WO2012053044A1 - 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 - Google Patents
高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 Download PDFInfo
- Publication number
- WO2012053044A1 WO2012053044A1 PCT/JP2010/068258 JP2010068258W WO2012053044A1 WO 2012053044 A1 WO2012053044 A1 WO 2012053044A1 JP 2010068258 W JP2010068258 W JP 2010068258W WO 2012053044 A1 WO2012053044 A1 WO 2012053044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- phase
- rolled steel
- gpa
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 142
- 239000010959 steel Substances 0.000 title claims abstract description 142
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 40
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 58
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 30
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 22
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 16
- 239000002344 surface layer Substances 0.000 claims abstract description 16
- 238000005096 rolling process Methods 0.000 claims description 35
- 238000004519 manufacturing process Methods 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 6
- 238000005242 forging Methods 0.000 claims description 5
- 238000005246 galvanizing Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 239000013078 crystal Substances 0.000 description 15
- 238000005098 hot rolling Methods 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000007373 indentation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910000794 TRIP steel Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- -1 Ti nitride Chemical class 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet excellent in uniform ductility and local ductility under high-speed deformation.
- Patent Document 1 includes 0.04 to 0.15% C and 0.3 to 3.0% in total of one or both of Si and Al in mass%.
- the balance is composed of Fe and inevitable impurities, and is composed of a main phase (ferrite which is the structure or phase having the largest volume fraction) and a second phase (structure or phase other than the main phase) containing 3% by volume or more of austenite.
- Patent Document 2 discloses an average particle diameter ds of nanocrystal grains made of fine ferrite grains and having a crystal grain diameter of 1.2 ⁇ m or less.
- the static difference is defined as the difference between the static deformation stress obtained at a strain rate of 0.01 / s and the dynamic deformation stress obtained by carrying out a tensile test at a strain rate of 1000 / s.
- Patent Document 2 does not disclose anything about the deformation stress in the intermediate strain rate region where the strain rate is greater than 0.01 / s and less than 1000 / s.
- Patent Document 3 discloses a steel plate having a high static ratio, which is composed of a two-phase structure of martensite having an average particle diameter of 3 ⁇ m or less and ferrite having an average particle diameter of 5 ⁇ m or less.
- the static ratio is defined as the ratio of the dynamic yield stress obtained at a strain rate of 10 3 / s to the static yield stress obtained at a strain rate of 10 ⁇ 3 / s.
- Patent Document 3 does not disclose any static difference in the strain rate region where the strain rate is greater than 0.01 / s and less than 1000 / s.
- the static yield stress of the steel sheet disclosed in Patent Document 3 is as low as 31.9 kgf / mm 2 to 34.7 kgf / mm 2 .
- Patent Document 4 discloses a cold-rolled steel sheet containing 75% or more of a ferrite phase having an average particle size of 3.5 ⁇ m or less and having the balance of tempered martensite and having excellent impact absorption characteristics. The impact absorption characteristics of this cold-rolled steel sheet are evaluated by the absorbed energy when a tensile test is performed at a strain rate of 2000 / s. However, Patent Document 4 discloses nothing about shock absorption energy in a strain rate region of less than 2000 / s.
- the steel plates according to the prior art as described above have the following problems. Conventionally, in a steel plate used as an automobile collision member, dynamic strength has been improved in order to improve impact absorption energy.
- an object of the present invention is to provide a hot-rolled steel sheet, a cold-rolled steel sheet, a plated steel sheet, and a method for producing these steel sheets, which are excellent in uniform ductility and local ductility under high-speed deformation with respect to a duplex steel sheet.
- the present inventors have made various studies on methods for improving uniform ductility and local ductility under high-speed deformation in a duplex steel sheet. As a result, the following knowledge was obtained.
- (4) In order to improve the uniform ductility, it is necessary to disperse the hard second phase as much as possible, and hard martensite having a high C solid solution amount is desirable.
- the surface layer of the steel sheet has a large difference between the first-phase ferrite and the second-phase nanohardness, and the distribution is small. Therefore, it is possible to provide a hot-rolled steel sheet having both uniform ductility and local ductility under high-speed deformation by making the difference in the nano hardness small and the distribution large.
- the nano hardness at the center of the sheet thickness inherits the nano-hardness of the hot-rolled steel sheet, and the second phase has a rod shape or a lath shape. As a result, uniform ductility and local ductility are improved under high-speed deformation.
- One embodiment of the present invention provided based on the above knowledge is a metal structure including a main phase composed of ferrite having an average particle diameter of 3.0 ⁇ m or less and a second phase containing at least one of martensite, bainite, and austenite.
- the average grain size of the second phase is 2.0 ⁇ m or less
- the difference ( ⁇ nH av ) between the average value of nano hardness (nH ⁇ av ) of ferrite as a phase and the average value of nano hardness (nH 2nd av ) of the second phase is 6.0 GPa or more and 10.0 GPa or less
- the difference ( ⁇ nH) of the standard deviation of the nano hardness of the second phase from the standard deviation of the nano hardness of the ferrite is 1.5 GPa or less
- the depth of the sheet thickness is 1 ⁇ 4 from the surface of the steel sheet.
- Position and thickness center position In the central portion which is a region between the difference in the average nano hardness ( ⁇ nH av) is less 6.0GPa than 3.5 GPa, the difference between the standard deviation of the nano-hardness ( ⁇ nH) is 1.5GPa
- the hot-rolled steel sheet is excellent in uniform ductility and local ductility under high-speed deformation, characterized by the above.
- Another aspect of the present invention is a cold-rolled steel sheet having a metal structure including a main phase composed of ferrite having an average particle size of 3.0 ⁇ m or less and a second phase containing at least one of martensite, bainite, and austenite.
- the second phase has an average grain size of 2.0 ⁇ m or less and an aspect ratio (at the center portion, which is a region between the position of a depth of the plate thickness 1 ⁇ 4 from the surface of the steel plate and the plate thickness center position).
- a plated steel sheet having a metal structure comprising a main phase composed of ferrite having an average particle size of 3.0 ⁇ m or less and a second phase containing at least one of martensite, bainite, and austenite.
- the second phase has an average grain size of 2.0 ⁇ m or less and an aspect ratio (at the center portion, which is a region between the position of a depth of the plate thickness 1 ⁇ 4 from the surface of the steel plate and the plate thickness center position).
- the hot-rolled steel sheet, cold-rolled steel sheet, or plated steel sheet is in mass%, C: 0.1% to 0.2%, Si: 0.1% to 0.6%, Mn: 1.0 %: 3.0% or less, Al: 0.02% or more and 1.0% or less, Cr: 0.1% or more and 0.7% or less, and N: 0.002% or more and 0.015% or less Furthermore, Ti: 0.002% or more and 0.02% or less Nb: 0.002% or more and 0.02% or less and V: 0.01% or more and 0.1% or less selected from the group consisting of 0.1% or less or You may contain 2 or more types.
- C 0.1% to 0.2%
- Si 0.1% to 0.6%
- Mn 1.0% to 3. 0% or less
- Al 0.02% or more and 1.0% or less
- Cr 0.1% or more and 0.7% or less
- N 0.002% or more and 0.015% or less
- 0.002% or more and 0.02% or less 0.002% or more and 0.02% or less
- Nb 0.002% or more and 0.02% or less
- V one or more selected from the group consisting of 0.01% or more and 0.1% or less
- a slab obtained by hot forging at a temperature of 850 ° C. or higher and a cross-section reduction rate of 30% or higher is hot-rolled continuously after reheating to 1200 ° C. or higher.
