WO2011117630A1 - Alliage de magnésium contenant des terres rares lourdes - Google Patents
Alliage de magnésium contenant des terres rares lourdes Download PDFInfo
- Publication number
- WO2011117630A1 WO2011117630A1 PCT/GB2011/050579 GB2011050579W WO2011117630A1 WO 2011117630 A1 WO2011117630 A1 WO 2011117630A1 GB 2011050579 W GB2011050579 W GB 2011050579W WO 2011117630 A1 WO2011117630 A1 WO 2011117630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- alloy
- content
- alloys
- rare earths
- Prior art date
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 48
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 160
- 239000000956 alloy Substances 0.000 claims abstract description 160
- 238000005260 corrosion Methods 0.000 claims abstract description 55
- 230000007797 corrosion Effects 0.000 claims abstract description 55
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 34
- 239000011777 magnesium Substances 0.000 claims abstract description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 18
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 18
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 17
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 15
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 15
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 12
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims description 43
- 239000012890 simulated body fluid Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 18
- 229910052775 Thulium Inorganic materials 0.000 claims description 7
- 229910052765 Lutetium Inorganic materials 0.000 claims description 6
- 239000011156 metal matrix composite Substances 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 18
- 238000006731 degradation reaction Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 19
- 238000007792 addition Methods 0.000 description 18
- 230000006872 improvement Effects 0.000 description 15
- 238000001125 extrusion Methods 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000005336 cracking Methods 0.000 description 12
- 229910001425 magnesium ion Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000007943 implant Substances 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 239000013590 bulk material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000012925 reference material Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 229910001093 Zr alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 229940117975 chromium trioxide Drugs 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910001371 Er alloy Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- QRNPTSGPQSOPQK-UHFFFAOYSA-N magnesium zirconium Chemical compound [Mg].[Zr] QRNPTSGPQSOPQK-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005088 metallography Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the present invention relates to magnesium alloys containing heavy rare earths which possess good processability and/or ductility, particularly when wrought, whilst retaining good resistance to corrosion and/or degradation, and are particularly suitable for fabrication into medical implants, for example by extrusion.
- the described alloys consist of
- inventive Mg alloy for manufacturing an implant causes an improvement in processability, an increase in corrosion resistance and biocompatibility compared to conventional magnesium alloys, especially WE alloys such as WE43 or WE54.
- the amount of RE addition may be expected to affect the amount of retained clusters and particles present in the microstructure.
- the content of at least one of the heavy rare earths selected from Er, Ho, Lu, Tm and Tb in the Mg alloy is at least 5.5% by weight.
- Y in the Mg alloy is greater than or equal to 0.05% by weight.
- the content of Nd in the Mg alloy is 0 - 5% by weight, preferably greater than or equal to 0.05%> by weight, more preferably 0.05 - 2.5% by weight, and even more preferably above 1.3% by weight.
- the content of Nd is above 5% by weight, the ductility of the alloy deteriorates due to a limited solubility of Nd in Mg.
- the content of Gd in the Mg alloy is 0 - 9% by weight, preferably 0 - 7%, and more preferably no more than 5%, or for some alloys no more than 2%, by weight.
- Gd can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour.
- Levels of Gd approaching the solubility limit in a given alloy reduce ductility.
- Gd addition can be as low 0.2% by weight, whilst for others Gd can be avoided altogether.
- the content of Dy in the Mg alloy is 0 - 8.0% by weight, preferably 0 - 4% by weight, most preferred 0 - 0.6% by weight.
- Dy behaves in a similar manner to Gd.
- the content of Er in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16%> by weight, most preferred 6.5 - 11% by weight. Er can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour and strength.
- the content of Ho in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight. Ho can reduce the degradation of the alloy in SBF and increases strength.
- the content of Lu in the Mg alloy is preferably at least 0.1 % by weight, more preferably at least 0.2% by weight.
- the content of Lu in the Mg alloy is 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight. Lu can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour and strength.
