+

WO2011111693A1 - コハク酸の製造方法 - Google Patents

コハク酸の製造方法 Download PDF

Info

Publication number
WO2011111693A1
WO2011111693A1 PCT/JP2011/055355 JP2011055355W WO2011111693A1 WO 2011111693 A1 WO2011111693 A1 WO 2011111693A1 JP 2011055355 W JP2011055355 W JP 2011055355W WO 2011111693 A1 WO2011111693 A1 WO 2011111693A1
Authority
WO
WIPO (PCT)
Prior art keywords
succinic acid
reaction
microorganism
oxygen
rate
Prior art date
Application number
PCT/JP2011/055355
Other languages
English (en)
French (fr)
Inventor
勝徳 吉川
大助 城戸
誠 村瀬
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201180011827.7A priority Critical patent/CN102812127B/zh
Priority to JP2012504468A priority patent/JP5857954B2/ja
Priority to BR112012022486A priority patent/BR112012022486A2/pt
Priority to EP11753351.3A priority patent/EP2546351B1/en
Priority to CA2792257A priority patent/CA2792257C/en
Publication of WO2011111693A1 publication Critical patent/WO2011111693A1/ja
Priority to US13/607,049 priority patent/US8647843B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing succinic acid using a microorganism having succinic acid-producing ability.
  • Succinic acid production by fermentation is generally performed under aerobic conditions in which a sufficient amount of oxygen is supplied, microaerobic conditions in which a small amount of oxygen is supplied, or anaerobic conditions in which oxygen is not supplied. So far, it has been described that fermentation reaction under microaerobic conditions or anaerobic conditions is more effective for succinic acid production than aerobic conditions (Patent Documents 1 to 4, Non-Patent Document 1). In particular, based on the results of a simulation (FBA model) using Corynebacterium glutamicum ATCC 13032 as a theme, succinic acid production is improved under conditions of supplying a small amount of oxygen rather than anaerobic conditions, and LDH. It is described that succinic acid production is further improved by deleting the gene (Non-patent Document 1).
  • the oxygen consumption rate (transfer rate) is controlled to 0.01 to 5 mmol / L / hr or less under oxygen-deficient conditions. It is described that the oxygen consumption rate is controlled to 5.5 to 7 mmol / L / hr when oxygen supply control is performed by performing aeration or ventilation (oxygen limited conditions).
  • Non-Patent Document 1 performs calculations aimed at a state where cell growth is the best, sugar metabolism as a raw material is used for cell growth.
  • the bacterial metabolites mainly produced lactic acid (carbon yield up to 60%), and succinic acid had a carbon yield of up to about 20%.
  • succinic acid had a carbon yield of up to about 20%.
  • the carbon yield of the simulation result is 19.2%.
  • the carbon yield of the example was 3.1%, and there was a discrepancy between the simulation result and the example. From these facts, the details of the relationship between the oxygen supply to the fermentation reaction by the succinic acid-producing microorganism and the succinic acid production reaction under conditions where the cell growth is limited have not yet been elucidated.
  • An object of the present invention is to provide a method for producing succinic acid, which has higher production efficiency than that of the conventional method, and can cope with an industrial scale.
  • the present inventors have found that when producing succinic acid from a raw sugar by a microorganism capable of producing succinic acid, succinic acid is produced under conditions in which the growth of microbial cells is limited.
  • the ratio of the oxygen transfer rate to the acid production rate is determined within a specific range, that is, the efficiency of succinic acid production is improved by performing the succinic acid production reaction in an environment where a very small amount of oxygen is supplied,
  • the present invention has been achieved.
  • the gist of the present invention is as follows.
  • the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is 0.1 to 240
  • a method for producing succinic acid, wherein the doubling time of the microorganism in the reaction is 40 hours or more.
  • the microorganism is modified so that lactate dehydrogenase activity is reduced as compared to an unmodified strain, and / or modified so that pyruvate carboxylase activity is enhanced as compared with an unmodified strain.
  • the method for producing succinic acid according to any one of [1] to [4], wherein [6] The method for producing succinic acid according to any one of [1] to [5], wherein the pH during the reaction is 5 to 10.
  • a method for producing a succinic acid-containing polymer comprising a step of producing succinic acid by the method according to any one of [1] to [6], and a step of performing a polymerization reaction using the obtained succinic acid.
  • a method for producing a succinic acid derivative comprising a step of producing succinic acid by the method according to any one of [1] to [6], and a step of synthesizing a succinic acid derivative using the obtained succinic acid as a raw material.
  • the present invention is a method for producing succinic acid by reacting a succinic acid-producing microorganism with a sugar, and the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is in the range of 0.
  • the succinic acid production method is characterized in that it is 1 to 240 and the doubling time of the microorganism in the reaction is 40 hours or more.
  • the microorganism used in the method of the present invention is not limited as long as it is a microorganism having an ability to produce succinic acid.
  • the ability to produce succinic acid refers to the ability to accumulate succinic acid in a medium when the microorganism is cultured in the medium.
  • the degree of succinic acid-producing ability can be indicated by the consumed sugar carbon yield in succinic acid and the like.
  • the sugar sugar yield (C-mol%) consumed in succinic acid is no particular restriction on the sugar sugar yield (C-mol%) consumed in succinic acid, but if the sugar sugar yield is too low, the succinic acid production efficiency for the raw sugar tends to be low. Usually, it is 40 C-mol% or more, preferably 50 C-mol% or more, more preferably 60 C-mol% or more. On the other hand, it is usually 133 C-mol% or less, preferably 120 C-mol% or less, more preferably 110 C-mol% or less.
  • the saccharide sugar yield in succinic acid (C-mol%) is the ratio of the number of moles of carbon atoms contained in the produced succinic acid to the number of moles of carbon atoms (C atoms) contained in the consumed sugar. Say.
  • the microorganism used in the method of the present invention is not particularly limited as long as it has the ability to produce succinic acid, but is not limited to coryneform bacteria, Escherichia coli, Anaerobiospirillum genus bacteria, Actinobacillus genus bacteria, Examples include microorganisms selected from the group consisting of filamentous fungi and yeasts. Among these, coryneform bacteria, Escherichia coli, Anaerobiospirillum genus bacteria, Actinobacillus genus bacteria, and yeast are preferable, and coryneform bacteria, Escherichia coli, and yeast are more preferable, and coryneform is particularly preferable. Type bacteria.
  • Coryneform bacteria used in the method of the present invention include the genus Corynebacterium, the genus Brevibacterium, the genus Arthrobacter, the genus Mycobacterium, and the microbacterium. And bacteria belonging to the genus Micrococcus. Examples of bacteria belonging to the genus Brevibacterium include Brevibacterium flavum, Brevibacterium lactofermentum, Corynebacterium glutamicum, and the like.
  • Brevibacterium flavum, Brevibacterium lactofermentum and Corynebacterium glutamicum are very closely related to each other and have similar properties. In the current taxonomy, they are classified as the same species. Sometimes. Particularly preferred specific examples of the parent strain of the coryneform bacterium include Brevibacterium flavum MJ-233 (FERM BP-1497), MJ-233 AB-41 (FERM BP-1498), Corynebacterium glutamicum ATCC31831, and Brevibacterium lactofermentum ATCC 13869 etc. are mentioned.
  • Brevibacterium flavum is currently sometimes classified as Corynebacterium glutamicum (Lielbl, W., et al., International Journal of Systemic Bacteriology, 1991, vol. 41, p255-260).
  • Brevibacterium flavum MJ-233 strain and its mutant MJ-233 AB-41 strain are the same as Corynebacterium glutamicum MJ-233 strain and MJ-233 AB-41 strain, respectively.
  • Brevibacterium flavum MJ-233 was established on April 28, 1975, by the Ministry of International Trade and Industry, Institute of Industrial Science, Microbial Industrial Technology Research Institute (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center) (Japan 305-8666, Japan) Deposited as deposit number FERM P-3068 at Tsukuba City, 1-1 1-1 Higashi 1-chome, Ibaraki Prefecture, transferred to an international deposit based on the Budapest Treaty on May 1, 1981, deposited under the deposit number of FERM BP-1497 Has been.
  • Anaerobiospirillum examples include Anaerobiospirillum succiniciproducens.
  • a bacterium belonging to the genus Actinobacillus Actinobacillus succinogenes and the like are used.
  • filamentous fungi examples include microorganisms belonging to the genus Aspergillus, the genus Penicillium, the genus Rizopus and the like.
  • Aspergillus genus microorganisms Aspergillus niger, Aspergillus oryzae and the like are used.
  • As the microorganism belonging to the genus Penicillium Penicillium chrysogenum, Penicillium simplicium, and the like are used.
  • Yeasts belong to the genus Saccharomyces, Shizosaccharomyces, Candida, Pichia, Kluyveromyces, and the like. Is mentioned.
  • Saccharomyces cerevisiae Saccharomyces cerevisiae
  • Saccharomyces uvalum Saccharomyces uvalum
  • S. bayanus etc.
  • Saccharomyces genus Saccharomyces genus microorganisms.
  • a microorganism belonging to the genus Shizosaccharomyces Schizosaccharomyces pombe is used.
  • Candida microorganisms Candida albicans, C. sonorensis, C. glabrata, etc. are used.
  • Pichia microorganisms include Pichia pastoris, P. stididis, and the like.
  • Examples of the microorganisms belonging to the genus Kluyveromyces include Kluyveromyces lactis, Kluyveromyces marxianus, K. thermolyrans (K. thermotolerans). ) Etc. are used.
  • Examples of microorganisms belonging to the genus Zygosaccharomyces include Zygosaccharomyces bailii and Z. rouxii.
  • This ability to produce succinic acid may be a property of the wild strain of the microorganism used in the method of the present invention, or may be a property imparted by breeding.
  • the ability to produce succinic acid by breeding is not particularly limited. Specifically, genetic methods such as a method of obtaining a mutant strain by normal mutation treatment such as UV irradiation or NTG treatment, cell fusion or genetic recombination method, etc. Methods that have been employed for microbial breeding, such as methods for obtaining recombinants induced by genetic techniques, are used.
  • the recombinant used in the method of the present invention may be a single modification, or may be modified by two or more kinds. Specifically, for example, a microorganism modified so that pyruvate carboxylase activity is enhanced as compared with an unmodified strain, a microorganism modified so that lactate dehydrogenase activity is decreased as compared with an unmodified strain, etc. .
  • Microorganisms modified so that pyruvate carboxylase (hereinafter also referred to as “PC” or “pc”) activity is enhanced compared to non-modified strains are, for example, the same as in the method described in JP-A-11-196888.
  • the pc gene can be constructed by high expression in a host microorganism using a plasmid. Moreover, it may be integrated on the chromosome by homologous recombination, or the pc gene expression can be enhanced by promoter replacement (Japanese Patent Laid-Open No. 2008-259451). Transformation can be performed by, for example, the electric pulse method (Res. Microbiol., Vol. 144, p. 181-185, 1993).
  • the PC activity is enhanced means that the PC activity is preferably increased by 1.5 times or more, more preferably by 3.0 times or more per unit cell weight relative to the unmodified strain such as the wild strain or the parent strain. It means that The enhanced PC activity is confirmed by a known method such as J. Org. Bacteriol. , 158, 55-62, (1984), and can be confirmed by measuring the PC activity. As a specific method for introducing the pc gene, the one described in JP-A-2008-259451 is used.
  • LDH activity is reduced examples include homology described in JP-A-11-206385. It can be constructed by disrupting the LDH gene on the chromosome by a recombination method or a method using the sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73).
  • “LDH activity is reduced” means that LDH activity is reduced as compared with an unmodified strain. LDH activity may be completely lost. The decrease in LDH activity can be confirmed by measuring LDH activity by a known method (L. Kanarek, et al., J. Biol. Chem. 239, 4202 (1964), etc.).
  • the microorganism used in the production method of the present invention may be acetate kinase (hereinafter also referred to as “ACK”), phosphotransacetylase (hereinafter, Modified so that the activity of one or more enzymes selected from the group consisting of “PTA”, pyruvate oxidase (hereinafter also referred to as “POXB”) and CoA transferase (hereinafter also referred to as “CTF”) is reduced. It may be a microorganism. Either PTA or ACK may decrease the activity, but in order to efficiently reduce acetic acid by-product, it is more preferable to decrease both activities.
  • PTA activity refers to the activity of catalyzing the reaction of transferring phosphoric acid to acetyl CoA to produce acetyl phosphoric acid.
  • Modified to reduce PTA activity means that the PTA activity is lower than that of an unmodified strain, for example, a wild strain.
  • the PTA activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. Further, the PTA activity may be completely lost.
  • the decrease in PTA activity is described in, for example, Klotzsch, H.C. R. , Meth Enzymol. 12, 381-386 (1969), etc., and can be confirmed by measuring PTA activity. *
  • ACK activity refers to the activity of catalyzing the reaction of producing acetic acid from acetyl phosphate and ADP. “Modified to reduce ACK activity” means that ACK activity is lower than that of an unmodified strain such as a wild strain. The ACK activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. Further, the ACK activity may be completely lost. The decrease in ACK activity can be confirmed by measuring the ACK activity by the method of Ramponi et al. (Ramponi G., Meth. Enzymol. 42, 409-426 (1975)).
  • the activity of PTA and ACK is reduced by disrupting these genes according to a known method, for example, a method using homologous recombination or a method using a sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73). Can be done. Specifically, it can be performed according to the method disclosed in JP-A-2006-000019.
  • Examples of the pta gene and the ack gene include the above GenBank Accession No.
  • a gene having a degree of homology that causes homologous recombination with the pta gene and the ack gene on the host chromosome can also be used.
  • homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
  • POXB activity refers to the activity of catalyzing the reaction of generating acetic acid from pyruvic acid and water. “Modified to reduce POXB activity” means that POXB activity is lower than that of an unmodified strain, for example, a wild strain. The POXB activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. “Decrease” includes the case where the activity is completely lost. POXB activity is determined by Chang Y. et al. , Et al. ,. J. et al. Bacteriol. 151, 1279-1289 (1982) and the like, and can be confirmed by measuring the activity.
  • the decrease in POXB activity is caused by disrupting the poxB gene according to a known method, for example, a method using homologous recombination or a method using the sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73). Can be performed. Specifically, it can be carried out according to the method disclosed in WO2005 / 113745.
  • Examples of the poxB gene include GenBank Accession No. A gene having the base sequence of Cgl2610 (the 2777766-2778505th complementary strand of GenBank Accession No. BA000036) can be mentioned, but has homology to the extent that homologous recombination occurs with the podB gene on the chromosomal DNA of the host microorganism.
  • homologous gene of the sequence can also be used.
  • the homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
  • CTF activity refers to an activity of catalyzing a reaction in which CoA of acetyl-CoA is transferred to another substance to produce acetic acid.
  • Modified to reduce CTF activity means that the CTF activity is lower than that of an unmodified strain such as a wild strain.
  • the CTF activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain.
  • the “decrease” includes the case where the activity is completely lost.
  • CTF activity can be determined, for example, by Scherf U and Buckel W. Appl Environ Microbiol. 1991; vol. 57, pp. 2699-2702. It can be measured by the method described in etc.
  • ctf genes include GenBank Accession No. A gene having the base sequence of Cgl2569 (the complementary sequence of 2729376-2730917 of GenBank Accession No. BA000036) is mentioned, but it has homology to the extent that homologous recombination occurs with the ctf gene on the chromosomal DNA of the host microorganism. Therefore, a homologous gene of the sequence can also be used.
  • the homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
  • the microorganism used in the production method of the present invention is a microorganism obtained by combining two or more of the modifications in addition to the enhancement of PC activity, or enhancement of PC activity and reduction of LDH activity.