- the hot continuous rolling is performed by rolling the reheated slab to obtain average austenite.
- the rough rolling and the rough rolling step size to obtain the following steel plate 50 [mu] m, the final rolling pass as [Ae 3 -50 (°C)] or [Ae 3 +50 (°C)]
- the following temperature ranges and reduction ratio of 17% or more A finish rolling step for rolling the steel plate obtained by the step, and a steel plate obtained by the finish rolling step are 700 ° C. at a cooling rate of 600 ° C./second or more within 0.4 seconds after completion of the finish rolling step.
- the steel plate after cooling is held at a temperature range of 600 ° C. or higher and 700 ° C.
- the present invention is a method for producing a cold-rolled steel sheet obtained by using the hot-rolled steel sheet produced by the above-described method for producing a hot-rolled steel sheet as a base material and subjecting the base material to cold rolling and continuous annealing to obtain a cold-rolled steel sheet.
- the rolling reduction is 50% or more and 90% or less
- the steel sheet after cold rolling is heated and held in a temperature range of 750 ° C. or more and 850 ° C. or less for 10 seconds or more and 150 seconds or less, Then, the manufacturing method of the cold-rolled steel plate characterized by cooling to the temperature range of 450 degrees C or less is also provided.
- the present invention provides a plated steel sheet characterized by subjecting a cold-rolled steel sheet produced by the above-described method for producing a cold-rolled steel sheet to a galvanizing treatment and then an alloying treatment in a temperature range not exceeding 550 ° C. A method is also provided.
- the present invention it is possible to stably provide a dual-phase hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet with improved uniform ductility and local ductility during high-speed deformation. It is expected to further improve the collision safety of these products, and it has an extremely effective effect in the industry.
- the points of the present invention are the following five points.
- (I) Strength, uniform ductility, and local ductility are improved by refining crystal grains.
- (Iii) In the surface layer portion the hard second phase is finely dispersed to improve the work hardening rate.
- the characteristics of the second phase are evaluated by nano hardness by the nano indentation method. Specifically, a nano-hardness obtained by using a Barkovic indenter and an indentation load of 500 ⁇ N is employed.
- the steel sheet according to the present invention has a metal structure including a main phase composed of ferrite having an average particle size of 3.0 ⁇ m or less and a second phase containing at least one of martensite, bainite, and austenite. Since the second phase exists, the ratio of the ferrite constituting the main phase to the entire structure is preferably 80% or less.
- the average particle diameter of ferrite is 3.0 ⁇ m or less.
- a lower limit is not prescribed
- the second phase contains at least one of martensite, bainite, and austenite.
- the average particle diameter of the second phase is 2.0 ⁇ m or less, and the average nanohardness (nH ⁇ ) of the ferrite that is the main phase and the average nanohardness (nH 2nd av ) of the second phase
- the difference ( ⁇ nH av ) is 6.0 GPa or more and 10.0 GPa or less, and the difference ( ⁇ nH) of the standard deviation of the nano hardness of the second phase from the standard deviation of the nano hardness of the ferrite is 1.5 GPa or less. It is.
- the second phase (martensite, bainite and / or austenite) harder than the ferrite matrix phase is finely dispersed to increase the work hardening rate and improve the uniform ductility.
- the average particle size of the second phase exceeds 2.0 ⁇ m, cracks are likely to occur at the interface between the ferrite and the second phase. Furthermore, in order to ensure work hardening rate and uniform ductility, it is necessary to disperse the homogeneous second phase as much as possible. Specifically, when the difference in standard deviation of nano hardness ( ⁇ nH) exceeds 1.5 GPa, the uniform ductility is impaired.
- cold-rolled steel sheet obtained by further cold rolling the hot-rolled steel sheet of the present invention it is not necessary to specify the structure of the surface layer part.
- the reason is as follows. That is, cold-rolled steel sheets are often used after being subjected to a surface treatment such as pickling or plating, and the characteristics change due to the surface treatment.
- the hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet (hereinafter collectively referred to as “the present invention steel sheet”) according to the present invention have a thickness of 1/4 t to 1/2 t.
- Region that is, the region from the surface of the steel plate (in the case of a plated steel plate, the steel plate serving as the base material, the same shall apply hereinafter) to the center of the plate thickness from the depth of the thickness of 1/4 of the plate thickness (hereinafter, In the “central portion”), ⁇ nH av is 3.5 GPa or more and 6.0 GPa or less, and ⁇ nH is 1.5 GPa or more.
- this invention steel plate is equipped with the inclination structure
- the average grain size of the second phase in the central part of the cold rolled steel sheet and the plated steel sheet is 2.0 ⁇ m or less. If it exceeds 2.0 ⁇ m, cracking tends to occur at the interface between the ferrite and the second phase. Therefore, the average particle size of the second phase is 2.0 ⁇ m or less.
- the lower limit of the average particle size of the second phase is not specified. When manufactured by the manufacturing method of the present invention, it is usually 0.5 ⁇ m or more.
- the local ductility is improved by changing the shape of the second phase in the central portion from an equiaxed shape to a rod shape or a lath shape.
- the aspect ratio (major axis / minor axis) of the second phase is 2 or less, the local ductility is insufficient. Therefore, the aspect ratio of the second phase is more than 2.
- C 0.1% or more and 0.2% or less It is preferable to provide upper and lower limits of the C content in order to adjust the content of ferrite, bainite, martensite, and austenite and to ensure static strength and static / dynamic difference. That is, if the C content is less than 0.1%, the solid solution strengthening of ferrite is insufficient, and neither bainite, martensite, nor austenite can be obtained, so the possibility that a predetermined strength cannot be obtained increases. There is concern. On the other hand, if the C content exceeds 0.2%, a high hard phase is excessively generated, and there is a concern that the possibility of reducing the static difference is increased. Therefore, the C content range is preferably 0.1% to 0.2%.
- Si 0.1% or more and 0.6% or less Si improves the strength of the steel by solid solution strengthening, and also has the effect of improving ductility and the effect of suppressing the formation of carbides to improve the static difference. For this reason, it is preferable to contain Si 0.1% or more. However, even if the content exceeds 0.6%, the effect is saturated, and there is a concern that the possibility of embrittlement of the steel increases. Therefore, the Si content range is preferably 0.1 to 0.6%.
- Mn 1.0% or more and 3.0% or less Mn controls the transformation behavior and controls the amount and hardness of the transformation phase generated in the cooling process after hot rolling and hot rolling. Is preferably provided. That is, if the Mn content is less than 1.0%, there is a concern that the generation amount of the bainitic ferrite phase or the martensite phase is small and the possibility that the desired strength and static difference cannot be obtained increases. If the amount exceeds 3.0%, the amount of the martensite phase becomes excessive, and there is a concern that the possibility that the dynamic strength is lowered is increased. Therefore, the range of Mn content is 1.0 to 3.0%. More preferably, it is 1.5 to 2.5%.
- Al 0.02% or more and 1.0% or less
- Al has a deoxidizing action. Moreover, it has the effect
- Cr 0.1% or more and 0.7% or less Cr controls the amount and hardness of the transformation phase generated during hot rolling and the cooling process after hot rolling. For this reason, it is preferable to provide upper and lower limits for the Cr content. Cr has an effective action for securing the amount of bainite. Moreover, precipitation of carbides in bainite is suppressed. Further, Cr itself has a solid solution strengthening action.
