO2012008191A1 WO 2012008191 A1 WO2012008191 A1 WO 2012008191A1 JP 2011059197 W JP2011059197 W JP 2011059197W WO 2012008191 A1 WO2012008191 A1 WO 2012008191A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
color filter
inkjet
manufacturing
color
Prior art date
Application number
PCT/JP2011/059197
Other languages
English (en)
French (fr)
Inventor
恵隆 奥本
友祐 藁谷
田中 恵一
小林 和樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/809,649 priority Critical patent/US20130115385A1/en
Publication of WO2012008191A1 publication Critical patent/WO2012008191A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to a method for manufacturing a color filter substrate. More specifically, the present invention relates to a method for manufacturing a color filter substrate including a step of forming a color filter by an inkjet process.
  • the color filter substrate is configured by regularly arranging a plurality of color filters on a substrate such as a glass substrate.
  • the three primary colors of red (R), green (G), and blue (B) are the most common color filter color combinations corresponding to pixels that are the smallest unit for realizing color display.
  • a photolithography process As a process used for producing a color filter, a photolithography process is mainstream, but it is necessary to repeat the steps of coating, exposing, developing and baking as many times as the number of colors in order to form a color layer.
  • an inkjet apparatus is equipped with a plurality of heads, and different color inks can be ejected from the plurality of heads, and different color layers can be formed in one process. The entire process can be shortened. In addition, in the ink jet process, since ink can be applied only to necessary portions, exposure and development steps are unnecessary.
  • Patent Document 1 a unit for controlling the interval and arrangement of a plurality of ink discharge nozzles under a predetermined condition in accordance with a pixel interval and coloring a corresponding color pixel (for example, Patent Document 1).
  • Patent Document 2 that scans an ink jet head and discharges ink into a colored region in a plurality of times (for example, refer to Patent Document 2).
  • a means for example, refer to Patent Document 3) that repeats these steps using a temporary curing step that performs a temporary curing process on the liquid is used.
  • JP-A-9-138306 Japanese Patent Laid-Open No. 2003-232912 JP 2008-89896 A
  • the present inventors have made various studies on a method for forming a color filter by an ink jet method. As a result, a region (hereinafter also referred to as a pixel opening region) partitioned by a partition wall (hereinafter also referred to as a bank). .)) When ink was ejected and color filters were formed, it was found that some color filters adjacent to each other might be mixed together, making it impossible to form color filters as designed. .
  • Such a phenomenon is likely to occur when inks of different colors are continuously ejected into a plurality of pixel opening areas in one process, and about 50% to 70% of defects in the color filter forming process are caused. is occupying.
  • the present inventors when ejecting different color inks in a plurality of pixel opening areas in one process, the ejected ink tends to gather in the center in each pixel opening area, It was found that the thickness of the color filter formed tends to be thicker toward the center of the picture element and thinner toward the outer periphery of the picture element.
  • FIG. 16 and 17 are schematic plan views showing color filters when inks of different colors are ejected into a plurality of picture element opening areas in one process.
  • FIG. 16 shows the configuration of the color filter in units of picture elements
  • FIG. 17 shows the configuration of the color filter in units of pixels. In this specification, it is assumed that one pixel is composed of a combination of picture elements of a plurality of colors.
  • one pixel is composed of a combination of three colors, a red (R) color filter 31R, a green (G) color filter 31G, and a blue (B) color filter 31B.
  • Each color filter 31 is surrounded by a bank 32.
  • the elliptical shapes in FIGS. 16 and 17 schematically show the difference in film thickness of the color filter.
  • the thickness of the formed color filter is thicker as it is closer to the center of the picture element, and thinner as it is closer to the outer periphery of the picture element.
  • the shape of each picture element is rectangular, a gentle gradient is generated from the center of the picture element to the short side of the outer periphery, and a steep slope is generated from the center of the picture element to the long side of the outer periphery. A gradient will occur. If there is such a variation in film thickness, for example, light leakage may occur from a thin film thickness region.
  • FIG. 18 is a schematic plan view showing a color filter when color mixing occurs as a result of ejecting different colors of ink into a plurality of picture element opening areas in one process.
  • FIG. 19 is a schematic plan view illustrating a configuration of a color filter in units of pixels when a portion where color mixing has occurred is removed with a laser.
  • FIG. 20 is a schematic plan view showing the configuration of the color filter in units of pixels when the ink is applied again after the laser removing step.
  • the present invention has been made in view of the above situation, and provides a method of manufacturing a color filter substrate that can prevent color mixing between adjacent picture elements even when the ink jet method is used. It is intended.
  • the inventors of the present invention have made various studies on a method for preventing a color mixture defect, and focused on the fact that color mixing occurred when ink was ejected into a plurality of pixel aperture areas in one process.
  • FIG. 21 shows a color filter after ink jet discharge is continuously performed on one of the adjacent pixel opening areas of the same color and ink jet discharge is continuously performed on the other pixel opening area.
  • FIG. 21 is a plane schematic diagram which shows an example of a state.
  • color filters of different colors are formed in each pixel opening region with a bank 72 therebetween.
  • the color types of the color filters are three colors of red, green, and blue.
  • Each of the red (R) color filter 71R, the green (G) color filter 71G, and the blue (B) color filter 71B Partitioned by a bank 72.
  • mixed color portions 61 are generated between the red (R) color filter 71R and the blue color filter 71B, and between the blue color filter 71B and the green color filter 71G. I understand that.
  • the first cause is that the ink drawn for the first time landed on the substrate and a part of the ink got on the bank, and the ink that got on the bank flowed into the blank picture element opening area and flowed into it.
  • ink is drawn on the ink for the second time, it is conceivable that the inks mix and cause color mixing.
  • the second cause is that when the ink is drawn for the second time, a part of the ink runs on the bank, the ink that has run on the bank flows into the adjacent pixel opening area, and the ink drawn for the first time It is possible to mix and cause color mixing.
  • the bank surface Before the first ink drawing, the bank surface is preferably subjected to a liquid repellent treatment so that the ink is held in the area surrounded by the bank.
  • a part of the ink drawn for the first time volatilizes after landing on the substrate, thereby reducing the liquid repellency of the peripheral banks. Therefore, even when the liquid repellent treatment has been performed in advance, the ink drawn for the second time is not held in the pixel opening area but runs on the bank and further flows into the adjacent pixel opening area. It is possible that color mixing will occur.
  • the inventors of the present invention conducted intensive studies on means for solving these problems, and focused on adding a drying step between the first drawing and the second drawing. Then, after the first ink drawing is performed, the ink is sufficiently dried by the drying process, so that even if the second ink drawing is performed, the ink itself can be prevented from being mixed. I found that I can make it smaller.
  • the present inventors also examined other means for solving the above-mentioned problem.
  • the liquid repellent treatment was performed on the bank surface between the first drawing and the second drawing. Pay attention. After the first ink drawing is performed, the liquid repellent treatment sufficiently imparts liquid repellency to the bank, so that even if the second ink drawing is performed, We found that it was possible to prevent climbing and color mixing.
  • the present inventors have made all the areas adjacent to the area where ink is to be ejected blank areas when performing the first drawing in order to minimize the possibility of mixing ink before drying. We focused on. Thereby, even if the ink flows into the adjacent blank area, the defect can be corrected by the drying process or the laser processing.
  • the inventors of the present invention performed ink drawing by such a method and conducted a detailed study. As a result, they found that the film thickness of the formed color filter is flattened.
  • the surface of the ink after landing is stretched to the blank area side. Tension acts. As a result, the surface of the ink is flattened. Therefore, even when the picture element is formed in a substantially rectangular shape, the ink can be sufficiently spread to the four corners of the picture element.
  • FIG. 6 is a schematic plan view illustrating an example of a state of a color filter after the ink drawn for the first time is dried and then inkjet discharge is performed on the other pixel opening region.
  • FIG. 22 shows a state in which the first drawing is performed
  • FIG. 23 shows a state in which the second drawing is performed. As shown in FIGS. 22 and 23, between the blue color filter 81B and the green color filter 81G adjacent to each other, between the blue color filter 81B and the red color filter 81R adjacent to each other, and adjacent to each other.
  • the degree of the ink that has been drawn onto the bank 82 after ink-jet drawing is greater in the second drawing area than in the first drawing area. .
  • one aspect of the present invention is a method for manufacturing a color filter substrate having a plurality of color filters arranged in a matrix through partition walls, and the manufacturing method includes a plurality of regions partitioned by the partition walls.
  • a first inkjet process that ejects ink to at least one region and that does not eject ink to any of the horizontal and vertical regions adjacent to the at least one region;
  • a second inkjet process for ejecting ink to at least one area in which ink is not ejected in the first inkjet process among the plurality of areas (hereinafter referred to as the present invention). It is also referred to as the first production method.).
  • Another aspect of the present invention is a method for manufacturing a color filter substrate having a plurality of color filters arranged in a matrix through partition walls, the manufacturing method comprising a plurality of partitions partitioned by the partition walls.
  • the first inkjet step of ejecting ink to at least one region the drying step of drying the ink after the first inkjet step
  • a color filter substrate manufacturing method (hereinafter also referred to as a second manufacturing method of the present invention) having a second inkjet step of discharging ink to at least one region where ink is not discharged in one inkjet step. ).
  • another aspect of the present invention is a method for manufacturing a color filter substrate having a plurality of color filters arranged in a matrix through partition walls, and the manufacturing method includes a plurality of partition walls partitioned by the partition walls.
  • a first ink jet process for discharging ink to at least one of the areas, a liquid repellent process for liquid repelling the surface of the partition wall surrounding the ink after the first ink jet process, and the partition wall.
  • a color filter substrate manufacturing method (hereinafter referred to as the present invention) having a second inkjet step of ejecting ink to at least one region of the plurality of regions where ink is not ejected in the first inkjet step. It is also called the third manufacturing method.).
  • the color filter substrate manufactured by the first to third manufacturing methods of the present invention has a plurality of color filters arranged in a matrix through partition walls. More specifically, examples of the configuration of the color filter substrate include a configuration in which partition walls and color filters patterned in a predetermined shape are arranged on a support substrate such as glass or resin.