  • Preferred microorganisms include, for example, the Brevibacterium flavum MJ233 / PC-4 / ⁇ LDH strain described in JP-A-2008-259451 and the like, international publication WO2009 / 065777 pamphlet, international publication WO2009 / 065778 pamphlet, Disruption of the ADH1 and ADH2 genes encoding alcohol dehydrogenase and the GPD1 gene encoding glycerol 3-phosphate dehydrogenase described in International Publication WO2009 / 06779, International Publication WO2009 / 065780, International Publication WO2010 / 003728, etc.
  • SUC-200 (MATA ura3-52 leu2-112 trp1-289 adh1 :: lox adh2 :: lox gpd1 :: Kanlox, overexpressing PCKa , MDH3, FUMR, FRDg and SpMAE1).
  • culturing mainly refers to a step of growing microorganisms used in the method for producing succinic acid to prepare microbial cells.
  • the culture step may be omitted, and a slant culture on a solid medium such as an agar medium may be directly used for the reaction, or the culture step may be repeated several times.
  • the step of mainly producing succinic acid is referred to as “succinic acid production reaction” or “reaction”
  • the culture for preparing cells directly used for the succinic acid production reaction is referred to as “main culture”.
  • the culture for preparing the cells to be subjected to is referred to as “seed culture”.
  • a normal medium used for culturing the microorganism can be used.
  • a general medium in which a natural nutrient source such as meat extract, yeast extract or peptone is added to a composition composed of inorganic salts such as ammonium sulfate, potassium phosphate and magnesium sulfate can be used.
  • the culture conditions for obtaining the cells by growing the microorganisms used in this reaction are not limited. Usually, if it is a coryneform bacterium, there is no particular limitation as long as it is at the optimum growth temperature, but usually 25 ° C. or higher.
  • the optimum growth temperature refers to the temperature at which the growth rate is fastest under the conditions used for the production of succinic acid.
  • the culture time is not particularly limited as long as a certain amount of cells can be obtained, but is usually 6 hours or more and 96 hours or less.
  • the method of culturing so as to alternately and repeatedly repeat depletion and fullness of the carbon source described in JP-A-2008-259451 can be used. it can.
  • the cultured microbial cells may be used directly in a culture solution containing microorganisms for succinic acid production reaction, or may be used for the reaction after being collected by centrifugation, membrane separation or the like.
  • a processed product of the microbial cell can also be used.
  • treated cells include, for example, immobilized cells obtained by culturing and collecting the cells collected by the above method using acrylamide, carrageenan, etc., crushed cells, centrifuge supernatants thereof, or the like Examples thereof include a fraction obtained by partially purifying the supernatant by an ammonium sulfate treatment.
  • Sugar is usually used for the culture.
  • the sugar used for the culture is not particularly limited as long as it is a sugar that the microorganism can assimilate to produce succinic acid, but usually carbohydrates such as galactose, lactose, glucose, fructose, glycerol, sucrose, saccharose, starch or cellulose.
  • Fermentable carbohydrates such as polyalcohols such as glycerin, mannitol, xylitol or ribitol are used, among which glucose, sucrose, fructose or glycerol are preferable, and glucose or sucrose is particularly preferable.
  • the starch saccharified liquid or molasses containing the fermentable saccharide is also used, and specifically, a sugar liquid extracted from a plant such as sugar cane, sugar beet or sugar maple is preferable. These sugars can be used alone or in combination.
  • the concentration of the sugar used is not particularly limited, but is advantageously as high as possible within a range not inhibiting the production of succinic acid, and is usually 5% (W / V) or more, preferably 10%, relative to the reaction solution. % (W / V) or more, and usually 30% (W / V) or less, preferably 20% (W / V) or less. Further, additional sugar may be added in accordance with the decrease of the sugar as the reaction proceeds.
  • the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is 0 in the method for producing succinic acid in which a succinic acid-producing microorganism and sugar are reacted. 1 to 240, and the doubling time of the microorganism in the reaction is 40 hours or more.
  • the oxygen transfer rate is not particularly limited as long as the ratio of the oxygen transfer rate to the succinic acid production rate described below is included in the above range, and an anaerobic atmosphere in which oxygen is not supplied to the reaction tank (the oxygen transfer rate is 0 condition).
  • an anaerobic atmosphere in which oxygen is not supplied to the reaction tank is, for example, a reaction in which the container is sealed and airless, and an inert gas such as nitrogen gas is supplied and reacted.
  • the oxygen transfer rate is usually 0.01 [mmol O 2.
  • / L / hr or more, preferably 0.02 [mmol O 2 / L / hr] or more, more preferably 0.05 [mmol O 2 / L / hr] or more, while usually 5 [mmol O 2 / L / hr].
  • it is preferably 3, more preferably 2.5 [mmol O 2 / L / hr] or less, particularly preferably 2 [mmol O 2 / L / hr] or less.
  • the oxygen transfer rate in the reaction solution is determined from the change in dissolved oxygen concentration by replacing the nitrogen with the solution to lower the dissolved oxygen concentration and then venting and stirring (Wise W. S. J. Gen. Microbiol., 1951, vol. 5, pp. 167-177) and the like.
  • the method of supplying oxygen to the reaction vessel is not particularly limited, but for example, a method of venting or a method of dissolving oxygen in the liquid can be used.
  • a method of aeration is preferable. You may perform suitably so that stirring of a reaction liquid may be adjusted in the range of the said oxygen transfer rate. In order to adjust within the range of the oxygen transfer rate, oxygen may be dissolved only by stirring the reaction solution, the reaction solution may be stirred and vented, or oxygen may be dissolved only by venting. Good. Further, a baffle plate for efficiently generating turbulent flow due to stirring may be installed.
  • oxygen-containing gas such as pure oxygen or air
  • a gas containing oxygen such as pure oxygen or air and a gas such as nitrogen or carbon dioxide may be arbitrarily mixed. Further, once used gas may be collected and used again.
  • oxygen-containing gas using a compressor capable of adjusting the amount of ventilation, a sparger (vent pipe) such as an orifice sparger, nozzle sparger or ring sparger,
  • a sparger such as an orifice sparger, nozzle sparger or ring sparger
  • gas may be vented to the gas phase portion of the reaction tank through a porous tube or the like, or may be directly vented into the reaction solution.
  • you may add indirectly by dissolving oxygen in the feed liquid fed during reaction and feeding the liquid.
  • a gas may be directly circulated in the liquid from a pipe or the like, an air diffuser such as a sparger may be used, or a membrane may be passed.
  • any one of the flow rate of the gas to be vented or exhausted, the pressure or composition, the oxygen concentration or redox potential in the reaction solution or the feed solution, the flow rate of the feed solution, etc. Either may be adjusted while measuring.
  • the succinic acid production rate (mmol / L / hr) refers to the amount of succinic acid produced in 1 hour per liter, and if it is too small, an increase in cost due to the long reaction time required. Since it tends to lead to a decrease in succinic acid yield due to an increase in the production of by-products other than succinic acid, it is usually 1 mmol / L / hr or more, preferably 5 mmol / L / hr or more.
  • the upper limit is not limited, but is usually 1000 mmol / L / hr or less, preferably 700 mmol / L / hr or less, more preferably 300 mmol / L / hr or less. .
  • ⁇ Ratio of oxygen transfer rate to succinic acid production rate if the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is too small, the oxygen supply amount suitable for succinic acid production will be less than the succinic acid production rate.
  • it is 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more.
  • this ratio is 240 or less, preferably 200 or less, more preferably 150 or less, still more preferably 100 or less, and particularly preferably 50 or less.
  • the ratio of the oxygen transfer rate to the succinic acid production rate is used as an index.
  • the growth rate of the bacterial cells was theoretically as small as possible, and an anaerobic environment in which oxygen was not supplied was considered good.
  • the amount of by-products such as pyruvic acid is large and the yield of succinic acid is low, the supply of a small amount of oxygen reduces the amount of by-products and the succinic acid yield. It was shown that the succinic acid production rate was improved.
  • succinic acid production involving the production of by-products
  • the ability to produce succinic acid is improved not under theoretically preferred anaerobic conditions considering only succinic acid production but under conditions where a small amount of oxygen is supplied. found.
  • a suitable oxygen supply control is required for the succinic acid production reaction.
  • only a certain range is set using only the oxygen transfer rate as an index, for example, if an oxygen amount suitable for a high succinic acid production rate is supplied during a reaction with a low succinic acid production rate, it is aerobic in succinic acid production.
  • the ratio of the oxygen transfer rate to the succinic acid production rate representing the amount of oxygen corresponding to the succinic acid production rate as an index. It is conceivable that. Therefore, in the present invention, the ratio of the oxygen transfer rate to the succinic acid production rate is controlled as an index indicating how much oxygen is required for the succinic acid metabolism of microorganisms mainly having succinic acid producing ability. I thought it was important.
  • the ratio of the oxygen transfer rate to the succinic acid production rate can be a preferable index when setting conditions in an industrial succinic acid production reaction.
  • the succinic acid production rate can be changed by selecting a preferred rate depending on raw material costs and manufacturing equipment costs.
  • the index is useful because it can easily cope with such a change in conditions.
  • the doubling time is the time taken for the amount of the microorganisms to increase twice, based on the values of the concentration (OD) or dry cell weight at two points below. It is shown by the equation (1).
  • T2 and T1 are sampling points at two points, and X1 and X2 are values of the cell concentration or dry cell weight corresponding to the two points.
  • the succinic acid purification process is caused by a decrease in the amount of succinic acid produced because sugar is used for cell growth and an increase in by-products produced along with the growth.
  • the time is 40 hours or more, preferably 50 hours or more, more preferably 100 hours or more.
  • the upper limit is not particularly limited, but if the doubling time is too long, the production of succinic acid tends to decrease due to the death of the bacterial cells that are the catalyst. Therefore, usually 500 hours or less, preferably 300 hours or less, more preferably Is 200 hours or less.
  • Elements for controlling the doubling time are not particularly limited, but include reaction conditions such as oxygen supply amount and temperature, composition of the reaction solution, and genetic modification of microorganisms. For example, controlling the supply of oxygen to a very small amount or 0, controlling the temperature to a value far from the optimum temperature range for growth, and / or a part of the medium composition such as nitrogen source or phosphorus source of the reaction medium composition
  • the doubling time can be lengthened.
  • genetic modification the doubling time is prolonged by deleting the LDH gene related to lactic acid production in coryneform bacteria.
  • yeast the gene deletion related to ethanol production (for example, the ADH1 gene ( Mol Cell Biol. 1986, vol. 6, pp.
  • the doubling time in the succinic acid production reaction of Reference 1 (Shinfuku et al., Microbial Cell Factories 2009, 8:43) and Reference 2 (International Publication WO2010 / 003728 pamphlet) is similarly calculated using the above formula (1).
  • the doubling time described in Reference 1 is 27.4 hours (OD is read from the figure of Additive file 2 in Reference 1, OD (12.2) at 9 hours and OD at 24 hours (17) after the start of culture) And 7.3 hours (calculated from the OD (6.5) at 9 hours and the OD (26) at 25 hours after starting culture) after reading the OD from the figure of Additive file 3 in Reference 1.
  • the doubling time described in Document 2 is 30 hours (described in Examples 1 and 2 of Document 2). Ri, since a calculated) from a dry cell weight 1 g biomass dry weight and 90 hours of cell dry weight 8 g biomass dry weight at the start of cultivation, it is understood that less than 40 hours.
  • the succinic acid oxygen transfer rate decrease rate (% / g / L) is the ratio of the oxygen transfer rate decreased during the production of 1 g of succinic acid per liter of reaction solution. It is shown by the equation (2).
  • OTR t1 and OTR t2 represent oxygen transfer rates (mmol-O 2 / L / hr) at t1 hours after the start of the reaction and t2 hours thereafter, respectively, and SA t1 and SA t2 are respectively t1 hours.
  • SA t1 is “reaction of“ total amount (g) of succinic acid contained in reaction solution withdrawn by time t1 and reaction solution in reaction tank ””. It can be calculated as a value for the “reaction liquid amount (L) in the tank”.
  • the succinic acid oxygen transfer rate decrease rate (% / g / L) is usually 1.2 (% / g / L) or less, more preferably 1.1 (% / g / L) at any time during the reaction. ) There is no particular lower limit and may be 0.
  • the rate of decrease in oxygen transfer rate with respect to succinic acid is 1.2 (% / g / L) or less, it is possible to maintain the optimal amount of oxygen for succinic acid production by suppressing the decrease in oxygen transfer rate. It is preferable because it is possible to suppress a decrease in acid yield and a decrease in the production rate of succinic acid, and it is possible to reduce the succinic acid purification cost by suppressing the production amount of by-product pyruvic acid.
  • the effects of the present invention cannot be obtained by controlling only the individual parameters of the succinic acid production rate, the oxygen transfer rate, and the doubling time of microorganisms. For example, if the doubling time of the microorganism is controlled long by completely removing oxygen, a large amount of impurities such as lactic acid and acetic acid is produced, and the production rate of succinic acid is reduced. To increase the oxygen transfer rate for the purpose of enhancing the succinic acid production reaction, the microbial growth is activated with the increase of the oxygen transfer rate, and most of the succinic acid sugar is used for the growth of the microorganism. As a result, there will be a problem that the production volume of kohaku will decrease.
  • the effect of the present invention is achieved for the first time by controlling a plurality of parameters such as succinic acid production rate, oxygen transfer rate, and microorganism doubling time in order to improve succinic acid yield and production rate.
  • the reaction temperature for producing succinic acid is not particularly limited, but is a temperature that is 2 ° C. or more, preferably 7 ° C. or more higher than the optimum growth temperature of the microorganism that is usually used.
  • the temperature is 20 ° C. or higher, preferably 15 ° C. or lower than the optimum temperature for growth of the microorganisms usually used.
  • coryneform bacteria it is usually 37 ° C. or higher, preferably 39 ° C. or higher, while it is usually 45 ° C. or lower, preferably 43 ° C. or lower, particularly preferably 41 ° C. or lower.
  • the temperature range is 50% or more, preferably 80% or more of the total reaction time including seed culture.
  • the reaction time is not particularly limited, but is usually 1 hour or longer, preferably 3 hours or longer, and is usually 168 hours or shorter, preferably 72 hours or shorter.
  • succinic acid may be produced by reacting the microorganism with sugar, or the microorganism obtained by proliferating in advance in the culture is treated with sugar in a reaction solution containing sugar.
  • Succinic acid may be produced by reacting with.
  • optimum conditions can be selected mainly in the step of growing microorganisms and the step of producing succinic acid, and the added sugar can be efficiently used for producing succinic acid. Useful for.
  • the amount of cells of the microorganism used for the succinic acid production reaction is not particularly defined, but is usually 1 g / L or more, preferably 10 g / L or more, more preferably 20 g / L or more as the weight of wet cells, Usually, it is 700 g / L or less, preferably 500 g / L or less, more preferably 400 g / L or less.
  • the sugar used for the succinic acid production reaction is the same as the sugar used for the culture.
  • the concentration of sugar used in the production of succinic acid is not particularly limited, but it is advantageous to make it as high as possible within the range not inhibiting the production of succinic acid, usually 5.0% (W / V) or more, preferably 10% On the other hand, it is usually 30% (W / V) or less, preferably 20% (W / V) or less. Further, additional sugar may be added in accordance with the decrease in sugar accompanying the progress of the reaction.
  • the reaction solution in the succinic acid production reaction of the present invention is not particularly limited as long as it is an aqueous solution containing the microorganism and the sugar.
  • the reaction solution may be a medium for culturing the microorganism, or phosphoric acid. It may be a buffer solution such as a buffer solution.
