+

WO2011115273A1 - 電力供給システムおよび電力供給システムのためのデータ取得装置 - Google Patents

電力供給システムおよび電力供給システムのためのデータ取得装置 Download PDF

Info

Publication number
WO2011115273A1
WO2011115273A1 PCT/JP2011/056647 JP2011056647W WO2011115273A1 WO 2011115273 A1 WO2011115273 A1 WO 2011115273A1 JP 2011056647 W JP2011056647 W JP 2011056647W WO 2011115273 A1 WO2011115273 A1 WO 2011115273A1
Authority
WO
WIPO (PCT)
Prior art keywords
data acquisition
power supply
supply system
unit
power
Prior art date
Application number
PCT/JP2011/056647
Other languages
English (en)
French (fr)
Inventor
山田 健
中島 武
池部 早人
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011115273A1 publication Critical patent/WO2011115273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a power supply system and a data acquisition device for the power supply system, and in particular, a power supply system including at least one of a power storage unit and a power generation unit that generates power using renewable energy, and a data acquisition device for the power supply system About.
  • a power supply system including a solar cell module that generates power using renewable energy is known.
  • a power supply system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-218815.
  • the power supply system disclosed in Japanese Patent Application Laid-Open No. 2008-218815 includes a solar cell module, an inverter for connecting the solar cell module to a power system, and a control device (data acquisition unit) that controls the inverter. .
  • the control device can acquire the generated power data of the solar cell module and transmit the generated power data to the management server device (external) via a communication line such as a telephone line, a dedicated line, and the Internet.
  • the management server device monitors the operating state of the solar cell module based on the received generated power data.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply system and a power that can more reliably receive the state of the power supply system externally. It is to provide a data acquisition device for a supply system.
  • a data acquisition device for a power supply system comprises a power storage unit and at least one of a power generation unit that generates power using renewable energy.
  • a data acquisition unit that acquires state information regarding the first communication unit for communicating with the outside, and a first communication unit for communicating with the outside in a predetermined case Data is communicated by selecting at least one of the different second communication units.
  • a power supply system includes at least one of a power storage unit and a power generation unit that generates power using renewable energy, and a data acquisition device, and the data acquisition device includes at least one of the power storage unit and the power generation unit.
  • a data acquisition unit that acquires state information regarding a power supply system including any one of the data acquisition device, the data acquisition unit, a first communication unit for communicating with the outside, and, in a predetermined case, external Data is communicated by selecting at least one of a second communication unit different from the first communication unit for performing communication.
  • data communication with the outside is usually performed by the first communication unit, and in a predetermined case (when the first communication unit cannot transmit or important information is transmitted) In some cases, data communication can also be performed by the second communication unit. Thereby, the status information of the power supply system can be more reliably received outside.
  • the transmission destination (external) when the state information is transmitted by the first communication unit and the transmission destination (external) when the state information is transmitted by the second communication unit are not necessarily the same.
  • the state information may be information regarding either the power storage unit or the power generation unit, and the information may be predetermined data such as an output of the power generation unit and / or temperature data of the power storage unit.
  • the first communication unit and the second communication unit may have only a function of transmitting data to the outside, and have a function of receiving data from the outside as well as a transmission function. Also good.
  • the photovoltaic power generation system 1 As shown in FIG. 1, the photovoltaic power generation system 1 according to the present embodiment is installed in a facility or a house (hereinafter referred to as a house), and outputs a power generated using sunlight.
  • An inverter (power conditioner) 3 that is connected to the power system 100 and outputs the power output from the photovoltaic power generation unit 2 to the power system 100 so as to reversely flow, and a bus that connects the inverter 3 and the power system 100.
  • the power storage unit 5 connected to 4 is mainly provided.
  • the power storage unit 5 is installed outdoors.
  • the power system 100, the photovoltaic power generation unit 2, and the power storage unit 5 are connected via a distribution board 6.
  • a LAN (local area network) 300 is installed in the house, and a user can connect a PC (personal computer) 400 to the Internet 500 via the LAN 300 via broadband.
  • Broadband is an Internet connection method having properties such as high-speed communication using ADSL, cable TV line, optical fiber line, etc., always-on connection, and flat fee.
  • ADSL high-speed communication
  • cable TV line cable TV line
  • optical fiber line etc.
  • flat fee flat fee
  • the power storage unit 5 houses a control device 58.
  • the control device 58 performs overall control of the solar power generation system 1 and sequentially acquires the state of the solar power generation system 1 (the generated power of the solar power generation unit 2, the state of charge of the storage battery 51, etc.).
  • the time series information is stored in time series, and time series information (hereinafter referred to as time series information) regarding the state of the photovoltaic power generation system 1 is periodically transmitted to the external server 600 via the Internet 500. ing.
  • control device 58 determines whether or not the photovoltaic power generation system 1 is in the specific state based on the acquired time series information, and also when the solar power generation system 1 is determined to be in the specific state, Information indicating that it is in a specific state (hereinafter referred to as specific information) is configured to be transmitted to the external server 600 via the Internet 500.
  • the external server 600 stores the received information, and the user can check the state of the solar power generation system 1 by accessing the external server 600 with the PC 400. Further, the external server 600 transmits information to the maintenance company 700 that manages the photovoltaic power generation system 1 when necessary based on the received information (time-series information and specific information).
  • the time series information and the specific information are examples of the “state information” in the present invention. The transmission of time series information and specific information will be described in detail later.
  • the solar power generation unit 2 includes four solar cell strings 22 in which six solar cell modules 21 are connected in series.
  • the solar cell module 21 can be configured using various types of solar cells such as a thin film silicon system, a crystalline silicon system, or a compound semiconductor system.
  • the solar cell module 21 is an example of the “power generation unit” in the present invention.
  • the three solar cell strings 22 (22a) are connected to the inverter 3 via the DC connection box 7. Further, one solar cell string 22 (22b) is connected to either the DC connection box 7 or the power storage unit 5 via the series / parallel switching unit 8 so as to be selectively switchable.
  • the series-parallel switching unit 8 connects the six solar cell modules 21 of the solar cell string 22b in a serial connection state in which all of the six solar cell modules 21 are connected in series, and two solar cell modules 21 are connected in series. It is possible to switch to a parallel connection state in which the three sets are connected in parallel.
  • the series / parallel switching unit 8 is configured to connect the solar cell string 22b to the DC connection box 7 in the series connection state and to connect the solar cell string 22b to the power storage unit 5 in the parallel connection state.
  • the DC connection box 7 is configured to combine the power generated from the plurality of solar cell strings 22 into one and output it to the inverter 3 side.
  • the inverter 3 has a function of converting DC power output from the DC connection box 7 into AC.
  • the photovoltaic power generation unit 2 is linked to the power system 100 via an inverter 3 (power conditioner).
  • the distribution board 6 is connected to a general AC load 200 and a DC load 210 via a rectifying unit 9 having a switch function.
  • the switch 9a of the rectifying unit 9 has a state in which the DC load 210 is connected to the distribution board 6 side (power system 100 side) via the converter 9b and a state in which the DC load 210 is connected to the storage battery 51 of the power storage unit 5. It is possible to switch.
  • the distribution board 6 is connected to an AC load 220 through an inverter 53 that is housed in the power storage unit 5 and has a switch function.
  • the switch 53b of the inverter unit 53 has a state where the AC load 220 is connected to the distribution board 6 side (the power system 100 side) and a state where the AC load 220 is connected to the storage battery 51 of the power storage unit 5 via the inverter 53a. It is possible to switch.
  • the DC load 210 and the AC load 220 are loads specified in advance (specific loads) unlike the general AC load 200. It is desired that the specific load is always supplied with electric power from the power source, and includes devices that need to operate constantly.
  • a power sensor 10 is provided on the bus 4 that connects the inverter (power conditioner) 3 and the power system 100.
  • a power detection unit 10a and a power detection unit 10b are provided on the upstream side (power system 100 side) and the downstream side (solar power generation unit 2 side) of the distribution board 6, respectively.
  • the power detection unit 10a can detect power (power purchased) supplied from the power system 100 to the photovoltaic power generation system 1 side.
  • the power detection unit 10b can detect the generated power of the solar power generation unit 2.
  • the power storage unit 5 includes a storage battery 51 that stores power from the power system 100, a converter unit 52 that converts power from AC to DC, and power from the storage battery 51 or the bus 4 to the AC load 220 side.
  • the inverter unit 53 for supplying the battery, the two switches 54 and 55 used for switching the charge and discharge of the storage battery 51, and the devices such as the storage battery 51, the converter unit 52, the inverter unit 53, and the switches 54 and 55 are controlled. It mainly includes a control device 58. These devices are housed together in the housing 59 and can be handled as one unit.
  • a secondary battery for example, a lithium ion storage battery having a low natural discharge and a high charge / discharge efficiency is used.
  • the storage battery 51 is an example of the “power storage unit” in the present invention.
  • the converter unit 52 is provided to supply power from the power system 100 to the storage battery 51 by converting AC power from the power system 100 into DC power by the AC / DC converter 52a.
  • a switch that can be switched on / off is provided in a portion closer to the AC / DC converter 52a than the contact with the switch 53b of the inverter 53. 52b is provided.
  • the switch 52b is configured to be switched on / off according to the temperature of a temperature sensor (not shown) provided in the control device 58. That is, when the temperature of the temperature sensor is equal to or lower than a predetermined temperature, the switch 52b is turned on, and power from the bus 4 side is supplied to the converter unit 52. When the temperature of the temperature sensor exceeds a predetermined temperature, the switch 52b is turned off, and the electrical connection between the bus 4 side and the converter unit 52 is disconnected. On / off of the switch 52b is controlled by the control device 58.
  • the electric power of the control device 58 is taken from the wiring between the switch 52b and the AC / DC converter 52a and between the storage battery 51 and the switches 54 and 55.
  • the control device 58 operates with the electric power of the storage battery 51 and turns off the switches 54 and 55 according to the temperature sensor abnormality detection mode.
  • the switch 52b is turned off, the power is driven while the remaining amount of the storage battery 51 is present, and the drive of the control device 58 is automatically stopped when the remaining amount of the storage battery 51 is exhausted. ing.
  • the control device 58 stops, the output from the AC / DC converter 52a is turned off (the power supply to the AC / DC converter 52a is also cut off), and the switches 54 and 55 are turned off.
  • the switch 55 is turned off, the power supply to the inverter 53a is cut off.
  • the switch 53b is switched to connect the AC load 220 and the bus 4 as will be described later.
  • the switch 53b is connected to the storage battery 51 side and the switch 52b is turned on, so that the inside of the housing 59 is outside the predetermined temperature range.
  • the switch 53b is connected to the bus 4 side and the switch 52b is turned off.
  • the converter unit 52, the storage battery 51, the inverter 53a, and the control device 58 that are heat sources are maintained while maintaining the power supply from the bus 4 side to the AC load 220. It is possible to stop.
  • the switch 54 is provided on a charging path between the converter unit 52 and the series-parallel switching unit 8 and the storage battery 51.
  • the switch 54 is turned on when the storage battery 51 is charged with the power from the solar battery string 22 or the power from the bus 4 to the storage battery 51.
  • Switch 55 is provided on a discharge path between storage battery 51, inverter unit 53, and DC load 210. The switch 55 is turned on when discharging from the storage battery 51 and supplying power to the AC load 220 or the DC load 210.
  • the inverter unit 53 includes an inverter 53a as a DC-AC converter for supplying power of the storage battery 51 that outputs DC power to an AC load 220 driven by an AC power source, and a switch 53b.
  • the switch 53b is normally connected to the bus 4 side, and the inverter 53a is preferably connected to the storage battery 51 when power is supplied to the inverter 53a, preferably when the power above the predetermined voltage is supplied to the inverter 53a. Configured to connect to. Therefore, when the power supply to the inverter 53a is cut off as described above, the switch 53b is switched to connect the AC load 220 and the bus 4.
  • control device 58 determines the output of the AC / DC converter 52a and the switching of the switches 54 and 55 based on the charge amount of the storage battery 51, the detection result of the temperature sensor, the current time (whether or not it is the midnight time zone), and the like.
  • the inverter unit 53 has a function of controlling switching of the switch 53b and the switch 52b. Specifically, the control device 58 turns off the switch 52b when determining that the temperature inside the housing 59 is outside a predetermined temperature range based on the detection result of the temperature sensor.
  • control device 58 In a normal state (a state within a predetermined temperature range), the control device 58 turns on / off each switch such as the switches 54 and 55, the converter unit 52, and the switch 53b of the inverter unit 53 based on a predetermined program. To control.
  • the control device 58 charges the storage battery 51 from the power system 100 during normal operation, for example, at midnight, and when it is necessary to supply power to the AC load 220, the storage battery 51 transfers the AC load 220 and the direct current regardless of day or night. Each switch is controlled to supply power to the load 210.
  • the controller 58 controls the discharge of the storage battery 51 so that the capacity of the storage battery 51 does not fall below a predetermined threshold (for example, 50% of the fully charged state) even when the storage battery 51 is discharged during normal operation. .
  • control device 58 determines that the capacity of the storage battery 51 has become equal to or less than the threshold value, the control device 58 stops supplying power from the storage battery 51 to the AC load 220 and directly from the bus 4 to the AC load 220 and the DC load 210. Switch each switch to supply power.
  • the control device 58 In the event of an emergency such as a power failure, the control device 58 is driven by this power while the storage battery 51 remains.
  • the voltage signal of the bus 4 is input to the switch 55, and the control device 58 detects that no voltage is applied to the bus 4 and turns on the switch 55.
  • the inverter 53 a is operated by supplying power from the storage battery 51.
  • the control device 58 turns off the switch 52b, the switch 54, and the switch 55 and stops. Thereby, since electric power is not supplied also to the converter part 52, the drive of the converter part 52 is also stopped.
  • control device 58 controls not only the devices in the power storage unit 5 but also the series / parallel switching unit 8 and the rectifying unit 9. Further, in the present embodiment, the control device 58 includes each unit of the photovoltaic power generation system 1 (the photovoltaic power generation unit 2, the series / parallel switching unit 8, the power sensor 10, the rectification unit 9, the storage battery 51, the switches 54 and 55, the inverter unit. 53, converter unit 52, etc.) are sequentially acquired. Specifically, the time series information includes the generated power, voltage, current value, purchased power value of the photovoltaic power generation unit 2, each switch (switches in the series-parallel switching unit 8, switches 54 and 55, etc.).
  • the control device 58 acquires the above time series information at regular intervals every 1 to 10 seconds, and stores the time series information in the memory 58a in time series.
  • the control device 58 is an example of the “data acquisition unit” and “data acquisition device” in the present invention.
  • the acquisition time interval of the time series information exemplified as the regular interval every 1 to 10 seconds is an example of the “acquisition time interval” in the present invention.
  • control device 58 periodically (for example, once a day) acquires time series information acquired at the above-described regular intervals (for example, every 1 to 10 seconds) and stored in the memory 58a in a time series. It is configured to transmit to the external server 600 via the Internet 500.
  • the control device 58 can transmit information by two transmission means. That is, a wireless LAN communication unit 60 that can be connected to the LAN 300 is installed in the housing 59, and the control device 58 connects to the Internet 500 via the LAN 300, and sends time-series information to the external server 600. It is possible to send. This information transmission of the control device 58 via the LAN 300 is hereinafter referred to as LAN transmission.
  • a mobile phone communication unit 61 that can be connected to the Internet 500 using a mobile phone communication network is installed in the housing 59, and the control device 58 includes a base station 800 for mobile phone communication (FIG. 1). It is possible to send information to the external server 600 via the reference). Information transmission using this cellular phone communication network is hereinafter referred to as cellular phone transmission. Note that the allowable data amount for LAN transmission is larger than the allowable data amount for mobile phone transmission.
  • the wireless LAN communication unit 60 and the mobile phone communication unit 61 are examples of the “first communication unit” and the “second communication unit” of the present invention, respectively.
  • the mobile phone communication unit 61 is an example of the “wireless communication device” in the present invention.
  • the control device 58 is configured to preferentially perform LAN transmission and perform mobile phone transmission in a predetermined case. Since the time series information of the solar power generation system 1 has a large amount of data, when it can be connected to the Internet 500 via the LAN 300, the data of the time series information is quickly added by transmitting by LAN transmission. It is possible to send without charge.
  • the control device 58 stores the data of the time series information that could not be transmitted in the memory 58a. Send along with the next transmission.
  • the memory 58a of the control device 58 can store, for example, time series information for a maximum of one year.
  • the control device 58 is configured to delete the time series information transmitted by LAN transmission from the memory 58a.
  • control device 58 attempts LAN transmission every day, and performs mobile phone transmission as an alternative means of LAN transmission when a period during which LAN transmission cannot be performed continues for a predetermined period (for example, one week).
  • a predetermined period for example, one week.
  • mobile phone transmission unlike the LAN 300, since the user cannot freely operate a device such as a router for connecting to the Internet 500, it is possible to reliably connect to the Internet 500.
  • the control device 58 When transmitting time series information by mobile phone transmission, the control device 58 reduces the data amount of the time series information for transmission. For example, the control device 58 reduces the amount of data to be transmitted by extracting only the peak value or reducing the data evenly on the time axis. The amount of data may be reduced by compressing the data. Note that the control device 58 does not delete the original time-series information before reducing the data amount of the time-series information transmitted by mobile phone transmission by reducing the data amount from the memory 58a. In this case, complete data is transmitted again to the external server 600 when the LAN transmission is ready later, and then deleted from the memory 58a.
  • the control apparatus 58 judges whether the solar power generation system 1 is a specific state based on the acquired time series information of the solar power generation system 1, and judges that the solar power generation system 1 is a specific state.
  • the specific information indicating that the photovoltaic power generation system 1 is in the specific state is immediately transmitted to the external server 600 regardless of the transmission timing of the time series information once a day.
  • Specific information includes, for example, that the generated power of the photovoltaic power generation unit 2 is out of a predetermined range, the temperature of the storage battery 51 is out of a predetermined range, the overcharge / discharge of the storage battery 51, and the ON of each switch. Information such as / off.
  • control device 58 is configured to first transmit the specific information by LAN transmission.
  • the control device 58 immediately sends the specific information to the external server 600 by the mobile phone transmission without waiting for a predetermined period (for example, one week) as in the case of the time series information. Configured to send.
  • a liquid crystal display unit 62 is provided in the housing 59, and the control device 58 is configured to display the time series information and the specific information on the liquid crystal display unit 62. .
  • the maintenance company can grasp
  • step S ⁇ b> 1 the control device 58 acquires time series information from each part of the photovoltaic power generation system 1. And in step S2, the control apparatus 58 judges whether the solar power generation system 1 is in a specific state based on the acquired time series information. If not in the specific state, in step S3, the control device 58 stores the state information as time-series information in the memory 58a.
  • step S4 the control device 58 determines whether or not time series information has been accumulated for one day. If it is not accumulated for one day, the control device 58 returns to step S1 and continues to acquire time-series information. Further, when the data for one day is accumulated, in step S5, the control device 58 transmits the time series information accumulated so far to the external server 600 by LAN transmission.
  • step S6 the control device 58 determines whether or not the LAN transmission is successful.
  • the control device 58 deletes the transmitted time series information from the memory 58a in step S7, and returns to step S1.
  • the control device 58 determines whether or not the LAN transmission failure continues for a predetermined period (for example, one week) in step S8. If the LAN transmission failure continues for a predetermined period, the control device 58 performs mobile phone transmission in step S9 with the data amount of the time-series information to be transmitted reduced, and returns to step S1. If the LAN transmission failure has not continued for a predetermined period, the control device 58 returns to step S1 while retaining the storage of the time-series information that has not been transmitted, and continues to acquire the time-series information.
  • step S10 the control device 58 transmits the specific information via LAN.
  • step S11 the control device 58 determines whether or not the LAN transmission is successful. If the LAN transmission is successful, the process returns to step S1. If the LAN transmission fails, in step S12, the control device 58 transmits specific information by mobile phone transmission, and returns to step S1.
  • the control device 58 preferentially transmits the time series information and specific information of the solar power generation system 1 to the external server 600 by LAN transmission, and in a predetermined case, the solar power generation
  • the time series information and specific information of the system 1 are transmitted to the external server 600 by mobile phone transmission.
  • the time series information and specific information of the photovoltaic power generation system 1 are normally transmitted to the external server 600 by LAN transmission, and in a predetermined case (when transmission by LAN transmission is not possible), the photovoltaic power generation system is also transmitted by mobile phone transmission.
  • 1 status information can be transmitted to the external server 600.
  • the external server 600 can reliably receive the time-series information and the specific information of the solar power generation system 1, and the external server 600 can reliably grasp the state of the solar power generation system 1.
  • the control device 58 transmits the time series information and specific information of the photovoltaic power generation system 1 to the external server 600 using LAN transmission, and also transmits to the external server 600 by LAN transmission.
  • the status information of the photovoltaic power generation system 1 is transmitted to the external server 600 using the mobile phone transmission.
  • the time series information and specific information of the solar power generation system 1 using cellular phone transmission Can be transmitted to the external server 600.
  • the external server 600 can grasp
  • the control device 58 transmits the time-series information to the mobile phone when the state in which the time-series information cannot be transmitted to the external server 600 by LAN transmission continues for a predetermined period (one week). It transmits to the external server 600 using transmission.
  • a predetermined period one week
  • the time series information of the photovoltaic power generation system 1 is externally used without using cellular phone transmission. It can be transmitted to the server 600.
  • the time series information can be transmitted to the external server 600 using the mobile phone transmission.
  • the control device 58 transmits time-series information by LAN transmission when a state in which time-series information cannot be transmitted to the external server 600 by LAN transmission continues for a predetermined period. In a state in which the data amount is smaller than that, the data is transmitted to the external server 600 using mobile phone transmission.
  • the time series information can be easily obtained. Can be sent.
  • the control device 58 when the specific information is transmitted to the external server 600, the control device 58 does not transmit the specific information to the external server 600 by LAN transmission. Without waiting for the period, the specific information is transmitted to the external server 600 using mobile phone transmission.
  • time series information with low urgency is transmitted by mobile phone transmission after waiting for a predetermined period to return to a state where LAN transmission can be used, while specific information with high urgency is Without waiting for this period, it can be transmitted to the external server 600 by mobile phone transmission immediately. Thereby, the specific information of the photovoltaic power generation system 1 can be immediately notified to the external server 600.
  • the control device 58 transmits time-series information and specific information to the external server 600 by LAN transmission using the facilities of the house where the solar power generation unit 2 is installed.
  • the time-series information and the specific information are transmitted to the external server 600 without using the facilities of the house where the solar power generation unit 2 is installed as mobile phone transmission.
  • the time series information of the solar power generation system 1 is usually obtained by using a communication unit (LAN) that allows the user of the solar power generation system 1 to switch communication on / off.
  • LAN communication unit
  • specific information can be transmitted to the external server 600, and when communication by the LAN becomes unavailable, such as when the user stops the communication unit (LAN), the communication unit (cell phone transmission independent of the LAN)
  • the time series information and specific information of the photovoltaic power generation system 1 can be reliably transmitted to the external server 600.
  • the control device 58 when LAN transmission is not possible, performs mobile phone transmission using the mobile phone communication unit 61 that is installed in the housing 59 and can perform wireless communication.
  • the control device 58 unlike the case of wired communication, it is not dependent on the indoor communication environment of the user, and it is not necessary to route the cable in the case 59 installed outdoors, so that mobile phone transmission can be easily performed. .
  • the present invention is not limited thereto, and other renewable energy such as another DC power generation device or a wind power generation device is used as a power generation unit.
  • a power generation module that generates power may be used.
  • the storage battery 51 Although the example using a lithium ion storage battery was shown as the storage battery 51, this invention is not restricted to this, You may use another secondary battery.
  • a storage battery such as a nickel hydride storage battery or a lead storage battery may be used.
  • a capacitor may be used instead of the storage battery.
  • the present invention is not limited to this, and the power storage unit 5 may be installed indoors.
  • the present invention when it judged that the solar power generation system 1 was in a specific state, LAN transmission of specific information was performed first, and when LAN transmission failed, the example which performs mobile telephone transmission was demonstrated,
  • the present invention is not limited to this, and when it is determined that the power supply system is in a specific state, the specific information may be transmitted by mobile phone transmission from the beginning. Moreover, you may transmit specific information using both LAN transmission and mobile telephone transmission.
  • the time series information is transmitted by mobile phone transmission with a reduced data amount.
  • the present invention is not limited to this and may be transmitted as it is.
  • the present invention is not limited to this, and is transmitted to the external server 600 using a dedicated line. May be.
  • the external server 600 cannot directly access the control device 58. Data such as a correction program cannot be transmitted from the external server 600 to the control device 58 via the LAN 300.
  • the external server 600 issues a communication instruction to the control device 58 via the mobile phone communication unit 61 and the control device 58 receives the communication instruction, the external server 600 via the LAN 300 from the control device 58. It is preferable to be configured to access.
  • the LAN 300 has a communication capacity larger than that of the mobile phone communication and the communication fee is a fixed amount. Can be used for efficient communication.
  • the said embodiment demonstrated the example which transmits information via LAN as a 1st communication part and transmits information using a mobile telephone communication network as a 2nd communication part, this invention is not limited to this.
  • the first communication unit may be configured using a communication line other than the LAN
  • the second communication unit may be configured using a communication line other than the mobile phone communication network.
  • the transmission destination may not be a server.
  • it may be transmitted to a personal terminal.
  • the transmission destination when transmitting state information by LAN transmission and the transmission destination when transmitting state information by mobile phone transmission are the same (external server 600) has been described.
  • the invention is not limited to this, and the status information may be transmitted to another transmission destination such as the external server 600 (external) and the maintenance company 700 (external).
  • the said embodiment demonstrated the example in which the control apparatus 58 judged whether the solar power generation system 1 was in a specific state
  • this invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 このデータ取得装置は、蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかを備えた電力供給システムに関する状態情報を取得するデータ取得部を備え、データ取得部は、外部と通信するための第1の通信部と、所定の場合に、外部と通信するための第1の通信部とは異なる第2の通信部との少なくともいずれかを選択してデータを通信するように構成されている。

Description

電力供給システムおよび電力供給システムのためのデータ取得装置
 本発明は、電力供給システムおよび電力供給システムのデータ取得装置に関し、特に、蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかを備えた電力供給システムおよび電力供給システムのデータ取得装置に関する。
 従来、再生可能エネルギーを用いて発電する太陽電池モジュールを備えた電力供給システムが知られている。このような電力供給システムは、たとえば、特開2008-218815号公報に開示されている。
 上記特開2008-218815号公報の電力供給システムは、太陽電池モジュールと、太陽電池モジュールを電力系統に連系するためのインバータと、インバータを制御する制御装置(データ取得部)とを備えている。制御装置は太陽電池モジュールの発電電力データを取得するとともに、その発電電力データを電話回線、専用回線、インターネットなどの通信回線を介して管理サーバ装置(外部)に送信することが可能である。管理サーバ装置では、受信した発電電力データに基づいて、太陽電池モジュールの動作状態の監視を行っている。
特開2008-218815号公報
 しかしながら、上記特開2008-218815号公報では、使用している通信回線が何らかの事情で使用できなくなった場合には、太陽電池モジュールの発電電力データを管理サーバ装置に送信することができなくなってしまう。この場合、管理サーバ装置(外部)が太陽電池モジュールの状態を把握することが困難となってしまうという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、電力供給システムの状態をより確実に外部で受信することが可能な電力供給システムおよび電力供給システムのためのデータ取得装置を提供することである。
 上記目的を達成するために、この発明の第1の局面による電力供給システムのためのデータ取得装置は、蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかを備えた電力供給システムに関する状態情報を取得するデータ取得部を備え、データ取得部は、外部と通信を行うための第1の通信部と、所定の場合に、外部と通信を行うための第1の通信部とは異なる第2の通信部との少なくともいずれかを選択してデータを通信するように構成されている。
 この発明の第2の局面による電力供給システムは、蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかと、データ取得装置とを備え、データ取得装置は、蓄電部および発電部の少なくともいずれかとデータ取得装置とを備えた電力供給システムに関する状態情報を取得するデータ取得部を含み、データ取得部は、外部と通信を行うための第1の通信部と、所定の場合に、外部と通信を行うための第1の通信部とは異なる第2の通信部との少なくともいずれかを選択してデータを通信するように構成されている。
 本発明によれば、通常は外部とのデータの通信(状態情報の送信など)を第1の通信部により行い、所定の場合(第1の通信部により送信できない場合や重要な情報を送信する場合など)には第2の通信部によってもデータの通信を行うことができる。これにより、外部でより確実に電力供給システムの状態情報を受信することができる。なお、第1の通信部により状態情報を送信する際の送信先(外部)と第2の通信部により状態情報を送信する際の送信先(外部)とは必ずしも同一でなくてもよい。また、状態情報は、蓄電部または発電部のいずれかに関する情報であってよく、その情報は、発電部の出力等または/および蓄電部の温度データなどの所定のデータであってよい。また、第1の通信部および第2の通信部は、外部へデータを送信する機能のみを有していてもよいし、送信機能のみならず、外部からデータを受信する機能を有していてもよい。
本発明の一実施形態による太陽光発電システムのデータ通信を示す概念図である。 本発明の一実施形態による太陽光発電システムの詳細構造を説明するための図である。 本発明の一実施形態による太陽光発電システムの制御装置のデータ通信制御を説明するためのフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、図1および図2を参照して、本発明の一実施形態による電力供給システム(太陽光発電システム1)の構造を説明する。
 本実施形態による太陽光発電システム1は、図1に示すように、施設または家屋(以下、家屋と呼ぶ)に設置され、太陽光を用いて発電した電力を出力する太陽光発電部2と、電力系統100に接続され、太陽光発電部2により出力された電力を逆潮流するように電力系統100側に出力するインバータ(パワーコンディショナ)3と、インバータ3と電力系統100とを接続する母線4に接続された蓄電ユニット5とを主に備えている。蓄電ユニット5は、屋外に設置されている。電力系統100と、太陽光発電部2と蓄電ユニット5とは分電盤6を介して接続されている。
 家屋においてはLAN(ローカルエリアネットワーク)300が設置されており、ユーザはLAN300を介してPC(パーソナルコンピュータ)400をブロードバンドによりインターネット500に接続することが可能である。なお、ブロードバンドとは、ADSL、ケーブルテレビ回線、光ファイバー回線などを用いた高速通信、常時接続、定額料金などの性質を有するインターネット接続方式である。ブロードバンドによりインターネット接続した場合には、一般的に、常時接続で通信するデータ量の多寡に拘わらず一定の料金となる。
 また、蓄電ユニット5には、制御装置58が収納されている。制御装置58は、太陽光発電システム1の全体の制御を行っており、太陽光発電システム1の状態(太陽光発電部2の発電電力、蓄電池51の充電状態など)を逐次的に取得して時系列的に記憶するとともに、太陽光発電システム1の状態に関する時系列的な情報(以下、時系列情報と呼ぶ)を、インターネット500を介して外部サーバ600に定期的に送信するように構成されている。また、制御装置58は、取得した時系列情報に基づいて太陽光発電システム1が特定状態にあるか否かを判断するとともに、特定状態にあると判断した場合にも、太陽光発電システム1が特定状態にあることを示す情報(以下、特定情報と呼ぶ)を、インターネット500を介して外部サーバ600に送信するように構成されている。外部サーバ600は、受信した情報を蓄積しており、ユーザはPC400により外部サーバ600にアクセスすることにより、太陽光発電システム1の状態を確認することが可能である。また、外部サーバ600は、受信した情報(時系列情報および特定情報)に基づいて、必要な場合には太陽光発電システム1の管理を行うメンテナンス会社700に情報を送信する。なお、時系列情報および特定情報は、本発明の「状態情報」の一例である。時系列情報および特定情報の送信については、後に詳細に説明する。
 図2に示すように、太陽光発電部2は、6つの太陽電池モジュール21が直列接続された太陽電池ストリング22を4つ含んでいる。太陽電池モジュール21は、薄膜シリコン系や結晶シリコン系、或いは化合物半導体系など、種々の太陽電池を用いて構成することができる。なお、太陽電池モジュール21は、本発明の「発電部」の一例である。3つの太陽電池ストリング22(22a)は直流接続箱7を介してインバータ3に接続されている。また、1つの太陽電池ストリング22(22b)は、直並列切替部8を介して直流接続箱7または蓄電ユニット5のいずれかに択一的に切替可能に接続されている。直並列切替部8は、太陽電池ストリング22bの6つの太陽電池モジュール21の接続状態を、6つの太陽電池モジュール21が全て直列接続された直列接続状態と、2つの太陽電池モジュール21が直列に接続された3つの組が並列接続された並列接続状態とに切り替えることが可能である。直並列切替部8は、直列接続状態においては太陽電池ストリング22bを直流接続箱7に接続し、並列接続状態においては太陽電池ストリング22bを蓄電ユニット5に接続するように構成されている。
 直流接続箱7は、複数の太陽電池ストリング22からの発電電力を1つにまとめてインバータ3側に出力するように構成されている。インバータ3は、直流接続箱7から出力された直流の電力を交流に変換する機能を有している。太陽光発電部2は、インバータ3(パワーコンディショナ)を介して電力系統100に連系されている。
 また、分電盤6には、一般的な交流負荷200と、スイッチ機能を有する整流部9を介して直流負荷210とが接続されている。整流部9のスイッチ9aは、直流負荷210を分電盤6側(電力系統100側)にコンバータ9bを介して接続する状態と、直流負荷210を蓄電ユニット5の蓄電池51に接続する状態とを切り替えることが可能である。また、分電盤6には、蓄電ユニット5に収納されるとともにスイッチ機能を有するインバータ部53を介して交流負荷220が接続されている。インバータ部53のスイッチ53bは、交流負荷220を分電盤6側(電力系統100側)に接続する状態と、交流負荷220をインバータ53aを介して蓄電ユニット5の蓄電池51に接続する状態とを切り替えることが可能である。なお、直流負荷210および交流負荷220は、一般的な交流負荷200と異なり予め特定された負荷(特定負荷)である。特定負荷には常に電源から電力が供給されていることが望まれ、常時動作する必要のある機器が含まれる。
 また、インバータ(パワーコンディショナ)3と電力系統100とを接続する母線4上には電力センサ10が設けられている。具体的には、分電盤6の上流側(電力系統100側)および下流側(太陽光発電部2側)にそれぞれ電力検知部10aおよび電力検知部10bが設けられている。電力検知部10aは、電力系統100から太陽光発電システム1側に供給される電力(買電電力)を検知することが可能である。電力検知部10bは、太陽光発電部2の発電電力を検知することが可能である。
 次に、蓄電ユニット5の構造について説明する。
 図2に示すように、蓄電ユニット5は、電力系統100からの電力を蓄電する蓄電池51と、電力を交流から直流に変換するコンバータ部52と、蓄電池51または母線4から交流負荷220側に電力を供給するためのインバータ部53と、蓄電池51の充放電の切替に用いられる2つのスイッチ54および55と、蓄電池51、コンバータ部52、インバータ部53、スイッチ54および55などの機器の制御を行う制御装置58とを主に備えている。これらの機器は、筐体59の内部にまとめて収納されており、1つのユニットとして扱うことが可能である。
 蓄電池51としては、自然放電が少なく、充放電効率の高い2次電池(たとえば、リチウムイオン蓄電池)が用いられている。なお、蓄電池51は、本発明の「蓄電部」の一例である。
 コンバータ部52は、AC/DCコンバータ52aにより電力系統100からの交流電力を直流電力に変換することにより、電力系統100からの電力を蓄電池51に供給するために設けられている。
 また、母線4とAC/DCコンバータ52aとの間の電流経路のうち、インバータ部53のスイッチ53bとの接点よりもAC/DCコンバータ52a側の部分には、オン/オフの切り替えが可能なスイッチ52bが設けられている。このスイッチ52bは、制御装置58内に設けられた温度センサ(図示せず)の温度に応じてオン/オフが切り替わるように構成されている。すなわち、温度センサの温度が所定の温度以下である場合にはスイッチ52bはオンとなり、母線4側からの電力がコンバータ部52に供給される。また、温度センサの温度が所定の温度を上回った場合にはスイッチ52bはオフとなり、母線4側とコンバータ部52との電気的な接続が切断される。スイッチ52bのオン/オフは、制御装置58によって制御される。
 なお、制御装置58の電力は、スイッチ52bとAC/DCコンバータ52aとの間および蓄電池51とスイッチ54、55の間の配線から取っている。温度センサにより異常を検知し、スイッチ52bがオフになると、制御装置58は蓄電池51の電力で動作し、温度センサ異常検知のモードに従って、スイッチ54、55をオフにする。スイッチ52bがオフになった場合には、蓄電池51の残量がある間はこの電力により駆動し、蓄電池51の残量がなくなることにより制御装置58の駆動も自動的に停止するように構成されている。また、制御装置58が停止した場合、AC/DCコンバータ52aからの出力がオフにされ(AC/DCコンバータ52aへの電力供給も断たれている)、スイッチ54および55がオフにされる。スイッチ55がオフにされることによって、インバータ53aへの電力供給が断たれるように構成されている。インバータ53aへの電力供給が断たれた場合には、後述するように、スイッチ53bは交流負荷220と母線4とを接続するように切り替わる。
 したがって、筐体59内の温度が所定の温度範囲以内では、スイッチ53bは蓄電池51側に接続されているとともに、スイッチ52bはオンにされており、筐体59内の内部が所定の温度範囲外(たとえば、制御装置58の内部の温度が所定の温度範囲外)になった場合に、スイッチ53bは母線4側に接続されるとともに、スイッチ52bはオフにされる。これにより、所定の温度範囲内に保てなくなった場合には、母線4側から交流負荷220への電力供給を維持したまま、熱源となるコンバータ部52、蓄電池51、インバータ53aおよび制御装置58を停止することが可能である。
 スイッチ54は、コンバータ部52および直並列切替部8と、蓄電池51との間の充電経路上に設けられている。スイッチ54は、蓄電池51に太陽電池ストリング22からの電力または母線4からの電力を蓄電池51に充電する際にオンにされる。スイッチ55は、蓄電池51とインバータ部53および直流負荷210との間の放電経路上に設けられている。スイッチ55は、蓄電池51から放電して交流負荷220または直流負荷210に電力を供給する際にオンにされる。
 インバータ部53は、直流電力を出力する蓄電池51の電力を交流電源で駆動される交流負荷220に供給するための直流-交流変換器としてのインバータ53aと、スイッチ53bとを含んでいる。スイッチ53bは通常母線4側に接続されており、インバータ53aは、インバータ53aに電力が供給される場合、好ましくは、インバータ53aに所定の電圧以上の電力が供給されている場合に、蓄電池51側に接続するように構成されている。したがって、上述のようにインバータ53aへの電力供給が断たれた場合には、スイッチ53bは交流負荷220と母線4とを接続するように切り替わる。
 また、制御装置58は、蓄電池51の充電量、温度センサの検知結果、現在時刻(深夜時間帯であるか否か)などに基づいて、AC/DCコンバータ52aの出力、スイッチ54および55の切替、インバータ部53のスイッチ53bおよびスイッチ52bなどの切替などを制御する機能を有する。具体的には、制御装置58は、温度センサの検知結果に基づいて、筐体59の内部の温度が所定の温度範囲外であると判断した場合に、スイッチ52bをオフにする。また、正常状態(所定の温度範囲内の状態)では、制御装置58は、所定のプログラムなどに基づき、スイッチ54および55、コンバータ部52、インバータ部53のスイッチ53bなどの各スイッチのオン/オフを制御する。
 制御装置58は、通常運転時、たとえば、深夜においては電力系統100から蓄電池51に充電を行い、交流負荷220に電力を供給する必要が生じたときには昼夜を問わず蓄電池51から交流負荷220および直流負荷210に電力を供給するように、各スイッチを制御する。また、制御装置58は、通常運転時に蓄電池51の放電を行う場合にも、蓄電池51の容量が所定の閾値(たとえば、満充電状態の50%)以下にならないように蓄電池51の放電を制御する。制御装置58は、蓄電池51の容量が閾値以下になったと判断した場合には、蓄電池51から交流負荷220に電力を供給するのを停止するとともに、母線4から直接交流負荷220および直流負荷210に電力を供給するように各スイッチを切り替える。
 停電時などの非常時には、蓄電池51の残量がある間はこの電力により制御装置58が駆動する。スイッチ55には母線4の電圧線信号が入力されており、制御装置58は、母線4に電圧がかかっていないことを検知して、スイッチ55をオンにする。また、インバータ53aは、蓄電池51からの電力供給によって稼動する。蓄電池51の残量が少なくなると、制御装置58は、スイッチ52b、スイッチ54、スイッチ55をオフにして停止する。これにより、コンバータ部52にも電力が供給されないので、コンバータ部52の駆動も停止される。
 また、制御装置58は、蓄電ユニット5内の機器のみならず、直並列切替部8や整流部9の制御も行う。さらに、本実施形態では、制御装置58は、太陽光発電システム1の各部(太陽光発電部2、直並列切替部8、電力センサ10、整流部9、蓄電池51、スイッチ54および55、インバータ部53、コンバータ部52など)の時系列情報を逐次取得するように構成されている。時系列情報は、具体的には、太陽光発電部2の発電電力、電圧、電流の値、買電電力の値、各スイッチ(直並列切替部8の内部のスイッチ、スイッチ54および55など)の動作状況、蓄電池51の充電状態、充電電圧、放電電圧および温度などである。制御装置58は、たとえば、1秒から10秒毎に定間隔で上記の時系列情報を取得するとともに、メモリ58aに時系列的に記憶する。なお、制御装置58は、本発明の「データ取得部」および「データ取得装置」の一例である。また、1秒から10秒毎の定間隔として例示した時系列情報の取得時間間隔は、本発明の「取得時間間隔」の一例である。
 また、制御装置58は、上記の定間隔(たとえば、1秒から10秒毎)で取得してメモリ58aに時系列的に記憶した時系列情報を、定期的に(たとえば、1日に一度)インターネット500を介して外部サーバ600に送信するように構成されている。ここで、制御装置58は、情報の送信を2つの送信手段により行うことが可能である。すなわち、筐体59内にはLAN300に接続することが可能な無線LAN通信部60が設置されており、制御装置58は、LAN300を介してインターネット500に接続し、時系列情報を外部サーバ600に送信することが可能である。このLAN300を介した制御装置58の情報送信を、以下、LAN送信と呼ぶ。また、筐体59内には携帯電話通信網を用いてインターネット500に接続することが可能な携帯電話通信部61が設置されており、制御装置58は、携帯電話通信の基地局800(図1参照)を介して情報を外部サーバ600に送信することが可能である。この携帯電話通信網を用いた情報送信を、以下、携帯電話送信と呼ぶ。なお、LAN送信のデータ許容量は、携帯電話送信のデータ許容量よりも大きい。また、無線LAN通信部60および携帯電話通信部61は、それぞれ、本発明の「第1の通信部」および「第2の通信部」の一例である。また、携帯電話通信部61は、本発明の「無線通信機」の一例である。
 制御装置58は、LAN送信を優先的に行い、所定の場合に携帯電話送信を行うように構成されている。上記の太陽光発電システム1の時系列情報はデータ量が多いため、LAN300を介してインターネット500に接続可能である場合には、LAN送信により送信することにより、時系列情報のデータを迅速に追加料金なしで送信することが可能である。
 また、制御装置58は、LAN送信ができない場合(たとえば、ユーザがルータの電源をオフにした場合など)には、送信できなかった時系列情報のデータをメモリ58aに記憶したまま残しておき、次回に送信するときに合わせて送信する。制御装置58のメモリ58aは、たとえば最大1年分の時系列情報を記憶することが可能である。また、制御装置58は、LAN送信により送信した時系列情報はメモリ58aから削除するように構成されている。
 また、制御装置58は、1日毎にLAN送信を試み、LAN送信ができない期間が所定期間(たとえば、1週間)継続した場合には、LAN送信の代替手段として、携帯電話送信を行う。携帯電話送信の場合には、LAN300と異なりインターネット500に接続するためのルータなどの機器をユーザが自由に操作できないので、確実にインターネット500に接続することが可能である。
 携帯電話送信により時系列情報を送信する場合には、制御装置58は、時系列情報のデータ量を減らして送信する。たとえば、制御装置58は、ピーク値だけを抜き出したり、データを時間軸で均等に減らしたりすることにより、データ量を減らして送信する。データの圧縮を行うことによりデータ量を減らしてもよい。なお、データ量を減らして携帯電話送信により送信した時系列情報のデータ量を減らす前の元の時系列情報については、制御装置58はメモリ58aから削除しない。この場合には、後にLAN送信ができる状態になったときに再度完全なデータを外部サーバ600に送信し、その後にメモリ58aから削除する。
 また、制御装置58は、取得した太陽光発電システム1の時系列情報に基づいて太陽光発電システム1が特定状態であるか否かを判断し、太陽光発電システム1が特定状態であると判断した場合には、時系列情報の1日に一度の送信タイミングには拘わらず、太陽光発電システム1が特定状態にあることを示す特定情報を外部サーバ600にすぐに送信する。特定情報としては、たとえば、太陽光発電部2の発電電力が所定範囲外になっていること、蓄電池51の温度が所定範囲外になっていること、蓄電池51の過充放電および各スイッチのオン/オフなどの情報である。この場合においても、制御装置58は、特定情報をまずLAN送信により送信するように構成されている。また、LAN送信ができなかった場合には、制御装置58は、時系列情報の場合のように所定期間(たとえば1週間)を待つことなく、すぐに携帯電話送信により特定情報を外部サーバ600に送信するように構成されている。
 また、筐体59内には液晶表示部62が設けられており、制御装置58は、上記の時系列情報および特定情報を、液晶表示部62に表示することが可能なように構成されている。これにより、メンテナンス業者などが太陽光発電システム1を点検するときなどに、メンテナンス業者が太陽光発電システム1の状態を液晶表示部62により把握することが可能である。
 次に、図3を参照して、本発明の一実施形態による太陽光発電システム1の時系列情報および特定情報の制御フローを説明する。
 まず、ステップS1において、制御装置58は、太陽光発電システム1の各部から時系列情報を取得する。そして、ステップS2において、制御装置58は、取得した時系列情報に基づいて、太陽光発電システム1が特定状態にあるか否かを判断する。特定状態にない場合には、ステップS3において、制御装置58は、状態情報を時系列情報としてメモリ58aに記憶する。
 この後、ステップS4において、制御装置58は、時系列情報が1日分蓄積されたか否かを判断する。1日分蓄積されていない場合には、制御装置58は、ステップS1に戻り、時系列情報の取得を継続する。また、1日分蓄積された場合には、ステップS5において、制御装置58は、それまでに蓄積された時系列情報をLAN送信により外部サーバ600に送信する。
 この後、ステップS6において、制御装置58は、LAN送信が成功したか否かを判断する。LAN送信が成功した場合には、制御装置58は、ステップS7において、送信した時系列情報をメモリ58aから削除するとともに、ステップS1に戻る。また、ステップS6においてLAN送信が失敗した場合には、制御装置58は、ステップS8において、LAN送信の失敗が所定期間(たとえば1週間)継続しているか否かを判断する。LAN送信の失敗が所定期間継続している場合には、制御装置58は、ステップS9において、送信対象の時系列情報のデータ量を小さくして携帯電話送信を行うとともに、ステップS1に戻る。また、LAN送信の失敗が所定期間継続していない場合には、制御装置58は、送信していない時系列情報の記憶を保持したままステップS1に戻り、時系列情報の取得を継続する。
 また、ステップS2において太陽光発電システム1が特定状態にあると判断した場合には、ステップS10において、制御装置58は、特定情報をLAN送信する。そして、ステップS11において、制御装置58は、LAN送信が成功したか否かを判断する。LAN送信が成功した場合には、ステップS1に戻る。また、LAN送信が失敗した場合には、ステップS12において、制御装置58は、携帯電話送信により特定情報の送信を行うとともに、ステップS1に戻る。
 本実施形態では、上記のように、制御装置58は、太陽光発電システム1の時系列情報および特定情報を優先的にLAN送信により外部サーバ600に送信するとともに、所定の場合に、太陽光発電システム1の時系列情報および特定情報を携帯電話送信により外部サーバ600に送信する。これによって、太陽光発電システム1の時系列情報および特定情報を通常はLAN送信により外部サーバ600に送信し、所定の場合(LAN送信により送信できない場合)には携帯電話送信によっても太陽光発電システム1の状態情報を外部サーバ600に送信することができる。これにより、外部サーバ600は確実に太陽光発電システム1の時系列情報および特定情報を受信することができる、太陽光発電システム1の状態を確実に外部サーバ600が把握することができる。
 また、本実施形態では、上記のように、制御装置58は、LAN送信を用いて太陽光発電システム1の時系列情報および特定情報を外部サーバ600に送信するとともに、LAN送信により外部サーバ600に時系列情報および特定情報を送信できない場合に、携帯電話送信を用いて太陽光発電システム1の状態情報を外部サーバ600に送信する。このように構成することによって、太陽光発電システム1の時系列情報および特定情報をLAN送信により送信できない場合であっても、携帯電話送信を用いて太陽光発電システム1の時系列情報および特定情報を外部サーバ600に送信することができる。これにより、外部サーバ600は確実に太陽光発電システム1の時系列情報および特定情報を受信することができるので、太陽光発電システム1の状態を確実に外部サーバ600が把握することができる。
 また、本実施形態では、上記のように、制御装置58は、LAN送信により外部サーバ600に時系列情報を送信できない状態が所定の期間(1週間)継続した場合に、時系列情報を携帯電話送信を用いて外部サーバ600に送信する。これにより、LAN送信が使用できない場合であっても、所定の期間内にLAN送信を使用できる状態に戻った場合には、携帯電話送信を用いずに太陽光発電システム1の時系列情報を外部サーバ600に送信することができる。また、所定の期間内にLAN送信が使用できる状態に戻らない場合には、携帯電話送信を用いて時系列情報を外部サーバ600に送信することができる。
 また、本実施形態では、上記のように、制御装置58は、LAN送信により外部サーバ600に時系列情報を送信できない状態が所定の期間継続した場合に、時系列情報をLAN送信により送信する場合よりもデータ量を小さくした状態で、携帯電話送信を用いて外部サーバ600に送信する。このように構成することによって、携帯電話送信により時系列情報を送信する場合に、携帯電話送信の通信回線の容量がLAN送信の通信回線の容量より小さい場合であっても、容易に時系列情報を送信することができる。
 また、本実施形態では、上記のように、制御装置58は、特定情報を外部サーバ600に送信する場合には、LAN送信により外部サーバ600に特定情報を送信できない場合であっても、所定の期間を待たずに、携帯電話送信を用いて特定情報を外部サーバ600に送信する。このように構成することによって、緊急性の低い時系列情報は、LAN送信が使用できる状態に戻るのを所定の期間待ってから携帯電話送信により送信する一方、緊急性の高い特定情報は、所定の期間を待たずにすぐに携帯電話送信により外部サーバ600に送信することができる。これにより、太陽光発電システム1の特定情報を外部サーバ600にすぐに通知することができる。
 また、本実施形態では、上記のように、制御装置58は、太陽光発電部2が設置される家屋の設備を利用したLAN送信によって時系列情報および特定情報を外部サーバ600に送信するとともに、所定の場合に、携帯電話送信として、太陽光発電部2が設置される家屋の設備を利用せずに時系列情報および特定情報を外部サーバ600に送信する。このように構成することによって、通常は太陽光発電システム1のユーザが通信のオン/オフの切替などを行うことが可能な通信部(LAN)を利用して太陽光発電システム1の時系列情報および特定情報を外部サーバ600に送信することができるとともに、ユーザがその通信部(LAN)を停止した場合などLANによる通信が使えなくなった場合には、LANには依存しない通信部(携帯電話送信)により確実に太陽光発電システム1の時系列情報および特定情報を外部サーバ600に送信することができる。
 また、本実施形態では、上記のように、LAN送信ができない場合に、制御装置58は、筐体59内に設置された無線通信可能な携帯電話通信部61を用いて携帯電話送信を行う。これにより、有線通信とする場合と異なり、ユーザの屋内の通信環境に依存せず、屋外に設置される筐体59内にケーブルを引き回す必要がないので、容易に携帯電話送信を行うことができる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記実施形態では、太陽電池モジュール21によって発電を行う例について説明したが、本発明はこれに限らず、発電部として他の直流発電装置あるいは風力発電装置などの他の再生可能エネルギーを用いて発電する発電モジュールを用いてもよい。
 また、上記実施形態では、蓄電池51としてリチウムイオン蓄電池を用いる例を示したが、本発明はこれに限らず、他の2次電池を用いてもよい。たとえば、ニッケル水素蓄電池や鉛蓄電池などの蓄電池を用いてもよい。また、本発明の「蓄電部」の一例として、蓄電池の代わりにキャパシタを用いてもよい。
 また、上記実施形態では、蓄電ユニット5を屋外に設置する例について説明したが、本発明はこれに限らず、蓄電ユニット5を屋内に設置してもよい。
 また、上記実施形態では、太陽光発電システム1が特定状態にあると判断した場合に、まず特定情報のLAN送信を行い、LAN送信が失敗した場合に携帯電話送信を行う例について説明したが、本発明はこれに限らず、電力供給システムが特定状態にあると判断した場合には最初から携帯電話送信により特定情報の送信を行ってもよい。また、LAN送信と携帯電話送信との両方を用いて特定情報の送信を行ってもよい。
 また、上記実施形態では、時系列情報のLAN送信による送信の失敗が所定期間(1週間)継続した場合に携帯電話送信を行う例について説明したが、本発明はこれに限らず、LAN送信が失敗した後にすぐに携帯電話送信を行ってもよい。
 また、上記実施形態では、時系列情報を携帯電話送信により送信する場合にはデータ量を小さくして送信する例について説明したが、本発明はこれに限らず、そのまま送信してもよい。
 また、上記実施形態では、時系列情報および特定情報をインターネット500を介して外部サーバ600に送信する例について説明したが、本発明はこれに限らず、専用回線を用いて外部サーバ600に送信してもよい。
 また、上記実施形態では、LAN送信と携帯電話送信との2つの送信手段を設けた例について説明したが、本発明はこれに限らず、3つ以上の送信手段を設けてもよい。
 また、上記実施形態では、LAN送信と携帯電話送信との2つの送信手段を太陽光発電システム1から外部サーバ600に時系列情報などを送信する場合に用いる例について説明したが、外部からデータを制御装置58が受信する場合にLAN送信と携帯電話送信との2つの送信手段を用いてもよい。たとえば、外部サーバ600から更新または修正プログラムなどのデータを制御装置58に送信する場合に、LAN経由で外部サーバ600から制御装置58に送信できない場合に、携帯電話通信網を用いて送信するようにしてもよい。
 また、LAN300内の機器のそれぞれにグローバルアドレスが割り振られている場合と異なり、LAN300内の機器をプライベートIPアドレスにより区別している場合には、外部サーバ600から制御装置58に直接アクセスすることができず、外部サーバ600から修正プログラムなどのデータを制御装置58にLAN300により送信することができない。この場合には、外部サーバ600から携帯電話通信部61を介して制御装置58に通信指示を行い、その通信指示を制御装置58が受信した場合に、制御装置58からLAN300を介して外部サーバ600にアクセスするように構成することが好ましい。これにより、外部サーバ600から制御装置58のプログラムの修正プログラムまたは更新プログラムなどのデータを制御装置58に送信する場合にも、携帯電話通信よりも通信容量が大きく、かつ通信料金が定額であるLAN300を用いて、効率的な通信を行うことができる。
 また、上記実施形態では、第1の通信部としてLAN経由で情報を送信し、第2の通信部として携帯電話通信網を用いて情報を送信する例について説明したが、本発明はこれに限らず、第1の通信部をLAN以外の通信回線を用いて構成し、第2の通信部を携帯電話通信網以外の通信回線を用いて構成してもよい。
 また、上記実施形態では、外部サーバ600に太陽光発電システム1の状態情報を送信する例について説明したが、本発明はこれに限らず、送信先はサーバでなくてもよい。たとえば、個人端末などに送信してもよい。
 また、上記実施形態では、LAN送信により状態情報を送信する際の送信先と携帯電話送信により状態情報を送信する際の送信先とを同一(外部サーバ600)とした例について説明したが、本発明はこれに限らず、外部サーバ600(外部)とメンテナンス会社700(外部)となど、別の送信先に状態情報を送信してもよい。
 また、上記実施形態では、時系列情報に基づいて太陽光発電システム1が特定状態にあるか否かを判断した例について説明したが、本発明はこれに限らず、センサなどの出力に基づいて太陽光発電システム1が特定状態にあるか否かを判断してもよい。
 また、上記実施形態では、太陽光発電システム1が特定状態にあるか否かを制御装置58が判断した例について説明したが、本発明はこれに限られない。本発明では、太陽光発電システム1が特定状態にあるか否かを制御装置58側で判断しなくてもよい。すなわち、特定状態にあるか否かを判断するために必要な情報を特定情報として太陽光発電システム1から外部サーバ600や利用者の個人端末などに送信し、その特定情報を受信した外部サーバ600または利用者の側で特定状態にあるか否かを判断してもよい。

Claims (13)

  1.  蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかを備えた電力供給システムに関する状態情報を取得するデータ取得部を備え、
     前記データ取得部は、外部と通信を行うための第1の通信部と、所定の場合に、外部と通信を行うための前記第1の通信部とは異なる第2の通信部との少なくともいずれかを選択してデータを通信する、電力供給システムのためのデータ取得装置。
  2.  前記所定の場合は、前記第1の通信部により外部と前記状態情報を通信できない場合である、請求項1に記載の電力供給システムのためのデータ取得装置。
  3.  前記所定の場合は、前記第1の通信部により外部と前記状態情報を通信できない状態が所定の期間継続する場合である、請求項1に記載の電力供給システムのためのデータ取得装置。
  4.  前記第2の通信部により通信される前記状態情報のデータ量は、前記第1の通信部により通信される場合の前記状態情報のデータ量よりも小さい、請求項1に記載の電力供給システムのためのデータ取得装置。
  5.  前記状態情報は、前記データ取得部が時系列的に取得する前記電力供給システムの状態に関する時系列情報と、前記データ取得部が取得する前記電力供給システムが特定状態にあるか否かの判断に関する特定情報との少なくともいずれかを含む、請求項1に記載の電力供給システムのためのデータ取得装置。
  6.  前記データ取得部は、前記時系列情報に基づいて前記電力供給システムが特定状態にあるか否かを判断し、前記電力供給システムが特定状態にあると判断した場合に、前記電力供給システムが特定状態にあることを示す前記特定情報を通信する、請求項5に記載の電力供給システムのためのデータ取得装置。