- the content of Tm in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
- the content of Tm in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
- the content of Tb in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
- the content of Tb in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
- the same effect on degradation of the alloy and improvement of the EAC behaviour and strength is expected as for Er, Ho, Lu, and Tm.
- a total content of Dy, Gd, Ho, Er, Lu, Tm and Tb in the Mg alloy is preferably less than 11% by weight in order to achieve a good combination of ductility, strength and EAC behaviour.
- the content of Zr in the Mg alloy is 0 - 1.5% by weight, preferably at least 0.01% by weight, and more preferably 0.1 - 0.9% by weight.
- zirconium has a significant benefit of reducing the grain size of magnesium alloys, especially of the pre-extruded material, which improves the ductility of the alloy. Further, Zr removes contaminants from the melt.
- the content of Ca in the Mg alloy is 0 - 3% by weight, preferably 0 - 1% by weight.
- Ca can have a significant benefit of reducing the grain size of magnesium alloys.
- Ca addition should be avoided altogether.
- the content of Zn and/or Mn in the Mg alloy is 0 - 2% by weight, preferably 0 - 0.5% by weight, more preferably less than 0.40% by weight. Both Zn and Mn can contribute to precipitation and can also affect general corrosion, but Zn is preferred to Mn. For some alloys Zn addition should be avoided altogether.
- the content of In in the Mg alloy is 0 % by weight up to its solubility limit, which in the present alloys can be as high as about 15% by weight, and preferably no more than 5% by weight. In can have a benefit of improving the corrosion performance of magnesium alloys. For some alloys In addition should be avoided altogether.
- the content of Sc in the Mg alloy is 0% by weight up to its solubility limit, which in the present alloys can be as high as about 15% by weight, and preferably no more than 7% by weight, more preferably no more than 5% by weight. Sc can have a positive effect on corrosion resistance. For some alloys Sc addition should be avoided altogether.
- Al can be added to the Mg alloy in an amount for some alloys as high as 10% by weight, but generally should be added in an amount less than 7% by weight, preferably less than 6% by weight, in order not to significantly adversely affect the alloy's strength, ductility or EAC behaviour.
- any Al addition should be no higher than 4% and more preferably less than 3% by weight. In some embodiments, Al addition should be less than 0.05%) by weight.
- Al addition should be avoided altogether (ie Al should not be intentionally added).
- the total content of impurities in the alloy should be less than 0.3% by weight, more preferred less than 0.2% by weight.
- the following maximum impurity levels should be preserved: Fe, Si, Cu, Mn, and Ag each less than 0.05% by weight Ni less than 0.006% by weight
- La, Ce, Pr,Tb, Sm, Eu and Yb less than 0.15% by weight, preferably less than 0.1% by weight
- Other preferred features are set out in the accompanying claims in line with the preferred features described in PCT/GB2009/002325, such as particle size.
- a sample of the alloy to be assayed is stored in a closed sample container with a defined quantity of the testing medium at 37°C.
- the sample is removed and examined for corrosion traces in a known way.
- FIG. 8 shows an example of secondary cracking caused by EAC in SBF solution.
- FIG. 9 shows the relative collapse pressure of stents made from WE43 and from an alloy (MI0029) according to the invention.
- FIG. 10 shows the relative degradation score of stents made from WE43 and from an alloy (MI0029) according to the invention.
- melts were carried out according to the following casting technique:
- High-purity starting materials (generally >99%) were melted in steel crucibles under a protective gas (C0 2 /2% SF 6 ). The temperature was raised to 760°C to 800°C before the melt was homogenized by stirring. The melt was cast to form bars with a nominal diameter of 120 mm and a length of 300 mm. Next the bars were machined to a nominal diameter of 75 mm with a length of 150 mm to 250 mm and homogenized for 4- 8 hours. Near to the melts' solidus temperature, homogenization was typically achieved at approximately 525°C.
- clusters/particles are brittle.