  • the first ink jet process for ejecting ink to at least one of the plurality of areas partitioned by the partition wall, and the ink in the first ink jet process And a second inkjet process for ejecting ink to at least one region that is not ejected. That is, in the manufacturing method of the present invention, the color filter is formed using an inkjet method. If the said inkjet process is 2 times or more, the frequency
  • ink ink is not ejected to any of the horizontal and vertical regions adjacent to the at least one region.
  • the ink spreads uniformly in the picture element opening region and the surface of the ink is flattened, so that a color filter that hardly causes light leakage can be obtained.
  • a decrease in color purity can be suppressed as compared with a case where the film thickness varies greatly.
  • the region where the second inkjet process is performed is at least one region adjacent to the region where the first inkjet process is performed.
  • the first ink jet process is preferably a process in which ink is ejected in a staggered pattern.
  • the second inkjet process is preferably a process in which ink is ejected in a staggered pattern.
  • the ink is ejected to all the pixel opening regions by the ink jet process at least twice.
  • a pattern film having a similar cross-sectional shape tends to be formed in a staggered pattern.
  • the thermal history of the substrate on which the ink lands is different, or the component volatilized from the ink drawn the first time is drawn the second time.
  • the wettability of ink drawn for the second time is different when adhering to the elementary opening region.
  • the cross-sectional shape of the ink greatly depends on the physical properties of the ink, but a difference in the cross-sectional shape tends to appear particularly for the same color ink.
  • the 2nd manufacturing method of this invention has the drying process which dries the ink after said 1st inkjet process between said 1st inkjet process and said 2nd inkjet process.
  • the “drying step” means a step in which drying is performed until the fluidity of the ink is lost through steps such as heat treatment and vacuum drying, not including only natural drying.
  • the said drying process is a process which heats and polymerizes the material contained in the said ink. Such a process can be performed by mixing a compound that causes a polymerization reaction with heat into the ink, and a sufficient drying effect can be obtained according to the polymerization process.
  • the ink itself can be prevented from being deteriorated due to a color difference and a luminance difference.
  • the third production method of the present invention is a liquid repellent treatment for repelling the surface of the partition wall surrounding the ink after the first ink jet process between the first ink jet process and the second ink jet process.
  • a liquid repellent treatment for repelling the surface of the partition wall surrounding the ink after the first ink jet process between the first ink jet process and the second ink jet process.
  • the discharged ink can be effectively held in the region surrounded by the partition wall.
  • the ink ejected in the first ejection step volatilizes and weakens the liquid repellency of the bank. Therefore, the liquid repellency treatment before the second inkjet step is effective. is there.
  • the liquid repellent treatment include plasma treatment using fluorine-containing plasma or the like.
  • the third manufacturing method of the present invention it is possible to prevent the ink from running on the partition walls and flowing into the adjacent picture elements, so that the possibility of color mixing can be effectively suppressed.
  • the configuration of the first to third production methods of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the first to third production methods of the present invention are more preferably used in combination as appropriate. Thereby, the further color-mixing prevention effect can be acquired.
  • the first production method of the present invention includes a drying step of drying the ink after the first inkjet step between the first inkjet step and the second inkjet step.
  • a drying step of drying the ink after the first inkjet step between the first inkjet step and the second inkjet step preferable.
  • the first ink jet process is a process in which ink is not ejected to any of the horizontal and vertical areas adjacent to the at least one area. Is preferred. Moreover, it is preferable to include the liquid repelling process which carries out the liquid repelling process on the surface of the said partition between said 2nd inkjet processes.
  • the first ink jet process is a process in which ink is not ejected to any of the horizontal and vertical areas adjacent to the at least one area. Is preferred. Moreover, it is preferable to include the drying process which dries the ink after said 1st inkjet process between said 1st inkjet process and said 2nd inkjet process.
  • the manufacturing method includes a correction step of removing the ink after the first inkjet step with a laser between the first inkjet step and the second inkjet step.
  • ink may flow into a picture element adjacent to a picture element that performs an ink jet process. In such a case, it is possible to prevent color mixing by removing ink having a color different from the designed color using a laser.
  • the color transmittance of the color filter formed by the first ink jet process is preferably lower than the color transmittance of the color filter formed by the second ink jet process. If the color transmittance of the color filter formed by the first ink jet process is larger than the color transmittance of the color filter formed by the second ink jet process, the color filter is formed by the first ink jet process. This is because the color mixture is more conspicuous than when the color transmittance of the color filter is smaller than the transmittance of the color filter formed by the second ink jet process. For example, when one pixel is composed of six colors having a relationship of yellow, green, light blue (cyan), red, purple (magenta), and blue in descending order of transmittance, the transmittance is relatively low. It is preferable that red, purple (magenta) and blue are formed in the first ink jet process, and yellow, light blue (cyan) and green having relatively high transmittance are formed in the second ink jet process.
  • the manufacturing method includes a hydrophilic step in which a surface on which ink is landed is subjected to a hydrophilic treatment before the second ink jet step.
  • a hydrophilic treatment By subjecting the ink landing surface to a hydrophilic treatment, it becomes easy for the ink to become familiar with the landing surface, and it is possible to suppress the ink from flowing into the adjacent region.
  • FIG. 3 is a schematic plan view illustrating a color arrangement of a color filter substrate according to Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating a first drawing pattern when the color filter substrate of Embodiment 1 is manufactured.
  • FIG. 3 is a schematic plan view showing a second drawing pattern when the color filter substrate of Embodiment 1 is manufactured. It is a plane schematic diagram which shows the contour line of the color filter with which the color filter board
  • FIG. 5 is a schematic cross-sectional view taken along the line AB in FIG. 4.
  • FIG. 3 is a schematic plan view showing contour lines of a color filter provided in the color filter substrate of Embodiment 1.
  • FIG. 7 is a schematic cross-sectional view taken along line CD in FIG. 6.
  • FIG. 9 is a schematic cross-sectional view taken along line EF in FIG. 6 is a schematic plan view showing a color arrangement of a first example of a color filter substrate of Embodiment 2.
  • FIG. 10 is a schematic plan view illustrating a first drawing pattern when a first example of a color filter substrate of Embodiment 2 is manufactured.
  • FIG. 6 is a schematic plan view illustrating a state in which a color mixture is partly generated in the color filter in the first example of the color filter substrate of Embodiment 2.
  • 6 is a schematic plan view showing a color arrangement of a second example of the color filter substrate of Embodiment 2.
  • FIG. 9 is a schematic cross-sectional view taken along line EF in FIG. 6 is a schematic plan view showing a color arrangement of a first example of a color filter substrate of Embodiment 2.
  • FIG. 10 is a schematic plan view illustrating a first drawing pattern when a first example of a color filter substrate of Embodiment 2 is manufactured.
  • FIG. 10 is a schematic plan view showing a first drawing pattern when a second example of the color filter substrate of Embodiment 2 is manufactured.
  • FIG. 10 is a schematic plan view illustrating a state in which a color mixture is partly generated in the color filter in the second example of the color filter substrate of Embodiment 2.
  • FIG. 5 is a schematic plan view showing a color filter when inks of different colors are ejected into a plurality of picture element opening areas in one process, and shows the configuration of the color filter in units of picture elements.
  • FIG. 5 is a schematic plan view showing a color filter when inks of different colors are ejected into a plurality of picture element opening areas in one process, and shows the configuration of the color filter in units of pixels.
  • FIG. 10 is a schematic plan view showing a first drawing pattern when a second example of the color filter substrate of Embodiment 2 is manufactured.
  • FIG. 10 is a schematic plan view illustrating a state in which a color mixture is partly generated in the color filter
  • FIG. 6 is a schematic plan view showing a color filter when color mixing occurs as a result of ejecting different color inks into a plurality of picture element opening areas in one process. It is a plane schematic diagram which shows the structure of the color filter in a pixel unit when the site
  • FIG. 6 is a schematic plan view showing an example of a state of a color filter after drying the dried ink and subsequently performing inkjet discharge to the other pixel opening region.
  • the shape when expressed using “substantially”, it means that the object substantially represents the shape.
  • the entire object is substantially the whole. What is necessary is just to be a rectangle, and it means that the overhang
  • Embodiment 1 shows an example of a color filter substrate manufactured by the method for manufacturing a color filter substrate of the present invention.
  • FIG. 1 is a schematic plan view illustrating a color arrangement of a color filter substrate according to the first embodiment.
  • a single color display screen has a plurality of pixels each having three color picture elements composed of red (R), green (G), and blue (B) as structural units.
  • Each picture element has a substantially rectangular shape, and is arranged in a matrix in the order of red (R), green (G), and blue (B) in the horizontal direction.
  • the regions corresponding to the red (R), green (G), and blue (B) picture elements include a red (R) color filter 11R, a green (G) color filter 11G, and a blue (B ) Color filters 11B are formed, and each color filter 11 is partitioned by banks (partition walls) 12.
  • the arrangement of picture elements constituting each pixel is formed in the same pattern, and constitutes a stripe arrangement in which picture elements of the same color are formed in the vertical direction.
  • a resin material containing a black pigment or a light-shielding metal material is formed on the entire surface of a transparent substrate such as a glass substrate or a resin substrate, and patterned by a photolithography method to partition a substantially rectangular space.
  • a grid-like bank 12 is formed.
  • the area surrounded by the bank 12 is a picture element opening area for forming the color filter 11, and ink for forming the color filter is dropped into the picture element opening area in the subsequent process.
  • the bank 12 has a role of holding the ink for forming the color filter at a predetermined position.
  • Such a bank 12 has a light shielding function and is also referred to as a black matrix.
  • the bank 12 By configuring the bank 12 with a black matrix, for example, a part of the TFT substrate side can be shielded as necessary, and an effect of improving the contrast ratio of the display can be obtained.
  • each picture element When the shape of each picture element is substantially rectangular, a gentle gradient is generated from the center of the picture element toward the short side of the outer periphery, and a steep slope is generated from the center of the picture element to the long side of the outer periphery. Will occur.
  • the ink ejected to the area partitioned by the bank 12 has a large force spreading from the center of the picture element toward the long side of the outer periphery, and passes over the bank 12 to the adjacent picture element opening area. Becomes easier to flow in.
