+

WO2011115189A1 - Cell activity analysis device, cell activity analysis method and cell analysis method - Google Patents

Cell activity analysis device, cell activity analysis method and cell analysis method Download PDF

Info

Publication number
WO2011115189A1
WO2011115189A1 PCT/JP2011/056304 JP2011056304W WO2011115189A1 WO 2011115189 A1 WO2011115189 A1 WO 2011115189A1 JP 2011056304 W JP2011056304 W JP 2011056304W WO 2011115189 A1 WO2011115189 A1 WO 2011115189A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
image
intensity
cells
living
Prior art date
Application number
PCT/JP2011/056304
Other languages
French (fr)
Japanese (ja)
Inventor
道広 秀
雄輝 柳瀬
隆明 平郡
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010061710A external-priority patent/JP2011193752A/en
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Publication of WO2011115189A1 publication Critical patent/WO2011115189A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects

Definitions

  • the present invention relates to a cell activity analyzer, a cell activity analysis method, and a cell analysis method for analyzing the reaction activity of living cells.
  • Surface plasmon resonance consists of evanescent light that is generated when light is incident on a metal thin film under total reflection conditions, and surface plasmon that is a close-packed wave of free electrons propagating on the interface between the metal thin film and the object to be measured. It is a phenomenon that resonates.
  • surface plasmon resonance occurs, at least part of the energy of the incident light is transferred to surface plasmon resonance and the intensity of the totally reflected light is reduced.
  • the incident angle at which the light intensity decreases most is called the resonance angle.
  • This resonance angle changes according to the change in the dielectric constant of the measurement object.
  • the change in the dielectric constant of the measurement object can be observed by measuring the change in the resonance angle.
  • Examples of the object measured using the principle of the surface plasmon resonance method include enzymes, antibodies, DNA, cells, and the like.
  • a method has been proposed in which a cell is an object to be measured, and an external stimulation activity for a living cell is evaluated using a surface plasmon resonance apparatus (see Patent Document 1).
  • a surface plasmon resonance apparatus is used to evaluate the activity of external stimuli on live cells using as an index the secondary signal that appears after the primary signal observed when live cells are exposed to external stimuli.
  • the signal is a dielectric constant, refractive index, or resonance angle measured in the same manner as a normal SPR measurement for living cells (hereinafter, appropriately described by any one of dielectric constant, refractive index, and resonance angle). Indicates a change.
  • Patent Document 2 describes a method and system for simply calculating the number contained in a cell population fixed on a plate.
  • the method is a method for analyzing a cell, the step of measuring reflected light intensity caused by a cell fixed on a plate using surface plasmon resonance imaging, and the reflected light intensity from the cell A step of calculating a parameter relating to.
  • a method for analyzing a cell-related parameter such as the number of cells, cell adhesion area, or cell size is described.
  • Non-Patent Document 1 describes a method for analyzing parameters relating to cells such as cell adhesion density using a surface plasmon resonance apparatus.
  • Patent Document 1 can evaluate the average value of the activity of external stimuli on a plurality of living cells in real time, it analyzes and evaluates the activity of external stimuli on individual living cells. It is difficult.
  • the method and apparatus for analyzing cells described in Patent Document 2 and the method described in Non-Patent Document 1 are parameters related to cells such as the number of cells, the adhesion area of cells, or the size of cells. It is the method and apparatus (system) aiming at calculation and analysis of. Therefore, when such a method and apparatus (system) is used, it is impossible to directly analyze and evaluate stimulus responses including parameters other than those described above for living cells. Difficult to do.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell activity analyzer, a cell activity analysis method, and a cell analysis method capable of analyzing the activity of external stimuli for individual living cells.
  • a cell activity analyzer comprises: A cell activity analyzer that analyzes the activity of external stimuli on living cells using the surface plasmon resonance phenomenon, A metal thin film in contact with the living cell on one side; A refractive optical element having an interface substantially in contact with the other surface of the metal thin film; Incident means for causing a P-polarized parallel light beam to enter the refractive optical element and to enter the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon; A magnifying optical system for enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification; Imaging means for capturing the intensity image magnified by the magnification optical system; Image acquisition means for sampling image data of the intensity image captured by the imaging means; Selecting means for selecting at least a partial image of the living cells as a measurement target from the image data of the intensity image sampled by the image acquisition means; The brightness value of the
  • the selection means can specify a plurality of measurement objects
  • the calculation means extracts a luminance value of each of the plurality of selected measurement objects from the image data of the intensity image, and calculates information regarding a change in intensity of reflected light of the measurement object for each measurement object. .
  • the selection means selects a plurality of different locations in the same live cell image as the measurement target.
  • the calculation means is based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. Then, information on the change in the intensity of the reflected light of the measurement target is calculated.
  • the calculation unit corrects information related to a change in intensity of reflected light of the measurement target based on a luminance value component of a portion where the living cells do not exist in the image data of the intensity image.
  • the predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film.
  • it further comprises analysis means for analyzing the living cells based on information on a change in intensity of reflected light of the measurement target calculated by the calculation means.
  • the analysis means extracts a characteristic of a change pattern with time of the dielectric constant of the living cell to be measured.
  • the analysis means determines whether the time-dependent change pattern of the dielectric constant of the living cell corresponds to a monophasic, biphasic, triphasic or other atypical pattern.
  • a microscope is further provided for observing the living cells in contact with the metal thin film from the one surface side.
  • the selection means includes Display means for displaying an image based on the image data of the intensity image sampled by the image acquisition means; An operation means for designating at least a partial image of the living cell as the selected measurement object from image data of the intensity image sampled by the image acquisition means by an operation input; Is further provided.
  • a plurality of the thin metal films can be arranged by separating a group of living cells including the living cells.
  • it further includes external stimulus applying means for applying different external stimuli to each of the plurality of living cell groups.
  • the cell activity analysis method comprises: A cell activity analysis method for analyzing the activity of external stimuli on living cells using surface plasmon resonance phenomenon, An arrangement step of arranging the living cells so as to contact one surface of the metal thin film; An incident step in which a P-polarized parallel light beam is incident on a refractive optical element having an interface substantially in contact with the other surface of the metal thin film, and is incident on the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon; , An enlargement step of enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification by an enlargement optical system; An imaging step of capturing the intensity image magnified by the magnification optical system; An image acquisition step of sampling image data of the intensity image imaged in the imaging step; From the image data of the intensity image sampled by the image acquisition step, a selection step of selecting at least a partial image of the living cell as a measurement
  • a plurality of measurement objects can be specified.
  • a luminance value of each of the plurality of selected measurement objects is extracted from the image data of the intensity image, and information regarding a change in intensity of reflected light of the measurement object is calculated for each measurement object. .
  • a plurality of different locations in the same live cell image are selected as the measurement target.
  • the calculation step based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. Then, information on the change in the intensity of the reflected light of the measurement target is calculated.
  • information on a change in intensity of reflected light of the measurement target is corrected based on a luminance value component of a portion where the living cells do not exist in the image data of the intensity image.
  • the predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film.
  • the selection step comprises A display step of displaying an image based on the image data of the intensity image sampled in the image acquisition step; By an operation input, an operation step of designating at least a part of the live cell image as the selected measurement object from the image data of the intensity image sampled in the image acquisition step; Further included.
  • a plurality of living cell groups including the living cells are arranged apart from each other.
  • a different external stimulus is applied to each of the plurality of living cell groups.
  • the cell analysis method according to the third aspect of the present invention comprises: The living cells are analyzed based on information relating to changes in the intensity of reflected light of the living cells obtained by analysis using the cell activity analysis method of the present invention.
  • the living cells are analyzed by extracting characteristics of a change pattern of the dielectric constant of the living cells over time based on information on a change in intensity of reflected light of the measurement target.
  • the time-dependent change pattern of the dielectric constant of the living cells corresponds to a monophasic, biphasic, triphasic or other atypical pattern.
  • cancer cells are the subject of analysis.
  • cancer cells are the subject of analysis.
  • the cancer cell is any of a stomach cancer cell, a prostate cancer cell, or an angiosarcoma cell.
  • the living cells exposed to the external stimulus by cytokines are analyzed.
  • the living cells exposed to the external stimulus by EGF are analyzed.
  • the image data of the reflection intensity image of the P-polarized parallel light beam incident on the interface substantially in contact with the metal thin film with which the living cells are in contact is acquired by sampling. Then, from the acquired image data, at least a part of the image of the living cell is selected as the measurement target, and information on the change in the intensity of the reflected light of the measurement target is calculated based on the change in the luminance of the selected image.
  • a living cell to be measured is a dielectric, and its dielectric constant changes depending on a response to an external stimulus. As a result, the resonance angle of the surface plasmon resonance phenomenon changes, and the intensity of the reflected reflected light changes there.
  • the activity of the external stimulus for each living cell related to the reflected light can be analyzed based on the information.
  • it is possible to evaluate and analyze the properties of individual living cells and / or a part of each living cell, or to isolate specific types of living cells. It becomes possible to detect that the reaction is different, and it becomes possible to analyze individual cells without isolation, and to analyze each individual place in each individual cell. As a result, it is possible to detect the behavior of activity for each individual living cell.
  • FIG. 3A to 3H are diagrams illustrating an example of an image of a reflection intensity image captured when the incident angle is changed by 1 °.
  • FIGS. 4A to 4C are diagrams illustrating an example of temporal changes in the image of the reflection intensity image when the living cells (RBL-2H3 cells) are not stimulated.
  • FIG. 5A to FIG. 5C are diagrams showing an example of temporal changes in the image of the reflection intensity image when a living cell (RBL-2H3 cell) is stimulated.
  • FIG. 3A to 3H are diagrams illustrating an example of an image of a reflection intensity image captured when the incident angle is changed by 1 °.
  • FIGS. 4A to 4C are diagrams illustrating an example of temporal changes in the image of the reflection intensity image when the living cells (RBL-2H3 cells) are not stimulated.
  • FIG. 5A to FIG. 5C are diagrams showing an example of temporal changes in the image of the reflection intensity image when a living cell (RBL-2H3 cell) is stimulate
  • FIG. 6A is a graph illustrating an example of a temporal change in the intensity of reflected light of a measurement target that is not stimulated.
  • FIG. 6B is a graph showing an example of a temporal change in the intensity of reflected light of a measurement target stimulated with living cells (RBL-2H3 cells). It is a block diagram which shows the detailed structure of the image processing part of FIG. It is a figure for demonstrating the various components contained in the intensity
  • FIGS. 9A to 9C are diagrams showing an example of changes in the intensity of reflected light in different parts of a living cell (RBL-2H3 cell). It is a flowchart of an example of a cell activity analysis method (analyte subject cell analysis).
  • FIG. 12A is a perspective view of a part of a cell activity analyzer equipped with a multiwell chamber
  • FIG. 12B shows an image captured by the cell activity analyzer of FIG.
  • 13A is a diagram showing an example of an image of a reflection intensity image when the PAM212 cell is stimulated
  • FIG. 13B is a diagram when the A431 cell is stimulated
  • FIG. 14A is a graph showing an example of temporal change in intensity of reflected light when PAM212 cells are stimulated and FIG. 14B is stimulated with A431 cells.
  • FIG. 16 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and PMA in the sensor chip shown in FIG.
  • FIGS. 17A to 17C are diagrams illustrating an example of a temporal change in the image of the reflection intensity image when the sensor chip illustrated in FIG. 15 is stimulated with DNP-HSA and PMA.
  • FIG. 17A to 17C are diagrams illustrating an example of a temporal change in the image of the reflection intensity image when the sensor chip illustrated in FIG. 15 is stimulated with DNP-HSA and PMA.
  • FIG. 4 is a diagram showing a sensor chip on which RBL-2H3 cells bound with anti-DNP-mouse IgE and RBL-3D4 cells bound with a human IgE antibody are arranged.
  • FIG. 19 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and an anti-human IgE antibody in the sensor chip shown in FIG.
  • FIGS. 20A to 20C are diagrams illustrating an example of a temporal change in the image of the reflection intensity image when the sensor chip illustrated in FIG. 18 is stimulated with DNP-HSA and anti-human IgE.
  • FIGS. 22A and 22B are diagrams showing an example of the temporal change in reflection intensity when the sensor chip shown in FIG. 21 is stimulated with DNP-HSA and EGF.
  • FIG. 23A and FIG. 23B are diagrams illustrating an example of a temporal change in an image of a reflection intensity image when stimulated with DNP-HSA and EGF in the sensor chip illustrated in FIG. It is a figure which shows the change of the resonance angle with time by EGF stimulation in the CHO cell which forcedly expressed wild type human EGFR.
  • FIG. 33 (A) is a diagram showing the results of Western blotting using an anti-phosphorylation-specific EGFR antibody and an anti-EGFR antibody of a human hemangiosarcoma cell line.
  • FIG. 33 (B) is a graph showing changes in resonance angle over time by EGF stimulation in a human hemangiosarcoma cell line.
  • the cell activity analyzer 100 is an apparatus that analyzes the activity observed when a living cell as a subject is exposed to an external stimulus using a surface plasmon resonance phenomenon.
  • the temperature of the space in which the cell activity analyzer 100 is installed is preferably adjusted to 37 ° C. by a thermostat (not shown), but is not limited thereto.
  • the cell activity analyzer 100 includes a light source 1, a polarizing plate 2, a prism 3, a glass substrate 4, a metal thin film 5, an objective lens 6, an imaging unit 7, and a computer 8. , A flow cell 9, a liquid supply unit 10, and a microscope 11.
  • the optical axis of the optical system including the light source 1, the polarizing plate 2, the prism 3, the glass substrate 4, the metal thin film 5, the objective lens 6, and the imaging unit 7 is defined as AX. .
  • the light source 1 is, for example, a semiconductor laser. This semiconductor laser oscillates and outputs laser light having a wavelength of 635 nm, for example.
  • the laser beam output from the light source 1 is converted into a parallel light beam by a collimator lens (not shown) or the like and enters the polarizing plate 2.
  • a collimator lens not shown
  • the light source 1 you may use red, white LED (Light * Emitting * Diode), etc.
  • the polarizing plate 2 converts the incident laser light into a linearly polarized parallel light beam and emits it. This linearly polarized light becomes P polarized light with respect to an interface F between a glass substrate 4 and a metal thin film 5 described later.
  • the light source 1 and the polarizing plate 2 correspond to the incident means.
  • the prism 3 for example, S-LAL-10 glass is employed.
  • the refractive index of this glass is 1.72.
  • the prism 3 receives the parallel light flux that has been changed to P-polarized light by the polarizing plate 2.
  • the glass substrate 4 for example, S-LAL-10 glass is adopted. That is, the glass substrate 4 and the prism 3 have the same refractive index. Both are bonded by a matching oil having a refractive index of 1.72. Thereby, the laser light (P-polarized light) incident on the prism 3 is incident on the glass substrate 4 and goes straight as it is.
  • the prism 3 and the glass substrate 4 correspond to a refractive optical element.
  • a metal thin film 5 is deposited on the glass substrate 4.
  • the metal thin film 5 is, for example, a gold film.
  • thin films such as Ag, Cu, Zn, Al, and K can also be used as the metal thin film 5.
  • the thickness of the metal thin film 5 is, for example, 50 nm.
  • the metal thin film 5 is formed on the glass substrate 4 by vapor deposition, for example.
  • the laser light reflected by the interface F is emitted from the glass substrate 4 and the prism 3 and enters the objective lens 6.
  • the objective lens 6 refracts and emits laser light.
  • a lens having a longer rear focal length than a front focal length is used. Therefore, the objective lens 6 enlarges the object image at a predetermined magnification and forms an image on the image plane.
  • the laser light emitted from the objective lens 6 reaches the imaging surface of the imaging unit 7.
  • the imaging unit 7 is, for example, a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • the imaging unit 7 receives the laser light reflected by the interface F.
  • the imaging surface of the imaging unit 7 and the interface F are in a conjugate relationship. Therefore, an intensity image corresponding to the two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface F of the prism 3, that is, a reflection intensity image is formed on the imaging surface of the imaging unit 7.
  • This reflection intensity image is magnified by, for example, 2 to 40 times by the objective lens 6.
  • the imaging unit 7 captures the reflection intensity image.
  • the imaging unit 7 outputs an image signal corresponding to the reflected intensity image.
  • the image signal output from the imaging unit 7 is input to the computer 8.
  • the computer 8 has a CPU and a memory (both not shown). When the CPU executes the program stored in the memory, the functions of the image acquisition unit 21, the image processing unit 22, the display unit 23, and the operation unit 24 illustrated in FIG. 1 are realized.
  • the image acquisition unit 21 samples the input image signal at regular time intervals, and outputs the image data obtained by the sampling to the image processing unit 22.
  • the image processing unit 22 outputs the image data acquired by the image acquisition unit 21 to the display unit 23.
  • the display unit 23 displays an image based on the input image data.
  • the operation unit 24 is a user interface that receives user operation input, and includes, for example, a keyboard, a touch panel, and a mouse.
  • the operation unit 24 is operated by a user who views an image displayed on the display unit 23.
  • the user operates the operation unit 24 to specify a specific measurement target in the image of the reflection intensity image displayed on the display unit 23, for example.
  • the position coordinates of the measurement target in the designated image are input to the image processing unit 22.
  • the image processing unit 22 determines the luminance value of the measurement target specified by the operation input of the operation unit 24 from the sampled reflection intensity image (if the measurement target is a region, the average value of the luminance values of that region). , And information on the temporal change in the intensity of the reflected light of the measurement target is calculated based on the extracted temporal change in the luminance value of the measurement target. This time change in the intensity of the reflected light corresponds to a time change in the dielectric constant of the measurement target.
  • the image processing unit 22 graphs the information related to the temporal change in the calculated reflected light intensity of the measurement target, and outputs the image data of the graph to the display unit 23.
  • the display unit 23 displays simultaneously the image of the reflection intensity image obtained by sampling and the image of the graph showing the temporal change in the intensity of the reflected light in the designated measurement target.
  • the user can analyze the activity of the external stimulus with respect to the living cells while referring to the graph showing the temporal change of the intensity of the reflected light.
  • live cells C1 and C2 which are measurement targets of the active reaction, are attached.
  • the method of attaching the living cells C1 and C2 to the metal thin film 5 is performed by using, for example, an appropriate spacer (poly-L-lysine or the like) between the living cells C1 and C2 and the metal thin film 5, and living cells C1 and C2.
  • an appropriate spacer poly-L-lysine or the like
  • any method can be used as long as it is known in the art, any method may be used.
  • a method of utilizing the affinity of the cell membrane for lipid, a method of covalently tethering, or a method of tethering with a positive charge developed by the present inventors Yamamoto e et al. 2007. Biosensors Bioelectron. 23, 562-567 and JP 2007-14327 A).
  • a flow cell 9 is provided as a flow path for flowing a liquid.
  • the flow cell 9 is a flow path for flowing a liquid to be exposed to the living cells C1 and C2 set on the metal thin film 5.
  • the flow cell 9 is connected to the liquid supply unit 10.
  • a liquid to be exposed to the living cells C1 and C2 is supplied from the liquid supply unit 10 into the flow cell 9.
  • the liquid flowing through the flow cell 9 contains, for example, an antigen that may bind to the antibodies on the living cells C1 and C2.
  • the living cells C1 and C2 are stimulated and activated (see, for example, Patent Document 1). That is, since the external stimulation is applied to the living cells C1 and C2 by exposing the living cells C1 and C2 to the liquid by the flow cell 9 and the liquid supply unit 10, in this embodiment, the flow cell 9 and the liquid supply unit 10 are stimulated.
  • the flow cell 9 and the liquid supply unit 10 correspond to an exposure unit that exposes a living cell as a subject to be exposed to an external stimulus.
  • the exposure means holds the living cells to be examined as a subject in an environment of a predetermined condition, and exposes the living cells of the subject to a given external stimulus.
  • the microscope 11 is installed to observe the living cells C1 and C2 set on the metal thin film 5 from the opposite side of the interface F.
  • the metal thin film 5 is provided with alignment marks (not shown) in advance. This mark is provided at a position that falls within both the imaging field of the microscope 11 and the imaging field of the imaging unit 7. With this mark, the positional relationship between a specific portion in the observation image of the microscope 11 and a specific portion of the image captured by the imaging unit 7 becomes clear. With reference to the image of the mark appearing in both images, the position of the specific living cells C1 and C2 that appear in the image of the reflection intensity image captured by the imaging unit 7 within the observation field of the microscope 11 is specified, for example, pipetting operation, etc. In addition, the living cells C1 and C2 can be taken out using a method known in the art.
  • the graph of FIG. 2 shows an example of the incident angle dependence of the intensity of the reflected light received by the imaging unit 7.
  • the horizontal axis indicates the incident angle ⁇ of the parallel light flux to the interface F
  • the vertical axis indicates the intensity of the reflected light at the incident angle ⁇ .
  • FIG. 2 shows three characteristic curves (a) to (c).
  • the characteristic curve (a) is a curve showing the incident angle dependence of the intensity of the reflected light in a state where nothing is placed on the metal thin film 5 (the state where there are no living cells C1 and C2). According to this, the intensity of reflected light is most attenuated at an incident angle of 56 ° due to the surface plasmon resonance phenomenon. This incident angle of 56 ° is called a resonance angle. In the present embodiment, the incident angle of the laser beam to the interface F is set to 56 ° so that the intensity of the reflected light when the living cells C1 and C2 are not in contact is the darkest.
  • the characteristic curve (b) is a curve showing the incident angle dependence of the reflected light intensity when the living cells C1 and C2 are set on the metal thin film 5 and the living cells C1 and C2 are not yet stimulated. Since the living cells C1 and C2 are dielectrics, the dielectric constant changes around the metal thin film 5 where the living cells C1 and C2 come into contact, and the incident angle dependence of the reflected light intensity is characteristic from the characteristic curve (a). The curve (b) is shifted and the resonance angle is also shifted from 56 ° to ⁇ 1.
  • the characteristic curve (c) shows that the living cells C1 and C2 are set on the metal thin film 5, and the living cells C1 and C2 are stimulated by the antigen contained in the liquid flowing through the flow cell 9, and in response to the stimulation. It is a curve which shows the incident angle dependence of reflected light intensity.
  • the living cells C1 and C2 are stimulated and respond to the stimulation, the dielectric constants of the living cells C1 and C2 are further changed. Therefore, the incident angle dependence of the intensity of the reflected light is changed from the characteristic curve (b) to the characteristic curve (c).
  • the resonance angle is also shifted from ⁇ 1 to ⁇ 2.
  • the incident angle of the parallel light flux on the interface F is fixed at 56 °. Therefore, focusing attention on an incident angle of 56 °, the intensity of the reflected light is I1 and is the darkest when the living cells C1 and C2 are not in contact with the metal thin film 5. Further, when the living cells C1 and C2 adhere to the metal thin film 5, the intensity of the reflected light becomes I2, which is higher by ⁇ I1 than I1. Further, when the living cells C1 and C2 attached to the metal thin film 5 are stimulated by an antigen or the like and respond to the stimulation, the intensity of the reflected light increases from I2 by ⁇ I2 to I3, and becomes stronger.
  • the place where the living cells C1 and C2 do not exist becomes dark, the place where the cells exist becomes bright, and the living cells C1 and C2 become bright.
  • the activated area becomes brighter.
  • FIGS. 3A to 3H show images of reflection intensity images when the incident angle ⁇ of the laser beam is changed by 1 ° from 53 ° to 60 °.
  • the contrast between the place where the live cells C1 and C2 are present and the place where the live cells C1 and C2 are not present is the highest in the incident angle.
  • 56 °.
  • FIGS. 4A to 4C show changes in the image of the reflection intensity image after 0 minutes, 10 minutes, and 20 minutes in a state where the living cells C1 and C2 are not stimulated.
  • . 5A to 5C show changes in the reflection intensity image after 0 minutes, 10 minutes, and 20 minutes after stimulating the living cells C1 and C2.
  • FIGS. 5A to 5C it is clear that when the living cells C1 and C2 react to an external stimulus, the living cells C1 and C2 It can be seen that the luminance of the portion corresponding to is changing.
  • the user While viewing the reflection intensity image displayed on the display unit 23 of the computer 8, the user operates the operation unit 24 (for example, a mouse) to specify a specific measurement target in the image of the reflection intensity image displayed on the display unit 23.
  • This measurement target may be specified as a point (for example, a part of one living cell) or may be specified as a region (for example, an entire region of one living cell).
  • the user can designate a plurality of living cells at a time by operating the operation unit 24 and selecting, for example, several bright portions shown in FIG.
  • the image processing unit 22 creates an image of a graph of the change in the intensity of the reflected light of the portion corresponding to the designated living cell and causes the display unit 23 to display the image.
  • FIG. 6 (A) and 6 (B) show the temporal change in the intensity of the reflected light of the portion corresponding to each of several living cells specified in this way and the time of the average value of the intensity of the reflected light. Changes are shown.
  • FIG. 6 (A) the time change etc. of the intensity
  • the time change of the intensity of the reflected light of each part in the reacted state is shown.
  • FIG. 6 (A) and FIG. 6 (B) when live cells are stimulated, reacted, and activated, the intensity of the reflected light at that portion changes greatly. Note that the horizontal line at the bottom of the graph in FIG. 6B indicates that at that time, a solution (a solution containing DNP-HSA) is caused to flow through the flow cell 9 and the living cells are stimulated. 4A to FIG. 4C, FIG. 5A to FIG. 5C, FIG. 6A, and FIG. 6B will be described in detail in the embodiments described later. Explained.
  • FIG. 7 shows a further detailed configuration of the image processing unit 22 of the computer 8.
  • the image processing unit 22 includes an operation content analysis unit 30, a measurement target extraction unit 31, an initial value holding unit 32, a dark component extraction unit 33, difference units 34 and 35, and waveform generation. Part 36.
  • the operation content analysis unit 30 analyzes the operation content input from the operation unit 24.
  • the operation content obtained as a result of analysis includes the position coordinates in the specified measurement target image, the position coordinates in the image at the position specified as a part where no living cells exist, the measurement start command of waveform data, etc. include.
  • the operation content analysis unit 30 outputs the position coordinates in the designated measurement target image to the measurement target extraction unit 31. Further, the operation content analysis unit 30 outputs a waveform data measurement start command to the measurement target extraction unit 31, the initial value holding unit 32, and the dark component extraction unit 33. Further, the operation content analysis unit 30 outputs the position coordinates in the image at the position designated as a part where no living cells exist to the dark component extraction unit 33.
  • the measurement target extraction unit 31 extracts the luminance value of the measurement target for each measurement target based on the position coordinates of the measurement target input from the operation content analysis unit 30. Output. Note that only the luminance value of the first measurement target at the time when the waveform data measurement start command is input is output to the initial value holding unit 32.
  • the initial value holding unit 32 holds and outputs the luminance value of the measurement target output from the measurement target extraction unit 31 for each measurement target when the waveform data measurement start command is input. This output is held as an initial value during measurement and continues to be output.
  • the dark component extraction unit 33 extracts and outputs the amount of change in the luminance value of the portion where there is no live cell input from the operation content analysis unit 30.
  • the initial value of this change amount is zero. After that, the luminance value obtained at the next sampling time is calculated as the amount of change.
  • the difference unit 34 subtracts the initial value of the measurement target luminance value output from the initial value holding unit 32 from the measurement target luminance value output from the measurement target extraction unit 31 and outputs the result.
  • the difference unit 35 subtracts the luminance value output from the dark component extraction unit 33 from the luminance value output from the difference unit 34 and outputs the result.
  • the waveform generation unit 36 converts the luminance value output from the difference unit 35 into the intensity of the reflected light, and arranges the intensity of the reflected light obtained so far in time series, thereby changing the intensity of the reflected light over time. Generate and output graph image data.
  • the reflected light intensity I in the reflection intensity image includes (A) a change due to the reaction of the living cell and (B) a default intensity component of the living cell before giving the stimulus. And (C) a component of intensity change in a region where no living cells exist.
  • the luminance value output from the measurement target extraction unit 31 corresponds to the intensity I of the reflected light
  • the luminance value output from the initial value holding unit 32 corresponds to the component (B)
  • the luminance value output from the extraction unit 33 corresponds to the component (C).
  • the components (B) and (C) consist of background and noise, respectively. Therefore, the difference units 34 and 35 subtract the luminance value output from the initial value holding unit 32 and the luminance value output from the dark component extraction unit 33 from the luminance value output from the measurement target extraction unit 31. If the luminance value is corrected, the waveform data of the component (A) to be originally measured can be acquired with high accuracy.
  • live cells C 1 and C 2 are set on the metal thin film 5.
  • emission of laser light is started, a reflection intensity image is captured by the imaging unit 7, and an image of the reflection intensity image is displayed on the display unit 23.
  • the portion where the living cells C1 and C2 are present is displayed brightly. Therefore, the user who has viewed the image displayed on the display unit 23 operates the operation unit 24 to display the image in the image.
  • the living cells C1 and C2 are designated as measurement targets, and the portion where no living cells exist is designated.
  • This step is an exposure step in which live cells to be examined are exposed to an external stimulus.
  • the exposure method may be a method suitable for each external stimulus. For example, in the case of giving stimulation with EGF, the target living cells may be infiltrated into an EGF solution having an appropriate concentration to give the stimulation.
  • This step is a dielectric constant measurement step for measuring a change with time in the dielectric constant of the cells C1 and C2 exposed to the external stimulus in the exposure step.
  • the measurement result of the dielectric constant of the living cell is stored together with the measured time.
  • the time information to be measured may be a relative time from the start of measurement.
  • the measured dielectric constant and the information on the time constitute a time-dependent change pattern of the dielectric constant of the living cells of the subject.
  • the user analyzes the activity of the external stimulus for the living cells C1 and C2 based on the change pattern of the dielectric constant with time, that is, the time change. For example, it is possible to detect that the living cell C1 is activated but the living cell C2 is not activated, and the like that the reaction is different for each living cell.
  • the waveform generation unit 36 of the image processing unit 22 stores waveform data indicating the temporal change characteristics of reflected light intensity in several living cells as analysis means. Then, the waveform generator 36 obtains the correlation between the waveform of the living cell to be measured currently being created and the waveform data already stored, and analyzes the cell having the maximum correlation as the living cell being measured. can do.
  • each of the living cells displayed on the display unit 23 is measured. If it designates as a target, it can analyze without isolating every living cell of each shape.
  • the user can collect the living cells in a live state by pipetting operation or the like while observing the living cells with the microscope 11.
  • the cell activity analyzer 100 may be further provided with a pipette device (not shown) that automatically collects live cells, and the live cells may be automatically collected using the pipette device.
  • a plurality of different portions of the same living cell can be designated as a measurement target.
  • the measurement points P1 to P13 which are a plurality of measurement objects randomly extracted, are designated within one living cell by the operation input of the operation unit 24.
  • P1 to P5 are measurement points near the center of the living cell, that is, near the nucleus
  • P6 to P12 are measurement points near the edge of the living cell, that is, near the cell membrane.
  • P13 is a measurement point where there is no cell.
  • FIG. 9C shows the change in the average value of the intensity of reflected light at the measurement points P1 to P5, that is, the measurement points near the center of the living cell, and the average value of the intensity of reflected light at the measurement points P6 to P12. Changes.
  • the change in reflected light intensity is larger at the measurement point near the center of the living cell, that is, near the nucleus than at the measurement point near the edge of the living cell, that is, near the cell membrane.
  • an image of the reflection intensity image of the P-polarized parallel light beam incident on the interface F substantially in contact with the metal thin film 5 in contact with the living cells C1 and C2 is obtained by sampling. Is done. Then, from the acquired image data, at least a part of the images of the living cells C1 and C2 is selected as the measurement target, and information on the change in the intensity of the reflected light of the measurement target is obtained based on the change in the luminance of the selected image. Calculated.
  • the living cells C1 and C2 to be measured are dielectrics, and the dielectric constant changes due to a reaction caused by an external stimulus.
  • the dielectric constants of the living cells C1 and C2 change, the dielectric constant around them changes, and as a result, the resonance angle of the surface plasmon resonance phenomenon changes, and the intensity of the reflected light reflected thereby changes. Therefore, if information on the change in the intensity of the reflected light of the portion related to the selected individual living cells C1 and C2 is calculated, the activity of the external stimulus for the individual living cells C1 and C2 is analyzed based on the information. be able to.
  • the waveform generation unit 36 uses the waveform data to be measured as an extraction means to determine the characteristics of the temporal change pattern of the dielectric constant observed when the living cells to be examined are exposed to an external stimulus. You may make it extract. In this way, it is possible to analyze living cells using the characteristics of the temporal change pattern of the dielectric constant as an index.
  • the process performed by the waveform generation unit 36 at this time is an extraction process for extracting characteristics of the temporal change pattern of the dielectric constant of the living cells to be examined.
  • diagnosis and analysis of malignant tumors, etc. are based on visual observation, X-ray, CT (Computed Tomography), or image information by ultrasound, and finally, a tissue structure using a pathological tissue specimen is observed microscopically. It was done based on that. Sometimes, in addition to these, information on the presence or absence of gene abnormality in the suspected tissue or the expression of a marker substance related to cancer may be added.
  • the presence or absence of expression of a specific gene or other substance can be grasped by a concept slightly different from structural disturbance, but after a biological tissue or cell suspected of having cancer is chemically fixed, In terms of analyzing the amount of quantity, it is still an analysis of the structure of cells or living tissues at a certain moment.
  • normal cells and cancer cells exhibit characteristics of temporal change patterns of different resonance angles with respect to EGF (epidermal growth factor) stimulation by an SPR device. It was elucidated. Furthermore, histopathologically, it was shown that even the same type of cancer or cancer cell line can exhibit different temporal changes in resonance angle characteristics in response to EGF stimulation.
  • EGF epidermal growth factor
  • EGFR epidermal Growth factor receptor, Epidermal Growth
  • Factor ⁇ ⁇ Receptor which is not expressed in normal vascular component cells. Similarly, it has been elucidated that it shows the characteristics of the change pattern with time of different resonance angles.
  • the waveform generation unit 36 analyzes the living cells that are the object of the subject, using the extracted characteristic of the change pattern of the dielectric constant over time as an index. More specifically, the waveform generation unit 36 extracts the characteristics of the measured change pattern of the dielectric constant of living cells over time, for example, monophasic, biphasic, triphasic or other atypical patterns. It is determined which of the conditions is met. The waveform generation unit 36 may perform a more detailed analysis of living cells by comparing with a characteristic of a temporal change pattern of a predetermined dielectric constant.
  • the characteristics of a predetermined dielectric constant change pattern over time include, for example, normal cells (cells without abnormality) that have been measured in advance, and various cancer cells (epithelial / It means the characteristics of the time-dependent change pattern of the dielectric constant of various tumor cells (non-epithelial / fluid), various cancer cells (epithelial malignant tumors) or various cancer cell lines.
  • the waveform generation unit 36 determines whether or not the living cell that is the subject of the subject is a normal cell, whether or not the target living cell is a cancer cell or a cancer cell, or in the case of a cancer cell Diagnosis / analysis of cancer cells of such types and cell lines (for example, gastric cancer cells, prostate cancer cells, hemangiosarcoma cells (see Examples described later), etc.), etc.
  • the diagnosis / analysis result that is, the information on the characteristics of the extracted change pattern of the dielectric constant with time (information on the state of the living cells) is sent to the display unit 23.
  • the display unit 23 displays live cell state information sent from the waveform generation unit 36.
  • the waveform generation unit 36 may further include a database in which conditions are stored. In this case, for example, the waveform generation unit 36 performs the determination by comparing the conditions stored in the database with the extracted characteristics.
  • Such conditions include, for example, the presence or absence of local maximum and local minimum values of the change pattern, the order of local maximum and local minimum values, the initial value, the maximum and minimum values, the range of time for taking local maximum and local minimum values, Conditions for identifying the characteristics of the change pattern, such as the sign and size of the change rate, the change rate of the change rate, etc., can be set.
  • FIG. 10 is a flowchart showing an example of a cell activity analysis method. As shown in FIG. 10, for example, when analysis of a living cell of a subject is started, an exposure test is performed (step S11). During the exposure test, the dielectric constant is measured (step S12).
  • the characteristics of the dielectric constant change pattern over time are extracted (step S13).
  • the extracted characteristics are monophasic, biphasic, triphasic, or other atypical patterns. It is determined which condition is met (step S14). The extraction and the determination thereof are performed in the waveform generation unit 36 as analysis means. Thereafter, the state of the cell with the characteristics of the time-dependent change pattern of the dielectric constant of the extracted characteristics (for example, monophasic, biphasic, triphasic or other atypical patterns) is the object of the subject. The state of the living cell is analyzed and sent to the display unit 23 for display (step S15).
  • an analysis system for cancer cells may be used as an analysis system for cancer cells or an analysis system for cancer cells (for example, gastric cancer cells, prostate cancer cells or angiosarcoma cells).
  • an analysis system for cancer cells for example, gastric cancer cells, prostate cancer cells or angiosarcoma cells.
  • the state of cells can be comprehensively and directly analyzed at the level of individual living cells.
  • normal cells and cancers can be obtained only by dynamically analyzing the stimulation response patterns of cells without fixing cells or tissues as in the prior art and evaluating malignant tumors as a potential.
  • the ability to analyze the types of cells, cancer types and cancer cell lines is extremely high in technical value.
  • the display unit 23 and the operation unit 24 correspond to the selection unit, but the present invention is not limited to this.
  • the luminance of the region where the living cells are present is the luminance of the region where the living cells are not present.
  • the image processing unit 22 may automatically select a living cell to be measured as a selection unit by using the fact that it is larger than that.
  • the image processing unit 22 extracts a point where a change in spatial luminance is equal to or greater than a predetermined threshold, that is, a change point (edge) in the captured reflection intensity image, and sets the image data surrounded by the edge. May be selected as a measurement target.
  • the optical system of the Kretschmann arrangement in which the reflection surface of the laser beam is the interface F between the metal thin film 5, the glass substrate 4, and the metal thin film 5, is not limited to this.
  • An optical system with an otto arrangement may be employed.
  • the interface F needs to be disposed at a distance substantially in contact with the nanometer order such that near-field light (evanescent light) is generated with respect to the metal thin film 5.
  • the metal thin film 5 does not need to be provided on the entire surface of the imaging field, and as shown in FIG. 11, small metal thin films 15 may be arranged on the glass substrate 4 in a matrix, for example. In this case, different live cells may be arranged on each metal thin film 15. In this way, the response of various living cells to the same external stimulus can be measured at a time.
  • the stimulus applying means is the flow cell 9 and the liquid supply unit 10, but the present invention is not limited to this.
  • a droplet discharge device having a nozzle for dropping a droplet containing an antigen that gives an external stimulus to living cells on the metal thin film 5 may be used as the stimulus applying means.
  • a plurality of nozzles may be provided, a cluster of living cells (for example, a collection of 1 to 100 living cells) may be arranged, and droplets containing different antibodies or the like may be discharged to each cluster.
  • a cell activity analyzer 100 that omits the flow cell 9 and the liquid supply unit 10 is used.
  • a liquid known in the art such as a pipette or an injector.
  • An embodiment in which a person operates the drop ejection device to give an external stimulus is also possible.
  • each living cell is based on the temporal change (change before and after applying the stimulus) of the calculated reflected light intensity. And / or the properties of a part of individual living cells can be evaluated.
  • the properties of individual living cells can be analyzed and isolated, living cells with certain activities can be screened, specific biomolecules related to cell activity (external stimuli) can be screened, It can be used for various cell studies such as investigating in which part of live cells activation occurs.
  • the cell activity analysis apparatus 100 and the cell activity analysis method according to the present embodiment can be used for medical diagnosis apparatuses, diagnosis methods, and the like. For example, it can be used for a rapid allergic reaction test of living cells (blood or biopsy material) collected from a living body. It is also possible to stimulate a lesion cell such as cancer with a growth factor or the like and quickly determine whether it is a normal cell or a malignant cell. Furthermore, analysis of the required drug amount that varies depending on the individual (analysis of drug reactivity of peripheral blood cells (lymphocytes, basophils, eosinophils, antigen-presenting cells, etc.) for each individual) can be performed. In addition, it can be used for analysis of drugs that cause drug allergy.
  • peripheral blood cells lymphocytes, basophils, eosinophils, antigen-presenting cells, etc.
  • the cell activity analyzer 100 and the cell activity analysis method according to the present embodiment it is possible to analyze individual living cells and / or a part of each living cell, and thus the above-described sensitivity is higher than that in the past. Such diagnosis, evaluation or analysis can be performed.
  • the cell activity analyzer 100 and the cell activity analysis method of the present embodiment can also be used as a high-throughput screening apparatus for clinical diagnosis, for example, a high-throughput allergy diagnosis apparatus.
  • a solution containing basophils is obtained from blood collected from a living body using micro magnetic beads or the like (others may be any if including living cells).
  • the basophil solution is described in a multi-well chamber 40 as shown in FIG. 12A (for example, in which wells are vacated in a matrix so that the injected solution is separated) at the time of discharging an external stimulus. It is injected by a droplet discharge device such as that described above or pipetting.
  • an allergen administration multi-chamber 41 designed to fit the multi-well chamber 40 into which the basophil solution is injected is also prepared.
  • the allergen administration multi-chamber 41 is also configured as a droplet discharge device as described above, and different allergens are preferably administered simultaneously to each well into which blood has been injected. Therefore, the cell activity analyzer 100 and the cell activity analysis method of this embodiment are used.
  • An image captured by the imaging unit 7 of the cell activity analyzer 100 described above is displayed on the display unit 23 of the computer 8. Then, an image as shown in FIG. 12B is displayed, and a highly reliable diagnosis can be performed in a shorter time than a conventional diagnosis method.
  • the allergen may be the same and the specimen from which the basophil solution is collected may be different.
  • Such an apparatus can be used as various high-throughput screening apparatuses such as a high-throughput cancer diagnostic apparatus in addition to an allergy diagnostic apparatus.
  • the term “cell” is defined in the same way as the broadest meaning used in the field, and may be any kind or animal cell. Moreover, it may be a naturally occurring cell or an artificially modified cell (for example, a fused cell or a genetically modified cell). “Live cell” refers to a living cell. Of these, cells derived from humans (Homo sapience) are preferred, and mast cells, keratinocytes, human basophils or human B cells are preferred, but not limited thereto.
  • predetermined magnification means the magnification of an intensity image by a magnifying optical system such as the objective lens 6.
  • the predetermined magnification needs to be a magnification at which the image data sampled by the image acquisition means can be identified by individual living cells.
  • the predetermined magnification is, for example, 2 to 40 times as described above.
  • “external stimulation” refers to binding of a ligand to a cell surface receptor (for example, a biomolecule such as an antigen described in the present embodiment), environmental changes such as temperature or pH, or mechanical It means a stimulus or an electrical stimulus, and includes all stimuli that act on the activity of a cell (for example, activation of an information transmission system in the cell).
  • a cell surface receptor for example, a biomolecule such as an antigen described in the present embodiment
  • environmental changes such as temperature or pH, or mechanical
  • It means a stimulus or an electrical stimulus, and includes all stimuli that act on the activity of a cell (for example, activation of an information transmission system in the cell).
  • ligand binding to cell surface receptors is preferred, and external stimulation with cytokines is more preferred.
  • the cytokines in this specification include all types of cytokines known in the art.
  • interleukin, chemokine, interferon, hematopoietic factor, cell growth factor and the like can be mentioned, among which cell growth factor is preferable.
  • the cell growth factor include EGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) or transforming growth factor (TGF) described above. Of these, EGF is most preferred.
  • exposure means that each external stimulus as described above is given to living cells by an appropriate exposure method.
  • characteristic of a change pattern with time means a characteristic of a change rate with time.
  • the initial value, the maximum value and / or the minimum value, the time from the exposure to an external stimulus until reaching the maximum value and / or the minimum value, and the change over time are monophasic, biphasic, It means characteristics such as compatibility or other atypical patterns (see Examples).
  • the “dielectric change over time” or “dielectric change over time pattern” used in this specification depends on changes in the dielectric constant in addition to changes in the dielectric constant with time.
  • the change of the rate of change accompanying the time change of the value (for example, the refractive index or the resonance angle) is also included.
  • Analysis of a living cell in this specification can be defined as including various meanings such as evaluation, identification, classification and diagnosis of a living cell.
  • extraction of the characteristics of the temporal change pattern is the characteristics of the measured temporal change pattern among the characteristics of the temporal change pattern as described above. Detection, determination, and / or determination.
  • the image obtained by the CMOS camera was subjected to luminance analysis using Image-Pro (manufactured by Media Cybernetics) corresponding to the image processing software program executed by the computer 8 according to the above embodiment.
  • RBL-2H3 cell (Rat Basophilic Leukemia cell, rat basophilic leukemia cell line) is used as a living cell, and DNP-HSA (Dinitrophenyl-Human Serum Albumin (manufactured by Sigma-Aldrich Japan, Tokyo, Japan)) antigen as an external stimulus.
  • DNP-HSA Dinitrophenyl-Human Serum Albumin (manufactured by Sigma-Aldrich Japan, Tokyo, Japan)) antigen as an external stimulus.
  • DNP-HSA Dinitrophenyl-Human Serum Albumin (manufactured by Sigma-Aldrich Japan, Tokyo, Japan)) antigen as an external stimulus.
  • RBL-2H3 cells have granules containing histamine in the cells and express IgE receptors on the cell surface, the cells can be activated by antigen-IgE stimulation.
  • RBL-2H3 cells were cultured in RPMI (Roswell Park Memorial Institute) medium supplemented with 10% fetal calf serum (FCS), 100 U / ml penicillin and 100 ⁇ g streptomycin, and trypsin was added on the day before the experiment. Used to recover.
  • FCS fetal calf serum
  • the collected RBL-2H3 cells were cultured overnight (37 ° C.) on a sensor chip (gold thin film-deposited glass substrate) in the presence of 50 ng / ml anti-DNP-IgE (Sigma-Aldrich Japan, Tokyo, Japan). ).
  • the chip was mounted on the cell activity analyzer 100 described above, and a running buffer (PIPES buffer) was run. Thereafter, DNP-HSA (50 ng / ml) was injected, and the running buffer was allowed to flow as it was.
  • a running buffer PPES buffer
  • DNP-HSA 50 ng / ml
  • the running buffer was allowed to flow as it was.
  • an intensity image of the reflected light magnified by the objective lens (4 times) was obtained every 10 seconds. It was imaged with a CMOS camera.
  • luminance analysis based on the time change with individual living cells as a selected region was performed from the image by Image-Pro. As a control, imaging and luminance analysis were also performed for those in which DNP-HSA was not injected under the same conditions.
  • FIGS. 4A to 4C are RBL-2H3 cells not stimulated with DNP-HSA
  • FIGS. 5A to 5C are CMOS cameras of RBL-2H3 cells stimulated with DNP-HSA. The image at is shown.
  • the refractive index of each RBL-2H3 cell did not change for 20 minutes when not stimulated with DNP-HSA (antigen).
  • FIG. 5 (A) to FIG. 5 (C) it clearly increased when stimulated with DNP-HSA.
  • FIG. 6A is from the images in FIGS. 4A to 4C
  • FIG. 6B is from the images in FIGS. 5A to 5C.
  • Five RBL-2H3 cells are removed. Changes in luminance values (refractive index) measured using Image-Pro and average values thereof are plotted every 10 seconds.
  • the lower line in the graph of FIG. 6B shows the time during which stimulation is performed by DNP-HSA. For the same graph described below, the line indicates the stimulation time.
  • the refractive index of RBL-2H3 cells hardly changed during 20 minutes not stimulated with DNP-HSA, and obviously increased after stimulation with DNP-HSA.
  • the activity of external stimulation stimulation by, for example, DNP-HSA (antigen)
  • DNP-HSA antigen
  • each individual living cell can be analyzed without labeling with any of the above substances.
  • the intensity of the reflected light that is, the degree of the reaction of the living cells due to the external stimulus is different. This is because the present invention, which can analyze the activity of external stimuli for each individual living cell, can detect with higher sensitivity than the conventional method of evaluating the average value of the stimulus response to a plurality of living cells. Is shown.
  • the cell activity analyzer 100 it is possible to analyze a dielectric constant of a partial region of the cell, that is, a reaction in (a plurality of different) regions in one cell. It is. 9C is similar to FIGS. 4A to 4C, FIG. 5A to FIG. 5C, FIG. 6A, and FIG. 6B in DNP-HSA. This is an example in which the dielectric constant of RBL-2H3 cells, i.e., the cell response, was analyzed, and the activity of external stimuli and the cellular response were analyzed for a plurality of different regions within one cell.
  • PAM212 cells and A431 cells as living cells and EGF (Epidermal® Growth Factor) (10 ng / ml, manufactured by R & D® system, Minneapolis, MN) as external stimuli
  • EGF Epidermal® Growth Factor
  • PAM212 cells mouse keratinocyte cell line
  • A431 cells Human epithelial carcinoma cell line, human squamous cell carcinoma line
  • the method for culturing live cells, imaging, and luminance analysis are the same as those in the RBL-2H3 cells described above, and will not be described.
  • FIG. 13A is an example of an image of a reflection intensity image when a PAM212 cell is stimulated and FIG. FIG. 14A is a graph showing an example of a temporal change in the intensity of reflected light to be measured when the PAM212 cell is stimulated, and FIG.
  • Each of Track 1 to Track 5 shown in FIG. 13 (A) and FIG. 13 (B) shows five living cells or living cell groups selected at random, and the time change of the intensity of these reflected lights is shown in FIG. It is graphed in FIG. 14 (A) and FIG. 14 (B).
  • Track 6 is a background, that is, a place where there are no living cells, and is used for correcting information related to a change in intensity of reflected light to be measured.
  • the thick lines in FIGS. 14A and 14B indicate average values.
  • activation by stimulation can be observed in any kind of living cells, It has been found that the intensity of the reflected light (ie, the dielectric constant) may decrease after activation by stimulation depending on the type of cell or stimulation, compared to before stimulation.
  • both cells have a similar graph pattern, but both cells can be distinguished from the intensity of the reflected light. Was also shown.
  • the measurement target is a large number of living cells as shown in FIGS. 13 (A), 13 (B), 14 (A), and 14 (B) from a part of one living cell as described above. It has also been found that selection and measurement can be made up to the area of the cell group where the cells have gathered.
  • PMA Calbiochem, California, which induces activation of DNP-HSA and RBL-2H3 cells as external stimuli
  • FIG. 15 is a view showing a sensor chip on which RBL-2H3 cells bound with anti-DNP-mouse IgE and RBL-2H3 cells not bound are arranged.
  • RBL-2H3 cells binding anti-DNP-mouse IgE are circular cells previously cultured in Hydrocell (Cellcellse Inc, Tokyo, Japan) to bind IgE.
  • RBL-2H3 cells not bound to anti-DNP-mouse IgE are spindle shaped cells.
  • FIG. 16 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and PMA in the sensor chip shown in FIG. a is a graph of RBL-2H3 cells bound with anti-DNP-mouse IgE, and b is a graph of RBL-2H3 cells not bound with anti-DNP-mouse IgE.
  • FIGS. 17A to 17C are examples of temporal changes in the image of the reflection intensity image when the sensor chip shown in FIG. 15 is stimulated with DNP-HSA and PMA.
  • FIG. 16 after stimulation of DNP-HSA, only RBL-2H3 cells bound with anti-DNP-mouse IgE were activated, and RBL-2H3 cells not bound with anti-DNP-mouse IgE were stimulated with PMA. It turns out that it is activated.
  • FIGS. 17 (A) to 17 (C) only DNP-HSA stimulation at 20 min brightly images mainly circular cells (indicated by arrows in the figure), and at 40 min after PMA stimulation. Spindle-shaped cells are also brightly imaged (indicated by arrows in the figure). Note that graphs a and b in FIG. 16 show average values of changes over time in the intensity of reflected light of both cells indicated by these arrows.
  • RBL-2H3 and RBL-3D4 cells are cells established by the present inventors using genetic engineering techniques for RBL-2H3 cells, and express human IgE receptors. Since RBL-2H3 cells are rat-derived cells, only IgE derived from rats and mice can bind. On the other hand, since RBL-3D4 cells also express human IgE receptor, human-derived IgE can be bound and stimulated with anti-human IgE antibody to activate the cells.
  • FIG. 18 is a diagram showing a sensor chip in which RBL-2H3 cells and RBL-3D4 cells are arranged.
  • RBL-2H3 cells are spindle-shaped cells bound with anti-DNP-mouse IgE (anti-DNP mIgE), and RBL-3D4 cells are round-shaped cells bound with human IgE antibody (hIgE).
  • FIG. 19 is a graph showing an example of temporal changes in the intensity of reflected light when the sensor chip shown in FIG. 18 is stimulated with DNP-HSA and an anti-human IgE antibody (manufactured by BETYL, Montgomery, Texas).
  • a is a graph of RBL-2H3 cells
  • b is a graph of RBL-3D4 cells.
  • FIGS. 20 (A) to 20 (C) are diagrams illustrating an example of temporal change in the image of the reflection intensity image when the sensor chip shown in FIG. 18 is stimulated with DNP-HSA and anti-human IgE.
  • the arrow in FIG. 20 (B) shows spindle-shaped RBL-2H3 cells stimulated and activated by DNP-HSA, and the arrow in FIG. 20 (C) is a circle stimulated and activated by anti-human IgE antibody.
  • Shaped RBL-3D4 cells are shown.
  • Graphs a and b in FIG. 19 show the average values of the temporal changes in the intensity of the reflected light of both cells indicated by these arrows. As shown in FIGS.
  • FIG. 21 is a diagram showing a sensor chip in which RBL-2H3 cells and A431 cells (and A431 cell group (A431 cluster)) are arranged.
  • RBL-2H3 cells are spindle-shaped cells with anti-DNP-mouse IgE
  • A431 cells are circular cells.
  • FIGS. 22A and 22B are graphs showing an example of a temporal change in the intensity of reflected light when stimulated with DNP-HSA and EGF in the sensor chip shown in FIG. As shown in FIG. 22, stimulation with DNP-HSA and EGF was performed simultaneously.
  • FIG. 23A and FIG. 23B are diagrams illustrating an example of a temporal change in an image of a reflection intensity image when stimulated with DNP-HSA and EGF in the sensor chip illustrated in FIG.
  • FIG. 23 (A) shows an image (cont) before giving a stimulus
  • FIG. 23 (B) shows an image while giving a stimulus with DNP-HSA and EGF 30 minutes later.
  • the arrow in a figure shows five cells selected at random among each cell.
  • a triangular arrowhead indicates RBL-2H3 cells
  • a square shape indicates A431 cells.
  • a is a graph showing changes in these five RBL-2H3 cells
  • b is a graph showing changes in five A431 cells.
  • FIG. 22A it can be seen that even in the same type of cells, there is a difference in the temporal change of the intensity of the reflected light, but a and b are clearly different graph patterns.
  • a represents the average value of changes in RBL-2H3 cells
  • b represents the average value of changes in A431 cells
  • c represents the average value of RBL-2H3 cells and A431 cells
  • d represents The average value in the whole image is shown.
  • the graph of a RBL-2H3 cell average
  • the intensity of the reflected light remains increased over time.
  • the graph of b (A431 cell average) is lower than that before stimulation after a certain amount of time has passed. Therefore, the change of the graph of d which is the average value of the whole image has become weak.
  • Example 2 In Example 2, the change in resonance angle over time when EGF stimulation is performed on CHO (Chinese Hamster Ovary) cells in which wild-type human EGFR is forcibly expressed will be described in detail.
  • EGFR is well known to exhibit important functions in the proliferation of various cells in the body and the development / formation of organs, and is also known to be overexpressed in various cancer cells.
  • an empty vector pCMV-Tag4 (manufactured by Stratagene) and a vector in which wild-type human EGFR gene is incorporated into pCMV-Tag4 are cultivated in Ham's F-12 containing 10% fetal calf serum (FCS, Fetal calf serum). Genes were introduced into CHO cells maintained in solution using electroporation. The wild-type human EGFR gene incorporated into pCMV-Tag4 was amplified by PCR using the forward primer and reverse primer of the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing. After gene introduction, drug selection was performed in the presence of 10 mg / ml G418.
  • a CHO cell line introduced with an empty vector and a CHO cell line stably expressing wild-type human EGFR at a high level are dropped on the sensor chip so as to be 1.2 ⁇ 10 4 cells / 60 ⁇ l, and cultured overnight. did.
  • the cells on the sensor chip were perfused with Hepes buffer, stimulated with 10 ng / ml recombinant human EGF (hEGF, manufactured by R & D) for 10 minutes, and changes in the resonance angle over time after stimulation were measured using SPR- It measured using CELLIA (Mortex company make).
  • hEGF human EGF
  • CELLIA CELLIA
  • FIG. 24 is a graph showing changes in resonance angle over time by EGF stimulation in CHO cells in which wild-type human EGFR according to Example 2 was forcibly expressed.
  • the vertical axis indicates the change in resonance angle (Change of AR (Angle of Resonance) (degree)) by the SPR device, and the horizontal axis indicates the time (Time (sec)) from the EGF stimulation.
  • Change of AR Angle of Resonance
  • time Time
  • the wild-type human EGFR-expressing CHO cell line As shown in FIG. 24, when compared with the CHO cell line (mock) into which an empty vector was introduced, the wild-type human EGFR-expressing CHO cell line (EGFR-WT) changes with time in different resonance angles with respect to EGF stimulation. It turns out that it shows a pattern. Specifically, it was confirmed that the wild-type human EGFR-expressing CHO cell line exhibits a typical three-phase resonance angle change pattern over time (a fluctuation pattern that rises from the initial level and rises again after rising). It was.
  • Example 3 In this Example 3, an example relating to EGF stimulation in a CHO cell line expressing human EGFR with a mutated ATP binding domain will be described in detail.
  • EGFR-K721M Choen, WS, Lazar, CS, Poenie, M., Tsien, RY, Gill, GN, Rosenfeld. MG, 1987, Nature 28 328 (6133), 820-823. See)
  • Genes were generated using QuickChange® Site® Directed® Mutagenesis® Kit (Stratagene) and amplified by PCR.
  • the base sequences of the forward primer and reverse primer used in the PCR are shown in SEQ ID NO: 3 and SEQ ID NO: 4 in the sequence listing.
  • the prepared ATP-binding domain mutant EGFR gene was introduced into CHO cells by electroporation in the same manner as described in Example 1, and drug selection was performed to obtain a stable expression cell line.
  • the wild-type human EGFR-expressing CHO cell line of Example 2 and the ATP-binding domain mutant EGFR-expressing CHO cell line described above were seeded in a 6-well plate at a concentration of 0.2 ⁇ 10 6 / ml. Cultured overnight in Ham's F-12 culture medium containing 1% fetal bovine serum. Thereafter, the sample was prepared by stimulation with 10 ng / ml hEGF (R & D) for 5 minutes, treatment with a cell lysate containing 1% NP-40, and separation by SDS-PAGE (SDS-polyacrylamide gel electrophoresis). .
  • FIG. 25 is a diagram showing the results of Western blotting using anti-phosphorylation specific EGFR antibody, anti-EGFR antibody and anti-FLAG antibody in CHO cells expressing human EGFR with a mutated ATP binding domain according to Example 2. is there.
  • ATP-binding domain mutant EGFR-expressing CHO cells (K721M) were able to confirm the expression of EGFR protein at an equivalent level or higher when compared to wild-type human EGFR-expressing CHO cells (WT). Tyrosine phosphorylation hardly occurred even after stimulation.
  • FIG. 26 is a diagram showing measurement results of the expression level of EGFR on the surface of CHO cells in which human EGFR having a mutated ATP binding domain according to Example 3 was expressed.
  • the black-colored ones indicate isotype control antibodies (Control), and the solid-line ones indicate the EGFR cell surface expression level (EGFR-WT) in wild-type human EGFR-expressing CHO cells.
  • the dotted line indicates the EGFR cell surface expression level (EGFR-K721M) in the ATP-binding domain mutant EGFR-expressing CHO cells.
  • the cell surface expression level was equivalent to the cell surface expression level of wild-type human EGFR-expressing CHO cells.
  • the present inventors seeded the aforementioned ATP-binding domain mutant EGFR-expressing CHO cell line and wild-type human EGFR-expressing CHO cell line on a sensor chip, and the next day, 10 ng / ml hEGF (manufactured by R & D) was used. The sample was stimulated for 10 minutes, and the change in resonance angle over time was measured with SPR-CELLIA (Mortex).
  • FIG. 27 is a diagram showing changes in resonance angle over time by EGF stimulation in CHO cells in which human EGFR with a mutated ATP binding domain according to Example 2 was expressed.
  • the wild-type human EGFR-expressing CHO cell line (EGFR-WT) showed a typical three-phase change in resonance angle similar to the result of Example 1.
  • the resonance angle was hardly changed by stimulation with EGF.
  • Example 4 In Example 4, examples relating to changes in resonance angle with respect to EGF stimulation of various cancer cell lines will be described in detail.
  • gastric cancer cell lines MKN-1, MKN-7 and MK28
  • prostate cancer cell lines DU145 and LNCap
  • FIG. 28 is a graph showing changes in the resonance angle over time by EGF stimulation in the gastric cancer cell line MKN-1 according to Example 4.
  • FIG. 29 is a graph showing changes in resonance angle over time by EGF stimulation in gastric cancer cell line MKN-7 according to Example 4.
  • FIG. 30 is a diagram showing changes in the resonance angle over time by EGF stimulation in the gastric cancer cell line MK28 according to Example 4.
  • FIG. 31 is a graph showing changes in resonance angle over time by EGF stimulation in prostate cancer cell line DU145 according to Example 4.
  • FIG. FIG. 32 is a diagram showing changes in resonance angle over time by EGF stimulation in the prostate cancer cell line LNCap according to Example 4.
  • the biphasic change pattern of resonance angle over time (1) rises and (2) falls by EGF stimulation. A fluctuation pattern was observed.
  • FIGS. 31 and 32 in the prostate cancer cell lines (DU145 and LNCap), the change pattern of the uniphasic resonance angle over time by stimulation with EGF (FIG. 31 shows the change pattern of (1) rise only) In FIG. 32, (2) fluctuation pattern of only falling) was observed.
  • the prostate cancer cell line LNCap did not contain a phase with increasing resonance angle, unlike other cell lines.
  • Example 4 From the results of this Example 4 and the typical three-phase resonance angle change pattern of the wild-type human EGFR-expressing CHO cell line described in Example 1 and Example 2, cancers against normal cells
  • the characteristics of the change pattern of the resonance angle of the cell over time that is, the change pattern of the dielectric constant over time, as well as the type of cancer cell line as well as the cell (for example, monophasic, biphasic, triphasic)
  • the comprehensive state of living cells can be diagnosed and analyzed by distinguishing by other atypical patterns or the like.
  • Example 5 an example relating to the relationship between the human hemangiosarcoma cell line and the change in resonance angle with respect to EGFR and EGF stimulation will be described in detail.
  • human vascular sarcoma cells which are human soft tissue sarcoma cells, and EGFR
  • EJSO European Journal of Surgical Oncology
  • a human hemangiosarcoma cell line (ISO-HAS) is suspended in DMEM (Dulbecco's Modified Eagle Medium) containing 15% FCS, seeded on a 6-well plate at a concentration of 0.2 ⁇ 10 6 / ml, and overnight. Culture was performed. Thereafter, stimulation with hEGF (final concentration of 100 ng / ml, using R & D) for 0 to 15 minutes, treatment with cell lysate, anti-phosphorylation specific EGFR antibody (Cell signaling) and anti-EGFR antibody ( Western blotting was performed in the same manner as described in Example 3 and Example 4 using Cell Signaling).
  • the ISO-HAS cells were seeded on a sensor chip, stimulated with hEGF (10 ng / ml, manufactured by R & D) on the next day, and the resonance angle over time was the same as in Examples 3 and 4 described above.
  • SPR-CELLIA SPR-CELLIA (Mortex).
  • FIG. 33 (A) shows the results of western blotting of the human hemangiosarcoma cell line according to Example 5 using anti-phosphorylation-specific EGFR antibody and anti-EGFR antibody.
  • FIG. 33 (B) is a graph showing changes in the resonance angle over time by EGF stimulation in the human hemangiosarcoma cell line according to Example 5.
  • the upper graph shows the case where EGF stimulation is performed on ISO-HAS cells (EGF) and the case where EGF stimulation is not performed on ISO-HAS cells.
  • the change in resonance angle over time due to (Control) is shown, and the lower graph shows the difference in change in resonance angle over time.
  • the human hemangiosarcoma cell line (ISO-HAS) according to Example 5 expresses EGFR and phosphorylates EGFR upon stimulation with EGF at a concentration of 100 ng / ml.
  • EGF EGF at a concentration of 100 ng / ml.
  • FIG. 33 (B) in the human hemangiosarcoma cell line (ISO-HAS) according to Example 5, an atypical and temporal change pattern of the resonance angle ((1) rising by EGF stimulation) (2) Random (atypical fluctuation patterns) that fell incompletely and fluctuated up and down were observed.
  • a sample containing living cells can be used as an object of analysis of the present invention as it is.
  • the possibility that the contained cells can be evaluated and analyzed is also suggested. Specifically, for example, it is suggested that by collecting a body fluid such as blood from a subject in advance and directly analyzing it with an SPR device, it may lead to a technique that can evaluate whether or not any tumor / cancer cell is included.
  • a cell activity analyzing apparatus and a cell activity analyzing method capable of analyzing the activity of external stimuli for individual living cells.
  • these cell activity analyzers and cell activity analysis methods it is possible to evaluate and analyze the properties of individual living cells and / or a part of each living cell, or to isolate specific types of living cells. it can.
  • live cells with a specific activity are screened, specific biomolecules related to cell activity (external stimuli) are screened, and further, in which part of live cells the activation occurs mainly Can be used for research on various cells.
  • a medical diagnostic apparatus for example, a high-throughput allergy diagnostic apparatus.
  • the present inventors have clarified that normal cells and cancer cells exhibit characteristics of temporal change patterns of different resonance angles with respect to EGF stimulation using a surface plasmon resonance device (SPR device). Furthermore, it was also shown that different cancer and cancer cell line types exhibit different resonance angle characteristics over time for EGF stimulation. In addition, it was confirmed that the human hemangiosarcoma cell line also has a characteristic of a temporal change pattern of different resonance angles with respect to EGF stimulation.
  • SPR device surface plasmon resonance device
  • the state of cells can be comprehensively and directly analyzed at the level of individual living cells.
  • it is a technology that can analyze cell status, cancer cells, types of cancer and types of cancer cell lines without fixing cells or tissues and evaluating malignant tumors as a potential possibility. High value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The disclosed cell activity analysis device (100) is provided with: a metal thin film (5) contacting live cells (C1, C2); a prism (3) having an interface (F) substantially in contact with the metal thin film (5); a light source (1) which irradiates the prism (3) with parallel beams of polarized light (P) which then irradiate the interface (F) at a prescribed angle of incidence which induces a surface plasmon resonance phenomenon; an objective lens (6) which enlarges by a prescribed ratio an intensity image corresponding to the two-dimensional intensity distribution of the light reflected from said interface (F); an imaging unit (7) which images the enlarged intensity image; an image acquisition unit (21) which samples the image data of the intensity image; a display unit (23) and an operation unit (24) for selecting for measurement the image of at least one part of the live cells (C1, C2) from the image data of the intensity image; and an image processing unit (22) which extracts brightness values of the measurement object, and, on the basis of changes of the brightness value of the measurement object before and after application of an external stimulus to the live cells (C1, C2), calculates information relating to the change in intensity of the light reflected from the measurement object.