- Figure 1 is a comparatively "clean microstructure" despite a 12.7% addition of Er - ductility is good (19%).
- the alloy of Figure 4 illustrates that a combination of lower Er compared to the alloy of Figure 1 (8% Er vs. 13% Er) can achieve a comparatively "clean microstructure" and similar properties to that of alloy of Figure 1, by combining Nd with this lower Er content.
- Figure 5 illustrates the effect of Lu, which appears to provide a similar manner to Er, however appears more tolerant to Nd additions in terms of freedom of particles and clusters compared with the alloy of Figure 4.
- Figures 6 and 7 illustrate the difference in micro-structure of drawn tubes from the reference material WE43 and micro-extruded tubes from the inventive alloy MI0029. It clearly can be seen that the micro-extruded has significantly fewer and smaller precipitates than drawn material. In addition the grain size of the extruded tubes is significantly reduced from about 15-20 ⁇ for the as extruded bulk materials to 2-15 ⁇ in the drawn condition.
- Tests in immersed SBF, of the alloys of the invention illustrates that the reduction on degradation rate (corrosion). This is best viewed as a percentage of the reference alloy WE43 type. In the best case examples from the invention show a greater than 10 fold improvement in degradation.
- Table 4 provides data on EAC tests. Taking WE43 type alloy (MI0047) as a reference, it can be seen that as the HRE content increase, the absolute tolerable stress increase. This improvement is also seen as a percentage of the actual strength of the material when tested in air (no SBF media effect). The closer this value is to 100%, the less the fracture is related to the media and therefore the less prone the material is likely to be to EAC (SCC) in that media. Er additions perform well to at least 14wt %, however at 18 wt % the performance is reduced to beneath that of the reference WE43 type alloy. Other HREs perform in different ways. For example whilst Gd can improve EAC resistance of the alloys tested, and Lu also appears good, Ho performs poorly.
- Figure 8 shows the fracture appearance of comparative alloy DF9400. The fracture shows primary and secondary cracking. This type of cracking with secondary cracking remote from the primary crack can be representative of SCC.
- Table 5 shows a comparison of the Mg ion release from bulk material, extruded tubes and the respective stents from these extruded sleeves. Values are given in percentage of the respective reference material (reference WE 43 bulk material from Table 2 as reference for the inventive bulk material, drawn tube of WE43 for the extruded tubes of the inventive alloy, and stents from drawn tube of WE43 for the stents manufactured from extruded tubes of the inventive alloys).
- the melt was homogenised by stirring, and then cast in a mold to form bars with a nominal diameter of 120mm and a length of 300mm. After casting and cooling, the bars were machined to a nominal diameter of 75mm with a length of 250mm and homogenised for 8 hours at approximately 525°C. The material was then reheated to 400-500°C and extruded using a hydraulic press. The resulting round rods had a diameter of 12.7 mm. Before further processing or testing, 30 cm long pieces were removed from the start and end of the extrusions.
- the mechanical properties of the extruded bulk material compared to WE43 were as follows:
- A 18%, which is ca. 1-7% points less than for WE43.
- Stents are endoluminal endoprostheses having a carrier structure.
- the structure comprises a hollow body which is open at both ends and a peripheral wall which is formed by a plurality of struts connected together.
- the struts can be folded in a zig-zag configuration.
- the struts have typical dimensions in width and thickness of 30-450 ⁇ .
- the further processing of the extruded alloy into tubes was accomplished by a micro-extrusion process. Slugs of alloy were machined from the bulk material. These slugs were processed by hot pressing at elevated temperatures of between 200°C and 480°C and extrusion speeds of 0.001 mm/s to 600 mm/s.
- the micro-extruded tubes for vessel scaffolds had a length of not less than 30 mm, a diameter of ca. 2 mm and a wall thickness between 50 and 400 ⁇ .
- YTS 189 MPa, which is ca. 25 MPa higher than for drawn WE43 tubes
- stents were produced from the micro- extruded tube by laser cutting and electro-polishing.