  7.  前記データ取得部は、所定の取得時間間隔毎に前記時系列情報を取得するとともに、前記時系列情報を取得する度に、前記電力供給システムが特定状態にあるか否かを判断する、請求項6に記載の電力供給システムのためのデータ取得装置。
  8.  前記取得時間間隔は、前記所定の期間よりも短い時間間隔である、請求項7に記載の電力供給システムのためのデータ取得装置。
  9.  前記データ取得部は、前記第1の通信部として、ローカルエリアネットワークを介して前記状態情報を外部と通信する、請求項8に記載の電力供給システムのためのデータ取得装置。
  10.  前記データ取得部が収納される筐体をさらに備え、
     前記データ取得部は、前記第2の通信部として、前記筐体内に設置された無線通信機を利用して前記状態情報を外部と通信する、請求項9に記載の電力供給システムのためのデータ取得装置。
  11.  前記データ取得部は、前記電力供給システムの外部から前記第2の通信部によりデータの通信指示を受信した場合に、前記第1の通信部により外部と通信接続することにより、外部から前記第1の通信部によりデータを受信することが可能に構成されている、請求項1に記載の電力供給システムのためのデータ取得装置。
  12.  前記データは、前記データ取得部のプログラムの更新情報または修正情報を含む、請求項11に記載の電力供給システムのためのデータ取得装置。
  13.  蓄電部および再生可能エネルギーを用いて発電する発電部の少なくともいずれかと、
     データ取得装置とを備え、
     前記データ取得装置は、前記蓄電部および前記発電部の少なくともいずれかと前記データ取得装置とを備えた電力供給システムに関する状態情報を取得するデータ取得部を含み、
     前記データ取得部は、外部と通信を行うための第1の通信部と、所定の場合に、外部と通信を行うための前記第1の通信部とは異なる第2の通信部との少なくともいずれかを選択してデータを通信する、電力供給システム。
PCT/JP2011/056647 2010-03-19 2011-03-18 電力供給システムおよび電力供給システムのためのデータ取得装置 WO2011115273A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063584 2010-03-19
JP2010-063584 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115273A1 true WO2011115273A1 (ja) 2011-09-22

Family

ID=44649353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056647 WO2011115273A1 (ja) 2010-03-19 2011-03-18 電力供給システムおよび電力供給システムのためのデータ取得装置

Country Status (1)

Country Link
WO (1) WO2011115273A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680389A1 (en) * 2012-06-25 2014-01-01 LG Electronics, Inc. Energy storage device, server, and method for controlling the same
JP2014110758A (ja) * 2012-12-03 2014-06-12 Sekisui Chem Co Ltd エネルギマネジメントシステム
JP2016086559A (ja) * 2014-10-27 2016-05-19 トヨタホーム株式会社 給電システム
JP2021019299A (ja) * 2019-07-22 2021-02-15 デルタ電子株式会社 情報処理システム、家庭内電力管理システム、及び情報処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145966A (ja) * 1991-11-18 1993-06-11 Toshiba Corp 発電所システム
JP2004242058A (ja) * 2003-02-06 2004-08-26 Ntt Communications Kk ワイヤレス通信システムおよびワイヤレス通信方法
JP2007082398A (ja) * 2002-03-01 2007-03-29 Sharp Corp 太陽光発電管理サーバ、太陽光発電管理システムおよび太陽光発電管理方法
JP2007097312A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd パワーコンディショナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145966A (ja) * 1991-11-18 1993-06-11 Toshiba Corp 発電所システム
JP2007082398A (ja) * 2002-03-01 2007-03-29 Sharp Corp 太陽光発電管理サーバ、太陽光発電管理システムおよび太陽光発電管理方法
JP2004242058A (ja) * 2003-02-06 2004-08-26 Ntt Communications Kk ワイヤレス通信システムおよびワイヤレス通信方法
JP2007097312A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd パワーコンディショナ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680389A1 (en) * 2012-06-25 2014-01-01 LG Electronics, Inc. Energy storage device, server, and method for controlling the same
US9478990B2 (en) 2012-06-25 2016-10-25 Lg Electronics Inc. Energy storage device, and server and method for controlling the same
US10355488B2 (en) 2012-06-25 2019-07-16 Lg Electronics Inc. Energy storage device, and server and method for controlling the same
JP2014110758A (ja) * 2012-12-03 2014-06-12 Sekisui Chem Co Ltd エネルギマネジメントシステム
JP2016086559A (ja) * 2014-10-27 2016-05-19 トヨタホーム株式会社 給電システム
JP2021019299A (ja) * 2019-07-22 2021-02-15 デルタ電子株式会社 情報処理システム、家庭内電力管理システム、及び情報処理方法

Similar Documents

Publication Publication Date Title
US11728443B2 (en) Systems and methods for remote or local shut-off of a photovoltaic system
KR101147206B1 (ko) 계통 연계형 전력 저장 시스템 및 이를 위한 통합 제어기
JP3469228B2 (ja) 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
KR101678526B1 (ko) 배터리 시스템, 배터리 시스템의 제어 방법 및 이를 포함하는 전력 저장 시스템
CN103269117B (zh) 多能源汇流协调控制系统的控制方法
EP2882073B1 (en) Management system, management method, control device, and power storage device
KR20160143092A (ko) 배터리 제어 시스템 및 방법
US10476297B2 (en) Device and method for wiring a battery management system
US8941354B2 (en) Battery system
CN103155334A (zh) 能量存储系统及其控制方法
JP5475387B2 (ja) 電力供給システムの電源最適化装置
EP2882074B1 (en) Management method, control device, and electrical storage device
EP2903216B1 (en) Management system, management method, and device
US20150048779A1 (en) Battery system, method of controlling battery system and energy storage system including the same
KR102421893B1 (ko) 에너지 저장 시스템
WO2024041383A1 (zh) 储能系统及电池管理系统的供电控制方法
WO2011115273A1 (ja) 電力供給システムおよび電力供給システムのためのデータ取得装置
JP2013051820A (ja) 組電池の制御システム及びそれを備える電力供給システム
KR102176094B1 (ko) 에너지 저장 장치를 포함하는 에너지 저장 시스템
US20160099585A1 (en) Battery pack and driving method thereof
CN103457303A (zh) 具有发电模块的太阳能发电系统及其输出电能控制方法
JPWO2019053824A1 (ja) ソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法
CN110445162B (zh) 储能装置
CN106058899A (zh) 储能系统的监控系统
JP5895231B2 (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载