WO2011111693A1 - コハク酸の製造方法 - Google Patents
コハク酸の製造方法 Download PDFInfo
- Publication number
- WO2011111693A1 WO2011111693A1 PCT/JP2011/055355 JP2011055355W WO2011111693A1 WO 2011111693 A1 WO2011111693 A1 WO 2011111693A1 JP 2011055355 W JP2011055355 W JP 2011055355W WO 2011111693 A1 WO2011111693 A1 WO 2011111693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- succinic acid
- reaction
- microorganism
- oxygen
- rate
- Prior art date
Links
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 title claims abstract description 398
- 239000001384 succinic acid Substances 0.000 title claims abstract description 190
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 145
- 238000006243 chemical reaction Methods 0.000 claims abstract description 145
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 126
- 239000001301 oxygen Substances 0.000 claims abstract description 126
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 126
- 244000005700 microbiome Species 0.000 claims abstract description 76
- 238000012546 transfer Methods 0.000 claims abstract description 71
- 230000000694 effects Effects 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 61
- 235000000346 sugar Nutrition 0.000 claims description 43
- 239000002994 raw material Substances 0.000 claims description 42
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 19
- 230000002829 reductive effect Effects 0.000 claims description 17
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 11
- 241000186031 Corynebacteriaceae Species 0.000 claims description 8
- 241000722955 Anaerobiospirillum Species 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 150000003443 succinic acid derivatives Chemical class 0.000 claims description 6
- 241000606750 Actinobacillus Species 0.000 claims description 5
- 241000588724 Escherichia coli Species 0.000 claims description 5
- 241000233866 Fungi Species 0.000 claims description 4
- 102000003855 L-lactate dehydrogenase Human genes 0.000 claims description 4
- 108700023483 L-lactate dehydrogenases Proteins 0.000 claims description 4
- 108010053763 Pyruvate Carboxylase Proteins 0.000 claims description 4
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 57
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 44
- 239000007789 gas Substances 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 34
- 239000007788 liquid Substances 0.000 description 24
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 22
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000006227 byproduct Substances 0.000 description 18
- 108090000623 proteins and genes Proteins 0.000 description 17
- 229960000583 acetic acid Drugs 0.000 description 15
- 235000011054 acetic acid Nutrition 0.000 description 15
- 239000002609 medium Substances 0.000 description 13
- 230000000813 microbial effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- 102100039824 Pre T-cell antigen receptor alpha Human genes 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- 230000006801 homologous recombination Effects 0.000 description 12
- 238000002744 homologous recombination Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 11
- 229940107700 pyruvic acid Drugs 0.000 description 11
- 241000186226 Corynebacterium glutamicum Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000005273 aeration Methods 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 241000319304 [Brevibacterium] flavum Species 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000976 ink Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- MRNIWLJMLIBEMU-UHFFFAOYSA-N C(CCC(=O)O)(=O)O.[O] Chemical compound C(CCC(=O)O)(=O)O.[O] MRNIWLJMLIBEMU-UHFFFAOYSA-N 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000012295 chemical reaction liquid Substances 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 101710205482 Nuclear factor 1 A-type Proteins 0.000 description 6
- 101710170464 Nuclear factor 1 B-type Proteins 0.000 description 6
- 102100022162 Nuclear factor 1 C-type Human genes 0.000 description 6
- 101710113455 Nuclear factor 1 C-type Proteins 0.000 description 6
- 101710140810 Nuclear factor 1 X-type Proteins 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 238000013022 venting Methods 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 239000012527 feed solution Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 229960000448 lactic acid Drugs 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000011218 seed culture Methods 0.000 description 4
- 229960004793 sucrose Drugs 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- 235000000638 D-biotin Nutrition 0.000 description 3
- 239000011665 D-biotin Substances 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- 101150005926 Pc gene Proteins 0.000 description 3
- 241000228143 Penicillium Species 0.000 description 3
- 241000235070 Saccharomyces Species 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229940041514 candida albicans extract Drugs 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 241000186254 coryneform bacterium Species 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 235000014380 magnesium carbonate Nutrition 0.000 description 3
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 3
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000011736 potassium bicarbonate Substances 0.000 description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 235000011181 potassium carbonates Nutrition 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101150108780 pta gene Proteins 0.000 description 3
- 101150025220 sacB gene Proteins 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 3
- 229960000344 thiamine hydrochloride Drugs 0.000 description 3
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 3
- 239000011747 thiamine hydrochloride Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 2
- 101150025831 Ack gene Proteins 0.000 description 2
- 101150021974 Adh1 gene Proteins 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 2
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 241000186146 Brevibacterium Species 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 101150050255 PDC1 gene Proteins 0.000 description 2
- 101150031367 PDC5 gene Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- LIPOUNRJVLNBCD-UHFFFAOYSA-N acetyl dihydrogen phosphate Chemical compound CC(=O)OP(O)(O)=O LIPOUNRJVLNBCD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000002761 deinking Substances 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960004756 ethanol Drugs 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- -1 food Chemical class 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 101150087371 gpd1 gene Proteins 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 2
- 101150104734 ldh gene Proteins 0.000 description 2
- SCVOEYLBXCPATR-UHFFFAOYSA-L manganese(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Mn+2].[O-]S([O-])(=O)=O SCVOEYLBXCPATR-UHFFFAOYSA-L 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 101150060030 poxB gene Proteins 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FECNOIODIVNEKI-UHFFFAOYSA-N 2-[(2-aminobenzoyl)amino]benzoic acid Chemical class NC1=CC=CC=C1C(=O)NC1=CC=CC=C1C(O)=O FECNOIODIVNEKI-UHFFFAOYSA-N 0.000 description 1
- QHKABHOOEWYVLI-UHFFFAOYSA-N 3-methyl-2-oxobutanoic acid Chemical compound CC(C)C(=O)C(O)=O QHKABHOOEWYVLI-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- 101150078509 ADH2 gene Proteins 0.000 description 1
- 101150026777 ADH5 gene Proteins 0.000 description 1
- 240000002767 Acer grandidentatum Species 0.000 description 1
- 235000010319 Acer grandidentatum Nutrition 0.000 description 1
- 235000010328 Acer nigrum Nutrition 0.000 description 1
- 235000002629 Acer saccharinum Nutrition 0.000 description 1
- 235000010157 Acer saccharum subsp saccharum Nutrition 0.000 description 1
- 108010092060 Acetate kinase Proteins 0.000 description 1
- 101100001031 Acetobacter aceti adhA gene Proteins 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000948980 Actinobacillus succinogenes Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000722954 Anaerobiospirillum succiniciproducens Species 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 101100460671 Aspergillus flavus (strain ATCC 200026 / FGSC A1120 / IAM 13836 / NRRL 3357 / JCM 12722 / SRRC 167) norA gene Proteins 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 241000256803 Campoletis sonorensis Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 101100351264 Candida albicans (strain SC5314 / ATCC MYA-2876) PDC11 gene Proteins 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 108010036781 Fumarate Hydratase Proteins 0.000 description 1
- 102100036160 Fumarate hydratase, mitochondrial Human genes 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 102100036669 Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic Human genes 0.000 description 1
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101150084262 MDH3 gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001467578 Microbacterium Species 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 101150091764 PDC6 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000228150 Penicillium chrysogenum Species 0.000 description 1
- 108700023175 Phosphate acetyltransferases Proteins 0.000 description 1
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108010042687 Pyruvate Oxidase Proteins 0.000 description 1
- 240000005384 Rhizopus oryzae Species 0.000 description 1
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 1
- 101100335634 Rhizopus oryzae FUMR gene Proteins 0.000 description 1
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 241000235017 Zygosaccharomyces Species 0.000 description 1
- 241000235029 Zygosaccharomyces bailii Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 235000016127 added sugars Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000013466 adhesive and sealant Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- HWXBTNAVRSUOJR-UHFFFAOYSA-N alpha-hydroxyglutaric acid Natural products OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 description 1
- 229940009533 alpha-ketoglutaric acid Drugs 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- BZDIAFGKSAYYFC-UHFFFAOYSA-N manganese;hydrate Chemical compound O.[Mn] BZDIAFGKSAYYFC-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000037435 normal mutation Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000002373 plant growth inhibitor Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 229940076788 pyruvate Drugs 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 235000012069 sugar maple Nutrition 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- OKUCEQDKBKYEJY-UHFFFAOYSA-N tert-butyl 3-(methylamino)pyrrolidine-1-carboxylate Chemical compound CNC1CCN(C(=O)OC(C)(C)C)C1 OKUCEQDKBKYEJY-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 102000040811 transporter activity Human genes 0.000 description 1
- 108091092194 transporter activity Proteins 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 235000014393 valine Nutrition 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a method for producing succinic acid using a microorganism having succinic acid-producing ability.
- Succinic acid production by fermentation is generally performed under aerobic conditions in which a sufficient amount of oxygen is supplied, microaerobic conditions in which a small amount of oxygen is supplied, or anaerobic conditions in which oxygen is not supplied. So far, it has been described that fermentation reaction under microaerobic conditions or anaerobic conditions is more effective for succinic acid production than aerobic conditions (Patent Documents 1 to 4, Non-Patent Document 1). In particular, based on the results of a simulation (FBA model) using Corynebacterium glutamicum ATCC 13032 as a theme, succinic acid production is improved under conditions of supplying a small amount of oxygen rather than anaerobic conditions, and LDH. It is described that succinic acid production is further improved by deleting the gene (Non-patent Document 1).
- the oxygen consumption rate (transfer rate) is controlled to 0.01 to 5 mmol / L / hr or less under oxygen-deficient conditions. It is described that the oxygen consumption rate is controlled to 5.5 to 7 mmol / L / hr when oxygen supply control is performed by performing aeration or ventilation (oxygen limited conditions).
- Non-Patent Document 1 performs calculations aimed at a state where cell growth is the best, sugar metabolism as a raw material is used for cell growth.
- the bacterial metabolites mainly produced lactic acid (carbon yield up to 60%), and succinic acid had a carbon yield of up to about 20%.
- succinic acid had a carbon yield of up to about 20%.
- the carbon yield of the simulation result is 19.2%.
- the carbon yield of the example was 3.1%, and there was a discrepancy between the simulation result and the example. From these facts, the details of the relationship between the oxygen supply to the fermentation reaction by the succinic acid-producing microorganism and the succinic acid production reaction under conditions where the cell growth is limited have not yet been elucidated.
- An object of the present invention is to provide a method for producing succinic acid, which has higher production efficiency than that of the conventional method, and can cope with an industrial scale.
- the present inventors have found that when producing succinic acid from a raw sugar by a microorganism capable of producing succinic acid, succinic acid is produced under conditions in which the growth of microbial cells is limited.
- the ratio of the oxygen transfer rate to the acid production rate is determined within a specific range, that is, the efficiency of succinic acid production is improved by performing the succinic acid production reaction in an environment where a very small amount of oxygen is supplied,
- the present invention has been achieved.
- the gist of the present invention is as follows.
- the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is 0.1 to 240
- a method for producing succinic acid, wherein the doubling time of the microorganism in the reaction is 40 hours or more.
- the microorganism is modified so that lactate dehydrogenase activity is reduced as compared to an unmodified strain, and / or modified so that pyruvate carboxylase activity is enhanced as compared with an unmodified strain.
- the method for producing succinic acid according to any one of [1] to [4], wherein [6] The method for producing succinic acid according to any one of [1] to [5], wherein the pH during the reaction is 5 to 10.
- a method for producing a succinic acid-containing polymer comprising a step of producing succinic acid by the method according to any one of [1] to [6], and a step of performing a polymerization reaction using the obtained succinic acid.