  • the width of the portion configured along the long side of the pixel opening region is made narrower than the width of the portion configured along the short side of the pixel opening region, the probability of ink flow increases. .
  • ink for forming a color filter is dropped from the inkjet head onto the pixel opening area.
  • pre-treatment before dropping for example, if the bank 12 is subjected to fluorine plasma treatment and the surface of the bank 12 is made liquid-repellent, the ink in the pixel opening area gets over the bank 12 and the adjacent pixel opening. It is possible to effectively prevent the flow into the region.
  • FIG. 2 is a schematic plan view showing a first drawing pattern when the color filter substrate of Embodiment 1 is manufactured.
  • FIG. 3 is a schematic plan view showing a second drawing pattern when the color filter substrate of Embodiment 1 is manufactured.
  • the pixel opening area adjacent to a certain pixel opening area includes two pixel opening areas adjacent in the horizontal direction and the vertical direction. Two adjacent pixel opening areas are blank areas. Therefore, the pattern formed by the first drawing forms a staggered lattice.
  • ink drawing is performed in the remaining pixel opening area adjacent to the area where the first drawing is performed.
  • the pattern formed by the second drawing also forms a staggered pattern, and ink drawing is performed on all the pixel opening areas by the second drawing.
  • a drawing method in which the ink-drawn area forms a staggered pattern is also referred to as a staggered drawing.
  • each picture element constitutes a stripe arrangement of three-color picture elements of red, green and blue, but in the first embodiment, the color type and arrangement order are not particularly limited.
  • the color filter substrate of Comparative Example 1 is a color filter substrate in which color filters are formed by a method of ejecting ink in the same process in all the pixel opening regions.
  • 4 is a schematic plan view showing contour lines of a color filter provided in the color filter substrate of Comparative Embodiment 1
  • FIG. 5 is a schematic cross-sectional view taken along line AB in FIG.
  • the color filter 31 is formed on the substrate 33 and surrounded by the bank 32.
  • the color filter has a substantially hemispherical or substantially dome-like shape in which the film thickness gradually increases from the outer periphery (edge) side of the pixel element opening region toward the center. have.
  • the contour lines when the color filter is viewed in plan are substantially concentric.
  • the contour lines when the color filter is viewed in plan are substantially concentric.
  • FIG. 6 is a schematic plan view showing contour lines of a color filter provided in the color filter substrate of Embodiment 1
  • FIG. 7 is a schematic cross-sectional view taken along line CD in FIG.
  • the color filter 11 is formed on the substrate 13 and surrounded by the bank 12.
  • the color filter substrate of the first embodiment although the film thickness is slightly smaller in the vicinity of the four corners of the pixel opening region, the color filter substrate has a flat surface in most regions of the pixel opening region. ing. Thereby, it is possible to prevent light leakage and a decrease in color purity in an area where the film thickness is thin.
  • FIG. 8 is a schematic plan view showing contour lines of a color filter provided in the color filter substrate of Reference Embodiment 1
  • FIG. 9 is a schematic cross-sectional view taken along the line EF in FIG.
  • the color filter 41 is formed on the substrate 43 and surrounded by the banks 42.
  • one of the three regions adjacent in the horizontal direction with respect to a certain pixel opening region is a blank region, and the same process is performed for the remaining two regions.
  • a color filter formed to perform ink drawing In such a case, the ink dropped into the pixel opening area spreads toward the blank area side. Therefore, as shown in FIG. 8, the contour line when the color filter is viewed in plan has a larger film thickness as it approaches the blank area, and as it approaches the other area where ink is drawn in the same process, the film thickness increases. Is formed to be small.
  • the inkjet is performed in a state where the adjacent area is a blank area in both the horizontal direction and the vertical direction of the pixel opening area where ink is to be ejected. It can be said that discharging is preferable.
  • a drying process is performed.
  • heating and vacuum drying are performed, and sufficient drying is performed until the fluidity of the ink is lost.
  • the ink material drying proceeds effectively.
  • ink drawing is divided into a plurality of times, and the ink that has entered the bank after the first drawing is made to flow into the pixel opening area using the liquid repellency of the bank surface. Although the ink is left for a predetermined time, if the ink is not sufficiently dried, a problem of color mixing occurs when the ink is mixed in the next ink discharge process.
  • the solvent volatilized in the first ink drawing reduces the liquid repellency of the bank, even if sufficient liquid repellency is obtained in the first ink drawing, sufficient liquid repellency is obtained in the second ink drawing. Sexuality is not always obtained. Therefore, it is preferable to carry out a drying step and sufficiently dry the ink.
  • the liquid repellency of the bank surface is reduced in the first ink drawing, it is more preferable to perform liquid repellency treatment such as fluorine plasma treatment on the bank again after the drying step.
  • a laser removal process of ink mixed in the adjacent pixel opening region by the first drawing is performed. As described above, even if the laser removal process is performed, it is actually difficult to remove all the ink, and the remaining amount of ink remains along the inner periphery of the bank. By performing the removal, it is possible to suppress the influence of color mixing.
  • the laser treatment first, after the first drawing process, the presence or absence of a defect is inspected, and a dry ink removing process is selectively performed in the picture element in which the defect has occurred.
  • lasers that can be used include YAG (Yttrium Aluminum Garnet) lasers. Note that such a laser removal process may be performed for defects other than color mixing such as when foreign matter is mixed.
  • the color filter substrate is completed through steps such as a step of forming a common electrode on the color filter and a step of forming an alignment film on the common electrode.
  • the completed color filter substrate is used as, for example, a liquid crystal display panel by being attached to a separately manufactured TFT substrate via a liquid crystal layer.
  • the liquid crystal display panel has a pair of substrates including a color filter substrate and a TFT substrate, and a liquid crystal layer is sandwiched between the pair of substrates.
  • an optical film such as a retardation film or a polarizing plate is attached to both surfaces of the liquid crystal display panel as necessary, and a backlight or the like is disposed on the side of the liquid crystal display panel, thereby completing the liquid crystal display device. .
  • Embodiment 2 shows an example of a color filter substrate manufactured by the method for manufacturing a color filter substrate of the present invention.
  • the color filter substrate is the same as the color filter substrate of Embodiment 1 except that the number of colors of the color filters is different.
  • the color filter included in the color filter substrate is not only three colors of red (R), green (G), and blue (B), but also magenta (M), cyan (C), and yellow (Y).
  • the color type and arrangement order are not particularly limited, and other colors may be used.
  • one yellow (Y) and two cyan (C) may be prepared, and a combination of cyan (C), cyan (C), and yellow (Y) may be used.
  • Magenta (M), cyan (C), and yellow (Y) are complementary colors of red (R), blue (B), and green (G), respectively.
  • FIG. 10 is a schematic plan view illustrating the color arrangement of the first example of the color filter substrate according to the second embodiment.
  • the three colors red (R), green (G), and blue (B) are formed so as not to be adjacent to each other.
  • the three colors magenta (M), cyan (C), and yellow (Y) are formed so as not to be adjacent to each other.
  • red and magenta, green and yellow, and blue and cyan are arranged next to each other, and these combinations are repeated.
  • FIG. 11 is a schematic plan view illustrating a first drawing pattern when the first example of the color filter substrate of Embodiment 2 is manufactured.
  • FIG. 12 is a schematic plan view showing a state in which a color mixture is partially generated in the color filter in the first example of the color filter substrate of the second embodiment.
  • the pixel opening area adjacent to a certain pixel opening area includes two pixel opening areas adjacent in the horizontal direction and the vertical direction. Two adjacent pixel opening areas are blank areas. Therefore, the pattern formed by the first drawing is a staggered pattern.
  • the colors used for the first drawing are three colors of red (R), green (G), and blue (B).
  • ink drawing is performed in the remaining pixel opening area adjacent to the area where the first drawing is performed. Accordingly, the pattern formed by the second drawing is also in a staggered pattern, and ink drawing is performed on all the pixel opening areas by the second drawing.
  • the colors used for the second drawing are magenta (M), cyan (C), and yellow (Y).
  • ink flows into a part of the blank area during the first drawing, and as a result, as shown in FIG.
  • the color mixture is not so conspicuous as compared with the case where the ink is mixed without being sufficiently dried.
  • FIG. 13 is a schematic plan view showing the color arrangement of the second example of the color filter substrate of Embodiment 2.
  • the three colors red (R), blue (B), and magenta (M) are formed so as not to be adjacent to each other.
  • the three colors of green (G), cyan (C), and yellow (Y) are formed so as not to be adjacent to each other.
  • red and green, magenta and yellow, and blue and cyan are arranged next to each other, and these combinations are repeated.
  • FIG. 14 is a schematic plan view illustrating a first drawing pattern when the second example of the color filter substrate of Embodiment 2 is manufactured.
  • FIG. 15 is a schematic plan view illustrating a state in which a color mixture is partly mixed in the color filter in the second example of the color filter substrate of the second embodiment.
  • the pixel opening area adjacent to a certain pixel opening area includes two pixel opening areas adjacent in the horizontal direction and the vertical direction. Two adjacent pixel opening areas are blank areas. Therefore, the pattern formed by the first drawing is a staggered pattern.
  • the colors used for the first drawing are three colors of red (R), blue (B), and magenta (M).
  • ink drawing is performed in the remaining pixel opening area adjacent to the area where the first drawing is performed. Accordingly, the pattern formed by the second drawing is also in a staggered pattern, and ink drawing is performed on all the pixel opening areas by the second drawing.
  • the colors used for the second drawing are three colors of green (G), cyan (C), and yellow (Y).
  • the second example is superior in terms of display quality. This is because the second example employs a combination of colors that can make color mixing inconspicuous.
  • ink may be mixed into the adjacent pixel opening area when ink is ejected, which is corrected by the laser removal process, and the drying process is performed.
  • it is possible to make the ink inconspicuous it is difficult to adjust the amount of ink ejected only for a specific pixel opening area when all drawing operations are performed on the same surface.
  • the drawn ink spreads to the portion opened by the laser, the average film thickness of the ink in the substantial pixel opening area excluding the area where the remaining margin exists increases. May be visually recognized as a black spot. Therefore, it is conceivable to improve display quality more effectively by adopting a combination that makes it difficult to visually recognize a color difference or a luminance difference as a combination of colors when color mixing occurs.
