+

WO2011114369A1 - 二本鎖dna中の二本鎖標的配列を増幅する方法 - Google Patents

二本鎖dna中の二本鎖標的配列を増幅する方法 Download PDF

Info

Publication number
WO2011114369A1
WO2011114369A1 PCT/JP2010/001886 JP2010001886W WO2011114369A1 WO 2011114369 A1 WO2011114369 A1 WO 2011114369A1 JP 2010001886 W JP2010001886 W JP 2010001886W WO 2011114369 A1 WO2011114369 A1 WO 2011114369A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
target sequence
nucleic acid
dna
stranded
Prior art date
Application number
PCT/JP2010/001886
Other languages
English (en)
French (fr)
Inventor
夜久英信
林美穂
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010521238A priority Critical patent/JP4897923B2/ja
Priority to PCT/JP2010/001886 priority patent/WO2011114369A1/ja
Priority to CN2010800030948A priority patent/CN102405295A/zh
Priority to US12/955,594 priority patent/US20110229939A1/en
Publication of WO2011114369A1 publication Critical patent/WO2011114369A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Definitions

  • the present invention relates to a nested PCR having high specificity.
  • Nested Polymerase Chain Reaction shown in FIG. 1 represents a double-stranded target sequence 1 contained in a double-stranded DNA consisting of a first single-stranded DNA 6 and a second single-stranded DNA 7. This is a typical method for amplification.
  • the first single-stranded DNA 6 comprises: 3 ′ end—first non-amplified sequence 6a—second non-amplified sequence 6b—single-stranded target sequence 1a—third non-amplified sequence 6c—fourth non-amplified sequence 6d-5 ′ end Consists of.
  • the second single-stranded DNA 7 comprises: 5 ′ end—fifth unamplified sequence 7 a—sixth unamplified sequence 7 b—complementary single stranded target sequence 1 b—seventh unamplified sequence 7 c—eighth unamplified sequence 7 d-3 'It consists of the end.
  • the fifth non-amplified sequence 7a, the sixth non-amplified sequence 7b, the complementary single-stranded target sequence 1b, the seventh non-amplified sequence 7c, and the eighth non-amplified sequence 7d are respectively the first non-amplified sequence 6a, Complementary to 2 unamplified sequence 6b, single stranded target sequence 1a, third unamplified sequence 6c, and fourth unamplified sequence 6d
  • the double-stranded target sequence consists of a single-stranded target sequence 1a and a complementary single-stranded target sequence 1b.
  • DNA polymerase, deoxynucleoside triphosphate, double-stranded DNA (6.7), outer forward primer (4 of), and outer reverse primer (5 or) are mixed to prepare a first mixed solution.
  • the outer forward primer (4of) is composed of a nucleic acid having 5 to 40 bases and is complementary to the sequence portion at the 3 'end contained in the second non-amplified sequence 6b.
  • the outer reverse primer (5or) is composed of a nucleic acid having 5 to 40 bases, and is complementary to the sequence portion at the 3 'end contained in the seventh non-amplified sequence 7c. Therefore, the outer forward primer (4of) and the outer reverse primer (5or) are respectively a 3′-end sequence portion included in the second non-amplified sequence 6b and a 3′-end sequence portion included in the seventh non-amplified sequence 7c.
  • the first mixed solution is heated at 94 ° C. to 100 ° C. for 1 to 100 seconds. Thereafter, it is cooled at 50 to 70 ° C. for 1 to 100 seconds. Further, heating is performed at 70 to 80 ° C. for 1 to 600 seconds. These are repeated to amplify the intermediate double-stranded DNA.
  • Intermediate double-stranded DNA is double-stranded DNA consisting of an intermediate single-stranded target sequence 6m and a complementary intermediate single-stranded target sequence 7m.
  • the intermediate single-stranded target sequence and the complementary intermediate single-stranded target sequence are 3 ′ end—second unamplified sequence 6b—single stranded target sequence 1a—third unamplified sequence 6c-5 ′ end and 5 ′, respectively.
  • Amplified intermediate double-stranded DNA, DNA polymerase, deoxynucleoside triphosphate, inner forward primer (4if), and inner reverse primer (5ir) are mixed to prepare a second mixed solution.
  • the inner forward primer (4if) is composed of a nucleic acid having 5 to 40 bases and is complementary to the sequence portion at the 3 'end contained in the single-stranded target sequence (1a).
  • the inner reverse primer (5ir) is composed of a nucleic acid having 5 to 40 bases and is complementary to the sequence portion at the 3 'end contained in the complementary single-stranded target sequence 1b. Therefore, the inner forward primer (4if) and the inner reverse primer (5ir) are respectively the 3 ′ end sequence portion contained in the single-stranded target sequence 1a and the 3 ′ end side contained in the complementary single-stranded target sequence 1b.
  • the second mixed solution is heated at 94 ° C. to 100 ° C. for 1 to 100 seconds. Thereafter, it is cooled at 50 to 70 ° C. for 1 to 100 seconds. Next, heating is performed at 70 to 80 ° C. for 1 to 600 seconds. These are repeated to amplify the double-stranded target sequence.
  • Patent Document 1 and Non-Patent Document 1-3 may be related to the present invention.
  • Genome Research 4 376-379 (1995) Genome Research 2, 60-65 (1992) Phytopathology, 86, 493-497 (1996)
  • An object of the present invention is to provide a method for efficiently amplifying a target sequence (1) using nested PCR, and a method for suppressing the production of the unwanted amplification product.
  • a method for amplifying a double-stranded target sequence (1) in a double-stranded DNA comprising a first single-stranded DNA (6) and a second single-stranded DNA (7)
  • the double-stranded target sequence (1) consists of a single-stranded target sequence (1a) and a complementary single-stranded target sequence (1b)
  • the first single-stranded DNA (6) comprises 3 ′ end—first non-amplified sequence (6a) —second non-amplified sequence (6b) —the single-stranded target sequence (1a) —third non-amplified sequence ( 6c) —the fourth unamplified sequence (6d) —consisting of the 5 ′ end
  • the second single-stranded DNA (7) is composed of 5 ′ end-fifth non-amplified sequence (7a) -sixth non-amplified sequence (7b) -complement
  • the intermediate double-stranded DNA consists of an intermediate target sequence and a complementary intermediate target sequence
  • the intermediate target sequence consists of 3 ′ end—second unamplified sequence (6b) —the single stranded target sequence (1a) —third unamplified sequence (6c) —5 ′ end
  • the complementary intermediate target sequence consists of 5 ′ end—sixth unamplified sequence (7b) —complementary single-stranded target sequence (1b) —seventh unamplified sequence (7c) -3 ′ end
  • the outer forward primer (4of) is complementary to a portion of the sequence on the 3 ′ end side included in the second non-amplified sequence (6b)
  • the outer reverse primer (5or) is complementary to a portion of the sequence on the 3 ′ end side included in the seventh non-amplified sequence, DNA polymerase, deoxynucleoside triphosphate, intermediate double-stranded DNA, inner forward primer (4if), inner reverse primer (5ir), and outer forward block nucleic acid (4
  • an outer reverse block nucleic acid (5 orb) is further mixed, The method according to Item 1, wherein the outer reverse block nucleic acid (5 orb) is complementary to the outer reverse primer (5 or) and does not serve as a starting point for a DNA extension reaction by the DNA polymerase.
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these
  • the method according to Item 1, wherein the outer forward block nucleic acid (4ofb) is composed of Peptide Nucleic Acid.
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these 3.
  • the method according to item 2 comprising DNA substituted or modified with a derivative of (Item 7)
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these
  • the method according to item 2 consisting of Locked Nucleic Acid substituted or modified with a derivative of (Item 8)
  • a method for amplifying a double-stranded target sequence (1) in a double-stranded DNA comprising a first single-stranded DNA (6) and a second single-stranded DNA (7) The double-stranded target sequence (1) consists of a single-stranded target sequence (1a) and a complementary single-stranded target sequence (1b),
  • the first single-stranded DNA (6) comprises 3 ′ end—first non-amplified sequence (6a) —second non-amplified sequence (6b) —the single-stranded target sequence (1a) —third non-amplified sequence ( 6c) —the fourth unamplified sequence (6d) —consisting of the 5 ′ end
  • the second single-stranded DNA (7) is composed of 5 ′ end-fifth non-amplified sequence (7a) -sixth non-amplified sequence (7b) -complementary single-stranded target sequence (1b) -seventh non-amplified Sequence (7c
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these 10.
  • the method according to item 9, comprising DNA that is substituted or modified by a derivative of (Item 11)
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end is hydrogen, phosphate group, amino group, biotin group, thiol group, or these 10.
  • a method according to item 9, consisting of Locked Nucleic Acid substituted or modified by a derivative of (Item 12) The method according to Item 9, wherein the outer forward block nucleic acid (4ofb) is composed of Peptide Nucleic Acid.
  • the present invention provides a method for amplifying a target sequence that can improve amplification efficiency and significantly suppress non-specific amplification.
  • FIG. 1 is a diagram showing a conventional nested PCR.
  • FIG. 2 is a diagram showing a problem of a conventional nested PCR in which a DNA extension reaction occurs from an outer primer in the second stage PCR.
  • FIG. 3 is a diagram showing a nested PCR according to the first embodiment.
  • FIG. 4 is a diagram showing a problem when a block primer is used in place of the block nucleic acid in the first embodiment.
  • FIG. 5 is a diagram showing a nested PCR according to the second embodiment.
  • FIG. 6 is a diagram showing the results of electrophoresis using profile 1A in Comparative Example 1a (FIG. 6A) and Example 1 (FIG. 6B).
  • FIG. 6 is a diagram showing the results of electrophoresis using profile 1A in Comparative Example 1a (FIG. 6A) and Example 1 (FIG. 6B).
  • FIG. 7 is a diagram showing the results of electrophoresis using profile 1B in Comparative Example 1a (FIG. 7A) and Example 1 (FIG. 7B).
  • FIG. 8 is a diagram showing the results of electrophoresis using profile 1C in Comparative Example 1a (FIG. 8A) and Example 1 (FIG. 8B).
  • FIG. 9 is a diagram in which non-specific amplification in Comparative Example 1a and Example 1 is quantitatively compared.
  • FIG. 10 is a diagram showing an electrophoresis result according to profile 1A in Comparative Example 1b (FIG. 8A).
  • FIG. 11 is a diagram showing the results of electrophoresis based on profile 2A in Comparative Example 2 and Example 2.
  • FIG. 8 is a diagram showing the results of electrophoresis using profile 1C in Comparative Example 1a (FIG. 8A) and Example 1 (FIG. 8B).
  • FIG. 9 is a diagram in which non-specific amplification in Comparative Example 1
  • FIG. 12 is a diagram showing the results of electrophoresis using profile 2B in Comparative Example 2 and Example 2.
  • FIG. 13 is a diagram showing the results of electrophoresis using profile 2C in Comparative Example 2 and Example 2.
  • FIG. 14 is a diagram in which non-specific amplification in Comparative Example 2 and Example 2 is quantitatively compared.
  • FIG. 15 is a diagram showing the results of electrophoresis using profile 3A in Comparative Example 3a (FIG. 15A) and Example 3 (FIG. 15B).
  • FIG. 16 is a diagram showing the results of electrophoresis using profile 3B in Comparative Example 3a (FIG. 16A) and Example 3 (FIG. 16B).
  • FIG. 17 is a diagram showing an electrophoresis result based on the profile 3A in the comparative example 3b.
  • first-stage PCR is performed using an outer primer.
  • the mixture does not contain an inner primer.
  • This embodiment is characterized by using an outer forward block nucleic acid (4 ofb) in the second stage PCR as shown in FIG.
  • an outer forward block nucleic acid (4 ofb) and an outer reverse block nucleic acid (5 orb) are used.