- a method for producing a succinic acid derivative comprising a step of producing succinic acid by the method according to any one of [1] to [6], and a step of synthesizing a succinic acid derivative using the obtained succinic acid as a raw material.
- the present invention is a method for producing succinic acid by reacting a succinic acid-producing microorganism with a sugar, and the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is in the range of 0.
- the succinic acid production method is characterized in that it is 1 to 240 and the doubling time of the microorganism in the reaction is 40 hours or more.
- the microorganism used in the method of the present invention is not limited as long as it is a microorganism having an ability to produce succinic acid.
- the ability to produce succinic acid refers to the ability to accumulate succinic acid in a medium when the microorganism is cultured in the medium.
- the degree of succinic acid-producing ability can be indicated by the consumed sugar carbon yield in succinic acid and the like.
- the sugar sugar yield (C-mol%) consumed in succinic acid is no particular restriction on the sugar sugar yield (C-mol%) consumed in succinic acid, but if the sugar sugar yield is too low, the succinic acid production efficiency for the raw sugar tends to be low. Usually, it is 40 C-mol% or more, preferably 50 C-mol% or more, more preferably 60 C-mol% or more. On the other hand, it is usually 133 C-mol% or less, preferably 120 C-mol% or less, more preferably 110 C-mol% or less.
- the saccharide sugar yield in succinic acid (C-mol%) is the ratio of the number of moles of carbon atoms contained in the produced succinic acid to the number of moles of carbon atoms (C atoms) contained in the consumed sugar. Say.
- the microorganism used in the method of the present invention is not particularly limited as long as it has the ability to produce succinic acid, but is not limited to coryneform bacteria, Escherichia coli, Anaerobiospirillum genus bacteria, Actinobacillus genus bacteria, Examples include microorganisms selected from the group consisting of filamentous fungi and yeasts. Among these, coryneform bacteria, Escherichia coli, Anaerobiospirillum genus bacteria, Actinobacillus genus bacteria, and yeast are preferable, and coryneform bacteria, Escherichia coli, and yeast are more preferable, and coryneform is particularly preferable. Type bacteria.
- Coryneform bacteria used in the method of the present invention include the genus Corynebacterium, the genus Brevibacterium, the genus Arthrobacter, the genus Mycobacterium, and the microbacterium. And bacteria belonging to the genus Micrococcus. Examples of bacteria belonging to the genus Brevibacterium include Brevibacterium flavum, Brevibacterium lactofermentum, Corynebacterium glutamicum, and the like.
- Brevibacterium flavum, Brevibacterium lactofermentum and Corynebacterium glutamicum are very closely related to each other and have similar properties. In the current taxonomy, they are classified as the same species. Sometimes. Particularly preferred specific examples of the parent strain of the coryneform bacterium include Brevibacterium flavum MJ-233 (FERM BP-1497), MJ-233 AB-41 (FERM BP-1498), Corynebacterium glutamicum ATCC31831, and Brevibacterium lactofermentum ATCC 13869 etc. are mentioned.
- Brevibacterium flavum is currently sometimes classified as Corynebacterium glutamicum (Lielbl, W., et al., International Journal of Systemic Bacteriology, 1991, vol. 41, p255-260).
- Brevibacterium flavum MJ-233 strain and its mutant MJ-233 AB-41 strain are the same as Corynebacterium glutamicum MJ-233 strain and MJ-233 AB-41 strain, respectively.
- Brevibacterium flavum MJ-233 was established on April 28, 1975, by the Ministry of International Trade and Industry, Institute of Industrial Science, Microbial Industrial Technology Research Institute (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center) (Japan 305-8666, Japan) Deposited as deposit number FERM P-3068 at Tsukuba City, 1-1 1-1 Higashi 1-chome, Ibaraki Prefecture, transferred to an international deposit based on the Budapest Treaty on May 1, 1981, deposited under the deposit number of FERM BP-1497 Has been.
- Anaerobiospirillum examples include Anaerobiospirillum succiniciproducens.
- a bacterium belonging to the genus Actinobacillus Actinobacillus succinogenes and the like are used.
- filamentous fungi examples include microorganisms belonging to the genus Aspergillus, the genus Penicillium, the genus Rizopus and the like.
- Aspergillus genus microorganisms Aspergillus niger, Aspergillus oryzae and the like are used.
- As the microorganism belonging to the genus Penicillium Penicillium chrysogenum, Penicillium simplicium, and the like are used.
- Yeasts belong to the genus Saccharomyces, Shizosaccharomyces, Candida, Pichia, Kluyveromyces, and the like. Is mentioned.
- Saccharomyces cerevisiae Saccharomyces cerevisiae
- Saccharomyces uvalum Saccharomyces uvalum
- S. bayanus etc.
- Saccharomyces genus Saccharomyces genus microorganisms.
- a microorganism belonging to the genus Shizosaccharomyces Schizosaccharomyces pombe is used.
- Candida microorganisms Candida albicans, C. sonorensis, C. glabrata, etc. are used.
- Pichia microorganisms include Pichia pastoris, P. stididis, and the like.
- Examples of the microorganisms belonging to the genus Kluyveromyces include Kluyveromyces lactis, Kluyveromyces marxianus, K. thermolyrans (K. thermotolerans). ) Etc. are used.
- Examples of microorganisms belonging to the genus Zygosaccharomyces include Zygosaccharomyces bailii and Z. rouxii.
- This ability to produce succinic acid may be a property of the wild strain of the microorganism used in the method of the present invention, or may be a property imparted by breeding.
- the ability to produce succinic acid by breeding is not particularly limited. Specifically, genetic methods such as a method of obtaining a mutant strain by normal mutation treatment such as UV irradiation or NTG treatment, cell fusion or genetic recombination method, etc. Methods that have been employed for microbial breeding, such as methods for obtaining recombinants induced by genetic techniques, are used.
- the recombinant used in the method of the present invention may be a single modification, or may be modified by two or more kinds. Specifically, for example, a microorganism modified so that pyruvate carboxylase activity is enhanced as compared with an unmodified strain, a microorganism modified so that lactate dehydrogenase activity is decreased as compared with an unmodified strain, etc. .
- Microorganisms modified so that pyruvate carboxylase (hereinafter also referred to as “PC” or “pc”) activity is enhanced compared to non-modified strains are, for example, the same as in the method described in JP-A-11-196888.
- the pc gene can be constructed by high expression in a host microorganism using a plasmid. Moreover, it may be integrated on the chromosome by homologous recombination, or the pc gene expression can be enhanced by promoter replacement (Japanese Patent Laid-Open No. 2008-259451). Transformation can be performed by, for example, the electric pulse method (Res. Microbiol., Vol. 144, p. 181-185, 1993).
- the PC activity is enhanced means that the PC activity is preferably increased by 1.5 times or more, more preferably by 3.0 times or more per unit cell weight relative to the unmodified strain such as the wild strain or the parent strain. It means that The enhanced PC activity is confirmed by a known method such as J. Org. Bacteriol. , 158, 55-62, (1984), and can be confirmed by measuring the PC activity. As a specific method for introducing the pc gene, the one described in JP-A-2008-259451 is used.
- LDH activity is reduced examples include homology described in JP-A-11-206385. It can be constructed by disrupting the LDH gene on the chromosome by a recombination method or a method using the sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73).
- “LDH activity is reduced” means that LDH activity is reduced as compared with an unmodified strain. LDH activity may be completely lost. The decrease in LDH activity can be confirmed by measuring LDH activity by a known method (L. Kanarek, et al., J. Biol. Chem. 239, 4202 (1964), etc.).
- the microorganism used in the production method of the present invention may be acetate kinase (hereinafter also referred to as “ACK”), phosphotransacetylase (hereinafter, Modified so that the activity of one or more enzymes selected from the group consisting of “PTA”, pyruvate oxidase (hereinafter also referred to as “POXB”) and CoA transferase (hereinafter also referred to as “CTF”) is reduced. It may be a microorganism. Either PTA or ACK may decrease the activity, but in order to efficiently reduce acetic acid by-product, it is more preferable to decrease both activities.
- PTA activity refers to the activity of catalyzing the reaction of transferring phosphoric acid to acetyl CoA to produce acetyl phosphoric acid.
- Modified to reduce PTA activity means that the PTA activity is lower than that of an unmodified strain, for example, a wild strain.
- the PTA activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. Further, the PTA activity may be completely lost.
- the decrease in PTA activity is described in, for example, Klotzsch, H.C. R. , Meth Enzymol. 12, 381-386 (1969), etc., and can be confirmed by measuring PTA activity. *
- ACK activity refers to the activity of catalyzing the reaction of producing acetic acid from acetyl phosphate and ADP. “Modified to reduce ACK activity” means that ACK activity is lower than that of an unmodified strain such as a wild strain. The ACK activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. Further, the ACK activity may be completely lost. The decrease in ACK activity can be confirmed by measuring the ACK activity by the method of Ramponi et al. (Ramponi G., Meth. Enzymol. 42, 409-426 (1975)).
- the activity of PTA and ACK is reduced by disrupting these genes according to a known method, for example, a method using homologous recombination or a method using a sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73). Can be done. Specifically, it can be performed according to the method disclosed in JP-A-2006-000019.
- Examples of the pta gene and the ack gene include the above GenBank Accession No.
- a gene having a degree of homology that causes homologous recombination with the pta gene and the ack gene on the host chromosome can also be used.
- homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
- homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
- POXB activity refers to the activity of catalyzing the reaction of generating acetic acid from pyruvic acid and water. “Modified to reduce POXB activity” means that POXB activity is lower than that of an unmodified strain, for example, a wild strain. The POXB activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain. “Decrease” includes the case where the activity is completely lost. POXB activity is determined by Chang Y. et al. , Et al. ,. J. et al. Bacteriol. 151, 1279-1289 (1982) and the like, and can be confirmed by measuring the activity.
- the decrease in POXB activity is caused by disrupting the poxB gene according to a known method, for example, a method using homologous recombination or a method using the sacB gene (Schaffer, A. et al. Gene 145 (1994) 69-73). Can be performed. Specifically, it can be carried out according to the method disclosed in WO2005 / 113745.
- Examples of the poxB gene include GenBank Accession No. A gene having the base sequence of Cgl2610 (the 2777766-2778505th complementary strand of GenBank Accession No. BA000036) can be mentioned, but has homology to the extent that homologous recombination occurs with the podB gene on the chromosomal DNA of the host microorganism.
- homologous gene of the sequence can also be used.
- the homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
- homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
- CTF activity refers to an activity of catalyzing a reaction in which CoA of acetyl-CoA is transferred to another substance to produce acetic acid.
- Modified to reduce CTF activity means that the CTF activity is lower than that of an unmodified strain such as a wild strain.
- the CTF activity is preferably reduced to 30% or less per unit cell weight, more preferably 10% or less, compared to the unmodified strain.
- the “decrease” includes the case where the activity is completely lost.
- CTF activity can be determined, for example, by Scherf U and Buckel W. Appl Environ Microbiol. 1991; vol. 57, pp. 2699-2702. It can be measured by the method described in etc.
- ctf genes include GenBank Accession No. A gene having the base sequence of Cgl2569 (the complementary sequence of 2729376-2730917 of GenBank Accession No. BA000036) is mentioned, but it has homology to the extent that homologous recombination occurs with the ctf gene on the chromosomal DNA of the host microorganism. Therefore, a homologous gene of the sequence can also be used.
- the homology that causes homologous recombination is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
- homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
- the microorganism used in the production method of the present invention is a microorganism obtained by combining two or more of the modifications in addition to the enhancement of PC activity, or enhancement of PC activity and reduction of LDH activity.