Description

細胞活性分析装置及び細胞活性分析方法、並びに細胞分析方法Cell activity analyzer, cell activity analysis method, and cell analysis method
 本発明は、生細胞の反応活性を分析する細胞活性分析装置及び細胞活性分析方法、並びに細胞分析方法に関する。 The present invention relates to a cell activity analyzer, a cell activity analysis method, and a cell analysis method for analyzing the reaction activity of living cells.
 近年、表面プラズモン共鳴現象を応用し、共鳴角度変化をリアルタイムでとらえることにより、タンパク質等の生体分子間の反応・結合量の測定および速度論解析をすることができる表面プラズモン共鳴(SPR(surface plasmon resonance))法の原理が様々な研究及び検査等で利用されている。 In recent years, surface plasmon resonance (SPR (surface plasmon resonance) that can measure the reaction and the amount of binding between biomolecules such as proteins and perform kinetic analysis by applying the surface plasmon resonance phenomenon and capturing the change in resonance angle in real time. resonance)) The principle of the method is used in various research and inspections.
 表面プラズモン共鳴とは、全反射条件で光が金属薄膜に入射するときに発生するエバネッセント光と、金属薄膜と測定対象との境界面を伝搬している自由電子の粗密波である表面プラズモンとが共鳴する現象である。表面プラズモン共鳴が発生すると、入射した光のエネルギーの少なくとも一部が表面プラズモン共鳴に移行し全反射した光の強度が低下する。光の強度が最も低下する入射角を共鳴角(Angle of Resonance)という。この共鳴角は、測定対象の誘電率の変化に応じて変化する。表面プラズモン共鳴(SPR)装置では、この共鳴角の変化を測定することにより、測定対象の誘電率の変化を観察することができる。 Surface plasmon resonance consists of evanescent light that is generated when light is incident on a metal thin film under total reflection conditions, and surface plasmon that is a close-packed wave of free electrons propagating on the interface between the metal thin film and the object to be measured. It is a phenomenon that resonates. When surface plasmon resonance occurs, at least part of the energy of the incident light is transferred to surface plasmon resonance and the intensity of the totally reflected light is reduced. The incident angle at which the light intensity decreases most is called the resonance angle. This resonance angle changes according to the change in the dielectric constant of the measurement object. In the surface plasmon resonance (SPR) apparatus, the change in the dielectric constant of the measurement object can be observed by measuring the change in the resonance angle.
 表面プラズモン共鳴法の原理を用いて測定される対象物には、例えば酵素、抗体、DNA又は細胞等が挙げられる。このうち、細胞を測定対象物としたもので、表面プラズモン共鳴装置を用いて生細胞に対する外部刺激の活性を評価する方法が提案されている(特許文献1参照)。この方法では、表面プラズモン共鳴装置を用い、生細胞が外部刺激に曝露された際に観察される1次シグナルの後に出現する2次シグナルを指標として、生細胞に対する外部刺激の活性を評価している。シグナルとは、生細胞を対象とする通常のSPR測定と同様にして測定された誘電率、屈折率又は共鳴角(以下、適宜、誘電率、屈折率、共鳴角のいずれかにより記述する)の変化のことを示す。 Examples of the object measured using the principle of the surface plasmon resonance method include enzymes, antibodies, DNA, cells, and the like. Among these, a method has been proposed in which a cell is an object to be measured, and an external stimulation activity for a living cell is evaluated using a surface plasmon resonance apparatus (see Patent Document 1). In this method, a surface plasmon resonance apparatus is used to evaluate the activity of external stimuli on live cells using as an index the secondary signal that appears after the primary signal observed when live cells are exposed to external stimuli. Yes. The signal is a dielectric constant, refractive index, or resonance angle measured in the same manner as a normal SPR measurement for living cells (hereinafter, appropriately described by any one of dielectric constant, refractive index, and resonance angle). Indicates a change.
 さらに細胞を測定対象物としたものとして、特許文献2には、プレート上に固定された細胞集団に含まれる個数を簡便に算出する方法およびシステムが記載されている。例えば、当該方法では、細胞を分析する方法であって、表面プラズモン共鳴イメージングを用いてプレート上に固定された細胞に起因する反射光強度を測定する工程、及び、該反射光強度から、該細胞に関するパラメータを算出する工程を包含する。具体的には、細胞数、細胞の接着面積または細胞の大きさといった細胞に関するパラメータを分析する方法が記載されている。 Furthermore, as a measurement object of cells, Patent Document 2 describes a method and system for simply calculating the number contained in a cell population fixed on a plate. For example, the method is a method for analyzing a cell, the step of measuring reflected light intensity caused by a cell fixed on a plate using surface plasmon resonance imaging, and the reflected light intensity from the cell A step of calculating a parameter relating to. Specifically, a method for analyzing a cell-related parameter such as the number of cells, cell adhesion area, or cell size is described.
 この他にも、非特許文献1に、表面プラズモン共鳴装置を用いて細胞の付着密度等の細胞に関するパラメータを分析する方法が記載されている。 In addition to this, Non-Patent Document 1 describes a method for analyzing parameters relating to cells such as cell adhesion density using a surface plasmon resonance apparatus.
特許第3795312号公報Japanese Patent No. 3795112 特開2004-271337号公報JP 2004-271337 A
 しかしながら、上記特許文献1に記載された方法では、リアルタイムで複数の生細胞に対する外部刺激の活性の平均値を評価することはできるものの、個々の生細胞に対する外部刺激の活性を分析、評価するのは困難である。 However, although the method described in Patent Document 1 can evaluate the average value of the activity of external stimuli on a plurality of living cells in real time, it analyzes and evaluates the activity of external stimuli on individual living cells. It is difficult.
 また、特許文献2に記載されている細胞を分析する方法及び装置、並びに非特許文献1に記載された方法は、上述したとおり、細胞数、細胞の接着面積または細胞の大きさといった細胞に関するパラメータの算出及び分析を目的とした方法及び装置(システム)である。そのため、このような方法及び装置(システム)を利用した場合には、生細胞に対する上記以外のパラメータを含む刺激応答を直接的に分析、評価することができないので、感度良く当該活性を分析、評価することは難しい。 In addition, as described above, the method and apparatus for analyzing cells described in Patent Document 2 and the method described in Non-Patent Document 1 are parameters related to cells such as the number of cells, the adhesion area of cells, or the size of cells. It is the method and apparatus (system) aiming at calculation and analysis of. Therefore, when such a method and apparatus (system) is used, it is impossible to directly analyze and evaluate stimulus responses including parameters other than those described above for living cells. Difficult to do.
 本発明は、上記実情に鑑みてなされたものであり、個々の生細胞に対する外部刺激の活性を分析することができる細胞活性分析装置及び細胞活性分析方法、並びに細胞分析方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell activity analyzer, a cell activity analysis method, and a cell analysis method capable of analyzing the activity of external stimuli for individual living cells. And
 上記目的を達成するために、本発明の第1の態様に係る細胞活性分析装置は、
 表面プラズモン共鳴現象を利用して生細胞に対する外部刺激の活性を分析する細胞活性分析装置であって、
 一方の面で前記生細胞に接する金属薄膜と、
 前記金属薄膜の他方の面に実質的に接する界面を有する屈折光学素子と、
 P偏光の平行光束を、前記屈折光学素子に入射させ、前記表面プラズモン共鳴現象を発生させる所定の入射角で前記界面に入射させる入射手段と、
 前記界面に入射した前記平行光束の反射光の2次元強度分布に相当する強度像を所定の倍率に拡大する拡大光学系と、
 前記拡大光学系で拡大された前記強度像を撮像する撮像手段と、
 前記撮像手段で撮像された前記強度像の画像データをサンプリングする画像取得手段と、
 前記画像取得手段によりサンプリングされた前記強度像の画像データから、前記生細胞の少なくとも一部の像を計測対象として選択する選択手段と、
 前記選択手段により選択された前記計測対象の輝度値を抽出し、前記生細胞に対して前記外部刺激を与えた前後での前記計測対象の輝度値の変化に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する算出手段と、
 を備える。
In order to achieve the above object, a cell activity analyzer according to the first aspect of the present invention comprises:
A cell activity analyzer that analyzes the activity of external stimuli on living cells using the surface plasmon resonance phenomenon,
A metal thin film in contact with the living cell on one side;
A refractive optical element having an interface substantially in contact with the other surface of the metal thin film;
Incident means for causing a P-polarized parallel light beam to enter the refractive optical element and to enter the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon;
A magnifying optical system for enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification;
Imaging means for capturing the intensity image magnified by the magnification optical system;
Image acquisition means for sampling image data of the intensity image captured by the imaging means;
Selecting means for selecting at least a partial image of the living cells as a measurement target from the image data of the intensity image sampled by the image acquisition means;
The brightness value of the measurement target selected by the selection means is extracted, and the reflected light of the measurement target is based on a change in the brightness value of the measurement target before and after the external stimulus is applied to the living cells. A calculating means for calculating information on a change in intensity of
Is provided.
 好ましくは、前記選択手段は、前記計測対象を複数指定可能であり、
 前記算出手段は、前記強度像の画像データから、選択された複数の前記計測対象各々の輝度値を抽出し、前記計測対象の反射光の強度の変化に関する情報を、前記計測対象毎に算出する。
Preferably, the selection means can specify a plurality of measurement objects,
The calculation means extracts a luminance value of each of the plurality of selected measurement objects from the image data of the intensity image, and calculates information regarding a change in intensity of reflected light of the measurement object for each measurement object. .
 さらに好ましくは、前記選択手段は、同一の前記生細胞の像における複数の異なる箇所を前記計測対象として選択する。 More preferably, the selection means selects a plurality of different locations in the same live cell image as the measurement target.
 また、好ましくは、前記算出手段は、前記生細胞に対して前記外部刺激を与える前の前記計測対象の輝度値と、前記外部刺激を与えた後の前記計測対象の輝度値との差分に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する。 Preferably, the calculation means is based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. Then, information on the change in the intensity of the reflected light of the measurement target is calculated.
 好ましくは、前記算出手段は、前記強度像の画像データにおける前記生細胞が存在していない箇所の輝度値の成分に基づいて、前記計測対象の反射光の強度の変化に関する情報を補正する。 Preferably, the calculation unit corrects information related to a change in intensity of reflected light of the measurement target based on a luminance value component of a portion where the living cells do not exist in the image data of the intensity image.
 さらに好ましくは、前記所定の入射角は、前記金属薄膜に、前記生細胞が接していないときの共鳴角に等しい。 More preferably, the predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film.
 さらに好ましくは、前記算出手段により算出された前記計測対象の反射光の強度の変化に関する情報に基づいて前記生細胞を分析する分析手段をさらに備える。 More preferably, it further comprises analysis means for analyzing the living cells based on information on a change in intensity of reflected light of the measurement target calculated by the calculation means.
 さらに好ましくは、前記分析手段は、測定される前記生細胞の誘電率の経時的変化パターンの特性を抽出する。 More preferably, the analysis means extracts a characteristic of a change pattern with time of the dielectric constant of the living cell to be measured.
 さらに好ましくは、前記分析手段は、前記生細胞の誘電率の経時的変化パターンが、一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれに該当するかを判定する。 More preferably, the analysis means determines whether the time-dependent change pattern of the dielectric constant of the living cell corresponds to a monophasic, biphasic, triphasic or other atypical pattern.
 また、好ましくは、前記金属薄膜に接する前記生細胞を、前記一方の面側から観察する顕微鏡をさらに備える。 Also preferably, a microscope is further provided for observing the living cells in contact with the metal thin film from the one surface side.
 好ましくは、前記選択手段は、
 前記画像取得手段によってサンプリングされた前記強度像の画像データに基づく画像を表示する表示手段と、
 操作入力により、前記画像取得手段によってサンプリングされた前記強度像の画像データの中から前記生細胞の少なくとも一部の像を、選択された前記計測対象として指定する操作手段と、
 をさらに備える。
Preferably, the selection means includes
Display means for displaying an image based on the image data of the intensity image sampled by the image acquisition means;
An operation means for designating at least a partial image of the living cell as the selected measurement object from image data of the intensity image sampled by the image acquisition means by an operation input;
Is further provided.
 また、好ましくは、前記金属薄膜は、前記生細胞を含む生細胞群を、離隔して複数配置可能である。 Preferably, a plurality of the thin metal films can be arranged by separating a group of living cells including the living cells.
 さらに好ましくは、複数の前記生細胞群各々に異なる前記外部刺激を与える外部刺激付与手段をさらに備える。 More preferably, it further includes external stimulus applying means for applying different external stimuli to each of the plurality of living cell groups.
 本発明の第2の態様に係る細胞活性分析方法は、
 表面プラズモン共鳴現象を利用して生細胞に対する外部刺激の活性を分析する細胞活性分析方法であって、
 金属薄膜の一方の面に接するよう前記生細胞を配置する配置工程と、
 P偏光の平行光束を、前記金属薄膜の他方の面に実質的に接する界面を有する屈折光学素子に入射させ、前記表面プラズモン共鳴現象を発生させる所定の入射角で前記界面に入射させる入射工程と、
 前記界面に入射した前記平行光束の反射光の2次元強度分布に相当する強度像を、拡大光学系によって所定の倍率に拡大する拡大工程と、
 前記拡大光学系で拡大された前記強度像を撮像する撮像工程と、
 前記撮像工程において撮像された前記強度像の画像データをサンプリングする画像取得工程と、
 前記画像取得工程によりサンプリングされた前記強度像の画像データから、前記生細胞の少なくとも一部の像を計測対象として選択する選択工程と、
 前記選択工程により選択された前記計測対象の輝度値を抽出し、前記生細胞に対して前記外部刺激を与えた前後での前記計測対象の輝度値の変化に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する算出工程と、
 を含み、
 前記算出工程により算出された前記計測対象の反射光の強度の変化に関する情報を指標として、前記生細胞の少なくとも一部に対する前記外部刺激の活性を分析する。
The cell activity analysis method according to the second aspect of the present invention comprises:
A cell activity analysis method for analyzing the activity of external stimuli on living cells using surface plasmon resonance phenomenon,
An arrangement step of arranging the living cells so as to contact one surface of the metal thin film;
An incident step in which a P-polarized parallel light beam is incident on a refractive optical element having an interface substantially in contact with the other surface of the metal thin film, and is incident on the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon; ,
An enlargement step of enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification by an enlargement optical system;
An imaging step of capturing the intensity image magnified by the magnification optical system;
An image acquisition step of sampling image data of the intensity image imaged in the imaging step;
From the image data of the intensity image sampled by the image acquisition step, a selection step of selecting at least a partial image of the living cell as a measurement target;
The brightness value of the measurement target selected by the selection step is extracted, and the reflected light of the measurement target is based on a change in the brightness value of the measurement target before and after the external stimulus is applied to the living cells. A calculation step for calculating information on a change in intensity of the
Including
The activity of the external stimulus with respect to at least a part of the living cells is analyzed using information on the change in the intensity of reflected light of the measurement target calculated in the calculation step as an index.
 好ましくは、前記選択工程では、前記計測対象を複数指定可能であり、
 前記算出工程では、前記強度像の画像データから、選択された複数の前記計測対象各々の輝度値を抽出し、前記計測対象の反射光の強度の変化に関する情報を、前記計測対象毎に算出する。
Preferably, in the selection step, a plurality of measurement objects can be specified.
In the calculation step, a luminance value of each of the plurality of selected measurement objects is extracted from the image data of the intensity image, and information regarding a change in intensity of reflected light of the measurement object is calculated for each measurement object. .
 さらに好ましくは、前記選択工程では、同一の前記生細胞の像における複数の異なる箇所を前記計測対象として選択する。 More preferably, in the selection step, a plurality of different locations in the same live cell image are selected as the measurement target.
 また、好ましくは、前記算出工程では、前記生細胞に対して前記外部刺激を与える前の前記計測対象の輝度値と、前記外部刺激を与えた後の前記計測対象の輝度値との差分に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する。 Preferably, in the calculation step, based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. Then, information on the change in the intensity of the reflected light of the measurement target is calculated.
 好ましくは、前記算出工程では、前記強度像の画像データにおける前記生細胞が存在していない箇所の輝度値の成分に基づいて、前記計測対象の反射光の強度の変化に関する情報を補正する。 Preferably, in the calculation step, information on a change in intensity of reflected light of the measurement target is corrected based on a luminance value component of a portion where the living cells do not exist in the image data of the intensity image.
 また、好ましくは、前記所定の入射角は、前記金属薄膜に、前記生細胞が接していないときの共鳴角に等しい。 Also preferably, the predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film.
 最も好ましくは、前記選択工程は、
 前記画像取得工程においてサンプリングされた前記強度像の画像データに基づく画像を表示する表示工程と、
 操作入力により、前記画像取得工程においてサンプリングされた前記強度像の画像データの中から前記生細胞の少なくとも一部の像を、選択された前記計測対象として指定する操作工程と、
 をさらに含む。
Most preferably, the selection step comprises
A display step of displaying an image based on the image data of the intensity image sampled in the image acquisition step;
By an operation input, an operation step of designating at least a part of the live cell image as the selected measurement object from the image data of the intensity image sampled in the image acquisition step;
Further included.
 また、好ましくは、前記配置工程では、前記生細胞を含む生細胞群を離隔して複数配置する。 Preferably, in the arrangement step, a plurality of living cell groups including the living cells are arranged apart from each other.
 さらに好ましくは、複数の前記生細胞群各々に異なる前記外部刺激を与える。 More preferably, a different external stimulus is applied to each of the plurality of living cell groups.
 本発明の第3の態様に係る細胞分析方法は、
 本発明の細胞活性分析方法を用いた分析により得られた生細胞に係る反射光の強度の変化に関する情報に基づいて前記生細胞を分析する。
The cell analysis method according to the third aspect of the present invention comprises:
The living cells are analyzed based on information relating to changes in the intensity of reflected light of the living cells obtained by analysis using the cell activity analysis method of the present invention.
 また、好ましくは、前記計測対象の反射光の強度の変化に関する情報に基づいて、前記生細胞の誘電率の経時的変化パターンの特性を抽出することにより、前記生細胞を分析する。 Preferably, the living cells are analyzed by extracting characteristics of a change pattern of the dielectric constant of the living cells over time based on information on a change in intensity of reflected light of the measurement target.
 さらに好ましくは、前記生細胞の誘電率の経時的変化パターンが、一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれに該当するかを判定する。 More preferably, it is determined whether the time-dependent change pattern of the dielectric constant of the living cells corresponds to a monophasic, biphasic, triphasic or other atypical pattern.
 さらに好ましくは、がん細胞が分析対象である。 More preferably, cancer cells are the subject of analysis.
 さらに好ましくは、癌細胞が分析対象である。 More preferably, cancer cells are the subject of analysis.
 さらに好ましくは、前記癌細胞は、胃癌細胞、前立腺癌細胞または血管肉腫細胞のいずれかである。 More preferably, the cancer cell is any of a stomach cancer cell, a prostate cancer cell, or an angiosarcoma cell.
 さらに好ましくは、サイトカインによる前記外部刺激に暴露した前記生細胞を分析する。 More preferably, the living cells exposed to the external stimulus by cytokines are analyzed.
 さらに好ましくは、前記生細胞をEGFによる前記外部刺激に暴露した前記生細胞を分析する。 More preferably, the living cells exposed to the external stimulus by EGF are analyzed.
 本発明によれば、生細胞が接する金属薄膜に実質的に接する界面に入射するP偏光の平行光束の反射強度像の画像データがサンプリングにより取得される。そして、取得された画像データから、生細胞の少なくとも一部の像が計測対象として選択され、選択された像の輝度の変化に基づいて計測対象の反射光の強度の変化に関する情報が算出される。計測対象となる生細胞は誘電体であり、その誘電率は外部刺激に対する反応により変化する。その結果、表面プラズモン共鳴現象の共鳴角が変化し、そこで、反射した反射光の強度が変化する。したがって、算出された反射光の強度の変化に関する情報を算出すれば、その情報に基づいて、その反射光に係る個々の生細胞に対する外部刺激の活性を分析することができる。本発明によれば、個々の生細胞及び/又は個々の生細胞内の一部分の性質等を評価・解析したり、特定の種類の生細胞を単離したりすることができるので、生細胞ごとに反応が異なることを検出することが可能になり、個々の細胞を単離せずに分析することが可能になり、個々の細胞内での個々の場所ごとの分析が可能となる。その結果、個々の生細胞ごとの活性の挙動を検出することが可能になる。 According to the present invention, the image data of the reflection intensity image of the P-polarized parallel light beam incident on the interface substantially in contact with the metal thin film with which the living cells are in contact is acquired by sampling. Then, from the acquired image data, at least a part of the image of the living cell is selected as the measurement target, and information on the change in the intensity of the reflected light of the measurement target is calculated based on the change in the luminance of the selected image. . A living cell to be measured is a dielectric, and its dielectric constant changes depending on a response to an external stimulus. As a result, the resonance angle of the surface plasmon resonance phenomenon changes, and the intensity of the reflected reflected light changes there. Therefore, if the information on the calculated change in the intensity of the reflected light is calculated, the activity of the external stimulus for each living cell related to the reflected light can be analyzed based on the information. According to the present invention, it is possible to evaluate and analyze the properties of individual living cells and / or a part of each living cell, or to isolate specific types of living cells. It becomes possible to detect that the reaction is different, and it becomes possible to analyze individual cells without isolation, and to analyze each individual place in each individual cell. As a result, it is possible to detect the behavior of activity for each individual living cell.
本発明の実施形態に係る細胞活性分析装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the cell activity analyzer which concerns on embodiment of this invention. 図1の細胞活性分析装置における反射光の強度の入射角度依存性の一例を示すグラフである。It is a graph which shows an example of the incident angle dependence of the intensity | strength of the reflected light in the cell activity analyzer of FIG. 図3(A)乃至図3(H)は、入射角を1°ずつ変えたときに撮像された反射強度像の画像の一例を示す図である。FIGS. 3A to 3H are diagrams illustrating an example of an image of a reflection intensity image captured when the incident angle is changed by 1 °. 図4(A)乃至図4(C)は、生細胞(RBL-2H3細胞)を刺激しない場合の反射強度像の画像の時間変化の一例を示す図である。FIGS. 4A to 4C are diagrams illustrating an example of temporal changes in the image of the reflection intensity image when the living cells (RBL-2H3 cells) are not stimulated. 図5(A)乃至図5(C)は、生細胞(RBL-2H3細胞)を刺激した場合の反射強度像の画像の時間変化の一例を示す図である。FIG. 5A to FIG. 5C are diagrams showing an example of temporal changes in the image of the reflection intensity image when a living cell (RBL-2H3 cell) is stimulated. 図6(A)は、刺激されていない計測対象の反射光の強度の時間変化の一例を示すグラフである。図6(B)は、生細胞(RBL-2H3細胞)を刺激された計測対象の反射光の強度の時間変化の一例を示すグラフである。FIG. 6A is a graph illustrating an example of a temporal change in the intensity of reflected light of a measurement target that is not stimulated. FIG. 6B is a graph showing an example of a temporal change in the intensity of reflected light of a measurement target stimulated with living cells (RBL-2H3 cells). 図1の画像処理部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the image processing part of FIG. 反射光の強度に含まれる各種成分を説明するための図である。It is a figure for demonstrating the various components contained in the intensity | strength of reflected light. 図9(A)乃至図9(C)は、生細胞(RBL-2H3細胞)の異なる部分における反射光の強度の変化の一例を示す図である。FIGS. 9A to 9C are diagrams showing an example of changes in the intensity of reflected light in different parts of a living cell (RBL-2H3 cell). 細胞活性分析方法(被検体生細胞分析)の一例のフローチャートである。It is a flowchart of an example of a cell activity analysis method (analyte subject cell analysis). 金属薄膜の他の例を示す図である。It is a figure which shows the other example of a metal thin film. 図12(A)は、マルチウェルチャンバーが搭載された細胞活性分析装置の一部の斜視図であり、図12(B)は、図12(A)の細胞活性分析装置で撮像された画像の一例を示す図である。FIG. 12A is a perspective view of a part of a cell activity analyzer equipped with a multiwell chamber, and FIG. 12B shows an image captured by the cell activity analyzer of FIG. It is a figure which shows an example. 図13(A)はPAM212細胞、図13(B)はA431細胞を刺激した場合の反射強度像の画像の一例を示す図である。13A is a diagram showing an example of an image of a reflection intensity image when the PAM212 cell is stimulated and FIG. 13B is a diagram when the A431 cell is stimulated. 図14(A)はPAM212細胞、図14(B)はA431細胞を刺激した場合の反射光の強度の時間変化の一例を示すグラフである。FIG. 14A is a graph showing an example of temporal change in intensity of reflected light when PAM212 cells are stimulated and FIG. 14B is stimulated with A431 cells. 抗DNP-マウスIgEを結合したRBL-2H3細胞及び結合していないRBL-2H3細胞が配置されたセンサチップを示す図である。It is a figure which shows the sensor chip | tip with which the RBL-2H3 cell couple | bonded with the anti- DNP-mouse IgE and the RBL-2H3 cell which has not couple | bonded are arrange | positioned. 図15に示すセンサチップにおいて、DNP-HSA及びPMAで刺激した場合の反射光の強度の時間変化の一例を示すグラフである。16 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and PMA in the sensor chip shown in FIG. 図17(A)乃至図17(C)は、図15に示すセンサチップにおいて、DNP-HSA及びPMAで刺激した場合の反射強度像の画像の時間変化の一例を示す図である。FIGS. 17A to 17C are diagrams illustrating an example of a temporal change in the image of the reflection intensity image when the sensor chip illustrated in FIG. 15 is stimulated with DNP-HSA and PMA. 抗DNP-マウスIgEを結合したRBL-2H3細胞及びヒトIgE抗体を結合したRBL-3D4細胞が配置されたセンサチップを示す図である。FIG. 4 is a diagram showing a sensor chip on which RBL-2H3 cells bound with anti-DNP-mouse IgE and RBL-3D4 cells bound with a human IgE antibody are arranged. 図18に示すセンサチップにおいて、DNP-HSA及び抗ヒトIgE抗体で刺激した場合の反射光の強度の時間変化の一例を示すグラフである。FIG. 19 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and an anti-human IgE antibody in the sensor chip shown in FIG. 図20(A)乃至図20(C)は、図18に示すセンサチップにおいて、DNP-HSA及び抗ヒトIgEで刺激した場合の反射強度像の画像の時間変化の一例を示す図である。FIGS. 20A to 20C are diagrams illustrating an example of a temporal change in the image of the reflection intensity image when the sensor chip illustrated in FIG. 18 is stimulated with DNP-HSA and anti-human IgE. 抗DNP-マウスIgEを結合するRBL-2H3細胞及び、A431細胞が配置されたセンサチップを示す図である。It is a figure which shows the sensor chip | tip with which RBL-2H3 cell and A431 cell which couple | bond anti-DNP-mouse IgE are arrange | positioned. 図22(A)及び図22(B)は、図21に示すセンサチップにおいて、DNP-HSA及びEGFで刺激した場合の反射強度の時間変化の一例を示す図である。FIGS. 22A and 22B are diagrams showing an example of the temporal change in reflection intensity when the sensor chip shown in FIG. 21 is stimulated with DNP-HSA and EGF. 図23(A)及び図23(B)は、図21に示すセンサチップにおいて、DNP-HSA及びEGFで刺激した場合の反射強度像の画像の時間変化の一例を示す図である。FIG. 23A and FIG. 23B are diagrams illustrating an example of a temporal change in an image of a reflection intensity image when stimulated with DNP-HSA and EGF in the sensor chip illustrated in FIG. 野生型ヒトEGFRを強制発現させたCHO細胞での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the change of the resonance angle with time by EGF stimulation in the CHO cell which forcedly expressed wild type human EGFR. 実施例に係るATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞での、抗リン酸化特異的EGFR抗体、抗EGFR抗体および抗FLAG抗体によるウェスタンブロッティングの結果を示す図である。It is a figure which shows the result of the western blotting by the anti- phosphorylation specific EGFR antibody, the anti- EGFR antibody, and the anti- FLAG antibody in the CHO cell which expressed the human EGFR with which the ATP binding domain which concerns on the Example was mutated. 実施例に係るATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞表面での、EGFRの発現量の測定結果を示す図である。It is a figure which shows the measurement result of the expression level of EGFR in the CHO cell surface in which the human EGFR with which the ATP binding domain which concerns on an Example was expressed was expressed. ATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the change of the resonance angle with time by EGF stimulation in the CHO cell which expressed the human EGFR with which the ATP binding domain was mutated. 胃癌細胞株MKN-1での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the change of the resonance angle with time by EGF stimulation in the gastric cancer cell line MKN-1. 胃癌細胞株MKN-7での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the change of the resonance angle with time by EGF stimulation in the gastric cancer cell line MKN-7. 胃癌細胞株MK28での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the change of the resonance angle with time by EGF stimulation in the gastric cancer cell line MK28. 前立腺癌細胞株DU145での、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the time-dependent change of the resonance angle by EGF stimulation in the prostate cancer cell line DU145. 前立腺癌細胞株LNCapでの、EGF刺激による経時的な共鳴角の変化を示す図である。It is a figure which shows the time-dependent change of the resonance angle by EGF stimulation in the prostate cancer cell line LNCap. 図33(A)は、ヒト血管肉腫細胞株の抗リン酸化特異的EGFR抗体および抗EGFR抗体によるウェスタンブロッティングの結果を示す図である。図33(B)は、ヒト血管肉腫細胞株でのEGF刺激による経時的な共鳴角の変化を示す図である。FIG. 33 (A) is a diagram showing the results of Western blotting using an anti-phosphorylation-specific EGFR antibody and an anti-EGFR antibody of a human hemangiosarcoma cell line. FIG. 33 (B) is a graph showing changes in resonance angle over time by EGF stimulation in a human hemangiosarcoma cell line.