  • the reaction solution is preferably an aqueous solution containing a nitrogen source, an inorganic salt, and the like.
  • the nitrogen source is not particularly limited as long as it is a nitrogen source that can be assimilated by the microorganism to produce succinic acid and the like, and specifically, ammonium salt, nitrate, urea, soybean hydrolysate, casein decomposition
  • Various organic or inorganic nitrogen compounds such as food, peptone, yeast extract, meat extract or corn steep liquor.
  • the inorganic salt various phosphates, sulfates, metal salts such as magnesium, potassium, manganese, iron or zinc are used.
  • vitamins such as biotin, pantothenic acid, inositol, or nicotinic acid, factors that promote growth such as nucleotides or amino acids are added as necessary.
  • factors that promote growth such as nucleotides or amino acids are added as necessary.
  • the pH of the reaction solution is preferably adjusted in a range where the activity is most effectively exhibited according to the type of the microorganism used. Specifically, when a coryneform bacterium is used, it is usually 5 or more, preferably 5.5 or more, more preferably 6 or more, particularly preferably 7.1 or more, on the other hand, 10 or less, preferably 9.5 or less. More preferably, it is 9.0 or less.
  • the pH of the reaction solution is adjusted within the above range by a neutralizing agent such as an alkaline substance, carbonate or urea as necessary during the reaction. Specifically, it can be adjusted by adding sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide or the like.
  • the reaction solution preferably contains, for example, carbonate ions, bicarbonate ions, or carbon dioxide gas (carbon dioxide gas) in addition to the microorganism, the sugar, the nitrogen source, or the inorganic salt.
  • Carbonate ion or bicarbonate ion is supplied from magnesium carbonate, sodium carbonate, sodium bicarbonate, potassium carbonate or potassium bicarbonate, which can also be used as a neutralizing agent. It can also be supplied from these salts or carbon dioxide gas.
  • the carbonate or bicarbonate salt include magnesium carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate and potassium bicarbonate.
  • the carbonate ion or bicarbonate ion is usually added at a concentration of 1 mM or more, preferably 2 mM or more, more preferably 3 mM or more. On the other hand, it is added usually at a concentration of 500 mM or less, preferably 300 mM or less, more preferably 200 mM or less.
  • carbon dioxide gas is contained, 50 mg or more, preferably 100 mg or more, more preferably 150 mg or more of carbon dioxide gas is contained per liter of the solution.
  • carbon dioxide gas is usually contained in an amount of 25 g or less, preferably 15 g or less, more preferably 10 g or less.
  • the succinic acid production method of the present invention includes the flow rate, pressure or composition of the gas to be vented or exhausted, the oxygen concentration or redox potential in the reaction solution or the feed solution, or the feed solution. It can be controlled by adjusting any one of the flow rates and the like while measuring either.
  • the succinic acid production efficiency is adjusted to a range where the succinic acid production efficiency is most effectively exhibited according to the type of the microorganism used, the reaction tank described later, or the oxygen supply method.
  • the stirring speed is usually 50 rpm or more and 2000 rpm or less, and the aeration amount per liquid amount is usually 0.
  • the air content of the air flow rate is usually 0.1% or more and 100% or less.
  • the production method of the present invention is not particularly limited, but can be applied to batch reaction, semi-batch reaction, or continuous reaction.
  • the reaction environment (the amount of the reaction solution, etc.) changes sequentially and the amount of change is large, and the ratio of the oxygen transfer rate to the succinic acid production rate is optimal.
  • the method of the present invention is preferable because the ratio of the oxygen transfer rate to the succinic acid production rate can be sequentially adjusted as an index.
  • the type of the microbial reaction tank is not particularly limited, but is a bubble stirring tank type (gas is introduced into the liquid, gas-liquid contact is promoted using a stirrer to increase the absorption speed), liquid level Absorption type (gas is absorbed from the liquid level), liquid level absorption agitation type (agitator is attached to the liquid level absorption type to increase the oxygen absorption rate), external absorption type (a separate device is installed outside for oxygen absorption) Circulate the reaction liquid or absorb it into the liquid fed during the reaction), standard bubble column type, draft tube type (install a draft tube to promote internal circulation and increase the gas absorption rate.
  • a bubble stirring tank type gas is introduced into the liquid, gas-liquid contact is promoted using a stirrer to increase the absorption speed
  • liquid level Absorption type gas is absorbed from the liquid level
  • liquid level absorption agitation type agitator is attached to the liquid level absorption type to increase the oxygen absorption rate
  • external absorption type a separate device is installed outside for oxygen absorption
  • the gas may be introduced from the outside and the outer edge part may be an upflow and the center part may be a downflow), draft tube perforated plate type (a perforated plate is installed in the draft tube type to promote gas-liquid contact and increase the absorption rate) Multi-stage perforated plate type or outer loop air Preparative (the circulation flow path provided outside, a gas is introduced), and the like.
  • draft tube perforated plate type a perforated plate is installed in the draft tube type to promote gas-liquid contact and increase the absorption rate
  • Multi-stage perforated plate type or outer loop air Preparative the circulation flow path provided outside, a gas is introduced
  • the gas introduction method is not particularly limited, and examples thereof include a single-hole nozzle, a multi-nozzle, a ring sparger, a multi-pipe, a gas-liquid two-phase flow nozzle, or a bubble entrainment method using a liquid jet.
  • the industrial reaction scale is not particularly limited, but is usually 5 m 3 or more, preferably 50 m 3 or more, and usually 5000 m 3 or less, preferably 3000 m 3 or less in terms of the volume of the reaction vessel.
  • the oxygen supplied to the reaction liquid is only the gas phase part of the reaction tank.
  • the gas phase part of the reaction tank is of a small scale as in this embodiment. It is preferable from the viewpoint of efficiency of the reaction tank capacity to be less. As a result, the amount of oxygen for maintaining the oxygen transfer rate suitable for the reaction is insufficient, and deviates from the preferred range of the ratio of the oxygen transfer rate to the succinic acid production rate. This is useful because the succinic acid yield can be improved by controlling the ratio within a certain range by control or the like.
  • the succinic acid production rate is changed depending on the raw material cost and the manufacturing equipment cost, but it is possible to easily set the optimum reaction conditions by using the production method of the present invention.
  • succinic acid is generated and accumulated in the reaction solution.
  • Specific by-products in the production process of succinic acid include citric acid cycle metabolites other than succinic acid such as acetic acid, ethanol, lactic acid, pyruvic acid and ⁇ -ketoglutaric acid, and amino acid precursors such as ⁇ -ketovaline.
  • Amino acids such as alanine, valine and glutamic acid, sugars such as trehalose, alcohols such as glycerol, proteins and the like.
  • the amount of by-product is not particularly limited.
  • the weight ratio (%) of pyruvic acid to succinic acid is usually 5.5% or less.
  • the weight ratio (%) of acetic acid to succinic acid is not particularly limited, but is usually 15.8% or less, preferably 15.5% or less.
  • Succinic acid accumulated in the reaction solution can be collected from the reaction solution according to a conventional method.
  • the reaction solution after microbial conversion is concentrated as appropriate in consideration of operability and efficiency in the subsequent purification step, and then solids such as bacterial cells are removed by centrifugation, filtration, or the like.
  • a solution or an aqueous solution mainly containing succinic acid and succinate such as ammonium succinate and magnesium succinate is obtained.
  • the term “contained as the main component” as used herein means that the weight of the component relative to the weight of all components excluding the solvent is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably The state of 90% by weight or more is shown.
  • Succinic acid can be collected from the solution by crystallization or purification by column chromatography.
  • succinic acid is produced from a petrochemical-derived raw material and used in a wide variety of applications, but succinic acid derived from bioresources can be preferably used for such applications as well. .
  • succinic acid derivatives such as succinic acid esters such as dimethyl succinate and diethyl succinate, succinic acid derivatives such as pyrrolidone and N-methylpyrrolidone
  • succinic acid-containing polymer compounds such as polyester, polyurethane or polyamide
  • Synthetic raw materials and ingredients of pharmaceuticals and agricultural chemicals such as seasoning, brewing chemicals or processed food additives, as foaming bath components, plant growth inhibitors, herbicides, antibacterial agents, insecticides or mosquito attractants
  • raw materials for oral cleaners and cosmetics As raw materials and components of products
  • raw materials and components for adhesives and sealants nickel powder production, steel polishing baths, metalworking washing
  • raw materials and components for metal processing such as solvents or binders for metal sintering
  • raw materials and components for solder or welding flux ceramics such as porous titanium oxide production, boehmite production, photocatalyst coating agent or porous ceramic production, etc.
  • raw materials and components of manufacturing aids such as inorganic compounds, as raw materials and components such as detergents, as raw materials and components such as bleaching agents, as raw materials and components such as dyeing assistants, as raw materials such as electrolyte solvents and plating baths, and Ingredients such as deodorants or air cleaners and ingredients such as bioabsorbable sutures
  • raw materials for bioabsorbable compounds as raw materials and components for processing fiber products and softeners, as raw materials and components for solvents or solvents, as raw materials and components for water-soluble paint solvents, as raw materials and components for biodegradable resins, etc.
  • raw materials and ingredients for sealants such as odorless sealants, etc.
  • Synthetic raw materials and components for lubricants such as synthetic lubricants, lubricants for heat-resistant plastics or lubricants for electrical contacts, as raw materials and components for solvent removal detergents such as resins or polymer materials, textile industry or dry cleaning
  • solvent for ink, deinking agent, top coat agent for automobile, insulation Materials powder coatings, three-dimensional printing inks, photocurable coatings, photocurable ink compositions, nanoparticle inks, inkjet inks, printing screen cleaning, organic semiconductor solutions, inks for color filter manufacturing, toners, quinacdon pigments manufacturing Succinyl succinic acid production, dye intermediates, pigments, dyes or inks as raw materials and components, oxygen-containing diesel
  • the air was aerated from the top or bottom of the liquid at 100 mL / min and stirred at 100 to 500 rpm. Was calculated. Moreover, the lower oxygen transfer rate was measured by ventilating a gas in which air and nitrogen were mixed.
  • the doubling time was determined by the following calculation formula (1) based on the values of cell concentration (OD) or dry cell weight at two points.
  • T2 and T1 are sampling times at two points, and X1 and X2 are dry cell weight values corresponding to the two points.
  • the succinic acid oxygen transfer rate decrease rate (% / g / L) indicates the ratio of the oxygen transfer rate that decreased while 1 g of succinic acid was produced per liter of the reaction solution, and was calculated by the following formula (2). did.
  • OTR t1 and OTR t2 are oxygen transfer rates (mmol-O 2 / L / hr) at t1 hours after the start of the reaction and t2 hours thereafter, and SA t1 and SA t2 are reaction solutions at t1 and t2 hours.
  • the succinic acid concentration (g / L) is shown.
  • SA t1 is “reaction of“ total amount (g) of succinic acid contained in reaction solution withdrawn by time t1 and reaction solution in reaction tank ””. It can be calculated as a value for the “reaction liquid amount (L) in the tank”.
  • Example 1 Succinic acid production by controlling oxygen supply ⁇ Seed culture> 100 mL of A medium (urea: 4 g, ammonium sulfate: 14 g, monopotassium phosphate: 0.5 g, dipotassium phosphate 0.5 g, magnesium sulfate heptahydrate: 0.5 g, ferrous sulfate, heptahydrate Product: 20 mg, manganese sulfate / hydrate: 20 mg, D-biotin: 200 ⁇ g, thiamine hydrochloride: 200 ⁇ g, yeast extract: 1 g, casamino acid: 1 g, and distilled water: 1000 mL) are placed in a 500 mL Erlenmeyer flask at 121 ° C.
  • a medium urea: 4 g, ammonium sulfate: 14 g, monopotassium phosphate: 0.5 g, dipotassium phosphate 0.5 g, magnesium sulfate hept
  • a pre-sterilized vitamin solution D-biotin and thiamine hydrochloride 0.2 g / L aqueous solution
  • 15 mL of a pre-sterilized 720 g / L raw sugar aqueous solution 15 mL was added.
  • sterilized water was added so that the total amount was 2500 mL.
  • the jar fermenter was kept at 30 ° C., the pH was maintained at 7.2 using 28% ammonia water, the back pressure was 0.05 MPa, the aeration was 3 L / min, and the main culture was started at 600 rpm. .
  • Example 2 The results of the above items are shown in Table 1, except that the air / nitrogen amount ratio of the gas mixture to be vented was set to 10:90. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
  • Example 3 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was set to 14:86. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
  • Example 4 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was 25:75. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
  • Example 5 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was set to 50:50. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
  • Example 6 The same procedure as in Example 1 was carried out except that the air / nitrogen amount ratio of the gas mixture to be vented was set to 100: 0 and the doubling time was calculated according to the above formula. The results are shown in Table 1.
  • Example 7 The procedure was the same as in Example 6 except that stirring was performed at 200 rpm, and the results of the above items are shown in Table 1.
  • Example 8 The procedure was the same as in Example 6 except that stirring was performed at 400 rpm, and the results of the above items are shown in Table 1. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
  • Example 9 The procedure was the same as in Example 6 except that stirring was performed at 500 rpm, and the results of the above items are shown in Table 1.
  • Example 2 From the bottom surface of the reaction solution, the same procedure as in Example 1 was conducted, except that the air / nitrogen amount ratio of the aerated gas mixture was 100: 0, and the reaction was conducted by stirring at 400 rpm. The results are shown in Table 1. In addition, although the exact doubling time is not measured, it is estimated that it is 40 hours or more.
  • Example 10 Effect of oxygen supply (vs. succinic acid oxygen transfer rate decrease rate) control
  • Example 10 since the amount of the liquid increased with the addition of the neutralizing agent to cause a change in the oxygen transfer rate, the added neutralizing agent The same amount of the reaction solution was removed from the reaction layer as in Example 8, except that the amount of the reaction solution was kept constant and the influence of the change in the oxygen transfer rate due to the change in the solution amount was removed.
  • Oxygen transfer rate at the time of the lapse of about 20 hours (mmol- O 2 / L / hr ), oxygen transfer rate retention (%), succinic acid production rate (mmol-SA / L / hr ), oxygen to succinate movement
  • the rate of rate reduction (% / g / L), succinic acid concentration (g / L), ratio of oxygen transfer rate to succinic acid production rate (mmol-O 2 / mol-SA) and doubling time are listed in Table 2.
  • the oxygen transfer rate maintenance rate (%) indicates the ratio of the oxygen transfer rate after 20 hours to the oxygen transfer rate at 0 hours.
  • Example 11 It carried out similarly to Example 10 except not ventilating. The reaction results are shown in Table 2.
  • succinic acid yield and succinic acid production rate can be improved as compared with the conventional method, and by-products (such as pyruvic acid) conventionally produced under anaerobic conditions are reduced. Can do. Furthermore, according to the present invention, it is possible to provide a method for producing succinic acid that can correspond to an industrial scale without forcing equipment enhancement and reaction control for creating a complete anaerobic environment.
  • the obtained succinic acid can be used for food additives, pharmaceuticals, cosmetics, industrial raw materials and the like.
  • a succinic acid-containing polymer can also be produced by performing a polymerization reaction using the obtained succinic acid as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法であって、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法。