- the stents Prior to testing, the stents were crimped onto balloon catheters to a diameter of less than 1.5 mm and sterilized, e.g. by ETO or e-beam. The stents were than over- expanded to their nominal diameter plus 0.5 mm into mock arteries with respective diameters which has been filled with simulated body fluid (SBF). Previous tests have shown that over-expansion to about 1 mm in diameter is possible for the alloy according to the invention, whereas an identical stent manufactured from WE43 tolerates significant less over-expansion. The improved dilatation reserve of the inventive alloy contributes significantly to device safety in clinical practice.
- SBF simulated body fluid
- Figure 9 shows the relative collapse pressure over a 28 day period of a stent made from WE43 alloy and one made from the alloy of the invention.
- the relative collapse pressure is calculated by measuring the absolute collapse pressure and then expressing this as a percentage of the initial collapse pressure of the stent made from WE43.
- these results showed that the stent made from the alloy of the invention exhibited a significant higher initial relative collapse pressures (+10%) as a result of greater strength, lower yield ratio and higher strain hardening.
- the stent made from the alloy of the invention maintained a high relative collapse pressure over a significant longer period of time without fractures or fragmentation, indicating a significantly lower susceptibility to environmental assisted cracking (ie corrosion fatigue).
- Figure 10 shows the relative degradation score over a 28 day period of a stent made from WE43 alloy and one made from the alloy of the invention.
- the relative degradation score is calculated by measuring the weight of the stent and then expressing this as a percentage of the initial weight of the stent made from WE43.
- these results showed that the stent made from the alloy of the invention exhibited a significantly lower levels of corrosion (-25%) than the stent made from WE43 when under cyclic load in a corrosive environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
La présente invention se rapporte à des alliages de magnésium qui présentent une bonne capacité de traitement et/ou une bonne ductibilité tout en conservant une bonne résistance à la corrosion et/ou à une dégradation. Lesdits alliages de magnésium comprennent une ou plusieurs terres rares lourdes sélectionnées dans le groupe constitué par : l'erbium (Er), l'holmium (Ho), le lutétium (Lu), le thulium (Tm) et le terbium (Tb) en une quantité totale supérieure à 5,5 % et inférieure à leur limite de solubilité de solide respective dans l'alliage comme cela est mesuré à une température de 500 °C, et une quantité d'yttrium (Y) comprise entre 0 et 10 % en poids. Facultativement, les alliages comprennent un ou plusieurs éléments chimiques