 この発明の実施形態について、図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施形態に係る細胞活性分析装置100は、表面プラズモン共鳴現象を利用して被検体対象としての生細胞が外部刺激に曝露された際に観察される活性を分析する装置である。なお、細胞活性分析装置100が設置される空間の温度は、不図示のサーモスタットにより、好ましくは37℃に調節されているがこの限りではない。 The cell activity analyzer 100 according to the embodiment of the present invention is an apparatus that analyzes the activity observed when a living cell as a subject is exposed to an external stimulus using a surface plasmon resonance phenomenon. The temperature of the space in which the cell activity analyzer 100 is installed is preferably adjusted to 37 ° C. by a thermostat (not shown), but is not limited thereto.
 まず、図1を参照して、本実施形態に係る細胞活性分析装置100の構成について説明する。図1に示すように、細胞活性分析装置100は、光源1と、偏光板2と、プリズム3と、ガラス基板4と、金属薄膜5と、対物レンズ6と、撮像部7と、コンピュータ8と、フローセル9と、液体供給部10と、顕微鏡11と、を備える。本実施形態では、光源1と、偏光板2と、プリズム3と、ガラス基板4と、金属薄膜5と、対物レンズ6と、撮像部7とで構成される光学系の光軸をAXとする。 First, the configuration of a cell activity analyzer 100 according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the cell activity analyzer 100 includes a light source 1, a polarizing plate 2, a prism 3, a glass substrate 4, a metal thin film 5, an objective lens 6, an imaging unit 7, and a computer 8. , A flow cell 9, a liquid supply unit 10, and a microscope 11. In the present embodiment, the optical axis of the optical system including the light source 1, the polarizing plate 2, the prism 3, the glass substrate 4, the metal thin film 5, the objective lens 6, and the imaging unit 7 is defined as AX. .
 光源1は、例えば半導体レーザである。この半導体レーザは、例えば波長が635nmのレーザ光を発振出力する。光源1から出力されたレーザ光は、不図示のコリメータレンズ等により平行光束に変換されて、偏光板2に入射する。なお、光源1としては、赤色、白色LED(Light Emitting Diode)等を用いてもよい。 The light source 1 is, for example, a semiconductor laser. This semiconductor laser oscillates and outputs laser light having a wavelength of 635 nm, for example. The laser beam output from the light source 1 is converted into a parallel light beam by a collimator lens (not shown) or the like and enters the polarizing plate 2. In addition, as the light source 1, you may use red, white LED (Light * Emitting * Diode), etc. FIG.
 偏光板2は、入射したレーザ光を直線偏光の平行光束に変換して出射する。この直線偏光は、後述するガラス基板4と金属薄膜5との間の界面Fに対してP偏光となる。この光源1と偏光板2とが、入射手段に対応する。 The polarizing plate 2 converts the incident laser light into a linearly polarized parallel light beam and emits it. This linearly polarized light becomes P polarized light with respect to an interface F between a glass substrate 4 and a metal thin film 5 described later. The light source 1 and the polarizing plate 2 correspond to the incident means.
 プリズム3としては、例えばS-LAL-10ガラスが採用される。このガラスの屈折率は1.72である。プリズム3は、偏光板2によりP偏光となった平行光束を入射する。 As the prism 3, for example, S-LAL-10 glass is employed. The refractive index of this glass is 1.72. The prism 3 receives the parallel light flux that has been changed to P-polarized light by the polarizing plate 2.
 ガラス基板4についても例えばS-LAL-10ガラスが採用される。すなわち、ガラス基板4とプリズム3とは、屈折率が同じである。両者は、屈折率1.72のマッチングオイルによって接着される。これにより、プリズム3に入射したレーザ光(P偏光)は、ガラス基板4に入射し、そのまま直進する。このプリズム3とガラス基板4とが、屈折光学素子に対応する。 For the glass substrate 4, for example, S-LAL-10 glass is adopted. That is, the glass substrate 4 and the prism 3 have the same refractive index. Both are bonded by a matching oil having a refractive index of 1.72. Thereby, the laser light (P-polarized light) incident on the prism 3 is incident on the glass substrate 4 and goes straight as it is. The prism 3 and the glass substrate 4 correspond to a refractive optical element.
 ガラス基板4上には金属薄膜5が蒸着されている。金属薄膜5は、例えば金膜である。この他、Ag、Cu、Zn、Al、Kなどの薄膜も、金属薄膜5として用いることができる。金属薄膜5の厚みは、例えば50nmである。金属薄膜5は、ガラス基板4上に例えば蒸着により成膜されている。ガラス基板4に入射したレーザ光は、ガラス基板4と金属薄膜5との間の界面Fに、全反射条件を満たし前記表面プラズモン共鳴現象を発生させる入射角θ=56°で入射する。仮に金属薄膜5が設置されていない状態であれば、このレーザ光は、界面Fで全反射する。  A metal thin film 5 is deposited on the glass substrate 4. The metal thin film 5 is, for example, a gold film. In addition, thin films such as Ag, Cu, Zn, Al, and K can also be used as the metal thin film 5. The thickness of the metal thin film 5 is, for example, 50 nm. The metal thin film 5 is formed on the glass substrate 4 by vapor deposition, for example. The laser light incident on the glass substrate 4 is incident on the interface F between the glass substrate 4 and the metal thin film 5 at an incident angle θ = 56 ° that satisfies the total reflection condition and generates the surface plasmon resonance phenomenon. If the metal thin film 5 is not installed, the laser light is totally reflected at the interface F. *
 界面Fで反射したレーザ光は、ガラス基板4及びプリズム3から出射して、対物レンズ6に入射する。対物レンズ6は、レーザ光を屈折させて出射する。対物レンズ6では、前側焦点距離よりも後側焦点距離の方が長いものが使用されている。したがって、この対物レンズ6は、物体像を所定の倍率で拡大して像面上に結像させる。対物レンズ6から出射されたレーザ光は、撮像部7の撮像面に到達する。 The laser light reflected by the interface F is emitted from the glass substrate 4 and the prism 3 and enters the objective lens 6. The objective lens 6 refracts and emits laser light. In the objective lens 6, a lens having a longer rear focal length than a front focal length is used. Therefore, the objective lens 6 enlarges the object image at a predetermined magnification and forms an image on the image plane. The laser light emitted from the objective lens 6 reaches the imaging surface of the imaging unit 7.
 撮像部7は、例えばCCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。撮像部7は、界面Fで反射されたレーザ光を受光する。撮像部7の撮像面と界面Fとは共役の関係にある。したがって、撮像部7の撮像面に、プリズム3の界面Fに入射した平行光束の反射光の2次元強度分布に相当する強度像、すなわち反射強度像が結像する。 The imaging unit 7 is, for example, a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. The imaging unit 7 receives the laser light reflected by the interface F. The imaging surface of the imaging unit 7 and the interface F are in a conjugate relationship. Therefore, an intensity image corresponding to the two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface F of the prism 3, that is, a reflection intensity image is formed on the imaging surface of the imaging unit 7.
 この反射強度像は、対物レンズ6により、例えば、2倍乃至40倍に拡大されている。撮像部7は、その反射強度像を撮像する。撮像部7は、その反射強度像に相当する画像信号を出力する。 This reflection intensity image is magnified by, for example, 2 to 40 times by the objective lens 6. The imaging unit 7 captures the reflection intensity image. The imaging unit 7 outputs an image signal corresponding to the reflected intensity image.
 撮像部7から出力された画像信号は、コンピュータ8に入力される。コンピュータ8は、CPU及びメモリ(いずれも不図示)を有している。CPUがメモリに格納されたプログラムを実行することにより、図1に示す画像取得部21、画像処理部22、表示部23及び操作部24の各機能が実現される。 The image signal output from the imaging unit 7 is input to the computer 8. The computer 8 has a CPU and a memory (both not shown). When the CPU executes the program stored in the memory, the functions of the image acquisition unit 21, the image processing unit 22, the display unit 23, and the operation unit 24 illustrated in FIG. 1 are realized.
 画像取得部21は、入力された画像信号を一定の時間間隔でサンプリングし、サンプリングにより得られた画像データを画像処理部22に出力する。画像処理部22は、画像取得部21により取得された画像データを、表示部23に出力する。表示部23は、入力した画像データに基づく画像を表示する。 The image acquisition unit 21 samples the input image signal at regular time intervals, and outputs the image data obtained by the sampling to the image processing unit 22. The image processing unit 22 outputs the image data acquired by the image acquisition unit 21 to the display unit 23. The display unit 23 displays an image based on the input image data.
 操作部24は、ユーザの操作入力を受け付けるユーザインターフェイスであり、例えばキーボード、タッチパネルやマウスを有している。操作部24は、表示部23に表示された画像を見るユーザによって操作される。ユーザは、操作部24を操作して、例えば表示部23に表示された反射強度像の画像内の特定の計測対象を指定する。操作部24の操作入力により、指定された画像内の計測対象の位置座標等は、画像処理部22に入力される。 The operation unit 24 is a user interface that receives user operation input, and includes, for example, a keyboard, a touch panel, and a mouse. The operation unit 24 is operated by a user who views an image displayed on the display unit 23. The user operates the operation unit 24 to specify a specific measurement target in the image of the reflection intensity image displayed on the display unit 23, for example. By the operation input of the operation unit 24, the position coordinates of the measurement target in the designated image are input to the image processing unit 22.
 画像処理部22は、サンプリングされた反射強度像の画像データから、操作部24の操作入力により指定された計測対象の輝度値(計測対象が領域であれば、その領域の輝度値の平均値)を抽出し、抽出された計測対象の輝度値の時間変化に基づいて、計測対象の反射光の強度の時間変化に関する情報を算出する。この反射光の強度の時間変化は、計測対象の誘電率の時間変化に相当する。画像処理部22は、算出した計測対象の反射光の強度の時間変化に関する情報をグラフ化し、そのグラフの画像データを、表示部23に出力する。 The image processing unit 22 determines the luminance value of the measurement target specified by the operation input of the operation unit 24 from the sampled reflection intensity image (if the measurement target is a region, the average value of the luminance values of that region). , And information on the temporal change in the intensity of the reflected light of the measurement target is calculated based on the extracted temporal change in the luminance value of the measurement target. This time change in the intensity of the reflected light corresponds to a time change in the dielectric constant of the measurement target. The image processing unit 22 graphs the information related to the temporal change in the calculated reflected light intensity of the measurement target, and outputs the image data of the graph to the display unit 23.
 表示部23は、サンプリングにより得られた反射強度像の画像と、指定された計測対象における反射光の強度の時間変化を示すグラフの画像とを同時に表示する。ユーザは、反射光の強度の時間変化を示すグラフを参照しながら、生細胞に対する外部刺激の活性を分析することができる。 The display unit 23 displays simultaneously the image of the reflection intensity image obtained by sampling and the image of the graph showing the temporal change in the intensity of the reflected light in the designated measurement target. The user can analyze the activity of the external stimulus with respect to the living cells while referring to the graph showing the temporal change of the intensity of the reflected light.
 金属薄膜5における界面Fの反対側の表面(一方の面)には、活性反応の計測対象である生細胞C1、C2が付着している。なお、金属薄膜5への生細胞C1、C2の付着方法は、例えば生細胞C1、C2と金属薄膜5との間に適当なスペーサ(ポリ-L-リジン等)を用いて生細胞C1、C2を固定する方法が挙げられるが、当該技術分野で公知の方法ならどのような方法でも構わない。さらには、本発明者らによって開発された、細胞膜の脂質への親和性を利用する方法、共有結合で繋ぎ止める方法又は陽電荷で繋ぎ止める方法も挙げられる(Yanase et al. 2007. Biosensors Bioelectron. 23,562-567、及び、特開2007-14327号公報参照)。 On the surface (one surface) opposite to the interface F in the metal thin film 5, live cells C1 and C2, which are measurement targets of the active reaction, are attached. The method of attaching the living cells C1 and C2 to the metal thin film 5 is performed by using, for example, an appropriate spacer (poly-L-lysine or the like) between the living cells C1 and C2 and the metal thin film 5, and living cells C1 and C2. Although any method can be used as long as it is known in the art, any method may be used. Furthermore, a method of utilizing the affinity of the cell membrane for lipid, a method of covalently tethering, or a method of tethering with a positive charge developed by the present inventors (Yanase et al. 2007. Biosensors Bioelectron. 23, 562-567 and JP 2007-14327 A).
 金属薄膜5上には、液体を流す流路としてのフローセル9が設けられている。フローセル9とは、金属薄膜5上にセットされた生細胞C1、C2に曝露させる液体を流す流路である。フローセル9は、液体供給部10に接続されている。この液体供給部10からフローセル9内に生細胞C1、C2に曝露させる液体が供給される。 On the metal thin film 5, a flow cell 9 is provided as a flow path for flowing a liquid. The flow cell 9 is a flow path for flowing a liquid to be exposed to the living cells C1 and C2 set on the metal thin film 5. The flow cell 9 is connected to the liquid supply unit 10. A liquid to be exposed to the living cells C1 and C2 is supplied from the liquid supply unit 10 into the flow cell 9.
 フローセル9を流れる液体には、例えば生細胞C1、C2上の抗体と結合する可能性のある抗原等が含まれている。抗原が生細胞C1、C2上の抗体に結合すると、生細胞C1、C2が刺激されて活性化する(例えば特許文献1参照)。すなわち、フローセル9及び液体供給部10によって生細胞C1、C2を液体に曝露させることにより、生細胞C1、C2に外部刺激が加えられるので、本実施形態では、フローセル9及び液体供給部10が刺激付与手段に対応する。言い換えると、フローセル9及び液体供給部10は、被検体対象とする生細胞を外部刺激に曝露する曝露手段に対応する。曝露手段は、被検体対象とする生細胞を所定の条件の環境に保持し、与えられた外部刺激に被検体の生細胞を曝露する。 The liquid flowing through the flow cell 9 contains, for example, an antigen that may bind to the antibodies on the living cells C1 and C2. When the antigen binds to the antibody on the living cells C1 and C2, the living cells C1 and C2 are stimulated and activated (see, for example, Patent Document 1). That is, since the external stimulation is applied to the living cells C1 and C2 by exposing the living cells C1 and C2 to the liquid by the flow cell 9 and the liquid supply unit 10, in this embodiment, the flow cell 9 and the liquid supply unit 10 are stimulated. Corresponds to the granting means. In other words, the flow cell 9 and the liquid supply unit 10 correspond to an exposure unit that exposes a living cell as a subject to be exposed to an external stimulus. The exposure means holds the living cells to be examined as a subject in an environment of a predetermined condition, and exposes the living cells of the subject to a given external stimulus.
 顕微鏡11は、金属薄膜5にセットされた生細胞C1、C2を、界面Fの反対側から観察するために設置されている。金属薄膜5には、予め位置合わせ用のマーク(不図示)が設けられている。このマークは、顕微鏡11の撮像視野内と撮像部7の撮像視野内との両方に収まる位置に設けられている。このマークにより、顕微鏡11の観察画像内の特定の部分と、撮像部7によって撮像された画像の特定の部分との位置関係が明らかとなる。両画像に写るマークの像を基準として、撮像部7で撮像された反射強度像の画像に写る特定の生細胞C1、C2の顕微鏡11の観察視野内の位置を特定し、例えばピペッティング操作等、その他当該技術分野で公知の方法を用いてその生細胞C1、C2を取り出すこともできる。 The microscope 11 is installed to observe the living cells C1 and C2 set on the metal thin film 5 from the opposite side of the interface F. The metal thin film 5 is provided with alignment marks (not shown) in advance. This mark is provided at a position that falls within both the imaging field of the microscope 11 and the imaging field of the imaging unit 7. With this mark, the positional relationship between a specific portion in the observation image of the microscope 11 and a specific portion of the image captured by the imaging unit 7 becomes clear. With reference to the image of the mark appearing in both images, the position of the specific living cells C1 and C2 that appear in the image of the reflection intensity image captured by the imaging unit 7 within the observation field of the microscope 11 is specified, for example, pipetting operation, etc. In addition, the living cells C1 and C2 can be taken out using a method known in the art.
 図2のグラフには、撮像部7で受光される反射光の強度の入射角依存性の一例が示されている。このグラフでは、横軸が界面Fへの平行光束の入射角度θを示しており、縦軸が、その入射角θにおける反射光の強度を示している。図2には、3本の特性曲線(a)乃至(c)が示されている。 The graph of FIG. 2 shows an example of the incident angle dependence of the intensity of the reflected light received by the imaging unit 7. In this graph, the horizontal axis indicates the incident angle θ of the parallel light flux to the interface F, and the vertical axis indicates the intensity of the reflected light at the incident angle θ. FIG. 2 shows three characteristic curves (a) to (c).
 特性曲線(a)は、金属薄膜5に何も置かれていない状態(生細胞C1、C2がない状態)での反射光の強度の入射角依存性を示す曲線である。これによれば、表面プラズモン共鳴現象により、入射角56°において反射光の強度が最も減衰している。この入射角56°を、共鳴角という。本実施形態では、生細胞C1、C2が接していない場合の反射光の強度が最も暗くなるように、界面Fへのレーザ光の入射角度を56°に設定している。 The characteristic curve (a) is a curve showing the incident angle dependence of the intensity of the reflected light in a state where nothing is placed on the metal thin film 5 (the state where there are no living cells C1 and C2). According to this, the intensity of reflected light is most attenuated at an incident angle of 56 ° due to the surface plasmon resonance phenomenon. This incident angle of 56 ° is called a resonance angle. In the present embodiment, the incident angle of the laser beam to the interface F is set to 56 ° so that the intensity of the reflected light when the living cells C1 and C2 are not in contact is the darkest.
 特性曲線(b)は、生細胞C1、C2が金属薄膜5にセットされ、生細胞C1、C2がまだ刺激されていない状態での反射光強度の入射角依存性を示す曲線である。生細胞C1、C2は、誘電体であるため、生細胞C1、C2が当接する金属薄膜5の周辺では、誘電率が変化し、反射光強度の入射角依存性が特性曲線(a)から特性曲線(b)へシフトし、共鳴角も56°からθ1へシフトする。 The characteristic curve (b) is a curve showing the incident angle dependence of the reflected light intensity when the living cells C1 and C2 are set on the metal thin film 5 and the living cells C1 and C2 are not yet stimulated. Since the living cells C1 and C2 are dielectrics, the dielectric constant changes around the metal thin film 5 where the living cells C1 and C2 come into contact, and the incident angle dependence of the reflected light intensity is characteristic from the characteristic curve (a). The curve (b) is shifted and the resonance angle is also shifted from 56 ° to θ1.
 特性曲線(c)は、生細胞C1、C2が、金属薄膜5にセットされ、フローセル9を流れる液体に含まれる抗原等により、生細胞C1、C2が刺激され、その刺激に反応した状態での反射光強度の入射角依存性を示す曲線である。生細胞C1、C2が刺激され、その刺激に反応すると、生細胞C1、C2の誘電率はさらに変化するため、反射光の強度の入射角依存性が特性曲線(b)から特性曲線(c)へシフトし、共鳴角もθ1からθ2へシフトする。 The characteristic curve (c) shows that the living cells C1 and C2 are set on the metal thin film 5, and the living cells C1 and C2 are stimulated by the antigen contained in the liquid flowing through the flow cell 9, and in response to the stimulation. It is a curve which shows the incident angle dependence of reflected light intensity. When the living cells C1 and C2 are stimulated and respond to the stimulation, the dielectric constants of the living cells C1 and C2 are further changed. Therefore, the incident angle dependence of the intensity of the reflected light is changed from the characteristic curve (b) to the characteristic curve (c). The resonance angle is also shifted from θ1 to θ2.
 本実施形態では、平行光束の界面Fへの入射角が56°に固定されている。そこで、入射角56°に着目すると、金属薄膜5に生細胞C1、C2が接していない状態では、反射光の強度はI1となり最も暗くなっている。また、生細胞C1、C2が金属薄膜5に付着すると反射光の強度はI2となり、I1よりもΔI1だけ強くなっている。さらに、金属薄膜5に付着した生細胞C1、C2が抗原等により刺激され、その刺激に反応すると、反射光の強度はI2からΔI2だけ増えてI3となり、さらに強くなる。 In this embodiment, the incident angle of the parallel light flux on the interface F is fixed at 56 °. Therefore, focusing attention on an incident angle of 56 °, the intensity of the reflected light is I1 and is the darkest when the living cells C1 and C2 are not in contact with the metal thin film 5. Further, when the living cells C1 and C2 adhere to the metal thin film 5, the intensity of the reflected light becomes I2, which is higher by ΔI1 than I1. Further, when the living cells C1 and C2 attached to the metal thin film 5 are stimulated by an antigen or the like and respond to the stimulation, the intensity of the reflected light increases from I2 by ΔI2 to I3, and becomes stronger.
 このように、撮像部7によって撮像される反射強度像の画像では、生細胞C1、C2が存在していない場所は暗くなり、細胞が存在している場所は明るくなり、生細胞C1、C2が活性化している場所は、さらに明るくなる。 Thus, in the image of the reflection intensity image picked up by the imaging unit 7, the place where the living cells C1 and C2 do not exist becomes dark, the place where the cells exist becomes bright, and the living cells C1 and C2 become bright. The activated area becomes brighter.
 図3(A)乃至図3(H)には、それぞれレーザ光の入射角θを53°から60°まで1°ずつ変化させたときの反射強度像の画像が示されている。図3(A)乃至図3(H)に示すように、生細胞C1、C2が存在している箇所と生細胞C1、C2が存在していない箇所とのコントラストが最も大きいのは、入射角θ=56°となる。このことは、図2において、生細胞C1、C2が存在していないときの共鳴角が56°で、反射光が最も減衰していることからも明らかである。すなわち、入射角を共鳴角と同じθ=56°とすると、Δl1を最大とすることができるので、画像のコントラストが増すのである。 FIGS. 3A to 3H show images of reflection intensity images when the incident angle θ of the laser beam is changed by 1 ° from 53 ° to 60 °. As shown in FIGS. 3A to 3H, the contrast between the place where the live cells C1 and C2 are present and the place where the live cells C1 and C2 are not present is the highest in the incident angle. θ = 56 °. This is apparent from the fact that in FIG. 2, the resonance angle is 56 ° when the living cells C1 and C2 are not present, and the reflected light is most attenuated. That is, if the incident angle is the same as the resonance angle θ = 56 °, Δl1 can be maximized, and the contrast of the image is increased.
 図4(A)乃至図4(C)には、生細胞C1、C2を刺激していない状態における0分後、10分後、20分後の反射強度像の画像の変化が示されている。また、図5(A)乃至図5(C)には、生細胞C1、C2を刺激した後における0分後、10分後、20分後の反射強度像の画像の変化が示されている。図4(A)乃至図4(C)と図5(A)乃至図5(C)を比較すると明らかなように、外部刺激に対して生細胞C1、C2が反応すると、生細胞C1、C2に相当する箇所の輝度が変化しているのがわかる。 FIGS. 4A to 4C show changes in the image of the reflection intensity image after 0 minutes, 10 minutes, and 20 minutes in a state where the living cells C1 and C2 are not stimulated. . 5A to 5C show changes in the reflection intensity image after 0 minutes, 10 minutes, and 20 minutes after stimulating the living cells C1 and C2. . 4A to 4C and FIGS. 5A to 5C, it is clear that when the living cells C1 and C2 react to an external stimulus, the living cells C1 and C2 It can be seen that the luminance of the portion corresponding to is changing.
 ユーザは、コンピュータ8の表示部23に表示された反射強度像を見ながら、操作部24(例えばマウス)を操作して、表示部23に表示された反射強度像の画像内の特定の計測対象を指定することができる。この計測対象は、点(例えば一つの生細胞の一部)として指定するようにしてもよいし、領域(例えば一つの生細胞全体の領域)として指定するようにしてもよい。 While viewing the reflection intensity image displayed on the display unit 23 of the computer 8, the user operates the operation unit 24 (for example, a mouse) to specify a specific measurement target in the image of the reflection intensity image displayed on the display unit 23. Can be specified. This measurement target may be specified as a point (for example, a part of one living cell) or may be specified as a region (for example, an entire region of one living cell).
 ユーザは、操作部24を操作して、例えば、図4(A)に示す明るい部分、すなわち生細胞が存在する部分を幾つか選択して、複数の生細胞を一度に指定することができる。画像処理部22は、指定された生細胞に対応する部分の反射光の強度の変化のグラフの画像を作成して、その画像を表示部23に表示させる。 The user can designate a plurality of living cells at a time by operating the operation unit 24 and selecting, for example, several bright portions shown in FIG. The image processing unit 22 creates an image of a graph of the change in the intensity of the reflected light of the portion corresponding to the designated living cell and causes the display unit 23 to display the image.
 図6(A)及び図6(B)には、このようにして指定された幾つかの生細胞それぞれに対応する部分の反射光の強度の時間変化及びその反射光の強度の平均値の時間変化が示されている。図6(A)では、生細胞が刺激されないまま金属薄膜5にセットされた状態での各部分の反射光の強度の時間変化等が示され、図6(B)では、生細胞が刺激され、反応した状態での各部分の反射光の強度の時間変化等が示されている。 6 (A) and 6 (B) show the temporal change in the intensity of the reflected light of the portion corresponding to each of several living cells specified in this way and the time of the average value of the intensity of the reflected light. Changes are shown. In FIG. 6 (A), the time change etc. of the intensity | strength of the reflected light of each part in the state set to the metal thin film 5 without a living cell being stimulated are shown, and a living cell is stimulated in FIG. 6 (B). The time change of the intensity of the reflected light of each part in the reacted state is shown.
 図6(A)と図6(B)とを比較するとわかるように、生細胞が刺激されて反応し、活性化すると、その部分の反射光の強度が大きく変化している。なお、図6(B)のグラフ下部の水平線は、その時点で、フローセル9に溶液(DNP-HSAを含む溶液)が流されて生細胞が刺激されていることを示している。図4(A)乃至図4(C)、図5(A)乃至図5(C)、図6(A)、図6(B)に係る具体的な内容については、後述する実施例において詳細に説明する。 As can be seen by comparing FIG. 6 (A) and FIG. 6 (B), when live cells are stimulated, reacted, and activated, the intensity of the reflected light at that portion changes greatly. Note that the horizontal line at the bottom of the graph in FIG. 6B indicates that at that time, a solution (a solution containing DNP-HSA) is caused to flow through the flow cell 9 and the living cells are stimulated. 4A to FIG. 4C, FIG. 5A to FIG. 5C, FIG. 6A, and FIG. 6B will be described in detail in the embodiments described later. Explained.
 ところで、コンピュータ8には、指定された計測対象における反射光の強度の変化をさらに精度良く求めるための機能が用意されている。図7には、コンピュータ8の画像処理部22のさらなる詳細構成が示されている。 By the way, the computer 8 is provided with a function for obtaining the change in the intensity of the reflected light at the designated measurement object with higher accuracy. FIG. 7 shows a further detailed configuration of the image processing unit 22 of the computer 8.
 図7に示すように、画像処理部22は、操作内容解析部30と、計測対象抽出部31と、初期値保持部32と、暗成分抽出部33と、差分部34、35と、波形生成部36と、を備える。 As illustrated in FIG. 7, the image processing unit 22 includes an operation content analysis unit 30, a measurement target extraction unit 31, an initial value holding unit 32, a dark component extraction unit 33, difference units 34 and 35, and waveform generation. Part 36.
 操作内容解析部30は、操作部24から入力された操作内容を解析する。解析の結果得られる操作内容には、指定された計測対象の画像内の位置座標や、生細胞が存在しない部分として指定された位置の画像内の位置座標や、波形データの計測開始指令等が含まれている。 The operation content analysis unit 30 analyzes the operation content input from the operation unit 24. The operation content obtained as a result of analysis includes the position coordinates in the specified measurement target image, the position coordinates in the image at the position specified as a part where no living cells exist, the measurement start command of waveform data, etc. include.
 操作内容解析部30は、指定された計測対象の画像内の位置座標を、計測対象抽出部31に出力する。また、操作内容解析部30は、波形データの計測開始指令を、計測対象抽出部31、初期値保持部32及び暗成分抽出部33に出力する。さらに、操作内容解析部30は、生細胞が存在しない部分として指定された位置の画像内の位置座標を、暗成分抽出部33に出力する。 The operation content analysis unit 30 outputs the position coordinates in the designated measurement target image to the measurement target extraction unit 31. Further, the operation content analysis unit 30 outputs a waveform data measurement start command to the measurement target extraction unit 31, the initial value holding unit 32, and the dark component extraction unit 33. Further, the operation content analysis unit 30 outputs the position coordinates in the image at the position designated as a part where no living cells exist to the dark component extraction unit 33.
 計測対象抽出部31は、波形データの計測開始指令が入力されると、操作内容解析部30から入力された計測対象の位置座標に基づいて、計測対象の輝度値を、計測対象毎に抽出して出力する。なお、波形データの計測開始指令が入力された時点での最初の計測対象の輝度値のみを、初期値保持部32に出力する。 When a measurement start command for waveform data is input, the measurement target extraction unit 31 extracts the luminance value of the measurement target for each measurement target based on the position coordinates of the measurement target input from the operation content analysis unit 30. Output. Note that only the luminance value of the first measurement target at the time when the waveform data measurement start command is input is output to the initial value holding unit 32.
 初期値保持部32は、波形データの計測開始指令が入力された時点で、計測対象抽出部31から出力される計測対象の輝度値を計測対象毎に保持して出力する。この出力は、計測中は初期値として保持され、出力され続ける。 The initial value holding unit 32 holds and outputs the luminance value of the measurement target output from the measurement target extraction unit 31 for each measurement target when the waveform data measurement start command is input. This output is held as an initial value during measurement and continues to be output.
 暗成分抽出部33は、波形データの計測開始指令が入力されると、操作内容解析部30から入力された生細胞の存在しない部分の輝度値の変化量を抽出して出力する。この変化量は、最初の値は0である。それ以降は、その次のサンプリング時点で得られた輝度値が、当該変化量として算出される。 When a waveform data measurement start command is input, the dark component extraction unit 33 extracts and outputs the amount of change in the luminance value of the portion where there is no live cell input from the operation content analysis unit 30. The initial value of this change amount is zero. After that, the luminance value obtained at the next sampling time is calculated as the amount of change.
 差分部34は、計測対象抽出部31から出力された計測対象の輝度値から、初期値保持部32から出力されたその計測対象の輝度値の初期値を差し引いて出力する。 The difference unit 34 subtracts the initial value of the measurement target luminance value output from the initial value holding unit 32 from the measurement target luminance value output from the measurement target extraction unit 31 and outputs the result.
 差分部35は、差分部34から出力された輝度値から、暗成分抽出部33から出力された輝度値を差し引いて出力する。 The difference unit 35 subtracts the luminance value output from the dark component extraction unit 33 from the luminance value output from the difference unit 34 and outputs the result.
 波形生成部36は、差分部35から出力された輝度値を反射光の強度に変換し、これまでに得られた反射光の強度を時系列に並べることにより、反射光の強度の時間変化のグラフの画像データを生成して出力する。 The waveform generation unit 36 converts the luminance value output from the difference unit 35 into the intensity of the reflected light, and arranges the intensity of the reflected light obtained so far in time series, thereby changing the intensity of the reflected light over time. Generate and output graph image data.