  • the outer forward block nucleic acid (4ofb) and the outer reverse block nucleic acid (5orb) have sequences complementary to the outer forward primer (4of) and the outer reverse primer (5or), respectively. Furthermore, none of the block nucleic acids (4ofb ⁇ 5orb) acts as a starting point for the extension reaction by DNA polymerase.
  • the block nucleic acid (4ofb ⁇ 5orb) is a synthetic oligonucleic acid.
  • block nucleic acids (4ofb ⁇ 5orb) are modified DNA, modified Locked Nucleic Acid (hereinafter “LNA”), and peptide nucleic acid (hereinafter “PNA”).
  • LNA lockeded Nucleic Acid
  • PNA peptide nucleic acid
  • Nucleic acids are biopolymers in which a plurality of nucleotides composed of sugars, phosphate groups, and bases are linked via phosphodiester bonds.
  • the OH group at the 3-position of the sugar contained in the nucleotide located at the 3 ′ end of the modified DNA and LNA is substituted or modified with hydrogen, phosphate group, amino group, biotin group, thiol group, or derivatives thereof.
  • LNA is an artificially developed nucleic acid analog. PNA does not require this modification. This is because in PNA, the 2-aminoethylglycine bond replaces the sugar-phosphate diester skeleton.
  • the inner forward primer (4if) and the inner reverse primer (5ir) are added to the mixed solution. Furthermore, outer forward block nucleic acid (4 ofb) is added to the mixed solution. It is also preferable to add an outer reverse block nucleic acid (5 orb).
  • the outer forward block nucleic acid (4ofb ⁇ 5orb) binds to the outer forward primer (4of) to form a double-stranded DNA structure called a primer dimer.
  • the outer reverse block nucleic acid (5 orb) binds to the outer forward primer (4 of) and forms a double-stranded DNA structure. Formation of these double-stranded DNA structures decreases the activity of the outer forward primer (4of) and the outer reverse primer (5or). Therefore, the DNA extension reaction from the outer primer in the second stage PCR as shown in FIG. 2 is suppressed.
  • the outer forward block nucleic acid (4ofb) should not be a mere primer that is only complementary to the outer forward primer (4of). That is, the outer forward block nucleic acid (4 ofb) must not be the starting point for the DNA extension reaction by the DNA polymerase.
  • the reason will be described with reference to FIG.
  • the outer forward block primer forms a double-stranded DNA structure together with the outer forward primer (4of).
  • the outer forward block primer also binds to the sequence portion 7s. Then, the DNA extension reaction starts from the outer forward block primer. This causes unwanted amplification products as shown in FIG.
  • the outer reverse block nucleic acid (5orb) must also not be a simple primer that is only complementary to the outer reverse primer (5or).
  • the first single-stranded DNA 6 is This is because when the sequence portion 6s is the same as or similar to the sequence complementary to the outer reverse block primer, the outer reverse block primer binds to the sequence portion 6s and starts the DNA extension reaction. If the first single-stranded DNA 6 and the second single-stranded DNA 7 have a plurality of similar sequences 6s and a plurality of similar sequences 7s, respectively, a large amount of undesired amplification products can be caused. For details, see Example 1 and Comparative Example 1b, and Example 3 and Comparative Example 3b.
  • the outer forward block nucleic acid (4ofb) has a concentration higher than the concentration of the outer forward primer (4of). More specifically, the outer forward block nucleic acid (4ofb) preferably has a concentration 5 times that of the outer forward primer (4of), more preferably 10 times.
  • the outer reverse block nucleic acid (5 orb) also has a concentration higher than that of the outer reverse primer (5 orb). More specifically, the outer reverse block nucleic acid (5 orb) preferably has a concentration 5 times that of the outer reverse primer (5 or), more preferably 10 times.
  • components having pH buffering action such as MgCl 2 , reagents such as dithiothreitol, bovine serum albumin, and glycerol, as necessary Can be further mixed.
  • Embodiment 2 The second embodiment will be described with reference to FIG. The difference between Embodiment 2 and Embodiment 1 is that the inner reverse primer (5ir) also serves as the outer reverse primer (5or).
  • first-stage PCR is performed using an outer primer.
  • the mixed solution contains an inner reverse primer (5ir).
  • the first stage PCR consists of a second non-amplified sequence 6b-an intermediate single-stranded target sequence consisting of a single-stranded target sequence 1a and a sixth non-amplified sequence 7b-a complementary intermediate single consisting of a complementary single-stranded target sequence 1b A single-stranded target sequence is produced.
  • Outer forward block nucleic acid (4 ofb) is mixed before the second stage PCR. Unlike Embodiment 1, the outer reverse block nucleic acid (5 orb) is not mixed. In the second stage PCR, the single-stranded target sequence 1a and the complementary single-stranded target sequence 1b are amplified by the inner forward primer (4if) and the inner reverse primer (5ir).
  • the template DNA used in this example and the comparative example was prepared from a human blood sample using an automatic DNA extraction apparatus QIAcube (manufactured by Qiagen).
  • the 3 'end was modified with a phosphate group.
  • DNTP was purchased from Invitrogen Corporation.
  • Bioanalyzer 2100 manufactured by Agilent was used for electrophoretic analysis after PCR.
  • the target sequence was a DNA fragment contained in a human ABO blood group gene.
  • the sequence of the outer forward primer was 5′-GCCCGCTCTCCATGGCCGCAC-3 ′ (SEQ ID NO: 1, hereinafter “ABO-OF”).
  • the sequence of the outer reverse primer was 5′-CCTGGGTCTCTACCCTCGCGC-3 ′ (SEQ ID NO: 2, hereinafter “ABO-OR”).
  • This primer pair amplifies a 210 bp DNA fragment contained in a human ABO blood group gene having an AB blood group.
  • This primer pair amplifies a 209 bp DNA fragment contained in a human ABO blood group gene having an O blood group.
  • the sequence of the inner forward primer was 5'-TGCAGTAGGAAGGAGTCCTC-3 '(SEQ ID NO: 3, hereinafter "ABO-IF”).
  • the sequence of the inner reverse primer was 5'-TTCTTGATGGCAAACACAGTTAAC-3 '(SEQ ID NO: 4, hereinafter "ABO-IR”).
  • This primer pair of ABO-IF and ABO-IR amplifies a 140 bp DNA fragment (when the blood type is AB or 139 bp DNA fragment when the blood type is O) present in the 210 bp DNA fragment.
  • nested PCR was performed as follows.
  • the composition of the first stage PCR solution was as follows. 1 ⁇ TITANIUM Taq DNA polymerase (Clontech), 1 ⁇ TITANIUM Taq PCR Buffer (manufactured by Clontech), 200 ⁇ M dNTP, 1 ⁇ M ABO-OF, 1 ⁇ M ABO-OR, 0.5 ng / ⁇ L 5ng / ⁇ l genomic DNA (from AB type subjects) Total volume: 10 ⁇ L
  • the second-stage PCR solution was prepared by adding 0.5 ⁇ L of 20 ⁇ M ABO-IF and 0.5 ⁇ L of 20 ⁇ M ABO-IR to the reaction solution after the first-stage PCR.
  • FIG. 6 (A) shows the result of electrophoretic analysis using profile 1A. Not only DNA fragments obtained from the combination of ABO-IF and ABO-IR (that is, target sequences) but also unwanted DNA fragments obtained from the combination of ABO-OF and ABO-OR were detected. FIG. 6 (A) shows this. Furthermore, FIG. 6 (A) shows a number of peaks indicating non-specific amplification products in addition to these amplification product peaks. The concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 62.5 nM.
  • FIG. 7 (A) shows the result of electrophoretic analysis by profile 1B. Similar to FIG. 6A, FIG. 7A also shows a number of peaks indicating non-specific amplification products.
  • the concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 137.8 nM.
  • FIG. 8 (A) shows the result of electrophoretic analysis by profile 1B. Similar to FIG. 6 (A), FIG. 8 (A) also shows a number of peaks indicating non-specific amplification products. The concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 157.0 nM.
  • Example 1 In Example 1, the same outer forward primer (ABO-OF), outer reverse primer (ABO-OR), inner forward primer (ABO-IF), and inner reverse primer (ABO-IR) as in Comparative Example 1a were used. Using these primers, nested PCR was performed as follows.
  • the composition of the first stage PCR solution was exactly the same as in Comparative Example 1a as follows. 1 ⁇ TITANIUM Taq DNA polymerase, 1 x TITANIUM Taq PCR Buffer 200 ⁇ M dNTP 1 ⁇ M ABO-OF 1 ⁇ M ABO-OR 0.5 ng / ⁇ L genomic DNA Total volume: 10 ⁇ L
  • the temperature profile 1 was the same as in Comparative Example 1a.
  • the second stage PCR solution is added to the reaction solution after the first stage PCR.
  • 0.5 ⁇ L of 20 ⁇ M ABO-IF 0.5 ⁇ L of 20 ⁇ M ABO-IR Prepared by adding 1 ⁇ L of outer forward block nucleic acid and 1 ⁇ L of outer reverse block nucleic acid.
  • the outer forward block nucleic acid is an oligo DNA (hereinafter referred to as “ABO-OF-Block”) having a concentration of 100 ⁇ M consisting of 5′-GTGCGGCCACCATGGAGCTGGC-3 ′ (SEQ ID NO: 5) and phosphorylated at its 3 ′ end. there were. This sequence was complementary to ABO-OF.
  • the outer reverse block nucleic acid is a 100 ⁇ M oligo DNA consisting of 5′-GCCGAGGGTAGAGACCCAGG-3 ′ (SEQ ID NO: 6) and phosphorylated at its 3 ′ end (hereinafter “ABO-OR-Block”). It was. This sequence was complementary to ABO-OR
  • FIG. 6 (B) shows the result of electrophoretic analysis using profile 1A.
  • a DNA fragment (ie, target sequence) obtained from the combination of ABO-IF and ABO-IR was detected, but a DNA fragment obtained from the combination of ABO-OF and ABO-OR was hardly detected. This is shown in FIG. Furthermore, FIG. 6 (B) shows few peaks indicating non-specific amplification products. The concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 478.6 nM.
  • the PCR from the combination of ABO-IF and ABO-IR is extremely efficient because the second stage PCR solution contains ABO-OF-Block and ABO-OR-Block. And non-specific amplification is significantly suppressed.
  • FIG. 9 shows quantitatively the suppression of non-specific amplification. These are bar graphs obtained by calculating the concentration of pyrophosphate produced when all non-specific amplification products detected by electrophoresis analysis are amplified.
  • the nested PCR shown in FIG. 6 (B) can suppress approximately 45% non-specific amplification, as shown in FIG. ) And FIG. 9 (2).
  • concentration of pyrophosphate contained in the solution after the reaction the concentration of DNA amplification can be measured.
  • Pyrophosphate produced by non-specific amplification can be a big noise.
  • block nucleic acids can reduce noise due to pyrophosphate produced by non-specific amplification.
  • FIG. 7 (B) shows the result of electrophoretic analysis by profile 1B.
  • the target sequence was detected, but a peak indicating a non-specific amplification product including a DNA fragment obtained from the combination of ABO-OF and ABO-OR is shown in FIG. 7 (B). Shows very little.
  • the concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 516.5 nM.
  • the nested PCR shown in FIG. 7 (B) can suppress approximately 66% non-specific amplification, as shown in FIG. ) And FIG. 9 (4).
  • FIG. 8 (B) shows the result of electrophoretic analysis by profile 1B.
  • the target sequence was detected, but a peak indicating a non-specific amplification product including a DNA fragment obtained from the combination of ABO-OF and ABO-OR is shown in FIG. 8 (B). Shows very little.
  • the concentration of the DNA fragment obtained from the combination of ABO-IF and ABO-IR was 375.2 nM.
  • the nested PCR shown in FIG. 7 (B) can suppress approximately 61% of non-specific amplification, as shown in FIG. 9 (5 ) And FIG. 9 (6).
  • Example 1 and Comparative Example 1a show that the addition of a block nucleic acid can significantly increase the amplification efficiency of a single-stranded target sequence and greatly suppress nonspecific amplification.
  • the present inventors experimented by adding only ABO-OF-Block after the first-stage PCR. As a result, in this case as well, although not as much as when both ABO-OF-Block and ABO-OR-Block were added, compared to the case where neither ABO-OF-Block nor ABO-OR-Block was added. It was confirmed that the amplification efficiency of the target sequence was increased and non-specific amplification was suppressed.