Description

コハク酸の製造方法
 本発明は、コハク酸産生能を有する微生物を用いたコハク酸の製造方法に関するものである。
 発酵によるコハク酸生産は、一般的に、充分量の酸素を供給する好気条件下、少量の酸素を供給する微好気条件下、又は酸素を供給しない嫌気条件下で行われる。これまでに、好気条件下よりは微好気条件下又は嫌気条件下での発酵反応がコハク酸生産に有効であると記載されていた(特許文献1~4、非特許文献1)。特に、コリネ菌(Corynebacterium glutamicum ATCC 13032)を題材として、シミュレーション (FBAモデル) 結果を基に、嫌気条件下より微量の酸素を供給する条件下の方がコハク酸の生産が向上することや、LDH遺伝子を欠損することで、さらにコハク酸の生産が向上することが記載されている(非特許文献1)。
 特許文献5と6には、酵母やコウジカビ等の真核細胞を用いたコハク酸の生産では、酸素欠乏条件下、酸素消費速度(移動速度)を0.01~5mmol/L/hr以下に制御すること、又は、通気することで酸素供給制御を行う場合(oxygen limited conditions)は酸素消費速度を5.5~7mmol/L/hrに制御することが記載されている。
特開2004-194570号公報 特開2006-6344号公報 特開2005-95169号公報 国際公開WO2005/026349号パンフレット 国際公開WO2009/065778号パンフレット 国際公開WO2010/003728号パンフレット
Shinfuku et al., Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories 2009, vol.8:43
 しかし、非特許文献1に記載のシミュレーション(FBAモデル)は菌体増殖が最も良くなる状態を目的とした計算をしているために、原料とする糖代謝が菌体増殖に使用されていること、菌体の代謝物は乳酸が主に生産されており(炭素収率最大60%)、コハク酸においては炭素収率最大20%程度の条件であった。さらに、微好気条件下及び嫌気条件下でのコハク酸生産において、酸素摂取速度(OUR)/糖摂取速度(GUR)が0.21のとき、シミュレーション結果の炭素収率が19.2%に対して、実施例の炭素収率が3.1%と、シミュレーション結果と実施例との乖離があった。これらのことから、菌体増殖が制限された条件下における、コハク酸を産生する微生物による発酵反応への酸素供給とコハク酸生産反応との関係の詳細は未だ解明されていない。
  また、シミュレーションでは発酵条件の菌体増殖速度が高く、菌体増殖が制限された条件下で、発酵反応への酸素供給とコハク酸生産反応との関係の詳細は未だ解明されていない。
 さらに、工業的なスケールで生産を行う場合、酸素を供給しない嫌気環境を制御する必要があり、具体的には、特許文献1等に記載されているような、減圧による反応水溶液の溶解ガスの除去や窒素などによる反応系からの酸素の除去を行うことになる。しかしながら、溶解ガス除去用減圧設備の増設並びに窒素ガス供給制御等に多大な費用がかかるために、産業利用上好ましくない。また、反応系からの酸素の除去を工業的なスケールで行う場合には、反応を開始するまでに多大な時間がかかるために、使用する菌体や培地等の状態が変化してしまい、反応自体に支障がでる可能性がある。また、工業的なスケールでのコハク酸生産において、酸素供給とコハク酸生産効率の関係は明らかになっていない。
 本発明の課題は、従来よりも生産効率の高い、特に工業的スケールに対応可能な、コハク酸の製造方法を提供することにある。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、コハク酸産生能がある微生物により原料糖からコハク酸を製造する際に、微生物の菌体増殖が制限された条件下において、コハク酸生産速度に対する酸素移動速度の比を特定の範囲にて行うこと、つまり極微量の酸素が供給される環境下でコハク酸生産反応を行うことでコハク酸生産の効率が向上することを見出し、本発明を達成するに至った。
 即ち、本発明の要旨は以下のとおりである。
  [1] コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法。
 [2] 反応中の対コハク酸酸素移動速度減少率(%/g/L)が1.2以下であることを特徴とする[1]に記載のコハク酸の製造方法。
 [3] 酸素移動速度(mmol- O2/L/hr)が0.01以上5以下であることを特徴とする[1]又は[2]に記載のコハク酸の製造方法。
 [4] 該微生物がコリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属、アクチノバチルス(Acinobacillus)属、糸状菌、酵母菌から選択されることを特徴とする[1]~[3]のいずれかに記載のコハク酸の製造方法。
 [5] 該微生物が、ラクテートデヒドロゲナーゼ活性が非改変株と比べて低減するように改変されたもの、及び/又はピルビン酸カルボキシラーゼ活性が非改変株と比べて増強するように改変されたものであることを特徴とする[1]~[4]のいずれかに記載のコハク酸の製造方法。
 [6] 反応中のpHが5~10であることを特徴とする[1]~[5]のいずれかに記載のコハク酸の製造方法。
 [7] [1]~[6]のいずれかに記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を用いて重合反応を行う工程を含む、コハク酸含有ポリマーの製造方法。
 [8] [1]~[6]のいずれかに記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を原料としてコハク酸誘導体を合成する工程を含む、コハク酸誘導体の製造方法。
 以下に、本発明の実施の形態を詳細に説明する。
 以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明のその要旨を超えない限り、これらの内容に特定はされない。
<本発明の概要>
 本発明は、コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法であって、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)の範囲が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法にある。
 <微生物>
 本発明の方法で使用される微生物は、コハク酸産生能を有する微生物であれば、限定されない。
本発明において、コハク酸産生能とは、微生物を培地で培養したときに、該培地中にコハク酸を蓄積する能力をいう。具体的には、特段の制限はないが、コハク酸産生能の程度はコハク酸における消費糖炭素収率等により示すことができる。
 コハク酸における消費糖炭素収率(C-mol%)については、特段の制限はないが、消費糖炭素収率が低すぎると、原料である糖に対するコハク酸生産効率が低くなる傾向があるので、通常40C-mol%以上、好ましくは50C-mol%以上、より好ましくは60C-mol%以上である。一方、通常133C-mol%以下、好ましくは120C-mol%以下、より好ましくは110C-mol%以下である。なお、コハク酸における消費糖炭素収率(C-mol%)とは、消費した糖に含まれる炭素原子(C原子)のモル数に対する、生産したコハク酸に含まれる炭素原子のモル数の比をいう。
 本発明の方法で使用される微生物は、コハク酸産生能を有すれば特段の制限はないが、コリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属細菌、アクチノバチルス(Acinobacillus)属細菌、糸状菌、及び酵母菌からなる群より選択される微生物が挙げられる。その中でも、コリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属細菌、アクチノバチルス(Acinobacillus)属細菌、酵母菌が好ましく、より好ましくはコリネ型細菌、大腸菌、酵母菌であり、特に好ましくはコリネ型細菌である。
 本発明の方法で使用されるコリネ型細菌は、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、アースロバクター(Arthrobacter)属、マイコバクテリウム(Mycobacterium)属、ミクロバクテリウム(Microbacterium)属、マイクロコッカス(Micrococcus)属に属する細菌が挙げられる。
 ブレビバクテリウム属細菌としては、ブレビバクテリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)およびコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)等が用いられる。
 なお、ブレビバクテリウム・フラバム、ブレビバクテリウム・ラクトファーメンタムおよびコリネバクテリウム・グルタミカムは互いに非常に近縁で、性質も類似しており、現在の分類学においては、同一の種に分類されることもある。
 コリネ型細菌の親株の特に好ましい具体例としては、ブレビバクテリウム・フラバムMJ-233(FERM BP-1497)、同MJ-233 AB-41(FERM BP-1498)、コリネバクテリウム・グルタミカムATCC31831、及びブレビバクテリウム・ラクトファーメンタムATCC13869等が挙げられる。
 なお、ブレビバクテリウム・フラバムは、現在、コリネバクテリウム・グルタミカムに分類される場合もあることから(Lielbl, W., et al., International Journal of Systematic Bacteriology, 1991, vol. 41, p255-260)、本発明においては、ブレビバクテリウム・フラバムMJ-233株、及びその変異株MJ-233 AB-41株はそれぞれ、コリネバクテリウム・グルタミカムMJ-233株及びMJ-233 AB-41株と同一の株であるものとする。
 ブレビバクテリウム・フラバムMJ-233は、1975年4月28日に通商産業省工業技術院微生物工業技術研究所(現独立行政法人 産業技術総合研究所 特許生物寄託センター)(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-3068として寄託され、1981年5月1日にブダペスト条約に基づく国際寄託に移管され、FERM BP-1497の受託番号で寄託されている。
 アナエロビオスピリラム(Anaerobiospirillum)属細菌としては、アナエロビオスピリラム・サクシニシプロデュセン(Anaerobiospirillum succiniciproducens)等が用いられる。
 アクチノバチルス(Acinobacillus)属細菌としては、アクチノバチルス・サクシノジェネス(Actinobacillus succinogenes)等が用いられる。
 糸状菌は、Aspergillus属、Penicillium属、Rizopus属等に属する微生物が挙げられる。
Aspergillus属微生物としては、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリゼー(Aspergillus oryzae)等が用いられる。
 Penicillium属微生物としては、ペニシリウム・クリソゲナム(Penicillium chrysogenum)、ペニシリウム・シンプリシシマム(Penicillium simplicissimum)等が用いられる。
 Rizopus属微生物としては、リゾパス・オリゼー(Rizopus oryzae)等が用いられる。
 酵母菌は、サッカロミセス属(Saccaromyces)、シゾサッカロミセス属(Shizosaccaromyces)、カンジダ属(Candida)、ピキア属(Pichia)、クルイウェロマイセス属(Kluyveromyces)、チゴサッカロミセス属(Zygosaccharomyces) 等に属する微生物が挙げられる。
 サッカロミセス属(Saccaromyces)微生物としては、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サッカロミセス・ウバラム(S. uvarum)、サッカロミセス・バイアヌス(S. bayanus)等が用いられる。
 シゾサッカロミセス属(Shizosaccaromyces)微生物としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等が用いられる。
 カンジダ属(Candida)微生物としては、カンジダ・アルビカンス(Candida albicans)、カンジダ・ソノレンシス(C. sonorensis)、カンジダ・グラブラタ(C. glabrata)等が用いられる。
 ピキア属(Pichia)微生物としてはピキア・パストリス(Pichia pastoris)、ピキア・スティピディス(P. stipidis)等が用いられる。
 クルイウェロマイセス属(Kluyveromyces)微生物としては、クルイウェロマイセス・ラクティス(Kluyveromyces lactis)、クルイウェロマイセス・マルキシアヌス(K. marxianus)、クルイウェロマイセス・サーモトレランス(K. thermotolerans)等が用いられる。
 チゴサッカロミセス属(Zygosaccharomyces)微生物としては、チゴサッカロミセス・バイリイ(Zygosaccharomyces bailli)、チゴサッカロミセス・ロウキシ(Z. rouxii)等が用いられる。
 このコハク酸生産能は、本発明の方法で使用される微生物の野生株の性質として有するものであってもよく、育種によって付与される性質であってもよい。
 育種によってコハク酸生産能を付与するには、特に限定はないが、具体的にはUV照射やNTG処理等の通常の変異処理により変異株を得る方法、細胞融合もしくは遺伝子組み換え法等の遺伝学的手法により誘導される組み換え体を得る方法等の、微生物の育種に採用されてきた方法が用いられる。
 前記の組み換え体としては、コハク酸生合成酵素遺伝子の発現強化やコハク酸分解酵素遺伝子及び副生物生合成遺伝子の発現低下等、公知の方法によって得られたものが用いられる。本発明の方法で使用される組み換え体は、単独の改変でもよく、2種又は3種以上の改変が施されたものであってもよい。具体的には、例えば、ピルビン酸カルボキシラーゼ活性が非改変株と比べて増強するように改変された微生物や、ラクテートデヒドロゲナーゼ活性が非改変株と比べて低減するように改変された微生物等が挙げられる。
 ピルビン酸カルボキシラーゼ(以下、「PC」、あるいは「pc」とも呼ぶ)活性が非改変株と比べて増強するように改変された微生物は、例えば、特開平11-196888号公報に記載の方法と同様にして、pc遺伝子をプラスミドにより宿主微生物中で高発現させることにより構築することができる。また、相同組換えによって染色体上に組み込んでもよいし、プロモーター置換によってpc遺伝子の発現を増強することもできる(特開2008-259451号公報)。形質転換は、例えば、電気パルス法(Res. Microbiol., Vol.144, p.181-185, 1993)等によって行うことができる。
 「PC活性が増強される」とは、PC活性が野生株又は親株等の非改変株に対して、単位菌体重量あたり好ましくは1.5倍以上、より好ましくは3.0倍以上増加していることをいう。PC活性が増強されたことは、公知の方法、例えば、J.Bacteriol., 158, 55-62, (1984)に記載の方法によりPC活性を測定することによって確認することができる。pc遺伝子の具体的な導入方法としては、特開2008-259451号公報に記載のものが用いられる。
 また、ラクテートデヒドロゲナーゼ(以下、「LDH」と称することがある)活性が非改変株と比べて低減するように改変されたもとしては、例えば、特開平11-206385号公報に記載されている相同組換えによる方法、あるいは、sacB遺伝子を用いる方法(Schafer, A. et al. Gene 145 (1994) 69-73)等で染色体上のLDH遺伝子を破壊することによって構築することができる。なお、「LDH活性が低減された」とは、非改変株と比較してLDH活性が低下していることをいう。LDH活性は完全に消失していてもよい。LDH活性が低下したことは、公知の方法(L..Kanarek, et al., J. Biol. Chem.239, 4202 (1964)等)によりLDH活性を測定することによって確認することができる。