  • red (R), blue (B), and magenta (M), which originally have low transmittance are used.
  • the trace of defect correction by laser becomes easy to be visually recognized. Therefore, when a color filter is formed by a plurality of drawing operations, in the first drawing, three colors of red (R), blue (B), and magenta (M) having lower transmittance are drawn, and 2 In the second drawing, it is possible to perform high-quality correction by drawing three colors of green (G), cyan (C), and yellow (Y) with higher transmittance.
  • the ink transmittance in the area where the remaining margin exists and the portion where the ink is newly drawn by performing the removal with the laser In comparison with the transmittance of the ink, the ink in the region where the remaining margin exists becomes an ink having a lower transmittance.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

本発明は、インクジェット法を用いたときであっても、隣接する絵素間で混色の発生を防ぐことができるカラーフィルタ基板の製造方法を提供する。本発明のカラーフィルタ基板の製造方法は、隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、上記製造方法は、上記隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出するとともに、上記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない第一のインクジェット工程と、上記隔壁で仕切られた複数の領域のうち、上記第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有するカラーフィルタ基板の製造方法である。

Description

カラーフィルタ基板の製造方法
本発明は、カラーフィルタ基板の製造方法に関する。より詳しくは、インクジェットプロセスによってカラーフィルタを形成する工程を含むカラーフィルタ基板の製造方法に関する。
カラーフィルタ基板は、一般的に、複数色のカラーフィルタがガラス基板等の基板上に規則正しく配置されて構成されている。カラー表示を実現するための最小単位である画素に対応するカラーフィルタの色の組み合わせとしては、赤(R)、緑(G)及び青(B)の3原色が最も一般的である。
カラーフィルタの作製に使用されるプロセスとしては、フォトリソグラフィープロセスが主流であるが、カラー層の形成のために色数と同じ回数の塗布、露光、現像及び焼成の工程を繰り返す必要がある。
これに対し、インクジェットプロセスでは、インクジェット装置が複数のヘッドを装備しており、複数のヘッドからそれぞれ異なる色のインクを吐出させ、異なる色の層を一つのプロセス内で形成することができるため、全体のプロセスを短縮することができる。また、インクジェットプロセスでは、必要な箇所にのみインクを塗布することができるため、露光や現像の工程が不要である。
インクジェットプロセスを用いた従来の改良例としては、複数のインク吐出ノズルの間隔及び配置を画素間隔に合わせて一定条件の下で制御し、対応する色の画素を着色する手段(例えば、特許文献1参照。)、インクジェットヘッドを走査して、着色領域へのインク吐出を複数回に分けて行う手段(例えば、特許文献2参照。)、着色層を形成するに当たり、インクジェット法による塗布工程と、塗液に対して仮硬化処理を行う仮硬化工程との二つを用い、これらの工程を繰り返す手段(例えば、特許文献3参照。)が挙げられる。
特開平9-138306号公報 特開2003-232912号公報 特開2008-89896号公報
本発明者らは、インクジェット法によりカラーフィルタを形成する方法について種々検討を行っていたところ、隔壁(以下、バンクともいう。)によって一定範囲に区画された領域(以下、絵素開口領域ともいう。)内にインクを吐出し、カラーフィルタを形成した際に、隣接する異なる色のカラーフィルタ同士が一部で混色を起こしてしまい、設計どおりのカラーフィルタ形成ができない場合があることを見いだした。
このような現象は、複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で連続して吐出した場合に起こりやすく、カラーフィルタ形成工程での不良の約50%から70%を占めている。
また、本発明者らは、複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出した場合、吐出されたインクが各絵素開口領域内の中央に集まる傾向にあり、形成されるカラーフィルタの膜厚は、絵素の中央ほど厚く、絵素の外周に近いほど薄く形成される傾向にあることを見いだした。
図16及び図17は、複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出したときのカラーフィルタを示す平面模式図である。図16は、絵素単位でのカラーフィルタの構成を示しており、図17は、画素単位でのカラーフィルタの構成を示している。なお、本明細書では、複数色の絵素の組み合わせにより一つの画素が構成されるものとする。
図17では、赤(R)のカラーフィルタ31R、緑(G)のカラーフィルタ31G、及び、青(B)のカラーフィルタ31Bの三色の組み合わせにより一つの画素が構成されている。また、各カラーフィルタ31は、バンク32によって囲まれている。図16及び図17における楕円形状は、カラーフィルタの膜厚の違いを概略的に示している。
図16及び図17に示すように、形成されるカラーフィルタの膜厚は、絵素の中央に近いほど厚く、絵素の外周に近いほど薄く形成される。また、その結果、各絵素の形状が矩形である場合には、絵素の中心から外周の短辺に向かっては緩い勾配が生じ、絵素の中心から外周の長辺に向かっては急勾配が生じることになる。このような膜厚のばらつきがあると、例えば、膜厚の薄い領域から光漏れを生じさせることがあるため、形状としては好ましくない。
図18は、複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出した結果、混色が生じたときのカラーフィルタを示す平面模式図である。緑のインクと青のインクとが接触すると、互いの表面張力でそれぞれが一つの液滴となるような力が働き、その結果、図18に示すように、混色が生じたカラーフィルタ91が形成されることがある。このように混色が生じた部位は欠陥部位となり、所望のカラーバランスが得られない。
本発明者らは、混色の欠陥を取り除く方法について種々検討を行ったところ、レーザーを用いて欠陥部位を除去し、再度インクを塗布し直すことを試みた。図19は、混色が生じた部位をレーザーで除去したときの画素単位でのカラーフィルタの構成を示す平面模式図である。また、図20は、レーザーによる除去工程後、再度インクを塗布し直した時の画素単位でのカラーフィルタの構成を示す平面模式図である。
図19に示すように、レーザーを用いることで、ほとんどの欠陥部位を取り除くことができるが、絵素の外周部付近については、きれいに除去することができず、残し代92が残存することになる。すなわち、レーザーによって形成された開口の形状と、絵素(バンク32で囲まれた領域)の形状とを完全に合わせることができない。このようにレーザーによるインクの除去を行った後に、再度インクを塗布することで、一応の欠陥修正は行うことができるが、図20に示すように、残し代92との混色部位が目立って視認されるため、充分には欠陥の修正がなされているとはいえない。
本発明は、上記現状に鑑みてなされたものであり、インクジェット法を用いたときであっても、隣接する絵素間で混色の発生を防ぐことができるカラーフィルタ基板の製造方法を提供することを目的とするものである。
本発明者らは、混色欠陥を防ぐ方法について種々検討を行ったところ、混色は、複数の絵素開口領域内にインクを一つのプロセス内で吐出した場合に起こっていた点に着目し、インクジェット描画を二回に分けて行う方法を試みた。具体的には、ある一つの描画領域を設定したときに、その描画領域に隣接する領域に対しては同じプロセス内でインクの吐出は行わず、ある一つの描画領域に対するインク吐出を行った後に、すでにインクが吐出された領域に隣接する描画領域に対してインク吐出を行うといったように、それぞれ異なるタイミングで互いに隣接するカラーフィルタが形成されるように、インクジェット描画を行った。
図21は、隣接する同色の絵素開口領域のうち一方の絵素開口領域にインクジェット吐出を行った後、連続して他方の絵素開口領域に対してインクジェット吐出を行った後のカラーフィルタの状態の一例を示す平面模式図である。図21に示すように、各絵素開口領域内には、バンク72を間に介してそれぞれ異なる色のカラーフィルタが形成されている。カラーフィルタの色の種類は、赤、緑及び青の3色であり、赤(R)のカラーフィルタ71R、緑(G)のカラーフィルタ71G、及び、青(B)のカラーフィルタ71Bのそれぞれは、バンク72によって区画されている。
しかしながら、インクジェット描画を二回に分けて行ったとしても、一部の隣接する絵素開口領域間で混色欠陥が発生した。図21に示すように、赤(R)のカラーフィルタ71Rと青のカラーフィルタ71Bとの間、及び、青のカラーフィルタ71Bと緑のカラーフィルタ71Gとの間に混色部分61が発生していることがわかる。
そこで、本発明者らは、混色が起こる原因について詳細な検討を行ったところ、混色の原因は、以下の理由によるものであることが見いだされた。
第一の原因としては、1回目に描画がなされたインクが基板上に着弾するとともに一部がバンク上に乗り上げ、バンク上に乗り上がったインクが空白の絵素開口領域に流れ込み、その流れ込んだインク上に2回目のインク描画がなされることにより、インク同士が混じりあい、混色を引き起こすことが考えられる。
第二の原因としては、2回目のインク描画の際に、一部がバンク上に乗り上げ、バンク上に乗り上がったインクが隣接する絵素開口領域に流れ込み、1回目に描画がなされたインクと混ざって、混色を引き起こすことが考えられる。バンクに対しては、1回目のインク描画を行う前に、バンクで囲まれた領域内にインクが保持されるように、バンクの表面に撥液処理を施しておくことが好ましい。しかしながら、この場合であっても、1回目に描画がなされたインクの一部が、基板上に着弾した後に揮発することで、周辺のバンクの撥液性を低下させてしまう。したがって、撥液処理があらかじめ行われていた場合であっても、2回目に描画されたインクが絵素開口領域内に保持されずにバンク上に乗り上げ、更に、隣接する絵素開口領域に流れ込むことになり混色を引き起こすことが考えられる。
本発明者らは、これらの課題を解決する手段について鋭意検討を行ったところ、1回目の描画と2回目の描画との間に乾燥工程を加えることに着目した。そして、1回目のインク描画が行われた後に、乾燥工程によってインクを充分に乾燥させることで、2回目のインク描画が行われたとしてもインク自体の混ざりは防ぐことができるため、混色の影響を小さくすることができることを見いだした。
