+

WO2011117630A1 - Alliage de magnésium contenant des terres rares lourdes - Google Patents

Alliage de magnésium contenant des terres rares lourdes Download PDF

Info

Publication number
WO2011117630A1
WO2011117630A1 PCT/GB2011/050579 GB2011050579W WO2011117630A1 WO 2011117630 A1 WO2011117630 A1 WO 2011117630A1 GB 2011050579 W GB2011050579 W GB 2011050579W WO 2011117630 A1 WO2011117630 A1 WO 2011117630A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
alloy
content
alloys
rare earths
Prior art date
Application number
PCT/GB2011/050579
Other languages
English (en)
Inventor
Paul Lyon
Antony James Boden
Original Assignee
Magnesium Elektron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnesium Elektron Limited filed Critical Magnesium Elektron Limited
Priority to EP11712655A priority Critical patent/EP2550376A1/fr
Publication of WO2011117630A1 publication Critical patent/WO2011117630A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to magnesium alloys containing heavy rare earths which possess good processability and/or ductility, particularly when wrought, whilst retaining good resistance to corrosion and/or degradation, and are particularly suitable for fabrication into medical implants, for example by extrusion.
  • the described alloys consist of
  • inventive Mg alloy for manufacturing an implant causes an improvement in processability, an increase in corrosion resistance and biocompatibility compared to conventional magnesium alloys, especially WE alloys such as WE43 or WE54.
  • the amount of RE addition may be expected to affect the amount of retained clusters and particles present in the microstructure.
  • the content of at least one of the heavy rare earths selected from Er, Ho, Lu, Tm and Tb in the Mg alloy is at least 5.5% by weight.
  • Y in the Mg alloy is greater than or equal to 0.05% by weight.
  • the content of Nd in the Mg alloy is 0 - 5% by weight, preferably greater than or equal to 0.05%> by weight, more preferably 0.05 - 2.5% by weight, and even more preferably above 1.3% by weight.
  • the content of Nd is above 5% by weight, the ductility of the alloy deteriorates due to a limited solubility of Nd in Mg.
  • the content of Gd in the Mg alloy is 0 - 9% by weight, preferably 0 - 7%, and more preferably no more than 5%, or for some alloys no more than 2%, by weight.
  • Gd can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour.
  • Levels of Gd approaching the solubility limit in a given alloy reduce ductility.
  • Gd addition can be as low 0.2% by weight, whilst for others Gd can be avoided altogether.
  • the content of Dy in the Mg alloy is 0 - 8.0% by weight, preferably 0 - 4% by weight, most preferred 0 - 0.6% by weight.
  • Dy behaves in a similar manner to Gd.
  • the content of Er in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16%> by weight, most preferred 6.5 - 11% by weight. Er can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour and strength.
  • the content of Ho in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight. Ho can reduce the degradation of the alloy in SBF and increases strength.
  • the content of Lu in the Mg alloy is preferably at least 0.1 % by weight, more preferably at least 0.2% by weight.
  • the content of Lu in the Mg alloy is 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight. Lu can reduce the degradation of the alloy in SBF tests and improve its EAC behaviour and strength.
  • the content of Tm in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
  • the content of Tm in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
  • the content of Tb in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
  • the content of Tb in the Mg alloy is preferably 5.5% by weight up to its solubility limit, which is in the present alloys about 25% by weight, preferably 6 - 16% by weight, most preferred 6.5 - 11% by weight.
  • the same effect on degradation of the alloy and improvement of the EAC behaviour and strength is expected as for Er, Ho, Lu, and Tm.
  • a total content of Dy, Gd, Ho, Er, Lu, Tm and Tb in the Mg alloy is preferably less than 11% by weight in order to achieve a good combination of ductility, strength and EAC behaviour.
  • the content of Zr in the Mg alloy is 0 - 1.5% by weight, preferably at least 0.01% by weight, and more preferably 0.1 - 0.9% by weight.
  • zirconium has a significant benefit of reducing the grain size of magnesium alloys, especially of the pre-extruded material, which improves the ductility of the alloy. Further, Zr removes contaminants from the melt.
