+

WO2012057169A1 - Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method - Google Patents

Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method Download PDF

Info

Publication number
WO2012057169A1
WO2012057169A1 PCT/JP2011/074593 JP2011074593W WO2012057169A1 WO 2012057169 A1 WO2012057169 A1 WO 2012057169A1 JP 2011074593 W JP2011074593 W JP 2011074593W WO 2012057169 A1 WO2012057169 A1 WO 2012057169A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
power supply
supply device
insulating
Prior art date
Application number
PCT/JP2011/074593
Other languages
French (fr)
Japanese (ja)
Inventor
康広 浅井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012057169A1 publication Critical patent/WO2012057169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention mainly relates to a power supply device for a large current used for a power source of a motor driving a vehicle such as a hybrid vehicle or an electric vehicle, and a vehicle, a battery cell, and a battery cell manufacturing method using the same.
  • An automobile such as an electric vehicle that runs on a motor or a hybrid vehicle that runs on both a motor and an engine is equipped with a power supply device in which a battery cell is housed in an outer case (see, for example, Patent Document 1).
  • This power supply device is a battery block in which a large number of battery cells 1X are connected in series to increase the output voltage, as shown in FIGS.
  • each battery cell 1 ⁇ / b> X has a square outer can 12 and is provided with positive and negative electrode terminals 13 at the upper end.
  • a high output lithium ion secondary battery is often used for the battery cell 1X. Since the outer can 12 of the lithium ion secondary battery has an intermediate potential, the surface of the battery cell 1X has a high potential, and this needs to be insulated from the ground of the outer case. For this reason, insulation measures such as covering the outer can 12 of the battery cell 1X with an insulating cover or an insulating sheet are taken. In addition, the battery cell 1X is waterproof.
  • the top surface 24 of the battery cell 1X is covered with a bag-shaped heat shrinkable sheet 20X so as to expose the electrode terminal 13 on the upper part of the battery cell 1X.
  • the heat-shrinkable sheet 20X having a cylindrical opening at the top and the bottom is cut with an appropriate length, and the battery cell 1X is inserted from one opening end as shown in FIG.
  • the heat-shrinkable sheet 20X is heat-shrinked and brought into close contact with the surface of the outer can 12 as shown in FIG.
  • the heat shrinkable tubes are thermally welded to each other at the bottom surface 23 of the battery cell 1X to close the opening, and the blank portion is cut as necessary to cover the surface of the battery cell 1X with the heat shrinkable tube. It was.
  • the heat shrinkable tube protrudes from the bottom surface 23 of the battery cell 1X, so that the bottom surface 23 of the battery cell 1X becomes uneven.
  • the bottom surfaces 23 of the battery cells 1X do not line up on the same plane.
  • the top surface 24 of each battery cell 1X does not necessarily coincide, and when the electrode terminals 13 protruded from the top surface 24 of the battery cell 1X are fixed with a bus bar or the like, the plurality of electrode terminals 13 are the same.
  • the present invention has been made in order to solve the conventional problems as described above.
  • the main object of the present invention is to make the bottom surfaces of the battery cells uniform and to make the bottom surfaces coincide with each other. It is an object of the present invention to provide an easy power supply device, a vehicle, a battery cell, and a battery cell manufacturing method using the same.
  • a plurality of battery cells 1 whose outer shape is a rectangular shape whose thickness is thinner than a width, and the plurality of battery cells A separator 2 for insulating the battery cells 1 by interposing them on the surface where the ones are stacked, and a fastening means for stacking and fastening the plurality of battery cells 1 with the separators 2 interposed
  • the battery cell 1 includes a top surface 24, a bottom surface 23, a rectangular outer can 12 including a pair of main surfaces 21 and side surfaces 22, and a main surface of the outer can 12 respectively.
  • the insulating layer 30 is provided on the outer can 12. While covering the entire surface of the bottom surface 23 in close contact, It extends from the bottom surface 23 to the main surface 21 and the side surface 22 and is coated so as to overlap at least a part of the lower end edge of the covering film, and the bottom surfaces 23 of the plurality of battery cells 1 are substantially on the same plane. It can be fastened in a stacked state by the fastening means in a lined posture.
  • the bottom surface of the battery cell is completely insulated to prevent water from entering from the bottom surface, and by making the bottom surface substantially planar, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.
  • the cooling plate 7 can be provided which is further provided with a refrigerant pipe 26 arranged in a thermally coupled state with the bottom surface 23 of the outer can 12.
  • the battery cell can be cooled from the bottom surface side, and in particular, the battery cell can be efficiently and uniformly cooled by positioning the bottom surface on substantially the same plane.
  • the cooling plate 7 and the outer can 12 are made of metal, and the insulating plate that separates the cooling plate 7 from the bottom surface 23 of the outer can 12 is provided.
  • a spacer 40 can be provided.
  • the separator 2 is provided with the rib 41 that partially covers the bottom surface 23 of the battery cell 1 in a state where the separator 2 is in contact with the battery cell 1.
  • the rib 41 is interposed between the bottom surface 23 of the battery cell 1 and the cooling plate 7 to separate them. Thereby, the conduction of the battery cell by the cooling plate can be avoided by providing the rib as a spacer on the separator.
  • the lower edge of the covering film 20 can be positioned on the main surface 21 and the side surface 22 without protruding from the bottom surface 23 of the outer can 12. Therefore, the situation where a coating film protrudes from the lower surface of a battery cell and the battery cell bottom face does not become flat can be avoided.
  • the covering film 20 can be a heat shrinkable tube. Thereby, a coating film can be easily attached to an exterior can.
  • the above power supply device can be provided.
  • upper surface 24 and the bottom face 23, and each pair of main surface 21 and the side surface 22 is made into the square shape which made thickness thinner than the width
  • the lower end edge of the covering film 20 is not projected from the bottom surface 23 of the outer can 12, but is located on the main surface 21 and the side surface 22, and the insulating layer 30 covers the entire bottom surface 23 of the outer can 12.
  • the film can be coated so as to extend from the bottom surface 23 to the main surface 21 and the side surface 22 and to overlap at least part of the lower edge of the coating film.
  • the plurality of battery cells 1 having the outer shape of the outer can formed into a rectangular shape whose thickness is thinner than the width, and the plurality of battery cells 1 are combined.
  • a method of manufacturing a power supply apparatus comprising: a cylindrical covering film 20 into which the outer can 12 including a top surface 24 and a bottom surface 23 and a pair of main surfaces 21 and side surfaces 22 can be inserted; Inserting the can 12 and thermally shrinking the covering film 20 in a state where the lower end edge of the covering film 20 is positioned on the main surface 21 and the side surface 22 without protruding from the bottom surface 23 of the outer can 12.
  • Uncured liquid insulating resin 3 The battery cell 1 is filled in a resin tank 32 filled with a liquid from the bottom surface 23 to at least the entire bottom surface 23 of the battery cell 1, the main surface 21, and the side surface 22, and the coating film 20 is liquid so as to include the lower end
  • the insulating layer can be formed in an intimate contact state by eliminating the air layer, and the thermal conductivity on this surface can be increased. It is superior in terms of heat dissipation.
  • the step of impregnating the liquid insulating resin 31 and the step of forming the insulating layer 30 are performed for each battery cell, and then the insulation is performed.
  • the battery cells in which the layer 30 is formed can be stacked and fastened with the separator 2 interposed between the battery cells 1 adjacent to each other by fastening means. Thereby, after performing an insulation process separately with respect to a battery cell, these can be laminated
  • the step of impregnating the liquid insulating resin 31 and the step of forming the insulating layer 30 include the step of attaching the plurality of battery cells 1 by the fastening means. 2 can be performed in a stacked state. Thereby, the insulation process can be collectively performed with respect to the battery block which laminated
  • the step of impregnating the liquid insulating resin 31 includes the step of impregnating the liquid insulating resin 31 impregnated into the bottom surface 23 of the battery cell 1.
  • stacked by the fastening means of the said battery cell 1 in the state can be mounted on the upper surface of the cooling plate 7. Thereby, a cooling plate and a battery block can be couple
  • the battery block 50 can be placed on the upper surface of the cooling plate 7 in a separated state.
  • the cooling plate and the battery block are separated from each other and kept in an insulating state, and can be fixed in close contact with the insulating resin, and a short circuit on the battery cell bottom surface by the cooling plate can be avoided.
  • the outer shape composed of the top surface 24 and the bottom surface 23 and each pair of the main surface 21 and the side surface 22 is made thinner than the width.
  • a battery cell manufacturing method comprising a rectangular outer can 12 and a cylindrical insulating coating film 20 that covers a main surface 21 and a side surface 22 of the outer can 12. The outer can 12 is inserted into the cylindrical covering film 20 that can be inserted into the casing, and the lower end edge of the covering film 20 is not projected from the bottom surface 23 of the outer can 12, and is positioned on the main surface 21 and the side surface 22.
  • the whole surface and the main surface 21 line A step of impregnating the liquid insulating resin 31 with the covering film 20 so as to include the lower end, and the battery cell 1 is pulled up from the resin tank 32 to cure the insulating resin 31, Forming an insulating insulating layer 30 on the bottom surface 23 of the cell 1.
  • FIG. 1 is a perspective view of a power supply device according to a first embodiment. It is a perspective view which shows the state which removed the upper case from FIG. It is a perspective view which shows the battery block of FIG.
  • FIG. 4 is an exploded perspective view of the battery block of FIG. 3. It is a disassembled perspective view which shows the lamination
  • FIG. 11 It is a disassembled perspective view of the battery cell of FIG. It is a front view which shows the state which coat
  • FIG. 17 is a partially enlarged vertical vertical sectional view of the battery block shown in FIG. 16.
  • FIG. 17 is a vertical cross-sectional view of the battery block shown in FIG. 16.
  • FIG. 24 is a trihedral view showing a state in which the battery cell of FIG. 23 is covered with a conventional coating film. It is a perspective view which shows a mode that the battery cell of FIG. 23 is coat
  • the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle using the same, a battery cell, and a method for manufacturing the battery cell.
  • the apparatus and the vehicle, battery cell, and battery cell manufacturing method using the same are not specified as follows.
  • the member shown by the claim is not what specifies the member of embodiment.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is a perspective view of the battery system 91
  • FIG. 2 is a perspective view showing a state where the upper case 72 is removed from FIG. 1
  • FIG. 3 is a perspective view showing the battery block 50 of FIG. 3 is an exploded perspective view of the battery block 50
  • FIG. 5 is an exploded perspective view showing a stacked state of the battery cells 1 of FIG. 4
  • FIG. 6 is a perspective view showing the battery cell 1 of FIG. 5
  • FIG. FIG. 8 is a cross-sectional view of the insulating layer 30 on the bottom surface 23 of the battery cell 1 in FIG. 6, and FIG.
  • FIG. 9 is a schematic diagram illustrating an example in which the lower end of the coating film protrudes from the bottom surface 23 of the battery cell 1.
  • 10 is an exploded perspective view of the battery cell 1 of FIG. 6,
  • FIG. 11 is a front view showing a state in which the battery cell 1 of FIG. 10 is covered with a coating film
  • FIG. 12 shows an uncured liquid insulating resin 31
  • FIG. 13 is a schematic diagram showing a state in which the bottom surface 23 of the battery cell 1 is impregnated.
  • FIG. 14 is a cross-sectional view showing a state in which the battery cell 1 and the cooling plate 7 are physically separated with a spacer 40 interposed therebetween, FIG. FIG.
  • FIG. 16 is a cross-sectional view showing a state in which the battery cell 1 is sandwiched between the separators 2 provided with ribs 41
  • FIG. 16 is a schematic view showing a cooling structure of the battery block 50 according to a modification
  • FIG. 17 is a battery block 50 shown in FIG. 18 is a partially enlarged vertical longitudinal sectional view
  • FIG. 18 is a vertical transverse sectional view of the battery block 50 shown in FIG. 16
  • FIG. 19 is a block diagram showing an example in which a battery system is mounted on a hybrid vehicle running with an engine and a motor.
  • FIG. 1 is a block diagram showing an example in which a battery system is mounted on an electric vehicle that runs only by a motor.
  • the external appearance of the battery system 91 is obtained by dividing a box-shaped outer case 70 into two and housing a plurality of battery blocks 50 therein.
  • the exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72.
  • the upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut.
  • the flange portion 74 is disposed on the side surface of the exterior case 70. In the example of FIG.
  • a total of four battery blocks 50 are stored in the lower case 71, two in the longitudinal direction and two in the horizontal direction.
  • Each battery block 50 is fixed to the lower case 71 with a set screw or the like, and fixed to a fixed position inside the outer case 70.
  • the end surface plate 73 is connected to both ends of the lower case 71 and the upper case 72 and closes both ends of the exterior case 70.
  • each battery block 50 has a substantially box-like appearance, and a battery stack 10 in which a large number of battery cells 1 are stacked is sandwiched by end plates 4 from both end faces via bind bars 11. Yes.
  • the battery stack 10 is configured by stacking a plurality of prismatic battery cells 1 via separators 2.
  • 18 rectangular battery cells 1 are stacked.
  • the bind bar 11 functions as a fastening means for fastening the battery cell 1.
  • both ends of the strip-shaped metal plate are bent into bent pieces, and the whole is formed in a U shape.
  • the end plate 4 is provided with a recess at a position for receiving the bent piece of the bind bar 11.
  • the bind bar 11 is screwed and fixed to the end plate 4.
  • the battery cell 1 is configured by an outer can 12 having an outer shape with a rectangular shape whose thickness is thinner than a width, and closes the top surface 24 of the outer can, that is, the outer can 12.
  • Positive and negative electrode terminals 13 are provided on the sealing plate.
  • the electrode terminals 13 are electrically connected via a bus bar 17 shown in FIG.
  • the outer can of the battery cell can be made of an insulating material such as plastic. In this case, since it is not necessary to insulate the outer can when the battery cells are stacked, the separator can be made of metal. (Separator 2)
  • the battery block 50 has a separator 2 sandwiched between stacked battery cells 1.
  • the battery block 50 can be laminated with the outer can 12 of the battery cell 1 made of metal and insulated by the plastic separator 2.
  • the separator 2 has a shape that can be fitted to the battery cell 1 on both sides, and can be stacked while preventing the positional deviation of the adjacent battery cells 1.
  • the battery block can also be fixed in a laminated state without sandwiching a separator by using an outer can of the battery cell as an insulating material such as plastic.
  • the separator 2 is provided with a cooling gap 53 that allows a cooling gas such as air to pass between the battery cell 1 and the battery cell 1 in order to cool the battery cell 1.
  • the battery block 50 has laminated
  • a forced blowing mechanism 9B is provided as shown in FIG.
  • the battery block 50 has a separator 2 sandwiched between stacked battery cells 1.
  • the separator 2 has a shape in which a cooling gap 53 is formed between the separator 2 and the battery cell 1.
  • the separator 2 of the figure has connected the battery cell 1 with the fitting structure on both surfaces. Through the separator 2 connected to the battery cell 1 with a fitting structure, the adjacent battery cells 1 are stacked while being prevented from being displaced. (Battery cell 1)
  • the battery cell 1 is a prismatic battery of a lithium ion secondary battery.
  • the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the battery cell 1 shown in FIG. 6 made of a square battery is a quadrilateral having a predetermined thickness, and has positive and negative electrode terminals 13 protruding from both ends of the top surface 24, and a safety valve at the center of the top surface 24. The opening is provided.
  • the battery cells 1 to be stacked are connected in series by connecting adjacent positive and negative electrode terminals 13 with a bus bar 17.