  • Comparative Example 1b In Comparative Example 1b, as shown in FIG. 4, ABO-OF-Block (“outer forward primer” in FIG. 4) whose 3 ′ end is not phosphorylated and ABO-OR whose 3 ′ end is not phosphorylated -Block ("outer reverse primer” in FIG. 4) was used. Profile 1A was used.
  • FIG. 10 shows the result of electrophoresis.
  • the DNA fragment concentration obtained from the combination of ABO-IF and ABO-IR in FIG. 10 is clearly smaller than that of FIG. 6 (B). Furthermore, the suppression effect of non-specific amplification in FIG. 10 is clearly smaller than that of FIG.
  • Example 2 and Comparative Example 2 correspond to FIG.
  • the target sequence was a DNA fragment contained in the human ALDH2 gene.
  • Comparative Example 2 In Comparative Example 2, the sequence of the outer forward primer was 5′-CAAATTACAGGGTCAACTGCT-3 ′ (SEQ ID NO: 7, hereinafter “ALDH2-OF”). The sequence of the outer reverse primer was 5′-GGCAGGTCCTGAACCTC-3 ′ (SEQ ID NO: 8, hereinafter “ALDH2-OR”). This primer pair amplifies a 251 bp DNA fragment contained within the human ALDH2 gene.
  • the sequence of the inner forward primer was 5'-GTACGGGCTGCAGGCATACAC-3 '(SEQ ID NO: 9, hereinafter "ALDH2-IF").
  • the sequence of the inner reverse primer is the same as ALDH2-OR.
  • the primer pair with ALDH2-IF and ALDH2-OR can amplify a 160 bp DNA fragment present in the 251 bp DNA fragment. Using these primers, nested PCR was performed as follows.
  • the composition of the first stage PCR solution is as follows. 0.05 U / ⁇ L TaKaRa LA Taq HS (manufactured by Takara Bio Inc.), 1 ⁇ LA PCR Buffer II (Mg 2+ plus) (manufactured by Takara Bio Inc.), 200 ⁇ M dNTP, 1 ⁇ M ALDH2-OF, 1 ⁇ M ALDH2-OR, 0.83 ng / ⁇ L genomic DNA Total volume: 10 ⁇ L
  • the second-stage PCR solution was prepared by adding 1 ⁇ L of 10 ⁇ M ALDH2-IF to the reaction solution after the first-stage PCR.
  • FIG. 11 (A) shows the result of electrophoretic analysis by profile 2A.
  • FIG. 11 shows that not only the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR (that is, the target sequence) but also the DNA fragment obtained from the combination of ALDH2-OF and ALDH2-OR was detected.
  • (A) shows.
  • FIG. 11 (A) shows a number of peaks indicating non-specific amplification products.
  • the concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 10.7 nM.
  • FIG. 12 (A) shows the result of electrophoretic analysis by profile 2B. Similar to FIG. 11A, FIG. 12A also shows a number of peaks indicating non-specific amplification products.
  • the concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 13.6 nM.
  • FIG. 13A shows the result of electrophoretic analysis by profile 2B. Similar to FIG. 11 (A), FIG. 13 (A) also shows a number of peaks indicating non-specific amplification products. The concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 9.9 nM.
  • Example 2 In Experimental Example 2, the reaction solution after the first stage PCR was A PCR solution to which 1 ⁇ L of 10 ⁇ M ALDH2-IF and 1 ⁇ L of outer forward block nucleic acid were added was used.
  • the outer forward block nucleic acid is an oligo DNA consisting of 5′-AGCAGTTGACCCTGTAATTTG-3 ′ (SEQ ID NO: 10) and phosphorylated at its 3 ′ end at a concentration of 100 ⁇ M (hereinafter referred to as “ALDH2-OF-Block”).
  • ALDH2-OF-Block This sequence was complementary to ALDH2-OF.
  • FIG. 11 (B) shows the result of electrophoretic analysis by profile 2A.
  • a DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR ie, the target sequence
  • FIG. 11B shows few peaks indicating nonspecific amplification products.
  • the concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 58.6 nM.
  • the second stage PCR solution contains ALDH2-OF-Block and ALDH2-OR-Block, PCR from the combination of ALDH2-IF and ALDH2-IR is extremely efficient. And non-specific amplification was significantly suppressed.
  • FIG. 14 quantitatively shows the suppression of non-specific amplification as in FIG. Compared to the results of the nested PCR shown in FIG. 11 (A), the nested PCR shown in FIG. 11 (B) can suppress approximately 95% non-specific amplification, as shown in FIG. ) And FIG. 14 (2).
  • FIG. 12 (B) shows the result of electrophoretic analysis by profile 2B. Similar to FIG. 11 (B), the target sequence was detected, but a peak indicating a non-specific amplification product including a DNA fragment obtained from the combination of ALDH2-OF and ALDH2-OR is shown in FIG. 12 (B). Shows very little. The concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 58.6 nM.
  • the nested PCR shown in FIG. 12 (B) can suppress approximately 87% non-specific amplification, as shown in FIG. ) And FIG. 14 (4).
  • FIG. 13 (B) shows the result of electrophoretic analysis by profile 2B. Similar to FIG. 11 (B), the target sequence was detected, but a peak indicating a non-specific amplification product including a DNA fragment obtained from the combination of ALDH2-OF and ALDH2-OR was shown in FIG. 13 (B). Shows very little. The concentration of the DNA fragment obtained from the combination of ALDH2-IF and ALDH2-IR was 53.5 nM.
  • the nested PCR shown in FIG. 13 (B) can suppress about 81% non-specific amplification, as shown in FIG. ) And FIG. 14 (6).
  • Example 2 and Comparative Example 2 show that the addition of block nucleic acid can increase the amplification efficiency of the target sequence and suppress nonspecific amplification.
  • Example 3 Comparative Example 3a, and Comparative Example 3b correspond to FIG.
  • the target sequence was a DNA fragment contained in the human dystrophin gene.
  • Comparative Example 3 In Comparative Example 3, the sequence of the outer forward primer was 5′-GATGGCAAAAGTGTGAGAAAAGTC-3 ′ (SEQ ID NO: 11, hereinafter “DYSTRO-OF”). The sequence of the outer reverse primer was 5′-TTCTACCACATCCCATTTTCTCCA-3 ′ (SEQ ID NO: 12, hereinafter “DYSTRO-OR”). This primer pair can amplify a 459 bp DNA fragment contained within the human dystrophin gene.
  • the sequence of the inner forward primer was 5'-AGGCTTGAAAGGGCAAGTAGAGAGT-3 '(SEQ ID NO: 13, hereinafter "DYSTRO-IF”).
  • the sequence of the inner reverse primer was 5'-GCTGATCTGCTGGGCATCTTGC-3 '(SEQ ID NO: 14, hereinafter "DYSTRO-IR”).
  • This primer pair of DYSTRO-IF and DYSTRO-OR can amplify a 147 bp DNA fragment present in the 459 bp DNA fragment. Using these primers, nested PCR was performed as follows.
  • the composition of the first stage PCR solution was as follows. 1 ⁇ TITANIUM Taq DNA polymerase (Clontech), 1 ⁇ TITANIUM Taq PCR Buffer (manufactured by Clontech), 200 ⁇ M dNTP, 1 ⁇ M DYSTRO-OF, 1 ⁇ M DYSTRO-OR, 0.5 ng / ⁇ L genomic DNA Total volume: 10 ⁇ L
  • PCR temperature profiles 3A-B are shown in Table 3.
  • the second stage PCR solution was prepared by adding 0.5 ⁇ L of 20 ⁇ M DYSTRO-IF and 0.5 ⁇ L of 20 ⁇ M DYSTRO-IR to the reaction solution after the first stage PCR.
  • FIG. 15 (A) shows the result of electrophoresis analysis by profile 3A.
  • FIG. 15 shows that not only a DNA fragment obtained from the combination of DYSTRO-IF and DYSTRO-IR (ie, the target sequence) but also a DNA fragment obtained from the combination of DYSTRO-OF and DYSTRO-OR was detected.
  • (A) shows.
  • FIG. 15 (A) shows a number of peaks indicating non-specific amplification products in addition to these amplification product peaks.
  • the concentration of the DNA fragment obtained from the combination of DYSTRO-IF and DYSTRO-IR was 294.5 nM.
  • FIG. 16 (A) shows the result of electrophoresis analysis by profile 3B. Similar to FIG. 15A, FIG. 16A also shows a number of peaks indicating non-specific amplification products. The concentration of the DNA fragment obtained from the combination of DYSTRO-IF and DYSTRO-IR was 196.1 nM.
  • Example 3 In Example 3, the same outer forward primer (DYSTRO-OF), outer reverse primer (DYSTRO-OR), inner forward primer (DYSTRO-IF), and inner reverse primer (DYSTRO-IR) as in Comparative Example 3 are used. It was. Using these primers, nested PCR was performed as follows.
  • the second stage PCR solution is added to the reaction solution after the first stage PCR.
  • 0.5 ⁇ L of 20 ⁇ M DYSTRO-IF 0.5 ⁇ L of 20 ⁇ M DYSTRO-IR Prepared by adding 1 ⁇ L of outer forward block nucleic acid and 1 ⁇ L of outer reverse block nucleic acid.
  • the outer forward block nucleic acid is 100 ⁇ M oligo DNA (hereinafter “DYSTRO-OF-Block”) consisting of 5′-GACTTTTTCTCAACACTTTGCCATC-3 ′ (SEQ ID NO: 15) and phosphorylated at its 3 ′ end. It was. This sequence was complementary to DYSTRO-OF.
  • the outer reverse block nucleic acid is 100 ⁇ M oligo DNA consisting of 5′-TGGAAGAAAATGGGATGTGGTAGAA-3 ′ (SEQ ID NO: 16) and phosphorylated at its 3 ′ end (hereinafter “DYSTRO-OR-Block”). It was. This sequence was complementary to DYSTRO-OR.
  • FIG. 15 (B) shows the result of electrophoresis analysis by profile 3A.
  • the amplification product concentration from the combination of DYSTRO-OF and DYSTRO-OR the amplification product concentration from the combination of DYSTRO-OF and DYSTRO-IR, and DYSTRO-IF and DYSTRO-OR
  • the amplification product concentration from each of the combinations was below the detection limit.
  • the concentration of the DNA fragment obtained from the combination of DYSTRO-IF and DYSTRO-IR was 593.2 nM.
  • FIG. 15 (B) since the second stage PCR solution contains DYSTRO-OF-Block and DYSTRO-OR-Block, PCR using a combination of DYSTRO-IF and DYSTRO-IR is extremely efficient. And non-specific amplification was significantly suppressed.
  • FIG. 16 (B) shows the result of electrophoresis analysis by profile 3B.
  • the amplification product concentration from the combination of DYSTRO-OF and DYSTRO-OR the amplification product concentration from the combination of DYSTRO-OF and DYSTRO-IR, and DYSTRO-IF and DYSTRO-OR
  • the amplification product concentration from each of the combinations was below the detection limit.
  • the concentration of the DNA fragment obtained from the combination of DYSTRO-IF and DYSTRO-IR was 571.6 nM.
  • PCR using a combination of DYSTRO-IF and DYSTRO-IR is extremely efficient. And non-specific amplification was significantly suppressed.
  • Comparative Example 3b In Comparative Example 3b, as shown in FIG. 4, DYSTRO-OF-Block (“outer forward primer” in FIG. 4) whose 3 ′ end is not phosphorylated and DYSTRO-OR whose 3 ′ end is not phosphorylated -Block ("outer reverse primer” in FIG. 4) was used. Profile 3A was used.
  • FIG. 17 shows the result of electrophoresis.
  • the DNA fragment concentrations obtained from the combination of ABO-IF and ABO-IR in FIG. 17 are clearly smaller than those in FIGS. 15 (B) and 16 (B). Furthermore, the suppression effect of non-specific amplification in FIG. 17 is clearly smaller than those in FIGS. 15 (B) and 16 (B).
  • the present invention provides a method for amplifying a target sequence, which is a method for amplifying a target sequence exhibiting a high amplification efficiency of the target sequence and a remarkable suppression effect of nonspecific amplification.
  • Target sequence 1a Single-stranded target sequence 1b
  • First single-stranded DNA 6a First non-amplified sequence 6b
  • Second non-amplified sequence 6c Third non-amplified sequence 6d
  • Intermediate single-stranded target sequence 6s Sequence portion identical or similar to sequence complementary to outer reverse block primer 7
  • Complementary intermediate single-stranded target sequence 7s Sequence part identical or similar to sequence complementary to outer forward block primer
  • SEQ ID NO: 1 Outer forward primer for ABO blood group gene
  • SEQ ID NO: 2 Outer reverse primer for ABO blood group gene
  • SEQ ID NO: 3 Inner forward primer for ABO blood group gene
  • SEQ ID NO: 4 ABO Inner reverse primer for formula blood group gene
  • SEQ ID NO: 5 Block nucleic acid (DNA) of outer forward primer for ABO blood group gene
  • Sequence number 6 Block nucleic acid (DNA) of outer reverse primer for ABO blood group gene
  • SEQ ID NO: 8 Outer reverse primer or inner reverse primer for ALDH2 gene
  • SEQ ID NO: 10 Outer for ALDH2 gene Block nucleic acid (DNA) of forward primer SEQ ID NO: 11: outer forward primer for dystrophin gene
  • SEQ ID NO: 13 inner forward primer for dystrophin gene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は高い特異性を有する入れ子型PCRに関する。本発明は、標的配列(1)を増幅する方法であって、一本鎖標的配列の高い増幅効率、および非特異的増幅の著しい抑制効果を示す方法を提供する。一実施形態では、入れ子型PCRの第2段階において、アウターフォワードプライマー(4of)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならないアウターフォワードブロック核酸(4ofb)を混合する。