  • the content of Ca in the Mg alloy is 0 - 3% by weight, preferably 0 - 1% by weight.
  • Ca can have a significant benefit of reducing the grain size of magnesium alloys.
  • Ca addition should be avoided altogether.
  • the content of Zn and/or Mn in the Mg alloy is 0 - 2% by weight, preferably 0 - 0.5% by weight, more preferably less than 0.40% by weight. Both Zn and Mn can contribute to precipitation and can also affect general corrosion, but Zn is preferred to Mn. For some alloys Zn addition should be avoided altogether.
  • the content of In in the Mg alloy is 0 % by weight up to its solubility limit, which in the present alloys can be as high as about 15% by weight, and preferably no more than 5% by weight. In can have a benefit of improving the corrosion performance of magnesium alloys. For some alloys In addition should be avoided altogether.
  • the content of Sc in the Mg alloy is 0% by weight up to its solubility limit, which in the present alloys can be as high as about 15% by weight, and preferably no more than 7% by weight, more preferably no more than 5% by weight. Sc can have a positive effect on corrosion resistance. For some alloys Sc addition should be avoided altogether.
  • Al can be added to the Mg alloy in an amount for some alloys as high as 10% by weight, but generally should be added in an amount less than 7% by weight, preferably less than 6% by weight, in order not to significantly adversely affect the alloy's strength, ductility or EAC behaviour.
  • any Al addition should be no higher than 4% and more preferably less than 3% by weight. In some embodiments, Al addition should be less than 0.05%) by weight.
  • Al addition should be avoided altogether (ie Al should not be intentionally added).
  • the total content of impurities in the alloy should be less than 0.3% by weight, more preferred less than 0.2% by weight.
  • the following maximum impurity levels should be preserved: Fe, Si, Cu, Mn, and Ag each less than 0.05% by weight Ni less than 0.006% by weight
  • La, Ce, Pr,Tb, Sm, Eu and Yb less than 0.15% by weight, preferably less than 0.1% by weight
  • Other preferred features are set out in the accompanying claims in line with the preferred features described in PCT/GB2009/002325, such as particle size.
  • a sample of the alloy to be assayed is stored in a closed sample container with a defined quantity of the testing medium at 37°C.
  • the sample is removed and examined for corrosion traces in a known way.
  • FIG. 8 shows an example of secondary cracking caused by EAC in SBF solution.
  • FIG. 9 shows the relative collapse pressure of stents made from WE43 and from an alloy (MI0029) according to the invention.
  • FIG. 10 shows the relative degradation score of stents made from WE43 and from an alloy (MI0029) according to the invention.
  • melts were carried out according to the following casting technique:
  • High-purity starting materials (generally >99%) were melted in steel crucibles under a protective gas (C0 2 /2% SF 6 ). The temperature was raised to 760°C to 800°C before the melt was homogenized by stirring. The melt was cast to form bars with a nominal diameter of 120 mm and a length of 300 mm. Next the bars were machined to a nominal diameter of 75 mm with a length of 150 mm to 250 mm and homogenized for 4- 8 hours. Near to the melts' solidus temperature, homogenization was typically achieved at approximately 525°C.
  • clusters/particles are brittle.
  • Figure 1 is a comparatively "clean microstructure" despite a 12.7% addition of Er - ductility is good (19%).
  • the alloy of Figure 4 illustrates that a combination of lower Er compared to the alloy of Figure 1 (8% Er vs. 13% Er) can achieve a comparatively "clean microstructure" and similar properties to that of alloy of Figure 1, by combining Nd with this lower Er content.
  • Figure 5 illustrates the effect of Lu, which appears to provide a similar manner to Er, however appears more tolerant to Nd additions in terms of freedom of particles and clusters compared with the alloy of Figure 4.
  • Figures 6 and 7 illustrate the difference in micro-structure of drawn tubes from the reference material WE43 and micro-extruded tubes from the inventive alloy MI0029. It clearly can be seen that the micro-extruded has significantly fewer and smaller precipitates than drawn material. In addition the grain size of the extruded tubes is significantly reduced from about 15-20 ⁇ for the as extruded bulk materials to 2-15 ⁇ in the drawn condition.