 さらに、本発明の製造方法で用いられる微生物は、前記PC活性の増強、及び/又はLDH活性の低下に加えて、アセテートキナーゼ(以下、「ACK」とも呼ぶ)、ホスフォトランスアセチラーゼ(以下、「PTA」とも呼ぶ)、ピルベートオキシダーゼ(以下、「POXB」とも呼ぶ)およびCoAトランスフェラーゼ(以下、「CTF」とも呼ぶ)からなる群より選ばれる1種類以上の酵素の活性が低減するように改変された微生物であってもよい。
PTAとACKはいずれか一方を活性低下させてもよいが、酢酸の副生を効率よく低減させるためには、両方の活性を低下させることがより好ましい。
 「PTA活性」とは、アセチルCoAにリン酸を転移してアセチルリン酸を生成する反応を触媒する活性をいう。「PTA活性が低減するように改変された」とは、PTA活性が、非改変株、例えば野生株よりも低くなったことをいう。PTA活性は非改変株と比較して、単位菌体重量当たり30%以下に低下していることが好ましく、10%以下に低下していることがより好ましい。また、PTA活性は完全に消失していてもよい。PTA活性が低下したことは、例えば、Klotzsch, H. R., Meth Enzymol. 12, 381-386(1969)等に記載の方法により、PTA活性を測定することによって確認することができる。 
 「ACK活性」は、アセチルリン酸とADPから酢酸を生成する反応を触媒する活性をいう。
 「ACK活性が低減するように改変された」とは、ACK活性が、非改変株、例えば野生株よりも低くなったことをいう。ACK活性は非改変株と比較して、単位菌体重量当たり30%以下に低下していることが好ましく、10%以下に低下していることがより好ましい。また、ACK活性は完全に消失していてもよい。ACK活性が低下したことは、Ramponiらの方法(Ramponi G., Meth. Enzymol. 42,409-426(1975))により、ACK活性を測定することによって確認することができる。
 なお、コリネバクテリウム・グルタミカム(ブレビバクテリウム・フラバムに分類されるものも含む)においては、Microbiology. 1999 Feb;145 (Pt 2):503-13に記載されているように、PTA及びACKの両酵素はpta-ackオペロン(GenBank Accession No. X89084)にコードされているため、pta遺伝子を破壊した場合は、PTA及びACKの両酵素の活性を低下させることができる。 
 PTAおよびACKの活性低下は、公知の方法、例えば、相同組換えを利用する方法やsacB遺伝子を用いる方法(Schafer, A. et al. Gene 145 (1994) 69-73)に従ってこれらの遺伝子を破壊することによって行うことができる。具体的には、特開2006-000091号公報に開示された方法に従って行うことができる。pta遺伝子およびack遺伝子としては、前記GenBank Accession No. X89084の塩基配列を有する遺伝子のほか、宿主染色体上のpta遺伝子およびack遺伝子と相同組換えを起こす程度の相同性を有する遺伝子を用いることもできる。ここで、相同組換えを起こす程度の相同性とは、好ましくは80%以上、より好ましくは90%以上、特に好ましくは95%以上である。また、前記遺伝子とストリンジェントな条件下でハイブリダイズし得るDNA同士であれば、相同組換えは起こり得る。
 「POXB活性」は、ピルビン酸と水から酢酸を生成する反応を触媒する活性をいう。「POXB活性が低減するように改変された」とは、POXB活性が、非改変株、例えば野生株よりも低くなったことをいう。POXB活性は非改変株と比較して、単位菌体重量当たり30%以下に低下していることが好ましく、10%以下に低下していることがより好ましい。「低下」には活性が完全に消失した場合も含まれる。POXB活性は、Chang Y. ,et al.,.J.Bacteriol.151,1279-1289(1982)等に記載の方法により、活性を測定することによって確認することができる。
 POXB活性の低下は、公知の方法、例えば、相同組換えを利用する方法やsacB遺伝子を用いる方法(Schafer, A. et al. Gene 145 (1994) 69-73)等に従ってpoxB遺伝子を破壊することにより行うことができる。具体的には、WO2005/113745号公報等に開示された方法に従って行うことができる。poxB遺伝子としては、例えば、GenBank Accession No.Cgl2610(GenBank Accession No.BA000036の2776766-2778505番目の相補鎖)の塩基配列を有する遺伝子が挙げられるが、宿主微生物の染色体DNA上のpoxB遺伝子と相同組換えを起こす程度の相同性を有していればよいため、該配列の相同遺伝子も使用することができる。ここで、相同組換えを起こす程度の相同性とは、好ましくは80%以上、より好ましくは90%以上、特に好ましくは95%以上である。また、前記遺伝子とストリンジェントな条件下でハイブリダイズし得るDNA同士であれば、相同組換えは起こり得る。
 「CTF活性」は、アセチル-CoAのCoAを他の物質に転移させ、酢酸を生成する反応を触媒する活性をいう。「CTF活性が低減するように改変された」とは、CTF活性が、非改変株、例えば野生株よりも低くなったことをいう。CTF活性は非改変株と比較して、単位菌体重量当たり30%以下に低下していることが好ましく、10%以下に低下していることがより好ましい。尚、「低下」には活性が完全に消失した場合も含まれる。CTF活性は、例えば、Scherf U and Buckel W. Appl Environ Microbiol. 1991; vol.57, pp.2699-2702. 等に記載の方法により測定することが出来る。
 ctf遺伝子としては、例えば、GenBank Accession No.Cgl2569(GenBank Accession No.BA000036の2729376-2730917番目の相補鎖)の塩基配列を有する遺伝子が挙げられるが、宿主微生物の染色体DNA上のctf遺伝子と相同組換えを起こす程度の相同性を有していればよいため、該配列の相同遺伝子も使用することができる。ここで、相同組換えを起こす程度の相同性とは、好ましくは80%以上、より好ましくは90%以上、特に好ましくは95%以上である。また、前記遺伝子とストリンジェントな条件下でハイブリダイズし得るDNA同士であれば、相同組換えは起こり得る。
 なお、本発明の製造方法に用いられる微生物は、前記PC活性の増強、または、PC活性の増強およびLDH活性の低下に加え、前記改変のうちの2種類以上の改変を組み合わせて得られる微生物であってもよい。好ましい微生物としては、例えば、特開2008-259451号公報等に記載されているブレビバクテリウム・フラバムMJ233/PC-4/ΔLDH株や国際公開WO2009/065777号パンフレット、国際公開WO2009/065778号パンフレット、国際公開WO2009/065779号パンフレット、国際公開WO2009/065780号パンフレット、国際公開WO2010/003728号パンフレット等に記載のアルコールデヒドロゲナーゼをコードするADH1とADH2遺伝子の破壊、グリセロール3リン酸デヒドロゼナーゼをコードするGPD1遺伝子の破壊、フォスフォエノールピルビン酸カルボキシラーゼ活性の増強、リンゴ酸デヒドロゲナーゼ活性の増強、フマラーゼ活性の増強、フマル酸リダクターゼ活性の増強、リンゴ酸トランスポーター活性の増強を組み合わせた酵母菌株であり、例えば SUC-200(MATA ura3-52 leu2-112 trp1-289 adh1::lox adh2::lox gpd1::Kanlox, overexpressing PCKa, MDH3, FUMR, FRDg and SpMAE1)等が挙げられる。
 <培養>
本発明において、培養とは、主として、コハク酸の製造方法に用いられる微生物を増殖させ微生物の菌体を調製する工程を示す。培養工程は省略してもよく、寒天培地等の固体培地で斜面培養したものを直接反応に用いても良く、また、培養工程を何度か繰り返し行ってもよい。
本発明において、コハク酸を主として製造する工程を「コハク酸生産反応」、または「反応」と示し、コハク酸生産反応に直接供する菌体を調製する培養を「本培養」と示し、該本培養に供する菌体を調製する培養を「種培養」と示す。
 培養に用いる培地は、前記微生物の培養に用いられる通常の培地を用いることができる。例えば、硫酸アンモニウム、リン酸カリウム、硫酸マグネシウム等の無機塩からなる組成に、肉エキス、酵母エキス、ペプトン等の天然栄養源を添加した一般的な培地を用いることができる。
 本反応に用いる前記微生物を増殖させて菌体を得るための培養条件は限定されないが、通常、コリネ型細菌であれば、生育至適温度であれば特段の制限はないが、通常25℃以上であり、一方、通常35℃以下、好ましくは32℃以下、特に好ましくは30℃以下である。培養時には、通気、攪拌し酸素を供給しながら行う。生育至適温度は、コハク酸の生産に用いられる条件において最も生育速度が速い温度のことを言う。
 培養時間は一定量の菌体が得られる時間であれば特段の制限はないが、通常6時間以上96時間以下である。
 また、よりコハク酸の製造に適した菌体の調製方法として、特開2008-259451号公報に記載の炭素源の枯渇と充足を短時間で交互に繰り返すように培養を行う方法も用いることができる。
 培養後の菌体は、微生物を含む培養液を直接コハク酸生産反応に用いてもよいし、菌体を遠心分離、膜分離等によって回収した後に、反応に用いてもよい。本発明の製造方法に用いられる微生物として、その菌体の処理物を使用することもできる。菌体の処理物としては、例えば、前記方法で培養、集菌した菌体をアクリルアミド、カラギーナン等で固定化した固定化菌体、菌体を破砕した破砕物、その遠心分離上清、又はその上清を硫安処理等で部分精製した画分等が挙げられる。
 <培養に用いる糖>
 培養には、通常糖を用いる。培養に用いる糖は、前記微生物が資化してコハク酸を生成させうる糖であれば特に限定されないが、通常、ガラクトース、ラクトース、グルコース、フルクトース、グリセロール、シュークロース、サッカロース、デンプン又はセルロース等の炭水化物;グリセリン、マンニトール、キシリトール又はリビトール等のポリアルコール類等の発酵性糖質が用いられ、このうちグルコース、シュークロース、フルクトース又はグリセロールが好ましく、特にグルコース又はシュークロースが好ましい。
 また、前記発酵性糖質を含有する澱粉糖化液又は糖蜜なども使用され、具体的にはサトウキビ、甜菜又はサトウカエデ等の植物から搾取した糖液であるものが好ましい。
 これらの糖は、単独でも組み合わせても使用できる。前記糖の使用濃度は特に限定されないが、コハク酸の生成を阻害しない範囲で可能な限り高くするのが有利であり、反応液に対して、通常5%(W/V)以上、好ましくは10%(W/V)以上であり、一方、通常30%(W/V)以下、好ましくは20%(W/V)以下である。また、反応の進行に伴う前記糖の減少にあわせ、糖の追加添加を行っても良い。
 <コハク酸生産反応>
 本発明のコハク酸生産反応は、コハク酸産生能がある微生物と糖を反応させるコハク酸の製造方法において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とする。
 <酸素移動速度>
 本発明において、酸素移動速度は、後述するコハク酸生産速度に対する酸素移動速度の比が前記の範囲に含まれる限り特段の制限はなく、反応槽に酸素を供給しない嫌気的雰囲気(酸素移動速度が0の条件)でもよい。ここで、反応槽に酸素を供給しない嫌気的雰囲気(酸素移動速度が0の条件)は、例えば容器を密閉して無通気で反応させる、窒素ガス等の不活性ガスを供給して反応させる、又は二酸化炭素ガス含有の不活性ガスを通気する等の方法によって得ることができるが、コハク酸収率やコハク酸生産速度の低下や、ピルビン酸などの副生物の増加によるコハク酸精製コストの増加、また、酸素移動速度が0を実現するために反応槽を窒素又は酸素を含まない不活性ガスなどで置換するためのコストの増加などの問題がある。
一方、酸素移動速度が高すぎても、コハク酸における消費糖炭素収率の低下やコハク酸生産速度の低下、副生成物である酢酸の生産量増加によるコハク酸精製コストの増加、さらには高い酸素移動速度を実現するために攪拌数を高く設定すること及び/又は通気速度を高く設定することに伴う動力コストの増加などの問題が生じうるので、酸素移動速度は通常0.01[mmolO2/L/hr]以上、好ましくは0.02[mmolO2/L/hr]以上、より好ましくは0.05[mmolO2/L/hr]以上、一方、通常5[mmolO2/L/hr]以下、好ましくは3、より好ましくは2.5[mmolO2/L/hr]以下、特に好ましくは2[mmolO2/L/hr]以下である。
 本発明において、反応液中の酸素移動速度は、溶液を窒素置換し溶存酸素濃度を低下させた後、通気や攪拌を行い溶存酸素濃度の変化から求める方法(Wise W.S. J. Gen. Microbiol., 1951, vol. 5, pp.167-177)等により測定することができる。
 本発明において、反応槽に酸素を供給する方法に、特段の制限はないが、例えば、通気する方法や液中に酸素を溶存させる方法を用いることもできる。好ましくは通気する方法である。反応液の攪拌を前記酸素移動速度の範囲内に調節するように適宜行っても良い。前記酸素移動速度の範囲内に調節するために、反応液の撹拌のみによって酸素を溶存させてもよいし、反応液の撹拌と通気を行ってもよいし、通気のみで酸素を溶存させてもよい。また、攪拌による乱流を効率的に生じさせるための邪魔板を設置してもよい。
 本発明において通気する方法には特段の制限はないが、酸素を含むガスを反応液やフィード液に接触させることが挙げられる。前記酸素移動速度の範囲内に調節するために、純酸素又は空気など酸素を含むガスをそのまま使用しても、混合してもよい。また、純酸素又は空気など酸素を含むガスと窒素又は二酸化炭素などのガスを任意に混合してもよい。また、一度使用したガスを回収し、再度使用してもよい。前記酸素移動速度の範囲内に調節するために、酸素を含んだ気体を、通気量を調節できるコンプレッサーを用いて、オリフィススパージャーやノズルスパージャー又はリングスパージャーなどのスパージャー(通気管)、また、多孔質チューブなどを通じて反応槽の気相部にガスを通気してもよいし、反応液中に直接通気してもよい。また、前記酸素移動速度の範囲内に調節するために、反応中にフィードするフィード液中に酸素を溶存させてその液をフィードすることにより、間接的に添加してもよい。反応液やフィード液などに通気する際には、配管などから直接ガスを液中に流通させてもよいし、スパージャーなどの散気装置を使用してもよいし、膜などを通してもよい。前記酸素移動速度の範囲内に調節するために、通気するガス若しくは排気するガスの流量、圧力若しくは組成、反応液若しくはフィード液中の酸素濃度若しくは酸化還元電位又はフィード液の流量などのうちいずれかを測定しながら、いずれかを調節してもよい。
 <コハク酸生産速度>
 本発明において、コハク酸生産速度(mmol/L/hr)とは、1Lあたり1時間に生産されるコハク酸量をいい、小さすぎると長時間の反応時間が必要になることによるコストの増加やコハク酸以外の副生物の生産量の増加によるコハク酸収率の低下につながる傾向にあるので、通常1mmol/L/hr以上、好ましくは5mmol/L/hr以上である。一方、上限に制限はないが、通常1000mmol/L/hr以下、好ましくは700mmol/L/hr以下、より好ましくは300mmol/L/hr以下である。。
 <コハク酸生産速度に対する酸素移動速度の比>