- the Cr content is less than 0.1%, there is a concern that the possibility that the desired strength cannot be obtained increases. On the other hand, even if added over 0.7%, the above effect is saturated, and there is a concern that the possibility of suppressing the ferrite transformation is increased. Therefore, the Cr content is preferably 0.1 to 0.7%.
- N 0.002% or more and 0.015% or less N is added in order to generate Ti, Nb and nitride, and to suppress coarsening of crystal grains. If the N content is less than 0.002%, crystal grains are coarsened during slab heating, and there is a concern that the possibility of coarsening the structure after hot rolling is increased. On the other hand, if the N content exceeds 0.015%, coarse nitrides are produced, and there is a concern that the possibility of adversely affecting ductility is increased. Therefore, the range of N content is preferably 0.002% to 0.015%.
- Ti, Nb and V are preferably contained alone or in combination of two or more. Ti: 0.002% or more and 0.02% or less When Ti is added, nitride is formed. TiN is effective in preventing crystal grain coarsening. If the Ti content is less than 0.002%, the effect cannot be obtained. On the other hand, if it exceeds 0.02%, coarse nitrides are produced and ductility is lowered, and there is a concern that the possibility of suppressing ferrite transformation is increased. Therefore, the addition amount when adding Ti is preferably 0.002 to 0.02%.
- Nb 0.002% or more and 0.02% or less Nitride is also formed when Nb is added.
- Nb nitride like Ti nitride, is effective in preventing crystal grain coarsening. Furthermore, Nb carbide is formed and contributes to prevention of coarsening of ferrite phase crystal grains. However, if it is less than 0.002%, the effect cannot be obtained. If added over 0.02%, there is a concern that the possibility of suppressing ferrite transformation increases. Therefore, the amount of Nb added is preferably 0.002 to 0.02%.
- V 0.01% or more and 0.1% or less
- V carbonitride is effective in preventing coarsening of austenite phase crystal grains in a low temperature austenite region. Further, the carbonitride of V contributes to the prevention of the coarsening of ferrite phase crystal grains. Therefore, it adds as needed. However, the effect cannot be obtained at 0.01% or less. On the other hand, if added over 0.2%, there is a concern that the amount of precipitates increases and the possibility of a decrease in the difference in static motion increases. Therefore, the amount of addition when V is added is preferably 0.01 to 0.1%.
- a slab having the above-described chemical composition manufactured by continuous casting is hot forged in cross section at a temperature of 850 ° C.
- the upper limit temperature is not limited as long as forging is possible, but 1100 ° C. or lower is preferable.
- the cross-sectional reduction rate is not limited, but is preferably 30% or more in order to reduce the average austenite grain size after rough rolling.
- the hot-forged slab is naturally cooled or straightened and is usually cooled to 700 ° C. or lower.
- the slab In the hot rolling, the slab is reheated to 1200 ° C or higher in order to sufficiently soften the slab.
- the slab temperature is 1200 ° C. or higher, the structure becomes austenite. At this time, austenite grows, but the grain size is reduced by subsequent hot rolling. Hot rolling is performed as follows.
- the average austenite grain size is set to 50 ⁇ m or less by rough rolling. Further, austenite grains are further refined by finish rolling.
- finish rolling with a reduction ratio of 17% or more is performed in the temperature range of [Ae 3 ⁇ 50 (° C.)] to [Ae 3 +50 (° C.)] as the final rolling pass of finish rolling.
- the rolling rate is less than 17%, the specified particle size and the nano hardness of the second phase are not satisfied.
- Ae 3 means the thermal equilibrium temperature at which the steel starts ferrite transformation from austenite.
- cooling is started within 0.4 seconds after rolling. At this time, the cooling is performed to 700 ° C. or lower at a cooling rate of 600 ° C./second or higher. By performing such rapid cooling, recrystallization of austenite can be suppressed and a fine grain structure with an average crystal grain size of ferrite of 3.0 ⁇ m or less can be obtained.
- the time required for ferrite transformation is maintained in a temperature range of 600 ° C. or more and 700 ° C. or less, that is, 0.4 seconds or more. Thereafter, it is cooled to 400 ° C. or less at a cooling rate of less than 100 ° C./second, and the remainder that has not undergone ferrite transformation is transformed into austenite or martensite and / or bainite.
- the average particle size of the second phase is 2.0 ⁇ m or less
- the difference ( ⁇ nH av ) between the average nanohardness (nH ⁇ ) of the ferrite that is the main phase and the average nanohardness (nH 2nd av ) of the second phase is 6.0 GPa or more and 10.0 GPa or less
- the difference ( ⁇ nH) of the standard deviation of the nano hardness of the second phase from the standard deviation of the nano hardness of the ferrite is 1.5 GPa or less.
- the difference in average nanohardness ( ⁇ nH av ) is 3.5 GPa or more and 6.0 GPa or less, and the difference in standard deviation of nanohardness ( ⁇ nH) is 1.5 GPa or more.
- the rolling reduction in cold rolling is 50% or more and 90% or less. By setting the rolling reduction in cold rolling to 50% or more, sufficient working strain is easily accumulated in the steel sheet.
- the upper limit of the rolling reduction is set from the viewpoint of manufacturing equipment and / or manufacturing efficiency.
- the cold-rolled steel sheet In continuous annealing, the cold-rolled steel sheet is heated and held in a temperature range of 750 to 850 ° C. for 10 seconds to 150 seconds, and then cooled to a temperature range of 450 ° C. or less.
- recrystallization is performed in a temperature range of 750 to 850 ° C. for 10 seconds or more and 150 seconds or less, the work strain accumulated by the cold rolling described above inhibits crystal growth. can get.
- a cold-rolled steel sheet having the following characteristics on the metal structure can be obtained.
- the difference ( ⁇ nH av ) between the average nanohardness (nH ⁇ av ) of ferrite as the main phase and the average nanohardness (nH 2nd av ) of the second phase is 3.5 GPa or more and 6.0 GPa or less,
- the difference ( ⁇ nH) in the standard deviation of the nano hardness is 1.5 GPa or more.
- a plated steel sheet can be obtained by further galvanizing the cold-rolled steel sheet.
- galvanization it is preferable to perform alloying in a temperature range not exceeding 550 ° C. after the plating.
- hot dip galvanization or alloying treatment it is preferable from the viewpoint of productivity to perform continuous annealing and hot dip galvanization in one step using a continuous hot dip galvanizing facility.
- an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment solution
- the metal structure has the following characteristics: In the center, it has the following characteristics: A second phase satisfying an average particle size of 2.0 ⁇ m or less and an aspect ratio (major axis / minor axis)> 2.
- the difference ( ⁇ nH av ) between the average nanohardness (nH ⁇ av ) of ferrite as the main phase and the average nanohardness (nH 2nd av ) of the second phase is 3.5 GPa or more and 6.0 GPa or less, And the difference ( ⁇ nH) in the standard deviation of the nano hardness is 1.5 GPa or more.
- test steel plates For any steel, hot forging and hot rolling were performed on the 150 kg steel material obtained by vacuum melting under the conditions shown in Table 2 to obtain test steel plates.
- the finished thickness of the test steel was 1.6 to 2.0 mm.
- Test numbers 1, 6, 7 and 9 are test steels of steel plates manufactured by the manufacturing method according to the present invention.
- test numbers 2 to 5, and 8 are test steels of steel plates manufactured by a manufacturing method under conditions outside the range specified in the present invention.
- Table 3 shows the measurement results of the structure of each test steel.
- the particle diameter was obtained from a two-dimensional image obtained by photographing at a magnification of 3000 using a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the nano hardness of the ferrite and the hard phase was determined by a nano indentation method.