- Preferred microorganisms include, for example, the Brevibacterium flavum MJ233 / PC-4 / ⁇ LDH strain described in JP-A-2008-259451 and the like, international publication WO2009 / 065777 pamphlet, international publication WO2009 / 065778 pamphlet, Disruption of the ADH1 and ADH2 genes encoding alcohol dehydrogenase and the GPD1 gene encoding glycerol 3-phosphate dehydrogenase described in International Publication WO2009 / 06779, International Publication WO2009 / 065780, International Publication WO2010 / 003728, etc.
- SUC-200 (MATA ura3-52 leu2-112 trp1-289 adh1 :: lox adh2 :: lox gpd1 :: Kanlox, overexpressing PCKa , MDH3, FUMR, FRDg and SpMAE1).
- culturing mainly refers to a step of growing microorganisms used in the method for producing succinic acid to prepare microbial cells.
- the culture step may be omitted, and a slant culture on a solid medium such as an agar medium may be directly used for the reaction, or the culture step may be repeated several times.
- the step of mainly producing succinic acid is referred to as “succinic acid production reaction” or “reaction”
- the culture for preparing cells directly used for the succinic acid production reaction is referred to as “main culture”.
- the culture for preparing the cells to be subjected to is referred to as “seed culture”.
- a normal medium used for culturing the microorganism can be used.
- a general medium in which a natural nutrient source such as meat extract, yeast extract or peptone is added to a composition composed of inorganic salts such as ammonium sulfate, potassium phosphate and magnesium sulfate can be used.
- the culture conditions for obtaining the cells by growing the microorganisms used in this reaction are not limited. Usually, if it is a coryneform bacterium, there is no particular limitation as long as it is at the optimum growth temperature, but usually 25 ° C. or higher.
- the optimum growth temperature refers to the temperature at which the growth rate is fastest under the conditions used for the production of succinic acid.
- the culture time is not particularly limited as long as a certain amount of cells can be obtained, but is usually 6 hours or more and 96 hours or less.
- the method of culturing so as to alternately and repeatedly repeat depletion and fullness of the carbon source described in JP-A-2008-259451 can be used. it can.
- the cultured microbial cells may be used directly in a culture solution containing microorganisms for succinic acid production reaction, or may be used for the reaction after being collected by centrifugation, membrane separation or the like.
- a processed product of the microbial cell can also be used.
- treated cells include, for example, immobilized cells obtained by culturing and collecting the cells collected by the above method using acrylamide, carrageenan, etc., crushed cells, centrifuge supernatants thereof, or the like Examples thereof include a fraction obtained by partially purifying the supernatant by an ammonium sulfate treatment.
- Sugar is usually used for the culture.
- the sugar used for the culture is not particularly limited as long as it is a sugar that the microorganism can assimilate to produce succinic acid, but usually carbohydrates such as galactose, lactose, glucose, fructose, glycerol, sucrose, saccharose, starch or cellulose.
- Fermentable carbohydrates such as polyalcohols such as glycerin, mannitol, xylitol or ribitol are used, among which glucose, sucrose, fructose or glycerol are preferable, and glucose or sucrose is particularly preferable.
- the starch saccharified liquid or molasses containing the fermentable saccharide is also used, and specifically, a sugar liquid extracted from a plant such as sugar cane, sugar beet or sugar maple is preferable. These sugars can be used alone or in combination.
- the concentration of the sugar used is not particularly limited, but is advantageously as high as possible within a range not inhibiting the production of succinic acid, and is usually 5% (W / V) or more, preferably 10%, relative to the reaction solution. % (W / V) or more, and usually 30% (W / V) or less, preferably 20% (W / V) or less. Further, additional sugar may be added in accordance with the decrease of the sugar as the reaction proceeds.
- the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is 0 in the method for producing succinic acid in which a succinic acid-producing microorganism and sugar are reacted. 1 to 240, and the doubling time of the microorganism in the reaction is 40 hours or more.
- the oxygen transfer rate is not particularly limited as long as the ratio of the oxygen transfer rate to the succinic acid production rate described below is included in the above range, and an anaerobic atmosphere in which oxygen is not supplied to the reaction tank (the oxygen transfer rate is 0 condition).
- an anaerobic atmosphere in which oxygen is not supplied to the reaction tank is, for example, a reaction in which the container is sealed and airless, and an inert gas such as nitrogen gas is supplied and reacted.
- the oxygen transfer rate is usually 0.01 [mmol O 2.
- / L / hr or more, preferably 0.02 [mmol O 2 / L / hr] or more, more preferably 0.05 [mmol O 2 / L / hr] or more, while usually 5 [mmol O 2 / L / hr].
- it is preferably 3, more preferably 2.5 [mmol O 2 / L / hr] or less, particularly preferably 2 [mmol O 2 / L / hr] or less.
- the oxygen transfer rate in the reaction solution is determined from the change in dissolved oxygen concentration by replacing the nitrogen with the solution to lower the dissolved oxygen concentration and then venting and stirring (Wise W. S. J. Gen. Microbiol., 1951, vol. 5, pp. 167-177) and the like.
- the method of supplying oxygen to the reaction vessel is not particularly limited, but for example, a method of venting or a method of dissolving oxygen in the liquid can be used.
- a method of aeration is preferable. You may perform suitably so that stirring of a reaction liquid may be adjusted in the range of the said oxygen transfer rate. In order to adjust within the range of the oxygen transfer rate, oxygen may be dissolved only by stirring the reaction solution, the reaction solution may be stirred and vented, or oxygen may be dissolved only by venting. Good. Further, a baffle plate for efficiently generating turbulent flow due to stirring may be installed.
- oxygen-containing gas such as pure oxygen or air
- a gas containing oxygen such as pure oxygen or air and a gas such as nitrogen or carbon dioxide may be arbitrarily mixed. Further, once used gas may be collected and used again.
- oxygen-containing gas using a compressor capable of adjusting the amount of ventilation, a sparger (vent pipe) such as an orifice sparger, nozzle sparger or ring sparger,
- a sparger such as an orifice sparger, nozzle sparger or ring sparger
- gas may be vented to the gas phase portion of the reaction tank through a porous tube or the like, or may be directly vented into the reaction solution.
- you may add indirectly by dissolving oxygen in the feed liquid fed during reaction and feeding the liquid.
- a gas may be directly circulated in the liquid from a pipe or the like, an air diffuser such as a sparger may be used, or a membrane may be passed.
- any one of the flow rate of the gas to be vented or exhausted, the pressure or composition, the oxygen concentration or redox potential in the reaction solution or the feed solution, the flow rate of the feed solution, etc. Either may be adjusted while measuring.
- the succinic acid production rate (mmol / L / hr) refers to the amount of succinic acid produced in 1 hour per liter, and if it is too small, an increase in cost due to the long reaction time required. Since it tends to lead to a decrease in succinic acid yield due to an increase in the production of by-products other than succinic acid, it is usually 1 mmol / L / hr or more, preferably 5 mmol / L / hr or more.
- the upper limit is not limited, but is usually 1000 mmol / L / hr or less, preferably 700 mmol / L / hr or less, more preferably 300 mmol / L / hr or less. .
- ⁇ Ratio of oxygen transfer rate to succinic acid production rate if the ratio of the oxygen transfer rate to the succinic acid production rate (mmol-O 2 / mol-SA) is too small, the oxygen supply amount suitable for succinic acid production will be less than the succinic acid production rate.
- it is 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more.
- this ratio is 240 or less, preferably 200 or less, more preferably 150 or less, still more preferably 100 or less, and particularly preferably 50 or less.
- the ratio of the oxygen transfer rate to the succinic acid production rate is used as an index.
- the growth rate of the bacterial cells was theoretically as small as possible, and an anaerobic environment in which oxygen was not supplied was considered good.
- the amount of by-products such as pyruvic acid is large and the yield of succinic acid is low, the supply of a small amount of oxygen reduces the amount of by-products and the succinic acid yield. It was shown that the succinic acid production rate was improved.
- succinic acid production involving the production of by-products
- the ability to produce succinic acid is improved not under theoretically preferred anaerobic conditions considering only succinic acid production but under conditions where a small amount of oxygen is supplied. found.
- a suitable oxygen supply control is required for the succinic acid production reaction.
- only a certain range is set using only the oxygen transfer rate as an index, for example, if an oxygen amount suitable for a high succinic acid production rate is supplied during a reaction with a low succinic acid production rate, it is aerobic in succinic acid production.
- the ratio of the oxygen transfer rate to the succinic acid production rate representing the amount of oxygen corresponding to the succinic acid production rate as an index. It is conceivable that. Therefore, in the present invention, the ratio of the oxygen transfer rate to the succinic acid production rate is controlled as an index indicating how much oxygen is required for the succinic acid metabolism of microorganisms mainly having succinic acid producing ability. I thought it was important.
- the ratio of the oxygen transfer rate to the succinic acid production rate can be a preferable index when setting conditions in an industrial succinic acid production reaction.
- the succinic acid production rate can be changed by selecting a preferred rate depending on raw material costs and manufacturing equipment costs.
- the index is useful because it can easily cope with such a change in conditions.
- the doubling time is the time taken for the amount of the microorganisms to increase twice, based on the values of the concentration (OD) or dry cell weight at two points below. It is shown by the equation (1).
- T2 and T1 are sampling points at two points, and X1 and X2 are values of the cell concentration or dry cell weight corresponding to the two points.
- the succinic acid purification process is caused by a decrease in the amount of succinic acid produced because sugar is used for cell growth and an increase in by-products produced along with the growth.
- the time is 40 hours or more, preferably 50 hours or more, more preferably 100 hours or more.
- the upper limit is not particularly limited, but if the doubling time is too long, the production of succinic acid tends to decrease due to the death of the bacterial cells that are the catalyst. Therefore, usually 500 hours or less, preferably 300 hours or less, more preferably Is 200 hours or less.
- Elements for controlling the doubling time are not particularly limited, but include reaction conditions such as oxygen supply amount and temperature, composition of the reaction solution, and genetic modification of microorganisms. For example, controlling the supply of oxygen to a very small amount or 0, controlling the temperature to a value far from the optimum temperature range for growth, and / or a part of the medium composition such as nitrogen source or phosphorus source of the reaction medium composition
- the doubling time can be lengthened.
- genetic modification the doubling time is prolonged by deleting the LDH gene related to lactic acid production in coryneform bacteria.
- yeast the gene deletion related to ethanol production (for example, the ADH1 gene ( Mol Cell Biol. 1986, vol. 6, pp.
- the doubling time in the succinic acid production reaction of Reference 1 (Shinfuku et al., Microbial Cell Factories 2009, 8:43) and Reference 2 (International Publication WO2010 / 003728 pamphlet) is similarly calculated using the above formula (1).
- the doubling time described in Reference 1 is 27.4 hours (OD is read from the figure of Additive file 2 in Reference 1, OD (12.2) at 9 hours and OD at 24 hours (17) after the start of culture) And 7.3 hours (calculated from the OD (6.5) at 9 hours and the OD (26) at 25 hours after starting culture) after reading the OD from the figure of Additive file 3 in Reference 1.
- the doubling time described in Document 2 is 30 hours (described in Examples 1 and 2 of Document 2). Ri, since a calculated) from a dry cell weight 1 g biomass dry weight and 90 hours of cell dry weight 8 g biomass dry weight at the start of cultivation, it is understood that less than 40 hours.
- the succinic acid oxygen transfer rate decrease rate (% / g / L) is the ratio of the oxygen transfer rate decreased during the production of 1 g of succinic acid per liter of reaction solution. It is shown by the equation (2).
- OTR t1 and OTR t2 represent oxygen transfer rates (mmol-O 2 / L / hr) at t1 hours after the start of the reaction and t2 hours thereafter, respectively, and SA t1 and SA t2 are respectively t1 hours.