 本発明において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)は、小さすぎるとコハク酸生産に適した酸素供給量より少なくなり、コハク酸収率の低下やコハク酸生産速度の低下、副生物であるピルビン酸の生産量の増加によるコハク酸の精製コストの増加、非常に小さな酸素移動速度条件が要求されることを実現するために反応層を窒素で置換することなどよるコストの増加、などが問題となるため、0.1以上、好ましくは0.2以上、より好ましくは0.3以上である。一方、この比が大きすぎると、コハク酸生産に適した酸素供給量より多くなり、コハク酸収率の低下やコハク酸生産速度の低下、また、副生物である酢酸の生産量が増加することによるコハク酸精製コストの増加、酸素移動速度が大きくなることにより引き起こされる菌体増殖に伴う副生物の増加、コハク酸生産速度が小さくなることによる反応時間の増加によるコストの増加、などが問題となるため、240以下、好ましくは200以下、より好ましくは150以下、更に好ましくは100以下、特に好ましくは50以下である。
 コハク酸生産速度に対する酸素移動速度の比を指標とする理由としては、次の様に考えられる。通常、コハク酸生産反応において、コハク酸収率を最大にするためには、理論的には菌体の増殖速度が限りなく小さく、酸素を供給しない嫌気環境が良いとされていた。しかし、本発明の結果、嫌気環境下でのコハク酸生産反応ではピルビン酸などの副生産物量が大きくコハク酸収率も低いこと、微量の酸素の供給により副生産物量の低下やコハク酸収率の向上、さらにコハク酸生産速度が向上することが示された。このように、副生産物の生産を伴うコハク酸生産においては、コハク酸生産のみを考えた理論的に好ましい嫌気条件ではなく、微量の酸素を供給する条件でコハク酸生産能が向上することが判明した。これは、コハク酸生産反応には適した酸素供給の制御が必要であることを意味する。しかしながら、酸素移動速度のみを指標としてある範囲を設定するだけでは、例えば、高いコハク酸生産速度に適した酸素量をコハク酸生産速度が小さい反応時に供給すれば、コハク酸生産において好気的な状態になり、前記したように酢酸などの副生産物の増加につながり好ましくないので、コハク酸生産速度に対応する酸素量を表すコハク酸生産速度に対する酸素移動速度の比を指標とすることが好ましいと考えられる。そこで、本発明では、主としてコハク酸産生能を有する微生物のコハク酸代謝に対してどれだけの酸素量が要求されるかを示す指標として、コハク酸生産速度に対する酸素移動速度の比の値を制御することが重要だと考えた。
 該コハク酸生産速度に対する酸素移動速度の比は、特に工業的なコハク酸生産反応における条件設定の際の好ましい指標になり得る。工業生産時には、コハク酸生産速度は原料コストや製造設備コストによって好ましい速度が選択され、変化し得る。該指標は、このような条件の変更にも容易に対応することが可能であり有用である。
 <倍加時間>
 本発明において、倍加時間とは、前記微生物の菌体量が2倍に増加するためにかかる時間であり、ある2点の菌体濃度(OD)もしくは乾燥菌体重量の値を元に、以下の計算式(1)の式で示される。
Figure JPOXMLDOC01-appb-M000001
 なお、T2とT1はある2点のサンプリング時間、X1とX2はその2点に対応する菌体濃度もしくは乾燥菌体重量の値を示す。
 本発明において、微生物の倍加時間は、小さすぎると、糖が菌体増殖に利用されるためにコハク酸生産量が減少することや増殖に伴い生産される副生物の増加により、コハク酸精製過程でのコストの増加につながるために40時間以上、好ましくは50時間以上、より好ましくは100時間以上である。一方、上限は特に限定されないが、倍加時間が大きすぎると、触媒である菌体が死滅するためにコハク酸生産が減少する傾向にあるため、通常500時間以下、好ましくは300時間以下、より好ましくは200時間以下である。
 倍加時間を制御する要素としては、特段の制限はないが、酸素供給量や温度等の反応条件、反応液の組成、微生物の遺伝子改変等が挙げられる。例えば、酸素の供給を極微量若しくは0に制御すること、温度を生育至適温度の範囲から離れた値に制御すること及び/又は反応培地組成の窒素源やリン源など培地組成の一部を制限すること等で倍加時間を長くすることができる。また、遺伝子改変に関しては、コリネ型細菌において乳酸生産に関連するLDH遺伝子を欠損させることにより倍加時間が長くなり、同様に酵母菌においてはエタノール生産に関連する遺伝子の欠損(一例として、ADH1遺伝子(Mol Cell Biol. 1986, vol. 6, pp. 70-79)、PDC1・PDC5遺伝子の二重欠損やPDC1・PDC5・PDC6遺伝子の三重欠損(Hohmann, J Bacteriol. 1991, vol. 173, pp.7963-7969))などにより倍加時間が長くなる。これらの遺伝子を欠損することにより、ATP獲得効率が悪くなることが原因のひとつである。これらのパラメーターの一つのみを制御しても、その他のパラメーターの変動により倍加時間が変化することもあり、これらのパラメーターを複数組み合わせることで倍加時間を制御することが可能な場合もある。上記に挙げられたパラメーターの具体的な制御方法や適用範囲等は各項目の記載のとおりである。
 また、文献1(Shinfuku et al., Microbial Cell Factories 2009, 8:43)、文献2(国際公開WO2010/003728号パンフレット)のコハク酸生産反応における倍加時間を上記計算式(1)にて同様に計算すると、文献1記載の倍加時間は、27.4時間(文献1のAdditional file2の図よりODを読み取り、培養開始後9時間目のOD (12.2)と24時間目のOD (17)から計算した)と7.3時間(文献1のAdditional file3の図よりODを読み取り、培養開始後9時間目のOD(6.5)と25時間目のOD(26)から計算した)であり、文献2記載の倍加時間は、30時間(文献2のExample1、2の記載より、培養開始時の乾燥菌体重量1g biomass dry weightと90時間目の乾燥菌体重量8g biomass dry weightから計算した)であることから、40時間よりも短いことが判る。
 <対コハク酸酸素移動速度減少率>
 本発明において、対コハク酸酸素移動速度減少率 (%/g/L)とは、反応液1Lあたり1gのコハク酸が生産される間に減少した酸素移動速度の割合を示し、以下の計算式(2)の式で示される。
Figure JPOXMLDOC01-appb-M000002
 なお、OTRt1とOTRt2は、それぞれ、反応開始後t1時間とそれ以降のt2時間における酸素移動速度(mmol- O2/L/hr)を示し、SAt1とSAt2は、それぞれ、t1時間とt2時間における反応液のコハク酸濃度(g/L)を示す。また、反応液の流出入を伴う連続反応においては、例えばSAt1は「t1時間までに抜き取られた反応液と反応槽内の反応液に含まれるコハク酸量の総和(g)」の「反応槽内の反応液量(L)」に対する値として計算できる。
 対コハク酸酸素移動速度減少率 (%/g/L)は、反応中の任意の時間において、通常1.2(%/g/L)以下、より好ましくは1.1(%/g/L)以下である。下限は特になく0でもよい。対コハク酸酸素移動速度減少率が1.2(%/g/L)以下であることにより、酸素移動速度の低下を抑制することによりコハク酸生産に最適な酸素量を保つことができ、コハク酸収率の低下かつコハク酸生産速度の低下を抑制することができ、また、副生物のピルビン酸の生産量が抑制されることによるコハク酸精製コストの低減が可能となるために、好ましい。
 本発明においては、コハク酸生産速度、酸素移動速度及び微生物の倍加時間の、各単独のパラメーターのみを制御することでは、本発明の効果を得ることができない。たとえば、酸素を完全に除去することで微生物の倍加時間を長く制御することだけでは、乳酸や酢酸等の不純物が多く産生され、コハク酸生産速度が減少してしまうために問題となる。コハク酸生産反応の増強を目的として、酸素移動速度を増強すると、酸素移動速度の増強に伴い微生物増殖が活性化し、コハク酸の原料である糖の大部分を微生物の増殖に使用されるために、コハク産生産量が減少する問題が生じる。本発明の効果は、コハク酸収率及び生産速度を向上させるために、コハク酸生産速度、酸素移動速度及び微生物の倍加時間という複数のパラメーターを制御することにより初めて達成されるものである。
 <コハク酸生産反応の温度及び時間>
 コハク酸生産反応温度は、特に限定はないが、通常用いる前記微生物の生育至適温度より2℃以上 好ましくは7℃以上高い温度である。一方、通常用いる前記微生物の生育至適温度より20℃高い温度以下、好ましくは15℃高い温度以下である。具体的には、コリネ型細菌の場合には、通常37℃以上、好ましくは39℃以上であり、一方通常45℃以下、好ましくは43℃以下、特に好ましくは41℃以下である。コハク酸の生産反応の間、常に37~45℃である必要はないが、種培養を含めた全反応時間の50%以上、好ましくは80%以上の時間、前記温度範囲にすることが望ましい。
 反応の時間は、特に限定はないが、通常1時間以上、好ましくは3時間以上であり、一方、通常168時間以下、好ましくは72時間以下である。
 <コハク酸生産反応に用いる微生物の調製方法>
 本発明のコハク酸の製造方法においては、前記微生物を糖と反応させることによってコハク酸を製造してもよいし、予め前記培養で増殖させて得られた微生物を糖を含む反応液中で糖と反応させることによってコハク酸を製造してもよい。特に、後者の場合には、主として、微生物を増殖する工程とコハク酸を製造する工程でそれぞれ最適な条件を選択することができ、添加した糖を効率的にコハク酸製造に使用することができるために有用である。
 コハク酸生産反応に用いる前記微生物の菌体量は、特に規定されないが、湿菌体重量として、通常1g/L以上、好ましくは10g/L以上、より好ましくは20g/L以上であり、一方、通常700g/L以下、好ましくは500g/L以下、さらに好ましくは400g/L以下である。
 <コハク酸生産反応に用いる糖>
 コハク酸生産反応に用いる糖は、前記培養に用いる糖と同様である。
 コハク酸製造における糖の使用濃度は特に限定されないが、コハク酸の生成を阻害しない範囲で可能な限り高くするのが有利であり、通常5.0%(W/V)以上、好ましくは10%(W/V)以上であり、一方、通常30%(W/V)以下、好ましくは20%(W/V)以下である。また、反応の進行に伴う糖の減少にあわせ、糖の追加添加を行っても良い。
 <反応液>
 本発明のコハク酸生産反応における反応液は、前記微生物、前記糖を含有する水溶液であれば、特段の制限はなく、例えば、前記微生物を培養するための培地であってもよいし、リン酸緩衝液等の緩衝液であってもよい。
 反応液は、窒素源や無機塩などを含む水溶液であることが好ましい。ここで、窒素源としては、前記微生物が資化してコハク酸等を生成させうる窒素源であれば特に限定されないが、具体的には、アンモニウム塩、硝酸塩、尿素、大豆加水分解物、カゼイン分解物、ペプトン、酵母エキス、肉エキス又はコーンスティープリカーなどの各種の有機又は無機の窒素化合物が挙げられる。無機塩としては各種リン酸塩、硫酸塩、マグネシウム、カリウム、マンガン、鉄又は亜鉛等の金属塩が用いられる。また、ビオチン、パントテン酸、イノシトール又はニコチン酸等のビタミン類、ヌクレオチド又はアミノ酸などの生育を促進する因子を必要に応じて添加する。また、反応時の発泡を抑えるために、反応液には市販の消泡剤を適量添加しておくことが望ましい。
 反応液のpHは、用いる前記微生物の種類に応じて、その活性が最も有効に発揮される範囲に調整されることが好ましい。具体的には、コリネ型細菌を用いる場合には、通常5以上、好ましくは5.5以上、より好ましくは6以上、特に好ましくは7.1以上、一方、10以下、好ましくは9.5以下、より好ましくは9.0以下である。反応液のpHは、反応中も必要に応じてアルカリ性物質、炭酸塩又は尿素などの中和剤によって前記範囲内に調節する。具体的には、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム又は水酸化マグネシウム等を添加することによって調整することができる。
 反応液には、例えば前記微生物、前記糖、窒素源又は無機塩などのほかに、炭酸イオン、重炭酸イオン又は二酸化炭素ガス(炭酸ガス)を含有させることが好ましい。炭酸イオン又は重炭酸イオンは、中和剤としても用いることのできる炭酸マグネシウム、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム又は重炭酸カリウムなどから供給されるが、必要に応じて、炭酸若しくは重炭酸又はこれらの塩或いは二酸化炭素ガスから供給することもできる。
 炭酸又は重炭酸の塩の具体例としては、例えば炭酸マグネシウム、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウム、重炭酸アンモニウム、重炭酸ナトリウム又は重炭酸カリウム等が挙げられる。そして、炭酸イオン又は重炭酸イオンは、通常1mM以上、好ましくは2mM以上、さらに好ましくは3mM以上の濃度で添加する。一方、通常500mM以下、好ましくは300mM以下、さらに好ましくは200mM以下の濃度で添加する。二酸化炭素ガスを含有させる場合は、溶液1L当たり通常50mg以上、好ましくは100mg以上、さらに好ましくは150mg以上の二酸化炭素ガスを含有させる。一方、通常25g以下、好ましくは15g以下、さらに好ましくは10g以下の二酸化炭素ガスを含有させる。
 <コハク酸生産反応におけるその他の反応条件>
 本発明のコハク酸製造方法は、前記にあげた項目以外にも、通気するガス又は排気するガスの流量、圧力若しくは組成、反応液又はフィード液中の酸素濃度若しくは酸化還元電位、又はフィード液の流量等のうちいずれかを測定しながら、いずれかを調節することにより、制御することができる。用いる微生物、後述する反応槽又は酸素供給方法等の種類に応じて、コハク酸製造効率が最も有効に発揮される範囲に調整される。具体的には、特段の制限はないが、ジャーファーメンターで反応液上面通気を行う場合には、攪拌速度としては、通常50rpm以上2000rpm以下であり、液量あたりの通気量としては、通常0.001vvm以上10vvm以下であり、通気量の空気含有量は通常0.1%以上100%以下である。
 本発明の製造方法は、特段の制限はないが、回分反応、半回分反応又は連続反応に適用することができる。特に、前記中和剤を添加する反応や連続反応等の場合には、反応環境(反応液量等)が逐次変化しかつその変化量が多く、コハク酸生産速度に対する酸素移動速度の比の最適な条件から逸脱する場合が多いが、本願発明の方法は、コハク酸生産速度に対する酸素移動速度の比を指標として逐次調整できるために好ましい。
 <工業的スケールにおけるコハク酸生産反応>
 工業的スケールにおける発酵によるコハク酸の製造には、従来、乳酸、酢酸又はグルタミン酸等を工業的スケールにおいて発酵させる場合に採用されてきた方法を適用することができる(生物反応工学(第3版)  山根恒夫著  産業図書  p.266~276参照)。
 工業的スケールにおける発酵においては、微生物反応槽の型と酸素や二酸化炭素等のガス導入方法が重要である。
 本発明において、微生物反応槽の型は、特段の制限はないが、気泡撹拌槽型(液中にガスを導入し、撹拌機を用いて気液接触を促進させ吸収速度を上げる)、液面吸収型(液面からガスを吸収させる)、液面吸収撹拌型(液面吸収型に撹拌機を取り付け、酸素吸収速度を上げる)、外部吸収型(酸素吸収用に外部に別装置を設置して反応液を循環する、または反応中に流加する液に吸収させる)、標準気泡塔型、ドラフトチューブ型(ドラフトチューブを設置し、内部循環を促進させてガス吸収速度を上げる。塔側面付近からガスを導入して外縁部を上昇流、中心部を下降流としてもよい)、ドラフトチューブ多孔板型(ドラフトチューブ型に多孔板を設置し、気液接触を促進させて吸収速度を上げる)、多段多孔板型又は外ループエアリフト型(外部に循環流路を設置し、ガスを導入する)等が挙げられる。
 ガス導入方法としては、特段の制限はないが、単孔ノズル、マルチノズル、リングスパージャー、マルチパイプ、気液二相流ノズル又は液ジェットによる気泡巻き込み式等が挙げられる。
 本発明において、工業的反応スケールとは、特段の制限はないが、反応槽の体積にして通常5m3以上、好ましくは50m3以上、一方、通常5000m3以下、好ましくは3000m3以下である。
 工業的反応スケールにおいて本発明が適している理由は、以下のことが挙げられる。