- After the cross section in the rolling direction of the test steel was polished with emery paper, it was subjected to mechanochemical polishing with colloidal silica, and the processed layer was removed by electrolytic polishing for use in the test.
- a Barkovic indenter was used and the indentation load was 500 ⁇ N.
- the indentation size at this time was a diameter of 0.1 ⁇ m or less.
- Table 4 shows the characteristics of the obtained steel sheet.
- Tensile properties were evaluated using a test piece having a gauge length of 4.8 mm and a gauge width of 2 mm, using a quasi-static tensile test with a strain rate of 0.01 / s and a dynamic tensile test with a strain rate of 100 / s.
- the dynamic tensile test was measured using a test force block material testing machine.
- the bendability was evaluated by performing close contact bending at an average strain rate of 0.01 / s and visually observing the presence or absence of cracks.
- ⁇ indicates that no crack was observed, and “ ⁇ ” indicates that a crack was observed.
- the steel plates of test numbers 1, 6, 7 and 9 produced by the production method of the present invention had a tensile strength of 900 MPa or more, a uniform elongation of 23% or more, both under quasi-static deformation and dynamic deformation, and Local elongation: maintained at 10% or more, and bendability was also good.
- the steel plates with test numbers 2 to 5 and 8 produced by the production method under conditions outside the range specified in the present invention have good tensile strength but insufficient uniform elongation, local elongation and / or bendability. It became a result.
- the hot-rolled steel sheet manufactured by the above-described method was further cold-rolled and then subjected to heat treatment simulating a heat pattern in a continuous hot-dip galvanizing facility using a continuous annealing simulator.
- Table 5 shows a method for producing a hot-rolled steel sheet subjected to cold rolling
- Table 6 shows conditions for cold rolling and heat treatment corresponding to continuous annealing and alloying after plating.
- tissue was measured similarly to the above-mentioned hot-rolled steel plate.
- the average value of the aspect ratio of the second phase in the central part was obtained from the SEM image used for the measurement of the average particle diameter.
- Table 7 shows the measurement results of the microstructure of each test steel.
- Table 8 shows the mechanical properties of the obtained steel sheet.
- the result shown in Table 8 is a result about the steel plate after performing the heat processing corresponded to an alloying process. The structure of the steel sheet (cold-rolled steel sheet) before the heat treatment corresponding to the plating process and Measurement of characteristics was omitted.
- the steel plates of test numbers 10 and 11 produced by the production method according to the present invention have a tensile strength of 900 MPa or more, a uniform elongation of 23% or more, and a local elongation of 10 under both quasi-static deformation and dynamic deformation. % Or more was maintained and the bendability was good.
- the steel sheets of test numbers 12 and 13 produced by the production method under conditions outside the range specified in the present invention have good tensile strength, the uniform elongation, local elongation and / or bendability are insufficient. became.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
一方、第2相がマルテンサイトを主体とする複相鋼板の一例として、特許文献2には、微細なフェライト粒からなり、結晶粒径が1.2μm以下のナノ結晶粒の平均粒径dsと、結晶粒径が1.2μmを超えるミクロ結晶粒の平均結晶粒径dLをdL/ds≧3を満足する、強度と延性バランスが優れ、且つ、静動差が170MPa以上である高強度鋼板が開示されている。当該文献において、静動差とは、歪速度0.01/sで得られる静的変形応力と歪速度1000/sで引張試験を実施して得られる動的変形応力の差で定義されている。しかしながら、歪速度が0.01/s超1000/s未満の中間歪速度域での変形応力について、特許文献2は何も開示していない。
従来、自動車用衝突部材として使用される鋼板では、衝撃吸収エネルギー向上のため、動的強度の向上が図られてきた。
フェライト相を主相とし、第2相がマルテンサイト相である複合組織からなる高強度鋼板(DP鋼板)では、成形性と衝撃吸収特性との両立が困難である。また、局部延性の確保が困難であった。
(1)結晶粒の微細化により高速変形下の靭性が向上する。
(2)一方、結晶粒の微細化により均一延性が損なわれる。
(3)均一延性の低下はフェライトより硬質のマルテンサイト、ベイナイト、またはオーステナイトを分散させることにより補償する。
(4)均一延性向上のためには、できるだけ硬質の第2相を分散させる必要があり、C固溶量の高い硬質マルテンサイトが望ましい。
(5)しかしながら、第2相を硬質マルテンサイトとすると、局部延性が損なわれる。
(6)一方、第2相の硬さに分布を与えると、局部延性が向上する。
(7)上記の(4)および(6)を両立させるため、鋼板の表層部では第1相のフェライトと第2相のナノ硬さの差が大きくその分布が小さいものとし、板厚中央部では同ナノ硬さの差が小さくその分布が大きいものとすることにより、高速変形下で均一延性と局部延性を兼ね備えた熱延鋼板の提供が可能である。
(8)さらに、その熱延鋼板から製造した冷延鋼板では、板厚中央部でのナノ硬さが熱延鋼板のナノ硬さを引き継ぐとともに、第2相の形態がロッド状またはラス状となることにより高速変形下で均一延性と局部延性が向上する。
(i)結晶粒の微細化により強度、均一延性、局部延性を向上させる。
(ii)第2相の特性に分布を与え、高速変形下での均一延性と局部延性を両立させる。
(iii)表層部では硬質の第2相を微細分散させ、加工硬化率を向上させる。
(iv)板厚中央部では、やや軟質の第2相の硬さに分布を与え、局部延性を向上させる。
(v)冷延鋼板では、第2相のアスペクト比を大きくする。
1.金属組織
本発明に係る鋼板は、平均粒径3.0μm以下のフェライトからなる主相と、マルテンサイト、ベイナイトおよびオーステナイトの少なくとも1種を含む第2相とを備える金属組織を有する。第2相が存在するため、主相をなすフェライトの組織全体に占める割合は80%以下とすることが好ましい。
(1)熱延鋼板における表層部の組織