- SA t1 is “reaction of“ total amount (g) of succinic acid contained in reaction solution withdrawn by time t1 and reaction solution in reaction tank ””. It can be calculated as a value for the “reaction liquid amount (L) in the tank”.
- the succinic acid oxygen transfer rate decrease rate (% / g / L) is usually 1.2 (% / g / L) or less, more preferably 1.1 (% / g / L) at any time during the reaction. ) There is no particular lower limit and may be 0.
- the rate of decrease in oxygen transfer rate with respect to succinic acid is 1.2 (% / g / L) or less, it is possible to maintain the optimal amount of oxygen for succinic acid production by suppressing the decrease in oxygen transfer rate. It is preferable because it is possible to suppress a decrease in acid yield and a decrease in the production rate of succinic acid, and it is possible to reduce the succinic acid purification cost by suppressing the production amount of by-product pyruvic acid.
- the effects of the present invention cannot be obtained by controlling only the individual parameters of the succinic acid production rate, the oxygen transfer rate, and the doubling time of microorganisms. For example, if the doubling time of the microorganism is controlled long by completely removing oxygen, a large amount of impurities such as lactic acid and acetic acid is produced, and the production rate of succinic acid is reduced. To increase the oxygen transfer rate for the purpose of enhancing the succinic acid production reaction, the microbial growth is activated with the increase of the oxygen transfer rate, and most of the succinic acid sugar is used for the growth of the microorganism. As a result, there will be a problem that the production volume of kohaku will decrease.
- the effect of the present invention is achieved for the first time by controlling a plurality of parameters such as succinic acid production rate, oxygen transfer rate, and microorganism doubling time in order to improve succinic acid yield and production rate.
- the reaction temperature for producing succinic acid is not particularly limited, but is a temperature that is 2 ° C. or more, preferably 7 ° C. or more higher than the optimum growth temperature of the microorganism that is usually used.
- the temperature is 20 ° C. or higher, preferably 15 ° C. or lower than the optimum temperature for growth of the microorganisms usually used.
- coryneform bacteria it is usually 37 ° C. or higher, preferably 39 ° C. or higher, while it is usually 45 ° C. or lower, preferably 43 ° C. or lower, particularly preferably 41 ° C. or lower.
- the temperature range is 50% or more, preferably 80% or more of the total reaction time including seed culture.
- the reaction time is not particularly limited, but is usually 1 hour or longer, preferably 3 hours or longer, and is usually 168 hours or shorter, preferably 72 hours or shorter.
- succinic acid may be produced by reacting the microorganism with sugar, or the microorganism obtained by proliferating in advance in the culture is treated with sugar in a reaction solution containing sugar.
- Succinic acid may be produced by reacting with.
- optimum conditions can be selected mainly in the step of growing microorganisms and the step of producing succinic acid, and the added sugar can be efficiently used for producing succinic acid. Useful for.
- the amount of cells of the microorganism used for the succinic acid production reaction is not particularly defined, but is usually 1 g / L or more, preferably 10 g / L or more, more preferably 20 g / L or more as the weight of wet cells, Usually, it is 700 g / L or less, preferably 500 g / L or less, more preferably 400 g / L or less.
- the sugar used for the succinic acid production reaction is the same as the sugar used for the culture.
- the concentration of sugar used in the production of succinic acid is not particularly limited, but it is advantageous to make it as high as possible within the range not inhibiting the production of succinic acid, usually 5.0% (W / V) or more, preferably 10% On the other hand, it is usually 30% (W / V) or less, preferably 20% (W / V) or less. Further, additional sugar may be added in accordance with the decrease in sugar accompanying the progress of the reaction.
- the reaction solution in the succinic acid production reaction of the present invention is not particularly limited as long as it is an aqueous solution containing the microorganism and the sugar.
- the reaction solution may be a medium for culturing the microorganism, or phosphoric acid. It may be a buffer solution such as a buffer solution.
- the reaction solution is preferably an aqueous solution containing a nitrogen source, an inorganic salt, and the like.
- the nitrogen source is not particularly limited as long as it is a nitrogen source that can be assimilated by the microorganism to produce succinic acid and the like, and specifically, ammonium salt, nitrate, urea, soybean hydrolysate, casein decomposition
- Various organic or inorganic nitrogen compounds such as food, peptone, yeast extract, meat extract or corn steep liquor.
- the inorganic salt various phosphates, sulfates, metal salts such as magnesium, potassium, manganese, iron or zinc are used.
- vitamins such as biotin, pantothenic acid, inositol, or nicotinic acid, factors that promote growth such as nucleotides or amino acids are added as necessary.
- factors that promote growth such as nucleotides or amino acids are added as necessary.
- the pH of the reaction solution is preferably adjusted in a range where the activity is most effectively exhibited according to the type of the microorganism used. Specifically, when a coryneform bacterium is used, it is usually 5 or more, preferably 5.5 or more, more preferably 6 or more, particularly preferably 7.1 or more, on the other hand, 10 or less, preferably 9.5 or less. More preferably, it is 9.0 or less.
- the pH of the reaction solution is adjusted within the above range by a neutralizing agent such as an alkaline substance, carbonate or urea as necessary during the reaction. Specifically, it can be adjusted by adding sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide or the like.
- the reaction solution preferably contains, for example, carbonate ions, bicarbonate ions, or carbon dioxide gas (carbon dioxide gas) in addition to the microorganism, the sugar, the nitrogen source, or the inorganic salt.
- Carbonate ion or bicarbonate ion is supplied from magnesium carbonate, sodium carbonate, sodium bicarbonate, potassium carbonate or potassium bicarbonate, which can also be used as a neutralizing agent. It can also be supplied from these salts or carbon dioxide gas.
- the carbonate or bicarbonate salt include magnesium carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate and potassium bicarbonate.
- the carbonate ion or bicarbonate ion is usually added at a concentration of 1 mM or more, preferably 2 mM or more, more preferably 3 mM or more. On the other hand, it is added usually at a concentration of 500 mM or less, preferably 300 mM or less, more preferably 200 mM or less.
- carbon dioxide gas is contained, 50 mg or more, preferably 100 mg or more, more preferably 150 mg or more of carbon dioxide gas is contained per liter of the solution.
- carbon dioxide gas is usually contained in an amount of 25 g or less, preferably 15 g or less, more preferably 10 g or less.
- the succinic acid production method of the present invention includes the flow rate, pressure or composition of the gas to be vented or exhausted, the oxygen concentration or redox potential in the reaction solution or the feed solution, or the feed solution. It can be controlled by adjusting any one of the flow rates and the like while measuring either.
- the succinic acid production efficiency is adjusted to a range where the succinic acid production efficiency is most effectively exhibited according to the type of the microorganism used, the reaction tank described later, or the oxygen supply method.
- the stirring speed is usually 50 rpm or more and 2000 rpm or less, and the aeration amount per liquid amount is usually 0.
- the air content of the air flow rate is usually 0.1% or more and 100% or less.
- the production method of the present invention is not particularly limited, but can be applied to batch reaction, semi-batch reaction, or continuous reaction.
- the reaction environment (the amount of the reaction solution, etc.) changes sequentially and the amount of change is large, and the ratio of the oxygen transfer rate to the succinic acid production rate is optimal.
- the method of the present invention is preferable because the ratio of the oxygen transfer rate to the succinic acid production rate can be sequentially adjusted as an index.
- the type of the microbial reaction tank is not particularly limited, but is a bubble stirring tank type (gas is introduced into the liquid, gas-liquid contact is promoted using a stirrer to increase the absorption speed), liquid level Absorption type (gas is absorbed from the liquid level), liquid level absorption agitation type (agitator is attached to the liquid level absorption type to increase the oxygen absorption rate), external absorption type (a separate device is installed outside for oxygen absorption) Circulate the reaction liquid or absorb it into the liquid fed during the reaction), standard bubble column type, draft tube type (install a draft tube to promote internal circulation and increase the gas absorption rate.
- a bubble stirring tank type gas is introduced into the liquid, gas-liquid contact is promoted using a stirrer to increase the absorption speed
- liquid level Absorption type gas is absorbed from the liquid level
- liquid level absorption agitation type agitator is attached to the liquid level absorption type to increase the oxygen absorption rate
- external absorption type a separate device is installed outside for oxygen absorption
- the gas may be introduced from the outside and the outer edge part may be an upflow and the center part may be a downflow), draft tube perforated plate type (a perforated plate is installed in the draft tube type to promote gas-liquid contact and increase the absorption rate) Multi-stage perforated plate type or outer loop air Preparative (the circulation flow path provided outside, a gas is introduced), and the like.
- draft tube perforated plate type a perforated plate is installed in the draft tube type to promote gas-liquid contact and increase the absorption rate
- Multi-stage perforated plate type or outer loop air Preparative the circulation flow path provided outside, a gas is introduced
- the gas introduction method is not particularly limited, and examples thereof include a single-hole nozzle, a multi-nozzle, a ring sparger, a multi-pipe, a gas-liquid two-phase flow nozzle, or a bubble entrainment method using a liquid jet.
- the industrial reaction scale is not particularly limited, but is usually 5 m 3 or more, preferably 50 m 3 or more, and usually 5000 m 3 or less, preferably 3000 m 3 or less in terms of the volume of the reaction vessel.
- the oxygen supplied to the reaction liquid is only the gas phase part of the reaction tank.
- the gas phase part of the reaction tank is of a small scale as in this embodiment. It is preferable from the viewpoint of efficiency of the reaction tank capacity to be less. As a result, the amount of oxygen for maintaining the oxygen transfer rate suitable for the reaction is insufficient, and deviates from the preferred range of the ratio of the oxygen transfer rate to the succinic acid production rate. This is useful because the succinic acid yield can be improved by controlling the ratio within a certain range by control or the like.
- the succinic acid production rate is changed depending on the raw material cost and the manufacturing equipment cost, but it is possible to easily set the optimum reaction conditions by using the production method of the present invention.
- succinic acid is generated and accumulated in the reaction solution.
- Specific by-products in the production process of succinic acid include citric acid cycle metabolites other than succinic acid such as acetic acid, ethanol, lactic acid, pyruvic acid and ⁇ -ketoglutaric acid, and amino acid precursors such as ⁇ -ketovaline.
- Amino acids such as alanine, valine and glutamic acid, sugars such as trehalose, alcohols such as glycerol, proteins and the like.
- the amount of by-product is not particularly limited.
- the weight ratio (%) of pyruvic acid to succinic acid is usually 5.5% or less.
- the weight ratio (%) of acetic acid to succinic acid is not particularly limited, but is usually 15.8% or less, preferably 15.5% or less.
- Succinic acid accumulated in the reaction solution can be collected from the reaction solution according to a conventional method.
- the reaction solution after microbial conversion is concentrated as appropriate in consideration of operability and efficiency in the subsequent purification step, and then solids such as bacterial cells are removed by centrifugation, filtration, or the like.
- a solution or an aqueous solution mainly containing succinic acid and succinate such as ammonium succinate and magnesium succinate is obtained.
- the term “contained as the main component” as used herein means that the weight of the component relative to the weight of all components excluding the solvent is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably The state of 90% by weight or more is shown.
- Succinic acid can be collected from the solution by crystallization or purification by column chromatography.
- succinic acid is produced from a petrochemical-derived raw material and used in a wide variety of applications, but succinic acid derived from bioresources can be preferably used for such applications as well. .