  • a battery system in which adjacent battery cells 1 are connected in series can increase the output voltage and increase the output.
  • the battery system can also connect adjacent battery cells in parallel.
  • the surfaces of the battery cell 1 other than the top surface 24 are insulated. Specifically, the surface excluding the top surface 24 and the bottom surface 23 of the battery cell 1 is covered with the coating film 20.
  • the bottom surface 23 is insulated by an insulating layer 30 described later.
  • the top surface 24 is not insulated because the electrode terminals 13 need to be exposed for electrical connection, while the other surfaces are insulated to avoid unintended short circuits. In the configuration in which the battery cells are provided with an insulating property by covering with such an insulating material, it is necessary to pay attention so that the height positions of the battery cells are aligned when the battery cells are stacked.
  • the electrode terminals 13 of the adjacent battery cells are fastened by the bus bar 17, and at this time, the surface of the battery cell is insulated only by the conventional shrink tube.
  • the height direction positions of the electrode terminals of the adjacent battery cells are shifted due to the step formed on the bottom surface of the battery cell.
  • a contact failure between the bus bar and the electrode terminal occurs, or an extra load is applied to the electrode terminal.
  • the use of the insulating layer 30 in addition to the covering film avoids a situation where a step is formed on the bottom surface 23 of the battery cell 1. This will be described below. (Coating film 20)
  • the main surface 21 of the battery cell 1 is covered with a covering film 20 as shown in FIGS. 6, 7, and 8.
  • the covering film 20 is covered as a heat shrinkable tube by heat shrinking the outer surface of the battery cell 1.
  • a resin such as PET preferably having excellent insulating properties and stability can be used.
  • a shrink tube made of PET resin is inexpensive and preferable as a heat shrinkable tube.
  • the covering film 20 is preferably the same length as the side surface 22 of the battery cell 1 or the length thereof so as not to protrude from the bottom surface 23 of the battery cell 1 in the vicinity of the bottom surface 23 of the battery cell 1. It is formed to be shorter. By doing in this way, the situation where the coating film 20 protrudes to the bottom face 23 side of the battery cell 1 can be avoided.
  • FIG. 9 when the covering film 20 is formed long and protrudes by t from the bottom surface 23 of the battery cell 1, the bottom surface of the battery cell 1 is covered with the insulating layer 30 covering the battery cell bottom surface 23. As a result, the bottom surface 23 of the battery cell 1 does not become flat, and irregularities are partially formed.
  • the covering film 20 has the bottom surface 23 of the battery cell 1 substantially the same height so as not to protrude from the bottom surface 23 of the battery cell 1, or the covering film 20 or the battery Considering the manufacturing tolerance of the cell 1, the lower end of the covering film 20 is set to be slightly shorter than the bottom surface 23 of the battery cell 1 as shown in FIG. By doing in this way, protrusion of the coating film 20 from the battery cell bottom face 23 can be avoided, and it leads to manufacture of a stable battery cell.
  • the fact that the coating film does not protrude from the bottom surface side of the battery cell does not mean that the length of the coating film is necessarily shorter than the height of the battery cell. That is, it is sufficient that the coating film does not protrude from the bottom surface side of the battery cell, and conversely, the coating film slightly protruding on the top surface side of the battery cell is allowed as long as the electrical connection of the electrode terminals is not hindered.
  • the outer can 12 is inserted into a cylindrical covering film 20 into which the outer can 12 can be inserted, as shown in FIG.
  • the lower end of the coating film 20 is aligned with the main surface 21 and the side surface 22 of the battery cell 1 at a position that does not protrude from the lower end edge, and is thermally welded.
  • the covering film can be fixed in a state where the main surface 21 and the side surface 22 of the outer can are covered.
  • the insulating layer 30 is made of a resin having an insulating property, and a resin having an excellent insulating property such as silicone, urethane, or epoxy can be suitably used. Further, a liquid resin is used in an uncured state. By making such a liquid, as shown in FIG. 12, the bottom surface 23 of the battery cell 1 shown in FIG. 11 is impregnated into the uncured liquid insulating resin 31 filled in the resin tank 32. The insulating layer 30 is formed by curing the resin, and the bottom surface 23 of the battery cell 1 not covered with the covering film is covered and insulated by the insulating layer 30. According to this method, the liquid insulating resin 31 before curing spreads over the surface of the battery cell 1 and also enters and fills in the minute gaps between the battery cell 1 and the coating film. Without being formed, an insulating sealing structure is configured.
  • the insulating layer 30 it is easy to form the insulating layer 30 with a uniform thickness.
  • the thickness of the insulating layer 30 is preferably 0.01 mm to 3 mm, more preferably 0.05 mm to 0.2 mm.
  • the main surface 21 of the battery cell 1 but also the bottom surface 23 can be substantially flat, it is convenient to form a thermal coupling by bringing this surface into contact with the heat radiating plate.
  • the bottom surface 23 of the battery cell 1 is insulated, even if it is brought into direct contact with the metal heat radiating plate, it is not short-circuited between adjacent battery cells.
  • the bottom surface 23 can be completely covered, the waterproof property can be exhibited against dew condensation and water intrusion, and the battery cell can be protected from water droplets.
  • Impregnation can be easily performed by dipping. Here, it is sufficient to immerse the battery cell until the liquid insulating resin 31 is positioned higher than the lower end of the coating film. In particular, by reducing the thickness of the insulating layer 30, there is no noticeable level difference, and no precise control is required for the region OW where the covering film and the insulating layer 30 overlap, and impregnation workability is improved. Also excellent.
  • the battery cell 1 having the bottom surface 23 covered with the insulating layer 30 in this way is fastened by fastening means with the separator 2 interposed therebetween, and constitutes a battery block 50.
  • FIG. 12 the example in which one battery cell 1 is individually impregnated in the resin tank 32 and the insulating layer 30 is provided has been described.
  • the present invention is not limited to this example, and for example, battery cells covered with a coating film are stacked.
  • the resin tank 32 can be impregnated as shown in FIG. This method is excellent in dipping workability because it can be impregnated all at once.
  • the liquid insulating resin 31 is filled not only in the bottom surface 23 of the battery cell 1 but also in the gap between the battery cell 1 and the separator 2.
  • formation of an air layer between the battery cell 1 and the separator 2 is also eliminated, and an advantage that is advantageous in heat dissipation via the separator 2 can be obtained.
  • the battery block 50 is disposed on the cooling plate 7 to be described later. 50 can be fixed in close contact with the cooling plate 7. Since no gap is formed between the battery block 50 and the cooling plate 7 and air bubbles are prevented from entering, the battery block 50 can be cooled more efficiently by the cooling plate.
  • the main surface 21 and the side surface 22 of the battery cell 1 are mainly insulated by the covering film, while the bottom surface 23 of the battery cell 1 is insulated by applying the insulating layer 30.
  • the insulating configuration it is possible to configure cell insulation that can achieve both the cooling performance and the strength of the insulating layer 30. That is, since the main surface 21 of the battery cell 1 is fastened by the fastening means in a state where a large number of battery cells 1 are stacked via the separator 2, a high pressure is applied. For this reason, the intensity
  • a coated film such as a shrink tube has high strength and is convenient for such an application.
  • the bottom surface of the battery cell not only insulation but also maintenance of waterproofness is important.
  • water entering from the outside and dew condensation generated inside accumulate at the bottom inside the case, so it can be said that the bottom surface of the battery cell is easily flooded. Therefore, it can be said that the insulating layer 30 formed by impregnating the liquid insulating resin 31 in which a slight gap or gap is filled so as to reliably prevent the intrusion of moisture is preferable from the viewpoint of such waterproofness.
  • the main surface 21 of the battery cell 1 that requires strength and thinness is insulated with a coating film, while the bottom surface 23 of the battery cell 1 is formed with an insulating layer 30 by dipping, thereby providing cooling performance and insulation. It is possible to realize an insulating structure that can achieve both layer strength and excellent reliability.
  • the bottom surface 23 of the battery cell 1 covered with the insulating layer 30 is not provided with irregularities, and is maintained flat. In this way, when stacking a plurality of battery cells 1, it becomes easy to match the bottom surface 23 so as to be substantially the same surface. As a result, the electrode terminals 13 are also on the same surface on the top surface of the battery stack 10. As a result, the connection by the bus bar 17 and the like can be performed stably, leading to an improvement in reliability.
  • the contact surface between the battery cell 1 and the cooling plate 7 is a flat surface.
  • the heat coupling can be ensured and the cooling capacity can be demonstrated.
  • the cover film is not protruded toward the bottom surface of the battery cell, and the bottom surface 23 coated with the insulating layer 30 is made to be a substantially flat surface along the bottom surface 23 of the outer can so that the connection with the cooling plate 7 for each battery cell is achieved.
  • the battery cell bottom surface 23 covered with the insulating layer 30 is directly connected to the cooling plate 7, and the battery cell 1 and the cooling plate 7 are physically separated by interposing a spacer 40 as shown in FIG. It is also possible to insulate between the two.
  • the spacer 40 is made of an insulating member. In this configuration, since the insulation between the battery cell 1 and the cooling plate 7 is exhibited by the spacer 40 in addition to the insulating layer 30, double protection is achieved.
  • the spacer can be formed as a separate member or integrally with the separator.
  • a rib 41 bent at a lower end of the separator 2 so as to partially cover the bottom surface 23 of the battery cell 1 is provided as the spacer 40.
  • the battery cell 1 whose bottom surface 23 is covered with the rib 41 is in a state of being lifted from the floor surface while being sandwiched between the separators 2. Even in this configuration, the battery cell 1 can be physically separated from the cooling plate 7 to reliably maintain insulation.
  • the method of dipping the battery stack is particularly advantageous as shown in FIG. 12 described above. That is, by applying the uncured liquid insulating resin 31, the resin also enters and fills the gaps between the spacer 40, the cooling plate 7, and the battery cell 1. Thermal conductivity is improved.
  • the insulating layer can be formed by pouring the liquid insulating resin 31 in a state where the battery stack is placed on the cooling plate.
  • the reliability of the battery stack in which the battery cells are stacked by individually configuring the covering film that covers the main surface 21 and the side surface 22 of the battery cell 1 and the insulating layer 30 that covers the bottom surface 23. Can be increased. (Modification)
  • the power supply device that constitutes the battery system 92 shown in FIG. 16 is arranged in a thermally coupled state to the battery stack 10 in which the battery cells 1 composed of a plurality of prismatic batteries are stacked, and to the battery cells 1 that constitute the battery stack 10. And a cooling mechanism 9 for cooling the cooling plate 7.
  • the cooling mechanism 9 can effectively cool the battery stack 10 directly by bringing the battery stack 10 into contact with the cooling plate 7. Further, not only the battery stack, but also, for example, each member disposed on the end face of the battery stack 10 can be cooled together, which is excellent in terms of reliability. (Cooling plate 7)
  • the cooling plate 7 is a heat radiating body for conducting heat of the battery cell 1 to dissipate it to the outside, and in the example shown in the figure, a refrigerant pipe is provided.
  • the cooling plate 7 has a closed chamber as an inside, and as a heat exchanger in the closed chamber, a coolant pipe 26 made of copper, aluminum, or the like that circulates a liquefied coolant that is a coolant.
  • a coolant pipe 26 made of copper, aluminum, or the like that circulates a liquefied coolant that is a coolant.
  • Built-in cooling pipe Built-in cooling pipe.
  • the cooling pipe is fixed so as to be in close contact with the upper surface plate of the cooling plate 7 to cool the upper surface plate, and a heat insulating material is disposed between the cooling plate and the bottom plate to insulate the space from the bottom plate.
  • the cooling plate 7 can be composed of only a metal plate in addition to the cooling function by the refrigerant.
  • a metal plate in addition to the cooling function by the refrigerant.
  • it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet
  • the cooling plate 7 constitutes a battery cooling means for cooling the battery stack 10 placed on the upper surface.
  • a refrigerant pipe 26 for circulating the refrigerant is provided inside the cooling plate 7.
  • the coolant is supplied from the cooling mechanism 9 shown in FIG. 16 to the refrigerant pipe 26 to cool the cooling plate 7.
  • the cooling plate 7 can cool the cooling plate 7 more efficiently by using the cooling liquid supplied from the cooling mechanism 9 as a refrigerant that cools the cooling plate 7 with heat of vaporization that evaporates inside the refrigerant pipe 26.
  • the cooling plate 7 is fixed in a thermally coupled state to the bottom surface 23 which is the outer peripheral surface of each battery cell 1 constituting the battery block 200 in order to cool the battery cell 1.
  • the cooling plate 7 In a battery system in which adjacent battery cells are connected in series, there is a potential difference between adjacent battery cells. Therefore, if a battery cell composed of a metal outer can is electrically connected to the cooling plate as it is, a short circuit occurs and a large short current flows.
  • the battery cell 1 in which the bottom surface 23 of the outer can is covered with the insulating layer 30 can avoid such a short circuit and can be thermally coupled to the cooling plate 7 in an insulated state.
  • the insulating layer 30 is preferably made of an insulating member having excellent thermal conductivity so that the insulating layer 30 can be in a thermally coupled state while being insulated from the cooling plate 7.
  • a polyimide tape or the like is suitable as a material for obtaining such characteristics as described above.
  • a heat conductive paste such as silicon oil may be applied between the insulating layer 30 and the cooling plate 7 so as to conduct heat more efficiently.
  • the cooling plate 7 also functions as a soaking means for equalizing the temperatures of the plurality of battery cells 1. That is, the heat energy absorbed by the cooling plate 7 from the battery cell 1 is adjusted to efficiently cool the battery cell whose temperature is increased, for example, the battery cell in the central portion, and the battery where the temperature is decreased, such as the battery at both ends. Reduce the temperature difference between the battery cells by reducing the cooling of the cells. Thereby, the temperature unevenness of the battery cells can be reduced, and a situation in which deterioration of some of the battery cells proceeds and overcharge and overdischarge can be avoided.
  • cooling plate 7 is disposed on the bottom surface 23 of the battery block 200
  • the configuration is not limited to this.
  • the cooling plate can be disposed on the side surface of the battery cell. (Vehicle using power supply)
  • FIG. 19 shows an example of a hybrid vehicle HV that is equipped with a battery system for a vehicle and that travels by both an engine and a motor.
  • the hybrid vehicle shown in this figure includes an engine 96 and a running motor 93 for running the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92.
  • the battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the hybrid vehicle runs on both the motor 93 and the engine 96 while charging and discharging the batteries of the battery systems 91 and 92.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the battery systems 91 and 92.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the batteries of the battery systems 91 and 92.
  • FIG. 20 shows an example of an electric vehicle EV which is a vehicle equipped with a battery system for vehicles and runs only by a motor.
  • the electric vehicle shown in this figure includes a traveling motor 93 for traveling the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92.
  • the battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the battery systems 91 and 92.
  • the generator 94 is driven by energy used when regenerative braking of the vehicle, and charges the batteries of the battery systems 91 and 92.
  • a power supply apparatus includes a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used as a power supply device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