本発明に係る熱延鋼板は、その表層部(鋼板の表面から100μm深さまでの領域)に次の特徴を備える。第2相の平均粒径が2.0μm以下であり、かつ主相であるフェライトのナノ硬さの平均値(nHα)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が6.0GPa以上、10.0GPa以下であり、前記第2相のナノ硬さの標準偏差の前記フェライトのナノ硬さの標準偏差からの差(ΔσnH)が1.5GPa以下である。
表層部ではフェライト母相より硬質の第2相(マルテンサイト、ベイナイトおよび/またはオーステナイト)を微細分散させることにより、加工硬化率を高め、均一延性を向上させる。
さらには、加工硬化率および均一延性確保のためには、可能な限り均質な第2相を分散させる必要がある。具体的には、ナノ硬さの標準偏差の差(ΔσnH)が1.5GPaを超えると均一延性が損なわれる。
本発明に係る熱延鋼板、冷延鋼板およびめっき鋼板(以下、「本発明鋼板」と総称する。)は、その板厚1/4t~1/2tの領域、すなわち鋼板の表面(めっき鋼板の場合には基材となる鋼板、以下同じ。)から板厚の1/4の厚さの深さの位置から板厚中心部までの領域(以下、「中央部」という。)において、ΔnHavが3.5GPa以上6.0GPa以下であり、ΔσnHが1.5GPa以上である。
冷延鋼板および冷延鋼板にめっき加工を施しためっき鋼板では、中央部における第2相の平均粒径は2.0μm以下とする。2.0μmを超えるとフェライトと第2相の界面で割れが生じやすくなる。したがって、第2相の平均粒径は2.0μm以下とする。第2相の平均粒径の下限は規定しない。本発明の製造方法で製造した場合には通常0.5μm以上となる。
以下、本発明鋼板の好ましい化学組成について説明する。
C:0.1%以上0.2%以下
フェライト、ベイナイト、マルテンサイト、オーステナイトの含有量を調整し静的強度および静動差を確保するためにC含有量の上下限を設けることが好ましい。すなわち、C含有量が0.1%未満では、フェライトの固溶強化が不十分であるうえに、ベイナイト、マルテンサイトおよびオーステナイトのいずれも得られないので所定の強度が得られなくなる可能性が高まることが懸念される。一方、C含有量が0.2%を超えると高硬質相が過剰に生成して、静動差を低下させる可能性が高まることが懸念される。よって、C含有量の範囲は0.1%~0.2%とすることが好ましい。
Siは固溶強化により鋼の強度を向上させるとともに、延性を向上させる効果および炭化物の生成を抑制して静動差を向上させる効果をも有する。このため、Siを0.1%以上含有させることが好ましい。しかし、0.6%を超えて含有させてもその効果が飽和し、かえって鋼を脆化させる可能性が高まることが懸念される。したがって、Si含有量の範囲は0.1~0.6%とすることが好ましい。
Mnは変態挙動の制御し、熱延および熱延後の冷却過程で生成する変態相の量や硬さを制御するため、Mn含有量に上下限を設けることが好ましい。すなわち、Mn含有量が1.0%未満では、ベイニテックフェライト相やマルテンサイト相の生成量が少なく、所望の強度と静動差が得られなくなる可能性が高まることが懸念される。3.0%を超えて添加すると、マルテンサイト相の量が過剰になり、かえって動的強度が低下する可能性が高まることが懸念される。よって、Mn含有量の範囲は1.0~3.0%とする。さらに好ましくは、1.5~2.5%である。
Alは脱酸作用を有する。また、熱延および熱延後の冷却過程で生成する変態相の量や硬さを制御し、鋼の強度と延性を向上させる作用も有する。したがって、Alを0.02%以上含有させることが好ましい。しかし、1.0%を超えてAlを含有させてもその効果が飽和し、かえって鋼を脆化させる可能性が高まることが懸念される。したがって、Al含有量の範囲は0.02~1.0%とすることが好ましい。
Crは熱延および熱延後の冷却過程で生成する変態相の量や硬さを制御する。このため、Cr含有量に上下限を設けることが好ましい。Crは、ベイナイト量を確保するのに有効な作用がある。また、ベイナイト中の炭化物の析出を抑制する。また、Cr自体、固溶強化作用を有する。
NはTiやNbと窒化物を生成させ、結晶粒の粗大化を抑制するために添加する。Nの含有量が0.002%未満では、スラブ加熱時に結晶粒の粗大化が生じ、熱間圧延後の組織も粗大化する可能性が高まることが懸念される。一方、Nの含有量が0.015%を超えると、粗大な窒化物が生成するため、延性に悪影響を及ぼす可能性が高まることが懸念される。よって、N含有量の範囲は、0.002%~0.015%とすることが好ましい。
Ti:0.002%以上0.02%以下
Tiを添加した場合には窒化物が生成する。TiNは、結晶粒の粗大化防止に有効である。Tiの含有量が0.002%未満ではその効果が得られない。一方、0.02%を超えて添加すると粗大な窒化物が生成して延性が低下する上に、フェライト変態を抑制する可能性が高まることが懸念される。よって、Tiを添加する場合の添加量は0.002~0.02%とすることが好ましい。
Nbを添加した場合にも窒化物が生成する。Nb窒化物はTi窒化物と同様に、結晶粒の粗大化防止に有効である。さらに、Nb炭化物を形成し、フェライト相の結晶粒の粗大化防止に寄与する。しかし、0.002%未満ではその効果は得られない。0.02%を超えて添加すると、フェライト変態を抑制する可能性が高まることが懸念される。よって、Nbを添加する場合の添加量は0.002~0.02%とすることが好ましい。
Vの炭窒化物は、低温オーステナイト域でオーステナイト相の結晶粒の粗大化防止に有効である。さらに、Vの炭窒化物は、フェライト相の結晶粒の粗大化防止に寄与する。したがって、必要に応じて添加する。しかしながら、0.01%以下ではその効果は得られない。一方、0.2%を超えて添加すると、析出物が増加し、静動差が低下する可能性が高まることが懸念される。よって、Vを添加する場合の添加量は0.01~0.1%とすることが好ましい。
(5-1)熱延鋼板の製造方法
上述の金属組織を有する熱延鋼板を製造するための製造方法の好ましい一例を以下に説明する。なお、以下に示す製造方法は例示であり、他の製造方法で同様の組織を有する熱延鋼板を製造してもよい。
A)表層部において、次の特徴を有する:
・第2相の平均粒径が2.0μm以下、
・主相であるフェライトのナノ硬さの平均値(nHα)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が6.0GPa以上、10.0GPa以下、および
・上記の第2相のナノ硬さの標準偏差の上記のフェライトのナノ硬さの標準偏差からの差(ΔσnH)が1.5GPa以下。
・上記のナノ硬さの平均の差(ΔnHav)が3.5GPa以上6.0GPa以下、および
・上記のナノ硬さの標準偏差の差(ΔσnH)が1.5GPa以上。
上記の熱延鋼板を母材として、次に説明する冷間圧延および連続焼鈍を施して冷延鋼板を得る。
中央部において、次の特徴を有する:
・平均粒径2.0μm以下かつアスペクト比(長径/短径)>2を満たす第2相を含み、
・主相であるフェライトのナノ硬さの平均値(nHαav)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が3.5GPa以上6.0GPa以下、および
・上記のナノ硬さの標準偏差の差(ΔσnH)が1.5GPa以上。
上記の冷延鋼板にさらに亜鉛めっき処理を施すことにより、めっき鋼板を得ることができる。亜鉛めっき処理を行う場合には、めっき処理を施した後、550℃を超えない温度域で合金化処理を施すことが好ましい。溶融亜鉛めっきや合金化処理を施す場合には連続溶融亜鉛めっき設備を用いて、連続焼鈍と溶融亜鉛めっき等とを一工程で行うことが生産性の観点から好ましい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
中央部において、次の特徴を有する:
・平均粒径2.0μm以下かつアスペクト比(長径/短径)>2を満たす第2相を含み、
・主相であるフェライトのナノ硬さの平均値(nHαav)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が3.5GPa以上6.0GPa以下、および
・上記のナノ硬さの標準偏差の差(ΔσnH)が1.5GPa以上。
表1に示す化学成分を有する鋼種A,B,C,D,Eからなるスラブ(厚さ35mm、幅160~250mm、長さ70~90mm)を用いて実験を行った。鋼種A~C,およびEは本願発明で規定する範囲内の化学組成を有し、鋼Dは本発明外の化学組成を有する。
上述の方法により製造された熱延鋼板に対し、さらに冷間圧延を施した後、連続焼鈍シミュレータを用いて、連続溶融亜鉛めっき設備におけるヒートパターンを模擬した熱処理を施した。
Claims (9)
- 平均粒径3.0μm以下のフェライトからなる主相と、マルテンサイト、ベイナイトおよびオーステナイトの少なくとも1種を含む第2相とを備える金属組織を有する熱延鋼板であって、
該鋼板の表面および該表面から100μmの深さの位置の間の領域である表層部において、第2相の平均粒径が2.0μm以下であり、かつ主相であるフェライトのナノ硬さの平均値(nHαav)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が6.0GPa以上、10.0GPa以下であり、前記第2相のナノ硬さの標準偏差の前記フェライトのナノ硬さの標準偏差からの差(ΔσnH)が1.5GPa以下であり、
該鋼板の表面から板厚1/4の深さの位置と板厚中央位置との間の領域である中央部において、前記ナノ硬さの平均の差(ΔnHav)が3.5GPa以上6.0GPa以下であり、前記ナノ硬さの標準偏差の差(ΔσnH)が1.5GPa以上である
ことを特徴とする、高速変形下での均一延性および局部延性に優れた熱延鋼板。 - 平均粒径3.0μm以下のフェライトからなる主相と、マルテンサイト、ベイナイトおよびオーステナイトの少なくとも1種を含む第2相とを備える金属組織を有する冷延鋼板であって、
該鋼板の表面から板厚1/4の深さの位置と板厚中央位置との間の領域である中央部において、第2相は平均粒径2.0μm以下かつアスペクト比(長径/短径)>2を満たし、主相であるフェライトのナノ硬さの平均値(nHαav)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が3.5GPa以上6.0GPa以下であり、前記第2相のナノ硬さの標準偏差の前記フェライトのナノ硬さの標準偏差からの差(ΔσnH)が1.5GPa以上である
ことを特徴とする、高速変形下での均一延性および局部延性に優れた冷延鋼板。 - 平均粒径3.0μm以下のフェライトからなる主相と、マルテンサイト、ベイナイトおよびオーステナイトの少なくとも1種を含む第2相とを備える金属組織を有するめっき鋼板であって、