  • Tests in immersed SBF, of the alloys of the invention illustrates that the reduction on degradation rate (corrosion). This is best viewed as a percentage of the reference alloy WE43 type. In the best case examples from the invention show a greater than 10 fold improvement in degradation.
  • Table 4 provides data on EAC tests. Taking WE43 type alloy (MI0047) as a reference, it can be seen that as the HRE content increase, the absolute tolerable stress increase. This improvement is also seen as a percentage of the actual strength of the material when tested in air (no SBF media effect). The closer this value is to 100%, the less the fracture is related to the media and therefore the less prone the material is likely to be to EAC (SCC) in that media. Er additions perform well to at least 14wt %, however at 18 wt % the performance is reduced to beneath that of the reference WE43 type alloy. Other HREs perform in different ways. For example whilst Gd can improve EAC resistance of the alloys tested, and Lu also appears good, Ho performs poorly.
  • Figure 8 shows the fracture appearance of comparative alloy DF9400. The fracture shows primary and secondary cracking. This type of cracking with secondary cracking remote from the primary crack can be representative of SCC.
  • Table 5 shows a comparison of the Mg ion release from bulk material, extruded tubes and the respective stents from these extruded sleeves. Values are given in percentage of the respective reference material (reference WE 43 bulk material from Table 2 as reference for the inventive bulk material, drawn tube of WE43 for the extruded tubes of the inventive alloy, and stents from drawn tube of WE43 for the stents manufactured from extruded tubes of the inventive alloys).
  • the melt was homogenised by stirring, and then cast in a mold to form bars with a nominal diameter of 120mm and a length of 300mm. After casting and cooling, the bars were machined to a nominal diameter of 75mm with a length of 250mm and homogenised for 8 hours at approximately 525°C. The material was then reheated to 400-500°C and extruded using a hydraulic press. The resulting round rods had a diameter of 12.7 mm. Before further processing or testing, 30 cm long pieces were removed from the start and end of the extrusions.
  • the mechanical properties of the extruded bulk material compared to WE43 were as follows:
  • A 18%, which is ca. 1-7% points less than for WE43.
  • Stents are endoluminal endoprostheses having a carrier structure.
  • the structure comprises a hollow body which is open at both ends and a peripheral wall which is formed by a plurality of struts connected together.
  • the struts can be folded in a zig-zag configuration.
  • the struts have typical dimensions in width and thickness of 30-450 ⁇ .
  • the further processing of the extruded alloy into tubes was accomplished by a micro-extrusion process. Slugs of alloy were machined from the bulk material. These slugs were processed by hot pressing at elevated temperatures of between 200°C and 480°C and extrusion speeds of 0.001 mm/s to 600 mm/s.
  • the micro-extruded tubes for vessel scaffolds had a length of not less than 30 mm, a diameter of ca. 2 mm and a wall thickness between 50 and 400 ⁇ .
  • YTS 189 MPa, which is ca. 25 MPa higher than for drawn WE43 tubes
  • stents were produced from the micro- extruded tube by laser cutting and electro-polishing.
  • the stents Prior to testing, the stents were crimped onto balloon catheters to a diameter of less than 1.5 mm and sterilized, e.g. by ETO or e-beam. The stents were than over- expanded to their nominal diameter plus 0.5 mm into mock arteries with respective diameters which has been filled with simulated body fluid (SBF). Previous tests have shown that over-expansion to about 1 mm in diameter is possible for the alloy according to the invention, whereas an identical stent manufactured from WE43 tolerates significant less over-expansion. The improved dilatation reserve of the inventive alloy contributes significantly to device safety in clinical practice.
  • SBF simulated body fluid
  • Figure 9 shows the relative collapse pressure over a 28 day period of a stent made from WE43 alloy and one made from the alloy of the invention.
  • the relative collapse pressure is calculated by measuring the absolute collapse pressure and then expressing this as a percentage of the initial collapse pressure of the stent made from WE43.
  • these results showed that the stent made from the alloy of the invention exhibited a significant higher initial relative collapse pressures (+10%) as a result of greater strength, lower yield ratio and higher strain hardening.