Description

二本鎖DNA中の二本鎖標的配列を増幅する方法
 本発明は高い特異性を有する入れ子型PCRに関する。
 図1に示されるNested Polymerase Chain Reaction(以下、「入れ子型PCR」という)は、第1一本鎖DNA6および第2一本鎖DNA7からなる二本鎖DNAに含まれる二本鎖標的配列1を増幅する代表的な方法である。
 以下、図1を参照しながら入れ子型PCR法を簡単に説明する。
 第1一本鎖DNA6は、3’末端-第1非増幅配列6a-第2非増幅配列6b-一本鎖標的配列1a-第3非増幅配列6c-第4非増幅配列6d-5’末端からなる。第2一本鎖DNA7は、5’末端-第5非増幅配列7a-第6非増幅配列7b-相補的一本鎖標的配列1b-第7非増幅配列7c-第8非増幅配列7d-3’末端からなる。
 第5非増幅配列7a、第6非増幅配列7b、相補的一本鎖標的配列1b、第7非増幅配列7c、および第8非増幅配列7dは、それぞれ、前記第1非増幅配列6a、第2非増幅配列6b、一本鎖標的配列1a、第3非増幅配列6c、および第4非増幅配列6dと相補的である。
 二本鎖標的配列は、一本鎖標的配列1aと相補的一本鎖標的配列1bからなる。
 まず、DNAポリメラーゼ、デオキシヌクレオシド三リン酸、二本鎖DNA(6・7)、アウターフォワードプライマー(4of)、およびアウターリバースプライマー(5or)を混合して第1の混合液を調製する。
 アウターフォワードプライマー(4of)は5~40塩基を有する核酸からなり、かつ第2非増幅配列6bに含まれる3’末端の配列部分と相補的である。アウターリバースプライマー(5or)は5~40塩基を有する核酸からなり、かつ第7非増幅配列7cに含まれる3’末端の配列部分と相補的である。そのため、アウターフォワードプライマー(4of)およびアウターリバースプライマー(5or)は、それぞれ、第2非増幅配列6bに含まれる3’末端の配列部分および第7非増幅配列7cに含まれる3’末端の配列部分に結合する。
 次に、当該第1の混合液を94℃~100℃で1秒から100秒の間加熱する。その後、50~70℃で1秒から100秒間冷却する。さらに、70~80℃で1秒から600秒間加熱する。これらを繰り返し、中間二本鎖DNAを増幅する。
 中間二本鎖DNAは、中間一本鎖標的配列6mおよび相補的中間一本鎖標的配列7mからなる二本鎖DNAである。中間一本鎖標的配列および相補的中間一本鎖標的配列は、それぞれ、3’末端-第2非増幅配列6b-一本鎖標的配列1a-第3非増幅配列6c-5’末端および5’末端-第6非増幅配列7b-相補的一本鎖標的配列1b-第7非増幅配列7c-3’末端からなる。
 ここまでを「第1段階のPCR」と呼ぶ。
 次に、第2段階のPCRが行われる。
 増幅された中間二本鎖DNA、DNAポリメラーゼ、デオキシヌクレオシド三リン酸、インナーフォワードプライマー(4if)、およびインナーリバースプライマー(5ir)を混合して第2の混合液を調製する。
 インナーフォワードプライマー(4if)は5~40塩基を有する核酸からなり、かつ一本鎖標的配列(1a)に含まれる3’末端の配列部分と相補的である。インナーリバースプライマー(5ir)は5~40塩基を有する核酸からなり、かつ相補的一本鎖標的配列1bに含まれる3’末端の配列部分と相補的である。そのため、インナーフォワードプライマー(4if)およびインナーリバースプライマー(5ir)は、それぞれ、一本鎖標的配列1aに含まれる3’末端の配列部分および相補的一本鎖標的配列1bに含まれる3’末端側の配列部分に結合する。
 最後に、当該第2の混合液を94℃~100℃で1秒から100秒の間加熱する。その後、50~70℃で1秒から100秒間冷却する。次いで、70~80℃で1秒から600秒間加熱する。これらを繰り返し、上記二本鎖標的配列を増幅する。
 特許文献1および非特許文献1-3は、本発明と関連し得る。
国際公開第96/17932号公報
Genome Research、4、376-379(1995) Genome Research、2、60-65(1992) Phytopathology、86、493-497(1996)
 第1段階のPCRの後、かつ第2段階のPCRを行う前には、アウタープライマー4of・5orが除去されることが必要である。なぜなら、第2の混合液がアウタープライマー4of・5orを含有していると、図2に示すように、第2段階のPCRにおいて、アウタープライマーからもDNA伸長反応が生じてしまう。
 すなわち、図2に示すように、第2段階のPCRの後に、望まれる標的二本鎖DNAだけでなく、望まれない不要な増幅産物も得られる。当該望まれない不要な増幅産物は、標的二本鎖DNAの著しい増幅効率の低下、電気泳動によるDNA解析の困難化、および遺伝子診断のミスを招き得る。
 本発明の目的は、入れ子型PCRを利用して標的配列(1)を効率的に増幅する方法であって、当該望まれない不要な増幅産物の産生を抑制する方法を提供することである。
 上述の課題を解決するために、本発明は、以下に例示したような態様で提供される。
 (項目1) 第1一本鎖DNA(6)および第2一本鎖DNA(7)からなる二本鎖DNA中の二本鎖標的配列(1)を増幅する方法であって、
 前記二本鎖標的配列(1)は、一本鎖標的配列(1a)および相補的一本鎖標的配列(1b)からなり、
 前記第1一本鎖DNA(6)は、3’末端-第1非増幅配列(6a)-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-第4非増幅配列(6d)-5’末端からなり、
 前記第2一本鎖DNA(7)は、5’末端-第5非増幅配列(7a)-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-第8非増幅配列(7d)-3’末端からなり、
 前記相補的一本鎖標的配列(1b)、前記第5非増幅配列(7a)、第6非増幅配列(7b)、第7非増幅配列(7c)、および第8非増幅配列(8c)は、それぞれ、前記一本鎖標的配列(1a)、前記第1非増幅配列(6a)、前記第2非増幅配列(6b)、前記第3非増幅配列(6c)および前記第4非増幅配列(6d)と相補的であり、
 前記方法は、以下の工程(A)および工程(B)を包含する:
 DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記二本鎖DNA(6・7)、およびアウターフォワードプライマー(4of)、およびアウターリバースプライマー(5or)を混合し、ポリメラーゼ連鎖反応を用いて中間二本鎖DNAを増幅する工程(A)、
 ここで、前記中間二本鎖DNAは、中間標的配列および相補的中間標的配列からなり、
 前記中間標的配列は、3’末端-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-5’末端からなり、
 前記相補的中間標的配列は、5’末端-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-3’末端からなり、
 前記アウターフォワードプライマー(4of)は、前記第2非増幅配列(6b)に含まれる3’末端側の配列の部分と相補的であり、
 前記アウターリバースプライマー(5or)は、前記第7非増幅配列に含まれる3’末端側の配列の部分と相補的であり、
 DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記中間二本鎖DNA、インナーフォワードプライマー(4if)、インナーリバースプライマー(5ir)、およびアウターフォワードブロック核酸(4ofb)を混合し、ポリメラーゼ連鎖反応を用いて前記標的配列(1)を特異的に増幅する工程(B)、
 前記インナーフォワードプライマー(4if)は、前記一本鎖標的配列(1a)に含まれる3’末端側の配列部分と相補的であり、
 前記インナーリバースプライマー(5ir)は、前記相補的一本鎖標的配列(1b)に含まれる3’末端側の配列部分と相補的であり、
 前記アウターフォワードブロック核酸(4ofb)は、前記アウターフォワードプライマー(4of)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、方法。
(項目2) 前記工程(B)において、さらにアウターリバースブロック核酸(5orb)が混合され、
 前記アウターリバースブロック核酸(5orb)は、前記アウターリバースプライマー(5or)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、項目1に記載の方法。
(項目3) 前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、項目1に記載の方法。
(項目4) 前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、項目1に記載の方法。
(項目5) 前記アウターフォワードブロック核酸(4ofb)は、Peptide Nucleic Acidからなる、項目1に記載の方法。
(項目6) 前記アウターリバースブロック核酸(5orb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、項目2に記載の方法。
(項目7) 前記アウターリバースブロック核酸(5orb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、項目2に記載の方法。
(項目8) 前記アウターリバースブロック核酸(5orb)は、Peptide Nucleic Acidからなる、項目2に記載の方法。
(項目9) 第1一本鎖DNA(6)および第2一本鎖DNA(7)からなる二本鎖DNA中の二本鎖標的配列(1)を増幅する方法であって、
 前記二本鎖標的配列(1)は、一本鎖標的配列(1a)および相補的一本鎖標的配列(1b)からなり、
 前記第1一本鎖DNA(6)は、3’末端-第1非増幅配列(6a)-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-第4非増幅配列(6d)-5’末端からなり、
 前記第2一本鎖DNA(7)は、5’末端-第5非増幅配列(7a)-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-第8非増幅配列(7d)-3’末端からなり、
 前記相補的一本鎖標的配列(1b)、前記第5非増幅配列(7a)、第6非増幅配列(7b)、第7非増幅配列(7c)、および第8非増幅配列(8c)は、それぞれ、前記一本鎖標的配列(1a)、前記第1非増幅配列(6a)、前記第2非増幅配列(6b)、前記第3非増幅配列(6c)および前記第4非増幅配列(6d)と相補的であり、
 前記方法は、以下の工程(A)および工程(B)を包含する:
 DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記二本鎖DNA(6・7)、およびアウターフォワードプライマー(4of)、およびインナーリバースプライマー(5ir)を混合し、ポリメラーゼ連鎖反応を用いて中間二本鎖DNAを増幅する工程(A)、
 ここで、前記中間二本鎖DNAは、中間標的配列および相補的中間標的配列からなり、
 前記中間標的配列は、3’末端-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-5’末端からなり、
 前記相補的中間標的配列は、5’末端-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-3’末端からなり、
 前記アウターフォワードプライマー(4of)は、前記第2非増幅配列(6b)に含まれる3’末端側の配列の部分と相補的であり、
 前記インナーリバースプライマー(5ir)は、前記相補的一本鎖標的配列(1b)に含まれる3’末端側の配列部分と相補的であり、
 DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記中間二本鎖DNA、インナーフォワードプライマー(4if)、、およびアウターフォワードブロック核酸(4ofb)を混合し、ポリメラーゼ連鎖反応を用いて前記標的配列(1)を特異的に増幅する工程(B)、
 前記インナーフォワードプライマー(4if)は、前記一本鎖標的配列(1a)に含まれる3’末端側の配列部分と相補的であり、
 前記アウターフォワードブロック核酸(4ofb)は、前記アウターフォワードプライマー(4of)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、方法。
(項目10) 前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、項目9に記載の方法。
(項目11) 前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、項目9に記載の方法。
(項目12) 前記アウターフォワードブロック核酸(4ofb)は、Peptide Nucleic Acidからなる、項目9に記載の方法。
 本発明は、増幅効率を改善し、かつ非特異的増幅を著しく抑制し得る、標的配列を増幅する方法を提供する。
図1は、従来の入れ子型PCRを示す図である。 図2は、第2段階のPCRにおいて、アウタープライマーからDNA伸長反応が生じてしまう従来の入れ子型PCRの問題点を示す図である。 図3は、本実施の形態1に係る入れ子型PCRを示す図である。 図4は、本実施の形態1において、ブロック核酸に代えてブロックプライマーを用いた場合の問題点を示す図である。 図5は、本実施の形態2に係る入れ子型PCRを示す図である。 図6は、比較例1a(図6(A))および実施例1(図6(B))において、プロファイル1Aによる電気泳動結果を示す図である。 図7は、比較例1a(図7(A))および実施例1(図7(B))において、プロファイル1Bによる電気泳動結果を示す図である。 図8は、比較例1a(図8(A))および実施例1(図8(B))において、プロファイル1Cによる電気泳動結果を示す図である。 図9は、比較例1aおよび実施例1における非特異的増幅を定量的に比較した図である。 図10は、比較例1b(図8(A))において、プロファイル1Aによる電気泳動結果を示す図である。 図11は、比較例2および実施例2において、プロファイル2Aによる電気泳動結果を示す図である。 図12は、比較例2および実施例2において、プロファイル2Bによる電気泳動結果を示す図である。 図13は、比較例2および実施例2において、プロファイル2Cによる電気泳動結果を示す図である。 図14は、比較例2および実施例2における非特異的増幅を定量的に比較した図である。 図15は、比較例3a(図15(A))および実施例3(図15(B))において、プロファイル3Aによる電気泳動結果を示す図である。 図16は、比較例3a(図16(A))および実施例3(図16(B))において、プロファイル3Bによる電気泳動結果を示す図である。 図17は、比較例3bにおいて、プロファイル3Aによる電気泳動結果を示す図である。
 以下、図3を参照しながら、本発明の実施の形態を説明する。
 (実施の形態1)
 本実施の形態では、まず、図1と同様、アウタープライマーを用いて第1段階のPCRが行われる。第1段階のPCRでは、混合液はインナープライマーを含有しない。
 本実施の形態は、図3に示すように、第2段階のPCRにおいて、アウターフォワードブロック核酸(4ofb)を用いることによって特徴付けられる。好ましくは、アウターフォワードブロック核酸(4ofb)およびアウターリバースブロック核酸(5orb)の両方が用いられる。
 アウターフォワードブロック核酸(4ofb)およびアウターリバースブロック核酸(5orb)は、それぞれ、アウターフォワードプライマー(4of)およびアウターリバースプライマー(5or)と相補的な配列を有する。さらに、いずれのブロック核酸(4ofb・5orb)も、DNAポリメラーゼによる伸長反応のための起点として作用しない。好ましくは、ブロック核酸(4ofb・5orb)は合成オリゴ核酸である。
 ブロック核酸(4ofb・5orb)の例は、修飾されたDNA、修飾されたLocked Nucleic Acid(以下、「LNA」)、およびペプチド核酸(以下、「PNA」)である。
 核酸は、糖、リン酸基、および塩基から構成される複数のヌクレオチドがリン酸ジエステル結合を介して連結された生体高分子である。修飾されたDNAおよびLNAの3’末端に位置するヌクレオチドに含まれる糖の3位のOH基は、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されている。LNAは人工的に開発された核酸アナログである。PNAは当該修飾を必要としない。なぜなら、PNAでは、2アミノエチルグリシン結合が糖-リン酸ジエステル骨格を置換しているからである。
 第2段階のPCRを開始する前に、混合液にインナーフォワードプライマー(4if)およびインナーリバースプライマー(5ir)が添加される。さらに、アウターフォワードブロック核酸(4ofb)が混合液に添加される。アウターリバースブロック核酸(5orb)も添加されることが好ましい。
 ブロック核酸(4ofb・5orb)が添加されると、アウターフォワードブロック核酸(4ofb)はアウターフォワードプライマー(4of)に結合し、プライマーダイマーと呼ばれる二本鎖DNA構造を形成する。同様に、アウターリバースブロック核酸(5orb)はアウターフォワードプライマー(4of)に結合し、二本鎖DNA構造を形成する。これらの二本鎖DNA構造の形成は、アウターフォワードプライマー(4of)およびアウターリバースプライマー(5or)の活性を低下させる。従って、図2に示すような、第2段階のPCRにおけるアウタープライマーからのDNA伸長反応が抑制される。
 アウターフォワードブロック核酸(4ofb)が、アウターフォワードプライマー(4of)と相補的であるに過ぎない単なるプライマーであってはならない。すなわち、アウターフォワードブロック核酸(4ofb)が、DNAポリメラーゼによるDNA伸長反応の起点となってはならない。図4を参照しながら、以下、その理由を説明する。
 図4に示すように、図3と同様、アウターフォワードブロックプライマーは、アウターフォワードプライマー(4of)と共に二本鎖DNA構造を形成する。しかし、第2一本鎖DNA7が、アウターフォワードブロックプライマーに相補的な配列と同一または類似の配列部分7sを有している場合、アウターフォワードブロックプライマーは当該配列部分7sにも結合する。そして、アウターフォワードブロックプライマーからDNA伸長反応が開始する。これは、図2に示すような、不要な増幅産物を引き起こす。同様に、アウターリバースブロック核酸(5orb)もまた、アウターリバースプライマー(5or)と相補的であるに過ぎない単なるプライマーであってはならない。第1一本鎖DNA6が、
アウターリバースブロックプライマーに相補的な配列と同一または類似の配列部分6sを有する場合、当該配列部分6sにアウターリバースブロックプライマーが結合し、DNA伸長反応を開始するからである。第1一本鎖DNA6および第2一本鎖DNA7が複数の類似配列6sおよび複数の類似配列7sをそれぞれ有する場合には、大量の望まれない増幅産物が引き起こされ得る。この詳細は、実施例1および比較例1b、ならびに実施例3および比較例3bを参照されたい。
 アウターフォワードブロック核酸(4ofb)は、アウターフォワードプライマー(4of)の濃度よりも高い濃度を有することが好ましい。より具体的には、アウターフォワードブロック核酸(4ofb)は、アウターフォワードプライマー(4of)の5倍の濃度を有することが好ましく、10倍の濃度を有することがさらに好ましい。
 アウターリバースブロック核酸(5orb)も、アウターリバースプライマー(5orb)の濃度よりも高い濃度を有することが好ましい。より具体的には、アウターリバースブロック核酸(5orb)は、アウターリバースプライマー(5or)の5倍の濃度を有することが好ましく、10倍の濃度を有することがさらに好ましい。
 通常のPCRと同様、第1段階のPCRおよび第2段階のPCRにおいて、必要に応じて、pH緩衝作用を有する成分、MgClのような塩、dithiothreitol、牛血清アルブミン、およびglycerolのような試薬がさらに混合され得る。
 (実施の形態2)
 本実施の形態2を、図5を参照しながら説明する。本実施の形態2と実施の形態1との間の相違点は、インナーリバースプライマー(5ir)がアウターリバースプライマー(5or)を兼ねることにある。
 本実施の形態2においても、まず、図1と同様、アウタープライマーを用いて第1段階のPCRが行われる。実施の形態1とは異なり、実施の形態2における第1段階のPCRでは、混合液はインナーリバースプライマー(5ir)を含有する。第1段階のPCRは、第2非増幅配列6b-一本鎖標的配列1aからなる中間一本鎖標的配列および第6非増幅配列7b-相補的一本鎖標的配列1bからなる相補的中間一本鎖標的配列を産生する。
 第2段階のPCRの前に、アウターフォワードブロック核酸(4ofb)が混合される。実施の形態1とは異なり、アウターリバースブロック核酸(5orb)は混合されない。第2段階のPCRは、インナーフォワードプライマー(4if)およびインナーリバースプライマー(5ir)によって、一本鎖標的配列1aおよび相補的一本鎖標的配列1bを増幅する。
 本実施例および比較例で用いられる鋳型DNAは、自動DNA抽出装置QIAcube(株式会社キアゲン製)を用いてヒトの血液試料より調製した。
 全てのプライマーおよびアウターフォワードブロック核酸およびアウターリバースブロック核酸は、つくばオリゴサービス株式会社より購入した。
 アウターフォワードブロック核酸およびアウターリバースブロック核酸のいずれもが、その3’末端がリン酸基によって修飾されていた。
 dNTPは、インビトロジェン株式会社より購入した。PCR後の電気泳動解析のためにBioanalyzer2100(Agilent社製)が用いられた。
 以下の実施例1、比較例1a、および比較例1bでは、標的配列はヒトのABO式血液型遺伝子に含まれるDNA断片であった。
 (比較例1a)
 本比較例1aでは、アウターフォワードプライマーの配列は5’-GCCAGCTCCATGTGGCCGCAC-3’(配列番号1、以降、「ABO-OF」)であった。アウターリバースプライマーの配列は5’-CCTGGGTCTCTACCCTCGGC-3’(配列番号2、以降、「ABO-OR」)であった。このプライマー対は、AB型の血液型を有するヒトのABO式血液型遺伝子内に含まれる210bpのDNA断片を増幅する。このプライマー対は、O型の血液型を有するヒトのABO式血液型遺伝子内に含まれる209bpのDNA断片を増幅する。
 インナーフォワードプライマーの配列は5’-TGCAGTAGGAAGGATGTCCTC-3’(配列番号3、以降、「ABO-IF」)であった。インナーリバースプライマーの配列は5’-TTCTTGATGGCAAACACAGTTAAC-3’(配列番号4、以降、「ABO-IR」)であった。このABO-IFとABO-IRのプライマー対は、上記210bpのDNA断片内に存在する140bpのDNA断片(血液型がABの場合。O型の場合は139bpのDNA断片)を増幅する。これらのプライマーを用いて以下の通り入れ子型PCRを行った。
 第1段階のPCR溶液の組成は、以下の通りであった。
 1× TITANIUM Taq DNA ポリメラーゼ(クロンテック社製)、
 1×TITANIUM Taq PCR Buffer(クロンテック社製)、
 200μM dNTP、
 1μM ABO-OF、
 1μM ABO-OR、0.5ng/μL
 5ng/μl ゲノムDNA(AB型被験者由来)
 全容量:10μL
 PCRの温度プロファイル1A~Cは表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
 二段階目のPCR溶液は、第1段階のPCR後の反応液に0.5μLの20μM ABO-IFおよび0.5μLの20μM ABO-IRを添加することによって調製された。
 図6(A)は、プロファイル1Aによる電気泳動解析結果を示す。ABO-IFとABO-IRとの組み合わせから得られたDNA断片(すなわち、標的配列)だけでなく、ABO-OFとABO-ORとの組み合わせから得られた望まれないDNA断片も検出されたことを図6(A)は示す。さらに、図6(A)は、これらの増幅産物のピーク以外にも、非特異的な増幅産物を示す多数のピークを示している。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、62.5nMであった。
 図7(A)は、プロファイル1Bによる電気泳動解析結果を示す。図6(A)と同様、図7(A)もまた、非特異的な増幅産物を示す多数のピークを示している。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、137.8nMであった。
 図8(A)は、プロファイル1Bによる電気泳動解析結果を示す。図6(A)と同様、図8(A)もまた、非特異的な増幅産物を示す多数のピークを示している。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、157.0nMであった。
 (実施例1)
 本実施例1では、比較例1aと同じアウターフォワードプライマー(ABO-OF)、アウターリバースプライマー(ABO-OR)、インナーフォワードプライマー(ABO-IF)、インナーリバースプライマー(ABO-IR)を用いた。これらのプライマーを用いて以下の通り入れ子型PCRを行った。
 第1段階のPCR溶液の組成は、以下の通り、比較例1aと全く同じであった。
 1× TITANIUM Taq DNA ポリメラーゼ、
 1×TITANIUM Taq PCR Buffer
 200μM dNTP
 1μM ABO-OF
 1μM ABO-OR
 0.5ng/μL ゲノムDNA
 全容量:10μL
 温度プロファイル1は、比較例1aと同様であった。
 二段階目のPCR溶液は、第1段階のPCR後の反応液に、
 0.5μLの20μM ABO-IF
 0.5μLの20μM ABO-IR
 1μLのアウターフォワードブロック核酸、および
 1μLのアウターリバースブロック核酸
を添加することによって調製された。
 当該アウターフォワードブロック核酸は、5’-GTGCGGCCACATGGAGCTGGC-3’(配列番号5)からなり、かつその3’末端がリン酸化修飾された濃度100μMのオリゴDNA(以降、「ABO-OF-Block」)であった。この配列は、ABO-OFに対して相補的であった。
 当該アウターリバースブロック核酸は、5’-GCCGAGGGTAGAGACCCAGG-3’(配列番号6)からなり、かつその3’末端がリン酸化修飾された100μMのオリゴDNA(以降、「ABO-OR-Block」)であった。この配列は、ABO-ORに対して相補的であった
 図6(B)は、プロファイル1Aによる電気泳動解析結果を示す。ABO-IFとABO-IRとの組み合わせから得られたDNA断片(すなわち、標的配列)は検出されたが、ABO-OFとABO-ORとの組み合わせから得られたDNA断片はほとんど検出されなかったことを図6(B)は示す。さらに、図6(B)は、非特異的な増幅産物を示すピークをほとんど示していない。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、478.6nMであった。図6(B)から理解されるように、二段階目のPCR溶液がABO-OF-BlockおよびABO-OR-Blockを含有するため、ABO-IFとABO-IRの組み合わせからのPCRが極めて効率的に行われ、そして非特異的な増幅が著しく抑制される。
 図9は、非特異的な増幅の抑制を定量的に示している。これらは、電気泳動解析によって検出された全ての非特異的増幅産物が増幅される際に産生されたピロリン酸濃度を計算により求めた棒グラフである。
 DNA伸長反応においては、一塩基の伸長反応が進むごとに一分子のピロリン酸が産生されることは周知である。非特異的に増幅された各DNA断片の長さ(bp)×濃度(nM)を求め、それらを全て足し合わせることによって、全ての非特異的増幅産物が増幅される際に産生されたピロリン酸濃度を求められ得る。各DNA断片の長さおよび濃度はBioanalyzer2100より求められ得る。
 図6(A)に示される入れ子型PCRの結果と比較して、図6(B)に示される入れ子型PCRは、およそ45%の非特異的増幅を抑制し得ることを、図9(1)および図9(2)は示す。反応後の溶液が含有するピロリン酸の濃度を測定することによって、DNA増幅の濃度が測定され得る。非特異的な増幅により産生されるピロリン酸は大きなノイズとなり得る。しかし、ブロック核酸の添加は、非特異的な増幅により産生されるピロリン酸によるノイズを低減し得る。
 図7(B)は、プロファイル1Bによる電気泳動解析結果を示す。図6(B)と同様、標的配列は検出されたが、ABO-OFとABO-ORとの組み合わせから得られたDNA断片を含め、非特異的な増幅産物を示すピークを図7(B)はほとんど示していない。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、516.5nMであった。
 図7(A)に示される入れ子型PCRの結果と比較して、図7(B)に示される入れ子型PCRは、およそ66%の非特異的増幅を抑制し得ることを、図9(3)および図9(4)は示す。
 図8(B)は、プロファイル1Bによる電気泳動解析結果を示す。図6(B)と同様、標的配列は検出されたが、ABO-OFとABO-ORとの組み合わせから得られたDNA断片を含め、非特異的な増幅産物を示すピークを図8(B)はほとんど示していない。ABO-IFとABO-IRとの組み合わせから得られたDNA断片の濃度は、375.2nMであった。
 図7(A)に示される入れ子型PCRの結果と比較して、図7(B)に示される入れ子型PCRは、およそ61%の非特異的増幅を抑制し得ることを、図9(5)および図9(6)は示す。
 実施例1および比較例1aは、ブロック核酸の添加が、一本鎖標的配列の増幅効率を著しく高め、かつ非特異的増幅を大きく抑制し得ることを示している。
 念のため、本発明者らは、ABO-OF-Blockだけを第1段階のPCR後に添加して実験した。その結果、この場合も、ABO-OF-BlockおよびABO-OR-Blockの両方を添加した場合ほどではないが、ABO-OF-BlockおよびABO-OR-Blockのいずれも添加しなかった場合に比べ、標的配列の増幅効率が高められ、かつ非特異的増幅が抑制されたことが確認された。
 (比較例1b)
 比較例1bでは、図4のように、3’末端がリン酸化修飾されていないABO-OF-Block(図4における「アウターフォワードプライマー」)および3’末端がリン酸化修飾されていないABO-OR-Block(図4における「アウターリバースプライマー」)が用いられた。プロファイル1Aが用いられた。
 図10はその電気泳動結果を示す。図10におけるABO-IFとABO-IRとの組み合わせから得られたDNA断片濃度は、図6(B)のそれにより明らかに小さい。さらに、図10における非特異的増幅の抑制効果は、図6(B)のそれより明らかに小さい。
 以上の結果より、3’末端をリン酸化修飾しないブロックプライマーでは、充分な非特異的増幅の抑制効果を得られなかった。
 以下の実施例2および比較例2は図5に対応する。以下の実施例2および比較例2では、標的配列はヒトのALDH2遺伝子に含まれるDNA断片であった。
 (比較例2)
 本比較例2では、アウターフォワードプライマーの配列は5’-CAAATTACAGGGTCAACTGCT-3’(配列番号7、以降、「ALDH2-OF」)であった。アウターリバースプライマーの配列は5’-GGCAGGTCCTGAACCTC-3’(配列番号8、以降、「ALDH2-OR」)であった。このプライマー対は、ヒトのALDH2遺伝子内に含まれる251bpのDNA断片を増幅する。
 インナーフォワードプライマーの配列は5’-GTACGGGCTGCAGGCATACAC-3’(配列番号9、以降、「ALDH2-IF」)であった。インナーリバースプライマーの配列はALDH2-ORと同じである。ALDH2-IFおよびALDH2-ORとのプライマー対は、上記251bpのDNA断片内に存在する160bpのDNA断片を増幅し得る。これらのプライマーを用いて以下の通り入れ子型PCRを行った。
 第1段階のPCR溶液の組成は、以下の通りである。
 0.05U/μL TaKaRa LA Taq HS(タカラバイオ株式会社製)、
 1×LA PCR Buffer II (Mg2+ plus)(タカラバイオ株式会社製)、
 200μM dNTP、
 1μM ALDH2-OF、
 1μM ALDH2-OR、
 0.83ng/μL ゲノムDNA
 全容量:10μL
 PCRの温度プロファイル2A~Cは表2の通りであった。
Figure JPOXMLDOC01-appb-T000002
 二段階目のPCR溶液は、第1段階のPCR後の反応液に10μM ALDH2-IFを1μL添加することによって調製された。
 図11(A)は、プロファイル2Aによる電気泳動解析結果を示す。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片(すなわち、標的配列)だけでなく、ALDH2-OFとALDH2-ORとの組み合わせから得られたDNA断片も検出されたことを図11(A)は示す。さらに、図11(A)は、非特異的な増幅産物を示す多数のピークを示している。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、10.7nMであった。
 図12(A)は、プロファイル2Bによる電気泳動解析結果を示す。図11(A)と同様、図12(A)もまた、非特異的な増幅産物を示す多数のピークを示している。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、13.6nMであった。
 図13(A)は、プロファイル2Bによる電気泳動解析結果を示す。図11(A)と同様、図13(A)もまた、非特異的な増幅産物を示す多数のピークを示している。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、9.9nMであった。
 (実施例2)
 実験例2では、第1段階のPCR後の反応液に、
 1μLの10μM ALDH2-IF、および
 1μLのアウターフォワードブロック核酸
が添加されたPCR溶液が用いられた。
 当該アウターフォワードブロック核酸は、5’-AGCAGTTGACCCTGTAATTTG-3’(配列番号10)からなり、かつその3’末端がリン酸化修飾された濃度100μMのオリゴDNA(以降、「ALDH2-OF-Block」)であった。この配列は、ALDH2-OFに相補的であった。
 図11(B)は、プロファイル2Aによる電気泳動解析結果を示す。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片(すなわち、標的配列)は検出されたが、ALDH2-OFとALDH2-ORとの組み合わせから得られたDNA断片はほとんど検出されなかったことを図11(B)は示す。さらに、図11(B)は、非特異的な増幅産物を示すピークをほとんど示していない。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、58.6nMであった。図11(B)から理解されるように、二段階目のPCR溶液がALDH2-OF-BlockおよびALDH2-OR-Blockを含有するため、ALDH2-IFとALDH2-IRの組み合わせからのPCRが極めて効率的に行われ、そして非特異的な増幅が著しく抑制された。
 図14は、図9と同様、非特異的な増幅の抑制を定量的に示している。図11(A)に示される入れ子型PCRの結果と比較して、図11(B)に示される入れ子型PCRは、およそ95%の非特異的増幅を抑制し得ることを、図14(1)および図14(2)は示す。
 図12(B)は、プロファイル2Bによる電気泳動解析結果を示す。図11(B)と同様、標的配列は検出されたが、ALDH2-OFとALDH2-ORとの組み合わせから得られたDNA断片を含め、非特異的な増幅産物を示すピークを図12(B)はほとんど示していない。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、58.6nMであった。
 図12(A)に示される入れ子型PCRの結果と比較して、図12(B)に示される入れ子型PCRは、およそ87%の非特異的増幅を抑制し得ることを、図14(3)および図14(4)は示す。
 図13(B)は、プロファイル2Bによる電気泳動解析結果を示す。図11(B)と同様、標的配列は検出されたが、ALDH2-OFとALDH2-ORとの組み合わせから得られたDNA断片を含め、非特異的な増幅産物を示すピークを図13(B)はほとんど示していない。ALDH2-IFとALDH2-IRとの組み合わせから得られたDNA断片の濃度は、53.5nMであった。
 図13(A)に示される入れ子型PCRの結果と比較して、図13(B)に示される入れ子型PCRは、およそ81%の非特異的増幅を抑制し得ることを、図14(5)および図14(6)は示す。
 実施例2および比較例2は、ブロック核酸の添加が、標的配列の増幅効率を高め、かつ非特異的増幅を抑制し得ることを示している。
 以下の実施例3、比較例3a、および比較例3bは図3に対応する。以下の実施例3、比較例3a、および比較例3bでは、標的配列はヒトのジストロフィン遺伝子に含まれるDNA断片であった。
 (比較例3)
 本比較例3では、アウターフォワードプライマーの配列は5’-GATGGCAAAAGTGTTGAGAAAAAGTC-3’(配列番号11、以降、「DYSTRO-OF」)であった。アウターリバースプライマーの配列は5’-TTCTACCACATCCCATTTTCTTCCA-3’(配列番号12、以降、「DYSTRO-OR」)であった。このプライマー対は、ヒトのジストロフィン遺伝子内に含まれる459bpのDNA断片を増幅し得る。
 インナーフォワードプライマーの配列は5’-AGGCTTGAAAGGGCAAGTAGAAGT-3’(配列番号13、以降、「DYSTRO-IF」)であった。インナーリバースプライマーの配列は5’-GCTGATCTGCTGGCATCTTGC-3’(配列番号14、以降、「DYSTRO-IR」)であった。このDYSTRO-IFとDYSTRO-ORのプライマー対は、上記459bpのDNA断片内に存在する147bpのDNA断片を増幅し得る。これらのプライマーを用いて以下の通り入れ子型PCRを行った。
 第1段階のPCR溶液の組成は、以下の通りであった。
 1× TITANIUM Taq DNA ポリメラーゼ(クロンテック社製)、
 1×TITANIUM Taq PCR Buffer(クロンテック社製)、
 200μM dNTP、
 1μM DYSTRO-OF、
 1μM DYSTRO-OR、
 0.5ng/μL ゲノムDNA
 全容量:10μL
 PCRの温度プロファイル3A~Bは表3の通りであった。
Figure JPOXMLDOC01-appb-T000003
 二段階目のPCR溶液は、上記第1段階のPCR後の反応液に0.5μLの20μM DYSTRO-IFおよび0.5μLの20μM DYSTRO-IRを添加することによって調製された。
 図15(A)は、プロファイル3Aによる電気泳動解析結果を示す。DYSTRO-IFとDYSTRO-IRとの組み合わせから得られたDNA断片(すなわち、標的配列)だけでなく、DYSTRO-OFとDYSTRO-ORとの組み合わせから得られたDNA断片も検出されたことを図15(A)は示す。さらに、図15(A)は、これらの増幅産物のピーク以外にも、非特異的な増幅産物を示す多数のピークを示している。DYSTRO-IFとDYSTRO-IRとの組み合わせから得られたDNA断片の濃度は、294.5nMであった。
 図16(A)は、プロファイル3Bによる電気泳動解析結果を示す。図15(A)と同様、図16(A)もまた、非特異的な増幅産物を示す多数のピークを示している。DYSTRO-IFとDYSTRO-IRとの組み合わせから得られたDNA断片の濃度は、196.1nMであった。
 (実施例3)
 本実施例3では、比較例3と同じアウターフォワードプライマー(DYSTRO-OF)、アウターリバースプライマー(DYSTRO-OR)、インナーフォワードプライマー(DYSTRO-IF)、およびインナーリバースプライマー(DYSTRO-IR)が用いられた。これらのプライマーを用いて以下の通り入れ子型PCRを行った。
 第1段階のPCR溶液の組成および温度プロファイル3A・3Bは、比較例3aと全く同じであった。
 二段階目のPCR溶液は、第1段階のPCR後の反応液に、
 0.5μLの20μM DYSTRO-IF
 0.5μLの20μM DYSTRO-IR
 1μLのアウターフォワードブロック核酸、および
 1μLのアウターリバースブロック核酸
を添加することによって調製された。
 当該アウターフォワードブロック核酸は、5’-GACTTTTTCTCAACACTTTTGCCATC-3’(配列番号15)からなり、かつその3’末端がリン酸化修飾された100μMのオリゴDNA(以降、「DYSTRO-OF-Block」)であった。この配列は、DYSTRO-OFに対して相補的であった。
 当該アウターリバースブロック核酸は、5’-TGGAAGAAAATGGGATGTGGTAGAA-3’(配列番号16)からなり、かつその3’末端がリン酸化修飾された100μMのオリゴDNA(以降、「DYSTRO-OR-Block」)であった。この配列は、DYSTRO-ORに対して相補的であった。
 図15(B)は、プロファイル3Aによる電気泳動解析結果を示す。図15(B)から理解されるように、DYSTRO-OFとDYSTRO-ORの組み合わせからの増幅産物濃度、DYSTRO-OFとDYSTRO-IRの組み合わせからの増幅産物濃度、およびDYSTRO-IFとDYSTRO-ORの組み合わせからの増幅産物濃度は、いずれも、検出限界以下であった。
 DYSTRO-IFとDYSTRO-IRとの組み合わせから得られたDNA断片の濃度は593.2nMであった。図15(B)から理解されるように、二段階目のPCR溶液がDYSTRO-OF-BlockおよびDYSTRO-OR-Blockを含有するため、DYSTRO-IFとDYSTRO-IRの組み合わせによるPCRが極めて効率的に行われ、そして非特異的な増幅が著しく抑制された。
 図16(B)は、プロファイル3Bによる電気泳動解析結果を示す。図16(B)から理解されるように、DYSTRO-OFとDYSTRO-ORの組み合わせからの増幅産物濃度、DYSTRO-OFとDYSTRO-IRの組み合わせからの増幅産物濃度、およびDYSTRO-IFとDYSTRO-ORの組み合わせからの増幅産物濃度は、いずれも、検出限界以下であった。
 DYSTRO-IFとDYSTRO-IRとの組み合わせから得られたDNA断片の濃度は571.6nMであった。図16(B)から理解されるように、二段階目のPCR溶液がDYSTRO-OF-BlockおよびDYSTRO-OR-Blockを含有するため、DYSTRO-IFとDYSTRO-IRとの組み合わせによるPCRが極めて効率的に行われ、そして非特異的な増幅が著しく抑制された。
 (比較例3b)
 比較例3bでは、図4のように、3’末端がリン酸化修飾されていないDYSTRO-OF-Block(図4における「アウターフォワードプライマー」)および3’末端がリン酸化修飾されていないDYSTRO-OR-Block(図4における「アウターリバースプライマー」)が用いられた。プロファイル3Aが用いられた。
 図17はその電気泳動結果を示す。図17におけるABO-IFとABO-IRとの組み合わせから得られたDNA断片濃度は、図15(B)および図16(B)のそれらより明らかに小さい。さらに、図17における非特異的増幅の抑制効果は、図15(B)および図16(B)のそれらより明らかに小さい。
 以上の結果より、3’末端をリン酸化修飾しないブロックプライマーでは、充分な非特異的増幅の抑制効果を得られなかった。
 本発明は、標的配列を増幅する方法であって、標的配列の高い増幅効率、および非特異的増幅の著しい抑制効果を示す標的配列を増幅する方法を提供する。
 1 標的配列
  1a 一本鎖標的配列
  1b 相補的一本鎖標的配列

 4of アウターフォワードプライマー
 4orb アウターフォワードブロック核酸
 4if インナーフォワードプライマー
 5or アウターリバースプライマー
 5ir インナーリバースプライマー
 5orb アウターリバースブロック核酸

 6 第1一本鎖DNA
  6a 第1非増幅配列
  6b 第2非増幅配列
  6c 第3非増幅配列
  6d 第4非増幅配列
  6m 中間一本鎖標的配列
  6s アウターリバースブロックプライマーに相補的な配列と同一または類似の配列部分
 7 第2一本鎖DNA
  7a 第5非増幅配列
  7b 第6非増幅配列
  7c 第7非増幅配列
  7d 第8非増幅配列
  7m 相補的中間一本鎖標的配列
  7s アウターフォワードブロックプライマーに相補的な配列と同一または類似の配列部分
配列番号1:ABO式血液型遺伝子のためのアウターフォワードプライマー
配列番号2:ABO式血液型遺伝子のためのアウターリバースプライマー
配列番号3:ABO式血液型遺伝子のためのインナーフォワードプライマー
配列番号4:ABO式血液型遺伝子のためのインナーリバースプライマー
配列番号5:ABO式血液型遺伝子のためのアウターフォワードプライマーのブロック核酸(DNA)
配列番号6:ABO式血液型遺伝子のためのアウターリバースプライマーのブロック核酸(DNA)
配列番号7:ALDH2遺伝子のためのアウターフォワードプライマー
配列番号8: ALDH2遺伝子のためのアウターリバースプライマーまたはインナーリバースプライマー
配列番号9: ALDH2遺伝子のためのインナーフォワードプライマー
配列番号10:ALDH2遺伝子のためのアウターフォワードプライマーのブロック核酸(DNA)
配列番号11:ジストロフィン遺伝子のためのアウターフォワードプライマー
配列番号12:ジストロフィン遺伝子のためのアウターリバースプライマー
配列番号13:ジストロフィン遺伝子のためのインナーフォワードプライマー
配列番号14:ジストロフィン遺伝子のためのインナーリバースプライマー
配列番号15:ジストロフィン遺伝子のためのアウターフォワードプライマーのブロック核酸(DNA)
配列番号16:ジストロフィン遺伝子のためのアウターリバースプライマーのブロック核酸(DNA)

Claims (12)