該鋼板の表面から板厚1/4の深さの位置と板厚中央位置との間の領域である中央部において、第2相は平均粒径2.0μm以下かつアスペクト比(長径/短径)>2を満たし、主相であるフェライトのナノ硬さの平均値(nHαav)と第2相のナノ硬さの平均値(nH2nd av)との差(ΔnHav)が3.5GPa以上6.0GPa以下であり、前記第2相のナノ硬さの標準偏差の前記フェライトのナノ硬さの標準偏差からの差(ΔσnH)が1.5GPa以上である
ことを特徴とする、高速変形下での均一延性および局部延性に優れためっき鋼板。 - 質量%で、
C:0.1%以上0.2%以下、
Si:0.1%以上0.6%以下、
Mn:1.0%以上3.0%以下、
Al:0.02%以上1.0%以下、
Cr:0.1%以上0.7%以下、および
N:0.002%以上0.015%以下
を含有し、
さらに、Ti:0.002%以上0.02%以下
Nb:0.002%以上0.02%以下、および
V:0.01%以上0.1%以下
からなる群から選ばれる1種または2種以上を含有する
請求項1に記載の熱延鋼板。 - 質量%で、
C:0.1%以上0.2%以下、
Si:0.1%以上0.6%以下、
Mn:1.0%以上3.0%以下、
Al:0.02%以上1.0%以下、
Cr:0.1%以上0.7%以下、および
N:0.002%以上0.015%以下
を含有し、
さらに、Ti:0.002%以上0.02%以下
Nb:0.002%以上0.02%以下、および
V:0.01%以上0.1%以下
からなる群から選ばれる1種または2種以上を含有する
請求項2に記載の冷延鋼板。 - 質量%で、
C:0.1%以上0.2%以下、
Si:0.1%以上0.6%以下、
Mn:1.0%以上3.0%以下、
Al:0.02%以上1.0%以下、
Cr:0.1%以上0.7%以下、および
N:0.002%以上0.015%以下
を含有し、
さらに、Ti:0.002%以上0.02%以下
Nb:0.002%以上0.02%以下、および
V:0.01%以上0.1%以下
からなる群から選ばれる1種または2種以上を含有する
請求項3に記載のめっき鋼板。 - 質量%で、
C:0.1%以上0.2%以下、
Si:0.1%以上0.6%以下、
Mn:1.0%以上3.0%以下、
Al:0.02%以上1.0%以下、
Cr:0.1%以上0.7%以下、および
N:0.002%以上0.015%以下
を含有し、
さらに、Ti:0.002%以上0.02%以下、
Nb:0.002%以上0.02%以下、および
V:0.01%以上0.1%以下
からなる群から選ばれる1種または2種以上を含有し、
残部がFeおよび不純物からなる鋼素材を850℃以上の温度で断面減少率30%以上の熱間鍛造を経て得たスラブを、1200℃以上に再加熱後、熱間連続圧延して熱延鋼板を製造する方法であって、
前記熱間連続圧延は、
前記再加熱されたスラブを圧延して平均オーステナイト粒径が50μm以下の鋼板を得る粗圧延ステップと、
最終の圧延パスを[Ae3-50(℃)]以上[Ae3+50(℃)]以下の温度範囲かつ圧下率17%以上として前記粗圧延ステップにより得られた鋼板を圧延する仕上圧延ステップと、
前記仕上圧延ステップにより得られた鋼板を、前記仕上圧延ステップの終了後0.4秒間以内に、600℃/秒以上の冷却速度で700℃以下まで冷却し、当該冷却後の鋼板を600℃以上700℃以下の温度範囲で0.4秒間以上保持し、当該保持後の鋼板を120℃/秒以下の冷却速度で400℃以下まで冷却する冷却ステップと
を備えることを特徴とする、
高速変形下での均一延性および局部延性に優れた熱延鋼板の製造方法。 - 請求項7に記載の熱延鋼板の製造方法で製造した熱延鋼板を母材とし、この母材に冷間圧延および連続焼鈍を施して冷延鋼板を得る冷延鋼板の製造方法であって、
冷間圧延では、圧下率を50%以上90%以下とし、
連続焼鈍では、冷間圧延後の鋼板を加熱して750℃以上850℃以下の温度域に10秒間以上150秒間以下保持し、次いで、450℃以下の温度域まで冷却する
ことを特徴とする冷延鋼板の製造方法。 - 請求項8に記載の冷延鋼板の製造方法で製造した冷延鋼板に、亜鉛めっき処理を施した後、550℃を超えない温度域で合金化処理を施すことを特徴とするめっき鋼板の製造方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10858600.9A EP2631314B1 (en) | 2010-10-18 | 2010-10-18 | Hot-rolled, cold-rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate |
JP2012539485A JP5370593B2 (ja) | 2010-10-18 | 2010-10-18 | 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 |
PCT/JP2010/068258 WO2012053044A1 (ja) | 2010-10-18 | 2010-10-18 | 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 |
KR1020137012418A KR101531453B1 (ko) | 2010-10-18 | 2010-10-18 | 고속 변형 하에서의 균일 연성 및 국부 연성이 우수한 열연 강판, 냉연 강판 및 도금 강판 |
PL10858600T PL2631314T3 (pl) | 2010-10-18 | 2010-10-18 | Blacha stalowa cienka walcowana na gorąco, walcowana na zimno i powlekana galwanicznie o zwiększonej jednorodnej i miejscowej ciągliwości przy dużej szybkości odkształcenia |
ES10858600T ES2750361T3 (es) | 2010-10-18 | 2010-10-18 | Chapa de acero laminada en caliente, laminada en frío y chapada que tiene una ductilidad local y uniforme mejorada a una tasa de tensión alta |
CN201080070545.XA CN103249853B (zh) | 2010-10-18 | 2010-10-18 | 高速变形下均一韧性及局部韧性优异的热轧钢板、冷轧钢板以及镀覆钢板 |
RU2013122846/02A RU2543590C2 (ru) | 2010-10-18 | 2010-10-18 | Горячекатаный, холоднокатаный и плакированный стальной лист, имеющий улучшенную равномерную и локальную пластичность при высокой скорости деформации |
BR112013009277A BR112013009277A2 (pt) | 2010-10-18 | 2010-10-18 | chapa de aço laminada a quente, laminada a frio e revestida tendo ductilidade local e uniforme melhoradas a uma alta taxa de tensão |
US13/879,074 US9970073B2 (en) | 2010-10-18 | 2010-10-18 | Hot-rolled, cold rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/068258 WO2012053044A1 (ja) | 2010-10-18 | 2010-10-18 | 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012053044A1 true WO2012053044A1 (ja) | 2012-04-26 |
Family
ID=45974782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068258 WO2012053044A1 (ja) | 2010-10-18 | 2010-10-18 | 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 |
Country Status (10)
Country | Link |
---|---|
US (1) | US9970073B2 (ja) |
EP (1) | EP2631314B1 (ja) |
JP (1) | JP5370593B2 (ja) |
KR (1) | KR101531453B1 (ja) |
CN (1) | CN103249853B (ja) |
BR (1) | BR112013009277A2 (ja) |
ES (1) | ES2750361T3 (ja) |
PL (1) | PL2631314T3 (ja) |
RU (1) | RU2543590C2 (ja) |
WO (1) | WO2012053044A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014043631A (ja) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | 細粒鋼板の製造方法 |
JP5660250B2 (ja) * | 2012-07-20 | 2015-01-28 | 新日鐵住金株式会社 | 鋼材 |
CN104583444A (zh) * | 2012-08-21 | 2015-04-29 | 新日铁住金株式会社 | 钢材 |
JP2016084506A (ja) * | 2014-10-24 | 2016-05-19 | 新日鐵住金株式会社 | 冷間加工性に優れた熱延鋼板及びその製造方法 |
WO2017168957A1 (ja) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
WO2018186335A1 (ja) * | 2017-04-05 | 2018-10-11 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2018178247A (ja) * | 2017-04-05 | 2018-11-15 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2020059919A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP2021095582A (ja) * | 2019-12-13 | 2021-06-24 | 日本製鉄株式会社 | 熱間鍛造部品 |