  • the stent made from the alloy of the invention maintained a high relative collapse pressure over a significant longer period of time without fractures or fragmentation, indicating a significantly lower susceptibility to environmental assisted cracking (ie corrosion fatigue).
  • Figure 10 shows the relative degradation score over a 28 day period of a stent made from WE43 alloy and one made from the alloy of the invention.
  • the relative degradation score is calculated by measuring the weight of the stent and then expressing this as a percentage of the initial weight of the stent made from WE43.
  • these results showed that the stent made from the alloy of the invention exhibited a significantly lower levels of corrosion (-25%) than the stent made from WE43 when under cyclic load in a corrosive environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La présente invention se rapporte à des alliages de magnésium qui présentent une bonne capacité de traitement et/ou une bonne ductibilité tout en conservant une bonne résistance à la corrosion et/ou à une dégradation. Lesdits alliages de magnésium comprennent une ou plusieurs terres rares lourdes sélectionnées dans le groupe constitué par : l'erbium (Er), l'holmium (Ho), le lutétium (Lu), le thulium (Tm) et le terbium (Tb) en une quantité totale supérieure à 5,5 % et inférieure à leur limite de solubilité de solide respective dans l'alliage comme cela est mesuré à une température de 500 °C, et une quantité d'yttrium (Y) comprise entre 0 et 10 % en poids. Facultativement, les alliages comprennent un ou plusieurs éléments chimiques parmi les éléments chimiques suivants : le néodyme (Nd) en une quantité comprise entre 0 et 5 % en poids; le dysprosium (Dy) en une quantité comprise entre 0 et 8 % en poids; le gadolinium (Gd) en une quantité comprise entre 0 et 9 % en poids; le zirconium (Zr) en une quantité comprise entre 0 et 1,5 % en poids; l'aluminium (Al) en une quantité comprise entre 0 et 10 % en poids; le zinc (Zn) et/ou le manganèse (Mn) en une quantité comprise entre 0 et 2 % en poids au total; le scandium (Sc) en une quantité comprise entre 0 et 15 % en poids; l'indium (In) en une quantité comprise entre 0 et 15 % en poids; le calcium (Ca) en une quantité comprise entre 0 et 3 % en poids; et une ou plusieurs terres rares et des terres rares autres que l'yttrium (Y), le néodyme (Nd), l'erbium (Er), l'holmium (Ho), le lutétium (Lu), le thulium (Tm), le terbium (Tb), le dysprosium (Dy) et le gadolinium (Gd) en une quantité totale allant jusqu'à 0,5 % en poids, le reste étant du magnésium et des impuretés inévitables jusqu'à un total de 0,3 % en poids.
PCT/GB2011/050579 2010-03-25 2011-03-23 Alliage de magnésium contenant des terres rares lourdes WO2011117630A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11712655A EP2550376A1 (fr) 2010-03-25 2011-03-23 Alliage de magnésium contenant des terres rares lourdes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1005029.2A GB201005029D0 (en) 2010-03-25 2010-03-25 Magnesium alloys containing heavy rare earths
GB1005029.2 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011117630A1 true WO2011117630A1 (fr) 2011-09-29

Family

ID=42228338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2011/050579 WO2011117630A1 (fr) 2010-03-25 2011-03-23 Alliage de magnésium contenant des terres rares lourdes

Country Status (3)

Country Link
EP (1) EP2550376A1 (fr)
GB (1) GB201005029D0 (fr)
WO (1) WO2011117630A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534330A (zh) * 2012-02-22 2012-07-04 上海交通大学 高强度铸造镁合金及其制备方法
CN102628135A (zh) * 2012-04-11 2012-08-08 哈尔滨工程大学 一种镁基稀土合金材料及其制备方法
CN103014469A (zh) * 2013-01-08 2013-04-03 哈尔滨工程大学 一种抗冲击的高强镁合金材料及制备方法
CN103146972A (zh) * 2013-03-14 2013-06-12 河南科技大学 一种多元稀土镁合金及其制备方法
CN104651693A (zh) * 2013-11-22 2015-05-27 北京有色金属研究总院 含微量Al的稀土变形镁合金及其制备方法
CN108456815A (zh) * 2018-01-24 2018-08-28 大连理工大学 一种源自溶质均匀模型的高强高塑性Mg-Gd-Y-Zr铸造合金及其制备方法
CN108715963A (zh) * 2018-05-21 2018-10-30 山东银光钰源轻金属精密成型有限公司 一种含Y、Nd稀土镁合金及其制备方法
CN110229984A (zh) * 2019-06-20 2019-09-13 上海交通大学 一种高强度Mg-Gd-Er-Y镁合金及其制备方法
CN110306088A (zh) * 2018-08-17 2019-10-08 西特尼斯Ag 可生物降解的线材植入物
CN110983139A (zh) * 2019-12-08 2020-04-10 江苏奇纳新材料科技有限公司 石油开采分段压裂用镁合金及其制备方法
CN111172438A (zh) * 2020-01-15 2020-05-19 太原科技大学 一种含Na高强度低温快速降解镁合金及其制备方法
CN112553512A (zh) * 2020-12-02 2021-03-26 中铝材料应用研究院有限公司 高热稳定性、焊接性和耐蚀性的铝-镁合金板材及其用途
CN113913659A (zh) * 2021-10-09 2022-01-11 哈尔滨工程大学 通过调控复合稀土与Zn的比例的高温高强镁合金及其制备方法
RU2781338C1 (ru) * 2021-09-07 2022-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" (ТГУ) Пожаробезопасный магниевый литейный сплав
EP4029629A4 (fr) * 2019-10-15 2023-02-22 Shanghai Jiao Tong University Procédé de préparation d'un alliage de magnésium-terre rare à résistance et ténacité élevées au moyen d'une technologie de fabrication additive par fusion laser sélective
US11795533B2 (en) * 2019-05-23 2023-10-24 Qilu University Of Technology Heat-resistant and soluble magnesium alloy, preparation method and use thereof
CN118581371A (zh) * 2024-06-24 2024-09-03 南京航空航天大学 一种基于多尺度异质耐热结构的Mg-Gd-Y-Al-Mn基高耐热镁合金及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107974600B (zh) * 2017-11-27 2019-12-27 河南科技大学 一种富钆镁合金及其制备方法
CN109182858B (zh) * 2018-11-14 2020-12-04 哈尔滨工程大学 一种含Ho耐热镁合金及其制备方法
CN113322403A (zh) * 2021-06-03 2021-08-31 郑州大学 一种新型可降解高强韧镁合金骨钉材料及其制备方法
CN115074588A (zh) * 2022-06-06 2022-09-20 安徽工程大学 一种高强塑稀土镁合金的制备工艺及高强塑稀土镁合金

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141739A2 (fr) 1983-11-04 1985-05-15 Thomson-Csf Dispositif interférométrique de mesure d'une vitesse de rotation angulaire
JPH06200350A (ja) * 1992-07-01 1994-07-19 Mitsui Mining & Smelting Co Ltd テルビウム含有高強度マグネシウム合金
JPH07138689A (ja) * 1993-11-09 1995-05-30 Shiyoutarou Morozumi 高温強度のすぐれたMg合金
US20040045639A1 (en) * 2001-08-13 2004-03-11 Kazuo Kikawa Magnesium alloy
EP1816224A1 (fr) * 2004-09-30 2007-08-08 KAWAMURA, Yoshihito Métal de grande dureté et de résistance élevée and procédé de fabrication dudit métal
EP1842507A1 (fr) 2005-01-28 2007-10-10 Terumo Kabushiki Kaisha Implant intravasculaire