 反射強度像における計測対象での反射光の強度Iには、図8に示すように、(A)生細胞の反応による変化分と、(B)刺激を与える前の生細胞のデフォルトの強度成分と、(C)生細胞が存在していない領域の強度の変化の成分とが含まれている。画像処理部22では、計測対象抽出部31から出力される輝度値が反射光の強度Iに相当し、初期値保持部32から出力される輝度値が(B)の成分に相当し、暗成分抽出部33から出力される輝度値が(C)の成分に相当する。 As shown in FIG. 8, the reflected light intensity I in the reflection intensity image includes (A) a change due to the reaction of the living cell and (B) a default intensity component of the living cell before giving the stimulus. And (C) a component of intensity change in a region where no living cells exist. In the image processing unit 22, the luminance value output from the measurement target extraction unit 31 corresponds to the intensity I of the reflected light, the luminance value output from the initial value holding unit 32 corresponds to the component (B), and the dark component The luminance value output from the extraction unit 33 corresponds to the component (C).
 この計測においては、(B)、(C)の成分は、それぞれバックグラウンド、及びノイズよりなる。したがって、差分部34、35において、計測対象抽出部31から出力される輝度値から、初期値保持部32から出力される輝度値と、暗成分抽出部33から出力される輝度値とを差し引いてその輝度値を補正すれば、本来計測したい(A)の成分の波形データを精度良く取得することができる。 In this measurement, the components (B) and (C) consist of background and noise, respectively. Therefore, the difference units 34 and 35 subtract the luminance value output from the initial value holding unit 32 and the luminance value output from the dark component extraction unit 33 from the luminance value output from the measurement target extraction unit 31. If the luminance value is corrected, the waveform data of the component (A) to be originally measured can be acquired with high accuracy.
 次に、本実施形態に係る細胞活性分析装置100を用いた生細胞の活性を分析する方法について順を追って説明する。 Next, a method for analyzing the activity of a living cell using the cell activity analyzer 100 according to this embodiment will be described in order.
 まず、生細胞C1、C2が金属薄膜5上にセットされる。この状態で、レーザ光の出射が開始され、撮像部7で反射強度像が撮像され、表示部23に、その反射強度像の画像が表示される。表示された画像では、生細胞C1、C2が存在している部分が明るく表示されるので、表示部23に表示された画像を見たユーザは、操作部24を操作して、その画像内の生細胞C1、C2を計測対象として指定し、生細胞が存在しない部分を指定する。 First, live cells C 1 and C 2 are set on the metal thin film 5. In this state, emission of laser light is started, a reflection intensity image is captured by the imaging unit 7, and an image of the reflection intensity image is displayed on the display unit 23. In the displayed image, the portion where the living cells C1 and C2 are present is displayed brightly. Therefore, the user who has viewed the image displayed on the display unit 23 operates the operation unit 24 to display the image in the image. The living cells C1 and C2 are designated as measurement targets, and the portion where no living cells exist is designated.
 操作部24により、計測対象や、生細胞が存在しない部分が指定され、計測開始指令が入力されると、計測対象における反射光の強度の時間変化のグラフの表示が開始される。この状態で、液体供給部10から抗原等を含む液体の供給が開始されてフローセル9を液体が流れるようになる。これにより、金属薄膜5にセットされる生細胞C1、C2が刺激され、条件を満たせば、その刺激に反応し、活性化する。この工程が、被検体対象とする生細胞を外部刺激に曝露する曝露工程である。暴露方法は、当該外部刺激に対して各々適した方法を用いればよい。例えば、EGFでの刺激を与える場合であれば、適した濃度のEGF溶液中に、対象とする生細胞を浸潤させて刺激を与えればよい。 When the operation unit 24 designates a measurement target or a portion where no living cell exists, and a measurement start command is input, display of a graph of the temporal change in the intensity of reflected light on the measurement target is started. In this state, supply of a liquid containing an antigen or the like from the liquid supply unit 10 is started, and the liquid flows through the flow cell 9. As a result, the living cells C1 and C2 set on the metal thin film 5 are stimulated, and when the conditions are satisfied, the cells react with the stimulation and are activated. This step is an exposure step in which live cells to be examined are exposed to an external stimulus. The exposure method may be a method suitable for each external stimulus. For example, in the case of giving stimulation with EGF, the target living cells may be infiltrated into an EGF solution having an appropriate concentration to give the stimulation.
 生細胞C1、C2が反応すると、その誘電率が変化して、計測対象の反射光強度が変化し、その変化が、細胞活性分析装置100によって測定され、表示部23に表示されるグラフに表れるようになる。この工程が、曝露工程で外部刺激に曝露される該細胞C1、C2の誘電率の経時的変化を測定する誘電率測定工程である。誘電率測定工程では、生細胞の誘電率の計測結果を、計測した時刻とともに記憶する。計測する時刻の情報は、計測を開始してからの相対時間でよい。計測した誘電率とその時刻の情報は、被検体対象の生細胞の誘電率の経時的変化パターンを構成する。ユーザは、この誘電率の経時的変化パターン、すなわち時間変化に基づいて、生細胞C1、C2に対する外部刺激の活性を分析する。例えば、生細胞C1は活性化しているが生細胞C2は活性化していない等、生細胞ごとに反応が異なることなどを検出することができる。 When the living cells C1 and C2 react, the dielectric constant changes, the reflected light intensity of the measurement object changes, and the change is measured by the cell activity analyzer 100 and appears in the graph displayed on the display unit 23. It becomes like this. This step is a dielectric constant measurement step for measuring a change with time in the dielectric constant of the cells C1 and C2 exposed to the external stimulus in the exposure step. In the dielectric constant measurement step, the measurement result of the dielectric constant of the living cell is stored together with the measured time. The time information to be measured may be a relative time from the start of measurement. The measured dielectric constant and the information on the time constitute a time-dependent change pattern of the dielectric constant of the living cells of the subject. The user analyzes the activity of the external stimulus for the living cells C1 and C2 based on the change pattern of the dielectric constant with time, that is, the time change. For example, it is possible to detect that the living cell C1 is activated but the living cell C2 is not activated, and the like that the reaction is different for each living cell.
 また、この分析方法により、予め特定の生細胞における反射光の強度の時間変化の特性が既知である場合、生細胞C1、C2の種別を分析することも可能である。例えば、画像処理部22の波形生成部36が、分析手段として、幾つかの生細胞における反射光の強度の時間変化の特性を示す波形データを記憶しているものとする。そして、波形生成部36が、現在作成中の計測対象の生細胞の波形と、すでに記憶されている波形データとの相関演算により求め、相関性が最大の細胞を、計測中の生細胞として分析することができる。逆に、形状が異なる複数の生細胞が混合した状態において、各種生細胞に対する外部刺激の活性を調べたい場合には、表示部23に表示される生細胞のうち形状が異なる生細胞をそれぞれ計測対象として指定すれば、わざわざ各形状の生細胞ごとに単離せずに分析することができる。 Further, by this analysis method, when the characteristics of the temporal change in the intensity of reflected light in a specific living cell are known in advance, it is also possible to analyze the types of the living cells C1 and C2. For example, it is assumed that the waveform generation unit 36 of the image processing unit 22 stores waveform data indicating the temporal change characteristics of reflected light intensity in several living cells as analysis means. Then, the waveform generator 36 obtains the correlation between the waveform of the living cell to be measured currently being created and the waveform data already stored, and analyzes the cell having the maximum correlation as the living cell being measured. can do. On the other hand, in a state where a plurality of living cells having different shapes are mixed, when it is desired to examine the activity of external stimulation on various living cells, each of the living cells displayed on the display unit 23 is measured. If it designates as a target, it can analyze without isolating every living cell of each shape.
 このように、本実施形態では、個々の生細胞を計測対象として指定すれば、外部刺激による個々の生細胞の活性化を分析することができる。計測対象となった生細胞をさらに利用する場合には、ユーザは、顕微鏡11でその生細胞を観察しながら、ピペッティング操作等でその生細胞を生きた状態で回収することも可能である。なお、細胞活性分析装置100に、生細胞を自動的に回収するピペット装置(不図示)をさらに設けておき、そのピペット装置を用いて、生細胞を自動的に回収するようにしてもよい。 As described above, in the present embodiment, if individual living cells are designated as measurement targets, activation of the individual living cells due to external stimulation can be analyzed. In the case of further using the living cells that are the measurement target, the user can collect the living cells in a live state by pipetting operation or the like while observing the living cells with the microscope 11. The cell activity analyzer 100 may be further provided with a pipette device (not shown) that automatically collects live cells, and the live cells may be automatically collected using the pipette device.
 また、本実施形態に係る細胞活性分析装置100によれば、図9(A)に示すように、同じ生細胞の複数の異なる部分を計測対象として複数指定可能である。図9(A)に示す画像では、操作部24の操作入力により、1つの生細胞内部で、無作為に抽出された複数の計測対象である計測点P1乃至P13が指定されている。これらの計測点のうち、P1乃至P5は、生細胞中心付近、すなわち核近傍の計測点であり、P6乃至P12は、生細胞の辺縁、すなわち細胞膜付近の計測点である。P13は細胞がいない部分の計測点である。 Moreover, according to the cell activity analyzer 100 according to the present embodiment, as shown in FIG. 9A, a plurality of different portions of the same living cell can be designated as a measurement target. In the image shown in FIG. 9A, the measurement points P1 to P13, which are a plurality of measurement objects randomly extracted, are designated within one living cell by the operation input of the operation unit 24. Among these measurement points, P1 to P5 are measurement points near the center of the living cell, that is, near the nucleus, and P6 to P12 are measurement points near the edge of the living cell, that is, near the cell membrane. P13 is a measurement point where there is no cell.
 ここで、ある抗原を含む溶液が、液体供給部10からフローセル9に供給された場合について説明する。液体が供給された後、反射強度像の画像は、図9(A)に示す画像から、図9(B)に示す画像に変化する。図9(C)には、このときの計測点P1乃至P5、すなわち生細胞中心付近の計測点の反射光の強度の平均値の変化と、計測点P6乃至P12の反射光の強度の平均値の変化とが示されている。図9(C)に示すように、生細胞の辺縁、すなわち細胞膜付近の計測点よりも、生細胞の中心付近、すなわち核近傍の計測点の方が、反射光強度の変化が大きくなっているのがわかる。この結果、この液体による刺激においては、細胞膜付近よりも、核近傍の誘電率の変化が大きいということが明らかになる。 Here, a case where a solution containing an antigen is supplied from the liquid supply unit 10 to the flow cell 9 will be described. After the liquid is supplied, the image of the reflection intensity image changes from the image shown in FIG. 9A to the image shown in FIG. 9B. FIG. 9C shows the change in the average value of the intensity of reflected light at the measurement points P1 to P5, that is, the measurement points near the center of the living cell, and the average value of the intensity of reflected light at the measurement points P6 to P12. Changes. As shown in FIG. 9C, the change in reflected light intensity is larger at the measurement point near the center of the living cell, that is, near the nucleus than at the measurement point near the edge of the living cell, that is, near the cell membrane. I can see that As a result, it becomes clear that in the stimulation with this liquid, the change in the dielectric constant in the vicinity of the nucleus is larger than in the vicinity of the cell membrane.
 以上詳細に説明したように、本実施形態によれば、生細胞C1、C2が接する金属薄膜5に実質的に接する界面Fに入射するP偏光の平行光束の反射強度像の画像がサンプリングにより取得される。そして、取得された画像データから、生細胞C1、C2の少なくとも一部の像が計測対象として選択され、選択された像の輝度の変化に基づいて計測対象の反射光の強度の変化に関する情報が算出される。 As described above in detail, according to the present embodiment, an image of the reflection intensity image of the P-polarized parallel light beam incident on the interface F substantially in contact with the metal thin film 5 in contact with the living cells C1 and C2 is obtained by sampling. Is done. Then, from the acquired image data, at least a part of the images of the living cells C1 and C2 is selected as the measurement target, and information on the change in the intensity of the reflected light of the measurement target is obtained based on the change in the luminance of the selected image. Calculated.
 計測対象となる生細胞C1、C2は誘電体であり、その誘電率は外部刺激による反応により変化する。生細胞C1、C2の誘電率が変化すると、その周辺の誘電率が変化するので、結果的に表面プラズモン共鳴現象の共鳴角が変化し、そこで、反射した反射光の強度が変化する。したがって、選択された個々の生細胞C1、C2に係る部分の反射光の強度の変化に関する情報を算出すれば、その情報に基づいて、個々の生細胞C1、C2に対する外部刺激の活性を分析することができる。 The living cells C1 and C2 to be measured are dielectrics, and the dielectric constant changes due to a reaction caused by an external stimulus. When the dielectric constants of the living cells C1 and C2 change, the dielectric constant around them changes, and as a result, the resonance angle of the surface plasmon resonance phenomenon changes, and the intensity of the reflected light reflected thereby changes. Therefore, if information on the change in the intensity of the reflected light of the portion related to the selected individual living cells C1 and C2 is calculated, the activity of the external stimulus for the individual living cells C1 and C2 is analyzed based on the information. be able to.
 また、波形生成部36が、抽出手段として、測定される波形データに基づいて、被検体対象とする生細胞が外部刺激に曝露された際に観察される誘電率の経時的変化パターンの特性を抽出するようにしてもよい。このようにすれば、誘電率の経時的変化パターンの特性を指標とする生細胞の分析が可能となる。このときに波形生成部36で行われる工程が、被検体対象とする生細胞の誘電率の経時的変化パターンの特性を抽出する抽出工程である。 In addition, the waveform generation unit 36 uses the waveform data to be measured as an extraction means to determine the characteristics of the temporal change pattern of the dielectric constant observed when the living cells to be examined are exposed to an external stimulus. You may make it extract. In this way, it is possible to analyze living cells using the characteristics of the temporal change pattern of the dielectric constant as an index. The process performed by the waveform generation unit 36 at this time is an extraction process for extracting characteristics of the temporal change pattern of the dielectric constant of the living cells to be examined.
 従来、悪性腫瘍等の診断・分析は、肉眼観察、X線、CT(Computed Tomography)または超音波等による画像情報に基づき、最終的には病理組織標本を用いた組織構造を顕微鏡的に観察することを基として行われていた。時に、これらの他に、被疑組織内の遺伝子の異常、または癌に関連するマーカー物質の発現の有無の情報が加えられることもあった。 Conventionally, diagnosis and analysis of malignant tumors, etc. are based on visual observation, X-ray, CT (Computed Tomography), or image information by ultrasound, and finally, a tissue structure using a pathological tissue specimen is observed microscopically. It was done based on that. Sometimes, in addition to these, information on the presence or absence of gene abnormality in the suspected tissue or the expression of a marker substance related to cancer may be added.
 このような肉眼観察、X線、CTまたは超音波等による悪性腫瘍等の診断・分析は、いずれも静止した細胞および細胞により構築される組織の構造の乱れ、または細胞から抽出して得られた特定成分の異常を分析する方法である。また、特定遺伝子もしくはその他の物質の発現の有無は、構造の乱れとはやや異なる概念で捉えられるが、がんであることが疑われる生体組織または細胞を化学的に固定した後に、特定の物質の量の多寡を分析するという点で、やはりある瞬間における細胞ないし生体組織の構造の分析であることに変わりはない。 Diagnosis / analysis of malignant tumors by such macroscopic observation, X-ray, CT, or ultrasound was all obtained by extracting from stationary cells and the structure of the tissue constructed by the cells. This is a method for analyzing abnormalities of specific components. In addition, the presence or absence of expression of a specific gene or other substance can be grasped by a concept slightly different from structural disturbance, but after a biological tissue or cell suspected of having cancer is chemically fixed, In terms of analyzing the amount of quantity, it is still an analysis of the structure of cells or living tissues at a certain moment.
 しかし、悪性腫瘍等の本質は、細胞の無秩序増殖および転移にある。前述した診断・分析方法では、いずれの方法も、悪性腫瘍等の潜在的な機能の可能性と、その結果としての構造の乱れとを観察しているに過ぎない。従って、細胞が無秩序に増殖する性質および転移する性質を個々の生細胞の有する機能として包括的かつ直接的に分析可能とすることは、悪性腫瘍等の診断・分析を格段に向上させることを意味する。 However, the essence of malignant tumors lies in the disordered proliferation and metastasis of cells. In the diagnosis / analysis methods described above, all methods merely observe the possibility of potential functions such as malignant tumors and the resulting structural disturbance. Therefore, the ability to comprehensively and directly analyze the property of cells to proliferate and metastasize as a function of individual living cells means that the diagnosis and analysis of malignant tumors, etc. will be greatly improved. To do.
 本発明者らが鋭意研究を行った結果、正常細胞と癌細胞とでは、SPR装置によるEGF(上皮成長因子、Epidermal Growth Factor)刺激に対して異なる共鳴角の経時的変化パターンの特性を示すということが解明された。さらに、病理組織学的には同じ種類の癌または癌細胞株でも、EGF刺激に対し、異なる共鳴角の経時的変化パターンの特性を示し得るということが示された。また、ヒト血管肉腫細胞株では、正常な血管構成細胞では発現していないEGFR(上皮成長因子受容体、Epidermal Growth Factor Receptor)を発現し、EGFによる刺激に対し、前述の癌細胞での結果と同様に、異なる共鳴角の経時的変化パターンの特性を示すということも解明された。 As a result of intensive studies by the present inventors, normal cells and cancer cells exhibit characteristics of temporal change patterns of different resonance angles with respect to EGF (epidermal growth factor) stimulation by an SPR device. It was elucidated. Furthermore, histopathologically, it was shown that even the same type of cancer or cancer cell line can exhibit different temporal changes in resonance angle characteristics in response to EGF stimulation. In the human hemangiosarcoma cell line, EGFR (epidermal growth factor receptor, Epidermal Growth) Factor 発 現 Receptor), which is not expressed in normal vascular component cells, is expressed. Similarly, it has been elucidated that it shows the characteristics of the change pattern with time of different resonance angles.
 そこで、波形生成部36は、抽出された誘電率の経時的変化パターンの特性を指標とし、被検体対象である生細胞の分析を行う。より具体的には、波形生成部36は、計測された生細胞の誘電率の経時的変化パターンの特性を抽出し、例えば、一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれの条件に該当するかを判定する。波形生成部36は、所定の誘電率の経時的変化パターンの特性と比較することによって、より詳細な生細胞の分析を行っても構わない。所定の誘電率の経時的変化パターンの特性とは、例えば、予め測定しておいた被検体対象となる生細胞の正常細胞(異常がない状態の細胞)、種々のがん細胞(上皮性・非上皮性・液性問わず全ての病変した腫瘍)、種々の癌細胞(上皮由来の悪性腫瘍)または種々の癌細胞株等の誘電率の経時的変化パターンの特性を意味する。 Therefore, the waveform generation unit 36 analyzes the living cells that are the object of the subject, using the extracted characteristic of the change pattern of the dielectric constant over time as an index. More specifically, the waveform generation unit 36 extracts the characteristics of the measured change pattern of the dielectric constant of living cells over time, for example, monophasic, biphasic, triphasic or other atypical patterns. It is determined which of the conditions is met. The waveform generation unit 36 may perform a more detailed analysis of living cells by comparing with a characteristic of a temporal change pattern of a predetermined dielectric constant. The characteristics of a predetermined dielectric constant change pattern over time include, for example, normal cells (cells without abnormality) that have been measured in advance, and various cancer cells (epithelial / It means the characteristics of the time-dependent change pattern of the dielectric constant of various tumor cells (non-epithelial / fluid), various cancer cells (epithelial malignant tumors) or various cancer cell lines.
 波形生成部36は、例えば、被検体対象である生細胞が正常細胞であるか否か、対象の生細胞ががん細胞もしくは癌細胞であるか否か、または、癌細胞の場合にはどのような種類・細胞株の癌細胞(例えば、胃癌細胞、前立腺癌細胞または血管肉腫細胞(後述する実施例参照)等)であるか等を、診断・分析する。その診断・分析結果、すなわち、抽出された誘電率の経時的変化パターンの特性の情報(生細胞の状態の情報)は、表示部23に送られる。表示部23は、波形生成部36から送られた生細胞の状態の情報を表示する。 For example, the waveform generation unit 36 determines whether or not the living cell that is the subject of the subject is a normal cell, whether or not the target living cell is a cancer cell or a cancer cell, or in the case of a cancer cell Diagnosis / analysis of cancer cells of such types and cell lines (for example, gastric cancer cells, prostate cancer cells, hemangiosarcoma cells (see Examples described later), etc.), etc. The diagnosis / analysis result, that is, the information on the characteristics of the extracted change pattern of the dielectric constant with time (information on the state of the living cells) is sent to the display unit 23. The display unit 23 displays live cell state information sent from the waveform generation unit 36.
 なお、波形生成部36は、条件が記憶されたデータベースをさらに備えても構わない。この場合、例えば、波形生成部36は、データベースに記憶された条件と抽出された特性とを比較し判定を行う。このような条件としては、例えば、変化パターンの極大値および極小値の有無、極大値と極小値の順序、初期値、極大値および極小値の大小、極大値および極小値をとる時間の範囲、変化率の符号と大きさ、変化率の変化率等々、変化パターンの特徴を識別する条件を設定することができる。 The waveform generation unit 36 may further include a database in which conditions are stored. In this case, for example, the waveform generation unit 36 performs the determination by comparing the conditions stored in the database with the extracted characteristics. Such conditions include, for example, the presence or absence of local maximum and local minimum values of the change pattern, the order of local maximum and local minimum values, the initial value, the maximum and minimum values, the range of time for taking local maximum and local minimum values, Conditions for identifying the characteristics of the change pattern, such as the sign and size of the change rate, the change rate of the change rate, etc., can be set.
 図10は、細胞活性分析方法の一例を示すフローチャートである。図10に示すように、例えば、被検体の生細胞の分析を開始すると、暴露試験を行う(ステップS11)。暴露試験が行われている間、誘電率の測定(ステップS12)を行う。 FIG. 10 is a flowchart showing an example of a cell activity analysis method. As shown in FIG. 10, for example, when analysis of a living cell of a subject is started, an exposure test is performed (step S11). During the exposure test, the dielectric constant is measured (step S12).
 次に、誘電率の経時的変化パターンの特性が抽出され(ステップS13)、前述のように、例えば、抽出された特性が一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれの条件に該当するかが判定される(ステップS14)。当該抽出およびその判定は、分析手段としての波形生成部36において行われる。その後、抽出された特性(例えば一相性、二相性、三相性またはそれ以外の非定型的なパターン)の誘電率の経時的変化パターンの特性での細胞の状態が、被検体対象となっている生細胞の状態と分析され、表示部23に送られ表示される(ステップS15)。 Next, the characteristics of the dielectric constant change pattern over time are extracted (step S13). As described above, for example, the extracted characteristics are monophasic, biphasic, triphasic, or other atypical patterns. It is determined which condition is met (step S14). The extraction and the determination thereof are performed in the waveform generation unit 36 as analysis means. Thereafter, the state of the cell with the characteristics of the time-dependent change pattern of the dielectric constant of the extracted characteristics (for example, monophasic, biphasic, triphasic or other atypical patterns) is the object of the subject. The state of the living cell is analyzed and sent to the display unit 23 for display (step S15).
 なお、本実施形態では、がん細胞の分析システムまたは癌細胞(例えば、胃癌細胞、前立腺癌細胞または血管肉腫細胞等)の分析システムとして用いても構わない。 In the present embodiment, it may be used as an analysis system for cancer cells or an analysis system for cancer cells (for example, gastric cancer cells, prostate cancer cells or angiosarcoma cells).
 このように、本実施形態によれば、細胞の状態を、個々の生細胞のレベルにおいて、包括的かつ直接的に分析することができる。特に、従来技術の様に細胞または組織を固定せず、かつ潜在的可能性として悪性腫瘍等を評価せずに、細胞の刺激応答パターンを動的に分析することのみによって、正常細胞、がん細胞、癌の種類および癌細胞株の種類を分析可能であることは、技術的価値が極めて高いといえる。 Thus, according to the present embodiment, the state of cells can be comprehensively and directly analyzed at the level of individual living cells. In particular, normal cells and cancers can be obtained only by dynamically analyzing the stimulation response patterns of cells without fixing cells or tissues as in the prior art and evaluating malignant tumors as a potential. The ability to analyze the types of cells, cancer types and cancer cell lines is extremely high in technical value.
 なお、上記実施形態では、表示部23及び操作部24が選択手段に対応したが、本発明はこれには限られない。例えば、図4(A)乃至図4(C)、図5(A)乃至図5(C)に示すように、生細胞が存在する領域の輝度は、生細胞が存在していない領域の輝度よりも大きくなっていることを利用して、画像処理部22が、選択手段として、計測対象となる生細胞を自動的に選択するようにしてもよい。画像処理部22は、撮像された反射強度像の画像において、空間的な輝度の変化が所定の閾値以上の点、すなわち変化点(エッジ)を抽出して、そのエッジに囲まれる画像データの一部を計測対象として選択すればよい。 In the above embodiment, the display unit 23 and the operation unit 24 correspond to the selection unit, but the present invention is not limited to this. For example, as shown in FIGS. 4 (A) to 4 (C) and FIGS. 5 (A) to 5 (C), the luminance of the region where the living cells are present is the luminance of the region where the living cells are not present. Alternatively, the image processing unit 22 may automatically select a living cell to be measured as a selection unit by using the fact that it is larger than that. The image processing unit 22 extracts a point where a change in spatial luminance is equal to or greater than a predetermined threshold, that is, a change point (edge) in the captured reflection intensity image, and sets the image data surrounded by the edge. May be selected as a measurement target.
 また、上記実施形態では、レーザ光の反射面が、金属薄膜5とガラス基板4と金属薄膜5との界面Fとなるクレッチマン配置の光学系を採用したが、本発明はこれには限られず、オット配置の光学系を採用するようにしてもよい。この場合には、界面Fは、金属薄膜5に対して近接場光(エバネッセント光)が生ずるような、ナノメータオーダの実質的に接する距離に配置される必要がある。 In the above embodiment, the optical system of the Kretschmann arrangement in which the reflection surface of the laser beam is the interface F between the metal thin film 5, the glass substrate 4, and the metal thin film 5, is not limited to this. An optical system with an otto arrangement may be employed. In this case, the interface F needs to be disposed at a distance substantially in contact with the nanometer order such that near-field light (evanescent light) is generated with respect to the metal thin film 5.
 また、金属薄膜5は、撮像視野内全面に設けられる必要はなく、図11に示すように、ガラス基板4の上に、小さな金属薄膜15を例えばマトリクス状に配置するようにしてもよい。この場合、各金属薄膜15には、それぞれ異なる生細胞を配列するようにしてもよい。このようにすれば、同一の外部刺激に対する各種生細胞の反応を一度に計測することができる。 Further, the metal thin film 5 does not need to be provided on the entire surface of the imaging field, and as shown in FIG. 11, small metal thin films 15 may be arranged on the glass substrate 4 in a matrix, for example. In this case, different live cells may be arranged on each metal thin film 15. In this way, the response of various living cells to the same external stimulus can be measured at a time.
 また、上記実施形態では、刺激付与手段を、フローセル9及び液体供給部10としたが、本発明はこれには限られない。 In the above embodiment, the stimulus applying means is the flow cell 9 and the liquid supply unit 10, but the present invention is not limited to this.
 金属薄膜5上の生細胞に、外部刺激を与える抗原を含む液滴を垂らすノズルを有する液滴吐出装置を、刺激付与手段として用いるようにしてもよい。この場合ノズルを複数有し、生細胞のクラスタ(例えば1個~100個の生細胞の集合)を配列し、異なる抗体等を含む液滴を各クラスタに、吐出するようにしてもよい。 A droplet discharge device having a nozzle for dropping a droplet containing an antigen that gives an external stimulus to living cells on the metal thin film 5 may be used as the stimulus applying means. In this case, a plurality of nozzles may be provided, a cluster of living cells (for example, a collection of 1 to 100 living cells) may be arranged, and droplets containing different antibodies or the like may be discharged to each cluster.
 さらに、本発明の第2の態様に係る細胞活性分析方法においては、フローセル9及び液体供給部10を省いた細胞活性分析装置100を用い、例えばピペット又は注入器等の当該技術分野において公知の液滴吐出器材を人が操作して、外部刺激を与える実施形態でも可能である。 Furthermore, in the cell activity analysis method according to the second aspect of the present invention, a cell activity analyzer 100 that omits the flow cell 9 and the liquid supply unit 10 is used. For example, a liquid known in the art such as a pipette or an injector. An embodiment in which a person operates the drop ejection device to give an external stimulus is also possible.
 このように、本実施形態に係る細胞活性分析装置100及び細胞活性分析方法によると、算出された反射光の強度の時間変化(刺激を与えた前後での変化)に基づいて、個々の生細胞及び/又は個々の生細胞の一部の性質等を評価することができる。その結果、個々の生細胞の性質を解析・単離したり、ある特定の活性を持つ生細胞をスクリーニングしたり、細胞活性に関わる特定の生体分子(外部刺激)をスクリーニングしたり、又は、主に生細胞のどの部分において活性化が起こるのかを調べたり等多様な細胞に関する研究に利用することができる。 As described above, according to the cell activity analysis apparatus 100 and the cell activity analysis method according to the present embodiment, each living cell is based on the temporal change (change before and after applying the stimulus) of the calculated reflected light intensity. And / or the properties of a part of individual living cells can be evaluated. As a result, the properties of individual living cells can be analyzed and isolated, living cells with certain activities can be screened, specific biomolecules related to cell activity (external stimuli) can be screened, It can be used for various cell studies such as investigating in which part of live cells activation occurs.
 本実施形態に係る細胞活性分析装置100および細胞活性分析方法は、医療用の診断装置、診断方法等にも利用することができる。例えば、生体より採取した生細胞(血液又は生検材料等)の迅速なアレルギー反応検査に利用できる。また、がん等の病変部細胞を増殖因子等で刺激し、迅速に機能検査又は正常細胞か悪性細胞かの判定を行うこともできる。更には、個人により異なる必要薬剤量の解析(個人毎の末梢血細胞(リンパ球、好塩基球、好酸球又は抗原提示細胞等)の薬剤反応性を解析する)も行うことができる。他には、薬剤アレルギーの原因薬剤の分析にも利用されうる。 The cell activity analysis apparatus 100 and the cell activity analysis method according to the present embodiment can be used for medical diagnosis apparatuses, diagnosis methods, and the like. For example, it can be used for a rapid allergic reaction test of living cells (blood or biopsy material) collected from a living body. It is also possible to stimulate a lesion cell such as cancer with a growth factor or the like and quickly determine whether it is a normal cell or a malignant cell. Furthermore, analysis of the required drug amount that varies depending on the individual (analysis of drug reactivity of peripheral blood cells (lymphocytes, basophils, eosinophils, antigen-presenting cells, etc.) for each individual) can be performed. In addition, it can be used for analysis of drugs that cause drug allergy.