parmi les éléments chimiques suivants : le néodyme (Nd) en une quantité comprise entre 0 et 5 % en poids; le dysprosium (Dy) en une quantité comprise entre 0 et 8 % en poids; le gadolinium (Gd) en une quantité comprise entre 0 et 9 % en poids; le zirconium (Zr) en une quantité comprise entre 0 et 1,5 % en poids; l'aluminium (Al) en une quantité comprise entre 0 et 10 % en poids; le zinc (Zn) et/ou le manganèse (Mn) en une quantité comprise entre 0 et 2 % en poids au total; le scandium (Sc) en une quantité comprise entre 0 et 15 % en poids; l'indium (In) en une quantité comprise entre 0 et 15 % en poids; le calcium (Ca) en une quantité comprise entre 0 et 3 % en poids; et une ou plusieurs terres rares et des terres rares autres que l'yttrium (Y), le néodyme (Nd), l'erbium (Er), l'holmium (Ho), le lutétium (Lu), le thulium (Tm), le terbium (Tb), le dysprosium (Dy) et le gadolinium (Gd) en une quantité totale allant jusqu'à 0,5 % en poids, le reste étant du magnésium et des impuretés inévitables jusqu'à un total de 0,3 % en poids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11712655A EP2550376A1 (fr) | 2010-03-25 | 2011-03-23 | Alliage de magnésium contenant des terres rares lourdes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1005029.2A GB201005029D0 (en) | 2010-03-25 | 2010-03-25 | Magnesium alloys containing heavy rare earths |
GB1005029.2 | 2010-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011117630A1 true WO2011117630A1 (fr) | 2011-09-29 |
Family
ID=42228338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/050579 WO2011117630A1 (fr) | 2010-03-25 | 2011-03-23 | Alliage de magnésium contenant des terres rares lourdes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2550376A1 (fr) |
GB (1) | GB201005029D0 (fr) |
WO (1) | WO2011117630A1 (fr) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534330A (zh) * | 2012-02-22 | 2012-07-04 | 上海交通大学 | 高强度铸造镁合金及其制备方法 |
CN102628135A (zh) * | 2012-04-11 | 2012-08-08 | 哈尔滨工程大学 | 一种镁基稀土合金材料及其制备方法 |
CN103014469A (zh) * | 2013-01-08 | 2013-04-03 | 哈尔滨工程大学 | 一种抗冲击的高强镁合金材料及制备方法 |
CN103146972A (zh) * | 2013-03-14 | 2013-06-12 | 河南科技大学 | 一种多元稀土镁合金及其制备方法 |
CN104651693A (zh) * | 2013-11-22 | 2015-05-27 | 北京有色金属研究总院 | 含微量Al的稀土变形镁合金及其制备方法 |
CN108456815A (zh) * | 2018-01-24 | 2018-08-28 | 大连理工大学 | 一种源自溶质均匀模型的高强高塑性Mg-Gd-Y-Zr铸造合金及其制备方法 |
CN108715963A (zh) * | 2018-05-21 | 2018-10-30 | 山东银光钰源轻金属精密成型有限公司 | 一种含Y、Nd稀土镁合金及其制备方法 |
CN110229984A (zh) * | 2019-06-20 | 2019-09-13 | 上海交通大学 | 一种高强度Mg-Gd-Er-Y镁合金及其制备方法 |
CN110306088A (zh) * | 2018-08-17 | 2019-10-08 | 西特尼斯Ag | 可生物降解的线材植入物 |
CN110983139A (zh) * | 2019-12-08 | 2020-04-10 | 江苏奇纳新材料科技有限公司 | 石油开采分段压裂用镁合金及其制备方法 |
CN111172438A (zh) * | 2020-01-15 | 2020-05-19 | 太原科技大学 | 一种含Na高强度低温快速降解镁合金及其制备方法 |
CN112553512A (zh) * | 2020-12-02 | 2021-03-26 | 中铝材料应用研究院有限公司 | 高热稳定性、焊接性和耐蚀性的铝-镁合金板材及其用途 |