A power-supply device provided with a fastening means for fastening together a plurality of battery cells (1) stacked with separators (2) interposed therebetween. Each battery cell (1) is provided with: a rectangular outer casing (12) comprising a top surface (24), a bottom surface (23), a pair of principal surfaces (21), and a pair of side surfaces (22); a tubular insulating film sheath (20) that covers the principal surfaces (21) and side surfaces (22) of the outer casing (12); and an insulating insulation layer (30) that covers the bottom surface (23) of the outer casing (12). Said insulation layer (30) is obtained by coating the outer casing so as to tightly cover the entire bottom surface (23) of the outer casing (12), stretch from said bottom surface (23) to the principal surfaces (21) and side surfaces (22), and overlap at least part of the bottom edge of the film sheath. With the respective bottom surfaces (23) of the plurality of battery cells (1) in roughly the same plane, the fastening means can fasten said battery cells together in a stack.

Description

電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法Power supply device, vehicle using the same, battery cell, and battery cell manufacturing method
 本発明は、主として、ハイブリッド自動車や電気自動車等の自動車を駆動するモータの電源用等に使用される大電流用の電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a power supply device for a large current used for a power source of a motor driving a vehicle such as a hybrid vehicle or an electric vehicle, and a vehicle, a battery cell, and a battery cell manufacturing method using the same.
 モータで走行する電気自動車、あるいはモータとエンジンの両方で走行するハイブリッド自動車等の自動車は、電池セルを外装ケースに収納した電源装置を搭載している(例えば特許文献1参照)。この電源装置は、モータで自動車を走行させるための出力を得るために、図21及び図22に示すように、多数の電池セル1Xを直列に接続して出力電圧を高くした電池ブロックとしている。各電池セル1Xは図23に示すように、外観を角形の外装缶12として、上端に正負の電極端子13を設けている。 An automobile such as an electric vehicle that runs on a motor or a hybrid vehicle that runs on both a motor and an engine is equipped with a power supply device in which a battery cell is housed in an outer case (see, for example, Patent Document 1). This power supply device is a battery block in which a large number of battery cells 1X are connected in series to increase the output voltage, as shown in FIGS. As shown in FIG. 23, each battery cell 1 </ b> X has a square outer can 12 and is provided with positive and negative electrode terminals 13 at the upper end.
 電池セル1Xには、高出力のリチウムイオン二次電池が使用されることが多い。リチウムイオン二次電池の外装缶12は、中間電位を有しているため、電池セル1X表面が高電位となり、これを外装ケースのグラウンドから絶縁する必要がある。このため、電池セル1Xの外装缶12を絶縁カバーや絶縁シートで覆う等の絶縁対策が施されている。加えて、電池セル1Xに防水性も持たせている。 A high output lithium ion secondary battery is often used for the battery cell 1X. Since the outer can 12 of the lithium ion secondary battery has an intermediate potential, the surface of the battery cell 1X has a high potential, and this needs to be insulated from the ground of the outer case. For this reason, insulation measures such as covering the outer can 12 of the battery cell 1X with an insulating cover or an insulating sheet are taken. In addition, the battery cell 1X is waterproof.
 一般的には、電池セル1Xの上部の電極端子13を露出させるよう、図24に示すように袋状の熱収縮シート20Xで電池セル1Xの天面24を残して被覆する。具体的には、上下を筒状に開口した熱収縮シート20Xを適当な長さで裁断し、図25に示すように一方の開口端から電池セル1Xを挿入し、図26(a)、(b)に示すように熱収縮シート20Xを熱収縮させて、図24に示すように外装缶12の表面に密着させる。この際、電池セル1Xの底面23で熱収縮チューブ同士を熱溶着して開口部分を閉塞し、必要に応じて余白部分を裁断する等して、電池セル1Xの表面に熱収縮チューブを被覆していた。 Generally, as shown in FIG. 24, the top surface 24 of the battery cell 1X is covered with a bag-shaped heat shrinkable sheet 20X so as to expose the electrode terminal 13 on the upper part of the battery cell 1X. Specifically, the heat-shrinkable sheet 20X having a cylindrical opening at the top and the bottom is cut with an appropriate length, and the battery cell 1X is inserted from one opening end as shown in FIG. As shown in b), the heat-shrinkable sheet 20X is heat-shrinked and brought into close contact with the surface of the outer can 12 as shown in FIG. At this time, the heat shrinkable tubes are thermally welded to each other at the bottom surface 23 of the battery cell 1X to close the opening, and the blank portion is cut as necessary to cover the surface of the battery cell 1X with the heat shrinkable tube. It was.
 この方法では、図24(c)の断面図に示すように電池セル1Xの底面23から熱収縮チューブが突出するため、電池セル1Xの底面23が不均一となってしまう。この結果、複数の電池セル1Xを積層してバインドバー等で狭着して電池積層体を構成する際には、電池セル1Xの底面23が同一平面上に並ばなくなる。このため、各電池セル1Xの天面24も必然的に一致しなくなり、電池セル1Xの天面24から突出させた電極端子13同士をバスバー等で固定する際に、複数の電極端子13が同一平面上に揃わないため、バスバーとの接触面が均一とならず、接触状態が一定しないという問題がある。また、電池セルの底面を冷却プレートと接触させて、底面から冷却する場合は、電池セルの底面が一定しないと、電池セル毎の冷却プレートとの接触状態が一定せず、冷却能力を発揮できなくなる。 In this method, as shown in the cross-sectional view of FIG. 24C, the heat shrinkable tube protrudes from the bottom surface 23 of the battery cell 1X, so that the bottom surface 23 of the battery cell 1X becomes uneven. As a result, when a plurality of battery cells 1X are stacked and tightly attached with a bind bar or the like to form a battery stack, the bottom surfaces 23 of the battery cells 1X do not line up on the same plane. For this reason, the top surface 24 of each battery cell 1X does not necessarily coincide, and when the electrode terminals 13 protruded from the top surface 24 of the battery cell 1X are fixed with a bus bar or the like, the plurality of electrode terminals 13 are the same. Since they do not align on a flat surface, there is a problem that the contact surface with the bus bar is not uniform and the contact state is not constant. In addition, when cooling from the bottom by bringing the bottom surface of the battery cell into contact with the cooling plate, if the bottom surface of the battery cell is not constant, the contact state with the cooling plate for each battery cell is not constant, and the cooling capacity can be demonstrated. Disappear.
特開2009-170258号公報JP 2009-170258 A
 本発明は、従来のこのような問題点を解決するためになされたものであって、その主な目的は、電池セルの底面を均一化して、電池セル同士を積層する構成に際して底面を一致させ易くした電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を提供することにある。 The present invention has been made in order to solve the conventional problems as described above. The main object of the present invention is to make the bottom surfaces of the battery cells uniform and to make the bottom surfaces coincide with each other. It is an object of the present invention to provide an easy power supply device, a vehicle, a battery cell, and a battery cell manufacturing method using the same.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、外形を、幅よりも厚さを薄くした角形とする複数の電池セル1と、前記複数の電池セル1同士を積層する面に介在させて、該電池セル1間を絶縁するためのセパレータ2と、前記複数の電池セル1を前記セパレータ2を介在させた状態で積層して締結するための締結手段と、を備える電源装置であって、前記電池セル1はそれぞれ、天面24と底面23と、各一対の主面21と側面22からなる角形の外装缶12と、前記外装缶12の主面21及び側面22を被覆する筒状の絶縁性の被覆フィルム20と、前記外装缶12の底面23を被覆する絶縁性の絶縁層30と、を備え、前記絶縁層30は、前記外装缶12の底面23の全面を密着状態に被覆すると共に、該底面23から主面21及び側面22に延伸され、少なくとも前記被覆フィルムの下端縁の一部に対して重なるようにコーティングされてなり、前記複数の電池セル1の各底面23が略同一平面上に並ぶ姿勢で、前記締結手段により積層状態に締結することができる。これにより、電池セルの底面を完全に絶縁状態に被覆して、底面からの浸水を防止すると共に、底面を略平面状とすることで、電池セル積層時に底面を同一面に揃え易くできる。 In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a plurality of battery cells 1 whose outer shape is a rectangular shape whose thickness is thinner than a width, and the plurality of battery cells A separator 2 for insulating the battery cells 1 by interposing them on the surface where the ones are stacked, and a fastening means for stacking and fastening the plurality of battery cells 1 with the separators 2 interposed The battery cell 1 includes a top surface 24, a bottom surface 23, a rectangular outer can 12 including a pair of main surfaces 21 and side surfaces 22, and a main surface of the outer can 12 respectively. 21 and a cylindrical insulating coating film 20 that covers the side surface 22 and an insulating insulating layer 30 that covers the bottom surface 23 of the outer can 12. The insulating layer 30 is provided on the outer can 12. While covering the entire surface of the bottom surface 23 in close contact, It extends from the bottom surface 23 to the main surface 21 and the side surface 22 and is coated so as to overlap at least a part of the lower end edge of the covering film, and the bottom surfaces 23 of the plurality of battery cells 1 are substantially on the same plane. It can be fastened in a stacked state by the fastening means in a lined posture. Thus, the bottom surface of the battery cell is completely insulated to prevent water from entering from the bottom surface, and by making the bottom surface substantially planar, the bottom surface can be easily aligned on the same surface when the battery cells are stacked.
 また、第2の側面に係る電源装置によれば、さらに前記外装缶12の底面23と熱結合状態に配置される、冷媒配管26を配設した冷却プレート7を備えることができる。これにより、電池セルを底面側から冷却でき、特に底面を略同一平面上に位置させることで効率よく且つ均一な電池セルの冷却が図られる。 Moreover, according to the power supply device according to the second aspect, the cooling plate 7 can be provided which is further provided with a refrigerant pipe 26 arranged in a thermally coupled state with the bottom surface 23 of the outer can 12. Thereby, the battery cell can be cooled from the bottom surface side, and in particular, the battery cell can be efficiently and uniformly cooled by positioning the bottom surface on substantially the same plane.
 さらに、第3の側面に係る電源装置によれば、前記冷却プレート7と、前記外装缶12は金属製であり、前記冷却プレート7と、前記外装缶12の底面23とを離間させる絶縁性のスペーサ40を設けることができる。これにより、金属製の外装缶と冷却プレートとを物理的に絶縁し、複数の外装缶同士が冷却プレートで短絡される事態を効果的に回避できる。 Furthermore, according to the power supply device according to the third aspect, the cooling plate 7 and the outer can 12 are made of metal, and the insulating plate that separates the cooling plate 7 from the bottom surface 23 of the outer can 12 is provided. A spacer 40 can be provided. Thereby, a metal exterior can and a cooling plate are physically insulated and the situation where several exterior cans are short-circuited with a cooling plate can be avoided effectively.
 さらにまた、第4の側面に係る電源装置によれば、前記セパレータ2が、前記電池セル1と接触された状態で、該電池セル1の底面23を部分的に被覆するリブ41を設けてなり、前記リブ41が前記電池セル1の底面23と冷却プレート7との間に介在されて両者を離間させることができる。これにより、スペーサとしてリブをセパレータに設けることで、冷却プレートによる電池セルの導通を回避できる。 Furthermore, according to the power supply device according to the fourth aspect, the separator 2 is provided with the rib 41 that partially covers the bottom surface 23 of the battery cell 1 in a state where the separator 2 is in contact with the battery cell 1. The rib 41 is interposed between the bottom surface 23 of the battery cell 1 and the cooling plate 7 to separate them. Thereby, the conduction of the battery cell by the cooling plate can be avoided by providing the rib as a spacer on the separator.
 さらにまた、第5の側面に係る電源装置によれば、前記被覆フィルム20の下端縁は、前記外装缶12の底面23から突出させず、主面21及び側面22に位置させることができる。これにより、被覆フィルムが電池セルの下面から突出して電池セル底面が平坦にならない事態を回避できる。 Furthermore, according to the power supply device according to the fifth aspect, the lower edge of the covering film 20 can be positioned on the main surface 21 and the side surface 22 without protruding from the bottom surface 23 of the outer can 12. Thereby, the situation where a coating film protrudes from the lower surface of a battery cell and the battery cell bottom face does not become flat can be avoided.
 さらにまた、第6の側面に係る電源装置によれば、前記被覆フィルム20を熱収縮チューブとすることができる。これにより、被覆フィルムを容易に外装缶に付着させることができる。 Furthermore, according to the power supply device according to the sixth aspect, the covering film 20 can be a heat shrinkable tube. Thereby, a coating film can be easily attached to an exterior can.
 さらにまた第7の側面に係る電源装置を備える車両によれば、上記の電源装置を備えることができる。 Furthermore, according to the vehicle including the power supply device according to the seventh aspect, the above power supply device can be provided.
 さらにまた、第8の側面に係る電池セルによれば、天面24と底面23と、各一対の主面21と側面22とからなる、外形を、幅よりも厚さを薄くした角形とする外装缶12と、前記外装缶12の主面21及び側面22を被覆する筒状の絶縁性の被覆フィルム20と、前記外装缶12の底面23を被覆する絶縁性の絶縁層30と、を備え、前記被覆フィルム20の下端縁は、前記外装缶12の底面23から突出させず、主面21及び側面22に位置させており、前記絶縁層30は、前記外装缶12の底面23の全面を密着状態に被覆すると共に、該底面23から主面21及び側面22に延伸され、少なくとも前記被覆フィルムの下端縁の一部に対して重なるようにコーティングすることができる。これにより、電池セルの底面を完全に絶縁状態に被覆して、底面からの浸水を防止すると共に、底面を略平面状とすることで、電池セルの積層時に底面を同一面に揃え易くできる。 Furthermore, according to the battery cell which concerns on an 8th side surface, the external shape which consists of the top | upper surface 24 and the bottom face 23, and each pair of main surface 21 and the side surface 22 is made into the square shape which made thickness thinner than the width | variety. An outer can 12, a cylindrical insulating coating film 20 that covers the main surface 21 and the side surface 22 of the outer can 12, and an insulating insulating layer 30 that covers the bottom surface 23 of the outer can 12. The lower end edge of the covering film 20 is not projected from the bottom surface 23 of the outer can 12, but is located on the main surface 21 and the side surface 22, and the insulating layer 30 covers the entire bottom surface 23 of the outer can 12. In addition to being coated in a close contact state, the film can be coated so as to extend from the bottom surface 23 to the main surface 21 and the side surface 22 and to overlap at least part of the lower edge of the coating film. Thereby, while covering the bottom face of a battery cell in a completely insulated state and preventing water from entering from the bottom face, the bottom face can be made to be the same plane when the battery cells are stacked by making the bottom face substantially flat.
 さらにまた、第9の側面に係る電源装置の製造方法によれば、外装缶の外形を、幅よりも厚さを薄くした角形とする複数の電池セル1と、前記複数の電池セル1同士を積層する面に介在させて、該電池セル1間を絶縁するためのセパレータ2と、前記複数の電池セル1を前記セパレータ2を介在させた状態で積層して締結するための締結手段と、を備える電源装置の製造方法であって、天面24と底面23と、各一対の主面21と側面22からなる前記外装缶12を内部に挿入可能な筒状の前記被覆フィルム20に、前記外装缶12を挿入し、前記被覆フィルム20の下端縁を、前記外装缶12の底面23から突出させず、主面21及び側面22に位置させた状態で、前記被覆フィルム20を熱収縮する工程と、未硬化の液状絶縁性樹脂31を充填させた樹脂槽32に前記電池セル1を底面23から、少なくとも前記電池セル1の底面23の全面、及び主面21並びに側面22であって、前記被覆フィルム20を下端を含めるように液状絶縁性樹脂31に含浸させる工程と、前記樹脂槽32から、前記電池セル1を引き上げ、絶縁性樹脂31を硬化させ、前記電池セル1の底面23に絶縁性の絶縁層30を形成する工程とを含むことができる。これにより、電池セルの底面を未硬化の液状絶縁性樹脂に含浸させることで、空気層を排除して密着状態にて絶縁層を形成でき、この面での熱伝導性を高めることができ、放熱性の面で優位となる。また絶縁セルの周囲から底面にかけて密封できることから、防滴性、防水性の信頼性も高めることができる。 Furthermore, according to the method for manufacturing the power supply device according to the ninth aspect, the plurality of battery cells 1 having the outer shape of the outer can formed into a rectangular shape whose thickness is thinner than the width, and the plurality of battery cells 1 are combined. Separator 2 for insulating between the battery cells 1 interposed between the surfaces to be stacked, and fastening means for stacking and fastening the plurality of battery cells 1 with the separators 2 interposed therebetween. A method of manufacturing a power supply apparatus comprising: a cylindrical covering film 20 into which the outer can 12 including a top surface 24 and a bottom surface 23 and a pair of main surfaces 21 and side surfaces 22 can be inserted; Inserting the can 12 and thermally shrinking the covering film 20 in a state where the lower end edge of the covering film 20 is positioned on the main surface 21 and the side surface 22 without protruding from the bottom surface 23 of the outer can 12. Uncured liquid insulating resin 3 The battery cell 1 is filled in a resin tank 32 filled with a liquid from the bottom surface 23 to at least the entire bottom surface 23 of the battery cell 1, the main surface 21, and the side surface 22, and the coating film 20 is liquid so as to include the lower end A step of impregnating the insulating resin 31, a step of lifting the battery cell 1 from the resin tank 32, curing the insulating resin 31, and forming an insulating insulating layer 30 on the bottom surface 23 of the battery cell 1; Can be included. Thereby, by impregnating the bottom surface of the battery cell with an uncured liquid insulating resin, the insulating layer can be formed in an intimate contact state by eliminating the air layer, and the thermal conductivity on this surface can be increased. It is superior in terms of heat dissipation. Moreover, since it can seal from the circumference | surroundings of an insulation cell to a bottom face, the drip-proof property and waterproof reliability can also be improved.
 さらにまた、第10の側面に係る電源装置の製造方法によれば、前記液状絶縁性樹脂31に含浸させる工程及び絶縁層30を形成する工程が、前記電池セル毎に行われ、その後、前記絶縁層30が形成された電池セル同士を、締結手段で隣接する電池セル1の間に前記セパレータ2を介在させながら積層して締結する工程を含むことができる。これにより、電池セルに対して個別に絶縁処理を行った後、これらを積層して電池ブロックを構成できる。 Furthermore, according to the method for manufacturing the power supply device according to the tenth aspect, the step of impregnating the liquid insulating resin 31 and the step of forming the insulating layer 30 are performed for each battery cell, and then the insulation is performed. The battery cells in which the layer 30 is formed can be stacked and fastened with the separator 2 interposed between the battery cells 1 adjacent to each other by fastening means. Thereby, after performing an insulation process separately with respect to a battery cell, these can be laminated | stacked and a battery block can be comprised.
 さらにまた、第11の側面に係る電源装置の製造方法によれば、前記液状絶縁性樹脂31に含浸させる工程及び絶縁層30を形成する工程が、前記複数の電池セル1を締結手段で前記セパレータ2を介在させて積層した状態にて行うことができる。これにより、電池セルを積層した電池ブロックに対して一括して絶縁処理を行うことができ、効率よく絶縁層を被覆できる。また、この方法であれば電池セルに隣接するセパレータとの隙間にも絶縁層を含浸させることができるので、電池セルとセパレータとの熱結合も改善できる利点が得られる。 Furthermore, according to the method for manufacturing the power supply device according to the eleventh aspect, the step of impregnating the liquid insulating resin 31 and the step of forming the insulating layer 30 include the step of attaching the plurality of battery cells 1 by the fastening means. 2 can be performed in a stacked state. Thereby, the insulation process can be collectively performed with respect to the battery block which laminated | stacked the battery cell, and an insulating layer can be coat | covered efficiently. Also, with this method, since the insulating layer can be impregnated in the gap between the separator adjacent to the battery cell, the advantage of improving the thermal coupling between the battery cell and the separator can be obtained.
 さらにまた、第12の側面に係る電源装置の製造方法によれば、前記液状絶縁性樹脂31に含浸させる工程が、前記電池セル1の底面23に含浸させた液状絶縁性樹脂31が未硬化の状態で、前記電池セル1の締結手段で積層した電池ブロック50を、冷却プレート7の上面に載置する工程を含むことができる。これにより、冷却プレートと電池ブロックとを絶縁性樹脂で密着状態に結合でき、冷却プレートと電セル底面との熱結合を、空気層を排除して確実なものとすることができる。 Furthermore, according to the method of manufacturing the power supply device according to the twelfth aspect, the step of impregnating the liquid insulating resin 31 includes the step of impregnating the liquid insulating resin 31 impregnated into the bottom surface 23 of the battery cell 1. The battery block 50 laminated | stacked by the fastening means of the said battery cell 1 in the state can be mounted on the upper surface of the cooling plate 7. Thereby, a cooling plate and a battery block can be couple | bonded with an insulating resin in the close_contact | adherence state, and the air coupling | bonding can be ensured by eliminating an air layer.
 さらにまた、第13の側面に係る電源装置の製造方法によれば、前記電池ブロック50を、前記冷却プレート7の上面に、離間させた状態で載置することができる。これにより、冷却プレートと電池ブロックとを離間させて両者を絶縁状態としながら、絶縁性樹脂で密着状態に固定でき、冷却プレートによる電池セル底面での短絡を回避できる。 Furthermore, according to the method of manufacturing the power supply device according to the thirteenth aspect, the battery block 50 can be placed on the upper surface of the cooling plate 7 in a separated state. Thus, the cooling plate and the battery block are separated from each other and kept in an insulating state, and can be fixed in close contact with the insulating resin, and a short circuit on the battery cell bottom surface by the cooling plate can be avoided.
 さらにまた、第14の側面に係る電池セルの製造方法によれば、天面24と底面23と、各一対の主面21と側面22とからなる、外形を、幅よりも厚さを薄くした角形とする外装缶12と、前記外装缶12の主面21及び側面22を被覆する筒状の絶縁性の被覆フィルム20と、を備える電池セルの製造方法であって、前記外装缶12を内部に挿入可能な筒状の前記被覆フィルム20に、前記外装缶12を挿入し、前記被覆フィルム20の下端縁を、前記外装缶12の底面23から突出させず、主面21及び側面22に位置させた状態で、前記被覆フィルム20を熱収縮する工程と、未硬化の液状絶縁性樹脂31を充填させた樹脂槽32に前記電池セル1を底面23から、少なくとも前記電池セル1の底面23の全面、及び主面21並びに側面22であって、前記被覆フィルム20を下端を含めるように液状絶縁性樹脂31に含浸させる工程と、前記樹脂槽32から、前記電池セル1を引き上げ、絶縁性樹脂31を硬化させ、前記電池セル1の底面23に絶縁性の絶縁層30を形成する工程と、を含むことができる。これにより、電池セルの底面を未硬化の液状絶縁性樹脂に含浸させることで、空気層を排除して密着状態にて絶縁層を形成でき、この面での熱伝導性を高めることができ、放熱性の面で優位となる。また絶縁セルの周囲から底面にかけて密封できることから、防滴性、防水性の信頼性も高めることができる。 Furthermore, according to the battery cell manufacturing method according to the fourteenth aspect, the outer shape composed of the top surface 24 and the bottom surface 23 and each pair of the main surface 21 and the side surface 22 is made thinner than the width. A battery cell manufacturing method comprising a rectangular outer can 12 and a cylindrical insulating coating film 20 that covers a main surface 21 and a side surface 22 of the outer can 12. The outer can 12 is inserted into the cylindrical covering film 20 that can be inserted into the casing, and the lower end edge of the covering film 20 is not projected from the bottom surface 23 of the outer can 12, and is positioned on the main surface 21 and the side surface 22. In this state, the step of heat shrinking the coating film 20 and the battery cell 1 filled with an uncured liquid insulating resin 31 from the bottom surface 23 to at least the bottom surface 23 of the battery cell 1. The whole surface and the main surface 21 line A step of impregnating the liquid insulating resin 31 with the covering film 20 so as to include the lower end, and the battery cell 1 is pulled up from the resin tank 32 to cure the insulating resin 31, Forming an insulating insulating layer 30 on the bottom surface 23 of the cell 1. Thereby, by impregnating the bottom surface of the battery cell with an uncured liquid insulating resin, the insulating layer can be formed in an intimate contact state by eliminating the air layer, and the thermal conductivity on this surface can be increased. It is superior in terms of heat dissipation. Moreover, since it can seal from the circumference | surroundings of an insulation cell to a bottom face, the drip-proof property and waterproof reliability can also be improved.
実施例1に係る電源装置の斜視図である。1 is a perspective view of a power supply device according to a first embodiment. 図1から上ケースを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the upper case from FIG. 図2の電池ブロックを示す斜視図である。It is a perspective view which shows the battery block of FIG. 図3の電池ブロックの分解斜視図である。FIG. 4 is an exploded perspective view of the battery block of FIG. 3. 図4の電池セル同士の積層状態を示す分解斜視図である。It is a disassembled perspective view which shows the lamination | stacking state of the battery cells of FIG. 図5の電池セルを示す斜視図である。It is a perspective view which shows the battery cell of FIG. 図6の電池セルの三面図である。It is a three-plane figure of the battery cell of FIG. 図6の電池セルの底面における絶縁層の断面図である。It is sectional drawing of the insulating layer in the bottom face of the battery cell of FIG. 電池セルの底面から被覆フィルムの下端が突出する例を示す模式図である。It is a schematic diagram which shows the example which the lower end of a coating film protrudes from the bottom face of a battery cell. 図6の電池セルの分解斜視図である。It is a disassembled perspective view of the battery cell of FIG. 図10の電池セルに被覆フィルムを被覆した状態を示す正面図である。It is a front view which shows the state which coat | covered the coating film on the battery cell of FIG. 未硬化の液状絶縁性樹脂に、図11の電池セルの底面を含浸する状態を示す模式図である。It is a schematic diagram which shows the state which impregnates the bottom face of the battery cell of FIG. 11 in uncured liquid insulating resin. 電池ブロックを未硬化の液状絶縁性樹脂に含浸する状態を示す模式図である。It is a schematic diagram which shows the state which impregnates a battery block in uncured liquid insulating resin. スペーサを介在させて電池セルと冷却プレートとを物理的に離間させる状態を示す断面図である。It is sectional drawing which shows the state which spaces apart a battery cell and a cooling plate through a spacer. リブを設けたセパレータで電池セルを狭持する状態を示す断面図である。It is sectional drawing which shows the state which clamps a battery cell with the separator which provided the rib. 変形例に係る電池ブロックの冷却構造を示す模式図である。It is a schematic diagram which shows the cooling structure of the battery block which concerns on a modification. 図16に示す電池ブロックの一部拡大垂直縦断面図である。FIG. 17 is a partially enlarged vertical vertical sectional view of the battery block shown in FIG. 16. 図16に示す電池ブロックの垂直横断面図である。FIG. 17 is a vertical cross-sectional view of the battery block shown in FIG. 16. エンジンとモータで走行するハイブリッド自動車にバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery system in the electric vehicle which drive | works only with a motor. 電池セルを積層した電源装置を示す平面図である。It is a top view which shows the power supply device which laminated | stacked the battery cell. 図21の電源装置の側面図である。It is a side view of the power supply device of FIG. 図21の電池セルの斜視図である。It is a perspective view of the battery cell of FIG. 図23の電池セルを従来の被覆フィルムで被覆した状態を示す三面図である。FIG. 24 is a trihedral view showing a state in which the battery cell of FIG. 23 is covered with a conventional coating film. 図23の電池セルを従来の被覆フィルムで被覆する様子を示す斜視図である。It is a perspective view which shows a mode that the battery cell of FIG. 23 is coat | covered with the conventional coating film. 図25の状態から熱収縮シートを熱収縮させる様子を示す斜視図である。It is a perspective view which shows a mode that a heat-shrink sheet | seat is heat-shrinked from the state of FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を例示するものであって、本発明は電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle using the same, a battery cell, and a method for manufacturing the battery cell. The apparatus and the vehicle, battery cell, and battery cell manufacturing method using the same are not specified as follows. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1
 図1~図20に、実施例1に係る電源装置及びこれを用いた車両、電池セルを示す。これらの図において、図1はバッテリシステム91の斜視図、図2は図1から上ケース72を外した状態を示す斜視図、図3は図2の電池ブロック50を示す斜視図、図4は図3の電池ブロック50の分解斜視図、図5は図4の電池セル1同士の積層状態を示す分解斜視図、図6は図5の電池セル1を示す斜視図、図7は図6の電池セル1の三面図、図8は図6の電池セル1の底面23における絶縁層30の断面図、図9は電池セル1の底面23から被覆フィルムの下端が突出する例を示す模式図、図10は図6の電池セル1の分解斜視図、図11は図10の電池セル1に被覆フィルムを被覆した状態を示す正面図、図12は未硬化の液状絶縁性樹脂31に、図11の電池セル1の底面23を含浸する状態を示す模式図、図13は電池ブロック50を未硬化の液状絶縁性樹脂31に含浸する状態を示す模式図、図14はスペーサ40を介在させて電池セル1と冷却プレート7とを物理的に離間させる状態を示す断面図、図15はリブ41を設けたセパレータ2で電池セル1を狭持する状態を示す断面図、図16は変形例に係る電池ブロック50の冷却構造を示す模式図、図17は図16に示す電池ブロック50の一部拡大垂直縦断面図、図18は図16に示す電池ブロック50の垂直横断面図、図19はエンジンとモータで走行するハイブリッド自動車にバッテリシステムを搭載する例を示すブロック図、図20はモータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図を、それぞれ示している。 1 to 20 show a power supply apparatus according to a first embodiment, a vehicle using the same, and a battery cell. In these drawings, FIG. 1 is a perspective view of the battery system 91, FIG. 2 is a perspective view showing a state where the upper case 72 is removed from FIG. 1, FIG. 3 is a perspective view showing the battery block 50 of FIG. 3 is an exploded perspective view of the battery block 50, FIG. 5 is an exploded perspective view showing a stacked state of the battery cells 1 of FIG. 4, FIG. 6 is a perspective view showing the battery cell 1 of FIG. 5, and FIG. FIG. 8 is a cross-sectional view of the insulating layer 30 on the bottom surface 23 of the battery cell 1 in FIG. 6, and FIG. 9 is a schematic diagram illustrating an example in which the lower end of the coating film protrudes from the bottom surface 23 of the battery cell 1. 10 is an exploded perspective view of the battery cell 1 of FIG. 6, FIG. 11 is a front view showing a state in which the battery cell 1 of FIG. 10 is covered with a coating film, FIG. 12 shows an uncured liquid insulating resin 31, and FIG. FIG. 13 is a schematic diagram showing a state in which the bottom surface 23 of the battery cell 1 is impregnated. FIG. 14 is a cross-sectional view showing a state in which the battery cell 1 and the cooling plate 7 are physically separated with a spacer 40 interposed therebetween, FIG. FIG. 16 is a cross-sectional view showing a state in which the battery cell 1 is sandwiched between the separators 2 provided with ribs 41, FIG. 16 is a schematic view showing a cooling structure of the battery block 50 according to a modification, and FIG. 17 is a battery block 50 shown in FIG. 18 is a partially enlarged vertical longitudinal sectional view, FIG. 18 is a vertical transverse sectional view of the battery block 50 shown in FIG. 16, and FIG. 19 is a block diagram showing an example in which a battery system is mounted on a hybrid vehicle running with an engine and a motor. FIG. 1 is a block diagram showing an example in which a battery system is mounted on an electric vehicle that runs only by a motor.
 バッテリシステム91の外観は、図1、図2に示すように、箱形の外装ケース70を二分割して、内部に複数の電池ブロック50を収納している。外装ケース70は、下ケース71と、上ケース72と、これらの下ケース71、上ケース72の両端に連結している端面プレート73とを備えている。上ケース72と下ケース71は、外側に突出する鍔部74を有し、この鍔部74をボルトとナットで固定している。図1、図2の外装ケース70は、鍔部74を外装ケース70の側面に配置している。また図2の例では、下ケース71に電池ブロック50を長手方向に2つ、横方向に2列、計4個収納している。各電池ブロック50は、下ケース71に止ネジ等で固定して、外装ケース70内部の定位置に固定している。端面プレート73は、下ケース71と上ケース72の両端に連結されて、外装ケース70の両端を閉塞している。
(電池ブロック50)
As shown in FIGS. 1 and 2, the external appearance of the battery system 91 is obtained by dividing a box-shaped outer case 70 into two and housing a plurality of battery blocks 50 therein. The exterior case 70 includes a lower case 71, an upper case 72, and end plates 73 connected to both ends of the lower case 71 and the upper case 72. The upper case 72 and the lower case 71 have a flange portion 74 protruding outward, and the flange portion 74 is fixed with a bolt and a nut. In the exterior case 70 of FIGS. 1 and 2, the flange portion 74 is disposed on the side surface of the exterior case 70. In the example of FIG. 2, a total of four battery blocks 50 are stored in the lower case 71, two in the longitudinal direction and two in the horizontal direction. Each battery block 50 is fixed to the lower case 71 with a set screw or the like, and fixed to a fixed position inside the outer case 70. The end surface plate 73 is connected to both ends of the lower case 71 and the upper case 72 and closes both ends of the exterior case 70.
(Battery block 50)
 各電池ブロック50は図3に示すように、外観を略箱形とし、電池セル1を多数積層した電池積層体10を、両端面からエンドプレート4で、バインドバー11を介して狭持している。電池積層体10は、図4の分解斜視図に示すように、角形の電池セル1を複数、セパレータ2を介して積層して構成される。図4の電池ブロック50の例では、18個の角形電池セル1を積層している。バインドバー11は電池セル1を締結する締結手段として機能し、この例ではストリップ状の金属板の両端を折曲して折曲片とし、全体をコ字状としている。またエンドプレート4には、バインドバー11の折曲片を受ける位置に窪みを設けている。折曲片及びエンドプレート4にねじ穴を設けることで、バインドバー11をエンドプレート4に螺合して固定される。
(電池セル1)
As shown in FIG. 3, each battery block 50 has a substantially box-like appearance, and a battery stack 10 in which a large number of battery cells 1 are stacked is sandwiched by end plates 4 from both end faces via bind bars 11. Yes. As shown in the exploded perspective view of FIG. 4, the battery stack 10 is configured by stacking a plurality of prismatic battery cells 1 via separators 2. In the example of the battery block 50 in FIG. 4, 18 rectangular battery cells 1 are stacked. The bind bar 11 functions as a fastening means for fastening the battery cell 1. In this example, both ends of the strip-shaped metal plate are bent into bent pieces, and the whole is formed in a U shape. Further, the end plate 4 is provided with a recess at a position for receiving the bent piece of the bind bar 11. By providing a screw hole in the bent piece and the end plate 4, the bind bar 11 is screwed and fixed to the end plate 4.
(Battery cell 1)
 電池セル1は、図5、図6に示すように、外形を、幅よりも厚さを薄くした角形とする外装缶12で構成され、外装缶の天面24、すなわち外装缶12を閉塞する封口板に正負の電極端子13を設けている。電極端子13同士は、図4で示すバスバー17を介して電気的に接続している。なお電池セルの外装缶は、プラスチック等の絶縁材で製作することもできる。この場合は電池セル同士を積層する際に、外装缶を絶縁する必要がないので、セパレータを金属製とすることもできる。
(セパレータ2)
As shown in FIG. 5 and FIG. 6, the battery cell 1 is configured by an outer can 12 having an outer shape with a rectangular shape whose thickness is thinner than a width, and closes the top surface 24 of the outer can, that is, the outer can 12. Positive and negative electrode terminals 13 are provided on the sealing plate. The electrode terminals 13 are electrically connected via a bus bar 17 shown in FIG. The outer can of the battery cell can be made of an insulating material such as plastic. In this case, since it is not necessary to insulate the outer can when the battery cells are stacked, the separator can be made of metal.
(Separator 2)
 電池ブロック50は、積層している電池セル1の間にセパレータ2を挟着している。この電池ブロック50は、電池セル1の外装缶12を金属製として、プラスチック製のセパレータ2で絶縁して積層できる。セパレータ2は、両面を電池セル1に嵌着できる形状として、隣接する電池セル1の位置ずれを阻止して積層できる。なお電池ブロックは、電池セルの外装缶をプラスチック等の絶縁材として、セパレータを挟着することなく積層状態に固定することもできる。 The battery block 50 has a separator 2 sandwiched between stacked battery cells 1. The battery block 50 can be laminated with the outer can 12 of the battery cell 1 made of metal and insulated by the plastic separator 2. The separator 2 has a shape that can be fitted to the battery cell 1 on both sides, and can be stacked while preventing the positional deviation of the adjacent battery cells 1. The battery block can also be fixed in a laminated state without sandwiching a separator by using an outer can of the battery cell as an insulating material such as plastic.
 またセパレータ2は、図5に示すように、電池セル1を冷却するために、電池セル1との間に、空気等の冷却気体を通過させる冷却隙間53を設けている。これにより電池ブロック50は、複数の電池セル1を冷却隙間53ができる状態で積層している。そしてこの電池ブロック50の電池セル1に冷却気体を強制送風して冷却する冷却機構として、図1に示すように強制送風機構9Bを備えている。電池ブロック50は、図4に示すように、積層している電池セル1の間にセパレータ2を挟着している。このセパレータ2は、図5に示すように、電池セル1との間に冷却隙間53ができる形状としている。さらに、図のセパレータ2は、両面に電池セル1を嵌着構造で連結している。電池セル1に嵌着構造で連結されるセパレータ2を介して、隣接する電池セル1の位置ずれを阻止して積層している。
(電池セル1)
As shown in FIG. 5, the separator 2 is provided with a cooling gap 53 that allows a cooling gas such as air to pass between the battery cell 1 and the battery cell 1 in order to cool the battery cell 1. Thereby, the battery block 50 has laminated | stacked the several battery cell 1 in the state in which the cooling gap 53 is made. As a cooling mechanism for cooling the battery cells 1 of the battery block 50 by forcibly blowing cooling gas, a forced blowing mechanism 9B is provided as shown in FIG. As shown in FIG. 4, the battery block 50 has a separator 2 sandwiched between stacked battery cells 1. As shown in FIG. 5, the separator 2 has a shape in which a cooling gap 53 is formed between the separator 2 and the battery cell 1. Furthermore, the separator 2 of the figure has connected the battery cell 1 with the fitting structure on both surfaces. Through the separator 2 connected to the battery cell 1 with a fitting structure, the adjacent battery cells 1 are stacked while being prevented from being displaced.