- succinic acid derivatives such as succinic acid esters such as dimethyl succinate and diethyl succinate, succinic acid derivatives such as pyrrolidone and N-methylpyrrolidone
- succinic acid-containing polymer compounds such as polyester, polyurethane or polyamide
- Synthetic raw materials and ingredients of pharmaceuticals and agricultural chemicals such as seasoning, brewing chemicals or processed food additives, as foaming bath components, plant growth inhibitors, herbicides, antibacterial agents, insecticides or mosquito attractants
- raw materials for oral cleaners and cosmetics As raw materials and components of products
- raw materials and components for adhesives and sealants nickel powder production, steel polishing baths, metalworking washing
- raw materials and components for metal processing such as solvents or binders for metal sintering
- raw materials and components for solder or welding flux ceramics such as porous titanium oxide production, boehmite production, photocatalyst coating agent or porous ceramic production, etc.
- raw materials and components of manufacturing aids such as inorganic compounds, as raw materials and components such as detergents, as raw materials and components such as bleaching agents, as raw materials and components such as dyeing assistants, as raw materials such as electrolyte solvents and plating baths, and Ingredients such as deodorants or air cleaners and ingredients such as bioabsorbable sutures
- raw materials for bioabsorbable compounds as raw materials and components for processing fiber products and softeners, as raw materials and components for solvents or solvents, as raw materials and components for water-soluble paint solvents, as raw materials and components for biodegradable resins, etc.
- raw materials and ingredients for sealants such as odorless sealants, etc.
- Synthetic raw materials and components for lubricants such as synthetic lubricants, lubricants for heat-resistant plastics or lubricants for electrical contacts, as raw materials and components for solvent removal detergents such as resins or polymer materials, textile industry or dry cleaning
- solvent for ink, deinking agent, top coat agent for automobile, insulation Materials powder coatings, three-dimensional printing inks, photocurable coatings, photocurable ink compositions, nanoparticle inks, inkjet inks, printing screen cleaning, organic semiconductor solutions, inks for color filter manufacturing, toners, quinacdon pigments manufacturing Succinyl succinic acid production, dye intermediates, pigments, dyes or inks as raw materials and components, oxygen-containing diesel
- the air was aerated from the top or bottom of the liquid at 100 mL / min and stirred at 100 to 500 rpm. Was calculated. Moreover, the lower oxygen transfer rate was measured by ventilating a gas in which air and nitrogen were mixed.
- the doubling time was determined by the following calculation formula (1) based on the values of cell concentration (OD) or dry cell weight at two points.
- T2 and T1 are sampling times at two points, and X1 and X2 are dry cell weight values corresponding to the two points.
- the succinic acid oxygen transfer rate decrease rate (% / g / L) indicates the ratio of the oxygen transfer rate that decreased while 1 g of succinic acid was produced per liter of the reaction solution, and was calculated by the following formula (2). did.
- OTR t1 and OTR t2 are oxygen transfer rates (mmol-O 2 / L / hr) at t1 hours after the start of the reaction and t2 hours thereafter, and SA t1 and SA t2 are reaction solutions at t1 and t2 hours.
- the succinic acid concentration (g / L) is shown.
- SA t1 is “reaction of“ total amount (g) of succinic acid contained in reaction solution withdrawn by time t1 and reaction solution in reaction tank ””. It can be calculated as a value for the “reaction liquid amount (L) in the tank”.
- Example 1 Succinic acid production by controlling oxygen supply ⁇ Seed culture> 100 mL of A medium (urea: 4 g, ammonium sulfate: 14 g, monopotassium phosphate: 0.5 g, dipotassium phosphate 0.5 g, magnesium sulfate heptahydrate: 0.5 g, ferrous sulfate, heptahydrate Product: 20 mg, manganese sulfate / hydrate: 20 mg, D-biotin: 200 ⁇ g, thiamine hydrochloride: 200 ⁇ g, yeast extract: 1 g, casamino acid: 1 g, and distilled water: 1000 mL) are placed in a 500 mL Erlenmeyer flask at 121 ° C.
- a medium urea: 4 g, ammonium sulfate: 14 g, monopotassium phosphate: 0.5 g, dipotassium phosphate 0.5 g, magnesium sulfate hept
- a pre-sterilized vitamin solution D-biotin and thiamine hydrochloride 0.2 g / L aqueous solution
- 15 mL of a pre-sterilized 720 g / L raw sugar aqueous solution 15 mL was added.
- sterilized water was added so that the total amount was 2500 mL.
- the jar fermenter was kept at 30 ° C., the pH was maintained at 7.2 using 28% ammonia water, the back pressure was 0.05 MPa, the aeration was 3 L / min, and the main culture was started at 600 rpm. .
- Example 2 The results of the above items are shown in Table 1, except that the air / nitrogen amount ratio of the gas mixture to be vented was set to 10:90. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
- Example 3 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was set to 14:86. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
- Example 4 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was 25:75. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
- Example 5 The results of the above items are shown in Table 1, except that the ratio of air to nitrogen in the gas mixture to be vented was set to 50:50. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
- Example 6 The same procedure as in Example 1 was carried out except that the air / nitrogen amount ratio of the gas mixture to be vented was set to 100: 0 and the doubling time was calculated according to the above formula. The results are shown in Table 1.
- Example 7 The procedure was the same as in Example 6 except that stirring was performed at 200 rpm, and the results of the above items are shown in Table 1.
- Example 8 The procedure was the same as in Example 6 except that stirring was performed at 400 rpm, and the results of the above items are shown in Table 1. In addition, although the exact doubling time is not measured, when it estimates from the value of Example 6, 7, 9, it is clear that it is 40 hours or more.
- Example 9 The procedure was the same as in Example 6 except that stirring was performed at 500 rpm, and the results of the above items are shown in Table 1.
- Example 2 From the bottom surface of the reaction solution, the same procedure as in Example 1 was conducted, except that the air / nitrogen amount ratio of the aerated gas mixture was 100: 0, and the reaction was conducted by stirring at 400 rpm. The results are shown in Table 1. In addition, although the exact doubling time is not measured, it is estimated that it is 40 hours or more.
- Example 10 Effect of oxygen supply (vs. succinic acid oxygen transfer rate decrease rate) control
- Example 10 since the amount of the liquid increased with the addition of the neutralizing agent to cause a change in the oxygen transfer rate, the added neutralizing agent The same amount of the reaction solution was removed from the reaction layer as in Example 8, except that the amount of the reaction solution was kept constant and the influence of the change in the oxygen transfer rate due to the change in the solution amount was removed.
- Oxygen transfer rate at the time of the lapse of about 20 hours (mmol- O 2 / L / hr ), oxygen transfer rate retention (%), succinic acid production rate (mmol-SA / L / hr ), oxygen to succinate movement
- the rate of rate reduction (% / g / L), succinic acid concentration (g / L), ratio of oxygen transfer rate to succinic acid production rate (mmol-O 2 / mol-SA) and doubling time are listed in Table 2.
- the oxygen transfer rate maintenance rate (%) indicates the ratio of the oxygen transfer rate after 20 hours to the oxygen transfer rate at 0 hours.
- Example 11 It carried out similarly to Example 10 except not ventilating. The reaction results are shown in Table 2.
- succinic acid yield and succinic acid production rate can be improved as compared with the conventional method, and by-products (such as pyruvic acid) conventionally produced under anaerobic conditions are reduced. Can do. Furthermore, according to the present invention, it is possible to provide a method for producing succinic acid that can correspond to an industrial scale without forcing equipment enhancement and reaction control for creating a complete anaerobic environment.
- the obtained succinic acid can be used for food additives, pharmaceuticals, cosmetics, industrial raw materials and the like.
- a succinic acid-containing polymer can also be produced by performing a polymerization reaction using the obtained succinic acid as a raw material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
さらに、工業的なスケールで生産を行う場合、酸素を供給しない嫌気環境を制御する必要があり、具体的には、特許文献1等に記載されているような、減圧による反応水溶液の溶解ガスの除去や窒素などによる反応系からの酸素の除去を行うことになる。しかしながら、溶解ガス除去用減圧設備の増設並びに窒素ガス供給制御等に多大な費用がかかるために、産業利用上好ましくない。また、反応系からの酸素の除去を工業的なスケールで行う場合には、反応を開始するまでに多大な時間がかかるために、使用する菌体や培地等の状態が変化してしまい、反応自体に支障がでる可能性がある。また、工業的なスケールでのコハク酸生産において、酸素供給とコハク酸生産効率の関係は明らかになっていない。
本発明の課題は、従来よりも生産効率の高い、特に工業的スケールに対応可能な、コハク酸の製造方法を提供することにある。
[1] コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法。
[3] 酸素移動速度(mmol- O2/L/hr)が0.01以上5以下であることを特徴とする[1]又は[2]に記載のコハク酸の製造方法。
[4] 該微生物がコリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属、アクチノバチルス(Acinobacillus)属、糸状菌、酵母菌から選択されることを特徴とする[1]~[3]のいずれかに記載のコハク酸の製造方法。
[6] 反応中のpHが5~10であることを特徴とする[1]~[5]のいずれかに記載のコハク酸の製造方法。
[7] [1]~[6]のいずれかに記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を用いて重合反応を行う工程を含む、コハク酸含有ポリマーの製造方法。
[8] [1]~[6]のいずれかに記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を原料としてコハク酸誘導体を合成する工程を含む、コハク酸誘導体の製造方法。
以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明のその要旨を超えない限り、これらの内容に特定はされない。
本発明は、コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法であって、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)の範囲が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法にある。
本発明の方法で使用される微生物は、コハク酸産生能を有する微生物であれば、限定されない。
本発明において、コハク酸産生能とは、微生物を培地で培養したときに、該培地中にコハク酸を蓄積する能力をいう。具体的には、特段の制限はないが、コハク酸産生能の程度はコハク酸における消費糖炭素収率等により示すことができる。
ブレビバクテリウム属細菌としては、ブレビバクテリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)およびコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)等が用いられる。
コリネ型細菌の親株の特に好ましい具体例としては、ブレビバクテリウム・フラバムMJ-233(FERM BP-1497)、同MJ-233 AB-41(FERM BP-1498)、コリネバクテリウム・グルタミカムATCC31831、及びブレビバクテリウム・ラクトファーメンタムATCC13869等が挙げられる。
アクチノバチルス(Acinobacillus)属細菌としては、アクチノバチルス・サクシノジェネス(Actinobacillus succinogenes)等が用いられる。
Aspergillus属微生物としては、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリゼー(Aspergillus oryzae)等が用いられる。
Penicillium属微生物としては、ペニシリウム・クリソゲナム(Penicillium chrysogenum)、ペニシリウム・シンプリシシマム(Penicillium simplicissimum)等が用いられる。
酵母菌は、サッカロミセス属(Saccaromyces)、シゾサッカロミセス属(Shizosaccaromyces)、カンジダ属(Candida)、ピキア属(Pichia)、クルイウェロマイセス属(Kluyveromyces)、チゴサッカロミセス属(Zygosaccharomyces) 等に属する微生物が挙げられる。
シゾサッカロミセス属(Shizosaccaromyces)微生物としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等が用いられる。
ピキア属(Pichia)微生物としてはピキア・パストリス(Pichia pastoris)、ピキア・スティピディス(P. stipidis)等が用いられる。
チゴサッカロミセス属(Zygosaccharomyces)微生物としては、チゴサッカロミセス・バイリイ(Zygosaccharomyces bailli)、チゴサッカロミセス・ロウキシ(Z. rouxii)等が用いられる。
育種によってコハク酸生産能を付与するには、特に限定はないが、具体的にはUV照射やNTG処理等の通常の変異処理により変異株を得る方法、細胞融合もしくは遺伝子組み換え法等の遺伝学的手法により誘導される組み換え体を得る方法等の、微生物の育種に採用されてきた方法が用いられる。
PTAとACKはいずれか一方を活性低下させてもよいが、酢酸の副生を効率よく低減させるためには、両方の活性を低下させることがより好ましい。
「ACK活性が低減するように改変された」とは、ACK活性が、非改変株、例えば野生株よりも低くなったことをいう。ACK活性は非改変株と比較して、単位菌体重量当たり30%以下に低下していることが好ましく、10%以下に低下していることがより好ましい。また、ACK活性は完全に消失していてもよい。ACK活性が低下したことは、Ramponiらの方法(Ramponi G., Meth. Enzymol. 42,409-426(1975))により、ACK活性を測定することによって確認することができる。
本発明において、培養とは、主として、コハク酸の製造方法に用いられる微生物を増殖させ微生物の菌体を調製する工程を示す。培養工程は省略してもよく、寒天培地等の固体培地で斜面培養したものを直接反応に用いても良く、また、培養工程を何度か繰り返し行ってもよい。
本発明において、コハク酸を主として製造する工程を「コハク酸生産反応」、または「反応」と示し、コハク酸生産反応に直接供する菌体を調製する培養を「本培養」と示し、該本培養に供する菌体を調製する培養を「種培養」と示す。
本反応に用いる前記微生物を増殖させて菌体を得るための培養条件は限定されないが、通常、コリネ型細菌であれば、生育至適温度であれば特段の制限はないが、通常25℃以上であり、一方、通常35℃以下、好ましくは32℃以下、特に好ましくは30℃以下である。培養時には、通気、攪拌し酸素を供給しながら行う。生育至適温度は、コハク酸の生産に用いられる条件において最も生育速度が速い温度のことを言う。
また、よりコハク酸の製造に適した菌体の調製方法として、特開2008-259451号公報に記載の炭素源の枯渇と充足を短時間で交互に繰り返すように培養を行う方法も用いることができる。
培養には、通常糖を用いる。培養に用いる糖は、前記微生物が資化してコハク酸を生成させうる糖であれば特に限定されないが、通常、ガラクトース、ラクトース、グルコース、フルクトース、グリセロール、シュークロース、サッカロース、デンプン又はセルロース等の炭水化物;グリセリン、マンニトール、キシリトール又はリビトール等のポリアルコール類等の発酵性糖質が用いられ、このうちグルコース、シュークロース、フルクトース又はグリセロールが好ましく、特にグルコース又はシュークロースが好ましい。
これらの糖は、単独でも組み合わせても使用できる。前記糖の使用濃度は特に限定されないが、コハク酸の生成を阻害しない範囲で可能な限り高くするのが有利であり、反応液に対して、通常5%(W/V)以上、好ましくは10%(W/V)以上であり、一方、通常30%(W/V)以下、好ましくは20%(W/V)以下である。また、反応の進行に伴う前記糖の減少にあわせ、糖の追加添加を行っても良い。
本発明のコハク酸生産反応は、コハク酸産生能がある微生物と糖を反応させるコハク酸の製造方法において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とする。
本発明において、酸素移動速度は、後述するコハク酸生産速度に対する酸素移動速度の比が前記の範囲に含まれる限り特段の制限はなく、反応槽に酸素を供給しない嫌気的雰囲気(酸素移動速度が0の条件)でもよい。ここで、反応槽に酸素を供給しない嫌気的雰囲気(酸素移動速度が0の条件)は、例えば容器を密閉して無通気で反応させる、窒素ガス等の不活性ガスを供給して反応させる、又は二酸化炭素ガス含有の不活性ガスを通気する等の方法によって得ることができるが、コハク酸収率やコハク酸生産速度の低下や、ピルビン酸などの副生物の増加によるコハク酸精製コストの増加、また、酸素移動速度が0を実現するために反応槽を窒素又は酸素を含まない不活性ガスなどで置換するためのコストの増加などの問題がある。
本発明において、コハク酸生産速度(mmol/L/hr)とは、1Lあたり1時間に生産されるコハク酸量をいい、小さすぎると長時間の反応時間が必要になることによるコストの増加やコハク酸以外の副生物の生産量の増加によるコハク酸収率の低下につながる傾向にあるので、通常1mmol/L/hr以上、好ましくは5mmol/L/hr以上である。一方、上限に制限はないが、通常1000mmol/L/hr以下、好ましくは700mmol/L/hr以下、より好ましくは300mmol/L/hr以下である。。
本発明において、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)は、小さすぎるとコハク酸生産に適した酸素供給量より少なくなり、コハク酸収率の低下やコハク酸生産速度の低下、副生物であるピルビン酸の生産量の増加によるコハク酸の精製コストの増加、非常に小さな酸素移動速度条件が要求されることを実現するために反応層を窒素で置換することなどよるコストの増加、などが問題となるため、0.1以上、好ましくは0.2以上、より好ましくは0.3以上である。一方、この比が大きすぎると、コハク酸生産に適した酸素供給量より多くなり、コハク酸収率の低下やコハク酸生産速度の低下、また、副生物である酢酸の生産量が増加することによるコハク酸精製コストの増加、酸素移動速度が大きくなることにより引き起こされる菌体増殖に伴う副生物の増加、コハク酸生産速度が小さくなることによる反応時間の増加によるコストの増加、などが問題となるため、240以下、好ましくは200以下、より好ましくは150以下、更に好ましくは100以下、特に好ましくは50以下である。
本発明において、倍加時間とは、前記微生物の菌体量が2倍に増加するためにかかる時間であり、ある2点の菌体濃度(OD)もしくは乾燥菌体重量の値を元に、以下の計算式(1)の式で示される。
本発明において、対コハク酸酸素移動速度減少率 (%/g/L)とは、反応液1Lあたり1gのコハク酸が生産される間に減少した酸素移動速度の割合を示し、以下の計算式(2)の式で示される。
コハク酸生産反応温度は、特に限定はないが、通常用いる前記微生物の生育至適温度より2℃以上 好ましくは7℃以上高い温度である。一方、通常用いる前記微生物の生育至適温度より20℃高い温度以下、好ましくは15℃高い温度以下である。具体的には、コリネ型細菌の場合には、通常37℃以上、好ましくは39℃以上であり、一方通常45℃以下、好ましくは43℃以下、特に好ましくは41℃以下である。コハク酸の生産反応の間、常に37~45℃である必要はないが、種培養を含めた全反応時間の50%以上、好ましくは80%以上の時間、前記温度範囲にすることが望ましい。
本発明のコハク酸の製造方法においては、前記微生物を糖と反応させることによってコハク酸を製造してもよいし、予め前記培養で増殖させて得られた微生物を糖を含む反応液中で糖と反応させることによってコハク酸を製造してもよい。特に、後者の場合には、主として、微生物を増殖する工程とコハク酸を製造する工程でそれぞれ最適な条件を選択することができ、添加した糖を効率的にコハク酸製造に使用することができるために有用である。
コハク酸生産反応に用いる前記微生物の菌体量は、特に規定されないが、湿菌体重量として、通常1g/L以上、好ましくは10g/L以上、より好ましくは20g/L以上であり、一方、通常700g/L以下、好ましくは500g/L以下、さらに好ましくは400g/L以下である。
コハク酸生産反応に用いる糖は、前記培養に用いる糖と同様である。
コハク酸製造における糖の使用濃度は特に限定されないが、コハク酸の生成を阻害しない範囲で可能な限り高くするのが有利であり、通常5.0%(W/V)以上、好ましくは10%(W/V)以上であり、一方、通常30%(W/V)以下、好ましくは20%(W/V)以下である。また、反応の進行に伴う糖の減少にあわせ、糖の追加添加を行っても良い。
本発明のコハク酸生産反応における反応液は、前記微生物、前記糖を含有する水溶液であれば、特段の制限はなく、例えば、前記微生物を培養するための培地であってもよいし、リン酸緩衝液等の緩衝液であってもよい。
本発明のコハク酸製造方法は、前記にあげた項目以外にも、通気するガス又は排気するガスの流量、圧力若しくは組成、反応液又はフィード液中の酸素濃度若しくは酸化還元電位、又はフィード液の流量等のうちいずれかを測定しながら、いずれかを調節することにより、制御することができる。用いる微生物、後述する反応槽又は酸素供給方法等の種類に応じて、コハク酸製造効率が最も有効に発揮される範囲に調整される。具体的には、特段の制限はないが、ジャーファーメンターで反応液上面通気を行う場合には、攪拌速度としては、通常50rpm以上2000rpm以下であり、液量あたりの通気量としては、通常0.001vvm以上10vvm以下であり、通気量の空気含有量は通常0.1%以上100%以下である。
工業的スケールにおける発酵によるコハク酸の製造には、従来、乳酸、酢酸又はグルタミン酸等を工業的スケールにおいて発酵させる場合に採用されてきた方法を適用することができる(生物反応工学(第3版) 山根恒夫著 産業図書 p.266~276参照)。
工業的スケールにおける発酵においては、微生物反応槽の型と酸素や二酸化炭素等のガス導入方法が重要である。
本発明において、工業的反応スケールとは、特段の制限はないが、反応槽の体積にして通常5m3以上、好ましくは50m3以上、一方、通常5000m3以下、好ましくは3000m3以下である。
通気しない場合には、反応液に供給される酸素は反応槽の気相部のみであるが、工業的スケールにおいては、反応槽に対して気相部を本実施例のような小スケールのものよりも少なくすることが反応槽容量の効率化から好ましい。結果として反応に好適な酸素移動速度を維持するための酸素量が足りなくなり、コハク酸生産速度に対する酸素移動速度の比の好ましい範囲から逸脱することになるが、本発明の製造方法によれば通気制御などにより当該比を一定の範囲に制御することでコハク酸収率を向上することができるために有用である。
以上のような反応により、コハク酸が反応液中に生成、蓄積する。
コハク酸の製造過程における副生成物としては、具体的には、酢酸、エタノール、乳酸、ピルビン酸やα-ケトグルタル酸等のコハク酸以外のクエン酸回路代謝物、α-ケトバリン等のアミノ酸前駆体、アラニン、バリンやグルタミン酸等のアミノ酸、トレハロース等の糖、グリセロールなどのアルコール、タンパク質等が挙げられる。
副生成物の量としては、特段の制限はないが、具体的には、副生物がピルビン酸又は酢酸の場合、コハク酸に対するピルビン酸の重量割合 (%)は、通常5.5%以下、好ましくは5.2%以下であり、コハク酸に対する酢酸の重量割合 (%)は、特段の制限はないが、通常15.8%以下、好ましくは15.5%以下である。
その溶液から結晶化又はカラムクロマトグラフィーにより精製するなどして、コハク酸を採取することができる。
一般的にコハク酸は石油化学由来の原料から製造され、多種多様な用途に使用されているが、このような用途に対してバイオ資源から誘導されたコハク酸も同様に好ましく使用することができる。例えば、1,4-ブタンジオール、2-ピロリジン、スクシンイミド、無水マレイン酸、イタコン酸、アスパルギン酸、マレイン酸、フマル酸、ヒドロキシスクシンイミド、マレイミド、4-アミノ酪酸、γ-アミノ酪酸、テトラヒドロフラン、アクリル酸、コハク酸ジメチルやコハク酸ジエチル等のコハク酸エステル、ピリロリドン若しくはN-メチルピロリドン等のコハク酸誘導体の原料として、ポリエステル、ポリウレタン若しくはポリアミド等のコハク酸含有ポリマー化合物や製品等の原料として、酸味料、調味料、醸造薬品若しくは加工食品添加剤等の食品添加剤として、発泡浴成分として、植物成長抑制剤、除草剤、抗菌剤、殺虫剤若しくは蚊誘引剤等の医薬品及び農薬の合成原料及び成分として、口腔洗浄剤や化粧品等の原料及び成分として、写真や印刷等に使用される製品の原料及び成分として、高温溶接剤やアルマイト処理表面接着剤等、接着剤及びシーラント原料及び成分として、粉末ニッケル製造、鉄鋼研磨浴、金属加工洗浄溶媒若しくは金属シンタリング用バインダー等の金属加工用の原料及び成分として、ハンダ若しくは溶接用フラックスの原料及び成分として、多孔質酸化チタン製造、ベーマイト製造、光触媒コーティング剤もしくは多孔質セラミック製造等のセラミックや無機化合物等の製造助剤の原料及び成分として、洗剤等の原料及び成分として、漂白剤等の原料及び成分として、染色助剤等の原料及び成分として、電解質溶媒及びメッキ浴液等の原料及び成分として、脱臭剤若しくは空気洗浄剤等の原料及び成分として、生体吸収性縫合糸等の生体吸収性化合物原料として、繊維製品の処理やソフトナー等の原料及び成分として、溶剤若しくは溶媒等の原料及び成分として、水溶性塗料溶剤の原料及び成分として、生分解性樹脂等の原料及び成分として、無臭シーラント等、シーラント原料及び成分として、鉄鋼製品、銅製品若しくは合金製品に対するコーティング・凍結防止・金属加工・過塩素酸用鉛・ボイラー水処理用等の防食剤等の原料及び成分として、合成潤滑剤、耐熱性プラスチック用潤滑剤若しくは電気接点用潤滑剤等の潤滑剤の合成原料及び成分として、樹脂若しくは高分子材料等の溶媒除去洗浄剤等の原料及び成分として、繊維工業若しくはドライクリーニング等に使用される製品の原料及び成分として、インク用溶剤、脱インキ剤、自動車用トップコート剤、絶縁塗料、粉体塗料、三次元印刷用インク、光硬化型塗料、光硬化インク組成物、ナノ粒子インク、インクジェット用インク、印刷スクリーン洗浄、有機半導体溶液、カラーフィルタ製造用インク、トナー、キナクドン顔料製造、スクシニルコハク酸製造、染料中間体等、顔料、染料若しくはインク等の原料及び成分として、含酸素型ディーゼル燃料等の原料及び成分として、セメント混和剤及び処理剤等の原料及び成分として、エンジン浄化剤等の原料及び成分として、石油精製溶剤等の原料及び成分として、プロパント組成物若しくは析出フィルターケーキ除去等の石油及び天然ガス採掘助剤等の原料及び成分として、天然ガス脱水溶媒等の天然ガス生産に係る製品の原料及び成分として、低ダスト性コンクリート床材若しくはアスファルト舗装剤等の建材の原料及び成分として、インク用溶剤や脱インク剤等の原料及び成分として、使用できる。
各分析項目については、以下のようにして測定した。
<酸素移動速度測定>
酸素移動速度の測定は、溶液を窒素置換し溶存酸素濃度を低下させた後、通気や攪拌を行い溶存酸素濃度の変化から求める方法を使用した(Wise W.S. J. Gen. Microbiol., 1951, vol. 5, pp.167-177)。具体的には、1Lのジャーファーメンターに目的の液量の水を入れ、窒素を通気し攪拌することで水の溶存酸素を除去した。ジャーファーメンターの気相部に空気を通気して置換した後、100mL/minで液の上面又は下面から空気を通気するとともに100rpm~500rpmで攪拌し、その後の溶存酸素濃度の変化より酸素移動速度を計算した。また、空気と窒素を混合した気体を通気することで、より低い酸素移動速度の測定を行った。
反応液に含まれるコハク酸、ピルビン酸及び酢酸の分析は、反応液を遠心分離(15,000G、2分)処理し、得られた上澄液を液体クロマトグラフ(LC)に供することで行った。コハク酸生産速度(mmol-SA/L/hr)は、測定したコハク酸濃度をサンプリングした時間(hr)で割ることで計算した。
倍加時間は、ある2点の菌体濃度(OD)もしくは乾燥菌体重量の値を元に、下記の計算式(1)により求めた。
対コハク酸酸素移動速度減少率(%/g/L)は、反応液1Lあたり1gのコハク酸が生産される間に減少した酸素移動速度の割合を示し、下記の計算式(2)で計算した。
酸素供給制御によるコハク酸生産
<種培養>
100mLのA培地(尿素:4g、硫酸アンモニウム:14g、リン酸1カリウム:0.5g、リン酸2カリウム0.5g、硫酸マグネシウム・7水和物:0.5g、硫酸第一鉄・7水和物:20mg、硫酸マンガン・水和物:20mg、D-ビオチン:200μg、塩酸チアミン:200μg、酵母エキス:1g、カザミノ酸:1g、及び蒸留水:1000mL)を500mLの三角フラスコにいれ、121℃、20分加熱滅菌した。これを室温まで冷やした後、15mLの滅菌したA培地を200mLの三角フラスコに入れ、あらかじめ滅菌した50%グルコース水溶液を600μL添加し、MJ233/PC/ΔLDH株を接種して5.5時間30℃で培養した。前述した500mLの三角フラスコに100mLのA培地を入れ滅菌した培地に、あらかじめ滅菌した50%グルコース水溶液を4mL添加した後、得られた培養液を、O.D.(660nm)が0.02となるように接種し、30℃20時間で種培養した。
リン酸水溶液(85wt%):6.68g、塩化カリウム:4.95g、硫酸アンモニウム:2.97g、硫酸マグネシウム・7水和物:1.48g、硫酸マンガン・5水和物:118.8mg、硫酸第一鉄・7水和物:118.8mg、CSL(コーンスティープリガー)29.93g、10N水酸化カリウム水溶液:11.08g、消泡剤(CE457:日本油脂製):2.54g及び蒸留水の計1833mLの培地を5Lのジャーファーメンターに入れ、121℃20分加熱滅菌した。室温まで冷やした後、あらかじめフィルター滅菌したビタミン溶液(D-ビオチン、塩酸チアミン各0.2g/L水溶液)を15mL、あらかじめ滅菌した720g/Lの原料糖水溶液を110mL、前述の種培養の溶液を100mL添加した。加熱滅菌前後の重量より蒸発した液量を考慮し全量が2500mLになるように滅菌した水を添加した。ジャーファーメンターを30℃で保温し、pHは28%アンモニア水を用いて7.2に保ち、背圧は0.05MPa、通気は毎分3L、攪拌は毎分600回転で本培養を開始した。溶存酸素濃度がほぼ0まで低下した後、再び上昇を開始して1ppmに達したところであらかじめ滅菌した720g/Lの原料糖を約7g添加したところ、再び0まで低下した。溶存酸素濃度が再び上昇するごとに前記の方法にて原料糖溶液の添加を繰り返して、培養開始後19時間まで継続した。
リン酸水溶液(85wt%):5.2g、硫酸マグネシウム・7水和物:3.46g、硫酸マンガン・5水和物:138.2mg、硫酸第一鉄・7水和物:138.2mg、10N水酸化カリウム水溶液:9.14g及び蒸留水105mLを121℃20分加熱滅菌した後、加熱滅菌による蒸発量を考慮し滅菌水を添加することで320mLの溶液とした。この溶液を20mL、720g/Lの原料糖水溶液を88mL、滅菌水を228.1mL、あらかじめフィルター滅菌したビタミン溶液(D-ビオチン、塩酸チアミン各0.2g/L水溶液)を448μL、前述した本培養液135mLを1Lジャーファーメンターに入れた。pHはNa中和剤(炭酸水素ナトリウム:113.5g、水酸化ナトリウム:145.9g、滅菌水936.7g)を用いて7.6に保ち、39℃に保温した。
通気する混合気体の空気対窒素量の量比を10:90となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
通気する混合気体の空気対窒素量の量比を14:86となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
通気する混合気体の空気対窒素量の量比を25:75となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
通気する混合気体の空気対窒素量の量比を50:50となるようにしたこと以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
通気する混合気体の空気対窒素量の量比を100:0となるようにしたこと及び上記式による倍加時間の計算を行った以外は、実施例1と同様に行い、倍加時間とともに上記項目の結果を表1に記載した。
毎分200回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。
毎分400回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、実施例6、7、9の値から推測すると、40時間以上であることは明らかである。
毎分500回転で攪拌した以外は、実施例6と同様に行い、上記項目の結果を表1に記載した。
ジャーファーメンターの気相部を窒素で置換した後、通気する混合気体の空気対窒素量の量比を0:100となるようにし、反応液上面に通気し、毎分200回転で攪拌しながら反応を行った以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、40時間以上であると推測される。
反応液下面より、通気する混合気体の空気対窒素量の量比を100:0となるようにし、毎分400回転で攪拌し反応を行った以外は、実施例1と同様に行い、上記項目の結果を表1に記載した。なお、正確な倍加時間は測定していないが、40時間以上であると推測される。
酸素供給(対コハク酸酸素移動速度減少率)制御の効果
実施例10では、前記中和剤の添加に伴い液量が増加して酸素移動速度の変化が引き起こされるため、添加された中和剤と同量の反応液を反応層から除去することで反応液量を一定に保ち、液量変化による酸素移動速度の変化の影響を除いた以外は、実施例8と同様に行った。20時間程度経過した時点での酸素移動速度(mmol- O2/L/hr)、酸素移動速度維持率 (%)、コハク酸生産速度 (mmol-SA/L/hr)、対コハク酸酸素移動速度減少率 (%/g/L)、コハク酸濃度(g/L)、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)及び倍加時間を表2に記載した。
なお、酸素移動速度維持率(%)とは、0時間における酸素移動速度に対する20時間経過後における酸素移動速度の比を示す。
通気を行わない以外は、実施例10と同様に行った。反応結果を表2に記載した。
以上より、反応層中に酸素供給とコハク酸生産量を制御した結果、比較例である嫌気反応および微好気反応より高いコハク酸収率やコハク酸生産速度が得られることが判明した。
さらに、本発明によれば、完全な嫌気環境を作成するための設備増強や反応制御を強いることなく、工業的スケールに対応可能なコハク酸の製造方法を提供可能となる。得られたコハク酸は食品添加物や医薬品、化粧品、工業原料等に用いることができる。また、得られたコハク酸を原料として重合反応を行うことによりコハク酸含有ポリマーを製造することもできる。
Claims (8)
- コハク酸産生能を有する微生物と糖を反応させるコハク酸の製造方法であって、コハク酸生産速度に対する酸素移動速度の比(mmol- O2/mol-SA)が0.1以上240以下であり、反応中の微生物の倍加時間が40時間以上であることを特徴とするコハク酸の製造方法。
- 反応中の対コハク酸酸素移動速度減少率(%/g/L)が1.2以下である、請求項1に記載の方法。
- 反応中の酸素移動速度(mmol- O2/L/hr)が0.01以上5以下である、請求項1又は2に記載の方法。
- 該微生物がコリネ型細菌、大腸菌、アナエロビオスピリラム(Anaerobiospirillum)属、アクチノバチルス(Acinobacillus)属、糸状菌、及び酵母菌からなる群より選択される、請求項1~3のいずれかに記載の方法。
- 該微生物が、ラクテートデヒドロゲナーゼ活性が非改変株と比べて低減するように改変された微生物、及び/又はピルビン酸カルボキシラーゼ活性が非改変株と比べて増強するように改変された微生物である、請求項1~4のいずれかに記載の方法。
- 反応中のpHが5以上10以下である、請求項1~5のいずれかに記載の方法。
- 請求項1~6のいずれか一項に記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を用いて重合反応を行う工程を含む、コハク酸含有ポリマーの製造方法。
- 請求項1~6のいずれか一項に記載の方法によりコハク酸を製造する工程、及び得られたコハク酸を原料としてコハク酸誘導体を合成する工程を含む、コハク酸誘導体の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180011827.7A CN102812127B (zh) | 2010-03-09 | 2011-03-08 | 琥珀酸的制造方法 |
JP2012504468A JP5857954B2 (ja) | 2010-03-09 | 2011-03-08 | コハク酸の製造方法 |
BR112012022486A BR112012022486A2 (pt) | 2010-03-09 | 2011-03-08 | método de produção de ácido sucínico |
EP11753351.3A EP2546351B1 (en) | 2010-03-09 | 2011-03-08 | Method of producing succinic acid |
CA2792257A CA2792257C (en) | 2010-03-09 | 2011-03-08 | Method of producing succinic acid |
US13/607,049 US8647843B2 (en) | 2010-03-09 | 2012-09-07 | Method of producing succinic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010051816 | 2010-03-09 | ||
JP2010-051816 | 2010-03-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/607,049 Continuation US8647843B2 (en) | 2010-03-09 | 2012-09-07 | Method of producing succinic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111693A1 true WO2011111693A1 (ja) | 2011-09-15 |
Family
ID=44563494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055355 WO2011111693A1 (ja) | 2010-03-09 | 2011-03-08 | コハク酸の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8647843B2 (ja) |
EP (1) | EP2546351B1 (ja) |
JP (1) | JP5857954B2 (ja) |
CN (1) | CN102812127B (ja) |
BR (1) | BR112012022486A2 (ja) |
CA (1) | CA2792257C (ja) |
WO (1) | WO2011111693A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024110995A1 (en) * | 2022-11-24 | 2024-05-30 | Porus Biosciences Llp | Compositions and method for making succinic acid |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013023848A2 (pt) | 2011-03-18 | 2018-07-03 | Mitsubishi Chem Corp | método para produzir polímero, método para produzir ácido orgânico, e microrganismo produtor de ácido orgânico. |
TWI673360B (zh) | 2015-11-12 | 2019-10-01 | 財團法人工業技術研究院 | 促進琥珀酸或乳酸生產的基因改質菌株及方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03505396A (ja) * | 1988-06-27 | 1991-11-28 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | カルボン酸類のための改良発酵方法 |