また、本発明者らは、上記課題を解決する他の手段についても検討を行ったところ、1回目の描画と2回目の描画との間にバンクの表面に対して撥液処理を施すことに着目した。そして、1回目のインク描画が行われた後に、撥液処理によってバンクに対して充分に撥液性を付与しておくことで、2回目のインク描画が行われたとしても、バンク上への乗り上がりを防ぎ、混色が生じることを防ぐことができることを見いだした。
更に、本発明者らは、乾燥前のインクが混ざり合う可能性を最小限とするために、1回目の描画を行う際に、インクを吐出しようとする領域と隣接する全ての領域を空白領域とすることに着目した。これにより、仮に隣接する空白領域にインクが流れ込んだとしても、乾燥工程やレーザー処理により欠陥の修正が可能となる。また、本発明者らは、そのような方法でインク描画を行い、詳細な検討を行ったところ、形成されるカラーフィルタの膜厚が平坦化されることを見いだした。
上述したように、隣接する絵素開口領域に一つのプロセス内でインクの吐出を行った場合、基板上に着弾した後のインクには、絵素の中央にインクが集まるような表面張力が作用し、略半球状又は略ドーム状に形状が変化する。そのため、インクの膜厚にムラが生じるとともに、隔壁で仕切られた領域の全体にインクが充分に行き渡らず、光り抜けが起こる場合がある。特に、絵素が略矩形で形成される場合には、絵素の四隅まで充分に行き渡らないことが多い。また、仮に光り抜けが起こらなかったとしても、色純度の低下を引き起こす場合がある。
これに対し、インクを吐出しようとする領域と隣接する全ての領域が空白領域となるように第一の吐出工程を行うことで、着弾後のインクには、空白領域側に引き伸ばされるように表面張力が作用する。これにより、インクの表面は平坦化されることになるので、絵素が略矩形で形成される場合であっても、絵素の四隅まで充分にインクを行き渡らせやすくなる。
図22及び図23は、隣接する同色の絵素開口領域のうち一方の絵素開口領域に、異なる色のインクが千鳥格子状に描画されるようにインクジェット吐出を行った後、乾燥工程を行って1回目に描画されたインクを乾燥させ、続いて、他方の絵素開口領域にインクジェット吐出を行った後のカラーフィルタの状態の一例を示す平面模式図である。図22は、1回目の描画がなされた状態を示しており、図23は、2回目の描画がなされた状態を示している。図22及び図23に示すように、互いに隣接する青のカラーフィルタ81Bと緑のカラーフィルタ81Gとの間、互いに隣接する青のカラーフィルタ81Bと赤のカラーフィルタ81Rとの間、及び、互いに隣接する緑のカラーフィルタ81Gと赤のカラーフィルタ81Rとの間のいずれにおいても、混色欠陥は発生していない。このように、1回目の描画において隣接する領域を空白領域にするとともに、1回目の描画後に乾燥工程の処理を行い、インクを十分に乾燥させ、続いて2回目の描画を行うことで、混色の発生を効果的に抑制することができることがわかった。
なお、図22及び図23を比較すると、インクジェットによる描画後のインクのバンク82への乗り上がりの程度は、1回目の描画領域と比べて2回目の描画領域の方が乗り上がりの量が大きい。このことは、1回目のインクジェットによる描画の際に、周辺部に位置するバンク82の表面の撥液性が低下していることを意味する。したがって、1回目のインクジェットの終了後にバンク82の表面への撥液処理を行うことで、2回目のインクジェットの際のバンク82への乗り上げを防止し、混色が発生する可能性を大きく低減させることができる。
こうして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一側面は、隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、上記製造方法は、上記隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出するとともに、上記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない第一のインクジェット工程と、上記隔壁で仕切られた複数の領域のうち、上記第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有するカラーフィルタ基板の製造方法(以下、本発明の第一の製造方法ともいう。)である。
また、本発明の他の一側面は、隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、上記製造方法は、上記隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出する第一のインクジェット工程と、上記第一のインクジェット工程後のインクを乾燥させる乾燥工程と、上記隔壁で仕切られた複数の領域のうち、上記第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有するカラーフィルタ基板の製造方法(以下、本発明の第二の製造方法ともいう。)である。
更に、本発明の他の一側面は、隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、上記製造方法は、上記隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出する第一のインクジェット工程と、上記第一のインクジェット工程後のインクを囲う隔壁の表面を撥液処理する撥液工程と、上記隔壁で仕切られた複数の領域のうち、上記第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有するカラーフィルタ基板の製造方法(以下、本発明の第三の製造方法ともいう。)である。
本発明の第一~第三の製造方法によって製造されるカラーフィルタ基板は、隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有する。より具体的には、カラーフィルタ基板の構成例としては、ガラス、樹脂等の支持基板上に、所定の形状にパターニングされた隔壁及びカラーフィルタが配置された構成が挙げられる。
本発明の第一~第三の製造方法は、上記隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出する第一のインクジェット工程と、上記第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有する。すなわち、本発明の製造方法においてカラーフィルタは、インクジェット法を用いて形成される。上記インクジェット工程は、2回以上であれば特にその回数は限定されない。
本発明の第一の製造方法では、第一のインクジェット工程において、上記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない。これにより、絵素開口領域内に均一にインクが広がり、インクの表面が平坦化されるため、光漏れの起こりにくいカラーフィルタを得ることができる。また、膜厚が大きくばらついている場合と比べ、色純度の低下を抑制することができる。
本発明の第一の製造方法において、製造工程の効率化の観点からは、上記第二のインクジェット工程が行われる領域は、上記第一のインクジェット工程が行われる領域に隣接する少なくとも一つの領域であることが好ましい。また、上記第一のインクジェット工程は、千鳥格子状にインクが吐出される工程であることが好ましい。更に、上記第二のインクジェット工程は、千鳥格子状にインクが吐出される工程であることが好ましい。これによって、最短で2回のインクジェット工程により、全ての絵素開口領域に対しインクが吐出されることになる。なお、千鳥格子状にインクジェットを行った場合には、千鳥格子状に同様の断面形状をもつパターン膜が形成される傾向にある。これは、例えば、一回目の描画後に熱乾燥を行ったときに、インクが着弾する基板の熱履歴が異なっていたり、一回目に描画されたインクから揮発した成分が二回目に描画される絵素開口領域に付着した場合、二回目に描画されるインクの濡れ性が異なるためである。なお、インクの断面形状は、インクの物性に大きく依存するが、同色のインクについては、特に断面形状に違いが現れやすい。
本発明の第二の製造方法は、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記第一のインクジェット工程後のインクを乾燥させる乾燥工程を有する。本発明において「乾燥工程」とは、自然乾燥のみの場合は含まず、熱処理、真空乾燥等の工程を経てインクの流動性がなくなるまで乾燥が行われる工程を意味する。なお、上記乾燥工程は、熱を加え、上記インク内に含まれる材料を重合させる工程であることが好ましい。このような工程は、熱によって重合反応を生じさせる化合物をインクに混入させておくことで可能となり、重合工程によれば、より充分な乾燥の効果が得られる。
本発明の第二の製造方法によれば、たとえ隣接する領域に対して吐出されるインクの色が異なり、いずれか一方のインクが他方のインク(乾燥後)上に流れ込んだとしても、インク自体は混ざらないので、色差及び輝度差による視認性の低下が起こることを防ぐことができる。
本発明の第三の製造方法は、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記第一のインクジェット工程後のインクを囲う隔壁の表面を撥液処理する撥液工程を有する。インクジェット工程を行う前に隔壁の表面を撥液処理することで、吐出されたインクを隔壁によって囲まれた領域内に効果的に保持することができる。特に、複数回の吐出工程を含む場合には、第一の吐出工程によって吐出されたインクが揮発し、バンクの撥液性を弱めるため、第二のインクジェット工程前の撥液処理が効果的である。撥液処理としては、フッ素含有プラズマ等を用いたプラズマ処理が挙げられる。
本発明の第三の製造方法によれば、インクが隔壁上に乗り上がり、隣接する絵素に流れ込むことを防止することができるので、混色が生じる可能性を効果的に抑制することができる。
本発明の第一~第三の製造方法の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
また、本発明の第一~第三の製造方法は、適宜組み合わせて用いることがより好ましい。これにより、更なる混色防止効果を得ることができる。
すなわち、本発明の第一の製造方法においては、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記第一のインクジェット工程後のインクを乾燥させる乾燥工程を含むことが好ましい。また、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記隔壁の表面を撥液処理する撥液工程を含むことが好ましい。
また、本発明の第二の製造方法においては、上記第一のインクジェット工程は、上記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない工程であることが好ましい。また、上記第二のインクジェット工程との間に、上記隔壁の表面を撥液処理する撥液工程を含むことが好ましい。
更に、本発明の第三の製造方法においては、上記第一のインクジェット工程は、上記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない工程であることが好ましい。また、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記第一のインクジェット工程後のインクを乾燥させる乾燥工程を含むことが好ましい。
本発明のカラーフィルタ基板の製造方法における好ましい形態について更に詳しく説明する。
上記製造方法は、上記第一のインクジェット工程と、上記第二のインクジェット工程との間に、上記第一のインクジェット工程後のインクをレーザーで除去する修正工程を含むことが好ましい。本発明の各製造方法によっても、インクジェット工程を行う絵素に隣接する絵素に対しインクが流れ込むことがある。そのような場合には、レーザーを用いて設計の色と異なる色のインクを除去することで、混色の発生を防ぐことができる。
上記第一のインクジェット工程によって形成されるカラーフィルタの色の透過率は、上記第二のインクジェット工程によって形成されるカラーフィルタの色の透過率よりも低いことが好ましい。上記第一のインクジェット工程によって形成されるカラーフィルタの色の透過率が、上記第二のインクジェット工程によって形成されるカラーフィルタの色の透過率よりも大きいと、上記第一のインクジェット工程によって形成されるカラーフィルタの色の透過率が、上記第二のインクジェット工程によって形成されるカラーフィルタの色の透過率よりも小さいときよりも、混色が目立って見えるためである。例えば、1つの画素が、透過率の大きなものから順に黄、緑、水色(シアン)、赤、紫(マゼンタ)、青の関係にある6色で構成される場合、透過率が相対的に低い赤、紫(マゼンタ)及び青を第一のインクジェット工程で、透過率が相対的に高い黄、水色(シアン)及び緑を第二のインクジェット工程で形成することが好ましい。
上記製造方法は、上記第二のインクジェット工程前に、インクが着弾する表面を親水処理する親水工程を含むことが好ましい。インクが着弾する表面を親水処理することで、インクが着弾表面に馴染みやすくなり、隣接する領域へのインクの流れ込みを抑制することができる。
本発明のカラーフィルタ基板の製造方法によれば、インクジェット法を用いたときであっても、隣接する絵素間で混色の発生を防ぐことができる。
実施形態1のカラーフィルタ基板の色配置を示す平面模式図である。 実施形態1のカラーフィルタ基板を製造する際の、1回目の描画パターンを示す平面模式図である。 実施形態1のカラーフィルタ基板を製造する際の、2回目の描画パターンを示す平面模式図である。 比較形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図である。 図4におけるA-B線に沿った断面模式図である。 実施形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図である。 図6におけるC-D線に沿った断面模式図である。 参考形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図である。 図8におけるE-F線に沿った断面模式図である。 実施形態2のカラーフィルタ基板の第一の例の色配置を示す平面模式図である。 実施形態2のカラーフィルタ基板の第一の例を製造する際の、1回目の描画パターンを示す平面模式図である。 実施形態2のカラーフィルタ基板の第一の例においてカラーフィルタに一部混色が生じている状態を示す平面模式図である。 実施形態2のカラーフィルタ基板の第二の例の色配置を示す平面模式図である。 実施形態2のカラーフィルタ基板の第二の例を製造する際の、1回目の描画パターンを示す平面模式図である。 実施形態2のカラーフィルタ基板の第二の例においてカラーフィルタに一部混色が生じている状態を示す平面模式図である。 複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出したときのカラーフィルタを示す平面模式図であり、絵素単位でのカラーフィルタの構成を示している。 複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出したときのカラーフィルタを示す平面模式図であり、画素単位でのカラーフィルタの構成を示している。 複数の絵素開口領域内にそれぞれ異なる色のインクを一つのプロセス内で吐出した結果、混色が生じたときのカラーフィルタを示す平面模式図である。 混色が生じた部位をレーザーで除去したときの画素単位でのカラーフィルタの構成を示す平面模式図である。 レーザーによる除去工程後、再度インクを塗布し直した時の画素単位でのカラーフィルタの構成を示す平面模式図である。 隣接する同色の絵素開口領域のうち一方の絵素開口領域にインクジェット吐出を行った後、連続して他方の絵素開口領域に対してインクジェット吐出を行った後のカラーフィルタの状態の一例を示す平面模式図である。 隣接する同色の絵素開口領域のうち一方の絵素開口領域に、異なる色のインクが千鳥格子状に描画されるようにインクジェット吐出を行った後のカラーフィルタの状態の一例を示す平面模式図である。 隣接する同色の絵素開口領域のうち一方の絵素開口領域に、異なる色のインクが千鳥格子状に描画されるようにインクジェット吐出を行った後、乾燥工程を行って1回目に描画されたインクを乾燥させ、続いて、他方の絵素開口領域にインクジェット吐出を行った後のカラーフィルタの状態の一例を示す平面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
本明細書において「略」を用いて形状を表したときは、対象物が実質的に当該形状を表していることをいい、例えば、「略矩形」とした場合には、実質的に全体が矩形となっていればよく、一部に張り出し部や切り欠き部が形成されていてもよいことを意味する。
実施形態1
実施形態1は、本発明のカラーフィルタ基板の製造方法によって製造されたカラーフィルタ基板の一例を示している。
図1は、実施形態1のカラーフィルタ基板の色配置を示す平面模式図である。図1に示すように、実施形態1においては、一つのカラー表示画面が、赤(R)、緑(G)及び青(B)からなる3色の絵素を構成単位とした複数個の画素で構成されており、各絵素は、略矩形状であり、横方向に赤(R)、緑(G)及び青(B)の順に並べられてマトリクス状に配列されている。また、赤(R)、緑(G)及び青(B)の各絵素に対応する領域には、赤(R)のカラーフィルタ11R、緑(G)のカラーフィルタ11G、及び、青(B)のカラーフィルタ11Bがそれぞれ形成されており、各カラーフィルタ11は、バンク(隔壁)12によって区画されている。各画素を構成する絵素の配置は、それぞれ同じパターンで形成されており、縦方向に同色の絵素が形成されたストライプ配列を構成している。
以下に、実施形態1のカラーフィルタ基板の製造方法について、詳述する。
まず、ガラス基板、樹脂基板等の透明な基板全面に、黒色顔料を含有した樹脂材料、又は、遮光性を有する金属材料を成膜し、フォトリソグラフィ方式でパターニングを行い、略矩形のスペースを区画する格子状のバンク12を形成する。バンク12で囲まれた領域は、カラーフィルタ11を形成するための絵素開口領域であり、続く工程で、絵素開口領域内にカラーフィルタ形成用のインクを滴下する。バンク12は、カラーフィルタ形成用のインクを所定の位置に保持する役割を有している。なお、このようなバンク12は遮光機能を有するため、ブラックマトリクスともいう。
バンク12をブラックマトリクスによって構成することで、例えば、TFT基板側の一部を必要に応じて遮光することができ、表示のコントラスト比を向上させる等の効果を得ることができる。
なお、各絵素の形状が略矩形である場合には、絵素の中心から外周の短辺に向かっては緩い勾配が生じ、絵素の中心から外周の長辺に向かっては急勾配が生じることになる。そして、その結果、バンク12によって区画された領域に吐出されたインクは、絵素の中心から外周の長辺に向かって広がる力が大きくなり、バンク12を乗り越えて隣接する絵素開口領域にインクが流れ込みやすくなる。特に、絵素開口領域の長辺に沿って構成される部分の幅を、絵素開口領域の短辺に沿って構成される部分の幅よりも狭くした場合、インクの流れ込みの確率は高くなる。
これに対し、実施形態1では、後述するように混色の発生を防ぐ様々な工夫がなされているので、問題なくこのような形態を採用することができる。
次に、絵素開口領域に、インクジェットヘッドからカラーフィルタ形成用のインクを滴下する。滴下前の前処理として、例えば、バンク12に対してフッ素プラズマ処理を行い、バンク12の表面を撥液化しておけば、絵素開口領域内のインクがバンク12を乗り越えて隣接する絵素開口領域内に流れ込むことを効果的に防止できる。
図2は、実施形態1のカラーフィルタ基板を製造する際の、1回目の描画パターンを示す平面模式図である。また、図3は、実施形態1のカラーフィルタ基板を製造する際の、2回目の描画パターンを示す平面模式図である。図2に示すように、1回目の描画においては、ある一つの絵素開口領域に対して隣接する絵素開口領域としては、横方向に隣接する二つの絵素開口領域、及び、縦方向に隣接する二つの絵素開口領域が、空白領域となっている。したがって、1回目の描画によって形成されるパターンは、千鳥格子を形成することになる。また、図3に示すように、2回目の描画においては、1回目の描画がなされた領域と隣接する残りの絵素開口領域にインク描画が行われる。したがって、2回目の描画によって形成されるパターンもまた、千鳥格子を形成することになり、2回の描画によって、全ての絵素開口領域にインク描画が行われることになる。以下、インク描画がなされた領域が千鳥格子を形成するような描画方法を千鳥描画ともいう。
図1~3に示す例では、各絵素の色配置は赤、緑及び青の3色絵素のストライプ配列を構成しているが、実施形態1において色の種類及び配置順は特に限定されない。
以下、実施形態1のカラーフィルタ基板の製造方法について、比較形態1のカラーフィルタ基板を適宜参照して、更に詳しく説明する。
比較形態1のカラーフィルタ基板は、全ての絵素開口領域内に同一プロセス内でインクを吐出する方法によりカラーフィルタが形成されたカラーフィルタ基板である。図4は、比較形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図であり、図5は、図4におけるA-B線に沿った断面模式図である。比較形態1においてカラーフィルタ31は、基板33上に、かつバンク32に囲まれて形成されている。図5に示すように、比較形態1のカラーフィルタ基板においてカラーフィルタは、絵素開口領域の外周(エッジ)側から中心に向かって徐々に膜厚が増加した略半球状又は略ドーム状の形状を有している。また、図4に示すように、カラーフィルタを平面視したときの等高線は、略同心円状となっている。このように、比較形態1のカラーフィルタ基板では、一絵素内でカラーフィルタの膜厚に平坦な領域が少なく、ほとんどの領域で膜厚が変化している。
図6は、実施形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図であり、図7は、図6におけるC-D線に沿った断面模式図である。実施形態1においてカラーフィルタ11は、基板13上に、かつバンク12に囲まれて形成されている。図7に示すように、実施形態1のカラーフィルタ基板では、絵素開口領域の四隅付近では膜厚がやや小さくなっているものの、絵素開口領域のほとんどの領域において、平坦な表面を有している。これにより、膜厚が薄い領域における光漏れ及び色純度の低下を防ぐことができる。
比較形態1のように一度の描画動作で絵素開口領域の全体を描画した場合と、実施形態1のように2回の千鳥描画に分けて絵素開口領域の全体を描画した場合とを比較した場合、図5と図7に示すように、実施形態1のように2回の千鳥描画を行った場合の方が、インクの平坦性の点で優れている。これは、千鳥描画では、横方向及び縦方向に隣接する全ての絵素が空白領域となり、インクの乾燥工程で揮発した溶媒雰囲気が、絵素開口領域の中心領域側よりも空白領域側で薄くなるため、空白領域側においてインクの表面張力が高くなり、インク形状が全体的に空白領域側に広がるためと考えられる。これに対し、一度の描画動作で絵素開口領域の全体を描画した場合では、周辺絵素領域の溶媒雰囲気は均一となるため、インク形状は球の一部に準じた形になろうとする力が強く働き、絵素中央部にインクが集まった状態になる。
以下に、周辺絵素のインクの有無と、インクの偏りとの関係について検証した結果を示す。図8は、参考形態1のカラーフィルタ基板が備えるカラーフィルタの等高線を示す平面模式図であり、図9は、図8におけるE-F線に沿った断面模式図である。参考形態1においてカラーフィルタ41は、基板43上に、かつバンク42に囲まれて形成されている。参考形態1のカラーフィルタ基板は、ある絵素開口領域に対して横方向に隣接する三つの領域のうち、一つの領域が空白領域となり、残りの二つ並んだ領域に対して同一のプロセス内でインク描画が行われるように形成されたカラーフィルタを有する。このような場合、絵素開口領域内に滴下されたインクは、空白領域側に向かって広がる。したがって、図8に示すように、カラーフィルタを平面視したときの等高線は、空白領域に近づくほど膜厚が大きく、同一のプロセス内でインク描画がなされたもう一方の領域に近づくほど、膜厚が小さくなるように形成される。