 通気しない場合には、反応液に供給される酸素は反応槽の気相部のみであるが、工業的スケールにおいては、反応槽に対して気相部を本実施例のような小スケールのものよりも少なくすることが反応槽容量の効率化から好ましい。結果として反応に好適な酸素移動速度を維持するための酸素量が足りなくなり、コハク酸生産速度に対する酸素移動速度の比の好ましい範囲から逸脱することになるが、本発明の製造方法によれば通気制御などにより当該比を一定の範囲に制御することでコハク酸収率を向上することができるために有用である。
 また工業反応において、原料コストや製造設備コストによりコハク酸生産速度が変更されるが、本発明の製造方法を用いることで最適な反応条件を容易に設定することが可能である。
 <後処理>
 以上のような反応により、コハク酸が反応液中に生成、蓄積する。
 コハク酸の製造過程における副生成物としては、具体的には、酢酸、エタノール、乳酸、ピルビン酸やα-ケトグルタル酸等のコハク酸以外のクエン酸回路代謝物、α-ケトバリン等のアミノ酸前駆体、アラニン、バリンやグルタミン酸等のアミノ酸、トレハロース等の糖、グリセロールなどのアルコール、タンパク質等が挙げられる。
  副生成物の量としては、特段の制限はないが、具体的には、副生物がピルビン酸又は酢酸の場合、コハク酸に対するピルビン酸の重量割合 (%)は、通常5.5%以下、好ましくは5.2%以下であり、コハク酸に対する酢酸の重量割合 (%)は、特段の制限はないが、通常15.8%以下、好ましくは15.5%以下である。
 反応液(培養液)中に蓄積したコハク酸は、常法に従って、反応液より採取することができる。例えば、微生物変換後の反応液は、その後の精製工程での操作性や効率性を考慮して適宜濃縮した後に、遠心分離、ろ過等により菌体等の固形物を除去する。このようにして、コハク酸及びコハク酸アンモニウムやコハク酸マグネシウム等のコハク酸塩を主体として含む溶液或いは水溶液が得られる。ここでいう「主体として含む」状態とは、溶媒を除く全成分の重量に対する該成分の重量が、通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上含まれる状態を示す。
 その溶液から結晶化又はカラムクロマトグラフィーにより精製するなどして、コハク酸を採取することができる。
 <得られたコハク酸の用途>
 一般的にコハク酸は石油化学由来の原料から製造され、多種多様な用途に使用されているが、このような用途に対してバイオ資源から誘導されたコハク酸も同様に好ましく使用することができる。例えば、1,4-ブタンジオール、2-ピロリジン、スクシンイミド、無水マレイン酸、イタコン酸、アスパルギン酸、マレイン酸、フマル酸、ヒドロキシスクシンイミド、マレイミド、4-アミノ酪酸、γ-アミノ酪酸、テトラヒドロフラン、アクリル酸、コハク酸ジメチルやコハク酸ジエチル等のコハク酸エステル、ピリロリドン若しくはN-メチルピロリドン等のコハク酸誘導体の原料として、ポリエステル、ポリウレタン若しくはポリアミド等のコハク酸含有ポリマー化合物や製品等の原料として、酸味料、調味料、醸造薬品若しくは加工食品添加剤等の食品添加剤として、発泡浴成分として、植物成長抑制剤、除草剤、抗菌剤、殺虫剤若しくは蚊誘引剤等の医薬品及び農薬の合成原料及び成分として、口腔洗浄剤や化粧品等の原料及び成分として、写真や印刷等に使用される製品の原料及び成分として、高温溶接剤やアルマイト処理表面接着剤等、接着剤及びシーラント原料及び成分として、粉末ニッケル製造、鉄鋼研磨浴、金属加工洗浄溶媒若しくは金属シンタリング用バインダー等の金属加工用の原料及び成分として、ハンダ若しくは溶接用フラックスの原料及び成分として、多孔質酸化チタン製造、ベーマイト製造、光触媒コーティング剤もしくは多孔質セラミック製造等のセラミックや無機化合物等の製造助剤の原料及び成分として、洗剤等の原料及び成分として、漂白剤等の原料及び成分として、染色助剤等の原料及び成分として、電解質溶媒及びメッキ浴液等の原料及び成分として、脱臭剤若しくは空気洗浄剤等の原料及び成分として、生体吸収性縫合糸等の生体吸収性化合物原料として、繊維製品の処理やソフトナー等の原料及び成分として、溶剤若しくは溶媒等の原料及び成分として、水溶性塗料溶剤の原料及び成分として、生分解性樹脂等の原料及び成分として、無臭シーラント等、シーラント原料及び成分として、鉄鋼製品、銅製品若しくは合金製品に対するコーティング・凍結防止・金属加工・過塩素酸用鉛・ボイラー水処理用等の防食剤等の原料及び成分として、合成潤滑剤、耐熱性プラスチック用潤滑剤若しくは電気接点用潤滑剤等の潤滑剤の合成原料及び成分として、樹脂若しくは高分子材料等の溶媒除去洗浄剤等の原料及び成分として、繊維工業若しくはドライクリーニング等に使用される製品の原料及び成分として、インク用溶剤、脱インキ剤、自動車用トップコート剤、絶縁塗料、粉体塗料、三次元印刷用インク、光硬化型塗料、光硬化インク組成物、ナノ粒子インク、インクジェット用インク、印刷スクリーン洗浄、有機半導体溶液、カラーフィルタ製造用インク、トナー、キナクドン顔料製造、スクシニルコハク酸製造、染料中間体等、顔料、染料若しくはインク等の原料及び成分として、含酸素型ディーゼル燃料等の原料及び成分として、セメント混和剤及び処理剤等の原料及び成分として、エンジン浄化剤等の原料及び成分として、石油精製溶剤等の原料及び成分として、プロパント組成物若しくは析出フィルターケーキ除去等の石油及び天然ガス採掘助剤等の原料及び成分として、天然ガス脱水溶媒等の天然ガス生産に係る製品の原料及び成分として、低ダスト性コンクリート床材若しくはアスファルト舗装剤等の建材の原料及び成分として、インク用溶剤や脱インク剤等の原料及び成分として、使用できる。
 以下に実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。
 各分析項目については、以下のようにして測定した。
 <酸素移動速度測定>
 酸素移動速度の測定は、溶液を窒素置換し溶存酸素濃度を低下させた後、通気や攪拌を行い溶存酸素濃度の変化から求める方法を使用した(Wise W.S. J. Gen. Microbiol., 1951, vol. 5, pp.167-177)。具体的には、1Lのジャーファーメンターに目的の液量の水を入れ、窒素を通気し攪拌することで水の溶存酸素を除去した。ジャーファーメンターの気相部に空気を通気して置換した後、100mL/minで液の上面又は下面から空気を通気するとともに100rpm~500rpmで攪拌し、その後の溶存酸素濃度の変化より酸素移動速度を計算した。また、空気と窒素を混合した気体を通気することで、より低い酸素移動速度の測定を行った。
 <コハク酸、ピルビン酸及び酢酸の測定方法>
 反応液に含まれるコハク酸、ピルビン酸及び酢酸の分析は、反応液を遠心分離(15,000G、2分)処理し、得られた上澄液を液体クロマトグラフ(LC)に供することで行った。コハク酸生産速度(mmol-SA/L/hr)は、測定したコハク酸濃度をサンプリングした時間(hr)で割ることで計算した。
 <倍加時間の測定方法>
 倍加時間は、ある2点の菌体濃度(OD)もしくは乾燥菌体重量の値を元に、下記の計算式(1)により求めた。
Figure JPOXMLDOC01-appb-M000003
 なお、T2とT1はある2点のサンプリング時間、X1とX2はその2点に対応する乾燥菌体重量の値を示す。
 <対コハク酸酸素移動速度減少率(%/g/L)の算出方法>
 対コハク酸酸素移動速度減少率(%/g/L)は、反応液1Lあたり1gのコハク酸が生産される間に減少した酸素移動速度の割合を示し、下記の計算式(2)で計算した。
Figure JPOXMLDOC01-appb-M000004
 なお、OTRt1とOTRt2は反応開始後t1時間とそれ以降のt2時間における酸素移動速度(mmol- O2/L/hr)を、SAt1とSAt2はt1時間とt2時間における反応液のコハク酸濃度(g/L)を示す。また、反応液の流出入を伴う連続反応においては、例えばSAt1は「t1時間までに抜き取られた反応液と反応槽内の反応液に含まれるコハク酸量の総和(g)」の「反応槽内の反応液量(L)」に対する値として計算できる。
 [実施例1]
 酸素供給制御によるコハク酸生産
 <種培養>
 100mLのA培地(尿素:4g、硫酸アンモニウム:14g、リン酸1カリウム:0.5g、リン酸2カリウム0.5g、硫酸マグネシウム・7水和物:0.5g、硫酸第一鉄・7水和物:20mg、硫酸マンガン・水和物:20mg、D-ビオチン:200μg、塩酸チアミン:200μg、酵母エキス:1g、カザミノ酸:1g、及び蒸留水:1000mL)を500mLの三角フラスコにいれ、121℃、20分加熱滅菌した。これを室温まで冷やした後、15mLの滅菌したA培地を200mLの三角フラスコに入れ、あらかじめ滅菌した50%グルコース水溶液を600μL添加し、MJ233/PC/ΔLDH株を接種して5.5時間30℃で培養した。前述した500mLの三角フラスコに100mLのA培地を入れ滅菌した培地に、あらかじめ滅菌した50%グルコース水溶液を4mL添加した後、得られた培養液を、O.D.(660nm)が0.02となるように接種し、30℃20時間で種培養した。
 <本培養>
 リン酸水溶液(85wt%):6.68g、塩化カリウム:4.95g、硫酸アンモニウム:2.97g、硫酸マグネシウム・7水和物:1.48g、硫酸マンガン・5水和物:118.8mg、硫酸第一鉄・7水和物:118.8mg、CSL(コーンスティープリガー)29.93g、10N水酸化カリウム水溶液:11.08g、消泡剤(CE457:日本油脂製):2.54g及び蒸留水の計1833mLの培地を5Lのジャーファーメンターに入れ、121℃20分加熱滅菌した。室温まで冷やした後、あらかじめフィルター滅菌したビタミン溶液(D-ビオチン、塩酸チアミン各0.2g/L水溶液)を15mL、あらかじめ滅菌した720g/Lの原料糖水溶液を110mL、前述の種培養の溶液を100mL添加した。加熱滅菌前後の重量より蒸発した液量を考慮し全量が2500mLになるように滅菌した水を添加した。ジャーファーメンターを30℃で保温し、pHは28%アンモニア水を用いて7.2に保ち、背圧は0.05MPa、通気は毎分3L、攪拌は毎分600回転で本培養を開始した。溶存酸素濃度がほぼ0まで低下した後、再び上昇を開始して1ppmに達したところであらかじめ滅菌した720g/Lの原料糖を約7g添加したところ、再び0まで低下した。溶存酸素濃度が再び上昇するごとに前記の方法にて原料糖溶液の添加を繰り返して、培養開始後19時間まで継続した。
 <コハク酸生産反応>
 リン酸水溶液(85wt%):5.2g、硫酸マグネシウム・7水和物:3.46g、硫酸マンガン・5水和物:138.2mg、硫酸第一鉄・7水和物:138.2mg、10N水酸化カリウム水溶液:9.14g及び蒸留水105mLを121℃20分加熱滅菌した後、加熱滅菌による蒸発量を考慮し滅菌水を添加することで320mLの溶液とした。この溶液を20mL、720g/Lの原料糖水溶液を88mL、滅菌水を228.1mL、あらかじめフィルター滅菌したビタミン溶液(D-ビオチン、塩酸チアミン各0.2g/L水溶液)を448μL、前述した本培養液135mLを1Lジャーファーメンターに入れた。pHはNa中和剤(炭酸水素ナトリウム:113.5g、水酸化ナトリウム:145.9g、滅菌水936.7g)を用いて7.6に保ち、39℃に保温した。
 反応液上面を空気対窒素の量比が5:95となるように混合した気体を100mL/minで通気し、毎分100回転で攪拌した。20時間程度経過した時点でのコハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)、コハク酸生産速度 (mmol-SA/L/hr)、酸素移動速度(mmol- O2/L/hr)、コハク酸対消費炭素収率 (C-mol%)、対コハク酸酸素移動速度減少率(%/g/L)、ピルビン酸対コハク酸重量割合 (%)及び酢酸対コハク酸重量割合 (%)を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
 [実施例2]
 通気する混合気体の空気対窒素量の量比を10:90となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
[実施例3]
 通気する混合気体の空気対窒素量の量比を14:86となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
 [実施例4]
 通気する混合気体の空気対窒素量の量比を25:75となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
 [実施例5]
 通気する混合気体の空気対窒素量の量比を50:50となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
 [実施例6]
 通気する混合気体の空気対窒素量の量比を100:0となるようにしたこと及び上記式による倍加時間の計算を行った以外は、実施例1と同様に行い、倍加時間とともに上記項目の結果を表1に記載した。
 [実施例7]
 毎分200回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。
 [実施例8]
 毎分400回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
[実施例9]
 毎分500回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。
 [比較例1]
 ジャーファーメンターの気相部を窒素で置換した後、通気する混合気体の空気対窒素量の量比を0:100となるようにし、反応液上面に通気し、毎分200回転で攪拌しながら反応を行った以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、40時間以上であると推測される。
 [比較例2]
 反応液下面より、通気する混合気体の空気対窒素量の量比を100:0となるようにし、毎分400回転で攪拌し反応を行った以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、40時間以上であると推測される。
Figure JPOXMLDOC01-appb-T000005
 [実施例10]
 酸素供給(対コハク酸酸素移動速度減少率)制御の効果
 実施例10では、前記中和剤の添加に伴い液量が増加して酸素移動速度の変化が引き起こされるため、添加された中和剤と同量の反応液を反応層から除去することで反応液量を一定に保ち、液量変化による酸素移動速度の変化の影響を除いた以外は、実施例8と同様に行った。20時間程度経過した時点での酸素移動速度(mmol- O2/L/hr)、酸素移動速度維持率 (%)、コハク酸生産速度 (mmol-SA/L/hr)、対コハク酸酸素移動速度減少率 (%/g/L)、コハク酸濃度(g/L)、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)及び倍加時間を表2に記載した。
 なお、酸素移動速度維持率(%)とは、0時間における酸素移動速度に対する20時間経過後における酸素移動速度の比を示す。
 [実施例11]
 通気を行わない以外は、実施例10と同様に行った。反応結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000006
 通気により酸素移動速度を制御、具体的には反応液1Lあたりコハク酸1gが生産された時に酸素移動速度が1.2%以上低下しないように酸素移動速度を制御、することがより好ましいことが示された。
 以上より、反応層中に酸素供給とコハク酸生産量を制御した結果、比較例である嫌気反応および微好気反応より高いコハク酸収率やコハク酸生産速度が得られることが判明した。
 本発明の方法によれば、従来と比較してコハク酸収率やコハク酸生産速度を向上することができ、嫌気条件下で従来生成していた副生産物(ピルビン酸など)を低減することができる。
さらに、本発明によれば、完全な嫌気環境を作成するための設備増強や反応制御を強いることなく、工業的スケールに対応可能なコハク酸の製造方法を提供可能となる。得られたコハク酸は食品添加物や医薬品、化粧品、工業原料等に用いることができる。また、得られたコハク酸を原料として重合反応を行うことによりコハク酸含有ポリマーを製造することもできる。