CN114651078A (zh) * | 2019-12-09 | 2022-06-21 | 日本制铁株式会社 | 热轧钢板 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682490B1 (en) * | 2011-03-01 | 2019-08-28 | Nippon Steel Corporation | Metal plate for laser processing |
KR101657808B1 (ko) | 2014-12-22 | 2016-09-20 | 주식회사 포스코 | 단열성 전단띠 형성에 대한 저항성이 우수한 오스테나이트계 강재 및 이의 제조방법 |
WO2016132549A1 (ja) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
EP3260565B1 (en) | 2015-02-20 | 2019-07-31 | Nippon Steel Corporation | Hot-rolled steel sheet |
KR101980471B1 (ko) | 2015-02-25 | 2019-05-21 | 닛폰세이테츠 가부시키가이샤 | 열연 강판 |
WO2016135898A1 (ja) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | 熱延鋼板 |
CN113637923B (zh) * | 2016-08-05 | 2022-08-30 | 日本制铁株式会社 | 钢板及镀覆钢板 |
US11236412B2 (en) | 2016-08-05 | 2022-02-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
TWI629367B (zh) * | 2016-08-05 | 2018-07-11 | 日商新日鐵住金股份有限公司 | Steel plate and plated steel |
KR102227256B1 (ko) * | 2016-08-05 | 2021-03-12 | 닛폰세이테츠 가부시키가이샤 | 강판 및 도금 강판 |
CN106086364B (zh) * | 2016-08-11 | 2017-10-24 | 卡斯马汽车系统(重庆)有限公司 | 汽车热成型零件局部软化方法 |
KR102273551B1 (ko) * | 2017-02-20 | 2021-07-07 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
WO2019003447A1 (ja) | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
WO2019003445A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
CN111527222B (zh) * | 2017-12-28 | 2021-10-19 | 杰富意钢铁株式会社 | 包层钢板 |
EP3950466A4 (en) * | 2019-03-28 | 2022-12-21 | Nippon Steel Corporation | FRAMEWORK ELEMENT AND VEHICLE BODY STRUCTURE |
CN110306102B (zh) * | 2019-07-30 | 2020-09-04 | 马鞍山钢铁股份有限公司 | 一种表面质量优良的热轧酸洗复相钢及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080935A (ja) * | 2000-06-26 | 2002-03-22 | Nkk Corp | 加工性に優れた高強度薄鋼板及びその製造方法 |
JP2004084074A (ja) | 2003-12-08 | 2004-03-18 | Jfe Steel Kk | 耐衝撃性に優れる熱延鋼板 |
JP2004277858A (ja) | 2003-03-18 | 2004-10-07 | Jfe Steel Kk | 超微細粒組織を有し衝撃吸収特性に優れる冷延鋼板およびその製造方法 |
JP2005305454A (ja) * | 2004-04-16 | 2005-11-04 | Sumitomo Metal Ind Ltd | 微細粒熱延鋼板の製造方法 |
JP2006161077A (ja) | 2004-12-03 | 2006-06-22 | Honda Motor Co Ltd | 高強度鋼板及びその製造方法 |
WO2007015541A1 (ja) * | 2005-08-03 | 2007-02-08 | Sumitomo Metal Industries, Ltd. | 熱延鋼板及び冷延鋼板並びにそれらの製造方法 |
JP3958842B2 (ja) | 1997-07-15 | 2007-08-15 | 新日本製鐵株式会社 | 動的変形特性に優れた自動車衝突エネルギ吸収用加工誘起変態型高強度鋼板 |
JP2007277661A (ja) * | 2006-04-10 | 2007-10-25 | Nippon Steel Corp | バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法 |
JP2008189985A (ja) * | 2007-02-02 | 2008-08-21 | Sumitomo Metal Ind Ltd | 局部延性能に優れた熱延鋼板及びその製造方法 |
JP2008189979A (ja) * | 2007-02-02 | 2008-08-21 | Sumitomo Metal Ind Ltd | 合金化めっき鋼板及びその製造方法 |
JP2008266778A (ja) * | 2007-03-22 | 2008-11-06 | Jfe Steel Kk | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2008291304A (ja) * | 2007-05-24 | 2008-12-04 | Jfe Steel Kk | 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2836930B1 (fr) * | 2002-03-11 | 2005-02-25 | Usinor | Acier lamine a chaud a tres haute resistance et de faible densite |
US6811624B2 (en) * | 2002-11-26 | 2004-11-02 | United States Steel Corporation | Method for production of dual phase sheet steel |
FR2849864B1 (fr) * | 2003-01-15 | 2005-02-18 | Usinor | Acier lamine a chaud a tres haute resistance et procede de fabrication de bandes |
WO2011135700A1 (ja) | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | 動的強度に優れた複相熱延鋼板およびその製造方法 |
-
2010
- 2010-10-18 JP JP2012539485A patent/JP5370593B2/ja active Active
- 2010-10-18 WO PCT/JP2010/068258 patent/WO2012053044A1/ja active Application Filing
- 2010-10-18 ES ES10858600T patent/ES2750361T3/es active Active
- 2010-10-18 EP EP10858600.9A patent/EP2631314B1/en not_active Not-in-force
- 2010-10-18 RU RU2013122846/02A patent/RU2543590C2/ru not_active IP Right Cessation
- 2010-10-18 US US13/879,074 patent/US9970073B2/en not_active Expired - Fee Related
- 2010-10-18 KR KR1020137012418A patent/KR101531453B1/ko not_active Expired - Fee Related
- 2010-10-18 CN CN201080070545.XA patent/CN103249853B/zh not_active Expired - Fee Related
- 2010-10-18 BR BR112013009277A patent/BR112013009277A2/pt not_active Application Discontinuation
- 2010-10-18 PL PL10858600T patent/PL2631314T3/pl unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3958842B2 (ja) | 1997-07-15 | 2007-08-15 | 新日本製鐵株式会社 | 動的変形特性に優れた自動車衝突エネルギ吸収用加工誘起変態型高強度鋼板 |
JP2002080935A (ja) * | 2000-06-26 | 2002-03-22 | Nkk Corp | 加工性に優れた高強度薄鋼板及びその製造方法 |
JP2004277858A (ja) | 2003-03-18 | 2004-10-07 | Jfe Steel Kk | 超微細粒組織を有し衝撃吸収特性に優れる冷延鋼板およびその製造方法 |
JP2004084074A (ja) | 2003-12-08 | 2004-03-18 | Jfe Steel Kk | 耐衝撃性に優れる熱延鋼板 |
JP2005305454A (ja) * | 2004-04-16 | 2005-11-04 | Sumitomo Metal Ind Ltd | 微細粒熱延鋼板の製造方法 |