このことから、インクの形状を略半球状又は略ドーム状としないためには、インクを吐出しようとする絵素開口領域と隣接する領域に空白領域を設けておくことが効果的であり、カラーフィルタの膜厚をより平坦にするという観点からは、インクを吐出しようとする絵素開口領域の横方向及び縦方向のいずれの方向においても、隣接する領域が空白領域となっている状態でインクジェット吐出を行うことが好ましいといえる。
1回目の描画がなされた後は、乾燥工程が行われることが好ましい。乾燥工程は、例えば、加熱、真空乾燥等の処理を行い、インクの流動性がなくなるまで充分な乾燥を行う。なお、インクの材料として熱重合を行う材料を用いた場合には、乾燥が効果的に進行する。特許文献2においては、インク描画を複数回に分け、かつ1回目の描画がなされた後にバンクに乗り上がったインクをバンク表面の撥液性を利用して絵素開口領域に流れこませるために所定時間放置することはあったが、インクが充分に乾燥していないと、次のインク吐出工程においてインクが混入してきたときに、混色の問題が生ずる。特に、一回目のインク描画において揮発した溶媒がバンクの撥液性を低下させるため、一回目のインク描画において充分な撥液性が得られたとしても、二回目のインク描画において充分な撥液性が得られるとは限らない。したがって、乾燥工程を行い、インクを充分に乾燥させておくことが好適である。また、一回目のインク描画においてバンク表面の撥液性が低下しているため、乾燥工程後に、再度、バンクに対しフッ素プラズマ処理等の撥液処理を行っておくことが、より好ましい。また、基板面に対しては親水処理を行っておくことが好ましい。
次に、1回目の描画によって隣接する絵素開口領域内に混入したインクのレーザー除去工程を行う。上述したように、レーザー除去工程を行ったとしても、実際には全てのインクを除去することは困難であり、バンクの内周に沿ってインクの残し代が残存してしまうが、可能な限り除去を行っておくことで、より混色の影響が出ることを抑制することができる。
レーザー処理を行うにあたっては、まず、1回目の描画工程の後に欠陥の有無を検査し、欠陥が生じた絵素において選択的に、乾燥したインクの除去処理を行う。使用可能なレーザーとしては、例えば、YAG(Yttrium Aluminum Garnet)レーザー等が挙げられる。なお、このようなレーザー除去工程は、異物が混入する場合等の混色以外の欠陥に対して行ってもよい。
そして、2回目のインク描画によって残りの絵素開口領域内にインクの吐出工程を行い、全てのカラーフィルタが形成される。
続いて、カラーフィルタ上に共通電極を形成する工程、共通電極上に配向膜を形成する工程等の各工程を経て、カラーフィルタ基板は完成する。そして、完成したカラーフィルタ基板は、例えば、別途作製されたTFT基板と液晶層を介して貼り合わされることにより、液晶表示パネルとして用いられる。これにより、液晶表示パネルは、カラーフィルタ基板とTFT基板からなる一対の基板を有し、該一対の基板間に液晶層が挟持された構成を有することになる。また、液晶表示パネルの両面に、必要に応じて、位相差フィルム等の光学フィルム、偏光板を貼り付け、液晶表示パネルの側方にバックライト等を配置することで、液晶表示装置が完成する。
実施形態2
実施形態2は、本発明のカラーフィルタ基板の製造方法によって製造されたカラーフィルタ基板の一例を示している。実施形態2においてカラーフィルタ基板は、カラーフィルタの色数が異なること以外は、実施形態1のカラーフィルタ基板と同様である。
実施形態2においてカラーフィルタ基板が備えるカラーフィルタは、赤(R)、緑(G)及び青(B)の3色のみではなく、更に、マゼンタ(M)、シアン(C)及び黄色(Y)を加えた6色で構成されているが、実施形態2において色の種類及び配置順は特に限定されず、これ以外の色を用いてもよい。例えば、黄(Y)1つとシアン(C)2つとを用意し、シアン(C)、シアン(C)及び黄(Y)の組み合わせとしてもよい。なお、マゼンタ(M)、シアン(C)及び黄色(Y)は、それぞれ赤(R)、青(B)及び緑(G)の補色である。
図10は、実施形態2のカラーフィルタ基板の第一の例の色配置を示す平面模式図である。図10に示すように、赤(R)、緑(G)及び青(B)の3色は、それぞれが互いに隣り合わないように形成されている。また、マゼンタ(M)、シアン(C)及び黄色(Y)の3色は、それぞれが互いに隣り合わないように形成されている。縦方向には、赤とマゼンタ、緑と黄、青とシアンとがそれぞれ隣り合って配置され、これらの組み合わせが繰り返されている。
図11は、実施形態2のカラーフィルタ基板の第一の例を製造する際の、1回目の描画パターンを示す平面模式図である。また、図12は、実施形態2のカラーフィルタ基板の第一の例においてカラーフィルタに一部混色が生じている状態を示す平面模式図である。図11に示すように、1回目の描画においては、ある一つの絵素開口領域に対して隣接する絵素開口領域としては、横方向に隣接する二つの絵素開口領域、及び、縦方向に隣接する二つの絵素開口領域が、空白領域となっている。したがって、1回目の描画によって形成されるパターンは、千鳥格子状となる。1回目の描画に用いられる色は、赤(R)、緑(G)及び青(B)の3色である。また、2回目の描画においては、1回目の描画がなされた領域と隣接する残りの絵素開口領域にインク描画が行われる。したがって、2回目の描画によって形成されるパターンもまた、千鳥格子状となり、2回の描画によって、全ての絵素開口領域にインク描画が行われることになる。2回目の描画に用いられる色は、マゼンタ(M)、シアン(C)及び黄色(Y)の3色である。
なお、図11に示すように、一回目の描画の際に、一部空白領域にインクが流れ込んでおり、その結果、図12に示すように、カラーフィルタに一部混色が生じているが、実施形態2においては、インクの充分な乾燥工程と、レーザーによるインクの除去工程がなされているため、インクが充分に乾燥しないまま混ざりあったときと比べて、混色は大きく目立たない。
図13は、実施形態2のカラーフィルタ基板の第二の例の色配置を示す平面模式図である。図13に示すように、赤(R)、青(B)及びマゼンタ(M)の3色は、それぞれが互いに隣り合わないように形成されている。また、緑(G)、シアン(C)及び黄色(Y)の3色は、それぞれが互いに隣り合わないように形成されている。縦方向には、赤と緑、マゼンタと黄色、青とシアンとがそれぞれ隣り合って配置され、これらの組み合わせが繰り返されている。
図14は、実施形態2のカラーフィルタ基板の第二の例を製造する際の、1回目の描画パターンを示す平面模式図である。また、図15は、実施形態2のカラーフィルタ基板の第二の例においてカラーフィルタに一部混色が生じている状態を示す平面模式図である。図14に示すように、1回目の描画においては、ある一つの絵素開口領域に対して隣接する絵素開口領域としては、横方向に隣接する二つの絵素開口領域、及び、縦方向に隣接する二つの絵素開口領域が、空白領域となっている。したがって、1回目の描画によって形成されるパターンは、千鳥格子状となる。1回目の描画に用いられる色は、赤(R)、青(B)及びマゼンタ(M)の3色である。また、2回目の描画においては、1回目の描画がなされた領域と隣接する残りの絵素開口領域にインク描画が行われる。したがって、2回目の描画によって形成されるパターンもまた、千鳥格子状となり、2回の描画によって、全ての絵素開口領域にインク描画が行われることになる。2回目の描画に用いられる色は、緑(G)、シアン(C)及び黄色(Y)の3色である。
なお、図14に示すように、一回目の描画の際に、一部空白領域にインクが流れ込んだ領域51が形成されている。その結果、図15に示すように、カラーフィルタに一部異なるインクが重なり合った領域52が生じているが、実施形態2においては、インクの充分な乾燥工程と、レーザーによるインクの除去工程がなされているため、インクが充分に乾燥しないまま混ざりあったときと比べて、混色は大きく目立たない。
しかしながら、実施形態2の第一の例と第二の例とでは、第二の例の方が、表示品位の点で優れている。これは、第二の例の方が、より混色を目立たなくさせることができる色の組み合わせを採用しているためである。
上述したように、千鳥描画を行った場合であっても、インク吐出を行った際に隣の絵素開口領域にインクが混入することがあり、これをレーザー除去工程によって修正し、乾燥工程を行うことによってインクを目立たなくさせることは可能であるが、同一面上に全ての描画動作を行う場合において、特定の絵素開口領域についてのみ吐出するインクの量を調節することは困難である。また、描画されたインクは、レーザーで開口された部分に広がるため、残し代が存在する領域を除く実質的な絵素開口領域でのインクの平均膜厚は増加することになり、その絵素が黒点として視認されることがある。そこで、混色が起こった場合の色の組み合わせとして、より色差や輝度差が視認されにくくなるような組み合わせを採用することで、より効果的に表示品位を高めることが考えられる。
具体的には、より透過率の高い領域よりも、より透過率の低い領域の方が変化を感じやすいため、もともと透過率の低い、赤(R)、青(B)及びマゼンタ(M)を2回目に描画した場合に、レーザーによる欠陥修正の痕跡が視認されやすくなる。したがって、複数回の描画動作によってカラーフィルタを形成する場合には、1回目の描画において、より透過率の低い赤(R)、青(B)及びマゼンタ(M)の3色を描画し、2回目の描画において、より透過率の高い緑(G)、シアン(C)及び黄色(Y)の3色を描画する方が、高品位の修正を行うことが可能となる。
なお、実施形態2のカラーフィルタ基板の第二の例では、修正を行った絵素において、残し代が存在する領域のインクの透過率と、レーザーによる除去を行い、新たにインクを描画した部分のインクの透過率とを比較すると、残し代が存在する領域のインクの方がより透過率の低いインクとなる。
なお、本願は、2010年7月14日に出願された日本国特許出願2010-159911号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
11、31、41:カラーフィルタ
11R、21R、31R、71R、81R:赤のカラーフィルタ
11G、21G、31G、71G、81G:緑のカラーフィルタ
11B、21B、31B、71B、81B:青のカラーフィルタ
21Y:黄のカラーフィルタ
21M:マゼンタのカラーフィルタ
21C:シアンのカラーフィルタ
12、22、32、42、72、82:バンク(ブラックマトリクス)
13、33、43:基板
51:空白領域にインクが流れ込んだ領域
52:異なるインクが重なり合った領域
61、91:混色部分
92:残し代

Claims (13)

  1. 隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、
    該製造方法は、該隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出するとともに、該少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない第一のインクジェット工程と、
    該隔壁で仕切られた複数の領域のうち、該第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有する
    ことを特徴とするカラーフィルタ基板の製造方法。
  2. 隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、
    該製造方法は、該隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出する第一のインクジェット工程と、
    該第一のインクジェット工程後のインクを乾燥させる乾燥工程と、
    該隔壁で仕切られた複数の領域のうち、該第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有する
    ことを特徴とするカラーフィルタ基板の製造方法。
  3. 隔壁を介してマトリクス状に並んだ複数色のカラーフィルタを有するカラーフィルタ基板の製造方法であって、
    該製造方法は、該隔壁で仕切られた複数の領域の少なくとも一つの領域に対してインクを吐出する第一のインクジェット工程と、
    該第一のインクジェット工程後のインクを囲う隔壁の表面を撥液処理する撥液工程と、
    該隔壁で仕切られた複数の領域のうち、該第一のインクジェット工程においてインクが吐出されていない少なくとも一つの領域に対してインクを吐出する第二のインクジェット工程とを有する
    ことを特徴とするカラーフィルタ基板の製造方法。
  4. 前記第一のインクジェット工程は、前記少なくとも一つの領域に隣接する横方向及び縦方向のいずれの領域に対してもインクを吐出しない工程であることを特徴とする請求項2又は3記載のカラーフィルタ基板の製造方法。
  5. 前記第一のインクジェット工程は、千鳥格子状にインクが吐出される工程であることを特徴とする請求項4記載のカラーフィルタ基板の製造方法。
  6. 前記第二のインクジェット工程は、千鳥格子状にインクが吐出される工程であることを特徴とする請求項4記載のカラーフィルタ基板の製造方法。
  7. 前記第一のインクジェット工程と、前記第二のインクジェット工程との間に、前記第一のインクジェット工程後のインクを乾燥させる乾燥工程を含むことを特徴とする請求項1又は3記載のカラーフィルタ基板の製造方法。
  8. 前記第一のインクジェット工程と、前記第二のインクジェット工程との間に、前記隔壁の表面を撥液処理する撥液工程を含むことを特徴とする請求項1又は2記載のカラーフィルタ基板の製造方法。
  9. 前記乾燥工程は、熱を加え、前記インク内に含まれる材料を重合させる工程であることを特徴とする請求項2又は7記載のカラーフィルタ基板の製造方法。
  10. 前記第二のインクジェット工程が行われる領域は、前記第一のインクジェット工程が行われる領域に隣接する少なくとも一つの領域であることを特徴とする請求項1又は4記載のカラーフィルタ基板の製造方法。
  11. 前記製造方法は、前記第一のインクジェット工程と、前記第二のインクジェット工程との間に、前記第一のインクジェット工程後のインクをレーザーで除去する修正工程を含むことを特徴とする請求項1~10のいずれかに記載のカラーフィルタ基板の製造方法。
  12. 前記第一のインクジェット工程によって形成されるカラーフィルタの色の透過率は、前記第二のインクジェット工程によって形成されるカラーフィルタの色の透過率よりも低いことを特徴とする請求項1~11のいずれかに記載のカラーフィルタ基板の製造方法。
  13. 前記製造方法は、前記第二のインクジェット工程前に、インクが着弾する表面を親水処理する親水工程を含むことを特徴とする請求項1~12のいずれかに記載のカラーフィルタ基板の製造方法。
PCT/JP2011/059197 2010-07-14 2011-04-13 カラーフィルタ基板の製造方法 WO2012008191A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/809,649 US20130115385A1 (en) 2010-07-14 2011-04-13 Method for manufacturing color filter substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010159911 2010-07-14
JP2010-159911 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008191A1 true WO2012008191A1 (ja) 2012-01-19

Family

ID=45469204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059197 WO2012008191A1 (ja) 2010-07-14 2011-04-13 カラーフィルタ基板の製造方法

Country Status (2)

Country Link
US (1) US20130115385A1 (ja)
WO (1) WO2012008191A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114080A (ko) * 2020-03-09 2021-09-23 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 리페어 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313721A (ja) * 1995-05-18 1996-11-29 Canon Inc カラーフィルタの製造方法及び液晶パネル
JPH11248926A (ja) * 1998-03-03 1999-09-17 Seiko Epson Corp フィルター製造装置とフィルター製造方法およびカラーフィルター
JP2002207113A (ja) * 2001-01-09 2002-07-26 Canon Inc カラーフィルタ基板の製造方法及び製造装置
JP2003280535A (ja) * 2002-03-26 2003-10-02 Seiko Epson Corp 表示装置製造方法、表示装置製造装置、表示装置、及びデバイス
JP2004163964A (ja) * 1998-12-09 2004-06-10 Dainippon Printing Co Ltd カラーフィルタおよびその製造方法
JP2004337779A (ja) * 2003-05-16 2004-12-02 Seiko Epson Corp 薄膜パターン形成方法、デバイスとその製造方法及び電気光学装置並びに電子機器
JP2007094341A (ja) * 2005-03-28 2007-04-12 Ntn Corp 塗布針と、それを用いた塗布機構、欠陥修正装置、塗布方法、および液晶表示パネル用カラーフィルタの欠陥修正方法
JP2011085832A (ja) * 2009-10-19 2011-04-28 Dainippon Printing Co Ltd カラーフィルタの製造方法およびカラーフィルタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377984B2 (ja) * 1999-03-10 2009-12-02 キヤノン株式会社 カラーフィルタとその製造方法、該カラーフィルタを用いた液晶素子
JP4521741B2 (ja) * 1999-06-25 2010-08-11 大日本印刷株式会社 カラーフィルタの欠陥修正方法
JP2004361491A (ja) * 2003-06-02 2004-12-24 Seiko Epson Corp カラーフィルタ基板の製造方法、エレクトロルミネッセンス基板の製造方法、電気光学装置及びその製造方法、並びに電子機器及びその製造方法
TWI267447B (en) * 2005-11-25 2006-12-01 Icf Technology Co Ltd Method of manufacturing a thin film pattern layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313721A (ja) * 1995-05-18 1996-11-29 Canon Inc カラーフィルタの製造方法及び液晶パネル
JPH11248926A (ja) * 1998-03-03 1999-09-17 Seiko Epson Corp フィルター製造装置とフィルター製造方法およびカラーフィルター
JP2004163964A (ja) * 1998-12-09 2004-06-10 Dainippon Printing Co Ltd カラーフィルタおよびその製造方法
JP2002207113A (ja) * 2001-01-09 2002-07-26 Canon Inc カラーフィルタ基板の製造方法及び製造装置
JP2003280535A (ja) * 2002-03-26 2003-10-02 Seiko Epson Corp 表示装置製造方法、表示装置製造装置、表示装置、及びデバイス
JP2004337779A (ja) * 2003-05-16 2004-12-02 Seiko Epson Corp 薄膜パターン形成方法、デバイスとその製造方法及び電気光学装置並びに電子機器
JP2007094341A (ja) * 2005-03-28 2007-04-12 Ntn Corp 塗布針と、それを用いた塗布機構、欠陥修正装置、塗布方法、および液晶表示パネル用カラーフィルタの欠陥修正方法
JP2011085832A (ja) * 2009-10-19 2011-04-28 Dainippon Printing Co Ltd カラーフィルタの製造方法およびカラーフィルタ

Also Published As

Publication number Publication date
US20130115385A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US8059234B2 (en) Color filter and black matrix thereof
JP4371997B2 (ja) 表示装置用基板及びその製造方法
JP5190581B2 (ja) カラーフィルタ基板の製造方法
US20130222936A1 (en) Color filter substrate and method for producing same
JP4592448B2 (ja) 表示装置用基板
JP5941044B2 (ja) カラーフィルタ基板の製造方法、表示装置の製造方法、カラーフィルタ基板、及び、表示装置
US7580095B2 (en) Substrate for display device
JP2005331619A (ja) パターン部材およびその製造方法
WO2012008191A1 (ja) カラーフィルタ基板の製造方法
US8576360B2 (en) Color filter substrate, liquid crystal display panel, and liquid crystal display device
JPWO2006048973A1 (ja) 液晶表示装置用基板
KR20110018775A (ko) 컬러 필터 박리용 조성물 및 이를 이용한 컬러 필터 재생 방법
JP5381605B2 (ja) カラーフィルタの製造方法およびカラーフィルタ
US20090086352A1 (en) Color filter structure and method of making the same
JP2005157067A (ja) カラーフィルタの製造方法、および該製造方法で製造されたカラーフィルタを有する表示装置
JPH10186123A (ja) カラーフィルタの製造方法及びカラーフィルタ
JP4731159B2 (ja) 表示装置用基板
JP4460201B2 (ja) カラーフィルタ製造装置及び製造方法
WO2008010332A1 (fr) dispositif d'affichage à cristaux liquides, et son procédé de fabrication
JP2006030283A (ja) カラーフィルタの修正方法及びその装置
KR101669930B1 (ko) 스페이서를 구비한 액정표시장치용 컬러필터 기판의 제조방법
KR20080059863A (ko) 컬러필터 제조장치
KR101961722B1 (ko) 액정표시장치 및 그 제조방법
JP5835651B2 (ja) カラーフィルタの製造方法
JP2000193816A (ja) カラ―フィルタの製造方法およびカラ―フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13809649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载