CN101078080A (zh) * 2007-07-04 2007-11-28 北京有色金属研究总院 抗蠕变镁合金及其制备方法
CN101130842A (zh) * 2006-08-25 2008-02-27 北京有色金属研究总院 一种高强度的耐热镁合金及其熔炼方法
EP1925684A2 (fr) * 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Matériau en alliage de magnésium et son procédé de fabrication
CN101392345A (zh) * 2008-11-06 2009-03-25 上海交通大学 含镍耐热稀土镁合金及其制备方法
WO2009038215A1 (fr) * 2007-09-18 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Matériau d'alliage de magnésium et procédé pour la fabrication de celui-ci
CN101397623A (zh) * 2008-11-06 2009-04-01 上海交通大学 含铜耐热稀土镁合金及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141739A2 (fr) 1983-11-04 1985-05-15 Thomson-Csf Dispositif interférométrique de mesure d'une vitesse de rotation angulaire
JPH06200350A (ja) * 1992-07-01 1994-07-19 Mitsui Mining & Smelting Co Ltd テルビウム含有高強度マグネシウム合金
JPH07138689A (ja) * 1993-11-09 1995-05-30 Shiyoutarou Morozumi 高温強度のすぐれたMg合金
US20040045639A1 (en) * 2001-08-13 2004-03-11 Kazuo Kikawa Magnesium alloy
EP1816224A1 (fr) * 2004-09-30 2007-08-08 KAWAMURA, Yoshihito Métal de grande dureté et de résistance élevée and procédé de fabrication dudit métal
EP1842507A1 (fr) 2005-01-28 2007-10-10 Terumo Kabushiki Kaisha Implant intravasculaire
CN101130842A (zh) * 2006-08-25 2008-02-27 北京有色金属研究总院 一种高强度的耐热镁合金及其熔炼方法
EP1925684A2 (fr) * 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Matériau en alliage de magnésium et son procédé de fabrication
CN101078080A (zh) * 2007-07-04 2007-11-28 北京有色金属研究总院 抗蠕变镁合金及其制备方法
WO2009038215A1 (fr) * 2007-09-18 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Matériau d'alliage de magnésium et procédé pour la fabrication de celui-ci
CN101392345A (zh) * 2008-11-06 2009-03-25 上海交通大学 含镍耐热稀土镁合金及其制备方法
CN101397623A (zh) * 2008-11-06 2009-04-01 上海交通大学 含铜耐热稀土镁合金及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABBAS T ET AL: "Study of atomic short-range order in magnesium rich Mg-Ho and Mg-Tb alloys by X-ray diffraction and pseudopotential techniques", NUCLEUS, PINSTECH, PAKISTAN, vol. 23, no. 1-2, 1 January 1987 (1987-01-01), pages 3 - 6, XP008135949, ISSN: 0029-5698 *
PENG Q ET AL: "Age hardening and mechanical properties of Mg-Gd-Er alloy", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 456, no. 1-2, 29 May 2008 (2008-05-29), pages 395 - 399, XP022590498, ISSN: 0925-8388, [retrieved on 20080407], DOI:10.1016/J.JALLCOM.2007.02.037 *
PENG Q ET AL: "Aging behavior and mechanical properties of Mg-Gd-Ho alloys", MATERIALS CHARACTERIZATION, ELSEVIER, NEW YORK, NY, US, vol. 59, no. 8, 1 August 2008 (2008-08-01), pages 983 - 986, XP022707763, ISSN: 1044-5803, [retrieved on 20080606], DOI:10.1016/J.MATCHAR.2007.08.009 *
VERBETSKII V N ET AL: "HYDROGENATION STUDY OF MAGNESIUM ALLOYS WITH 15 WT. % LANTHANUM OR ERBIUM", RUSSIAN METALLURGY / METALLY / IZVESTIYA AKADEMII NAUK SSSR, ALLERTON PRESS, INC, XX, no. 3, 1 January 1987 (1987-01-01), pages 188 - 191, XP008135950, ISSN: 0036-0295 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534330A (zh) * 2012-02-22 2012-07-04 上海交通大学 高强度铸造镁合金及其制备方法
CN102628135A (zh) * 2012-04-11 2012-08-08 哈尔滨工程大学 一种镁基稀土合金材料及其制备方法