CN113913659A (zh) * | 2021-10-09 | 2022-01-11 | 哈尔滨工程大学 | 通过调控复合稀土与Zn的比例的高温高强镁合金及其制备方法 |
RU2781338C1 (ru) * | 2021-09-07 | 2022-10-11 | федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" (ТГУ) | Пожаробезопасный магниевый литейный сплав |
EP4029629A4 (fr) * | 2019-10-15 | 2023-02-22 | Shanghai Jiao Tong University | Procédé de préparation d'un alliage de magnésium-terre rare à résistance et ténacité élevées au moyen d'une technologie de fabrication additive par fusion laser sélective |
US11795533B2 (en) * | 2019-05-23 | 2023-10-24 | Qilu University Of Technology | Heat-resistant and soluble magnesium alloy, preparation method and use thereof |
CN118581371A (zh) * | 2024-06-24 | 2024-09-03 | 南京航空航天大学 | 一种基于多尺度异质耐热结构的Mg-Gd-Y-Al-Mn基高耐热镁合金及其制造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107974600B (zh) * | 2017-11-27 | 2019-12-27 | 河南科技大学 | 一种富钆镁合金及其制备方法 |
CN109182858B (zh) * | 2018-11-14 | 2020-12-04 | 哈尔滨工程大学 | 一种含Ho耐热镁合金及其制备方法 |
CN113322403A (zh) * | 2021-06-03 | 2021-08-31 | 郑州大学 | 一种新型可降解高强韧镁合金骨钉材料及其制备方法 |
CN115074588A (zh) * | 2022-06-06 | 2022-09-20 | 安徽工程大学 | 一种高强塑稀土镁合金的制备工艺及高强塑稀土镁合金 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0141739A2 (fr) | 1983-11-04 | 1985-05-15 | Thomson-Csf | Dispositif interférométrique de mesure d'une vitesse de rotation angulaire |
JPH06200350A (ja) * | 1992-07-01 | 1994-07-19 | Mitsui Mining & Smelting Co Ltd | テルビウム含有高強度マグネシウム合金 |
JPH07138689A (ja) * | 1993-11-09 | 1995-05-30 | Shiyoutarou Morozumi | 高温強度のすぐれたMg合金 |
US20040045639A1 (en) * | 2001-08-13 | 2004-03-11 | Kazuo Kikawa | Magnesium alloy |
EP1816224A1 (fr) * | 2004-09-30 | 2007-08-08 | KAWAMURA, Yoshihito | Métal de grande dureté et de résistance élevée and procédé de fabrication dudit métal |
EP1842507A1 (fr) | 2005-01-28 | 2007-10-10 | Terumo Kabushiki Kaisha | Implant intravasculaire |
CN101078080A (zh) * | 2007-07-04 | 2007-11-28 | 北京有色金属研究总院 | 抗蠕变镁合金及其制备方法 |
CN101130842A (zh) * | 2006-08-25 | 2008-02-27 | 北京有色金属研究总院 | 一种高强度的耐热镁合金及其熔炼方法 |
EP1925684A2 (fr) * | 2006-11-21 | 2008-05-28 | Kabushiki Kaisha Kobe Seiko Sho | Matériau en alliage de magnésium et son procédé de fabrication |
CN101392345A (zh) * | 2008-11-06 | 2009-03-25 | 上海交通大学 | 含镍耐热稀土镁合金及其制备方法 |
WO2009038215A1 (fr) * | 2007-09-18 | 2009-03-26 | Kabushiki Kaisha Kobe Seiko Sho | Matériau d'alliage de magnésium et procédé pour la fabrication de celui-ci |
CN101397623A (zh) * | 2008-11-06 | 2009-04-01 | 上海交通大学 | 含铜耐热稀土镁合金及其制备方法 |
-
2010
- 2010-03-25 GB GBGB1005029.2A patent/GB201005029D0/en not_active Ceased
-
2011
- 2011-03-23 EP EP11712655A patent/EP2550376A1/fr not_active Withdrawn
- 2011-03-23 WO PCT/GB2011/050579 patent/WO2011117630A1/fr active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0141739A2 (fr) | 1983-11-04 | 1985-05-15 | Thomson-Csf | Dispositif interférométrique de mesure d'une vitesse de rotation angulaire |