 生細胞を何らかの物質または物理的条件の変化により刺激した際には多様な反応がおこる(例えば、受容体分子および関連する細胞内情報伝達分子の凝集・会合、リン酸化、脱リン酸化又は膜へのトランスロケーションを含む細胞内転位等)。本実施形態によれば、これらの反応時には、どのような活性変化を伴っているのかも解析することができる。 Various reactions occur when living cells are stimulated by changes in any substance or physical condition (eg, aggregation / association of receptor molecules and related intracellular signaling molecules, phosphorylation, dephosphorylation, or membrane) Intracellular translocation including translocation). According to this embodiment, it is possible to analyze what kind of activity change is involved in these reactions.
 特に、本実施形態に係る細胞活性分析装置100及び細胞活性分析方法では、個々の生細胞及び/又は個々の生細胞の一部まで分析することができるため、従来と比べより高感度に上述したような診断、評価又は解析等をすることができる。 In particular, in the cell activity analyzer 100 and the cell activity analysis method according to the present embodiment, it is possible to analyze individual living cells and / or a part of each living cell, and thus the above-described sensitivity is higher than that in the past. Such diagnosis, evaluation or analysis can be performed.
 また、本実施形態の細胞活性分析装置100及び細胞活性分析方法は、臨床診断用ハイスループットスクリーニング装置、例えばハイスループットアレルギー診断装置としても利用することができる。例えば、まず、生体より採取した血液からマイクロ磁気ビーズ等を用いて好塩基球を含む溶液(その他、生細胞を含めばどのようなものでも構わない)を得る。該好塩基球液を、図12(A)に示すようなマルチウェルチャンバー40(例えば、注入した溶液が離隔されるようマトリクス状にウェルが空いたもの)に、外部刺激の吐出の際に述べたような液滴吐出装置、又は、ピペッティング等により注入する。 In addition, the cell activity analyzer 100 and the cell activity analysis method of the present embodiment can also be used as a high-throughput screening apparatus for clinical diagnosis, for example, a high-throughput allergy diagnosis apparatus. For example, first, a solution containing basophils is obtained from blood collected from a living body using micro magnetic beads or the like (others may be any if including living cells). The basophil solution is described in a multi-well chamber 40 as shown in FIG. 12A (for example, in which wells are vacated in a matrix so that the injected solution is separated) at the time of discharging an external stimulus. It is injected by a droplet discharge device such as that described above or pipetting.
 更に、当該好塩基球液が注入されるマルチウェルチャンバー40に合うよう設計されたアレルゲン投与用のマルチチャンバー41も用意する。このアレルゲン投与用マルチチャンバー41も上述したような液滴吐出装置のようになっており、血液が注入された各ウェルに、好ましくは同時に、異なるアレルゲンを投与する。そこで、本実施形態の細胞活性分析装置100及び細胞活性分析方法を利用する。上述した細胞活性分析装置100の撮像部7によって撮像される画像を、コンピュータ8の表示部23に表示させる。すると、図12(B)に示すような画像が表示され、従来の診断法よりも短時間で高信頼性の診断を行うことができる。逆に、アレルゲンが同一で、好塩基球液を採取した検体が異なる場合でも構わない。このような装置はアレルギー診断装置以外にも、例えばハイスループット癌診断装置等、様々なハイスループットスクリーニング装置として利用することができる。 Furthermore, an allergen administration multi-chamber 41 designed to fit the multi-well chamber 40 into which the basophil solution is injected is also prepared. The allergen administration multi-chamber 41 is also configured as a droplet discharge device as described above, and different allergens are preferably administered simultaneously to each well into which blood has been injected. Therefore, the cell activity analyzer 100 and the cell activity analysis method of this embodiment are used. An image captured by the imaging unit 7 of the cell activity analyzer 100 described above is displayed on the display unit 23 of the computer 8. Then, an image as shown in FIG. 12B is displayed, and a highly reliable diagnosis can be performed in a shorter time than a conventional diagnosis method. On the contrary, the allergen may be the same and the specimen from which the basophil solution is collected may be different. Such an apparatus can be used as various high-throughput screening apparatuses such as a high-throughput cancer diagnostic apparatus in addition to an allergy diagnostic apparatus.
 以下、本明細書において使用されている用語について説明する。 Hereafter, the terms used in this specification will be explained.
 本明細書において使用される「細胞」とは、当該分野において用いられる最も広義の意味と同様に定義され、どのような種類・動物の細胞でも構わない。また、天然に存在する細胞であっても、人工的に改変された細胞(例えば、融合細胞、遺伝子改変細胞)であってもよい。「生細胞」とは、このうち生きた細胞を示す。このうち、好ましくはヒト(Homo sapience)由来の細胞であり、さらに好ましくはマスト細胞、ケラチノサイト、ヒト好塩基球又はヒトB細胞であるがそれらに限定されない。 As used herein, the term “cell” is defined in the same way as the broadest meaning used in the field, and may be any kind or animal cell. Moreover, it may be a naturally occurring cell or an artificially modified cell (for example, a fused cell or a genetically modified cell). “Live cell” refers to a living cell. Of these, cells derived from humans (Homo sapience) are preferred, and mast cells, keratinocytes, human basophils or human B cells are preferred, but not limited thereto.
 本明細書において使用される「所定の倍率」とは、対物レンズ6のような拡大光学系による強度像の拡大倍率を意味する。所定の倍率は、画像取得手段によってサンプリングされた画像データが、個々の生細胞が識別できる倍率である必要がある。所定の倍率は、例えば、上述したとおり2倍~40倍である。 As used herein, “predetermined magnification” means the magnification of an intensity image by a magnifying optical system such as the objective lens 6. The predetermined magnification needs to be a magnification at which the image data sampled by the image acquisition means can be identified by individual living cells. The predetermined magnification is, for example, 2 to 40 times as described above.
 本明細書において使用される「外部刺激」とは、細胞表面の受容体に対するリガンド(例えば本実施形態で述べた抗原等の生体分子)の結合、温度若しくはpH等の環境変化、又は、機械的刺激又は電気的刺激等を意味し、細胞の活性(例えば、細胞内の情報伝達系の賦活等)に対して作用する全ての刺激を包含している。これらのうち、細胞表面の受容体に対するリガンドの結合が好ましく、サイトカインによる外部刺激がさらに好ましい。 As used herein, “external stimulation” refers to binding of a ligand to a cell surface receptor (for example, a biomolecule such as an antigen described in the present embodiment), environmental changes such as temperature or pH, or mechanical It means a stimulus or an electrical stimulus, and includes all stimuli that act on the activity of a cell (for example, activation of an information transmission system in the cell). Of these, ligand binding to cell surface receptors is preferred, and external stimulation with cytokines is more preferred.
 本明細書におけるサイトカインは、当該分野において公知である全ての種類のサイトカインを含有する。例えば、インターロイキン、ケモカイン、インターフェロン、造血因子または細胞増殖因子等が挙げられるが、このうち細胞増殖因子が好ましい。細胞増殖因子には、例えば、前述したEGF、線維芽細胞増殖因子(FGF)、血小板由来成長因子(PDGF)、肝細胞成長因子(HGF)またはトランスフォーミング成長因子(TGF)等が挙げられる。このうち最も好ましくはEGFである。なお、「暴露」とは、前述したような各々の外部刺激を、各々適した暴露方法によって生細胞に与えることを意味している。 The cytokines in this specification include all types of cytokines known in the art. For example, interleukin, chemokine, interferon, hematopoietic factor, cell growth factor and the like can be mentioned, among which cell growth factor is preferable. Examples of the cell growth factor include EGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) or transforming growth factor (TGF) described above. Of these, EGF is most preferred. The term “exposure” means that each external stimulus as described above is given to living cells by an appropriate exposure method.
 本明細書において使用される「経時的変化パターンの特性」とは、時間変化に伴う変化率の推移の特徴を意味する。具体的には、初期値、極大値および/または極小値、外部刺激に暴露してからの極大値および/または極小値となるまでの時間、ならびに、経時的変化が一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれであるか(実施例参照)等の特徴を意味する。また、本明細書において使用される「誘電率の経時的変化」または「誘電率の経時的変化パターン」には、誘電率の時間変化に伴う変化率の推移以外に、誘電率の変化に依存して変化する値(例えば、屈折率または共鳴角等)の時間変化に伴う変化率の推移も含まれる。 As used herein, “characteristic of a change pattern with time” means a characteristic of a change rate with time. Specifically, the initial value, the maximum value and / or the minimum value, the time from the exposure to an external stimulus until reaching the maximum value and / or the minimum value, and the change over time are monophasic, biphasic, It means characteristics such as compatibility or other atypical patterns (see Examples). In addition, the “dielectric change over time” or “dielectric change over time pattern” used in this specification depends on changes in the dielectric constant in addition to changes in the dielectric constant with time. The change of the rate of change accompanying the time change of the value (for example, the refractive index or the resonance angle) is also included.
 本明細書における生細胞の「分析」とは、生細胞の評価、同定、分類および診断等の種々の意味を含むものとして定義され得る。 “Analysis” of a living cell in this specification can be defined as including various meanings such as evaluation, identification, classification and diagnosis of a living cell.
 本明細書において、経時的変化パターンの特性の「抽出」とは、前述したような経時的変化パターンの特性のうち、測定した経時的変化パターンの特性が、どのような特徴を持っているのかを検出、判定、および/または、判断等を行うことを意味する。 In this specification, “extraction” of the characteristics of the temporal change pattern is the characteristics of the measured temporal change pattern among the characteristics of the temporal change pattern as described above. Detection, determination, and / or determination.
 本明細書において「有する」、「含む」または「含有する」といった表現は、「からなる」または「から構成される」という意も含むものとする。 In this specification, expressions such as “having”, “including” or “containing” also include the meaning of “consisting of” or “consisting of”.
 以下、本実施形態に係る細胞活性分析装置100及び細胞活性分析方法を利用した実施例について詳細に説明するが、実施例は本発明を限定するものでない。 Hereinafter, examples using the cell activity analyzing apparatus 100 and the cell activity analyzing method according to the present embodiment will be described in detail, but the examples do not limit the present invention.
(実施例1)
 細胞活性分析装置100は、波長630nmのダイオードレーザの光源1、偏光板2、金属薄膜5(50nm)を蒸着したガラス基板4及びプリズム3(S-LAL-10、屈折率=1.72)、サーモスタット、対物レンズ6(4倍)およびCMOSカメラ(撮像部7)を備えるものを使用した。CMOSカメラによって得られた画像は、上記実施形態に係るコンピュータ8が実行する画像処理ソフトウエアプログラムに相当するImage-Pro(Media Cybernetics製)を用いて輝度解析を行った。
Example 1
The cell activity analyzer 100 includes a diode laser light source 1 having a wavelength of 630 nm, a polarizing plate 2, a glass substrate 4 on which a metal thin film 5 (50 nm) is deposited, and a prism 3 (S-LAL-10, refractive index = 1.72), A thermostat, an objective lens 6 (4 ×), and a CMOS camera (imaging unit 7) were used. The image obtained by the CMOS camera was subjected to luminance analysis using Image-Pro (manufactured by Media Cybernetics) corresponding to the image processing software program executed by the computer 8 according to the above embodiment.
 まず、生細胞としてRBL-2H3細胞(Rat Basophilic Leukemia cell、ラット好塩基性白血病細胞株)、外部刺激としてDNP-HSA(Dinitrophenyl-Human Serum Albumin(Sigma-Aldrich Japan製、日本、東京))抗原を用い、個々のRBL-2H3細胞の誘電率の変化を調べた例について説明する。なお、RBL-2H3細胞は、細胞内にヒスタミンを含む顆粒を持ち、細胞表面にIgE受容体を発現しているため、抗原-IgE刺激により細胞の活性化が可能である。 First, RBL-2H3 cell (Rat Basophilic Leukemia cell, rat basophilic leukemia cell line) is used as a living cell, and DNP-HSA (Dinitrophenyl-Human Serum Albumin (manufactured by Sigma-Aldrich Japan, Tokyo, Japan)) antigen as an external stimulus. An example in which the change in the dielectric constant of individual RBL-2H3 cells was examined will be described. Since RBL-2H3 cells have granules containing histamine in the cells and express IgE receptors on the cell surface, the cells can be activated by antigen-IgE stimulation.
 まず、RBL-2H3細胞は、10%のウシ胎児血清(FCS)、100U/mlのペニシリンおよび100μgのストレプトマイシンを加えたRPMI(Roswell Park Memorial Institute)培地で培養しておき、実験の前日にトリプシンを用いて回収した。回収したRBL-2H3細胞を、50ng/mlの抗DNP-IgE(Sigma-Aldrich Japan製、日本、東京)の存在下において、センサチップ(金薄膜蒸着ガラス基板)上で一晩培養した(37℃)。 First, RBL-2H3 cells were cultured in RPMI (Roswell Park Memorial Institute) medium supplemented with 10% fetal calf serum (FCS), 100 U / ml penicillin and 100 μg streptomycin, and trypsin was added on the day before the experiment. Used to recover. The collected RBL-2H3 cells were cultured overnight (37 ° C.) on a sensor chip (gold thin film-deposited glass substrate) in the presence of 50 ng / ml anti-DNP-IgE (Sigma-Aldrich Japan, Tokyo, Japan). ).
 次に、チップを上述した細胞活性分析装置100に装着し、ランニングバッファ(PIPES buffer)を流した。その後、DNP-HSA(50ng/ml)を注入し、そのままランニングバッファを流しつづけ、当該細胞活性分析装置100を用い、対物レンズ(4倍)で拡大された反射光の強度像を10秒ごとにCMOSカメラで画像化した。さらに、当該画像からImage-Proによって個々の生細胞を選択領域とした時間変化に基づく輝度解析を行った。なお、コントロールとして同条件下でDNP-HSAを注入しないものも、画像化及び輝度解析を行った。 Next, the chip was mounted on the cell activity analyzer 100 described above, and a running buffer (PIPES buffer) was run. Thereafter, DNP-HSA (50 ng / ml) was injected, and the running buffer was allowed to flow as it was. Using the cell activity analyzer 100, an intensity image of the reflected light magnified by the objective lens (4 times) was obtained every 10 seconds. It was imaged with a CMOS camera. Furthermore, luminance analysis based on the time change with individual living cells as a selected region was performed from the image by Image-Pro. As a control, imaging and luminance analysis were also performed for those in which DNP-HSA was not injected under the same conditions.
 図4(A)乃至図4(C)はDNP-HSAによって刺激していないRBL-2H3細胞、図5(A)乃至図5(C)はDNP-HSAによって刺激したRBL-2H3細胞のCMOSカメラでの画像を示す。図4(A)乃至図4(C)に示すように、それぞれのRBL-2H3細胞の屈折率は、DNP-HSA(抗原)で刺激しない場合は20分間変化はなかった。しかし、図5(A)乃至図5(C)に示すように、DNP-HSAで刺激した場合は明らかに増加した。 4A to 4C are RBL-2H3 cells not stimulated with DNP-HSA, and FIGS. 5A to 5C are CMOS cameras of RBL-2H3 cells stimulated with DNP-HSA. The image at is shown. As shown in FIGS. 4A to 4C, the refractive index of each RBL-2H3 cell did not change for 20 minutes when not stimulated with DNP-HSA (antigen). However, as shown in FIG. 5 (A) to FIG. 5 (C), it clearly increased when stimulated with DNP-HSA.
 図6(A)は図4(A)乃至図4(C)の画像から、図6(B)は図5(A)乃至図5(C)の画像から、RBL-2H3細胞を五つ無作為に選び、Image-Proを用いて測定したこれらの輝度値(屈折率)の変化及びそれらの平均値を10秒ごとにプロットしたものである。図6(B)のグラフ内下部の線は、DNP-HSAによって刺激している時間を示す。なお、以下に述べる同様のグラフについても当該線は刺激している時間を示す。図6のグラフにおいても、上述したように、RBL-2H3細胞の屈折率は、DNP-HSAで刺激していない20分間は変化がほとんどなく、DNP-HSAで刺激した後には明らかに増加した。 6A is from the images in FIGS. 4A to 4C, and FIG. 6B is from the images in FIGS. 5A to 5C. Five RBL-2H3 cells are removed. Changes in luminance values (refractive index) measured using Image-Pro and average values thereof are plotted every 10 seconds. The lower line in the graph of FIG. 6B shows the time during which stimulation is performed by DNP-HSA. For the same graph described below, the line indicates the stimulation time. Also in the graph of FIG. 6, as described above, the refractive index of RBL-2H3 cells hardly changed during 20 minutes not stimulated with DNP-HSA, and obviously increased after stimulation with DNP-HSA.
 これらの結果から、本実施形態に係る細胞活性分析装置100によると、時間変化に基づく複数の生細胞に対する外部刺激(本実施例では、例えばDNP-HSA(抗原)による刺激)の活性を、任意の物質でラベリングすることなく、個々の生細胞毎に分析することができることがわかった。更に、図6(B)に示すように、同種細胞且つ同様の外部刺激を付与した細胞であっても、反射光の強度すなわち外部刺激による生細胞の反応の程度が異なっている。これは、複数の生細胞に対する刺激応答の平均値を評価する従来の方法よりも、外部刺激の活性を個々の生細胞ごとに分析できる本発明の方がより高感度の検出が可能であることを示している。 From these results, according to the cell activity analyzer 100 according to the present embodiment, the activity of external stimulation (stimulation by, for example, DNP-HSA (antigen)) on a plurality of living cells based on time change is arbitrarily determined. It was found that each individual living cell can be analyzed without labeling with any of the above substances. Furthermore, as shown in FIG. 6 (B), even the same type of cells and the cells to which the same external stimulus is applied, the intensity of the reflected light, that is, the degree of the reaction of the living cells due to the external stimulus is different. This is because the present invention, which can analyze the activity of external stimuli for each individual living cell, can detect with higher sensitivity than the conventional method of evaluating the average value of the stimulus response to a plurality of living cells. Is shown.
 実施形態において詳細に述べたとおり、本実施形態に係る細胞活性分析装置100によると、細胞の一部の領域の誘電率、すなわち、一つの細胞内の(複数の異なる)領域における反応を分析可能である。図9(C)も、図4(A)乃至図4(C)、図5(A)乃至図5(C)、図6(A)及び図6(B)と同様に、DNP-HSAでの刺激によるRBL-2H3細胞の誘電率、すなわち細胞の反応を示すが、一つの細胞内の複数の異なる領域を計測対象として、外部刺激の活性ならびに細胞応答を分析した一例である。 As described in detail in the embodiment, according to the cell activity analyzer 100 according to the present embodiment, it is possible to analyze a dielectric constant of a partial region of the cell, that is, a reaction in (a plurality of different) regions in one cell. It is. 9C is similar to FIGS. 4A to 4C, FIG. 5A to FIG. 5C, FIG. 6A, and FIG. 6B in DNP-HSA. This is an example in which the dielectric constant of RBL-2H3 cells, i.e., the cell response, was analyzed, and the activity of external stimuli and the cellular response were analyzed for a plurality of different regions within one cell.
 他の種類の生細胞又は外部刺激での実施例の結果について、以下簡単に述べる。 The results of the examples with other types of live cells or external stimuli are briefly described below.
 まず、生細胞としてPAM212細胞及びA431細胞、外部刺激としてEGF(Epidermal Growth Factor)(10ng/ml、R&D system製、ミネソタ州ミネアポリス)を用いた例について簡単に説明する。PAM212細胞(マウス角化細胞株)は、細胞表面にEGF受容体を発現しているため、EGF刺激による細胞の活性化が可能である。A431細胞(Human epithelial carcinoma cell line、ヒト扁平上皮細胞癌株)も、細胞表面に細胞表面にEGF受容体を高発現しているため、EGF刺激による細胞の活性化が可能である。なお、生細胞の培養、画像化及び輝度解析方法については上述したRBL-2H3細胞での実施例と同様であるため省略する。 First, an example using PAM212 cells and A431 cells as living cells and EGF (Epidermal® Growth Factor) (10 ng / ml, manufactured by R & D® system, Minneapolis, MN) as external stimuli will be briefly described. Since PAM212 cells (mouse keratinocyte cell line) express EGF receptor on the cell surface, activation of cells by EGF stimulation is possible. Since A431 cells (Human epithelial carcinoma cell line, human squamous cell carcinoma line) also highly express the EGF receptor on the cell surface, cells can be activated by EGF stimulation. The method for culturing live cells, imaging, and luminance analysis are the same as those in the RBL-2H3 cells described above, and will not be described.
 図13(A)はPAM212細胞、図13(B)はA431細胞を刺激した場合の反射強度像の画像の一例である。また、図14(A)はPAM212細胞、図14(B)はA431細胞を刺激した場合の計測対象の反射光の強度の時間変化の一例を示すグラフである。図13(A)及び図13(B)に示すそれぞれのTrack1~Track5は、無作為に選んだ五つの生細胞又は生細胞群を示しており、これらの反射光の強度の時間変化を、図14(A)及び図14(B)においてグラフ化している。 FIG. 13A is an example of an image of a reflection intensity image when a PAM212 cell is stimulated and FIG. FIG. 14A is a graph showing an example of a temporal change in the intensity of reflected light to be measured when the PAM212 cell is stimulated, and FIG. Each of Track 1 to Track 5 shown in FIG. 13 (A) and FIG. 13 (B) shows five living cells or living cell groups selected at random, and the time change of the intensity of these reflected lights is shown in FIG. It is graphed in FIG. 14 (A) and FIG. 14 (B).
 なお、Track6はバックグラウンド、すなわち生細胞が存在していない箇所であり、計測対象の反射光の強度の変化に関する情報の補正に使用するものである。図14(A)及び図14(B)における太線は平均値を示している。図13(A)、図13(B)及び図14(A)、図14(B)に示すように、どのような種類の生細胞であっても刺激による活性化を観察することができ、細胞又は刺激の種類によっては刺激による活性化の後、反射光の強度(すなわち誘電率)が刺激前より減少することもあることがわかった。更に、図14(A)、図14(B)に示すように両細胞は類似したグラフのパターンをとっているが、その反射光の強度の値から両細胞を区別することが可能であることも示された。また、計測対象は、上述したような一つの生細胞内の一部から、図13(A)、図13(B)及び図14(A)、図14(B)に示すような多数の生細胞が集まった細胞群の領域まで、選択及び測定することができることもわかった。 Note that Track 6 is a background, that is, a place where there are no living cells, and is used for correcting information related to a change in intensity of reflected light to be measured. The thick lines in FIGS. 14A and 14B indicate average values. As shown in FIG. 13 (A), FIG. 13 (B), FIG. 14 (A), and FIG. 14 (B), activation by stimulation can be observed in any kind of living cells, It has been found that the intensity of the reflected light (ie, the dielectric constant) may decrease after activation by stimulation depending on the type of cell or stimulation, compared to before stimulation. Furthermore, as shown in FIGS. 14 (A) and 14 (B), both cells have a similar graph pattern, but both cells can be distinguished from the intensity of the reflected light. Was also shown. In addition, the measurement target is a large number of living cells as shown in FIGS. 13 (A), 13 (B), 14 (A), and 14 (B) from a part of one living cell as described above. It has also been found that selection and measurement can be made up to the area of the cell group where the cells have gathered.
 さらに、生細胞として抗DNP-マウスIgEを結合したRBL-2H3細胞及び結合していないRBL-2H3細胞、外部刺激としてDNP-HSA及びRBL-2H3細胞の活性化を誘起するPMA(Calbiochem製、カリフォルニア州サンディエゴ)を用いた例について簡単に説明する。なお、生細胞の培養、画像化及び輝度解析方法については同様に省略する。 Furthermore, RBL-2H3 cells bound with anti-DNP-mouse IgE and unbound RBL-2H3 cells as living cells, and PMA (Calbiochem, California, which induces activation of DNP-HSA and RBL-2H3 cells as external stimuli) An example using the state of San Diego is briefly described. In addition, about the culture | cultivation of live cells, imaging, and a brightness | luminance analysis method, it abbreviate | omits similarly.
 図15は、抗DNP-マウスIgEを結合したRBL-2H3細胞及び結合していないRBL-2H3細胞が配置されたセンサチップを示す図である。抗DNP-マウスIgEを結合しているRBL-2H3細胞は、予めIgEを結合するようHydrocell(Cell seed Inc、日本、東京)において培養しておいた円形状の細胞である。抗DNP-マウスIgEを結合していないRBL-2H3細胞は、スピンドル形状の細胞である。 FIG. 15 is a view showing a sensor chip on which RBL-2H3 cells bound with anti-DNP-mouse IgE and RBL-2H3 cells not bound are arranged. RBL-2H3 cells binding anti-DNP-mouse IgE are circular cells previously cultured in Hydrocell (Cellcellse Inc, Tokyo, Japan) to bind IgE. RBL-2H3 cells not bound to anti-DNP-mouse IgE are spindle shaped cells.
 図16は、図15に示すセンサチップにおいて、DNP-HSA及びPMAで刺激した場合の反射光の強度の時間変化の一例を示すグラフである。aは抗DNP-マウスIgEを結合したRBL-2H3細胞のグラフであり、bは抗DNP-マウスIgEを結合していないRBL-2H3細胞のグラフである。図17(A)乃至図17(C)は、図15に示すセンサチップにおいて、DNP-HSA及びPMAで刺激した場合の反射強度像の画像の時間変化の一例である。 FIG. 16 is a graph showing an example of a temporal change in intensity of reflected light when stimulated with DNP-HSA and PMA in the sensor chip shown in FIG. a is a graph of RBL-2H3 cells bound with anti-DNP-mouse IgE, and b is a graph of RBL-2H3 cells not bound with anti-DNP-mouse IgE. FIGS. 17A to 17C are examples of temporal changes in the image of the reflection intensity image when the sensor chip shown in FIG. 15 is stimulated with DNP-HSA and PMA.
 図16に示すように、やはりDNP-HSAの刺激では抗DNP-マウスIgEを結合したRBL-2H3細胞のみが活性化し、抗DNP-マウスIgEを結合していないRBL-2H3細胞はPMAでの刺激によって活性化されていることが分かる。図17(A)乃至図17(C)でも同様に、20minにおけるDNP-HSAのみの刺激では主に円形状の細胞のみが明るく画像化され(図中矢印で示す)、PMA刺激後の40minではスピンドル形状の細胞も明るく画像化されている(図中矢印で示す)。なお、図16のグラフa及びbは、これら矢印で示す両細胞の反射光の強度の時間変化の平均値を示すものである。図16及び図17(A)乃至図17(C)の結果から、異なる形状の生細胞が混合している状態であって、各々の生細胞に対する外部刺激の活性が異なる場合には、わざわざ各形状の生細胞ごとに単離せずに各々の反射強度像の画像の時間変化を分析可能であることが示された。 As shown in FIG. 16, after stimulation of DNP-HSA, only RBL-2H3 cells bound with anti-DNP-mouse IgE were activated, and RBL-2H3 cells not bound with anti-DNP-mouse IgE were stimulated with PMA. It turns out that it is activated. Similarly, in FIGS. 17 (A) to 17 (C), only DNP-HSA stimulation at 20 min brightly images mainly circular cells (indicated by arrows in the figure), and at 40 min after PMA stimulation. Spindle-shaped cells are also brightly imaged (indicated by arrows in the figure). Note that graphs a and b in FIG. 16 show average values of changes over time in the intensity of reflected light of both cells indicated by these arrows. From the results shown in FIGS. 16 and 17 (A) to 17 (C), when live cells having different shapes are mixed and the activity of the external stimulus for each live cell is different, each of them is bothered. It was shown that it is possible to analyze the temporal change of the image of each reflection intensity image without isolating each shape of living cells.
 次に、生細胞としてRBL-2H3細胞及びRBL-3D4細胞、外部刺激としてDNP-HSA及び抗ヒトIgE抗体を用いた例について簡単に説明する。なお、生細胞の培養、画像化及び輝度解析方法については同様に省略する。RBL-3D4細胞は、RBL-2H3細胞に遺伝子工学的な手法を用いて本発明者が樹立した細胞であり、ヒトIgE受容体を発現する。RBL-2H3細胞はラット由来細胞のため、ラット、マウス由来のIgEしか結合できない。一方、RBL-3D4細胞はヒトIgE受容体も発現しているため、ヒト由来のIgEを結合させ、抗ヒトIgE抗体により刺激し、細胞を活性化することができる。 Next, an example using RBL-2H3 and RBL-3D4 cells as living cells and DNP-HSA and anti-human IgE antibodies as external stimuli will be briefly described. In addition, about the culture | cultivation of live cells, imaging, and a brightness | luminance analysis method, it abbreviate | omits similarly. RBL-3D4 cells are cells established by the present inventors using genetic engineering techniques for RBL-2H3 cells, and express human IgE receptors. Since RBL-2H3 cells are rat-derived cells, only IgE derived from rats and mice can bind. On the other hand, since RBL-3D4 cells also express human IgE receptor, human-derived IgE can be bound and stimulated with anti-human IgE antibody to activate the cells.
 ここで、RBL-3D4細胞の樹立方法について簡単に説明しておく。まず、ヒト高親和性IgE受容体(FcεRI)α-subunit 及びラットγ-subunit のcDNAを使って、細胞外領域としてヒトα-subunit、細胞膜貫通領域・細胞内領域としてγ-subunitをもつヒトIgE受容体キメラタンパクのcDNAを作製した。作製したcDNAをpEF-BOS発現ベクターに組み込み、ネオマイシン耐性ベクターと共にエレクトロポレーション法を使ってRBL-2H3細胞に導入した。導入細胞はネオマイシン存在下で培養することで選別した。受容体の発現は、ヒトIgE受容体を認識するモノクローナル抗体(CRA-1)を使って、フローサイトメトリーにより確認した。このように樹立したヒトIgE受容体発現細胞をRBL-3D4細胞とした。 Here, a method for establishing RBL-3D4 cells will be briefly described. First, using human high affinity IgE receptor (FcεRI) α-subunit cDNA and rat γ-subunit cDNA cDNAs, human IgE with human α-subunit as the extracellular region and γ-subunit as the transmembrane region and intracellular region Receptor chimeric protein cDNA was prepared. The prepared cDNA was incorporated into a pEF-BOS expression vector and introduced into RBL-2H3 cells together with a neomycin resistance vector using electroporation. Transduced cells were selected by culturing in the presence of neomycin. Receptor expression was confirmed by flow cytometry using a monoclonal antibody (CRA-1) that recognizes the human IgE receptor. The human IgE receptor-expressing cells established in this way were designated as RBL-3D4 cells.
 図18は、RBL-2H3細胞及びRBL-3D4細胞が配置されたセンサチップを示す図である。RBL-2H3細胞は抗DNP-マウスIgE(anti-DNP mIgE)を結合したスピンドル形状の細胞であり、RBL-3D4細胞はヒトIgE抗体(hIgE)を結合した円形状の細胞である。図19は、図18に示すセンサチップにおいて、DNP-HSA及び抗ヒトIgE抗体(BETYL製、テキサス州モンゴメリー)で刺激した場合の反射光の強度の時間変化の一例を示すグラフである。aはRBL-2H3細胞のグラフであり、bはRBL-3D4細胞のグラフである。 FIG. 18 is a diagram showing a sensor chip in which RBL-2H3 cells and RBL-3D4 cells are arranged. RBL-2H3 cells are spindle-shaped cells bound with anti-DNP-mouse IgE (anti-DNP mIgE), and RBL-3D4 cells are round-shaped cells bound with human IgE antibody (hIgE). FIG. 19 is a graph showing an example of temporal changes in the intensity of reflected light when the sensor chip shown in FIG. 18 is stimulated with DNP-HSA and an anti-human IgE antibody (manufactured by BETYL, Montgomery, Texas). a is a graph of RBL-2H3 cells, and b is a graph of RBL-3D4 cells.
 図20(A)乃至図20(C)は、図18に示すセンサチップにおいて、DNP-HSA及び抗ヒトIgEで刺激した場合の反射強度像の画像の時間変化の一例を示す図である。なお、図20(B)中の矢印はDNP-HSAにより刺激され活性化したスピンドル形状のRBL-2H3細胞を示し、図20(C)中の矢印は抗ヒトIgE抗体により刺激され活性化した円形状のRBL-3D4細胞を示す。図19のグラフa及びbは、これら矢印で示す両細胞の反射光の強度の時間変化の平均値を示すものである。図19及び図20(A)乃至図20(C)に示すように、DNP-HSAの刺激では抗DNP-マウスIgEを結合したRBL-2H3細胞のみが活性化し、抗ヒトIgE抗体での刺激ではヒトIgE抗体を結合したRBL-3D4細胞のみが活性化されていることが分かる。これらの結果から、本実施形態に係る細胞活性分析装置100および細胞活性分析方法を利用することにより、相補的な抗原への特異的IgE抗体を持つ細胞を識別することができることが証明された。 20 (A) to 20 (C) are diagrams illustrating an example of temporal change in the image of the reflection intensity image when the sensor chip shown in FIG. 18 is stimulated with DNP-HSA and anti-human IgE. The arrow in FIG. 20 (B) shows spindle-shaped RBL-2H3 cells stimulated and activated by DNP-HSA, and the arrow in FIG. 20 (C) is a circle stimulated and activated by anti-human IgE antibody. Shaped RBL-3D4 cells are shown. Graphs a and b in FIG. 19 show the average values of the temporal changes in the intensity of the reflected light of both cells indicated by these arrows. As shown in FIGS. 19 and 20A to 20C, stimulation with DNP-HSA activated only RBL-2H3 cells bound with anti-DNP-mouse IgE, and stimulation with anti-human IgE antibody. It can be seen that only RBL-3D4 cells bound with human IgE antibody are activated. From these results, it was proved that cells having specific IgE antibodies to complementary antigens can be identified by using the cell activity analyzer 100 and the cell activity analysis method according to the present embodiment.
 次に、生細胞として抗DNP-マウスIgEを持つRBL-2H3細胞及びA431細胞、外部刺激としてDNP-HSA及びEGFを用いた例について簡単に説明する。なお、生細胞の培養、画像化及び輝度解析方法については同様に省略する。 Next, an example using RBL-2H3 cells and A431 cells having anti-DNP-mouse IgE as living cells and DNP-HSA and EGF as external stimuli will be briefly described. In addition, about the culture | cultivation of live cells, imaging, and a brightness | luminance analysis method, it abbreviate | omits similarly.
 図21は、RBL-2H3細胞及びA431細胞(及びA431細胞群(A431 cluster))が配置されたセンサチップを示す図である。RBL-2H3細胞は抗DNP-マウスIgEを持つスピンドル形状の細胞であり、A431細胞は円形状の細胞である。図22(A)及び図22(B)は、図21に示すセンサチップにおいて、DNP-HSA及びEGFで刺激した場合の反射光の強度の時間変化の一例を示すグラフである。なお、図22に示すように、DNP-HSA及びEGFでの刺激は同時に行った。図23(A)及び図23(B)は、図21に示すセンサチップにおいて、DNP-HSA及びEGFで刺激した場合の反射強度像の画像の時間変化の一例を示す図である。 FIG. 21 is a diagram showing a sensor chip in which RBL-2H3 cells and A431 cells (and A431 cell group (A431 cluster)) are arranged. RBL-2H3 cells are spindle-shaped cells with anti-DNP-mouse IgE, and A431 cells are circular cells. FIGS. 22A and 22B are graphs showing an example of a temporal change in the intensity of reflected light when stimulated with DNP-HSA and EGF in the sensor chip shown in FIG. As shown in FIG. 22, stimulation with DNP-HSA and EGF was performed simultaneously. FIG. 23A and FIG. 23B are diagrams illustrating an example of a temporal change in an image of a reflection intensity image when stimulated with DNP-HSA and EGF in the sensor chip illustrated in FIG.
 図23(A)は刺激を与える前の画像(cont)を示し、図23(B)はその30分後のDNP-HSA及びEGFでの刺激を与えている間における画像を示す。また、図中の矢印は、それぞれの細胞のうち無作為に選択した五つの細胞を示す。矢尻が三角形のものはRBL-2H3細胞を示し、くの字状のものはA431細胞を示す。図22(A)において、aはこれら五つのRBL-2H3細胞の変化を示すグラフであり、bも五つのA431細胞の変化を示すグラフである。図22(A)に示すように、同種の細胞においても反射光の強度の時間変化には差異はあるが、aとbは明らかに異なるグラフのパターンであることがわかる。 FIG. 23 (A) shows an image (cont) before giving a stimulus, and FIG. 23 (B) shows an image while giving a stimulus with DNP-HSA and EGF 30 minutes later. Moreover, the arrow in a figure shows five cells selected at random among each cell. A triangular arrowhead indicates RBL-2H3 cells, and a square shape indicates A431 cells. In FIG. 22A, a is a graph showing changes in these five RBL-2H3 cells, and b is a graph showing changes in five A431 cells. As shown in FIG. 22A, it can be seen that even in the same type of cells, there is a difference in the temporal change of the intensity of the reflected light, but a and b are clearly different graph patterns.
 図22(B)において、aはRBL-2H3細胞の変化の平均値を示し、bはA431細胞の変化の平均値を示し、cはRBL-2H3細胞及びA431細胞の平均値を示し、dは全体の画像での平均値を示す。ここで、a(RBL-2H3細胞平均)のグラフは時間が経過しても反射光の強度は上昇したままである。逆に、b(A431細胞平均)のグラフは、ある程度時間が経過すると刺激前よりも下がっている。そのため、画像全体の平均値であるdのグラフの変化が弱くなってしまっている。 In FIG. 22 (B), a represents the average value of changes in RBL-2H3 cells, b represents the average value of changes in A431 cells, c represents the average value of RBL-2H3 cells and A431 cells, and d represents The average value in the whole image is shown. Here, in the graph of a (RBL-2H3 cell average), the intensity of the reflected light remains increased over time. On the contrary, the graph of b (A431 cell average) is lower than that before stimulation after a certain amount of time has passed. Therefore, the change of the graph of d which is the average value of the whole image has become weak.
 これらの結果から、本実施形態に係る細胞活性分析装置100および細胞活性分析方法を利用する際に、異なる性質を示す生細胞が混合している状態において共培養を行い、且つ同時に複数の刺激を与えた場合であっても、個々の生細胞の誘電率に関する特有のシグナルパターンが観察できることがわかった。すなわち、平均値を評価する従来の方法より高感度かつ迅速に、その細胞の種類及び性質等を検出できるということが示された。 From these results, when using the cell activity analyzer 100 and the cell activity analysis method according to the present embodiment, co-culture is performed in a state where living cells having different properties are mixed, and a plurality of stimuli are simultaneously applied. Even when given, it was found that a unique signal pattern related to the dielectric constant of individual living cells could be observed. That is, it was shown that the type and nature of the cells can be detected with higher sensitivity and speed than the conventional method for evaluating the average value.
 (実施例2)
 本実施例2では、野生型ヒトEGFRを強制発現させたCHO(Chinese Hamster Ovary)細胞へEGF刺激を行った場合の経時的な共鳴角の変化について詳細に説明する。なお、EGFRは体内の様々な細胞の増殖および臓器の発達・形成に重要な働きを示すことが周知であり、また、様々ながん細胞において過剰発現が見られることも知られている。
(Example 2)
In Example 2, the change in resonance angle over time when EGF stimulation is performed on CHO (Chinese Hamster Ovary) cells in which wild-type human EGFR is forcibly expressed will be described in detail. EGFR is well known to exhibit important functions in the proliferation of various cells in the body and the development / formation of organs, and is also known to be overexpressed in various cancer cells.
 まず、空のベクターpCMV-Tag4(Stratagene社製)、および、pCMV-Tag4に野生型ヒトEGFR遺伝子を組み込んだベクターを、10%ウシ胎児血清(FCS、Fetal calf serum)を含むHam's F-12培養液で維持したCHO細胞に、電気穿孔法を用いて遺伝子導入した。なお、pCMV-Tag4に組み込んだ野生型ヒトEGFR遺伝子は、配列表の配列番号1および配列番号2に示す塩基配列のフォワードプライマーおよびリバースプライマーを使用したPCRによって増幅した。遺伝子導入後、10mg/mlのG418存在下において薬剤選択を行った。その後、空のベクターを導入したCHO細胞株、および野生型ヒトEGFRを高いレベルで安定発現したCHO細胞株を、1.2×104cells/60μlとなるようにセンサーチップ上に滴下し、一晩培養した。 First, an empty vector pCMV-Tag4 (manufactured by Stratagene) and a vector in which wild-type human EGFR gene is incorporated into pCMV-Tag4 are cultivated in Ham's F-12 containing 10% fetal calf serum (FCS, Fetal calf serum). Genes were introduced into CHO cells maintained in solution using electroporation. The wild-type human EGFR gene incorporated into pCMV-Tag4 was amplified by PCR using the forward primer and reverse primer of the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing. After gene introduction, drug selection was performed in the presence of 10 mg / ml G418. Thereafter, a CHO cell line introduced with an empty vector and a CHO cell line stably expressing wild-type human EGFR at a high level are dropped on the sensor chip so as to be 1.2 × 10 4 cells / 60 μl, and cultured overnight. did.
 培養後、センサーチップ上の細胞をHepesバッファーで灌流し、10ng/mlであるリコンビナントヒトEGF(hEGF、R&D社製)で10分間刺激を行い、刺激後の経時的な共鳴角の変化をSPR-CELLIA(モリテックス社製)を用いて測定した。当該SPR装置での詳細な測定方法については、Hide M., Tsutsui,T., Sato,H., Nishimura,T., Morimoto,K., Yamamoto,S., Yoshizato,K.、2002、Anal. Biochem. 302(1)、28-37、Yanase,Y., Suzuki,H., Tsutsui,T., Hiragun,T., Kameyoshi,Y., Hide,M.、2007、Biosens. Bioelectron. 22(6)、1081-1086、および、Yanase,Y., Suzuki,H., Tsutsui,T., Uechi,I., Hiragun,T., Mihara,S., Hide,M.、2007、Biosens. Bioelectron. 23(4)、562-567を参照されたい。 After culturing, the cells on the sensor chip were perfused with Hepes buffer, stimulated with 10 ng / ml recombinant human EGF (hEGF, manufactured by R & D) for 10 minutes, and changes in the resonance angle over time after stimulation were measured using SPR- It measured using CELLIA (Mortex company make). Detailed measurement methods using the SPR device are described in Hide M., Tsutsui, T., Sato, H., Nishimura, T., Morimoto, K., Yamamoto, S., Yoshizato, K., 2002, Anal. Biochem. 302 (1), 28-37, Yanase, Y., Suzuki, H., Tsutsui, T., Hiragun, T., Kameyoshi, Y., Hide, M., 2007, Biosens. Bioelectron. 22 (6 ), 1081-1086, and Yanase, Y., Suzuki, H., Tsutsui, T., Uechi, I., Hiragun, T., Mihara, S., Hide, M., 2007, Biosens. Bioelectron. 23 (4), 562-567.
 図24は、実施例2に係る野生型ヒトEGFRを強制発現させたCHO細胞での、EGF刺激による経時的な共鳴角の変化を示す図である。図24において、縦軸はSPR装置による共鳴角の変化(Change of AR(Angle of Resonance)(degree))を示し、横軸はEGF刺激からの時間(Time(sec))を示す。なお、後述する図27ないし図32、および、図33(B)についても同様である。 FIG. 24 is a graph showing changes in resonance angle over time by EGF stimulation in CHO cells in which wild-type human EGFR according to Example 2 was forcibly expressed. In FIG. 24, the vertical axis indicates the change in resonance angle (Change of AR (Angle of Resonance) (degree)) by the SPR device, and the horizontal axis indicates the time (Time (sec)) from the EGF stimulation. The same applies to FIGS. 27 to 32 and FIG. 33B described later.
 図24に示すように、空のベクターを導入したCHO細胞株(mock)と比較すると、野生型ヒトEGFR発現CHO細胞株(EGFR-WT)は、EGF刺激に対して異なる共鳴角の経時的変化パターンを示すということがわかった。具体的には、野生型ヒトEGFR発現CHO細胞株では、典型的な三相性の共鳴角の経時的変化パターン(立ち上がった後に初期レベルよりも立ち下がり、再び立ち上がる変動パターン)を示すことが確認された。 As shown in FIG. 24, when compared with the CHO cell line (mock) into which an empty vector was introduced, the wild-type human EGFR-expressing CHO cell line (EGFR-WT) changes with time in different resonance angles with respect to EGF stimulation. It turns out that it shows a pattern. Specifically, it was confirmed that the wild-type human EGFR-expressing CHO cell line exhibits a typical three-phase resonance angle change pattern over time (a fluctuation pattern that rises from the initial level and rises again after rising). It was.
 (実施例3)
 本実施例3では、ATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞株でのEGF刺激に係る実施例について詳細に説明する。
(Example 3)
In this Example 3, an example relating to EGF stimulation in a CHO cell line expressing human EGFR with a mutated ATP binding domain will be described in detail.
 まず、ATP結合ドメインの変異型EGFR(EGFR-K721M(Chen,W.S., Lazar,C.S., Poenie,M., Tsien,R.Y., Gill,G.N., Rosenfeld.M.G.、1987、Nature 328(6133)、820-823参照))遺伝子を、QuickChange Site Directed Mutagenesis Kit(Stratagene社製)を用いて作成し、PCR法によって増幅した。当該PCRにおいて使用したフォワードプライマーおよびリバースプライマーの塩基配列を、配列表の配列番号3および配列番号4に示す。作成したATP結合ドメイン変異型EGFR遺伝子を、実施例1において述べた方法と同様の方法でCHO細胞に電気穿孔法を用いて遺伝子導入し、薬剤選択を行って安定発現細胞株を得た。 First, a mutant EGFR of the ATP binding domain (EGFR-K721M (Chen, WS, Lazar, CS, Poenie, M., Tsien, RY, Gill, GN, Rosenfeld. MG, 1987, Nature 28 328 (6133), 820-823). See)) Genes were generated using QuickChange® Site® Directed® Mutagenesis® Kit (Stratagene) and amplified by PCR. The base sequences of the forward primer and reverse primer used in the PCR are shown in SEQ ID NO: 3 and SEQ ID NO: 4 in the sequence listing. The prepared ATP-binding domain mutant EGFR gene was introduced into CHO cells by electroporation in the same manner as described in Example 1, and drug selection was performed to obtain a stable expression cell line.
 次に、前述した実施例2の野生型ヒトEGFR発現CHO細胞株と、ATP結合ドメイン変異型EGFR発現CHO細胞株とを、0.2×106/mlの濃度で6ウェルプレートに播種し、10%ウシ胎児血清を含むHam's F-12培養液で一晩培養した。その後、10ng/mlのhEGF(R&D社製)で5分間刺激し、1%NP-40を含む細胞溶解液で処理してサンプルを作成し、SDS-PAGE(SDS-polyacrylamide gel electrophoresis)で分離した。 Next, the wild-type human EGFR-expressing CHO cell line of Example 2 and the ATP-binding domain mutant EGFR-expressing CHO cell line described above were seeded in a 6-well plate at a concentration of 0.2 × 10 6 / ml. Cultured overnight in Ham's F-12 culture medium containing 1% fetal bovine serum. Thereafter, the sample was prepared by stimulation with 10 ng / ml hEGF (R & D) for 5 minutes, treatment with a cell lysate containing 1% NP-40, and separation by SDS-PAGE (SDS-polyacrylamide gel electrophoresis). .
 分離後、PVDF(polyvinylidene fluoride)膜(Immobilon-P、Millipore社製)に転写して、抗リン酸化特異的EGFR抗体(Cell signaling社製)、抗EGFR抗体(Cell signaling社製)および抗FLAG抗体(Stratagene社製)を用い、ウエスタンブロッティングを行った。図25は、実施例2に係るATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞での、抗リン酸化特異的EGFR抗体、抗EGFR抗体および抗FLAG抗体によるウェスタンブロッティングの結果を示す図である。 After separation, transfer to PVDF (polyvinylidenevinylfluoride) membrane (Immobilon-P, manufactured by Millipore), anti-phosphorylation specific EGFR antibody (Cell signaling), anti-EGFR antibody (Cell 抗 signaling) and anti-FLAG antibody Western blotting was performed using (Stratagene). FIG. 25 is a diagram showing the results of Western blotting using anti-phosphorylation specific EGFR antibody, anti-EGFR antibody and anti-FLAG antibody in CHO cells expressing human EGFR with a mutated ATP binding domain according to Example 2. is there.
 図25に示すように、ATP結合ドメイン変異型EGFR発現CHO細胞(K721M)は、野生型ヒトEGFR発現CHO細胞(WT)と比較すると、同等レベル以上のEGFRタンパク質の発現を確認できたが、EGF刺激を行ってもチロシンリン酸化はほとんど起こらなかった。 As shown in FIG. 25, ATP-binding domain mutant EGFR-expressing CHO cells (K721M) were able to confirm the expression of EGFR protein at an equivalent level or higher when compared to wild-type human EGFR-expressing CHO cells (WT). Tyrosine phosphorylation hardly occurred even after stimulation.
 さらに、本発明者らは、ATP結合ドメイン変異型EGFR発現CHO細胞、および、野生型ヒトEGFR発現CHO細胞において、それぞれの細胞表面でのEGFRの発現量をPE標識抗ヒトEGFR抗体(BD Biosciences社製)を用い、FACSCalibar(BD Biosciences社製)で測定した。図26は、実施例3に係るATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞表面での、EGFRの発現量の測定結果を示す図である。 Furthermore, the present inventors determined the expression level of EGFR on the surface of each of ATP-binding domain mutant EGFR-expressing CHO cells and wild-type human EGFR-expressing CHO cells using a PE-labeled anti-human EGFR antibody (BD Biosciences). And FACSCalibar (BD Biosciences). FIG. 26 is a diagram showing measurement results of the expression level of EGFR on the surface of CHO cells in which human EGFR having a mutated ATP binding domain according to Example 3 was expressed.
 図26において、黒塗りとなっているものはアイソタイプコントロール抗体(Control)を示し、実線となっているものは野生型ヒトEGFR発現CHO細胞におけるEGFRの細胞表面発現量(EGFR-WT)を示し、点線となっているものはATP結合ドメイン変異型EGFR発現CHO細胞におけるEGFRの細胞表面発現量(EGFR-K721M)を示す。図26に示すように、ATP結合ドメイン変異型EGFR発現CHO細胞であっても、細胞表面発現量は、野生型ヒトEGFR発現CHO細胞の細胞表面発現量と同等であった。 In FIG. 26, the black-colored ones indicate isotype control antibodies (Control), and the solid-line ones indicate the EGFR cell surface expression level (EGFR-WT) in wild-type human EGFR-expressing CHO cells. The dotted line indicates the EGFR cell surface expression level (EGFR-K721M) in the ATP-binding domain mutant EGFR-expressing CHO cells. As shown in FIG. 26, even in ATP-binding domain mutant EGFR-expressing CHO cells, the cell surface expression level was equivalent to the cell surface expression level of wild-type human EGFR-expressing CHO cells.
 また、本発明者らは、前述したATP結合ドメイン変異型EGFR発現CHO細胞株および野生型ヒトEGFR発現CHO細胞株をセンサーチップ上に播種し、翌日に10ng/mlのhEGF(R&D社製)を用いて10分間刺激を行い、経時的な共鳴角の変化をSPR-CELLIA(モリテックス社製)で測定した。 In addition, the present inventors seeded the aforementioned ATP-binding domain mutant EGFR-expressing CHO cell line and wild-type human EGFR-expressing CHO cell line on a sensor chip, and the next day, 10 ng / ml hEGF (manufactured by R & D) was used. The sample was stimulated for 10 minutes, and the change in resonance angle over time was measured with SPR-CELLIA (Mortex).
 図27は、実施例2に係るATP結合ドメインの変異したヒトEGFRを発現させたCHO細胞での、EGF刺激による経時的な共鳴角の変化を示す図である。図27に示すように、野生型ヒトEGFR発現CHO細胞株(EGFR-WT)は実施例1の結果と同様の典型的な三相性の共鳴角の変化を示した。しかし、ATP結合ドメイン変異型EGFR発現CHO細胞株(EGFR-K721M)では、EGFによる刺激に対する共鳴角の変化をほとんど起こさなかった。 FIG. 27 is a diagram showing changes in resonance angle over time by EGF stimulation in CHO cells in which human EGFR with a mutated ATP binding domain according to Example 2 was expressed. As shown in FIG. 27, the wild-type human EGFR-expressing CHO cell line (EGFR-WT) showed a typical three-phase change in resonance angle similar to the result of Example 1. However, in the ATP-binding domain mutant EGFR-expressing CHO cell line (EGFR-K721M), the resonance angle was hardly changed by stimulation with EGF.
 (実施例4)
 本実施例4では、種々の癌細胞株のEGF刺激に対する共鳴角の変化に係る実施例について詳細に説明する。
Example 4
In Example 4, examples relating to changes in resonance angle with respect to EGF stimulation of various cancer cell lines will be described in detail.
 前述した実施例2および実施例3の方法と同様に、胃癌細胞株(MKN-1、MKN-7およびMK28)ならびに前立腺癌細胞株(DU145およびLNCap)を、それぞれセンサーチップ上に滴下し、翌日にhEGF(10ng/ml、R&D社製)で10分間刺激を行い、経時的な共鳴角の変化をSPR-CELLIA(モリテックス社製)で測定した。 In the same manner as in Example 2 and Example 3 described above, gastric cancer cell lines (MKN-1, MKN-7 and MK28) and prostate cancer cell lines (DU145 and LNCap) were dropped on the sensor chip, respectively, and the next day Then, stimulation with hEGF (10 ng / ml, manufactured by R & D) was performed for 10 minutes, and the change in resonance angle over time was measured with SPR-CELLIA (manufactured by Moritex).
 図28は、実施例4に係る胃癌細胞株MKN-1での、EGF刺激による経時的な共鳴角の変化を示す図である。図29は、実施例4に係る胃癌細胞株MKN-7での、EGF刺激による経時的な共鳴角の変化を示す図である。図30は、実施例4に係る胃癌細胞株MK28での、EGF刺激による経時的な共鳴角の変化を示す図である。図31は、実施例4に係る前立腺癌細胞株DU145での、EGF刺激による経時的な共鳴角の変化を示す図である。図32は、実施例4に係る前立腺癌細胞株LNCapでの、EGF刺激による経時的な共鳴角の変化を示す図である。 FIG. 28 is a graph showing changes in the resonance angle over time by EGF stimulation in the gastric cancer cell line MKN-1 according to Example 4. FIG. 29 is a graph showing changes in resonance angle over time by EGF stimulation in gastric cancer cell line MKN-7 according to Example 4. FIG. FIG. 30 is a diagram showing changes in the resonance angle over time by EGF stimulation in the gastric cancer cell line MK28 according to Example 4. FIG. FIG. 31 is a graph showing changes in resonance angle over time by EGF stimulation in prostate cancer cell line DU145 according to Example 4. FIG. FIG. 32 is a diagram showing changes in resonance angle over time by EGF stimulation in the prostate cancer cell line LNCap according to Example 4.
 図28ないし図32において、EGF刺激によるレセプターのリン酸化についても、実施例2において述べた方法と同様に、ウェスタンブロッティングによって確認した(各挿入図)。また、図28ないし図32において、上グラフは各癌細胞株にEGF刺激を行った場合(EGF)、および、各癌細胞株にEGF刺激を行わない場合(Control)による経時的な共鳴角の変化を示しており、下グラフは該経時的な共鳴角の変化の差分を示している。さらに、独立して行った実験回数nについても各図中に示した。 28 to 32, receptor phosphorylation by EGF stimulation was also confirmed by Western blotting as in the method described in Example 2 (each inset). In FIG. 28 to FIG. 32, the upper graphs show the resonance angles over time when EGF stimulation is performed on each cancer cell line (EGF) and when EGF stimulation is not performed on each cancer cell line (Control). The lower graph shows the difference in the change in the resonance angle over time. Furthermore, the number n of experiments conducted independently is also shown in each figure.
 図28ないし図30に示すように、胃癌細胞株(MKN-1、MKN-7およびMK28)では、EGF刺激による二相性の経時的な共鳴角の変化パターン((1)立ち上がって(2)下がる変動パターン)が観察された。また、図31および図32に示すように、前立腺癌細胞株(DU145およびLNCap)では、EGF刺激による一相性の経時的な共鳴角の変化パターン(図31は、(1)立ち上がりのみの変動パターン、図32は、(2)立ち下がりのみの変動パターン)が観察された。特に、前立腺癌細胞株LNCapは、他の細胞株とは異なり共鳴角の増加する相を含まなかった。 As shown in FIG. 28 to FIG. 30, in the gastric cancer cell lines (MKN-1, MKN-7 and MK28), the biphasic change pattern of resonance angle over time ((1) rises and (2) falls by EGF stimulation. A fluctuation pattern) was observed. Further, as shown in FIGS. 31 and 32, in the prostate cancer cell lines (DU145 and LNCap), the change pattern of the uniphasic resonance angle over time by stimulation with EGF (FIG. 31 shows the change pattern of (1) rise only) In FIG. 32, (2) fluctuation pattern of only falling) was observed. In particular, the prostate cancer cell line LNCap did not contain a phase with increasing resonance angle, unlike other cell lines.
 本実施例4の結果、ならびに、実施例1および実施例2において述べた野生型ヒトEGFR発現CHO細胞株の典型的な三相性の経時的な共鳴角の変化パターンの結果から、正常細胞に対する癌細胞だけでなく癌細胞株の種類までも、細胞の経時的な共鳴角の変化パターン、すなわち誘電率の経時的変化パターンの特性を指標とすることにより(例えば、一相性、二相性、三相性またはそれ以外の非定型的なパターン等による区別により)、生細胞の包括的な状態を診断・分析できるということが確認できた。 From the results of this Example 4 and the typical three-phase resonance angle change pattern of the wild-type human EGFR-expressing CHO cell line described in Example 1 and Example 2, cancers against normal cells By using the characteristics of the change pattern of the resonance angle of the cell over time, that is, the change pattern of the dielectric constant over time, as well as the type of cancer cell line as well as the cell (for example, monophasic, biphasic, triphasic) It was also confirmed that the comprehensive state of living cells can be diagnosed and analyzed by distinguishing by other atypical patterns or the like.
 また、この結果から、胃癌細胞株または前立腺癌細胞株以外の種々の細胞株であっても、各々の細胞株に特異的な誘電率の経時的変化パターンの特性があることが示唆される。なお、正常細胞に対する癌細胞の診断・分析だけでなく、正常細胞とがん細胞との区別、さらには正常細胞と何らかの異常を有する細胞との区別さえも、誘電率の経時的変化パターンの特性の評価によって可能であることが示唆される。 Also, this result suggests that various cell lines other than gastric cancer cell lines or prostate cancer cell lines have characteristics of a time-dependent change pattern of dielectric constant in each cell line. In addition to the diagnosis / analysis of cancer cells relative to normal cells, the distinction between normal cells and cancer cells, and even the distinction between normal cells and cells with some abnormality, is a characteristic of the temporal change pattern of dielectric constant. This suggests that this is possible.
 (実施例5)
 本実施例5では、ヒト血管肉腫細胞株と、EGFRおよびEGF刺激に対する共鳴角の変化との関連性に係る実施例について詳細に説明する。なお、ヒト軟部肉腫細胞であるヒト血管肉腫細胞とEGFRとのより詳細な関連性については、J.-L.Yang, M.T.Hannan, P.J.Crowe、2006、European Journal of Surgical Oncology(EJSO)32、466-468、を参照されたい。
(Example 5)
In Example 5, an example relating to the relationship between the human hemangiosarcoma cell line and the change in resonance angle with respect to EGFR and EGF stimulation will be described in detail. For more detailed relationship between human vascular sarcoma cells, which are human soft tissue sarcoma cells, and EGFR, see J.-L. Yang, MTHannan, PJCrowe, 2006, European Journal of Surgical Oncology (EJSO) 32, 466-468. Please refer to.
 まず、ヒト血管肉腫細胞株(ISO-HAS)を、15%FCSを含むDMEM(Dulbecco's Modified Eagle Medium)に懸濁し、0.2×106/mlの濃度において6ウェルプレート上に播種し、一晩培養を行った。その後、hEGF(終濃度100ng/ml、R&D社製を使用)で0分ないし15分刺激し、細胞溶解液で処理し、抗リン酸化特異的EGFR抗体(Cell signaling社製)および抗EGFR抗体(Cell signaling社製)を用い、実施例3および実施例4において述べた方法と同様の方法でウエスタンブロッティングを行った。 First, a human hemangiosarcoma cell line (ISO-HAS) is suspended in DMEM (Dulbecco's Modified Eagle Medium) containing 15% FCS, seeded on a 6-well plate at a concentration of 0.2 × 10 6 / ml, and overnight. Culture was performed. Thereafter, stimulation with hEGF (final concentration of 100 ng / ml, using R & D) for 0 to 15 minutes, treatment with cell lysate, anti-phosphorylation specific EGFR antibody (Cell signaling) and anti-EGFR antibody ( Western blotting was performed in the same manner as described in Example 3 and Example 4 using Cell Signaling).
 また、該ISO-HAS細胞をセンサーチップ上に播種し、翌日にhEGF(10ng/ml、R&D社製)で刺激を行い、前述の実施例3および実施例4と同様に、経時的な共鳴角の変化をSPR-CELLIA(モリテックス社製)で測定した。 In addition, the ISO-HAS cells were seeded on a sensor chip, stimulated with hEGF (10 ng / ml, manufactured by R & D) on the next day, and the resonance angle over time was the same as in Examples 3 and 4 described above. Was measured with SPR-CELLIA (Mortex).
 図33(A)は、実施例5に係るヒト血管肉腫細胞株の抗リン酸化特異的EGFR抗体および抗EGFR抗体によるウェスタンブロッティングの結果を示す図である。図33(B)は、実施例5に係るヒト血管肉腫細胞株でのEGF刺激による経時的な共鳴角の変化を示す図である。なお、図33(B)についても、図28ないし図32と同様に、上グラフはISO-HAS細胞にEGF刺激を行った場合(EGF)、および、ISO-HAS細胞にEGF刺激を行わない場合(Control)による経時的な共鳴角の変化を示しており、下グラフは該経時的な共鳴角の変化の差分を示している。 FIG. 33 (A) shows the results of western blotting of the human hemangiosarcoma cell line according to Example 5 using anti-phosphorylation-specific EGFR antibody and anti-EGFR antibody. FIG. 33 (B) is a graph showing changes in the resonance angle over time by EGF stimulation in the human hemangiosarcoma cell line according to Example 5. In FIG. 33 (B), as in FIGS. 28 to 32, the upper graph shows the case where EGF stimulation is performed on ISO-HAS cells (EGF) and the case where EGF stimulation is not performed on ISO-HAS cells. The change in resonance angle over time due to (Control) is shown, and the lower graph shows the difference in change in resonance angle over time.
 図33(A)に示すように、本実施例5に係るヒト血管肉腫細胞株(ISO-HAS)では、EGFRを発現しており、100ng/mlの濃度でのEGF刺激において、EGFRのリン酸化が確認された。また、図33(B)に示すように、本実施例5に係るヒト血管肉腫細胞株(ISO-HAS)では、EGF刺激による非定型で経時的な共鳴角の変化パターン((1)立ち上がって、(2)不完全に下がり、さらに上下に変動するランダム(非定型的)な変動パターン)が観察された。 As shown in FIG. 33 (A), the human hemangiosarcoma cell line (ISO-HAS) according to Example 5 expresses EGFR and phosphorylates EGFR upon stimulation with EGF at a concentration of 100 ng / ml. Was confirmed. In addition, as shown in FIG. 33 (B), in the human hemangiosarcoma cell line (ISO-HAS) according to Example 5, an atypical and temporal change pattern of the resonance angle ((1) rising by EGF stimulation) (2) Random (atypical fluctuation patterns) that fell incompletely and fluctuated up and down were observed.
 実施例2ないし実施例4において述べた結果、および、このような本実施例5のヒト血管肉腫細胞株の結果から、生細胞を含むサンプルをそのまま本発明の分析の対象としても、当該サンプルに含まれる生細胞の評価・分析ができる可能性も示唆される。具体的には、例えば、予め被験者から血液等の体液を採取しておき直接SPR装置で分析することによって、何らかの腫瘍・癌細胞が含まれるか否かを評価できる技術に繋がる可能性も示唆される。 From the results described in Examples 2 to 4 and the results of the human hemangiosarcoma cell line of this Example 5, a sample containing living cells can be used as an object of analysis of the present invention as it is. The possibility that the contained cells can be evaluated and analyzed is also suggested. Specifically, for example, it is suggested that by collecting a body fluid such as blood from a subject in advance and directly analyzing it with an SPR device, it may lead to a technique that can evaluate whether or not any tumor / cancer cell is included. The
 本発明は、上記発明の実施形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
 本明細書の中で明示した論文、公開特許公報および特許公報等の内容は、その全ての内容を援用によって引用することとする。 The contents of the papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.
 本出願は、2010年3月17日に出願された日本国特許出願2010-061710号及び2010年12月14日に出願された日本国特許出願2010-278131号に基づく。本明細書中に日本国特許出願2010-061710号及び日本国特許出願2010-278131号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2010-061710 filed on Mar. 17, 2010 and Japanese Patent Application No. 2010-278131 filed on Dec. 14, 2010. The specification, claims, and entire drawings of Japanese Patent Application No. 2010-061710 and Japanese Patent Application No. 2010-278131 are incorporated herein by reference.
 本発明によれば、個々の生細胞に対する外部刺激の活性を分析することができる細胞活性分析装置及び細胞活性分析方法が提供される。これらの細胞活性分析装置及び細胞活性分析方法によって、個々の生細胞及び/又は個々の生細胞内の一部分の性質等を評価・解析したり、特定の種類の生細胞を単離したりすることができる。また、ある特定の活性を持つ生細胞をスクリーニングしたり、細胞活性に関わる特定の生体分子(外部刺激)をスクリーニングしたり、更には、主に生細胞のどの部分において活性化が起こるのかを調べたり等多様な細胞に関する研究に利用することができる。具体的には、医療用の診断装置、例えばハイスループットアレルギー診断装置に利用することができる。 According to the present invention, there are provided a cell activity analyzing apparatus and a cell activity analyzing method capable of analyzing the activity of external stimuli for individual living cells. With these cell activity analyzers and cell activity analysis methods, it is possible to evaluate and analyze the properties of individual living cells and / or a part of each living cell, or to isolate specific types of living cells. it can. In addition, live cells with a specific activity are screened, specific biomolecules related to cell activity (external stimuli) are screened, and further, in which part of live cells the activation occurs mainly Can be used for research on various cells. Specifically, it can be used for a medical diagnostic apparatus, for example, a high-throughput allergy diagnostic apparatus.
 また、本発明者らは、表面プラズモン共鳴装置(SPR装置)を利用し、正常細胞と癌細胞とではEGF刺激に対して異なる共鳴角の経時的変化パターンの特性を示すということを解明した。さらに、異なる癌および癌細胞株の種類でもEGF刺激に対して異なる共鳴角の経時的変化パターンの特性を示すということも示した。また、ヒト血管肉腫細胞株についても、EGF刺激に対して異なる共鳴角の経時的変化パターンの特性を有することを確認した。 In addition, the present inventors have clarified that normal cells and cancer cells exhibit characteristics of temporal change patterns of different resonance angles with respect to EGF stimulation using a surface plasmon resonance device (SPR device). Furthermore, it was also shown that different cancer and cancer cell line types exhibit different resonance angle characteristics over time for EGF stimulation. In addition, it was confirmed that the human hemangiosarcoma cell line also has a characteristic of a temporal change pattern of different resonance angles with respect to EGF stimulation.
 そこで、本発明に係る生細胞の分析方法によれば、細胞の状態を、個々の生細胞のレベルにおいて、包括的かつ直接的に分析することができる。特に、細胞または組織を固定せず、かつ潜在的可能性として悪性腫瘍等を評価せずに、細胞の状態、がん細胞、癌の種類および癌細胞株の種類を分析可能であることは技術的価値が高い。 Therefore, according to the method for analyzing living cells according to the present invention, the state of cells can be comprehensively and directly analyzed at the level of individual living cells. In particular, it is a technology that can analyze cell status, cancer cells, types of cancer and types of cancer cell lines without fixing cells or tissues and evaluating malignant tumors as a potential possibility. High value.
 1 光源
 2 偏光板
 3 プリズム
 4 ガラス基板
 5、15 金属薄膜
 6 対物レンズ
 7 撮像部
 8 コンピュータ
 9 フローセル
 10 液体供給部
 11 顕微鏡
 21 画像取得部
 22 画像処理部
 23 表示部
 24 操作部
 30 操作内容解析部
 31 計測対象抽出部
 32 初期値保持部
 33 暗成分抽出部
 34、35 差分部
 36 波形生成部
 40 マルチウェルチャンバー
 41 マルチチャンバー
 100 細胞活性分析装置
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarizing plate 3 Prism 4 Glass substrate 5, 15 Metal thin film 6 Objective lens 7 Imaging part 8 Computer 9 Flow cell 10 Liquid supply part 11 Microscope 21 Image acquisition part 22 Image processing part 23 Display part 24 Operation part 30 Operation content analysis part 31 Measurement Object Extraction Unit 32 Initial Value Holding Unit 33 Dark Component Extraction Unit 34, 35 Difference Unit 36 Waveform Generation Unit 40 Multiwell Chamber 41 Multichamber 100 Cell Activity Analyzer

Claims (30)

  1.  表面プラズモン共鳴現象を利用して生細胞に対する外部刺激の活性を分析する細胞活性分析装置であって、
     一方の面で前記生細胞に接する金属薄膜と、
     前記金属薄膜の他方の面に実質的に接する界面を有する屈折光学素子と、
     P偏光の平行光束を、前記屈折光学素子に入射させ、前記表面プラズモン共鳴現象を発生させる所定の入射角で前記界面に入射させる入射手段と、
     前記界面に入射した前記平行光束の反射光の2次元強度分布に相当する強度像を所定の倍率に拡大する拡大光学系と、
     前記拡大光学系で拡大された前記強度像を撮像する撮像手段と、
     前記撮像手段で撮像された前記強度像の画像データをサンプリングする画像取得手段と、
     前記画像取得手段によりサンプリングされた前記強度像の画像データから、前記生細胞の少なくとも一部の像を計測対象として選択する選択手段と、
     前記選択手段により選択された前記計測対象の輝度値を抽出し、前記生細胞に対して前記外部刺激を与えた前後での前記計測対象の輝度値の変化に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する算出手段と、
     を備える細胞活性分析装置。
    A cell activity analyzer that analyzes the activity of external stimuli on living cells using the surface plasmon resonance phenomenon,
    A metal thin film in contact with the living cell on one side;
    A refractive optical element having an interface substantially in contact with the other surface of the metal thin film;
    Incident means for causing a P-polarized parallel light beam to enter the refractive optical element and to enter the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon;
    A magnifying optical system for enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification;
    Imaging means for capturing the intensity image magnified by the magnification optical system;
    Image acquisition means for sampling image data of the intensity image captured by the imaging means;
    Selecting means for selecting at least a partial image of the living cells as a measurement target from the image data of the intensity image sampled by the image acquisition means;
    The brightness value of the measurement target selected by the selection means is extracted, and the reflected light of the measurement target is based on a change in the brightness value of the measurement target before and after the external stimulus is applied to the living cells. A calculating means for calculating information on a change in intensity of
    A cell activity analyzer comprising:
  2.  前記選択手段は、前記計測対象を複数指定可能であり、
     前記算出手段は、前記強度像の画像データから、選択された複数の前記計測対象各々の輝度値を抽出し、前記計測対象の反射光の強度の変化に関する情報を、前記計測対象毎に算出する、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    The selection means can specify a plurality of measurement objects,
    The calculation means extracts a luminance value of each of the plurality of selected measurement objects from the image data of the intensity image, and calculates information regarding a change in intensity of reflected light of the measurement object for each measurement object. ,
    The cell activity analyzer according to claim 1.
  3.  前記選択手段は、同一の前記生細胞の像における複数の異なる箇所を前記計測対象として選択する、
     ことを特徴とする請求項2に記載の細胞活性分析装置。
    The selection means selects a plurality of different locations in the same live cell image as the measurement target,
    The cell activity analyzer according to claim 2.
  4.  前記算出手段は、前記生細胞に対して前記外部刺激を与える前の前記計測対象の輝度値と、前記外部刺激を与えた後の前記計測対象の輝度値との差分に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    The calculation means is configured to calculate the measurement target based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. Calculate information about changes in the intensity of reflected light from
    The cell activity analyzer according to claim 1.
  5.  前記算出手段は、前記強度像の画像データにおける前記生細胞が存在していない箇所の輝度値の成分に基づいて、前記計測対象の反射光の強度の変化に関する情報を補正する、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    The calculation means corrects information related to a change in intensity of reflected light of the measurement target based on a luminance value component of a location where the living cells do not exist in the image data of the intensity image.
    The cell activity analyzer according to claim 1.
  6.  前記所定の入射角は、前記金属薄膜に、前記生細胞が接していないときの共鳴角に等しい、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    The predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film,
    The cell activity analyzer according to claim 1.
  7.  前記算出手段により算出された前記計測対象の反射光の強度の変化に関する情報に基づいて前記生細胞を分析する分析手段をさらに備える、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    An analysis means for analyzing the living cells based on information on a change in intensity of reflected light of the measurement target calculated by the calculation means;
    The cell activity analyzer according to claim 1.
  8.  前記分析手段は、測定される前記生細胞の誘電率の経時的変化パターンの特性を抽出する、
     ことを特徴とする請求項7に記載の細胞活性分析装置。
    The analysis means extracts a characteristic of a time-dependent change pattern of the dielectric constant of the living cell to be measured;
    The cell activity analyzer according to claim 7.
  9.  前記分析手段は、前記生細胞の誘電率の経時的変化パターンが、一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれに該当するかを判定する、
     ことを特徴とする請求項8に記載の細胞活性分析装置。
    The analysis means determines whether the time-dependent change pattern of the dielectric constant of the living cell corresponds to a monophasic, biphasic, triphasic or other atypical pattern.
    The cell activity analyzer according to claim 8.
  10.  前記金属薄膜に接する前記生細胞を、前記一方の面側から観察する顕微鏡をさらに備える、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    A microscope for observing the living cells in contact with the metal thin film from the one surface side;
    The cell activity analyzer according to claim 1.
  11.  前記選択手段は、
     前記画像取得手段によってサンプリングされた前記強度像の画像データに基づく画像を表示する表示手段と、
     操作入力により、前記画像取得手段によってサンプリングされた前記強度像の画像データの中から前記生細胞の少なくとも一部の像を、選択された前記計測対象として指定する操作手段と、
     をさらに備えることを特徴とする請求項1に記載の細胞活性分析装置。
    The selection means includes
    Display means for displaying an image based on the image data of the intensity image sampled by the image acquisition means;
    An operation means for designating at least a partial image of the living cell as the selected measurement object from image data of the intensity image sampled by the image acquisition means by an operation input;
    The cell activity analyzer according to claim 1, further comprising:
  12.  前記金属薄膜は、前記生細胞を含む生細胞群を、離隔して複数配置可能である、
     ことを特徴とする請求項1に記載の細胞活性分析装置。
    The metal thin film can be arranged with a plurality of living cell groups including the living cells apart from each other.
    The cell activity analyzer according to claim 1.
  13.  複数の前記生細胞群各々に異なる前記外部刺激を与える外部刺激付与手段をさらに備える、
     ことを特徴とする請求項12に記載の細胞活性分析装置。
    Further comprising an external stimulus applying means for applying different external stimuli to each of the plurality of living cell groups,
    The cell activity analyzer according to claim 12.
  14.  表面プラズモン共鳴現象を利用して生細胞に対する外部刺激の活性を分析する細胞活性分析方法であって、
     金属薄膜の一方の面に接するよう前記生細胞を配置する配置工程と、
     P偏光の平行光束を、前記金属薄膜の他方の面に実質的に接する界面を有する屈折光学素子に入射させ、前記表面プラズモン共鳴現象を発生させる所定の入射角で前記界面に入射させる入射工程と、
     前記界面に入射した前記平行光束の反射光の2次元強度分布に相当する強度像を、拡大光学系によって所定の倍率に拡大する拡大工程と、
     前記拡大光学系で拡大された前記強度像を撮像する撮像工程と、
     前記撮像工程において撮像された前記強度像の画像データをサンプリングする画像取得工程と、
     前記画像取得工程によりサンプリングされた前記強度像の画像データから、前記生細胞の少なくとも一部の像を計測対象として選択する選択工程と、
     前記選択工程により選択された前記計測対象の輝度値を抽出し、前記生細胞に対して前記外部刺激を与えた前後での前記計測対象の輝度値の変化に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する算出工程と、
     を含み、
     前記算出工程により算出された前記計測対象の反射光の強度の変化に関する情報を指標として、前記生細胞の少なくとも一部に対する前記外部刺激の活性を分析することを特徴とする細胞活性分析方法。
    A cell activity analysis method for analyzing the activity of external stimuli on living cells using surface plasmon resonance phenomenon,
    An arrangement step of arranging the living cells so as to contact one surface of the metal thin film;
    An incident step in which a P-polarized parallel light beam is incident on a refractive optical element having an interface substantially in contact with the other surface of the metal thin film, and is incident on the interface at a predetermined incident angle that causes the surface plasmon resonance phenomenon; ,
    An enlargement step of enlarging an intensity image corresponding to a two-dimensional intensity distribution of the reflected light of the parallel light beam incident on the interface to a predetermined magnification by an enlargement optical system;
    An imaging step of capturing the intensity image magnified by the magnification optical system;
    An image acquisition step of sampling image data of the intensity image imaged in the imaging step;
    From the image data of the intensity image sampled by the image acquisition step, a selection step of selecting at least a partial image of the living cell as a measurement target;
    The brightness value of the measurement target selected by the selection step is extracted, and the reflected light of the measurement target is based on a change in the brightness value of the measurement target before and after the external stimulus is applied to the living cells. A calculation step for calculating information on a change in intensity of the
    Including
    A cell activity analysis method comprising analyzing the activity of the external stimulus with respect to at least a part of the living cells, using as an index information related to the change in intensity of reflected light of the measurement target calculated in the calculation step.
  15.  前記選択工程では、前記計測対象を複数指定可能であり、
     前記算出工程では、前記強度像の画像データから、選択された複数の前記計測対象各々の輝度値を抽出し、前記計測対象の反射光の強度の変化に関する情報を、前記計測対象毎に算出する、
     ことを特徴とする請求項14に記載の細胞活性分析方法。
    In the selection step, a plurality of measurement objects can be specified,
    In the calculation step, a luminance value of each of the plurality of selected measurement objects is extracted from the image data of the intensity image, and information regarding a change in intensity of reflected light of the measurement object is calculated for each measurement object. ,
    The method for analyzing cell activity according to claim 14.
  16.  前記選択工程では、同一の前記生細胞の像における複数の異なる箇所を前記計測対象として選択する、ことを特徴とする請求項15に記載の細胞活性分析方法。 The cell activity analysis method according to claim 15, wherein, in the selection step, a plurality of different locations in the same live cell image are selected as the measurement target.
  17.  前記算出工程では、前記生細胞に対して前記外部刺激を与える前の前記計測対象の輝度値と、前記外部刺激を与えた後の前記計測対象の輝度値との差分に基づいて、前記計測対象の反射光の強度の変化に関する情報を算出する、ことを特徴とする請求項14に記載の細胞活性分析方法。 In the calculating step, the measurement target is based on a difference between a luminance value of the measurement target before applying the external stimulus to the living cells and a luminance value of the measurement target after applying the external stimulus. The cell activity analysis method according to claim 14, wherein information relating to a change in the intensity of reflected light is calculated.
  18.  前記算出工程では、前記強度像の画像データにおける前記生細胞が存在していない箇所の輝度値の成分に基づいて、前記計測対象の反射光の強度の変化に関する情報を補正する、ことを特徴とする請求項14に記載の細胞活性分析方法。 In the calculation step, information on a change in intensity of reflected light of the measurement target is corrected based on a luminance value component at a location where the living cells do not exist in the image data of the intensity image. The cell activity analysis method according to claim 14.
  19.  前記所定の入射角は、前記金属薄膜に、前記生細胞が接していないときの共鳴角に等しい、ことを特徴とする請求項14に記載の細胞活性分析方法。 The cell activity analysis method according to claim 14, wherein the predetermined incident angle is equal to a resonance angle when the living cell is not in contact with the metal thin film.
  20.  前記選択工程は、
     前記画像取得工程においてサンプリングされた前記強度像の画像データに基づく画像を表示する表示工程と、
     操作入力により、前記画像取得工程においてサンプリングされた前記強度像の画像データの中から前記生細胞の少なくとも一部の像を、選択された前記計測対象として指定する操作工程と、
     をさらに含むことを特徴とする請求項14に記載の細胞活性分析方法。
    The selection step includes
    A display step of displaying an image based on the image data of the intensity image sampled in the image acquisition step;
    By an operation input, an operation step of designating at least a part of the live cell image as the selected measurement object from the image data of the intensity image sampled in the image acquisition step;
    The cell activity analysis method according to claim 14, further comprising:
  21.  前記配置工程では、前記生細胞を含む生細胞群を離隔して複数配置する、ことを特徴とする請求項14に記載の細胞活性分析方法。 The cell activity analysis method according to claim 14, wherein in the arranging step, a plurality of living cell groups including the living cells are arranged apart from each other.
  22.  複数の前記生細胞群各々に異なる前記外部刺激を与える、ことを特徴とする請求項21に記載の細胞活性分析方法。 The cell activity analysis method according to claim 21, wherein the external stimulus is applied to each of the plurality of living cell groups.
  23.  請求項14に記載の細胞活性分析方法を用いた分析により得られた生細胞に係る反射光の強度の変化に関する情報に基づいて前記生細胞を分析する細胞分析方法。 A cell analysis method for analyzing the living cells based on information on a change in intensity of reflected light related to the living cells obtained by analysis using the cell activity analysis method according to claim 14.
  24.  前記計測対象の反射光の強度の変化に関する情報に基づいて、前記生細胞の誘電率の経時的変化パターンの特性を抽出することにより、前記生細胞を分析する、
     ことを特徴とする請求項23に記載の細胞分析方法。
    Based on the information on the change in the intensity of the reflected light of the measurement object, analyzing the living cells by extracting the characteristics of the change pattern of the dielectric constant of the living cells over time,
    The cell analysis method according to claim 23.
  25.  前記生細胞の誘電率の経時的変化パターンが、一相性、二相性、三相性またはそれ以外の非定型的なパターンのいずれに該当するかを判定する、
     ことを特徴とする請求項24に記載の細胞分析方法。
    Determining whether the change pattern of the dielectric constant of the living cell corresponds to a monophasic, biphasic, triphasic or other atypical pattern,
    25. The cell analysis method according to claim 24.
  26.  がん細胞が分析対象である、
     ことを特徴とする請求項24に記載の細胞分析方法。
    Cancer cells are the subject of analysis,
    25. The cell analysis method according to claim 24.
  27.  癌細胞が分析対象である、
     ことを特徴とする請求項24に記載の細胞分析方法。
    Cancer cells are the subject of analysis,
    25. The cell analysis method according to claim 24.
  28.  前記癌細胞は、胃癌細胞、前立腺癌細胞または血管肉腫細胞のいずれかである、
     ことを特徴とする請求項27に記載の細胞分析方法。
    The cancer cell is any of a stomach cancer cell, a prostate cancer cell, or an angiosarcoma cell.
    The cell analysis method according to claim 27.
  29.  サイトカインによる前記外部刺激に暴露した前記生細胞を分析する、
     ことを特徴とする請求項24に記載の細胞分析方法。
    Analyzing the living cells exposed to the external stimulus by cytokines;
    25. The cell analysis method according to claim 24.
  30.  前記生細胞をEGFによる前記外部刺激に暴露した前記生細胞を分析する、
     ことを特徴とする請求項24に記載の細胞分析方法。
    Analyzing the live cells exposed to the external stimulus by EGF;
    25. The cell analysis method according to claim 24.
PCT/JP2011/056304 2010-03-17 2011-03-16 Cell activity analysis device, cell activity analysis method and cell analysis method WO2011115189A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010061710A JP2011193752A (en) 2010-03-17 2010-03-17 Cell activity analyzer, method for analyzing cell activity, and method for identifying cell
JP2010-061710 2010-03-17
JP2010-278131 2010-12-14
JP2010278131 2010-12-14

Publications (1)

Publication Number Publication Date
WO2011115189A1 true WO2011115189A1 (en) 2011-09-22

Family

ID=44649272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056304 WO2011115189A1 (en) 2010-03-17 2011-03-16 Cell activity analysis device, cell activity analysis method and cell analysis method

Country Status (1)

Country Link
WO (1) WO2011115189A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062215A1 (en) * 2016-09-30 2019-07-18 オリンパス株式会社 Observation device
US10739260B2 (en) 2015-01-26 2020-08-11 Hitachi High-Tech Corporation Optical analyzing device
US11460682B2 (en) 2017-05-29 2022-10-04 Evident Corporation Observation device
WO2023166655A1 (en) * 2022-03-03 2023-09-07 オリンパス株式会社 Lighting unit and imaging system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MASAE HORII ET AL.: "Response measurement of individual mast cells using a 2D-SPR sensor and its application to allergen sensing", CHEM. SENS., vol. 24, no. SUPPLE, 29 March 2008 (2008-03-29), pages 145 - 147 *
MICHIHIRO HIDE ET AL.: "Hyomen Plasmon Kyomei Biosensor ni yoru Saibo Kino Sokutei Gijutsu no Kaihatsu", ANNUAL REPORT, NAKATANI FOUNDATION OF ELECTRONIC MEASURING TECHNOLOGY ADVANCEMENT, vol. 18, 15 August 2004 (2004-08-15), pages 66 - 70 *
YASUNORI IRIBE ET AL.: "Nijigen Imaging ni yoru Mouse B, T Lymph-kyu no Saibo Oto Kenshutsu", ABSTRACTS OF AUTUMN MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, vol. 2009, 10 September 2009 (2009-09-10), pages 88 *
YASUNORI IRIBE ET AL.: "Nijigen SPR Sensor ni yoru Kogen Ketsugo Ji no B Lymph-kyu Oto no Kenshutsu", SOCIETY FOR CHEMISTRY AND MICRO- NANO SYSTEMS KOEN YOSHISHU, vol. 17TH, 20 May 2008 (2008-05-20), pages 40 *
YUKI YANASE ET AL.: "Imaging SPR o Riyo shita 1 Saibo Oto Kaiseki", EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, vol. 57, 3 March 2010 (2010-03-03) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739260B2 (en) 2015-01-26 2020-08-11 Hitachi High-Tech Corporation Optical analyzing device
JPWO2018062215A1 (en) * 2016-09-30 2019-07-18 オリンパス株式会社 Observation device
US11226476B2 (en) 2016-09-30 2022-01-18 Olympus Corporation Specimen observation apparatus
US11460682B2 (en) 2017-05-29 2022-10-04 Evident Corporation Observation device
WO2023166655A1 (en) * 2022-03-03 2023-09-07 オリンパス株式会社 Lighting unit and imaging system

Similar Documents

Publication Publication Date Title
DK2271657T3 (en) GEL-MICRO-DROP COMPOSITION AND METHOD OF USING IT
JP2011193752A (en) Cell activity analyzer, method for analyzing cell activity, and method for identifying cell
JP2020511126A (en) Method and system for studying biological cells
US20130252848A1 (en) Cellomics system
JP2013531787A (en) Holographic fluctuation microscope apparatus and method for determining particle motility and / or cell dispersion
JP5953293B2 (en) Long-term monitoring and analysis methods using photoproteins
JP2013531787A5 (en) Holographic fluctuation microscope apparatus, method and program for determining particle mobility and / or cell dispersion
JP2009525468A (en) Method for detecting circulating tumor cells and method for diagnosing cancer in a mammalian subject
WO2007130677A2 (en) Use of subcellular localization profiles as prognostic or predictive indicators
US20220299421A1 (en) Systems, devices and methods for three-dimensional imaging of moving particles
WO2011115189A1 (en) Cell activity analysis device, cell activity analysis method and cell analysis method
EP2972337B1 (en) Nanoplasmonic imaging technique for the spatio-temporal mapping of single cell secretions in real time
WO2009110614A1 (en) Effector cell function measurement method, measurement kit and measurement system
JP2018526625A (en) Method for evaluating cell surface receptors of blood cells
JP7140103B2 (en) How to predict therapeutic efficacy
US8709828B2 (en) Method for the analysis of solid objects
Chen et al. Cellular analyses for label-free and rapid HER2-positive cancer diagnosis based on SPRi-modified with nanobody
JP2010537195A (en) Biosensor antibody functional mapping
CN108693144B (en) Multiplexing single-cell proteomics monitoring method based on SPRM technology
Gora et al. Analysis of the H-Ras mobility pattern in vivo shows cellular heterogeneity inside epidermal tissue
JP2009232736A (en) Method for examining complement activity
JP5946082B2 (en) Live cell analysis system
Uriot et al. Interactions of netrin-1 through its glycosylation sites immobilize Deleted in Colorectal Cancer (DCC) by favoring its constitutive clustering
Reid Deciphering and modelling the action of immune cells using highly multiplexed imaging and deep learning techniques
JP6226534B2 (en) Apparatus for diagnosing type I allergy and method for measuring the intensity of reflected light due to surface plasmon resonance phenomenon in order to diagnose type I allergy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756373

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756373

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载