CN103014469A (zh) * 2013-01-08 2013-04-03 哈尔滨工程大学 一种抗冲击的高强镁合金材料及制备方法
CN103146972A (zh) * 2013-03-14 2013-06-12 河南科技大学 一种多元稀土镁合金及其制备方法
CN103146972B (zh) * 2013-03-14 2015-12-23 河南科技大学 一种多元稀土镁合金及其制备方法
CN104651693A (zh) * 2013-11-22 2015-05-27 北京有色金属研究总院 含微量Al的稀土变形镁合金及其制备方法
CN104651693B (zh) * 2013-11-22 2017-05-17 北京有色金属研究总院 含微量Al的稀土变形镁合金及其制备方法
CN108456815A (zh) * 2018-01-24 2018-08-28 大连理工大学 一种源自溶质均匀模型的高强高塑性Mg-Gd-Y-Zr铸造合金及其制备方法
CN108715963A (zh) * 2018-05-21 2018-10-30 山东银光钰源轻金属精密成型有限公司 一种含Y、Nd稀土镁合金及其制备方法
CN110306088A (zh) * 2018-08-17 2019-10-08 西特尼斯Ag 可生物降解的线材植入物
US11795533B2 (en) * 2019-05-23 2023-10-24 Qilu University Of Technology Heat-resistant and soluble magnesium alloy, preparation method and use thereof
CN110229984A (zh) * 2019-06-20 2019-09-13 上海交通大学 一种高强度Mg-Gd-Er-Y镁合金及其制备方法
CN110229984B (zh) * 2019-06-20 2020-08-04 上海交通大学 一种高强度Mg-Gd-Er-Y镁合金及其制备方法
EP4029629A4 (fr) * 2019-10-15 2023-02-22 Shanghai Jiao Tong University Procédé de préparation d'un alliage de magnésium-terre rare à résistance et ténacité élevées au moyen d'une technologie de fabrication additive par fusion laser sélective
US12202040B2 (en) 2019-10-15 2025-01-21 Shanghai Jiao Tong University Method for preparing Mg-RE alloys with high strength and ductility using selective laser melting additive manufacturing technology
CN110983139A (zh) * 2019-12-08 2020-04-10 江苏奇纳新材料科技有限公司 石油开采分段压裂用镁合金及其制备方法
CN111172438A (zh) * 2020-01-15 2020-05-19 太原科技大学 一种含Na高强度低温快速降解镁合金及其制备方法
CN111172438B (zh) * 2020-01-15 2022-02-01 太原科技大学 一种含Na高强度低温快速降解镁合金及其制备方法
CN112553512A (zh) * 2020-12-02 2021-03-26 中铝材料应用研究院有限公司 高热稳定性、焊接性和耐蚀性的铝-镁合金板材及其用途
RU2781338C1 (ru) * 2021-09-07 2022-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" (ТГУ) Пожаробезопасный магниевый литейный сплав
CN113913659A (zh) * 2021-10-09 2022-01-11 哈尔滨工程大学 通过调控复合稀土与Zn的比例的高温高强镁合金及其制备方法
CN118581371A (zh) * 2024-06-24 2024-09-03 南京航空航天大学 一种基于多尺度异质耐热结构的Mg-Gd-Y-Al-Mn基高耐热镁合金及其制造方法

Also Published As

Publication number Publication date
EP2550376A1 (fr) 2013-01-30
GB201005029D0 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
EP2550376A1 (fr) Alliage de magnésium contenant des terres rares lourdes
EP2550032B1 (fr) Implant constitué par un alliage de magnésium biodégradable
EP2550377B1 (fr) Alliages de magnésium contenant des terres rares lourdes
US10016530B2 (en) Implant made of a biodegradable magnesium alloy
US9468704B2 (en) Implant made of a biodegradable magnesium alloy
CN102802689B (zh) 由超纯镁基材料形成的可生物降解可植入医疗器械
US9603728B2 (en) Bioerodible magnesium alloy microstructures for endoprostheses
EP2763711B1 (fr) Alliages de magnésium pour endoprothèse bioabsorbable
CN111304504A (zh) 具有可调节降解率的超纯镁合金
EP3569723A1 (fr) Alliage de magnésium
WO2013059715A2 (fr) Alliages à base de fer pour une endoprothèse bioabsorbable
Muzaffar et al. Mechanical, Chemical, Fatigue, and Biological Compatible Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11712655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011712655

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载