JP2006161077A (ja) | 2004-12-03 | 2006-06-22 | Honda Motor Co Ltd | 高強度鋼板及びその製造方法 |
WO2007015541A1 (ja) * | 2005-08-03 | 2007-02-08 | Sumitomo Metal Industries, Ltd. | 熱延鋼板及び冷延鋼板並びにそれらの製造方法 |
JP2007277661A (ja) * | 2006-04-10 | 2007-10-25 | Nippon Steel Corp | バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法 |
JP2008189985A (ja) * | 2007-02-02 | 2008-08-21 | Sumitomo Metal Ind Ltd | 局部延性能に優れた熱延鋼板及びその製造方法 |
JP2008189979A (ja) * | 2007-02-02 | 2008-08-21 | Sumitomo Metal Ind Ltd | 合金化めっき鋼板及びその製造方法 |
JP2008266778A (ja) * | 2007-03-22 | 2008-11-06 | Jfe Steel Kk | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2008291304A (ja) * | 2007-05-24 | 2008-12-04 | Jfe Steel Kk | 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5660250B2 (ja) * | 2012-07-20 | 2015-01-28 | 新日鐵住金株式会社 | 鋼材 |
CN104583444A (zh) * | 2012-08-21 | 2015-04-29 | 新日铁住金株式会社 | 钢材 |
CN104583444B (zh) * | 2012-08-21 | 2016-09-21 | 新日铁住金株式会社 | 钢材 |
JP2014043631A (ja) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | 細粒鋼板の製造方法 |
JP2016084506A (ja) * | 2014-10-24 | 2016-05-19 | 新日鐵住金株式会社 | 冷間加工性に優れた熱延鋼板及びその製造方法 |
JP2018080378A (ja) * | 2016-03-31 | 2018-05-24 | Jfeスチール株式会社 | 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法 |
WO2017168957A1 (ja) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
US11230744B2 (en) | 2016-03-31 | 2022-01-25 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
WO2018186335A1 (ja) * | 2017-04-05 | 2018-10-11 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP2018178247A (ja) * | 2017-04-05 | 2018-11-15 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
US11365459B2 (en) | 2017-04-05 | 2022-06-21 | Jfe Steel Corporation | High strength cold rolled steel sheet and method of producing same |
JP2020059919A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
CN114651078A (zh) * | 2019-12-09 | 2022-06-21 | 日本制铁株式会社 | 热轧钢板 |
JP2021095582A (ja) * | 2019-12-13 | 2021-06-24 | 日本製鉄株式会社 | 熱間鍛造部品 |
JP7376784B2 (ja) | 2019-12-13 | 2023-11-09 | 日本製鉄株式会社 | 熱間鍛造部品 |
Also Published As
Publication number | Publication date |
---|---|
EP2631314B1 (en) | 2019-09-11 |
EP2631314A4 (en) | 2017-05-17 |
RU2013122846A (ru) | 2014-11-27 |
JP5370593B2 (ja) | 2013-12-18 |
PL2631314T3 (pl) | 2020-03-31 |
BR112013009277A2 (pt) | 2016-07-26 |
US9970073B2 (en) | 2018-05-15 |
CN103249853B (zh) | 2015-05-20 |
KR20130080049A (ko) | 2013-07-11 |
RU2543590C2 (ru) | 2015-03-10 |
JPWO2012053044A1 (ja) | 2014-02-24 |
CN103249853A (zh) | 2013-08-14 |
KR101531453B1 (ko) | 2015-06-24 |
ES2750361T3 (es) | 2020-03-25 |
EP2631314A1 (en) | 2013-08-28 |
US20130269838A1 (en) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370593B2 (ja) | 高速変形下での均一延性および局部延性に優れた熱延鋼板、冷延鋼板およびめっき鋼板 | |
CA2762935C (en) | High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same | |
JP5206244B2 (ja) | 冷延鋼板 | |
KR101915917B1 (ko) | 고강도 강판, 고강도 용융 아연 도금 강판, 고강도 용융 알루미늄 도금 강판 및 고강도 전기 아연 도금 강판, 그리고 그것들의 제조 방법 | |
EP3012339B1 (en) | High yield-ratio, high-strength cold rolled steel sheet and production method therefor | |
KR101464844B1 (ko) | 가공성 및 내충격 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
CN102959119B (zh) | 动态强度优异的多相热轧钢板及其制造方法 | |
EP2847362B1 (en) | Automotive chassis part made from high strength formable hot rolled steel sheet | |
JP5447741B1 (ja) | 鋼板、めっき鋼板、及びそれらの製造方法 | |
CN114686777A (zh) | 具有良好耐老化性的扁钢产品及其制造方法 | |
EP4332254A1 (en) | High-strength steel sheet and manufacturing method therefor | |
JP2010229514A (ja) | 冷延鋼板およびその製造方法 | |
JP5811725B2 (ja) | 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法 | |
EP4198149A1 (en) | High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these | |
JP2004124123A (ja) | 加工性と形状凍結性に優れた低降伏比型高強度冷延鋼板及びその製造方法 | |
JP2007321208A (ja) | 高強度鋼の製造方法 | |
CN116897215A (zh) | 钢板、构件和它们的制造方法 | |
JP2004137564A (ja) | 熱延鋼材及びその製造方法 | |
JP5246283B2 (ja) | 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法 | |
JP5240407B2 (ja) | 動的強度に優れた複相熱延鋼板およびその製造方法 | |
JP7107464B1 (ja) | 高強度鋼板およびその製造方法 | |
KR101674283B1 (ko) | 신장과 신장 플랜지성이 우수한 저항복비 고강도 냉연 강판 및 그 제조 방법 | |
US11421296B2 (en) | Steel sheet with excellent bake hardening properties and plating adhesion and manufacturing method therefor | |
CN118401685A (zh) | 低密度热轧钢、其生产方法以及这样的钢用于生产车辆部件的用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10858600 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012539485 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010858600 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137012418 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013122846 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13879074 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013009277 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013009277 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130416 |