(Battery cell 1)
 電池セル1は、リチウムイオン二次電池の角形電池である。ただ、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。角形電池からなる図6の電池セル1は、所定の厚さを有する四角形で、天面24の両端部には正負の電極端子13を突出して設けており、天面24の中央部には安全弁の開口部を設けている。積層される電池セル1は、隣接する正負の電極端子13をバスバー17で連結して互いに直列に接続している。隣接する電池セル1を互いに直列に接続するバッテリシステムは、出力電圧を高くして出力を大きくできる。ただ、バッテリシステムは、隣接する電池セルを並列に接続することもできる。 The battery cell 1 is a prismatic battery of a lithium ion secondary battery. However, the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The battery cell 1 shown in FIG. 6 made of a square battery is a quadrilateral having a predetermined thickness, and has positive and negative electrode terminals 13 protruding from both ends of the top surface 24, and a safety valve at the center of the top surface 24. The opening is provided. The battery cells 1 to be stacked are connected in series by connecting adjacent positive and negative electrode terminals 13 with a bus bar 17. A battery system in which adjacent battery cells 1 are connected in series can increase the output voltage and increase the output. However, the battery system can also connect adjacent battery cells in parallel.
 電池セル1の天面24を除く面は、絶縁処理される。具体的には、電池セル1の天面24及び底面23を除く面を、被覆フィルム20で表面を被覆する。そして底面23は後述する絶縁層30で絶縁する。天面24は、電極端子13を電気接続のために表出させる必要があることから絶縁せず、一方でそれ以外の面は意図しない短絡を回避するため、絶縁する。このような絶縁材を被覆することで電池セルに絶縁性を持たせる構成に際しては、電池セル同士を積層した際に、各電池セルの高さ位置が揃うように留意する必要がある。すなわち、電池セル同士を積層して電池積層体とする際に、隣接する電池セル同士の電極端子13は、バスバー17で締結されるが、この際、従来のシュリンクチューブのみにより電池セル表面を絶縁した方式では、電池セルの底面に生じる段差が原因で、隣接する電池セル同士の電極端子の、高さ方向の位置がずれてしまう。その結果、バスバーと電極端子との接触不良等を起こしたり、電極端子に余分な負荷がかかってしまう。この問題を解消するために、本実施例では、被覆フィルムに加えて絶縁層30を併用することで、電池セル1の底面23に段差が形成される事態を回避している。以下、説明する。
(被覆フィルム20)
The surfaces of the battery cell 1 other than the top surface 24 are insulated. Specifically, the surface excluding the top surface 24 and the bottom surface 23 of the battery cell 1 is covered with the coating film 20. The bottom surface 23 is insulated by an insulating layer 30 described later. The top surface 24 is not insulated because the electrode terminals 13 need to be exposed for electrical connection, while the other surfaces are insulated to avoid unintended short circuits. In the configuration in which the battery cells are provided with an insulating property by covering with such an insulating material, it is necessary to pay attention so that the height positions of the battery cells are aligned when the battery cells are stacked. That is, when the battery cells are stacked to form a battery stack, the electrode terminals 13 of the adjacent battery cells are fastened by the bus bar 17, and at this time, the surface of the battery cell is insulated only by the conventional shrink tube. In the method, the height direction positions of the electrode terminals of the adjacent battery cells are shifted due to the step formed on the bottom surface of the battery cell. As a result, a contact failure between the bus bar and the electrode terminal occurs, or an extra load is applied to the electrode terminal. In order to solve this problem, in this embodiment, the use of the insulating layer 30 in addition to the covering film avoids a situation where a step is formed on the bottom surface 23 of the battery cell 1. This will be described below.
(Coating film 20)
 電池セル1の主面21は、図6、図7、図8に示すように、被覆フィルム20で被覆される。被覆フィルム20は熱収縮チューブとして、電池セル1の外面を熱収縮させることで被覆する。このような被覆フィルム20には、好ましくは絶縁性、安定性に優れたPET等の樹脂が利用できる。特にPET樹脂製のシュリンクチューブは、熱収縮チューブとして安価で好ましい。 The main surface 21 of the battery cell 1 is covered with a covering film 20 as shown in FIGS. 6, 7, and 8. The covering film 20 is covered as a heat shrinkable tube by heat shrinking the outer surface of the battery cell 1. For such a covering film 20, a resin such as PET preferably having excellent insulating properties and stability can be used. In particular, a shrink tube made of PET resin is inexpensive and preferable as a heat shrinkable tube.
 被覆フィルム20は、図8の断面図等に示すように、電池セル1の底面23近傍で電池セル1の底面23から突出しないよう、好ましくは電池セル1の側面22と同じ長さか、若しくはこれよりも短くなるように形成する。このようにすることで、電池セル1の底面23側に被覆フィルム20が突出する事態を回避できる。仮に図9に示すように、被覆フィルム20が長く形成され、電池セル1の底面23からtだけ突出するようになると、絶縁層30で電池セル底面23を被覆した状態で、電池セル1の底面23周辺が突出量t又はこれを折曲した分だけ他の部分よりも厚くなる結果、電池セル1の底面23が平坦状とならず、部分的に凹凸が形成されることとなる。このような凹凸は電池セル毎に個体差が生じる可能性があることから、電池セル同士を積層する際に、電池セルの高さ又は突出量を一定に保持できず、電池セルの底面及び天面が揃わずに、電池セルの天面においては電極端子の高さが揃わず、隣接する電極端子同士をバスバーで連結する際、バスバーとの固定状態が電池セル毎にばらついて接触抵抗が大きくなる。また電池セルの底面において冷却プレートと接続する場合は(後述する図16)、冷却プレートと電池セル底面との接触面積に差が生じ、冷却能力にばらつきが生じ、電池セル間の性能の劣化にも個体差が生じることとなって、好ましくない。 As shown in the cross-sectional view of FIG. 8, the covering film 20 is preferably the same length as the side surface 22 of the battery cell 1 or the length thereof so as not to protrude from the bottom surface 23 of the battery cell 1 in the vicinity of the bottom surface 23 of the battery cell 1. It is formed to be shorter. By doing in this way, the situation where the coating film 20 protrudes to the bottom face 23 side of the battery cell 1 can be avoided. As shown in FIG. 9, when the covering film 20 is formed long and protrudes by t from the bottom surface 23 of the battery cell 1, the bottom surface of the battery cell 1 is covered with the insulating layer 30 covering the battery cell bottom surface 23. As a result, the bottom surface 23 of the battery cell 1 does not become flat, and irregularities are partially formed. Since such unevenness may cause individual differences for each battery cell, when stacking battery cells, the height or protruding amount of the battery cells cannot be kept constant, and the bottom surface and the ceiling of the battery cell cannot be maintained. When the surface of the battery cell is not aligned, the height of the electrode terminal is not aligned on the top surface of the battery cell, and when the adjacent electrode terminals are connected by the bus bar, the fixed state with the bus bar varies from battery cell to battery cell, resulting in high contact resistance. Become. Further, when connecting to the cooling plate on the bottom surface of the battery cell (FIG. 16 described later), the contact area between the cooling plate and the battery cell bottom surface is different, the cooling capacity varies, and the performance between the battery cells is deteriorated. This is not preferable because individual differences occur.
 そこで、このような凹凸の発生を回避するため、被覆フィルム20は、電池セル1の底面23から突出しないように、電池セル1の底面23をほぼ同じ高さとするか、あるいは被覆フィルム20や電池セル1の製造公差を考慮して、図8等に示すように、被覆フィルム20の下端が、電池セル1の底面23よりも若干短くなるように設定される。このようにすることで、電池セル底面23からの被覆フィルム20の突出を回避でき、安定的な電池セルの製造に繋がる。 Therefore, in order to avoid the occurrence of such unevenness, the covering film 20 has the bottom surface 23 of the battery cell 1 substantially the same height so as not to protrude from the bottom surface 23 of the battery cell 1, or the covering film 20 or the battery Considering the manufacturing tolerance of the cell 1, the lower end of the covering film 20 is set to be slightly shorter than the bottom surface 23 of the battery cell 1 as shown in FIG. By doing in this way, protrusion of the coating film 20 from the battery cell bottom face 23 can be avoided, and it leads to manufacture of a stable battery cell.
 なお、電池セルの底面側から被覆フィルムが突出しないとは、被覆フィルムの長さが必ずしも電池セルの高さよりも短いことを意味しない。すなわち、電池セルの底面側から被覆フィルムが突出しなければ足り、逆に電池セルの天面側において被覆フィルムが若干突出することは、電極端子の電気接続等が阻害されない限りは許容される。 Note that the fact that the coating film does not protrude from the bottom surface side of the battery cell does not mean that the length of the coating film is necessarily shorter than the height of the battery cell. That is, it is sufficient that the coating film does not protrude from the bottom surface side of the battery cell, and conversely, the coating film slightly protruding on the top surface side of the battery cell is allowed as long as the electrical connection of the electrode terminals is not hindered.
 すなわち天面24側においては、電池セル1同士を積層して電池積層体とする際に、隣接する電池セル1同士の電極端子13の高さ位置のばらつきを抑制でき、バスバーを用いた連結に際しても高低差を低減し、接触状態を均一として不具合なくバスバーを締結でき、電気接続の信頼性を向上できる。 That is, on the top surface 24 side, when the battery cells 1 are stacked to form a battery stack, variation in the height position of the electrode terminals 13 between the adjacent battery cells 1 can be suppressed, and when connecting using the bus bar However, the height difference can be reduced, the contact state can be made uniform and the bus bar can be fastened without any trouble, and the reliability of the electrical connection can be improved.
 一方で、電池セルの底面に達しないように、いいかえると被覆フィルムを下端において意図的に短くし、電池セルの主面が、底面近傍で露出するようになると、この部分を被覆しないと意図しない導通が発生する。そこで、電池セル1の底面23を被覆する絶縁層30を底面23側から連続的に延伸させて、このような露出部分を被覆することとした。この結果、電池セル1の周囲に沿って、被覆フィルム20と絶縁層30が重複する部分を生じさせている。図7の三面図においては、重複部分をOWで示している。 On the other hand, in order to avoid reaching the bottom surface of the battery cell, in other words, when the covering film is intentionally shortened at the lower end and the main surface of the battery cell is exposed near the bottom surface, this portion is not intended unless it is covered. Conduction occurs. Therefore, the insulating layer 30 covering the bottom surface 23 of the battery cell 1 is continuously extended from the bottom surface 23 side to cover such an exposed portion. As a result, a portion where the covering film 20 and the insulating layer 30 overlap is generated along the periphery of the battery cell 1. In the three views of FIG. 7, the overlapping portion is indicated by OW.
 この被覆フィルムで外装缶を被覆するには、図10に示すように、外装缶12を内部に挿入可能な筒状の被覆フィルム20に、外装缶12を挿入する。ここで、被覆フィルム20の下端を、電池セル1の主面21及び側面22において下端縁から突出しない位置に位置合わせして、熱溶着する。これによって、図11に示すように外装缶の主面21及び側面22を被覆した状態に被覆フィルムを固定できる。
(絶縁層30)
To coat the outer can with this covering film, the outer can 12 is inserted into a cylindrical covering film 20 into which the outer can 12 can be inserted, as shown in FIG. Here, the lower end of the coating film 20 is aligned with the main surface 21 and the side surface 22 of the battery cell 1 at a position that does not protrude from the lower end edge, and is thermally welded. As a result, as shown in FIG. 11, the covering film can be fixed in a state where the main surface 21 and the side surface 22 of the outer can are covered.
(Insulating layer 30)
 絶縁層30は、絶縁性を備える樹脂製で、シリコーン、ウレタン、エポキシ等の絶縁性に優れた樹脂が好適に利用できる。また、未硬化の状態で液状の樹脂を用いる。このような液状とすることで、図12に示すように、樹脂槽32に充填した未硬化の液状絶縁性樹脂31に、図11に示す電池セル1の底面23を含浸する。この樹脂を硬化させることにより絶縁層30を形成し、被覆フィルムで被覆されない電池セル1の底面23は、この絶縁層30によって被覆され絶縁される。この方法であれば、硬化前の液状の絶縁性樹脂31が、電池セル1の表面に行き渡ると共に、電池セル1や被覆フィルムの微細な隙間にも侵入して充填されるので、空隙や空気層が形成されることもなく、絶縁密封構造が構成される。 The insulating layer 30 is made of a resin having an insulating property, and a resin having an excellent insulating property such as silicone, urethane, or epoxy can be suitably used. Further, a liquid resin is used in an uncured state. By making such a liquid, as shown in FIG. 12, the bottom surface 23 of the battery cell 1 shown in FIG. 11 is impregnated into the uncured liquid insulating resin 31 filled in the resin tank 32. The insulating layer 30 is formed by curing the resin, and the bottom surface 23 of the battery cell 1 not covered with the covering film is covered and insulated by the insulating layer 30. According to this method, the liquid insulating resin 31 before curing spreads over the surface of the battery cell 1 and also enters and fills in the minute gaps between the battery cell 1 and the coating film. Without being formed, an insulating sealing structure is configured.
 またこの方法であれば、絶縁層30の膜厚を均一に形成しやすい。特に、絶縁層30を薄く形成することで、電池セル1の主面21で絶縁層の端縁によって目立った段差が形成されることを回避でき、電池セル主面21を平坦面に維持できる。絶縁層30の膜厚は、好ましくは0.01mm~3mm、より好ましくは0.05mm~0.2mmとする。また電池セル1の主面21のみならず、底面23もほぼ平坦面とできるので、この面を放熱プレートに接触させて熱結合を構成するのに都合がよい。さらに電池セル1の底面23が絶縁されることから、金属製の放熱プレートに直接接触させても、隣接する電池セルとの間で短絡されることがない。加えて、底面23を完全に被覆できることから、結露や水の侵入に対しても、防水性を発揮でき、水滴からの電池セルの保護も図られる。 Also, with this method, it is easy to form the insulating layer 30 with a uniform thickness. In particular, by forming the insulating layer 30 thin, it is possible to avoid a conspicuous step formed by the edge of the insulating layer on the main surface 21 of the battery cell 1, and the battery cell main surface 21 can be maintained flat. The thickness of the insulating layer 30 is preferably 0.01 mm to 3 mm, more preferably 0.05 mm to 0.2 mm. Further, since not only the main surface 21 of the battery cell 1 but also the bottom surface 23 can be substantially flat, it is convenient to form a thermal coupling by bringing this surface into contact with the heat radiating plate. Further, since the bottom surface 23 of the battery cell 1 is insulated, even if it is brought into direct contact with the metal heat radiating plate, it is not short-circuited between adjacent battery cells. In addition, since the bottom surface 23 can be completely covered, the waterproof property can be exhibited against dew condensation and water intrusion, and the battery cell can be protected from water droplets.
 含浸は、ディッピングによって簡単に行える。ここでは液状絶縁性樹脂31が、被覆フィルムの下端よりも高い位置となるまで電池セルを漬け込めば足りる。特に、絶縁層30の膜厚を薄くすることで、目立った段差が形成されることもなく、被覆フィルムと絶縁層30とが重なる領域OWについては正確な制御が不要で、含浸の作業性にも優れる。 Impregnation can be easily performed by dipping. Here, it is sufficient to immerse the battery cell until the liquid insulating resin 31 is positioned higher than the lower end of the coating film. In particular, by reducing the thickness of the insulating layer 30, there is no noticeable level difference, and no precise control is required for the region OW where the covering film and the insulating layer 30 overlap, and impregnation workability is improved. Also excellent.
 このようにして底面23を絶縁層30で被覆した電池セル1は、セパレータ2を介在させた状態で締結手段によって締結され、電池ブロック50を構成する。なお図12の例では、一の電池セル1を個別に樹脂槽32に含浸して絶縁層30を設ける例を説明したが、この例に限られず、例えば被覆フィルムで被覆した電池セルを積層して電池ブロック50とした状態で、図13に示すように樹脂槽32に含浸することもできる。この方法であれば、一括して含浸できるためディッピングの作業性に優れる。また、電池セル1をセパレータ2で狭持された状態で底面23をディッピングすることによって、電池セル1の底面23のみならず、電池セル1とセパレータ2の隙間にも液状絶縁性樹脂31が充填されて、電池セル1とセパレータ2との間での空気層の形成も排除され、セパレータ2を介した放熱においても有利となる利点が得られる。さらに、電池ブロック50を一括して含浸してディッピングした後、液状絶縁性樹脂31が硬化する前に、後述する冷却プレート7に配置することで、液状絶縁性樹脂31が硬化すると同時に、電池ブロック50を冷却プレート7に密着させて固定することができる。電池ブロック50と冷却プレート7との間に隙間ができず、また気泡などの侵入を防止することから、冷却プレートによって、より効率良く電池ブロック50を冷却することができる。 The battery cell 1 having the bottom surface 23 covered with the insulating layer 30 in this way is fastened by fastening means with the separator 2 interposed therebetween, and constitutes a battery block 50. In the example of FIG. 12, the example in which one battery cell 1 is individually impregnated in the resin tank 32 and the insulating layer 30 is provided has been described. However, the present invention is not limited to this example, and for example, battery cells covered with a coating film are stacked. In this state, the resin tank 32 can be impregnated as shown in FIG. This method is excellent in dipping workability because it can be impregnated all at once. Further, by dipping the bottom surface 23 while the battery cell 1 is held between the separators 2, the liquid insulating resin 31 is filled not only in the bottom surface 23 of the battery cell 1 but also in the gap between the battery cell 1 and the separator 2. Thus, formation of an air layer between the battery cell 1 and the separator 2 is also eliminated, and an advantage that is advantageous in heat dissipation via the separator 2 can be obtained. Further, after impregnating and dipping the battery block 50 in a lump and before the liquid insulating resin 31 is cured, the battery block 50 is disposed on the cooling plate 7 to be described later. 50 can be fixed in close contact with the cooling plate 7. Since no gap is formed between the battery block 50 and the cooling plate 7 and air bubbles are prevented from entering, the battery block 50 can be cooled more efficiently by the cooling plate.
 以上のように、電池セル1の主面21や側面22は主として被覆フィルムで絶縁し、その一方で電池セル1の底面23は絶縁層30を塗布して絶縁する。このように絶縁の構成を使い分けることで、冷却性能と絶縁層30の強度を両立できるセル絶縁を構成できる。すなわち、電池セル1の主面21は、セパレータ2を介して多数の電池セル1を積層した状態で締結手段により締結するため、高い圧力が印加される。このため、高い押圧力に常時晒されても絶縁性を維持できる強度が求められる。シュリンクチューブなどの被覆フィルムは強度が高く、このような用途に好都合である。一方で電池セルの底面においては、絶縁のみならず、防水性の維持も重要となる。特に外部から侵入した水や内部で発生した結露は、ケース内部で底に溜まるため、電池セルの底面は冠水しやすいといえる。そこで、水分の侵入を確実に阻止できるよう、僅かな隙間や空隙も埋められる液状の絶縁性樹脂31を含浸させて形成した絶縁層30は、このような防水性の点から、好ましいといえる。このように、強度と薄さが必要な電池セル1の主面21には被覆フィルムで絶縁を行う一方、電池セル1の底面23はディッピングで絶縁層30を構成することにより、冷却性能と絶縁層の強度を両立できる、信頼性にも優れた絶縁構造が実現できる。 As described above, the main surface 21 and the side surface 22 of the battery cell 1 are mainly insulated by the covering film, while the bottom surface 23 of the battery cell 1 is insulated by applying the insulating layer 30. As described above, by properly using the insulating configuration, it is possible to configure cell insulation that can achieve both the cooling performance and the strength of the insulating layer 30. That is, since the main surface 21 of the battery cell 1 is fastened by the fastening means in a state where a large number of battery cells 1 are stacked via the separator 2, a high pressure is applied. For this reason, the intensity | strength which can maintain insulation even if always exposed to a high pressing force is calculated | required. A coated film such as a shrink tube has high strength and is convenient for such an application. On the other hand, on the bottom surface of the battery cell, not only insulation but also maintenance of waterproofness is important. In particular, water entering from the outside and dew condensation generated inside accumulate at the bottom inside the case, so it can be said that the bottom surface of the battery cell is easily flooded. Therefore, it can be said that the insulating layer 30 formed by impregnating the liquid insulating resin 31 in which a slight gap or gap is filled so as to reliably prevent the intrusion of moisture is preferable from the viewpoint of such waterproofness. In this way, the main surface 21 of the battery cell 1 that requires strength and thinness is insulated with a coating film, while the bottom surface 23 of the battery cell 1 is formed with an insulating layer 30 by dipping, thereby providing cooling performance and insulation. It is possible to realize an insulating structure that can achieve both layer strength and excellent reliability.
 上述の通り、絶縁層30で被覆した電池セル1の底面23には凹凸を設けず、平面状に維持する。このようにすることで、電池セル1を複数積層する際に底面23をほぼ同一面とするように一致させやすくなり、その結果、電池積層体10の上面においても電極端子13が同一面上に揃い、バスバー17による連結等を安定的に行えるようになり、信頼性の向上に繋がる。 As described above, the bottom surface 23 of the battery cell 1 covered with the insulating layer 30 is not provided with irregularities, and is maintained flat. In this way, when stacking a plurality of battery cells 1, it becomes easy to match the bottom surface 23 so as to be substantially the same surface. As a result, the electrode terminals 13 are also on the same surface on the top surface of the battery stack 10. As a result, the connection by the bus bar 17 and the like can be performed stably, leading to an improvement in reliability.
 加えて、図16の変形例に示すように、電池セル1の底面23を冷却プレート7に接触させて冷却する冷却方式において、電池セル1と冷却プレート7との接触面を平坦面とすることで熱結合を確実にして、冷却能力を発揮できる。特に、被覆フィルムを電池セルの底面側に突出させず、絶縁層30を塗布した底面23を外装缶の底面23に沿ったほぼ平坦面にすることで、電池セル毎の冷却プレート7との接続状態の個体差やばらつきを低減し、電池セル間での冷却能力のばらつきの発生を抑制できる利点も得られる。また電池セル1の主面21側にも、余分な凹凸を設けないことで、電池セル同士の積層を安定して行えるようになり、バインドバーによる締結を確実に行える利点も得られる。
(スペーサ40)
In addition, as shown in the modification of FIG. 16, in the cooling method in which the bottom surface 23 of the battery cell 1 is brought into contact with the cooling plate 7 to cool, the contact surface between the battery cell 1 and the cooling plate 7 is a flat surface. The heat coupling can be ensured and the cooling capacity can be demonstrated. In particular, the cover film is not protruded toward the bottom surface of the battery cell, and the bottom surface 23 coated with the insulating layer 30 is made to be a substantially flat surface along the bottom surface 23 of the outer can so that the connection with the cooling plate 7 for each battery cell is achieved. There are also advantages that individual differences and variations in state can be reduced, and variations in cooling capacity between battery cells can be suppressed. Further, by not providing an extra unevenness on the main surface 21 side of the battery cell 1, it becomes possible to stably stack the battery cells, and there is also an advantage that the fastening by the bind bar can be surely performed.
(Spacer 40)
 さらに、絶縁層30で被覆した電池セル底面23を直接冷却プレート7と連結する他、図14に示すようにスペーサ40を介在させて電池セル1と冷却プレート7とを物理的に離間させ、これらの間を絶縁することもできる。スペーサ40は、絶縁性の部材で構成する。この構成では、電池セル1と冷却プレート7との絶縁が、絶縁層30に加えてスペーサ40でも発揮されるため、二重の保護が図られる。 Further, the battery cell bottom surface 23 covered with the insulating layer 30 is directly connected to the cooling plate 7, and the battery cell 1 and the cooling plate 7 are physically separated by interposing a spacer 40 as shown in FIG. It is also possible to insulate between the two. The spacer 40 is made of an insulating member. In this configuration, since the insulation between the battery cell 1 and the cooling plate 7 is exhibited by the spacer 40 in addition to the insulating layer 30, double protection is achieved.
 またスペーサは、別部材とする他、セパレータなどと一体に形成することもできる。例えば図15に示す例では、セパレータ2の下端に、電池セル1の底面23を部分的に覆うように折曲させたリブ41を、スペーサ40として設けている。リブ41で底面23を覆われた電池セル1は、セパレータ2で狭持された状態で、床面から浮いた状態となる。この構成でも、電池セル1を冷却プレート7から物理的に離間させて、確実に絶縁性を維持できる。 Also, the spacer can be formed as a separate member or integrally with the separator. For example, in the example shown in FIG. 15, a rib 41 bent at a lower end of the separator 2 so as to partially cover the bottom surface 23 of the battery cell 1 is provided as the spacer 40. The battery cell 1 whose bottom surface 23 is covered with the rib 41 is in a state of being lifted from the floor surface while being sandwiched between the separators 2. Even in this configuration, the battery cell 1 can be physically separated from the cooling plate 7 to reliably maintain insulation.
 またこのようなスペーサ40を利用する場合は、上述した図12に示すように、電池積層体をディッピングする方法が特に有利となる。すなわち、未硬化の液状絶縁性樹脂31を塗布することで、スペーサ40と冷却プレート7、電池セル1との隙間にも樹脂が入り込んで充填されるため、これらの間の隙間が埋められ、一層熱伝導性がよくなる。また、この場合は樹脂槽32に電池積層体をディッピングする他、電池積層体を冷却プレートに載置した状態で液状絶縁性樹脂31を流し込むことで、絶縁層を形成することもできる。 Further, when such a spacer 40 is used, the method of dipping the battery stack is particularly advantageous as shown in FIG. 12 described above. That is, by applying the uncured liquid insulating resin 31, the resin also enters and fills the gaps between the spacer 40, the cooling plate 7, and the battery cell 1. Thermal conductivity is improved. In this case, in addition to dipping the battery stack in the resin tank 32, the insulating layer can be formed by pouring the liquid insulating resin 31 in a state where the battery stack is placed on the cooling plate.
 以上のように、電池セル1の主面21及び側面22を被覆する被覆フィルムと、底面23を被覆する絶縁層30を個別に構成することで、電池セル同士を積層する電池積層体の信頼性を高めることができる。
(変形例)
As described above, the reliability of the battery stack in which the battery cells are stacked by individually configuring the covering film that covers the main surface 21 and the side surface 22 of the battery cell 1 and the insulating layer 30 that covers the bottom surface 23. Can be increased.
(Modification)
 また、以上説明した図1等の例では、冷却風をファンで強制的に送風して電池セル1を冷却する空冷式を採用したが、この構成に限られず、冷媒等を用いて直接冷却する冷却方式を採用する構成としてもよい。このような例を変形例として、図16~図18に基づいて説明する。 Moreover, in the example of FIG. 1 etc. which were demonstrated above, although the air-cooling type which forcedly ventilates cooling air with a fan and cooled the battery cell 1 was employ | adopted, it is not restricted to this structure, It cools directly using a refrigerant | coolant etc. It is good also as a structure which employ | adopts a cooling system. Such an example will be described as a modification with reference to FIGS.
 図16に示すバッテリシステム92を構成する電源装置は、複数の角形電池からなる電池セル1を積層している電池積層体10と、電池積層体10を構成する電池セル1に熱結合状態に配置している冷却プレート7と、この冷却プレート7を冷却する冷却機構9とを備える。この冷却機構9は、電池積層体10を冷却プレート7に接触させて直接、効果的に冷却できる。また、電池積層体のみならず、例えば電池積層体10の端面に配置した各部材等も併せて冷却することもでき、信頼性の面でも優れる。
(冷却プレート7)
The power supply device that constitutes the battery system 92 shown in FIG. 16 is arranged in a thermally coupled state to the battery stack 10 in which the battery cells 1 composed of a plurality of prismatic batteries are stacked, and to the battery cells 1 that constitute the battery stack 10. And a cooling mechanism 9 for cooling the cooling plate 7. The cooling mechanism 9 can effectively cool the battery stack 10 directly by bringing the battery stack 10 into contact with the cooling plate 7. Further, not only the battery stack, but also, for example, each member disposed on the end face of the battery stack 10 can be cooled together, which is excellent in terms of reliability.
(Cooling plate 7)
 冷却プレート7は、電池セル1の熱を熱伝導して外部に放熱するための放熱体であり、図の例では冷媒配管を配設している。図17の断面図に示すように、冷却プレート7は、内部を閉鎖室とし、この閉鎖室に熱交換器として、冷却液である液化された冷媒を循環させる銅やアルミ等の冷媒配管26の冷却パイプを内蔵している。冷却パイプは、冷却プレート7の上面板に密着するように固定されて上面板を冷却し、底板との間には断熱材を配設して、底板との間を断熱している。また冷却プレート7にはこのような冷媒による冷却機能を付加する他、金属板のみで構成することもできる。例えば放熱フィンを設けた金属体等、放熱、伝熱性に優れた形状とする。または金属製に限らず、絶縁性を有する伝熱シートを利用しても良い。 The cooling plate 7 is a heat radiating body for conducting heat of the battery cell 1 to dissipate it to the outside, and in the example shown in the figure, a refrigerant pipe is provided. As shown in the cross-sectional view of FIG. 17, the cooling plate 7 has a closed chamber as an inside, and as a heat exchanger in the closed chamber, a coolant pipe 26 made of copper, aluminum, or the like that circulates a liquefied coolant that is a coolant. Built-in cooling pipe. The cooling pipe is fixed so as to be in close contact with the upper surface plate of the cooling plate 7 to cool the upper surface plate, and a heat insulating material is disposed between the cooling plate and the bottom plate to insulate the space from the bottom plate. Further, the cooling plate 7 can be composed of only a metal plate in addition to the cooling function by the refrigerant. For example, it is made into the shape excellent in heat dissipation and heat transfer property, such as a metal body provided with a radiation fin. Or you may utilize not only metal but the heat-transfer sheet | seat which has insulation.
 冷却プレート7は、この上面に載置される電池積層体10を冷却する電池冷却手段を構成している。この例では、図17と図18の断面図に示すように冷却プレート7の内部に、冷媒を循環させるための冷媒配管26を設けている。この冷媒配管26に、図16に示す冷却機構9から冷却液が供給されて冷却プレート7は冷却される。冷却プレート7は、冷却機構9から供給される冷却液を、冷媒配管26の内部で気化する気化熱で冷却プレート7を冷却する冷媒として、冷却プレート7をより効率よく冷却できる。 The cooling plate 7 constitutes a battery cooling means for cooling the battery stack 10 placed on the upper surface. In this example, as shown in the cross-sectional views of FIGS. 17 and 18, a refrigerant pipe 26 for circulating the refrigerant is provided inside the cooling plate 7. The coolant is supplied from the cooling mechanism 9 shown in FIG. 16 to the refrigerant pipe 26 to cool the cooling plate 7. The cooling plate 7 can cool the cooling plate 7 more efficiently by using the cooling liquid supplied from the cooling mechanism 9 as a refrigerant that cools the cooling plate 7 with heat of vaporization that evaporates inside the refrigerant pipe 26.
 冷却プレート7は、電池セル1を冷却するために、電池ブロック200を構成する各々の電池セル1の外周面である底面23に熱結合状態に固定している。隣接する電池セルを直列に接続しているバッテリシステムは、隣接する電池セルに電位差がある。したがって、金属製の外装缶で構成された電池セルをそのまま冷却プレートに電気接続すると、短絡して大きなショート電流が流れてしまう。これに対して上述の通り外装缶の底面23を絶縁層30で被覆した電池セル1は、このような短絡を回避し、絶縁状態で冷却プレート7と熱結合できる。また絶縁層30は、冷却プレート7と絶縁状態としつつ、熱結合状態とできるよう、熱伝導性に優れた絶縁性部材で構成することが好ましい。このような特性を得る材質としては、上述の通りポリイミドテープ等が適している。また絶縁層30と冷却プレート7との間に、シリコンオイル等の熱伝導ペーストを塗布して、より効率よく熱伝導できる構造としてもよい。 The cooling plate 7 is fixed in a thermally coupled state to the bottom surface 23 which is the outer peripheral surface of each battery cell 1 constituting the battery block 200 in order to cool the battery cell 1. In a battery system in which adjacent battery cells are connected in series, there is a potential difference between adjacent battery cells. Therefore, if a battery cell composed of a metal outer can is electrically connected to the cooling plate as it is, a short circuit occurs and a large short current flows. On the other hand, as described above, the battery cell 1 in which the bottom surface 23 of the outer can is covered with the insulating layer 30 can avoid such a short circuit and can be thermally coupled to the cooling plate 7 in an insulated state. The insulating layer 30 is preferably made of an insulating member having excellent thermal conductivity so that the insulating layer 30 can be in a thermally coupled state while being insulated from the cooling plate 7. A polyimide tape or the like is suitable as a material for obtaining such characteristics as described above. Further, a heat conductive paste such as silicon oil may be applied between the insulating layer 30 and the cooling plate 7 so as to conduct heat more efficiently.
 さらに冷却プレート7は、複数の電池セル1の温度を均等化する均熱化手段としても機能する。すなわち、冷却プレート7が電池セル1から吸収する熱エネルギーを調整して、温度が高くなる電池セル、例えば中央部の電池セルを効率よく冷却して、温度が低くなる領域、例えば両端部の電池セルの冷却を少なくして、電池セルの温度差を少なくする。これによって、電池セルの温度むらを低減して、一部の電池セルの劣化が進み過充電、過放電となる事態を回避できる。 Further, the cooling plate 7 also functions as a soaking means for equalizing the temperatures of the plurality of battery cells 1. That is, the heat energy absorbed by the cooling plate 7 from the battery cell 1 is adjusted to efficiently cool the battery cell whose temperature is increased, for example, the battery cell in the central portion, and the battery where the temperature is decreased, such as the battery at both ends. Reduce the temperature difference between the battery cells by reducing the cooling of the cells. Thereby, the temperature unevenness of the battery cells can be reduced, and a situation in which deterioration of some of the battery cells proceeds and overcharge and overdischarge can be avoided.
 なお、図16の例では電池ブロック200の底面23に冷却プレート7を配置した例を示したが、この構成に限られるものでない。例えば冷却プレートを電池セルの側面に配置することもできる。
(電源装置を用いた車両)
In the example of FIG. 16, an example in which the cooling plate 7 is disposed on the bottom surface 23 of the battery block 200 is shown, but the configuration is not limited to this. For example, the cooling plate can be disposed on the side surface of the battery cell.
(Vehicle using power supply)
 次に、以上の電池セルを用いた電源装置を搭載した車両を、図19及び図20に基づいて説明する。図19は、車両用のバッテリシステムを搭載する車両であって、エンジンとモータの両方で走行するハイブリッド自動車HVの一例を示している。この図のハイブリッド自動車は、車両を走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム91、92と、バッテリシステム91、92の電池を充電する発電機94とを備えている。バッテリシステム91、92は、DC/ACインバータ95を介してモータ93と発電機94に接続している。ハイブリッド自動車は、バッテリシステム91、92の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム91、92から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム91、92の電池を充電する。 Next, a vehicle equipped with a power supply device using the above battery cells will be described with reference to FIGS. FIG. 19 shows an example of a hybrid vehicle HV that is equipped with a battery system for a vehicle and that travels by both an engine and a motor. The hybrid vehicle shown in this figure includes an engine 96 and a running motor 93 for running the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92. I have. The battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The hybrid vehicle runs on both the motor 93 and the engine 96 while charging and discharging the batteries of the battery systems 91 and 92. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the battery systems 91 and 92. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the batteries of the battery systems 91 and 92.
 さらに図20は、車両用のバッテリシステムを搭載する車両であって、モータのみで走行する電気自動車EVの一例を示している。この図に示す電気自動車は、車両を走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム91、92と、このバッテリシステム91、92の電池を充電する発電機94とを備えている。バッテリシステム91、92は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム91、92から電力が供給されて駆動する。発電機94は、車両を回生制動する時のエネルギーで駆動されて、バッテリシステム91、92の電池を充電する。 Further, FIG. 20 shows an example of an electric vehicle EV which is a vehicle equipped with a battery system for vehicles and runs only by a motor. The electric vehicle shown in this figure includes a traveling motor 93 for traveling the vehicle, battery systems 91 and 92 for supplying electric power to the motor 93, and a generator 94 for charging the batteries of the battery systems 91 and 92. I have. The battery systems 91 and 92 are connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the battery systems 91 and 92. The generator 94 is driven by energy used when regenerative braking of the vehicle, and charges the batteries of the battery systems 91 and 92.
 本発明に係る電源装置及びこれを用いた車両、電池セル及び電池セルの製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。 A power supply apparatus according to the present invention, a vehicle using the same, a battery cell, and a battery cell manufacturing method include a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used as a power supply device.
1、1X…電池セル
2…セパレータ
4…エンドプレート
7…冷却プレート
9…冷却機構
9B…強制送風機構
10…電池積層体
11…バインドバー
12…外装缶
13…電極端子
17…バスバー
20…被覆フィルム
20X…熱収縮シート
21…主面
22…側面
23…底面
24…天面
26…冷媒配管
30…絶縁層
31…絶縁性樹脂
32…樹脂槽
40…スペーサ
41…リブ
50…電池ブロック
53…冷却隙間
70…外装ケース
71…下ケース
72…上ケース
73…端面プレート
74…鍔部
91、92…バッテリシステム
93…モータ
94…発電機
95…インバータ
96…エンジン
200…電池ブロック
HV、EV…車両
OW…重複部分
t…突出量
DESCRIPTION OF SYMBOLS 1, 1X ... Battery cell 2 ... Separator 4 ... End plate 7 ... Cooling plate 9 ... Cooling mechanism 9B ... Forced ventilation mechanism 10 ... Battery laminated body 11 ... Bind bar 12 ... Exterior can 13 ... Electrode terminal 17 ... Bus bar 20 ... Covering film 20X ... heat shrink sheet 21 ... main surface 22 ... side surface 23 ... bottom surface 24 ... top surface 26 ... refrigerant pipe 30 ... insulating layer 31 ... insulating resin 32 ... resin tank 40 ... spacer 41 ... rib 50 ... battery block 53 ... cooling gap 70 ... Exterior case 71 ... Lower case 72 ... Upper case 73 ... End face plate 74 ... Bridges 91, 92 ... Battery system 93 ... Motor 94 ... Generator 95 ... Inverter 96 ... Engine 200 ... Battery block HV, EV ... Vehicle OW ... Overlapping part t ... Projection amount

Claims (14)

  1.  外形を、幅よりも厚さを薄くした角形とする複数の電池セル(1)と、
     前記複数の電池セル(1)同士を積層する面に介在させて、該電池セル(1)間を絶縁するためのセパレータ(2)と、
     前記複数の電池セル(1)を前記セパレータ(2)を介在させた状態で積層して締結するための締結手段と、
    を備える電源装置であって、
    前記電池セル(1)はそれぞれ、
     天面(24)と底面(23)と、各一対の主面(21)と側面(22)からなる角形の外装缶(12)と、
     前記外装缶(12)の主面(21)及び側面(22)を被覆する筒状の絶縁性の被覆フィルム(20)と、
     前記外装缶(12)の底面(23)を被覆する絶縁性の絶縁層(30)と、
    を備え、
     前記絶縁層(30)は、前記外装缶(12)の底面(23)の全面を密着状態に被覆すると共に、該底面(23)から主面(21)及び側面(22)に延伸され、少なくとも前記被覆フィルムの下端縁の一部に対して重なるようにコーティングされてなり、
     前記複数の電池セル(1)の各底面(23)が略同一平面上に並ぶ姿勢で、前記締結手段により積層状態に締結されてなることを特徴とする電源装置。
    A plurality of battery cells (1) whose outer shape is a square with a thickness smaller than the width,
    A separator (2) for insulating between the battery cells (1) by interposing on the surface where the plurality of battery cells (1) are laminated,
    Fastening means for stacking and fastening the plurality of battery cells (1) with the separator (2) interposed therebetween,
    A power supply device comprising:
    Each of the battery cells (1) is
    A top surface (24), a bottom surface (23), and a rectangular outer can (12) composed of a pair of main surfaces (21) and side surfaces (22);
    A cylindrical insulating covering film (20) covering the main surface (21) and the side surface (22) of the outer can (12);
    An insulating insulating layer (30) covering the bottom surface (23) of the outer can (12);
    With
    The insulating layer (30) covers the entire bottom surface (23) of the outer can (12) in a close contact state, and extends from the bottom surface (23) to the main surface (21) and the side surface (22), and at least It is coated so as to overlap a part of the lower edge of the covering film,
    The power supply device, wherein the bottom surfaces (23) of the plurality of battery cells (1) are fastened in a stacked state by the fastening means in a posture in which they are arranged on substantially the same plane.
  2.  請求項1に記載の電源装置であって、さらに、
     前記外装缶(12)の底面(23)と熱結合状態に配置される、冷媒配管(26)を配設した冷却プレート(7)を備えることを特徴とする電源装置。
    The power supply device according to claim 1, further comprising:
    A power supply apparatus comprising: a cooling plate (7) provided with a refrigerant pipe (26) arranged in a thermally coupled state with a bottom surface (23) of the outer can (12).
  3.  請求項2に記載の電源装置であって、
     前記冷却プレート(7)と、前記外装缶(12)は金属製であり、
     前記冷却プレート(7)と、前記外装缶(12)の底面(23)とを離間させる絶縁性のスペーサ(40)を設けてなることを特徴とする電源装置。
    The power supply device according to claim 2,
    The cooling plate (7) and the outer can (12) are made of metal,
    A power supply device comprising an insulating spacer (40) for separating the cooling plate (7) and the bottom surface (23) of the outer can (12).
  4.  請求項3に記載の電源装置であって、
     前記セパレータ(2)が、前記電池セル(1)と接触された状態で、該電池セル(1)の底面(23)を部分的に被覆するリブ(41)を設けてなり、
     前記リブが前記電池セル(1)の底面(23)と冷却プレート(7)との間に介在されて両者を離間させてなることを特徴とする電源装置。
    The power supply device according to claim 3,
    In the state where the separator (2) is in contact with the battery cell (1), a rib (41) is provided to partially cover the bottom surface (23) of the battery cell (1).
    The power supply device according to claim 1, wherein the rib is interposed between the bottom surface (23) of the battery cell (1) and the cooling plate (7) so as to be separated from each other.
  5.  請求項1から4のいずれか一に記載の電源装置であって、
     前記被覆フィルム(20)の下端縁は、前記外装缶(12)の底面(23)から突出させず、主面(21)及び側面(22)に位置させてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The power supply apparatus according to claim 1, wherein a lower end edge of the covering film (20) is not projected from the bottom surface (23) of the outer can (12) but is positioned on the main surface (21) and the side surface (22).
  6.  請求項1から5のいずれか一に記載の電源装置であって、
     前記被覆フィルム(20)が熱収縮チューブであることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The power supply apparatus, wherein the covering film (20) is a heat shrinkable tube.
  7.  請求項1から6に記載の電源装置を備える車両。 A vehicle comprising the power supply device according to claim 1.
  8.  天面(24)と底面(23)と、各一対の主面(21)と側面(22)とからなる、外形を、幅よりも厚さを薄くした角形とする外装缶(12)と、
     前記外装缶(12)の主面(21)及び側面(22)を被覆する筒状の絶縁性の被覆フィルム(20)と、
     前記外装缶(12)の底面(23)を被覆する絶縁性の絶縁層(30)と、
    を備え、
     前記被覆フィルム(20)の下端縁は、前記外装缶(12)の底面(23)から突出させず、主面(21)及び側面(22)に位置させており、
     前記絶縁層(30)は、前記外装缶(12)の底面(23)の全面を密着状態に被覆すると共に、該底面(23)から主面(21)及び側面(22)に延伸され、少なくとも前記被覆フィルムの下端縁の一部に対して重なるようにコーティングされてなることを特徴とする電池セル。
    An outer can (12) having a top surface (24), a bottom surface (23), and a pair of main surfaces (21) and side surfaces (22), the outer shape being a rectangular shape with a thickness smaller than the width;
    A cylindrical insulating covering film (20) covering the main surface (21) and the side surface (22) of the outer can (12);
    An insulating insulating layer (30) covering the bottom surface (23) of the outer can (12);
    With
    The lower end edge of the covering film (20) does not protrude from the bottom surface (23) of the outer can (12), and is positioned on the main surface (21) and the side surface (22),
    The insulating layer (30) covers the entire bottom surface (23) of the outer can (12) in a close contact state, and extends from the bottom surface (23) to the main surface (21) and the side surface (22), and at least A battery cell, wherein the battery cell is coated so as to overlap a part of a lower end edge of the covering film.
  9.  外装缶の外形を、幅よりも厚さを薄くした角形とする複数の電池セル(1)と、
     前記複数の電池セル(1)同士を積層する面に介在させて、該電池セル(1)間を絶縁するためのセパレータ(2)と、
     前記複数の電池セル(1)を前記セパレータ(2)を介在させた状態で積層して締結するための締結手段と、
    を備える電源装置の製造方法であって、
     天面(24)と底面(23)と、各一対の主面(21)と側面(22)からなる前記外装缶(12)を内部に挿入可能な筒状の前記被覆フィルム(20)に、前記外装缶(12)を挿入し、前記被覆フィルム(20)の下端縁を、前記外装缶(12)の底面(23)から突出させず、主面(21)及び側面(22)に位置させた状態で、前記被覆フィルム(20)を熱収縮する工程と、
     未硬化の液状絶縁性樹脂(31)を充填させた樹脂槽(32)に前記電池セル(1)を底面(23)から、少なくとも前記電池セル(1)の底面(23)の全面、及び主面(21)並びに側面(22)であって、前記被覆フィルム(20)を下端を含めるように液状絶縁性樹脂(31)に含浸させる工程と、
     前記樹脂槽(32)から、前記電池セル(1)を引き上げ、絶縁性樹脂(31)を硬化させ、前記電池セル(1)の底面(23)に絶縁性の絶縁層(30)を形成する工程と、
    を含むことを特徴とする電池セルの製造方法。
    A plurality of battery cells (1) in which the outer shape of the outer can is a rectangular shape whose thickness is smaller than the width;
    A separator (2) for insulating between the battery cells (1) by interposing on the surface where the plurality of battery cells (1) are laminated,
    Fastening means for stacking and fastening the plurality of battery cells (1) with the separator (2) interposed therebetween,
    A method of manufacturing a power supply device comprising:
    The cylindrical covering film (20) into which the outer can (12) composed of the top surface (24) and the bottom surface (23), and each pair of main surfaces (21) and side surfaces (22) can be inserted, The outer can (12) is inserted, and the lower end edge of the covering film (20) is not projected from the bottom surface (23) of the outer can (12), and is positioned on the main surface (21) and the side surface (22). In a state where the coating film (20) is thermally shrunk,
    The battery cell (1) is filled in the resin tank (32) filled with uncured liquid insulating resin (31) from the bottom surface (23), at least the entire bottom surface (23) of the battery cell (1), and the main body. Impregnating the liquid insulating resin (31) to include the lower end of the surface (21) and the side surface (22), and including the lower end;
    The battery cell (1) is pulled up from the resin tank (32), the insulating resin (31) is cured, and an insulating insulating layer (30) is formed on the bottom surface (23) of the battery cell (1). Process,
    The manufacturing method of the battery cell characterized by including.
  10.  請求項9に記載の電源装置の製造方法であって、
     前記液状絶縁性樹脂(31)に含浸させる工程及び絶縁層(30)を形成する工程が、前記電池セル(1)毎に行われ、その後、前記絶縁層(30)が形成された電池セル(1)同士を、締結手段で隣接する電池セル(1)の間に前記セパレータ(2)を介在させながら積層して締結する工程を含むことを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 9,
    The step of impregnating the liquid insulating resin (31) and the step of forming the insulating layer (30) are performed for each battery cell (1), and then the battery cell in which the insulating layer (30) is formed ( 1) A method of manufacturing a power supply device, comprising a step of laminating and fastening each other with battery cells (1) adjacent to each other by fastening means while interposing the separator (2).
  11.  請求項9に記載の電源装置の製造方法であって、
     前記液状絶縁性樹脂(31)に含浸させる工程及び絶縁層(30)を形成する工程が、前記複数の電池セル(1)を締結手段で前記セパレータ(2)を介在させて積層した状態にて行われることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 9,
    The step of impregnating the liquid insulating resin (31) and the step of forming the insulating layer (30) are performed in a state where the plurality of battery cells (1) are laminated with the separator (2) interposed by fastening means. A method of manufacturing a power supply device, which is performed.
  12.  請求項9から11のいずれか一に記載の電源装置の製造方法であって、
     前記液状絶縁性樹脂(31)に含浸させる工程が、前記電池セル(1)の底面(23)に含浸させた液状絶縁性樹脂(31)が未硬化の状態で、前記電池セル(1)の締結手段で積層した電池ブロック(50)を、冷却プレート(7)の上面に載置する工程を含むことを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to any one of claims 9 to 11,
    In the step of impregnating the liquid insulating resin (31), the liquid insulating resin (31) impregnated on the bottom surface (23) of the battery cell (1) is in an uncured state, and the battery cell (1) A method of manufacturing a power supply device, comprising a step of placing a battery block (50) laminated by a fastening means on an upper surface of a cooling plate (7).
  13.  請求項12に記載の電源装置の製造方法であって、
     前記電池ブロック(50)を、前記冷却プレート(7)の上面に、離間させた状態で載置してなることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 12,
    A method of manufacturing a power supply device, wherein the battery block (50) is placed on the upper surface of the cooling plate (7) in a separated state.
  14.  天面(24)と底面(23)と、各一対の主面(21)と側面(22)とからなる、外形を、幅よりも厚さを薄くした角形とする外装缶(12)と、
     前記外装缶(12)の主面(21)及び側面(22)を被覆する筒状の絶縁性の被覆フィルム(20)と、
    を備える電池セルの製造方法であって、
     前記外装缶(12)を内部に挿入可能な筒状の前記被覆フィルム(20)に、前記外装缶(12)を挿入し、前記被覆フィルム(20)の下端縁を、前記外装缶(12)の底面(23)から突出させず、主面(21)及び側面(22)に位置させた状態で、前記被覆フィルム(20)を熱収縮する工程と、
     未硬化の液状絶縁性樹脂(31)を充填させた樹脂槽(32)に前記電池セル(1)を底面(23)から、少なくとも前記電池セル(1)の底面(23)の全面、及び主面(21)並びに側面(22)であって、前記被覆フィルム(20)を下端を含めるように液状絶縁性樹脂(31)に含浸させる工程と、
     前記樹脂槽(32)から、前記電池セル(1)を引き上げ、絶縁性樹脂(31)を硬化させ、前記電池セル(1)の底面(23)に絶縁性の絶縁層(30)を形成する工程と、
    を含むことを特徴とする電池セルの製造方法。
    An outer can (12) having a top surface (24), a bottom surface (23), and a pair of main surfaces (21) and side surfaces (22), the outer shape being a rectangular shape with a thickness smaller than the width;
    A cylindrical insulating covering film (20) covering the main surface (21) and the side surface (22) of the outer can (12);
    A method for producing a battery cell comprising:
    Inserting the outer can (12) into the cylindrical covering film (20) into which the outer can (12) can be inserted, the lower end edge of the covering film (20), the outer can (12) Without projecting from the bottom surface (23), the step of heat shrinking the covering film (20) in a state of being located on the main surface (21) and the side surface (22),
    The battery cell (1) is filled in the resin tank (32) filled with uncured liquid insulating resin (31) from the bottom surface (23), at least the entire bottom surface (23) of the battery cell (1), and the main body. Impregnating the liquid insulating resin (31) to include the lower end of the surface (21) and the side surface (22), and including the lower end;
    The battery cell (1) is pulled up from the resin tank (32), the insulating resin (31) is cured, and an insulating insulating layer (30) is formed on the bottom surface (23) of the battery cell (1). Process,
    The manufacturing method of the battery cell characterized by including.
PCT/JP2011/074593 2010-10-26 2011-10-25 Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method WO2012057169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240175 2010-10-26
JP2010-240175 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012057169A1 true WO2012057169A1 (en) 2012-05-03

Family

ID=45993875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074593 WO2012057169A1 (en) 2010-10-26 2011-10-25 Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method

Country Status (1)

Country Link
WO (1) WO2012057169A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181971A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Method of manufacturing battery cell, battery cell, power supply device, and vehicle having the power supply device
WO2016135786A1 (en) * 2015-02-27 2016-09-01 三洋電機株式会社 Power supply device, and vehicle equipped with same
WO2016147967A1 (en) * 2015-03-17 2016-09-22 日立オートモティブシステムズ株式会社 Secondary cell
WO2016147966A1 (en) * 2015-03-17 2016-09-22 日立オートモティブシステムズ株式会社 Secondary cell module
WO2017047211A1 (en) * 2015-09-14 2017-03-23 株式会社豊田自動織機 Battery pack and battery module
JP2018049696A (en) * 2016-09-20 2018-03-29 トヨタ自動車株式会社 Method for producing stacked all-solid battery
US9947910B2 (en) 2015-07-07 2018-04-17 Gs Yuasa International Ltd. Energy storage apparatus and spacer
US10056642B2 (en) 2014-11-20 2018-08-21 Ford Global Technologies, Llc Battery assembly including battery cells wrapped with thermally conductive film
CN109509932A (en) * 2014-12-08 2019-03-22 谢彦君 Battery thermal management
CN112272886A (en) * 2018-09-26 2021-01-26 日本汽车能源株式会社 Battery assembly
CN115566327A (en) * 2022-09-26 2023-01-03 楚能新能源股份有限公司 Lithium battery insulating film, coating device for film and coating method of film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (en) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd Square cell and wrapping method of the same
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2009266690A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Method of manufacturing power storage device and metal battery case
JP2010176997A (en) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd Battery pack and separator for battery pack
JP2010272430A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (en) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd Square cell and wrapping method of the same
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2009266690A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Method of manufacturing power storage device and metal battery case
JP2010176997A (en) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd Battery pack and separator for battery pack
JP2010272430A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181971A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Method of manufacturing battery cell, battery cell, power supply device, and vehicle having the power supply device
US10056642B2 (en) 2014-11-20 2018-08-21 Ford Global Technologies, Llc Battery assembly including battery cells wrapped with thermally conductive film
CN109509932A (en) * 2014-12-08 2019-03-22 谢彦君 Battery thermal management
WO2016135786A1 (en) * 2015-02-27 2016-09-01 三洋電機株式会社 Power supply device, and vehicle equipped with same
WO2016147966A1 (en) * 2015-03-17 2016-09-22 日立オートモティブシステムズ株式会社 Secondary cell module
WO2016147967A1 (en) * 2015-03-17 2016-09-22 日立オートモティブシステムズ株式会社 Secondary cell
US9947910B2 (en) 2015-07-07 2018-04-17 Gs Yuasa International Ltd. Energy storage apparatus and spacer
JP2017059299A (en) * 2015-09-14 2017-03-23 株式会社豊田自動織機 Battery pack and battery module
WO2017047211A1 (en) * 2015-09-14 2017-03-23 株式会社豊田自動織機 Battery pack and battery module
JP2018049696A (en) * 2016-09-20 2018-03-29 トヨタ自動車株式会社 Method for producing stacked all-solid battery
CN112272886A (en) * 2018-09-26 2021-01-26 日本汽车能源株式会社 Battery assembly
EP3859816A4 (en) * 2018-09-26 2022-07-13 Vehicle Energy Japan Inc. Battery pack
CN112272886B (en) * 2018-09-26 2022-11-08 日本汽车能源株式会社 Battery assembly
CN115566327A (en) * 2022-09-26 2023-01-03 楚能新能源股份有限公司 Lithium battery insulating film, coating device for film and coating method of film

Similar Documents

Publication Publication Date Title
WO2012057169A1 (en) Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
JP5595871B2 (en) Power supply
JP2013012441A (en) Electric power source device and vehicle including the same
JP5535794B2 (en) Assembled battery
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
WO2012133708A1 (en) Power source device and vehicle provided with power source device
JP6073583B2 (en) Power supply device, vehicle including this power supply device, and power storage device
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
JP5734704B2 (en) Power supply device and vehicle equipped with power supply device
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
WO2012133709A1 (en) Power source device, and vehicle provided with power source device
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
WO2016135786A1 (en) Power supply device, and vehicle equipped with same
WO2012133707A1 (en) Power source device and vehicle provided with power source device
WO2014010438A1 (en) Battery system, and vehicle and power storage device equipped with battery system
WO2013031614A1 (en) Power supply device, vehicle provided with same, and power storage device
JP6328842B2 (en) Power supply device and vehicle equipped with the same
WO2014024434A1 (en) Power supply device, and electric vehicle and power storage device using same
WO2014024451A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
JP2013171746A (en) Power supply device, and vehicle and power storage device having the same
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载