JPH06200350A (ja) * | 1992-07-01 | 1994-07-19 | Mitsui Mining & Smelting Co Ltd | テルビウム含有高強度マグネシウム合金 |
JPH07138689A (ja) * | 1993-11-09 | 1995-05-30 | Shiyoutarou Morozumi | 高温強度のすぐれたMg合金 |
US20040045639A1 (en) * | 2001-08-13 | 2004-03-11 | Kazuo Kikawa | Magnesium alloy |
EP1816224A1 (fr) * | 2004-09-30 | 2007-08-08 | KAWAMURA, Yoshihito | Métal de grande dureté et de résistance élevée and procédé de fabrication dudit métal |
EP1842507A1 (fr) | 2005-01-28 | 2007-10-10 | Terumo Kabushiki Kaisha | Implant intravasculaire |
CN101130842A (zh) * | 2006-08-25 | 2008-02-27 | 北京有色金属研究总院 | 一种高强度的耐热镁合金及其熔炼方法 |
EP1925684A2 (fr) * | 2006-11-21 | 2008-05-28 | Kabushiki Kaisha Kobe Seiko Sho | Matériau en alliage de magnésium et son procédé de fabrication |
CN101078080A (zh) * | 2007-07-04 | 2007-11-28 | 北京有色金属研究总院 | 抗蠕变镁合金及其制备方法 |
WO2009038215A1 (fr) * | 2007-09-18 | 2009-03-26 | Kabushiki Kaisha Kobe Seiko Sho | Matériau d'alliage de magnésium et procédé pour la fabrication de celui-ci |
CN101392345A (zh) * | 2008-11-06 | 2009-03-25 | 上海交通大学 | 含镍耐热稀土镁合金及其制备方法 |
CN101397623A (zh) * | 2008-11-06 | 2009-04-01 | 上海交通大学 | 含铜耐热稀土镁合金及其制备方法 |
Non-Patent Citations (4)
Title |
---|
ABBAS T ET AL: "Study of atomic short-range order in magnesium rich Mg-Ho and Mg-Tb alloys by X-ray diffraction and pseudopotential techniques", NUCLEUS, PINSTECH, PAKISTAN, vol. 23, no. 1-2, 1 January 1987 (1987-01-01), pages 3 - 6, XP008135949, ISSN: 0029-5698 * |
PENG Q ET AL: "Age hardening and mechanical properties of Mg-Gd-Er alloy", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 456, no. 1-2, 29 May 2008 (2008-05-29), pages 395 - 399, XP022590498, ISSN: 0925-8388, [retrieved on 20080407], DOI:10.1016/J.JALLCOM.2007.02.037 * |
PENG Q ET AL: "Aging behavior and mechanical properties of Mg-Gd-Ho alloys", MATERIALS CHARACTERIZATION, ELSEVIER, NEW YORK, NY, US, vol. 59, no. 8, 1 August 2008 (2008-08-01), pages 983 - 986, XP022707763, ISSN: 1044-5803, [retrieved on 20080606], DOI:10.1016/J.MATCHAR.2007.08.009 * |
VERBETSKII V N ET AL: "HYDROGENATION STUDY OF MAGNESIUM ALLOYS WITH 15 WT. % LANTHANUM OR ERBIUM", RUSSIAN METALLURGY / METALLY / IZVESTIYA AKADEMII NAUK SSSR, ALLERTON PRESS, INC, XX, no. 3, 1 January 1987 (1987-01-01), pages 188 - 191, XP008135950, ISSN: 0036-0295 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534330A (zh) * | 2012-02-22 | 2012-07-04 | 上海交通大学 | 高强度铸造镁合金及其制备方法 |
CN102628135A (zh) * | 2012-04-11 | 2012-08-08 | 哈尔滨工程大学 | 一种镁基稀土合金材料及其制备方法 |
CN103014469A (zh) * | 2013-01-08 | 2013-04-03 | 哈尔滨工程大学 | 一种抗冲击的高强镁合金材料及制备方法 |
CN103146972A (zh) * | 2013-03-14 | 2013-06-12 | 河南科技大学 | 一种多元稀土镁合金及其制备方法 |
CN103146972B (zh) * | 2013-03-14 | 2015-12-23 | 河南科技大学 | 一种多元稀土镁合金及其制备方法 |
CN104651693A (zh) * | 2013-11-22 | 2015-05-27 | 北京有色金属研究总院 | 含微量Al的稀土变形镁合金及其制备方法 |
CN104651693B (zh) * | 2013-11-22 | 2017-05-17 | 北京有色金属研究总院 | 含微量Al的稀土变形镁合金及其制备方法 |