  1.  第1一本鎖DNA(6)および第2一本鎖DNA(7)からなる二本鎖DNA中の二本鎖標的配列(1)を増幅する方法であって、
     前記二本鎖標的配列(1)は、一本鎖標的配列(1a)および相補的一本鎖標的配列(1b)からなり、
     前記第1一本鎖DNA(6)は、3’末端-第1非増幅配列(6a)-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-第4非増幅配列(6d)-5’末端からなり、
     前記第2一本鎖DNA(7)は、5’末端-第5非増幅配列(7a)-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-第8非増幅配列(7d)-3’末端からなり、
     前記相補的一本鎖標的配列(1b)、前記第5非増幅配列(7a)、第6非増幅配列(7b)、第7非増幅配列(7c)、および第8非増幅配列(8c)は、それぞれ、前記一本鎖標的配列(1a)、前記第1非増幅配列(6a)、前記第2非増幅配列(6b)、前記第3非増幅配列(6c)および前記第4非増幅配列(6d)と相補的であり、
     前記方法は、以下の工程(A)および工程(B)を包含する:
     DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記二本鎖DNA(6・7)、およびアウターフォワードプライマー(4of)、およびアウターリバースプライマー(5or)を混合し、ポリメラーゼ連鎖反応を用いて中間二本鎖DNAを増幅する工程(A)、
     ここで、前記中間二本鎖DNAは、中間標的配列および相補的中間標的配列からなり、
     前記中間標的配列は、3’末端-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-5’末端からなり、
     前記相補的中間標的配列は、5’末端-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-3’末端からなり、
     前記アウターフォワードプライマー(4of)は、前記第2非増幅配列(6b)に含まれる3’末端側の配列の部分と相補的であり、
     前記アウターリバースプライマー(5or)は、前記第7非増幅配列に含まれる3’末端側の配列の部分と相補的であり、
     DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記中間二本鎖DNA、インナーフォワードプライマー(4if)、インナーリバースプライマー(5ir)、およびアウターフォワードブロック核酸(4ofb)を混合し、ポリメラーゼ連鎖反応を用いて前記標的配列(1)を特異的に増幅する工程(B)、
     前記インナーフォワードプライマー(4if)は、前記一本鎖標的配列(1a)に含まれる3’末端側の配列部分と相補的であり、
     前記インナーリバースプライマー(5ir)は、前記相補的一本鎖標的配列(1b)に含まれる3’末端側の配列部分と相補的であり、
     前記アウターフォワードブロック核酸(4ofb)は、前記アウターフォワードプライマー(4of)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、方法。
  2.  前記工程(B)において、さらにアウターリバースブロック核酸(5orb)が混合され、
     前記アウターリバースブロック核酸(5orb)は、前記アウターリバースプライマー(5or)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、請求項1に記載の方法。
  3.  前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、請求項1に記載の方法。
  4.  前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、請求項1に記載の方法。
  5.  前記アウターフォワードブロック核酸(4ofb)は、Peptide Nucleic Acidからなる、請求項1に記載の方法。
  6.  前記アウターリバースブロック核酸(5orb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、請求項2に記載の方法。
  7.  前記アウターリバースブロック核酸(5orb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、請求項2に記載の方法。
  8.  前記アウターリバースブロック核酸(5orb)は、Peptide Nucleic Acidからなる、請求項2に記載の方法。
  9.  第1一本鎖DNA(6)および第2一本鎖DNA(7)からなる二本鎖DNA中の二本鎖標的配列(1)を増幅する方法であって、
     前記二本鎖標的配列(1)は、一本鎖標的配列(1a)および相補的一本鎖標的配列(1b)からなり、
     前記第1一本鎖DNA(6)は、3’末端-第1非増幅配列(6a)-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-第3非増幅配列(6c)-第4非増幅配列(6d)-5’末端からなり、
     前記第2一本鎖DNA(7)は、5’末端-第5非増幅配列(7a)-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-第7非増幅配列(7c)-第8非増幅配列(7d)-3’末端からなり、
     前記相補的一本鎖標的配列(1b)、前記第5非増幅配列(7a)、第6非増幅配列(7b)、第7非増幅配列(7c)、および第8非増幅配列(8c)は、それぞれ、前記一本鎖標的配列(1a)、前記第1非増幅配列(6a)、前記第2非増幅配列(6b)、前記第3非増幅配列(6c)および前記第4非増幅配列(6d)と相補的であり、
     前記方法は、以下の工程(A)および工程(B)を包含する:
     DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記二本鎖DNA(6・7)、およびアウターフォワードプライマー(4of)、およびインナーリバースプライマー(5ir)を混合し、ポリメラーゼ連鎖反応を用いて中間二本鎖DNAを増幅する工程(A)、
     ここで、前記中間二本鎖DNAは、中間標的配列および相補的中間標的配列からなり、
     前記中間標的配列は、3’末端-第2非増幅配列(6b)-前記一本鎖標的配列(1a)-5’末端からなり、
     前記相補的中間標的配列は、5’末端-第6非増幅配列(7b)-前記相補的一本鎖標的配列(1b)-3’末端からなり、
     前記アウターフォワードプライマー(4of)は、前記第2非増幅配列(6b)に含まれる3’末端側の配列の部分と相補的であり、
     前記インナーリバースプライマー(5ir)は、前記相補的一本鎖標的配列(1b)に含まれる3’末端側の配列部分と相補的であり、
     DNAポリメラーゼ、デオキシヌクレオシド三リン酸、前記中間二本鎖DNA、インナーフォワードプライマー(4if)、、およびアウターフォワードブロック核酸(4ofb)を混合し、ポリメラーゼ連鎖反応を用いて前記標的配列(1)を特異的に増幅する工程(B)、
     前記インナーフォワードプライマー(4if)は、前記一本鎖標的配列(1a)に含まれる3’末端側の配列部分と相補的であり、
     前記アウターフォワードブロック核酸(4ofb)は、前記アウターフォワードプライマー(4of)と相補的であり、かつ前記DNAポリメラーゼによるDNA伸長反応の起点とならない、方法。
  10.  前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているDNAからなる、請求項9に記載の方法。
  11.  前記アウターフォワードブロック核酸(4ofb)は、3’末端に位置するヌクレオチドに含まれる糖の3位のOH基が、水素、リン酸基、アミノ基、ビオチン基、チオール基、またはこれらの誘導体によって置換または修飾されているLocked Nucleic Acidからなる、請求項9に記載の方法。
  12.  前記アウターフォワードブロック核酸(4ofb)は、Peptide Nucleic Acidからなる、請求項9に記載の方法。
PCT/JP2010/001886 2010-03-16 2010-03-16 二本鎖dna中の二本鎖標的配列を増幅する方法 WO2011114369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010521238A JP4897923B2 (ja) 2010-03-16 2010-03-16 二本鎖dna中の二本鎖標的配列を増幅する方法
PCT/JP2010/001886 WO2011114369A1 (ja) 2010-03-16 2010-03-16 二本鎖dna中の二本鎖標的配列を増幅する方法
CN2010800030948A CN102405295A (zh) 2010-03-16 2010-03-16 扩增双链dna中的双链目的序列的方法
US12/955,594 US20110229939A1 (en) 2010-03-16 2010-11-29 Method for amplifying double stranded target sequence in double stranded dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001886 WO2011114369A1 (ja) 2010-03-16 2010-03-16 二本鎖dna中の二本鎖標的配列を増幅する方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/955,594 Continuation US20110229939A1 (en) 2010-03-16 2010-11-29 Method for amplifying double stranded target sequence in double stranded dna

Publications (1)

Publication Number Publication Date
WO2011114369A1 true WO2011114369A1 (ja) 2011-09-22

Family

ID=44647551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001886 WO2011114369A1 (ja) 2010-03-16 2010-03-16 二本鎖dna中の二本鎖標的配列を増幅する方法

Country Status (4)

Country Link
US (1) US20110229939A1 (ja)
JP (1) JP4897923B2 (ja)
CN (1) CN102405295A (ja)
WO (1) WO2011114369A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075079A1 (en) * 2011-11-17 2013-05-23 Rheonix, Inc. System and methods for selective molecular analysis
US9260714B2 (en) * 2011-12-02 2016-02-16 Roche Molecular Systems, Inc. Suppression of non-specific amplification with high-homology oligonucleotides
CN107227364A (zh) * 2017-07-05 2017-10-03 上海赛安生物医药科技股份有限公司 Dhfr基因多态性检测体系及其试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017932A1 (fr) * 1994-12-09 1996-06-13 Wakunaga Seiyaku Kabushiki Kaisha Procede d'inhibition de l'hybridation non specifique dans une extension d'amorce
JP2006288353A (ja) * 2005-04-15 2006-10-26 Koichi Hagiwara 高感度な既知変異遺伝子検出方法、およびegfr変異遺伝子検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3623791B1 (ja) * 1994-12-09 2005-02-23 湧永製薬株式会社 プライマー伸長法における非特異的ハイブリッド形成抑制法
GB0101397D0 (en) * 2001-01-19 2001-03-07 Amersham Pharm Biotech Uk Ltd Suppression of non-specific nucleic acid amplication
US8119352B2 (en) * 2006-06-20 2012-02-21 Cepheld Multi-stage amplification reactions by control of sequence replication times

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017932A1 (fr) * 1994-12-09 1996-06-13 Wakunaga Seiyaku Kabushiki Kaisha Procede d'inhibition de l'hybridation non specifique dans une extension d'amorce
JP2006288353A (ja) * 2005-04-15 2006-10-26 Koichi Hagiwara 高感度な既知変異遺伝子検出方法、およびegfr変異遺伝子検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LATORRA, D. ET AL.: "Design considerations and effects of LNA in PCR primers.", MOLECULAR AND CELLULAR PROBES, vol. 17, no. 5, 2003, pages 253 - 259 *
LATORRA, D. ET AL.: "Enhanced allele-specific PCR discrimination in SNP genotyping using 3 locked nucleic acid (LNA) primers.", HUMAN MUTATION, vol. 22, no. 1, 2003, pages 79 - 85 *
TANAKA, T. ET AL.: "Reliability of the peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based test for epidermal growth factor receptor mutations integrated into the clinical practice for non-small cell lung cancers.", CANCER SCIENCE, vol. 98, no. 2, 2007, pages 246 - 252 *

Also Published As

Publication number Publication date
JPWO2011114369A1 (ja) 2013-06-27
JP4897923B2 (ja) 2012-03-14
CN102405295A (zh) 2012-04-04
US20110229939A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US11208688B2 (en) Small RNA capture, detection and quantification
US9890408B2 (en) Multiple displacement amplification
US10563250B2 (en) Methods, compositions and kits for small RNA capture, detection and quantification
EP2733221B1 (en) "Dual-hybridization" polynucleotides and uses thereof
EP3234188B1 (en) Exponential base-greater-than-2 nucleic acid amplification
US20170253920A1 (en) Methods and compositions for multiple displacement amplification of nucleic acids
JP2008029333A (ja) 新規遺伝子増幅法に用いられるプライマー
EP2151506B1 (en) Method of amplifying target nucleic acid sequence by multiple displacement amplification including thermal cycling
US12275990B2 (en) Modified primers for nucleic acid amplification and detection
WO2017138484A1 (ja) 標的核酸を検出する方法およびそれに用いる核酸プローブ
WO2011114369A1 (ja) 二本鎖dna中の二本鎖標的配列を増幅する方法
US20180362968A1 (en) Methods of library construction for target polynucleotides
EP4010493B1 (en) Methods for the multiplexed isothermal amplification of nucleic acid sequences
US20080161197A1 (en) Method for amplifying monomorphic-tailed nucleic acids
JP2008029335A (ja) 新規遺伝子増幅法に用いられるプライマーセットおよびキット
US20090305288A1 (en) Methods for amplifying nucleic acids and for analyzing nucleic acids therewith
US20180080070A1 (en) Method for template-dependent multiple displacement amplification
JP4960536B2 (ja) 二本鎖dna中の標的配列を増幅する方法
JP2021153393A (ja) 核酸増幅反応用組成物
JPWO2020059792A1 (ja) 核酸増幅反応用組成物
US11667942B1 (en) Assembly of long DNA molecules by transliteration
EP4310195A1 (en) Method for nucleic acid detection using signal-mediated amplification of rna technology and rna aptamers
KR20190092883A (ko) 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법
JP2007325534A (ja) RecAタンパク質を利用した核酸の等温増幅法
KR20250040124A (ko) 프라이머 형성 회전환 증폭용 프로브를 이용한 식중독균 검출 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003094.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010521238

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847791

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载