Claims (8)

  1.  コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法であって、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法。
  2.  反応中の対コハク酸酸素移動速度減少率(%/g/L)が1.2以下である、請求項1に記載の方法。
  3.  反応中の酸素移動速度(mmol- O2/L/hr)が0.01以上5以下である、請求項1又は2に記載の方法。
  4.  該微生物がコリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属、アクチノバチルス(Acinobacillus)属、糸状菌、及び酵母菌からなる群より選択される、請求項1~3のいずれかに記載の方法。
  5.  該微生物が、ラクテートデヒドロゲナーゼ活性が非改変株と比べて低減するように改変された微生物、及び/又はピルビン酸カルボキシラーゼ活性が非改変株と比べて増強するように改変された微生物である、請求項1~4のいずれかに記載の方法。
  6.  反応中のpHが5以上10以下である、請求項1~5のいずれかに記載の方法。
  7.   請求項1~6のいずれか一項に記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を用いて重合反応を行う工程を含む、コハク酸含有ポリマーの製造方法。
  8.   請求項1~6のいずれか一項に記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を原料としてコハク酸誘導体を合成する工程を含む、コハク酸誘導体の製造方法。
PCT/JP2011/055355 2010-03-09 2011-03-08 コハク酸の製造方法 WO2011111693A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180011827.7A CN102812127B (zh) 2010-03-09 2011-03-08 琥珀酸的制造方法
JP2012504468A JP5857954B2 (ja) 2010-03-09 2011-03-08 コハク酸の製造方法
BR112012022486A BR112012022486A2 (pt) 2010-03-09 2011-03-08 método de produção de ácido sucínico
EP11753351.3A EP2546351B1 (en) 2010-03-09 2011-03-08 Method of producing succinic acid
CA2792257A CA2792257C (en) 2010-03-09 2011-03-08 Method of producing succinic acid
US13/607,049 US8647843B2 (en) 2010-03-09 2012-09-07 Method of producing succinic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010051816 2010-03-09
JP2010-051816 2010-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/607,049 Continuation US8647843B2 (en) 2010-03-09 2012-09-07 Method of producing succinic acid

Publications (1)

Publication Number Publication Date
WO2011111693A1 true WO2011111693A1 (ja) 2011-09-15

Family

ID=44563494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055355 WO2011111693A1 (ja) 2010-03-09 2011-03-08 コハク酸の製造方法

Country Status (7)

Country Link
US (1) US8647843B2 (ja)
EP (1) EP2546351B1 (ja)
JP (1) JP5857954B2 (ja)
CN (1) CN102812127B (ja)
BR (1) BR112012022486A2 (ja)
CA (1) CA2792257C (ja)
WO (1) WO2011111693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110995A1 (en) * 2022-11-24 2024-05-30 Porus Biosciences Llp Compositions and method for making succinic acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013023848A2 (pt) 2011-03-18 2018-07-03 Mitsubishi Chem Corp método para produzir polímero, método para produzir ácido orgânico, e microrganismo produtor de ácido orgânico.
TWI673360B (zh) 2015-11-12 2019-10-01 財團法人工業技術研究院 促進琥珀酸或乳酸生產的基因改質菌株及方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505396A (ja) * 1988-06-27 1991-11-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー カルボン酸類のための改良発酵方法
JPH11196888A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11206385A (ja) 1998-01-28 1999-08-03 Mitsubishi Chemical Corp ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株
JP2004194570A (ja) 2002-12-18 2004-07-15 Research Institute Of Innovative Technology For The Earth コリネ型細菌を用いる有機化合物の製造方法
WO2005026349A1 (ja) 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
JP2005095169A (ja) 2003-08-28 2005-04-14 Mitsubishi Chemicals Corp コハク酸の製造方法
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
JP2006000091A (ja) 2004-05-20 2006-01-05 Mitsubishi Chemicals Corp オキザロ酢酸またはオキザロ酢酸誘導体の製造方法
JP2006006344A (ja) 2005-09-20 2006-01-12 Mitsubishi Chemicals Corp 有機酸の製造方法
JP2008259451A (ja) 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp 有機酸生産微生物の菌体の調製法及び有機酸の製造法
WO2009065779A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in a recombinant yeast
WO2009065778A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Succinic acid production in a eukaryotic cell
WO2009065777A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in a filamentous fungus
WO2010003728A1 (en) 2008-07-08 2010-01-14 Dsm Ip Assets B.V. Dicarboxylic acid production by fermentation at low ph

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235592A (ja) 2002-02-13 2003-08-26 Mitsubishi Chemicals Corp 有機酸の製造方法
BRPI0413403A (pt) 2003-08-28 2006-10-17 Mitsubishi Chem Corp método para produzir ácido succìnico
US20060073577A1 (en) 2004-09-17 2006-04-06 San Ka-Yiu High succinate producing bacteria
EP2192189B1 (en) * 2007-08-23 2018-08-22 Mitsubishi Chemical Corporation Method for production of succinic acid at high temperatures

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505396A (ja) * 1988-06-27 1991-11-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー カルボン酸類のための改良発酵方法
JPH11196888A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11206385A (ja) 1998-01-28 1999-08-03 Mitsubishi Chemical Corp ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株
JP2004194570A (ja) 2002-12-18 2004-07-15 Research Institute Of Innovative Technology For The Earth コリネ型細菌を用いる有機化合物の製造方法
JP2005095169A (ja) 2003-08-28 2005-04-14 Mitsubishi Chemicals Corp コハク酸の製造方法
WO2005026349A1 (ja) 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
JP2006000091A (ja) 2004-05-20 2006-01-05 Mitsubishi Chemicals Corp オキザロ酢酸またはオキザロ酢酸誘導体の製造方法
JP2006006344A (ja) 2005-09-20 2006-01-12 Mitsubishi Chemicals Corp 有機酸の製造方法
JP2008259451A (ja) 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp 有機酸生産微生物の菌体の調製法及び有機酸の製造法
WO2009065779A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in a recombinant yeast
WO2009065778A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Succinic acid production in a eukaryotic cell
WO2009065780A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in eukaryotes
WO2009065777A1 (en) 2007-11-20 2009-05-28 Dsm Ip Assets B.V. Dicarboxylic acid production in a filamentous fungus
WO2010003728A1 (en) 2008-07-08 2010-01-14 Dsm Ip Assets B.V. Dicarboxylic acid production by fermentation at low ph

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Bioreaction Engineering", SANGYO-TOSHO PUBLISHING CO., LTD., pages: 266 - 276
CALIK GUZIDE ET AL.: "Product and by-product distributions in glutamic acid fermentation by Brevibacterium flavum: effects of the oxygen transfer", BIOCHEM. ENG. J., vol. 9, no. 2, 2001, pages 91 - 101, XP055101345 *
CHANG Y. ET AL., J. BACTERIOL., vol. 151, 1982, pages 1279 - 1289
HOHMANN, J. BACTERIOL., vol. 173, 1991, pages 7963 - 7969
J. BACTERIOL., vol. 158, 1984, pages 55 - 62
KLOTZSCH, H. R., METH. ENZYMOL., vol. 12, 1969, pages 381 - 386
L. KANAREK ET AL., J. BIOL. CHEM., vol. 239, 1964, pages 4202
LIELBL, W. ET AL., INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 41, 1991, pages 255 - 260
MICROBIOLOGY, vol. 145, February 1999 (1999-02-01), pages 503 - 13
MOL. CELL. BIOL., vol. 6, 1986, pages 70 - 79
RAMPONI G., METH. ENZYMOL., vol. 42, 1975, pages 409 - 426
RES. MICROBIOL., vol. 144, 1993, pages 181 - 185
SCHAFER, A. ET AL., GENE, vol. 145, 1994, pages 69 - 73
SCHERF U.; BUCKEL W., APPL. ENVIRON. MICROBIOL., vol. 57, 1991, pages 2699 - 2702
See also references of EP2546351A4
SHINFUKU ET AL., MICROBIAL CELL FACTORIES, vol. 8, 2009, pages 43
SHINFUKU ET AL.: "Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum", MICROBIAL CELL FACTORIES, vol. 8, 2009, pages 43, XP021058483, DOI: doi:10.1186/1475-2859-8-43
WISE W. S., J. GEN. MICROBIOL., vol. 5, 1951, pages 167 - 177
WISE W.S., J. GEN. MICROBIOL., vol. 5, 1951, pages 167 - 177
ZIMMERMANN F. HARTMUT ET AL.: "Oxygen limitation is a pitfall during screening for industrial strains", APPL. MICROBIOL. BIOTECHNOL., vol. 72, no. 6, 2006, pages 1157 - 1160, XP019441693 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110995A1 (en) * 2022-11-24 2024-05-30 Porus Biosciences Llp Compositions and method for making succinic acid

Also Published As

Publication number Publication date
JP5857954B2 (ja) 2016-02-10
CA2792257A1 (en) 2011-09-15
JPWO2011111693A1 (ja) 2013-06-27
CA2792257C (en) 2018-02-06
EP2546351A4 (en) 2015-10-07
US8647843B2 (en) 2014-02-11
EP2546351B1 (en) 2017-12-20
CN102812127B (zh) 2014-12-03
CN102812127A (zh) 2012-12-05
EP2546351A1 (en) 2013-01-16
US20120329095A1 (en) 2012-12-27
BR112012022486A2 (pt) 2015-10-06

Similar Documents

Publication Publication Date Title
EP1669459B1 (en) Method of purifying succinic acid from fermentation liquid
JP5180060B2 (ja) 有機酸生産菌及び有機酸の製造法
JP2011505822A (ja) コハク酸の製造方法
JP2005027533A (ja) 有機酸の製造方法
JP5991400B2 (ja) コハク酸の製造方法
JP5857954B2 (ja) コハク酸の製造方法
JP2013524834A (ja) Nh4+−ooc−r−coo−nh4+化合物及び/又はhooc−r−cooh化合物の酸を含む発酵培地からのnh4+−ooc−r−cooh化合物の製造方法、及びnh4+−ooc−r−cooh化合物のhooc−r−cooh化合物の酸への変換
US10077456B2 (en) Method for producing polymer, method for producing organic acid, and organic acid-producing microorganism
JP4473219B2 (ja) D−乳酸生産用生体触媒
JPWO2013069786A1 (ja) コハク酸の製造方法
JP5810412B2 (ja) 非アミノ有機酸の製造方法
JP5651989B2 (ja) コハク酸の製造方法
JP5663859B2 (ja) 非アミノ有機酸生産菌および非アミノ有機酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011827.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504468

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2792257

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1201004576

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011753351

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022486

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022486

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120905

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载