JPH11196888A (ja) | 1998-01-16 | 1999-07-27 | Mitsubishi Chemical Corp | ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法 |
JPH11206385A (ja) | 1998-01-28 | 1999-08-03 | Mitsubishi Chemical Corp | ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株 |
JP2004194570A (ja) | 2002-12-18 | 2004-07-15 | Research Institute Of Innovative Technology For The Earth | コリネ型細菌を用いる有機化合物の製造方法 |
WO2005026349A1 (ja) | 2003-09-17 | 2005-03-24 | Mitsubishi Chemical Corporation | 非アミノ有機酸の製造方法 |
JP2005095169A (ja) | 2003-08-28 | 2005-04-14 | Mitsubishi Chemicals Corp | コハク酸の製造方法 |
WO2005113745A1 (ja) | 2004-05-20 | 2005-12-01 | Ajinomoto Co., Inc. | コハク酸生産菌及びコハク酸の製造方法 |
JP2006000091A (ja) | 2004-05-20 | 2006-01-05 | Mitsubishi Chemicals Corp | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 |
JP2006006344A (ja) | 2005-09-20 | 2006-01-12 | Mitsubishi Chemicals Corp | 有機酸の製造方法 |
JP2008259451A (ja) | 2007-04-12 | 2008-10-30 | Mitsubishi Chemicals Corp | 有機酸生産微生物の菌体の調製法及び有機酸の製造法 |
WO2009065779A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Dicarboxylic acid production in a recombinant yeast |
WO2009065778A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Succinic acid production in a eukaryotic cell |
WO2009065777A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Dicarboxylic acid production in a filamentous fungus |
WO2010003728A1 (en) | 2008-07-08 | 2010-01-14 | Dsm Ip Assets B.V. | Dicarboxylic acid production by fermentation at low ph |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003235592A (ja) | 2002-02-13 | 2003-08-26 | Mitsubishi Chemicals Corp | 有機酸の製造方法 |
BRPI0413403A (pt) | 2003-08-28 | 2006-10-17 | Mitsubishi Chem Corp | método para produzir ácido succìnico |
US20060073577A1 (en) | 2004-09-17 | 2006-04-06 | San Ka-Yiu | High succinate producing bacteria |
EP2192189B1 (en) * | 2007-08-23 | 2018-08-22 | Mitsubishi Chemical Corporation | Method for production of succinic acid at high temperatures |
-
2011
- 2011-03-08 JP JP2012504468A patent/JP5857954B2/ja active Active
- 2011-03-08 EP EP11753351.3A patent/EP2546351B1/en active Active
- 2011-03-08 CN CN201180011827.7A patent/CN102812127B/zh not_active Expired - Fee Related
- 2011-03-08 WO PCT/JP2011/055355 patent/WO2011111693A1/ja active Application Filing
- 2011-03-08 BR BR112012022486A patent/BR112012022486A2/pt not_active IP Right Cessation
- 2011-03-08 CA CA2792257A patent/CA2792257C/en active Active
-
2012
- 2012-09-07 US US13/607,049 patent/US8647843B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03505396A (ja) * | 1988-06-27 | 1991-11-28 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | カルボン酸類のための改良発酵方法 |
JPH11196888A (ja) | 1998-01-16 | 1999-07-27 | Mitsubishi Chemical Corp | ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法 |
JPH11206385A (ja) | 1998-01-28 | 1999-08-03 | Mitsubishi Chemical Corp | ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株 |
JP2004194570A (ja) | 2002-12-18 | 2004-07-15 | Research Institute Of Innovative Technology For The Earth | コリネ型細菌を用いる有機化合物の製造方法 |
JP2005095169A (ja) | 2003-08-28 | 2005-04-14 | Mitsubishi Chemicals Corp | コハク酸の製造方法 |
WO2005026349A1 (ja) | 2003-09-17 | 2005-03-24 | Mitsubishi Chemical Corporation | 非アミノ有機酸の製造方法 |
WO2005113745A1 (ja) | 2004-05-20 | 2005-12-01 | Ajinomoto Co., Inc. | コハク酸生産菌及びコハク酸の製造方法 |
JP2006000091A (ja) | 2004-05-20 | 2006-01-05 | Mitsubishi Chemicals Corp | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 |
JP2006006344A (ja) | 2005-09-20 | 2006-01-12 | Mitsubishi Chemicals Corp | 有機酸の製造方法 |
JP2008259451A (ja) | 2007-04-12 | 2008-10-30 | Mitsubishi Chemicals Corp | 有機酸生産微生物の菌体の調製法及び有機酸の製造法 |
WO2009065779A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Dicarboxylic acid production in a recombinant yeast |
WO2009065778A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Succinic acid production in a eukaryotic cell |
WO2009065780A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Dicarboxylic acid production in eukaryotes |
WO2009065777A1 (en) | 2007-11-20 | 2009-05-28 | Dsm Ip Assets B.V. | Dicarboxylic acid production in a filamentous fungus |
WO2010003728A1 (en) | 2008-07-08 | 2010-01-14 | Dsm Ip Assets B.V. | Dicarboxylic acid production by fermentation at low ph |
Non-Patent Citations (20)
Title |
---|
"Bioreaction Engineering", SANGYO-TOSHO PUBLISHING CO., LTD., pages: 266 - 276 |
CALIK GUZIDE ET AL.: "Product and by-product distributions in glutamic acid fermentation by Brevibacterium flavum: effects of the oxygen transfer", BIOCHEM. ENG. J., vol. 9, no. 2, 2001, pages 91 - 101, XP055101345 * |
CHANG Y. ET AL., J. BACTERIOL., vol. 151, 1982, pages 1279 - 1289 |
HOHMANN, J. BACTERIOL., vol. 173, 1991, pages 7963 - 7969 |
J. BACTERIOL., vol. 158, 1984, pages 55 - 62 |
KLOTZSCH, H. R., METH. ENZYMOL., vol. 12, 1969, pages 381 - 386 |
L. KANAREK ET AL., J. BIOL. CHEM., vol. 239, 1964, pages 4202 |
LIELBL, W. ET AL., INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 41, 1991, pages 255 - 260 |
MICROBIOLOGY, vol. 145, February 1999 (1999-02-01), pages 503 - 13 |
MOL. CELL. BIOL., vol. 6, 1986, pages 70 - 79 |
RAMPONI G., METH. ENZYMOL., vol. 42, 1975, pages 409 - 426 |
RES. MICROBIOL., vol. 144, 1993, pages 181 - 185 |
SCHAFER, A. ET AL., GENE, vol. 145, 1994, pages 69 - 73 |
SCHERF U.; BUCKEL W., APPL. ENVIRON. MICROBIOL., vol. 57, 1991, pages 2699 - 2702 |
See also references of EP2546351A4 |
SHINFUKU ET AL., MICROBIAL CELL FACTORIES, vol. 8, 2009, pages 43 |
SHINFUKU ET AL.: "Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum", MICROBIAL CELL FACTORIES, vol. 8, 2009, pages 43, XP021058483, DOI: doi:10.1186/1475-2859-8-43 |
WISE W. S., J. GEN. MICROBIOL., vol. 5, 1951, pages 167 - 177 |
WISE W.S., J. GEN. MICROBIOL., vol. 5, 1951, pages 167 - 177 |
ZIMMERMANN F. HARTMUT ET AL.: "Oxygen limitation is a pitfall during screening for industrial strains", APPL. MICROBIOL. BIOTECHNOL., vol. 72, no. 6, 2006, pages 1157 - 1160, XP019441693 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024110995A1 (en) * | 2022-11-24 | 2024-05-30 | Porus Biosciences Llp | Compositions and method for making succinic acid |
Also Published As
Publication number | Publication date |
---|---|
JP5857954B2 (ja) | 2016-02-10 |
CA2792257A1 (en) | 2011-09-15 |
JPWO2011111693A1 (ja) | 2013-06-27 |
CA2792257C (en) | 2018-02-06 |
EP2546351A4 (en) | 2015-10-07 |
US8647843B2 (en) | 2014-02-11 |
EP2546351B1 (en) | 2017-12-20 |
CN102812127B (zh) | 2014-12-03 |
CN102812127A (zh) | 2012-12-05 |
EP2546351A1 (en) | 2013-01-16 |
US20120329095A1 (en) | 2012-12-27 |
BR112012022486A2 (pt) | 2015-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1669459B1 (en) | Method of purifying succinic acid from fermentation liquid | |
JP5180060B2 (ja) | 有機酸生産菌及び有機酸の製造法 | |
JP2011505822A (ja) | コハク酸の製造方法 | |
JP2005027533A (ja) | 有機酸の製造方法 | |
JP5991400B2 (ja) | コハク酸の製造方法 | |
JP5857954B2 (ja) | コハク酸の製造方法 | |
JP2013524834A (ja) | Nh4+−ooc−r−coo−nh4+化合物及び/又はhooc−r−cooh化合物の酸を含む発酵培地からのnh4+−ooc−r−cooh化合物の製造方法、及びnh4+−ooc−r−cooh化合物のhooc−r−cooh化合物の酸への変換 | |
US10077456B2 (en) | Method for producing polymer, method for producing organic acid, and organic acid-producing microorganism | |
JP4473219B2 (ja) | D−乳酸生産用生体触媒 | |
JPWO2013069786A1 (ja) | コハク酸の製造方法 | |
JP5810412B2 (ja) | 非アミノ有機酸の製造方法 | |
JP5651989B2 (ja) | コハク酸の製造方法 | |
JP5663859B2 (ja) | 非アミノ有機酸生産菌および非アミノ有機酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011827.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753351 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012504468 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2792257 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201004576 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011753351 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012022486 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012022486 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120905 |