CN108456815A (zh) * | 2018-01-24 | 2018-08-28 | 大连理工大学 | 一种源自溶质均匀模型的高强高塑性Mg-Gd-Y-Zr铸造合金及其制备方法 |
CN108715963A (zh) * | 2018-05-21 | 2018-10-30 | 山东银光钰源轻金属精密成型有限公司 | 一种含Y、Nd稀土镁合金及其制备方法 |
CN110306088A (zh) * | 2018-08-17 | 2019-10-08 | 西特尼斯Ag | 可生物降解的线材植入物 |
US11795533B2 (en) * | 2019-05-23 | 2023-10-24 | Qilu University Of Technology | Heat-resistant and soluble magnesium alloy, preparation method and use thereof |
CN110229984A (zh) * | 2019-06-20 | 2019-09-13 | 上海交通大学 | 一种高强度Mg-Gd-Er-Y镁合金及其制备方法 |
CN110229984B (zh) * | 2019-06-20 | 2020-08-04 | 上海交通大学 | 一种高强度Mg-Gd-Er-Y镁合金及其制备方法 |
EP4029629A4 (fr) * | 2019-10-15 | 2023-02-22 | Shanghai Jiao Tong University | Procédé de préparation d'un alliage de magnésium-terre rare à résistance et ténacité élevées au moyen d'une technologie de fabrication additive par fusion laser sélective |
US12202040B2 (en) | 2019-10-15 | 2025-01-21 | Shanghai Jiao Tong University | Method for preparing Mg-RE alloys with high strength and ductility using selective laser melting additive manufacturing technology |
CN110983139A (zh) * | 2019-12-08 | 2020-04-10 | 江苏奇纳新材料科技有限公司 | 石油开采分段压裂用镁合金及其制备方法 |
CN111172438A (zh) * | 2020-01-15 | 2020-05-19 | 太原科技大学 | 一种含Na高强度低温快速降解镁合金及其制备方法 |
CN111172438B (zh) * | 2020-01-15 | 2022-02-01 | 太原科技大学 | 一种含Na高强度低温快速降解镁合金及其制备方法 |
CN112553512A (zh) * | 2020-12-02 | 2021-03-26 | 中铝材料应用研究院有限公司 | 高热稳定性、焊接性和耐蚀性的铝-镁合金板材及其用途 |
RU2781338C1 (ru) * | 2021-09-07 | 2022-10-11 | федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" (ТГУ) | Пожаробезопасный магниевый литейный сплав |
CN113913659A (zh) * | 2021-10-09 | 2022-01-11 | 哈尔滨工程大学 | 通过调控复合稀土与Zn的比例的高温高强镁合金及其制备方法 |
CN118581371A (zh) * | 2024-06-24 | 2024-09-03 | 南京航空航天大学 | 一种基于多尺度异质耐热结构的Mg-Gd-Y-Al-Mn基高耐热镁合金及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2550376A1 (fr) | 2013-01-30 |
GB201005029D0 (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2550376A1 (fr) | Alliage de magnésium contenant des terres rares lourdes | |
EP2550032B1 (fr) | Implant constitué par un alliage de magnésium biodégradable | |
EP2550377B1 (fr) | Alliages de magnésium contenant des terres rares lourdes | |
US10016530B2 (en) | Implant made of a biodegradable magnesium alloy | |
US9468704B2 (en) | Implant made of a biodegradable magnesium alloy | |
CN102802689B (zh) | 由超纯镁基材料形成的可生物降解可植入医疗器械 | |
US9603728B2 (en) | Bioerodible magnesium alloy microstructures for endoprostheses | |
EP2763711B1 (fr) | Alliages de magnésium pour endoprothèse bioabsorbable | |
CN111304504A (zh) | 具有可调节降解率的超纯镁合金 | |
EP3569723A1 (fr) | Alliage de magnésium | |
WO2013059715A2 (fr) | Alliages à base de fer pour une endoprothèse bioabsorbable | |
Muzaffar et al. | Mechanical, Chemical, Fatigue, and Biological Compatible Properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11712655 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011712655 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |