+

WO2011108032A1 - バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法 - Google Patents

バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法 Download PDF

Info

Publication number
WO2011108032A1
WO2011108032A1 PCT/JP2010/001575 JP2010001575W WO2011108032A1 WO 2011108032 A1 WO2011108032 A1 WO 2011108032A1 JP 2010001575 W JP2010001575 W JP 2010001575W WO 2011108032 A1 WO2011108032 A1 WO 2011108032A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
ballast
pipe
treatment device
water treatment
Prior art date
Application number
PCT/JP2010/001575
Other languages
English (en)
French (fr)
Inventor
木島明博
小濱泰昭
鈴木雅絵
千葉郁雄
小野寺浩二
鹿野敬記
菅野孝一郎
伊藤孝行
八島芳信
阿部利彦
Original Assignee
国立大学法人東北大学
株式会社晃和工業
株式会社ヤマニシ
津田海運株式会社
日本素材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社晃和工業, 株式会社ヤマニシ, 津田海運株式会社, 日本素材株式会社 filed Critical 国立大学法人東北大学
Priority to PCT/JP2010/001575 priority Critical patent/WO2011108032A1/ja
Priority to KR1020127023001A priority patent/KR101677479B1/ko
Priority to EP10825825.2A priority patent/EP2476652B1/en
Priority to US12/677,032 priority patent/US8557122B2/en
Priority to DK10825825.2T priority patent/DK2476652T3/en
Priority to JP2010510003A priority patent/JP5551585B2/ja
Publication of WO2011108032A1 publication Critical patent/WO2011108032A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/104Mixing by creating a vortex flow, e.g. by tangential introduction of flow components characterised by the arrangement of the discharge opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3123Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements
    • B01F25/31232Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/051Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being electrical energy working on the ingredients or compositions for mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment

Definitions

  • the present invention relates to a detoxification process for ballast water loaded in a ballast tank of a ship.
  • ballast water balanced water for empty ships supplied and drained at the ship's port of call
  • ballast water treatment standards water quality and high concentration of residual chemicals
  • the seawater when injecting seawater into the ballast tank, the seawater is filtered to capture and remove relatively large aquatic organisms such as animal and plant plankton in the seawater.
  • Disinfection component mixing device direct administration of disinfectant or electrolysis of seawater
  • disinfectant sodium hypochlorite
  • filtered seawater mixed with disinfectant is venturi effect Venturi tube that causes damage to or kills aquatic organisms in filtered seawater at the same time
  • venturi pipes are connected in series and a bactericidal agent is further added downstream of the last row of venturi pipes to increase the bactericidal power
  • Patent Document 2 when the disinfectant is administered by the seawater electrolysis method as described above, there are various methods (for example, Patent Document 2).
  • ballast water treatment it is necessary to treat a large amount of ballast water quickly so as not to cause concentration in the disinfectant, simply electrolyzing seawater and mixing the generated disinfectant into the filtered seawater Only the administration of a bactericidal agent and the concentration of bactericidal components became uneven and many of them survived, which was inappropriate as a ballast treatment.
  • a Venturi tube is used for this purpose to achieve uniform diffusion of the bactericide.
  • the bactericidal component decomposing agent is introduced at the time of drainage to decompose the bactericidal agent.
  • the disinfectant is to be completely decomposed, an excessive amount of the disinfectant needs to be added, which remains in the wastewater and contaminates the seawater in the drainage area.
  • a stepped venturi tube having a recess for generating a shear flow that opens to the throat is disclosed as a highly efficient one (Patent Document 3).
  • the present invention has been made to solve such problems of the prior art, and it is possible to decompose a considerable amount of the sterilizing component contained in a large amount of ballast water by simply passing water. It is an object of the present invention to provide a ballast water treatment device that can reduce the use of a sterilizing component decomposing agent or a sterilizing component adsorbent as much as possible, and incidentally use the ballast water treatment device. Therefore, it is an object of the present invention to provide a simpler ballast water detoxification treatment system and to provide a ballast water treatment method in the apparatus.
  • a shear flow generator 31 provided in a water intake pipe 7 extending from the water intake 6 to the ballast tank 1 and receiving the supply of seawater 2 taken from the high-pressure pump 9, and a shear flow generator 31 via a connecting pipe 36
  • a ballast water treatment device 3 configured to supply the ballast water 2 to the ballast tank 1 through the sterilizing component mixing device 4,
  • the shear flow generating portion 31 is provided on the downstream side of the inlet-side reduced diameter portion 33a and the inlet-side reduced diameter portion 33a that gradually decrease the cross-sectional area according to the flow, and the outlet side that gradually increases the cross-sectional area according to the flow
  • a stepped venturi tube 33 constituted by an enlarged diameter portion 33c, a throat portion 33b connecting the inlet side reduced diameter portion 33a and the outlet side enlarged diameter portion 33c, and a shear flow generating recess 33d opened to the throat portion 33b is 1 Or built in parallel with multiple lines
  • the swirling flow generating portion 37 is a cylindrical
  • the invention according to claim 2 relates to the diffuser pipe 38 of claim 1, and the inner peripheral surface of the diffuser pipe 38 is a 1 to multi-stage diffuser 38 a to 38 c that expands its cross-sectional area stepwise along the flow direction. It is characterized by.
  • the invention according to claim 3 relates to the swirling flow generating portion 37 of claim 1, and the swirling flow generating portion 37 is provided with an outside air supply portion 39 at the center portion of the inlet side upper surface 37c of the main body cylindrical portion 37a. It is characterized by that.
  • the invention according to claim 4 is a ballast water detoxification treatment system A using the ballast water treatment device 3 according to claim 1, (4a) a ballast tank 1 for storing ballast water 2; (4b) a water intake pipe 7 connecting the water intake 6 and the ballast tank 1; (4c) a high-pressure pump 9 installed in the intake pipe 7; (4d) installed on the downstream side of the high-pressure pump 9, and the ballast water treatment device 3 according to claim 1; (4e) a sterilizing component mixing device 4 provided on the downstream side of the ballast water treatment device 3 for mixing a sterilizing component into the ballast water 2 sent from the ballast water treatment device 3; (4f) a pumping pipe 17 for connecting the ballast tank 1 and the intake pipe 7 on the upstream side of the high-pressure pump 9; (4g) a drain pipe 11 branched from the intake pipe 7 downstream of the ballast water treatment device 3, (4h) a residual sterilizing component removing device 16 provided in the drain pipe 11, (4i) a water flow switching valve R1 provided at a branching
  • the invention according to claim 5 is a ballast water detoxification method by the ballast water detoxification treatment system A according to claim 4, At the time of supplying water to the ballast tank 1, the collected seawater 2 is filtered, and then the filtered seawater 2 is passed through the ballast water treatment device 3 described in claim 1, and then the sterilizing component 5 is added to the seawater 2.
  • the seawater 2 taken in is injected into the ballast tank 1
  • a large amount of nanobubbles are generated in the ballast water treatment device 3 and a considerable amount of nanobubbles are formed by swirling flow, residual nanobubbles and microbubbles.
  • a cascade field in which chain ruptures, etc. are mixed can be generated, and by passing seawater 2 containing micro-animal and aquatic organisms and fungi through this cascade field, all or most of the aquatic organisms are damaged or killed. Since it can be destroyed, a small amount of a sterilizing component is sufficient for further killing aquatic organisms that have survived damage.
  • the ballast water 2 in the ballast tank 1 When the ballast water 2 in the ballast tank 1 is drained during loading at an overseas loading port, the ballast water 2 in the ballast tank 1 contains sterilizing components. After removing the sterilizing component through the residual sterilizing component removing device 16, the water is drained. As a result, the above-mentioned sterilizing components and the slight residual aquatic products and bacteria that have survived in the ballast water 2 are also decomposed and killed at this time.
  • Piping system diagram of the present invention 4 is a partial sectional view taken along line XX in FIG. 4 when the ballast water treatment apparatus used in the present invention is in operation.
  • YY sectional view of FIG. ZZ partial cross-sectional view of FIG. Schematic sectional view of an AC electrolysis apparatus used in the present invention Table showing the disinfection and volatilization status of ballast water through the nanobubble generator
  • An example of the seawater detoxification processing system A is a water supply / drainage system used in a ship ballast water supply / drainage system or a power plant cooling facility.
  • a ship ballast water supply / drainage system will be described as a representative example.
  • a power plant cooling system a ship is replaced with a power plant, a ballast tank is replaced with a cooling water storage tank, and ballast water is replaced with cooling water.
  • the ballast tank 1 is a tank for storing ballast water 2 provided on the bottom of a ship from the bow portion of the ship to the vicinity of the stern.
  • the ballast tank 1 is provided with vertical and horizontal partition walls 111 having a large number of communication holes 112 therein, and water distribution equipment (not shown) Thus, the amount of ballast water 2 in the ballast tank 1 is adjusted to keep the balance of the ship.
  • the water intake 6 and the water discharge port 12 are provided on the side of the ship, and the water intake 6 and the ballast tank 1 are connected by a water intake pipe 7.
  • the water intake 6 of the water intake pipe 7 or the vicinity thereof is for water intake.
  • a filtration device F1 is installed, and a high-pressure pump 9, a ballast water treatment device 3, and a sterilizing component mixing device 4 are installed following the water intake filtration device F1.
  • the pumping pipe 17 is connected to the water intake pipe 7 in the branch part P1 between the water intake filtration device F1 and the high-pressure pump 9, and the ballast water 2 in the ballast tank 1 is pumped up.
  • the branch portion P1 is provided with a water flow switching valve R1.
  • a ballast water treatment device 3 is provided on the downstream side of the high-pressure pump 9, and a sterilization component mixing device 4 is provided on the downstream side of the ballast water treatment device 3, and is extracted from the sterilization component mixing device 4.
  • a water intake pipe 7 is connected to the ballast tank 1.
  • a drain pipe 11 is provided at a branch portion P ⁇ b> 2 between the ballast water treatment device 3 and the sterilizing component mixing device 4, and is connected to the drain port 12.
  • the branch portion P2 is provided with a water flow switching valve R2.
  • a drainage filtration device F2 is installed at the drainage port 12 or in the vicinity thereof, and a sterilizing component removal processing unit 16 is installed in the drainage pipe 11 on the upstream side of the drainage filtration device F2.
  • the filler of the sterilizing component removal processing unit 16 there can be considered an activated carbon that adsorbs the remaining sterilizing component without being completely decomposed by the ballast water treatment apparatus 3 before the ocean dumping.
  • Water flow switching valves R1 and R2 are used to switch the water flow direction, and usually three-way electromagnetic switching valves are used.
  • a pair of on-off valves R1a, R1b, R2a, and R2b that function in the same manner as the water flow switching valves R1 and R2 are shown in the branch portions P1 and P2, respectively.
  • the on-off valve R1a is provided between the filtration device F1 on the intake port 6 side and the branch portion P1
  • the on-off valve R1b is provided on the pumping pipe 17.
  • the on-off valve R2a is provided between the branch portion P2 and the sterilizing component mixing device 4, and the on-off valve R2b is provided on the drain pipe 11.
  • the water intake filtration device F1 is divided into a coarse filtration part and a fine filtration part.
  • the coarse filtration part is a foreign matter such as large and small garbage in seawater 2 taken from the intake 6 on the side of the ship, jellyfish, seaweeds, etc. Of the aquatic organisms, coarse substances are removed, and the fine filtration part provided after the coarse filtration part supplements to some extent with the flora and fauna planktons present in the seawater 2.
  • the drainage filtering device F2 filters impurities and the like in the ballast water 2 pumped from the ballast tank 1.
  • the ballast water treatment device 3 provided on the downstream side of the high-pressure pump 9 is a swirl flow generator having a shear flow generator 31 from the inlet side, and subsequently a diffuser pipe 38 connected to the outlet of the main body cylindrical portion 37a. 2 and 4, an example of which is shown in FIGS.
  • the shear flow generation unit 31 includes a front chamber 31 a, a rear chamber 31 b in which a large number of stepped venturi pipes 33 are mounted in parallel, and a connection pipe 36 that connects the rear chamber 31 b and the swirl flow generation unit 37. .
  • the front chamber 31a is a portion connected to a pipe (water intake pipe 7) from the high-pressure pump 9 and has an inner diameter for covering the inlets 34 of a plurality of parallelly arranged stepped venturi pipes 33 opened in the front chamber 31a.
  • a pipe water intake pipe 7
  • the intake pipe 7 is connected to the bottom portion, and the opening side is flange-connected to the rear chamber 31b.
  • the rear chamber 31b has a bottomed cylindrical shape similar to the front chamber 31a, and a plurality of stepped venturi tubes 33 are inserted and installed in parallel on a partition plate 31c that closes the opening on the inlet side.
  • the connection pipe 36 is led out from the rear surface 31 d of the rear chamber 31 b, and the connection pipe 36 is inclined and connected to the outer peripheral surface on the outlet side of the main body cylindrical portion 37 a of the swirl flow generating portion 37.
  • the connection angle is inclined with respect to the outlet-side outer peripheral surface of the main body cylindrical portion 37a of the swirling flow generating portion 37 (for example, tangential direction).
  • the inlet 34 has a polygonal shape (the polygon is in a state perpendicular to the flow between the inlets 34 so that a flat surface portion serving as a flow path resistance is not generated on almost the entire surface of the partition plate 31c. It is sufficient if they can be closely arranged, and there are 3 to 6 hexagons, and here, hexagons are selected and arranged in a honeycomb shape, of course, the inlet 34 is not polygonal and is not shown but circular.
  • the partition plate 31c is positioned between the circular inlets close to each other, and this portion becomes a resistance and the pressure loss on the front chamber 31a side is slightly increased.)
  • the inner diameter gradually decreases toward the throat 33b, and the cross-sectional shape thereof is changed to a circle while gradually reducing the inner diameter.
  • the inlet-side diameter-reduced portion 33a that forms a streamline shape from the inlet 34 toward the throat 33b has a short, hollow thin cylindrical shape.
  • Throat 33b, Throat 33b The outlet side enlarged diameter portion 33c having a circular cross-sectional shape that expands its inner diameter toward the outlet direction, and a shear flow generating recess 33d that opens to the throat portion 33b.
  • the place 33d is a disk-shaped gap that opens over the entire circumference of the throat 33b.
  • the opening width and size (depth) of the shear flow generating recess 33d nanobubbles can be generated in the seawater 2 of the entire volume flowing through the throat 33b.
  • the swirl flow generating unit 37 includes a cylindrical main body cylindrical portion 37a, a diffuser pipe 38 provided at an outlet, and an outside air supply unit 39 provided as necessary.
  • the outside air supply unit 39 includes a pipe 39c connected to the central portion of the upper surface 37c of the main body cylindrical portion 37a, and an outside air supply opening / closing valve 39a and an outside air supply pump 39b attached thereto.
  • the pipe 39c is provided in alignment with the central axis of the main body cylindrical portion 37a so that outside air is supplied into the main body cylindrical portion 37a.
  • the air supply hole connected to the pipe 39c is 1.
  • the present invention is not limited to this, and the pipe 39c may be connected to these by providing the entire upper surface 37c.
  • the diffuser pipe 38 is provided at the center of the lower surface 37b on the outlet side of the main body cylindrical portion 37a.
  • the inner surface of the diffuser pipe 38 gradually shows its cross-sectional area according to the flow, but a smooth surface trumpet type (not shown)
  • Multi-stage diffusers 38 a to 38 c having a circular cross section while increasing in a plurality of stages as shown in FIG. 3 are provided and connected to the intake pipe 7.
  • one ballast water treatment apparatus 3 is provided, but depending on the amount of seawater to be treated, a plurality of units may be provided in parallel, or in the case where nanobubble treatment is performed continuously, they may be installed in series. Further, an appropriate number of stepped venturi tubes 33 installed in parallel is selected. When the number of stepped venturi pipes 33 is 1, the front chamber 31a and the rear chamber 31b can be omitted, and the water intake pipe 7 and the connection pipe 36 can be directly connected to the inlet 34 and the outlet 35 of the stepped venturi pipe 33.
  • ballast seawater 2 pumped from the ballast tank 1 is pushed in while being rapidly pressurized from the inlet-side reduced diameter portion 33a toward the throat portion 33b by the high-pressure pump 9, and rapidly expands in the shear flow generating recess 33d.
  • a large shear bubble is generated, and energy concentration and rapid release are realized by utilizing a fluid resonance phenomenon in the shear flow generation recess 33d without sucking air from the outside to generate a large amount of nanobubbles.
  • Nanobubbles are bubbles with a strong surface tension and are present in water with almost no volume.
  • a part of the generated large amount of nanobubbles rapidly expands (rebounds) as the pressure decreases in the outlet-side enlarged portion 33c, and a part of the bubbles suddenly shrinks when the pressure is suddenly recovered, and a microjet and a shock wave when bursting. Is generated.
  • the remaining portion passes through the rear chamber 31b and the connection pipe 36 and flows into the subsequent swirl flow generating portion 37.
  • the sterilizing component-containing ballast seawater 2 containing nanobubbles remaining in large quantities flows at a high speed according to the inclination of the connection pipe 36, and at the exit while swirling at a high speed along the inner wall of the swirling flow generation unit 37. It moves in the direction of a certain diffuser pipe 38, and a vigorous swirling flow is formed in this process. And the pressure of an outer peripheral part becomes higher than the pressure of the center part of the main body cylindrical part 37a by the centrifugal force of this high speed turning.
  • the swirling flow generation unit 37 may or may not suck outside air from the outside air supply unit 39. If the outside air is not sucked, outside air is not introduced, and thus the pressure in the main body cylindrical portion 37a decreases. On the other hand, when the outside air is sucked, the pressure in the main body cylindrical portion 37a is not lowered so much. Instead, a large amount of MN bubbles (micro / nano bubbles with air inside) will be generated. Further, if the pressure in the central portion due to the swirling flow in the main body cylindrical portion 37a is sufficiently low, natural suction is performed, and if it is insufficient, forced intake by the outside air supply pump 39b is performed.
  • the diffuser pipe 38 is a single or multistage diffuser 38a to 38c, at the corner of the inner peripheral surface due to a decrease in the water pressure due to a sudden step-like expansion over one or several steps when passing through this. Cavitation is promoted and intense turbulence occurs and flows into the intake pipe 7 on the downstream side.
  • the aeration effect by the introduction of the outside air in the swirling flow generation unit 37 contributes to the vaporization removal of the decomposition products (FIG. 6). This is also the case with water injection, protozoa having a relatively hard shell, the outer shell of zooplankton is destroyed and damaged, and then the aquatic organisms and fungi are more easily removed by the sterilizing components supplied thereafter. Kill.
  • the cascade field is an abrupt pressure fluctuation field where a large amount of nanobubbles intervene and causes intense cavitation.
  • a large amount of nanobubbles are generated in the shear flow generating recess 33d and compressed in the throat portion 33b on the outlet side.
  • the outer periphery to which the centrifugal force of the swirling flow in the main body cylindrical portion 37a continues from the outlet side enlarged portion 33c, which is an expansion field, to the negative pressure field in which the water pressure continues from the rear chamber 31b and the connecting pipe 36 decreases.
  • the positive pressure field in the region and the field that changes rapidly from the central part of the swirling flow to the negative pressure field with a decrease in water pressure from the central part of the swirl flow to the diffuser pipe 38 are said.
  • the cavitation also called room temperature boiling phenomenon
  • cavitation erosion an intense fluid phenomenon (cavitation erosion) that destroys even the metal surface.
  • the object is reduced by strong interference in the decay process in the pressure recovery field. It starts and finally generates intense microjets and shock waves of several hundreds of meters / second.
  • the shock wave destroys the remaining surviving aquatic creatures and fungi, and at the same time promotes the collapse of other bubbles.
  • (ClO ⁇ ) is rendered harmless electrochemically or physicochemically (see FIG. 6).
  • the sterilizing component mixing device 4 following the ballast water treatment device 3 is sufficient to completely kill the aquatic organisms that have barely survived through the cascade field of the ballast water treatment device 3 in a maximum of 5 days (IMO standard). It is an apparatus for mixing an appropriate amount of sterilizing components, such as an apparatus for mixing an appropriate amount of sodium hypochlorite or an apparatus for electrolyzing the ballast seawater 2 to generate sodium hypochlorite.
  • the sterilizing component is sodium hypochlorite as a representative example
  • the sterilizing component mixing device 4 is described using an AC electrolysis device as a representative example.
  • three-pole AC seawater electrolyzer will be described as a representative example.
  • the AC electrolysis apparatus 4 of the present embodiment is an in-line method, and has a double structure in which the electrodes 41a to 41c are fixed inside in order to pass the entire amount of the treated seawater 2 through the electrodes 41a to 41c.
  • the electrodes 41a to 41c are made of titanium or stainless steel, and are entirely formed in a porous flat plate shape (for example, a lath net or a punching metal), and are plated with platinum. Electrodes 41a to 41c are attached to the outlet side end of the inner tube 42 at a predetermined interval (equal distance), and the outer circumferences of these electrodes 41a to 41c are in contact with the inner surface of the outer tube 43.
  • the seawater 2 passing between the outer tube 43 and the inner tube 42 is configured such that the entire amount passes through the mesh of the electrodes 41a to 41c as described above.
  • the outer pipe 43 is connected to the intake pipe 7.
  • a number of through-holes 44 for water passage are formed in the portion from the inlet side to the central portion of the inner tube 42, and the inner tube 42 is connected to the outer tube 43 on the inlet side between the inner tube 42 and the outer tube 43.
  • Support pillars 45 for holding in the center are provided radially in three directions.
  • closing plates 46 and 47 are attached to a portion beyond the through hole 44 and a terminal portion.
  • Each electrode 41a to 41c is provided with a wiring connected to the control unit 15, and connects the inner tube 42 and the outer tube 43, and a support tube column 48 for holding the inner tube 42 at the center of the outer tube 43 at the outlet portion. It is led out through.
  • the inner tube 42 is provided to attach the electrodes 41a to 41c.
  • the electrodes 41a to 41c can be fixed in the outer tube 43 by the inner peripheral surface of the outer tube 43 or by other methods. If present, the inner tube 42 is not necessarily required.
  • the seawater 2 is poured into the ballast tank 1 so that the draft of the ship lightened with unloading does not rise more than necessary.
  • the on-off valves R1b and R2b are closed and the on-off valves R1a and R2a are opened so that the seawater 2 flows only through the intake pipe 7.
  • the high-pressure pump 9 is operated to take seawater from the water intake 6 into the ship.
  • various kinds of large and small impurities, coarse aquatic organisms, zooplankton, phytoplankton, and the like existing in the seawater are removed by the filtering device F1. These captured aquatic organisms are returned to the sea at the port of unloading by backwashing.
  • the ballast seawater 2 that has passed through the filtration device F1 for water intake passes through the water intake pipe 7 by the high-pressure pump 9 and is supplied to the nanobubble generator 3 in its entirety.
  • the open / close valve 39a is opened as necessary, and the outside air supply pump 39b is operated (or by natural intake) to supply outside air.
  • the ballast water treatment apparatus 3 generates a large number of fine nanobubbles and microbubbles that have grown in the ballast seawater 2 due to the mechanism described above, and all of the aquatic products or the like in the ballast seawater 2 are rapidly collapsed. Most of it is damaged, ie killed or injured.
  • the open / close valve 39a for introducing outside air may be closed to use only the cavitation effect.
  • the above-described cascade field is created and the seawater 2 passes through it. Therefore, all or most of the aquatic creatures in the seawater 2 are severely damaged or killed.
  • sodium hypochlorite which is the minimum concentration of chlorine (3 mg / L) required to kill the aquatic organisms damaged by the sterilizing component mixing device 4 in the ballast tank 1 in a maximum of 5 days.
  • the chlorine-containing seawater 2 is put into the ballast tank 1. Damaged aquatic creatures are rapidly damaged by the chlorine in the ballast tank 1 and die. Thereby, chlorine is consumed and the concentration is reduced to about 1 mg / L. This residual chlorine serves to suppress the reactivation and reproduction of still living aquatic products and their cysts.
  • ballast water 2 When you arrive at the next port of call, you will be loaded. As the hull sinks with the loading, ballast water 2 must be discharged to the port of call. Therefore, the on-off valves R1a and R2a are closed, the on-off valves R1b and R2b are opened, the high-pressure pump 9 is operated to pump up the ballast water 2, and the entire amount is passed through the ballast water treatment device 3 to decompose residual chlorine. Then, the discharged ballast water 2 is adsorbed with the activated carbon of the sterilizing component removal processing unit 16 immediately before the drainage-side filtration device F2 to remove residual chlorine that has not been completely decomposed, and filtered by the drainage-side filtration device F2, and then into the sea Throw away.
  • FIG. 6 is test data showing the decomposition action of residual chlorine by the nanobubble generator according to the present invention, and assumes the decomposition of residual chlorine during drainage.
  • the chlorine concentration 12 mg / L or more When the device was used, a minimum concentration of 3 mg / L was sufficient as the chlorine concentration at the time of administration to extinguish at least 5 days after administration.
  • the concentration of free residual chlorine remaining in the ballast tank after 5 days was 1 mg / L.
  • a residual chlorine meter (manufactured by Techno Echo Co., Ltd.) is used to measure free residual chlorine in seawater.
  • free residual chlorine refers to chlorine gas (Cl 2 ), hypochlorous acid (HOCl), and hypochlorite ion (OCl ⁇ ) present in the sample water (seawater in the ballast tank).
  • the seawater used in the experiment had a salinity of 3.64 mg / L, a water temperature of 4.3 ° C, a test environment temperature of 7 ° C, a humidity of 42%, and a residual chlorine concentration of 1.0 mg / L.
  • the water was pumped and passed through a nanobubble generator. The flow rate at that time is 138 L / min.
  • the nano-bubble generating device 3 is prepared as a diffuser pipe 38 having one and two stages, and when the outside air is not introduced from the outside air supply unit 39 into the main body cylindrical portion 37a (without outside air suction) and when it is introduced ( The test was performed separately with external air suction.
  • the number of stepped venturi tubes 33 used in the nanobubble generator 3 is fifteen.
  • the test results are as shown in FIG. 6.
  • the residual chlorine concentration in the case of the one-stage type is 0.6 mg / L (0.4 mg / L is decomposed). Removal) and was the best. Therefore, by using the nanobubble generating device 3 of the present invention, the amount of activated carbon for adsorption of residual chlorine concentration can be greatly reduced at the time of drainage. Damage can be done, and the amount of sodium hypochlorite used to kill water and sterilize can be reduced.
  • a Ballast water detoxification treatment system P1, P2 Branch part R1, R2 Water flow switching valve 1 Ballast tank 2 Seawater 3 Ballast water treatment device (nano bubble generator) 33 Stepped venturi tube 33b Throat portion 33d Shear flow generating recess 37 Swirling flow generating portion 39 Outside air supply portion 4 AC electrolyzer 41a to 41c AC electrode 43 Outer tube 6 Intake port 7 Intake tube 9 High-pressure pump 11 Drain tube 12 Drain port 15 Control unit 16 Sterilization component removal processing unit 17 Pumping pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本発明は単に通水するだけでバラスト水に含まれている殺菌成分を分解していくことが出来、殺菌成分吸着剤のようなものを大幅に少なくすることが出来るバラスト水処理装置を提供することを解決課題とする。 本発明のバラスト水処理装置3は、取水口6からバラストタンク1に至る取水管7に設けられ、高圧圧送ポンプ9から取水した海水2の供給を受ける段付ベンチュリ管33を1乃至複数本並設して内蔵した剪断流発生部31と、接続配管36を介して剪断流発生部31に続いて設けられた本体円筒部37aとバラストタンク1に向かう取水管7に接続するデフューザ配管38とを備えた旋回流発生部37とで構成され、殺菌成分混入装置4を介してバラストタンク1へバラスト水2を供給することを特徴とする。

Description

バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
本発明は船舶のバラストタンクに積み込まれるバラスト水の無害化処理に関する。
最近のグローバル化による貿易の急拡大と大型船舶の地球規模での運航に伴い、膨大なバラスト水(船舶の寄港地で給・排水される空船時のバランス用の水)が世界中にばらまかれ、これにより寄港地の湾岸生態系を乱すという問題がクローズアップされている。このため船舶のバラスト水及び沈殿物の規制とその管理のための国際条約が採択され、船舶のバラスト容量に応じたバラスト水処理基準(水質、高濃度の残留薬剤を含まないこと)を順守することが義務付けられるようになった。
 その方法の1つとして、海水のバラストタンクへの注水に当たっては海水を濾過して海水中の動植物性プランクトン等比較的大型の水生生物を捕捉・除去する取水用濾過装置、濾過された海水中に殺菌剤(次亜塩素酸ナトリウム)を供給する殺菌成分混入装置(殺菌剤の直接投与又は海水の電気分解)、殺菌成分混入装置の下流側に設置され、殺菌剤が混入した濾過海水をベンチュリ効果によって拡散させると同時に濾過海水中の水生生物に対して損傷を与えるか死滅させるベンチュリ管、殺菌剤が混入したバラスト水の放出に当たって殺菌剤を分解する殺菌成分分解剤供給装置と、この殺菌成分分解剤供給装置の下流側に設置され、殺菌成分分解剤を拡散するベンチュリ管(注水時のものと兼用)とを備えたバラスト水処理装置(特許文献1、図2)が提案されている。また、ベンチュリ管を直列に接続し、最後列のベンチュリ管の下流にさらに殺菌剤を投入して殺菌力を増す場合も開示されている(特許文献1、図3)。
 ここで、殺菌剤投与が前述のような海水の電気分解方式による場合、その方法は種々のものがある(例えば特許文献2)。バラスト水処理では、殺菌剤に濃淡が生じないように且つ迅速に大量のバラスト水を処理していく必要があり、単に海水の電気分解を行い、生成した殺菌剤を濾過海水に混入するという方式や殺菌剤の投与だけでは殺菌成分の濃度が不均一になって生き残るものが多くなり、バラスト処理としては不適切であった。特許文献1ではそのためにベンチュリ管を採用し、殺菌剤の均一拡散を図っている。
 そして殺菌剤の濃度を所定値(細菌の繁殖を抑制する量)で保ちつつ次の寄港地まで航海し、そこで排水時に殺菌成分分解剤を投入して殺菌剤を分解するとしている。その場合、殺菌剤を完全に分解しようとすれば過剰の分解剤の投入が必要となってこれが排水に残留し、排水地の海水を汚染してしまうという問題がある。
 なお、マイクロバブル発生用のベンチュリ管として従来より高効率のものとして喉部に開口する剪断流発生用の凹所を有する段付ベンチュリ管が開示されている(特許文献3)。
特開2007-144391 特開平06-254567 特開2009-136864
 本発明はこのような従来技術の問題点を解決するためになされたもので、単に通水するだけで大量のバラスト水に含まれている殺菌成分のかなりの量を分解して行くことが出来、殺菌成分分解剤或いは殺菌成分吸着剤のようなものの使用を出来る限り少なくすることが出来るバラスト水処理装置を提供することをその解決課題とし、付随的には前記バラスト水処理装置を使用することによってより簡便なバラスト水無害化処理システムを提供すること並びに該装置におけるバラスト水の処理方法の提供を解決課題とする。
 請求項1にかかる発明は、
(1a) 取水口6からバラストタンク1に至る取水管7に設けられ、高圧圧送ポンプ9から取水した海水2の供給を受ける剪断流発生部31と、接続配管36を介して剪断流発生部31に続いて設けられた旋回流発生部37とで構成され、殺菌成分混入装置4を介してバラストタンク1へバラスト水2を供給するバラスト水処理装置3であって、
(1b)  剪断流発生部31は、流れに従ってその横断面積を次第に減少する入口側縮径部33a、入口側縮径部33aの下流側に設けられ、流れに従ってその横断面積を次第に増加する出口側拡径部33c、入口側縮径部33aと出口側拡径部33cとを結ぶ喉部33b、及び喉部33bに開口した剪断流発生凹所33dとで構成された段付ベンチュリ管33を1乃至複数本並設して内蔵したものであり、
(1c)  旋回流発生部37は、円筒状でその外周面に対して剪断流発生部31の接続配管36が傾斜して接続された本体円筒部37a、その出口に流れ方向に沿ってその横断面積を次第に拡大する内周面が設けられ、殺菌成分混入装置4に向かう取水管7に接続するデフューザ配管38とで構成されたことを特徴とする。
 請求項2にかかる発明は、請求項1のデフューザ配管38に関するもので、デフューザ配管38の内周面は流れ方向に沿ってその横断面積を段状に拡大する1乃至多段デフューザ38a~38cとなっていることを特徴とする。
 請求項3にかかる発明は、請求項1の旋回流発生部37に関するもので、旋回流発生部37には本体円筒部37aの入口側上面37cの中央部分に外気供給部39が設置されていることを特徴とする。
 請求項4にかかる発明は、請求項1に記載されたバラスト水処理装置3を使用したバラスト水無害化処理システムAで、
(4a) バラスト水2を蓄えるバラストタンク1と、
(4b) 取水口6とバラストタンク1とを繋ぐ取水管7と、
(4c) 取水管7に設置された高圧圧送ポンプ9と、
(4d) 高圧圧送ポンプ9の下流側に設置され、請求項1に記載されたバラスト水処理装置3と、
(4e) バラスト水処理装置3の下流側に設けられ、バラスト水処理装置3から送られたバラスト水2に殺菌成分を混入させる殺菌成分混入装置4と、
(4f) バラストタンク1と高圧圧送ポンプ9の上流側の取水管7とを接続する揚水配管17と、
(4g) バラスト水処理装置3の下流の取水管7から分岐した排水管11と、
(4h) 排水管11に設けられた残留殺菌成分除去装置16と、
(4i) 取水管7と揚水配管17との分岐部分P1に設けられ、取水時と揚水時の切替を行う通水切替弁R1と、
(4j) 取水管7と排水管11との分岐部分P2に設けられ、取水時と排水時の切替を行う通水切替弁R2とで構成されたことを特徴とする。
 請求項5にかかる発明は、請求項4に記載したバラスト水無害化処理システムAによるバラスト水無害化処理方法で、
 バラストタンク1への給水時では、取水した海水2を濾過した後、濾過海水2を請求項1に記載したバラスト水処理装置3に通し、然る後、該海水2に殺菌成分5を加えてからバラストタンク1に供給し、
 バラストタンク1からの排水時では、バラストタンク1内の海水2を汲みだして請求項1に記載したバラスト水処理装置3に通し、続いて活性炭にて該海水2内の残留殺菌成分を除去した後、排水することを特徴とする。
 本発明では、バラストタンク1への注水時において、取水した海水2を圧入するとバラスト水処理装置3内でナノバブルの大量発生と旋回流によるかなりの量のナノバブルのマイクロバブル化、残留ナノバブルやマイクロバブルの連鎖的破裂などが混在するカスケード場を生成させることができ、このカスケード場に微小動植物水生生物や菌類を含む海水2を通過させることで、前記水生生物等の全部或いはその大半を傷付け或いは殺滅することができるので、傷付きつつも生き残った水生生物等の更なる殺滅には少量の殺菌成分の混入で足ることになる。しかも、前記カスケード場を通過した生き残り水生生物等は大きなダメージを受けているので、時間の経過(最長5日)とともに前記殺菌成分の効果で次第に死滅して行く。ただ、前述のようなカスケード場に耐え得るようなシスト(一時的に小さな細胞体や幼生が厚い膜を被って休眠状態に入ったような状態のもの)が残留し、これらが長い航海中にバラストタンク1内での再活性化と増殖を起こす可能性もあるが、前記混入殺菌成分がこれを抑制する。
 海外荷積港で荷積時にバラストタンク1内のバラスト水2を排水する場合、バラストタンク1のバラスト水2は殺菌成分を含むため、再度、バラスト水処理装置3によるある程度の殺菌成分の分解及び残留殺菌成分除去装置16を通しての脱殺菌成分除去を行ってから排水する。これにより前述の殺菌成分やバラスト水2内に生存していたわずかな残留水生々物や細菌類もこのとき分解及び殺滅される。
本発明の配管系統図 本発明で使用するバラスト水処理装置の作動時で、図4のX-X部分断面図 図2のY-Y断面図 図2のZ-Z部分断面図 本発明で使用する交流電気分解装置の概略断面図 バラスト水のナノバブル発生装置通流による殺菌成分分解・揮散状況を示す表
 以下、本発明に係る海水無害化処理システムAの1例について具体的に説明する。同システムAの一例として、船舶のバラスト水の給排水装置や発電所の冷却設備に使用される給排水システムであるが、以下、船舶のバラスト水の給排水用を代表例として説明する。なお、発電所の冷却システムの場合は、船舶を発電所、バラストタンクを冷却水貯留タンク、バラスト水を冷却水と読み替えるものとする。
 バラストタンク1は船舶の船首部分から船尾近傍部分にかけて船底に設けられたバラスト水2を蓄えるためのタンクで、内部に多数の連通孔112を有する縦横の仕切り壁111が設けられ、図示しない配水設備でバラストタンク1内のバラスト水2の量が調整され、船舶のバランスを保つようになっている。
 取水口6と排水口12は船側部に設けられており、取水管7にて取水口6とバラストタンク1とが繋がれており、取水管7の取水口6又はその近傍部には取水用濾過装置F1が設置され、更に取水用濾過装置F1に続いて高圧圧送ポンプ9、バラスト水処理装置3、殺菌成分混入装置4が設置されている。そして、取水用濾過装置F1と高圧圧送ポンプ9との間の分岐部分P1において揚水配管17が取水管7に接続されており、バラストタンク1のバラスト水2を揚水するようになっている。そして前記分岐部分P1には通水切替弁R1が設けられている。高圧圧送ポンプ9の下流側にはバラスト水処理装置3が設けられており、バラスト水処理装置3の下流側には殺菌成分混入装置4が設けられていて、殺菌成分混入装置4から引き出された取水管7がバラストタンク1に繋がっている。そして、バラスト水処理装置3と殺菌成分混入装置4との間の分岐部分P2に排水管11が設けられており排水口12に接続されている。前記分岐部分P2には通水切替弁R2が設けられている。前記排水口12またはその近傍部に排水用濾過装置F2が設置され、排水用濾過装置F2の上流側にて排水管11に殺菌成分除去処理部16が設置されている。殺菌成分除去処理部16の充填剤としては海洋投棄前にバラスト水処理装置3により分解処理し切れずに残留した殺菌成分を吸着する活性炭のようなものが考えられる。
 通水切替弁R1、R2は通水方向を切り替えるもので、通常、三方電磁切替弁が使用される。図の実施例の場合、分岐部分P1、P2に通水切替弁R1、R2と同じ働きをする一対の開閉弁R1a、R1b、R2a、R2bがそれぞれに設置されるように表示している。ここで開閉弁R1aは取水口6側の濾過装置F1から分岐部分P1との間に設けられており、開閉弁R1bは揚水配管17に設けられている。開閉弁R2aは分岐部分P2と殺菌成分混入装置4ととの間、開閉弁R2bは排水管11に設けられている。
 取水用濾過装置F1は粗濾過部と微細濾過部に分かれており、粗濾過部は、船側部の取水口6から取水された海水2中の大小様々なごみなどの夾雑物、くらげや海藻類などの水生生物の内、粗大物を除去し、粗濾過部に続いて設けられた微細濾過部では海水2中に存在する動植物プランクトン類を或る程度補足する。同様に排水用濾過装置F2はバラストタンク1から揚水されたバラスト水2内の夾雑物その他を濾過する。
 高圧圧送ポンプ9の下流側に設けられたバラスト水処理装置3は、入口側から剪断流発生部31、これに続き、その本体円筒部37aの出口に接続されたデフューザ配管38を有する旋回流発生部37とで構成され、その一例は図2~4に示すようなものである。剪断流発生部31は、前室31a、多数の段付ベンチュリ管33が並設装着されている後室31b、後室31bと旋回流発生部37とを繋ぐ接続配管36とで構成されている。前室31aは高圧圧送ポンプ9からの配管(取水管7)に接続される部分で、前室31a内に開口する複数の並列配置された段付ベンチュリ管33の入口34をカバーするための内径が拡張された有底円筒状のもので、底部分に前記取水管7が接続され、開口側が後室31bとフランジ接続されている。
 後室31bは前室31aと同様の有底円筒状のもので、入口側の開口部分を閉塞する仕切板31cに複数の段付ベンチュリ管33が並列して挿通設置されている。そして、後室31bの後面31dから接続配管36が導出され、旋回流発生部37の本体円筒部37aの出口側外周面に対して前記接続配管36が傾斜して接続されている。その接続角度は旋回流発生部37の本体円筒部37aの出口側外周面に対して傾斜して(例えば、接線方向)に接続されている。
 段付ベンチュリ管33は、入口34は多角形(前記多角形は入口34間に流れに対して直角な状態となって流路抵抗となる平面部が発生しないように仕切板31cのほぼ全面に密に並設出来れば良く、これらには3~6角形があり、ここでは6角形が選択され、これらをハニカム状に配列している。勿論、入口34は多角形でなく、図示しないが円形でもよく、この場合は互いに近接する円形入口の間に仕切板31cが位置することになるので、この部分が抵抗となって前室31a側での圧損が若干大きくなる。)で、入口34から喉部33bに向かって次第にその内径を縮径しつつその断面形状を円形に変化させ、入口34から喉部33bに向かって流線型を構成する入口側縮径部33a、短くて中空細円筒状の喉部33b、喉部33bから出口方向に向かってその内径を拡径して行く断面形状円形の出口側拡径部33c及び喉部33bに開口している剪断流発生凹所33dとで構成されており、剪断流発生凹所33dはこの場合、喉部33b全周にわたって開口する円盤状の空隙である。剪断流発生凹所33dの開口幅やサイズ(深さ)を調節することによって喉部33bに通流する全容積の海水2にナノバブルを発生させることができる。
 旋回流発生部37は、円筒状の本体円筒部37aと出口に設けられたデフューザ配管38及び必要に応じて設けられる外気供給部39で構成される。外気供給部39は本体円筒部37aの上面37cの中央部分に接続された配管39c、これに取り付けられた外気供給開閉弁39aと外気供給ポンプ39bとで構成されている。勿論、作動中の旋回流発生部37の内部が負圧の場合には外気供給ポンプ39bを設けることなく、配管39cによる自然吸気とすることも可能である。前記配管39cは本体円筒部37aの中心軸に合わせて設けられ、外気が本体円筒部37a内に供給されるようになっている。なお、図の実施例では配管39cに繋がる給気孔が1であるが、これに限られず、上面37c全面に設け、配管39cをこれらに接続するようにしてもよい。
 デフューザ配管38は本体円筒部37aの出口側の下面37bの中央に設けられ、その内面には内径が流れに従って次第にその断面積を、図示しないが滑らかな面のラッパ型或いは図示しないが1段又は図3のような複数にて段状に増加しつつその断面形状は円形を呈する多段デフューザ38a~38cが設けられ、取水管7に接続されている。
 本実施例ではバラスト水処理装置3は1基としているが、処理海水量によっては複数台を並列に併設してもよいし、連続してナノバブル処理を行う場合は直列に設置してもよい。また、並列に設置される段付ベンチュリ管33の数は適宜な数が選ばれる。段付ベンチュリ管33の数が1の場合、前室31a及び後室31bを省略して取水管7や接続配管36を直接段付ベンチュリ管33の入口34や出口35に接続することができる。
 ここで、バラスト水処理装置3の排水時における脱塩素作用及び取水時の水生々物等にダメージを与える作用を説明する。バラストタンク1から揚水されたバラスト海水2は高圧圧送ポンプ9にて入口側縮径部33aから喉部33bに向かって急速に加圧されつつ押し込まれ、剪断流発生凹所33dで急に膨張して激しい剪断流を生じさせ、外部からの空気を吸引することなしで剪断流発生凹所33dにおける流体的共鳴現象を利用してエネルギの集中と急開放を実現して大量のナノバブルを発生させる。ナノバブルは強い表面張力を持つ気泡で殆ど体積ゼロの状態で水の中に存在している。発生した大量のナノバブルの一部は出口側拡径部33c内において圧力の減少と共に急膨張(リバウンド)し、その一部は圧力の急回復時に気泡サイズが急縮小して破裂時にマイクロジェットと衝撃波を生成する。残部は後室31b、接続配管36を通ってこれに続く旋回流発生部37に流入する。
 旋回流発生部37では大量に残留していたナノバブルを含む殺菌成分含有バラスト海水2が接続配管36の傾斜に合わせて高速で流れ込み、旋回流発生部37の内壁に沿って高速旋回しつつ出口であるデフューザ配管38方向に移動し、この過程で激しい旋回流を形成する。そしてこの高速旋回の遠心力によって本体円筒部37aの中心部分の圧力より外周部分の圧力が高くなる。
 なお、旋回流発生部37では外気供給部39から外気を吸引する場合と吸引しない場合があり、吸引してない場合は外気導入がないから本体円筒部37a内の圧力が低下する。一方、外気を吸引すると、その分、本体円筒部37a内の圧力はあまり低下しない。代わりに多量のMNバブル(マイクロ・ナノバブルで、内部が空気)を発生させることになる。また、本体円筒部37a内の旋回流による中心部分の圧力が十分低ければ自然吸引となり、不十分であれば外気供給ポンプ39bによる強制吸気となる。
 強制給気の場合、外気供給部39の開閉弁39aを開き、作動させた外気供給ポンプ39bからの空気を旋回流発生部37に圧入すると(或いは自然吸引により外気が吸引される場合も同じ)、配管30cの出口部分で空気が殺菌成分含有バラスト海水2と混じり合った大量の泡を含む気液混合液となり、前述の接続配管36からの旋回流に乗ってその外気供給部39の中心軸にある程度沿って旋回しつつ出口に向かって進む。
 そして吸引した空気のある程度サイズの大きい泡部分と、殺菌成分含有バラスト海水2である液体部分との間に比重差が発生するため、液体部分に遠心力が作用し、泡部分には向心力が作用して気液分離がある程度起こり、多量の泡が中心において集合してその太さを変えつつ且つ紐状を呈しつつ出口方向に移動し、その間、液体部分の高速旋回による旋回流で泡の一部が微細に剪断分割されてナノバブルを含む微細バブルの大量発生と急速な拡散が本体円筒部37a中で生じる。
 外気導入をしなかった場合には、大量に残留した段付ベンチュリ管33からの大量のナノバブルは旋回流の低圧部分で成長してマイクロバブル化(リバウンド)する。
 そして、その出口37dにおいて圧縮された後、デフューザ配管38において再度急激な膨張による水圧減少により、ナノバブルのマイクロバブル化とマイクロバブルの破泡によるキャビテーションの発生促進と激しい乱流が生じる。デフューザ配管38が1又は多段デフューザ38a~38cの場合、これを通過する際の1又は何段にもわたる急激な階段状の膨張による内周面全周における水圧減少により、その角部に於いてキャビテーションの発生促進と激しい乱流が生じ、そして下流側の取水管7に流れ込む。この間、大量のマイクロバブル化した泡が連続的に破泡して出口側拡径部33cや本体円筒部37a内での破泡作用よりも激しい衝撃圧(破泡するときに泡の一側面が他側面に向かって槍のように突出して高圧を生成する現象)、剪断力、高温、化学的作用(酸化力の強いOHラジカル、即ち、活性酸素)を発生する。そして、これらによって、海水2中の次亜塩素酸ナトリウム(NaClO)の(ClO)を或る程度分解して無害化する。旋回流発生部37での外気導入によるエアレーション効果は分解生成物の気化除去に貢献する(図6)。この点は注水時の場合も同様で、比較的固い殻を有する原虫類、動物プランクトンの外殻を破壊して損傷を与え、その後に供給された殺菌成分により水生々物や菌類をより容易に殺滅する。
 以上のように、バラスト水処理装置3では、段付ベンチュリ管33からデフューザ配管38に至る後述するカスケード場において、ナノバブルのマイクロバブル以上の大きさへの急成長と連鎖的に起こる破泡が生じ、マイクロジェットと衝撃波の連鎖の場(カスケード)を生じる。
 前記カスケード場とは、大量のナノバブルが介在し、激しいキャビテーションを繰り広げる急激な圧力変動の場を言い、ここでは剪断流発生凹所33dで大量のナノバブルが発生し、出口側の喉部33bで圧縮された後、膨張場である出口側拡径部33cから後室31bや接続配管36へと続く水圧が減少した負の圧力場へと続き、本体円筒部37aにおける旋回流の遠心力が加わる外周領域の正の圧力場と旋回流の中心部分からデフューザ配管38に至る水圧減少の負の圧力場へと急激に変化する場を言う。
 なお、前記キャビテーション(別名常温沸騰現象とも呼ばれる)は、金属表面さえ破壊する強烈な流体現象(キャビテーション・エロージョン)で、物理的には圧力回復の場におけるその崩壊過程で強干渉により非対象縮小を開始し、最終的には数100m/秒という激しいマイクロジェットと衝撃波を発生させる。前述のように衝撃波は周辺の生き残り水生々物や菌類を破壊すると同時に、別の気泡の崩壊を連鎖的に促進させる。更に、電気化学的、あるいは物理化学的に(ClO)を無害化する(図6参照)。
 バラスト水処理装置3に続く殺菌成分混入装置4は、バラスト水処理装置3のカスケード場を通過して辛うじて生き残った水生々物類を最長5日間で完全に殺滅する(IMO基準)のに十分な量の殺菌成分を混入するための装置で、次亜塩素酸ナトリウムを適量混入するような装置やバラスト海水2を電気分解して次亜塩素酸ナトリウムを生成させるような装置である。本実施例では殺菌成分は次亜塩素酸ナトリウムをその代表例とし、殺菌成分混入装置4は交流電気分解装置をその代表例として説明する。交流電気分解装置4には、その1つを接地電極、他を正・負電極とした3電極(3極交流式)を1組(又は、接地電極なしで正・負電極を1組=2極交流式)とし、これを1乃至複数組設けたものが使用される。ここでは3極交流式海水電気分解装置をその代表例として説明する。
 本実施例の交流電気分解装置4はインライン方式で、電極41a~41cに処理海水2の全量を通過させるために内部において電極41a~41cを固定する2重構造となっている。電極41a~41cはチタン又はステンレス製で全体が多孔平板状(例えばラス網、パンチングメタル)に形成され、プラチナメッキが施されている。そして、内管42の出口側端部に電極41a~41cが所定の間隔(等距離)を空けて取り付けられており、更にこれら電極41a~41cの外周は外管43の内面に接しており、外管43と内管42との間を通る海水2は全量が前述のように電極41a~41cの網目を通過するように構成されている。前記外管43は取水管7に接続されている。
 内管42の入口側から中央部分にかけての部分には通水用の貫通孔44が多数形成され、更に内管42と外管43との間には入口側において内管42を外管43の中心に保持するための支持柱45が3方向に放射状に設けられている。そして内管42内には貫通孔44を超えた部分と終端部分に閉塞板46、47が取り付けられている。各電極41a~41cには制御部15に接続される配線が設けられ、内管42と外管43とを繋ぎ、出口部分において内管42を外管43の中心に保持する支持管柱48を通って外部に導出されている。
 本実施例では交流電気分解装置4は1基であるが、必要に応じて直列または並列にて複数基を設置することもできる。なお、この場合は電極41a~41cを取り付けるために内管42を設けるようになっているが、外管43の内周面あるいはその他の方法により電極41a~41cを外管43内で固定できるのであれば、内管42は必ずしも必要とはされない。
 以上のように構成された本実施例を説明する。荷下港では、荷下しに連れて軽くなった船舶の喫水が必要以上に上がらないようにバラストタンク1に海水2を注水することが行われる。その場合、取水管7だけに海水2が通流するように、開閉弁R1b、R2bを閉じ、開閉弁R1a、R2aを開く。この状態で高圧圧送ポンプ9を作動させて取水口6から海水を船内に取り込む。その際、前述のように濾過装置F1によって海水中に存在する大小様々な夾雑物、粗大水生生物、動物プランクトン、植物プランクトン等が除去される。これら捕捉水生生物等は逆洗により荷下港の海に戻される。
 取水用の濾過装置F1を通ったバラスト海水2は高圧圧送ポンプ9により取水管7を通過してその全量がナノバブル発生装置3に供給される。バラスト水処理装置3の旋回流発生部37では必要に応じて開閉弁39aを開放し、外気供給ポンプ39bを作動させて(或いは自然吸気で)外気を供給している。そしてバラスト水処理装置3において上述したメカニズムによりバラスト海水2中に微細なナノバブル、これが成長したマイクロバブルが無数に発生し、これが急激に崩壊することによりバラスト海水2中の水生々物等の全部或いはその大半がダメージ、即ち、殺滅又は傷付けられる。なお、注水時(勿論、排水時も同様であるが)には外気導入用の開閉弁39aを閉じ、前記キャビテーション効果だけを利用する場合もある。バラスト水処理装置3では前述のカスケード場が作られて海水2はその中を通過することになるから、海水中2の水生々物等の全部又はその大半は大きく傷付き或いは死滅する。そしてこれに続く殺菌成分混入装置4で傷付いた水生々物等をバラストタンク1内で最長5日で死滅させるに必要な最小濃度の塩素(3mg/L)となる次亜塩素酸ナトリウムを加え、バラストタンク1に塩素含有海水2を投入する。傷付いた水生々物等はバラストタンク1内において該塩素により急速にダメージが深まり死滅する。これにより塩素は消費されて1mg/L程度の濃度に低下する。この残留塩素はなお生存している水生々物等やそのシストの再活性化や繁殖を抑制する働きをする。
 次の寄港地に着くと荷を積み込む事になる。積み込みに合わせて船体が沈むのでその分バラスト水2を寄港地に放出しなければならない。そこで開閉弁R1a、R2aを閉じ、開閉弁R1b、R2bを開いた状態で高圧圧送ポンプ9を作動させてバラスト水2を汲み上げ、全量をバラスト水処理装置3に通して残留塩素を分解し、続いて排水側濾過装置F2の直前で放出バラスト水2を殺菌成分除去処理部16の活性炭にて吸着処理して分解し切れなかった残留塩素を除去し、排水側濾過装置F2で濾過した後、海中投棄する。
 図6は本発明に係るナノバブル発生装置による残留塩素の分解作用を示す試験データで、排水時の残留塩素の分解を想定している。ナノバブル発生装置3を使用せず、次亜塩素酸ナトリウムの投与だけで水生々物等を投与後少なくとも5日間で絶滅させるには、12mg/L以上の塩素濃度にする必要があるが、ナノバブル発生装置を使用した場合、投与後少なくとも5日間で絶滅させるには、投与時の塩素濃度として、最小3mg/Lの濃度で足りた。そして、5日経過した状態に於けるバラストタンク内に残留している遊離残留塩素の濃度は1mg/Lとした。海水中の遊離残留塩素の測定には残留塩素計(テクノエコー株式会社製)を使用する。ここで、遊離残留塩素とは検水(バラストタンク内の海水)中に存在する塩素ガス(Cl2)、次亜塩素酸(HOCl)及び次亜塩素酸イオン(OCl-)を指す。
 実験に供した海水の塩分濃度は3.64mg/L、水温が4.3℃、試験環境の気温が7℃、同湿度が42%、残留塩素濃度が1.0mg/Lの海水を高圧圧送ポンプで揚水し、ナノバブル発生装置を通過させた。その時の流量は138L/分である。
 ナノバブル発生装置3は、デフューザ管38として1段のものと2段のものを用意し、外気供給部39から、外気を本体円筒部37aに導入しない場合(外気吸引なし)と、導入する場合(外気吸引あり)とに分けて試験した。ナノバブル発生装置3に使用した段付ベンチュリ管33の本数は15である。
 試験結果は図6の通りで、いずれの場合でも脱塩素効果は認められ、特に、1段式(外気吸引あり)の場合の残留塩素濃度が0.6mg/L(0.4mg/Lが分解除去)と最も優れていた。従って、本発明のナノバブル発生装置3を使用することにより、排水時では残留塩素濃度の吸着用の活性炭の使用量を大幅に削減でき、給水時では、既述のように水生々物等に大きなダメージを与えることが出来て、殺水生々物・殺菌用の次亜塩素酸ナトリウムの使用量を減少させることができる。
A     バラスト水無害化処理システム
P1、P2 分岐部分
R1、R2 通水切替弁
1     バラストタンク
2     海水
3     バラスト水処理装置(ナノバブル発生装置)
33   段付ベンチュリ管
33b 喉部
33d 剪断流発生凹所
37   旋回流発生部
39   外気供給部
4     交流電気分解装置
41a~41c 交流電極
43   外管
6     取水口
7     取水管
9     高圧圧送ポンプ
11   排水管
12   排水口
15   制御部
16   殺菌成分除去処理部
17   揚水配管

Claims (5)

  1. (1a)  取水口からバラストタンクに至る取水管に設けられ、高圧圧送ポンプから取水した海水の供給を受ける剪断流発生部と、接続配管を介して剪断流発生部に続いて設けられた旋回流発生部とで構成され、殺菌成分混入装置を介してバラストタンクへバラスト水を供給するバラスト水処理装置であって、
    (1b)  剪断流発生部は、流れに従ってその横断面積を次第に減少する入口側縮径部、入口側縮径部の下流側に設けられ、流れに従ってその横断面積を次第に増加する出口側拡径部、入口側縮径部と出口側拡径部とを結ぶ喉部、及び喉部に開口した剪断流発生凹所とで構成された段付ベンチュリ管を1乃至複数本並設して内蔵したものであり、
    (1c)  旋回流発生部は、円筒状でその外周面に対して剪断流発生部の接続配管が傾斜して接続された本体円筒部、その出口に流れ方向に沿ってその横断面積を次第に拡大する内周面が設けられ、殺菌成分混入装置に向かう取水管に接続するデフューザ配管とで構成されたことを特徴とするバラスト水処理装置。
  2.  デフューザ配管の内周面は流れ方向に沿ってその横断面積を段状に拡大する1乃至多段デフューザとなっていることを特徴とする請求項1に記載のバラスト水処理装置。
  3.  旋回流発生部には本体円筒部の入口側上面の中央部分に外気供給部が設置されていることを特徴とする請求項1に記載のバラスト水処理装置。
  4.  請求項1に記載されたバラスト水処理装置を使用したバラスト水無害化処理システムで、
    (4a) バラスト水を蓄えるバラストタンクと、
    (4b) 取水口とバラストタンクとを繋ぐ取水管と、
    (4c) 取水管に設置された高圧圧送ポンプと、
    (4d) 高圧圧送ポンプの下流側に設置され、請求項1に記載されたバラスト水処理装置と、
    (4e) バラスト水処理装置の下流側に設けられ、バラスト水処理装置から送られたバラスト水に殺菌成分を混入させる殺菌成分混入装置と、
    (4f) バラストタンクと高圧圧送ポンプの上流側の取水管とを接続する揚水配管と、
    (4g) バラスト水処理装置の下流の取水管から分岐した排水管と、
    (4h) 排水管に設けられた残留殺菌成分除去装置と、
    (4i) 取水管と揚水配管との分岐部分に設けられ、取水時と揚水時の切替を行う通水切替弁と、
    (4j) 取水管と排水管との分岐部分に設けられ、取水時と排水時の切替を行う通水切替弁とで構成されたことを特徴とするバラスト水無害化処理システム。
  5.  請求項1に記載したバラスト水処理装置を使用してバラストタンクへの給水とバラストタンクからの排水を行うバラスト水無害化処理方法であって、
     バラストタンクへの給水時では、取水した海水を濾過した後、濾過海水をバラスト水処理装置に通し、然る後、該海水に殺菌成分を加えてからバラストタンクに供給し、
     バラストタンクからの排水時では、バラストタンク内の海水を汲みだしてバラスト水処理装置に通し、続いて活性炭にて該海水内の残留殺菌成分を除去した後、排水することを特徴とするバラスト水無害化処理方法。
PCT/JP2010/001575 2010-03-05 2010-03-05 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法 WO2011108032A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/001575 WO2011108032A1 (ja) 2010-03-05 2010-03-05 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
KR1020127023001A KR101677479B1 (ko) 2010-03-05 2010-03-05 밸러스트수 처리 장치와 상기 장치를 사용한 밸러스트수 무해화 처리 시스템 및 그 방법
EP10825825.2A EP2476652B1 (en) 2010-03-05 2010-03-05 Ballast water treatment system and method
US12/677,032 US8557122B2 (en) 2010-03-05 2010-03-05 Ballast water treatment equipment, a ballast water detoxifying treatment system using the same, and a method for treating the ballast water
DK10825825.2T DK2476652T3 (en) 2010-03-05 2010-03-05 System and method for treatment of ballast water
JP2010510003A JP5551585B2 (ja) 2010-03-05 2010-03-05 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001575 WO2011108032A1 (ja) 2010-03-05 2010-03-05 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法

Publications (1)

Publication Number Publication Date
WO2011108032A1 true WO2011108032A1 (ja) 2011-09-09

Family

ID=44541720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001575 WO2011108032A1 (ja) 2010-03-05 2010-03-05 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法

Country Status (6)

Country Link
US (1) US8557122B2 (ja)
EP (1) EP2476652B1 (ja)
JP (1) JP5551585B2 (ja)
KR (1) KR101677479B1 (ja)
DK (1) DK2476652T3 (ja)
WO (1) WO2011108032A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013192000A2 (en) * 2012-06-18 2013-12-27 The Government Of The Usa Of America As Represented By The Secretary Of The Dept. Of The Interior Nozzle mixing methods for ship ballast tanks
JP2014223627A (ja) * 2014-07-30 2014-12-04 三菱電機株式会社 微細気泡発生装置
JP2016203082A (ja) * 2015-04-21 2016-12-08 沖野 晃俊 ラジカル機能液の製造方法およびラジカル機能液を用いた浄化方法
JP2017170277A (ja) * 2016-03-18 2017-09-28 株式会社ノリタケカンパニーリミテド 気泡含有液体の製造装置及びその使用方法
JP6230738B1 (ja) * 2016-09-01 2017-11-15 株式会社晃和工業 害敵水生々物殺滅用の多孔ノズル
WO2019049650A1 (ja) * 2017-09-05 2019-03-14 株式会社富士計器 微細気泡液生成器
WO2019069350A1 (ja) * 2017-10-02 2019-04-11 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法
WO2019069349A1 (ja) * 2017-10-02 2019-04-11 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306596B1 (ko) * 2013-05-23 2013-09-10 삼건세기(주) 밸러스트수 처리시스템
JP2016104474A (ja) * 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
JP6043900B1 (ja) * 2016-02-12 2016-12-14 有限会社情報科学研究所 内燃機関エンジンによるウルトラファインバブルアクアジェット装置。
EP3555005A1 (en) * 2016-12-15 2019-10-23 Michael Smith System and method for creating cavitation in a fluid
KR102666811B1 (ko) 2016-12-16 2024-05-20 엘지전자 주식회사 미세 기포 발생 시스템
US10240243B2 (en) * 2017-05-05 2019-03-26 Hamilton Sundstrand Corporation Flow distributor hole pattern
WO2017179742A1 (ja) * 2017-05-30 2017-10-19 日本郵船株式会社 バラスト水システム
CN110773115B (zh) * 2019-11-20 2022-07-12 苏州溪能环保科技有限公司 一种高效水处理装置
KR102539609B1 (ko) * 2022-08-04 2023-06-02 에스엔시스(주) 버블 생성기를 구비하는 살균 여과 장치 및 이를 이용한 선박 평형수 처리 시스템

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003723A1 (ja) * 2004-07-05 2006-01-12 Daiki Ataka Engineering Co., Ltd. バラスト水の処理方法およびその処理装置
JP2006212513A (ja) * 2005-02-02 2006-08-17 Ishikawajima Harima Heavy Ind Co Ltd バラスト水浄化装置
JP2006218458A (ja) * 2005-02-14 2006-08-24 Mitsui Eng & Shipbuild Co Ltd バラスト水の処理装置
JP2007152264A (ja) * 2005-12-07 2007-06-21 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2008086892A (ja) * 2006-09-29 2008-04-17 Nippon Kainan Boshi Kyokai 船舶バラスト水の処理装置
JP2008114099A (ja) * 2006-10-31 2008-05-22 Sanyo Facilities Industry Co Ltd マイクロバブル生成装置及びバブル微小化器具。
JP2008246268A (ja) * 2006-02-03 2008-10-16 Osamu Matsumoto 気泡発生装置
JP2009513333A (ja) * 2005-10-28 2009-04-02 リーソース バラスト テクノロジーズ (プロプライアタリー) リミテッド 水生生物を除去するための水処理のための方法および装置
JP2009066532A (ja) * 2007-09-13 2009-04-02 Jfe Engineering Kk ベンチュリ管装置及び該ベンチュリ管装置を用いたバラスト水処理装置
JP2009136864A (ja) * 2007-11-16 2009-06-25 Nippon Sozai Kk マイクロバブル発生装置
JP2010000402A (ja) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd マイクロバブル発生装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319569A (ja) 1986-07-14 1988-01-27 Toyo Commun Equip Co Ltd 漏洩電流検出方法
JP2623204B2 (ja) 1993-02-26 1997-06-25 英雄 早川 水の改質方法
DE69518524T2 (de) * 1994-07-13 2001-04-19 Angelo L. Mazzei Gasinjektion in flüssigkeiten und entfernung von ungelöstem gas
JPH1074746A (ja) 1996-05-23 1998-03-17 Ebara Corp 液体原料気化装置
EP0814177A3 (en) 1996-05-23 2000-08-30 Ebara Corporation Vaporizer apparatus and film deposition apparatus therewith
JPH108255A (ja) 1996-06-20 1998-01-13 Ebara Corp 液体原料気化装置
US5865995A (en) * 1997-04-02 1999-02-02 Nelson; William R. System for treating liquids with a gas
US5863128A (en) * 1997-12-04 1999-01-26 Mazzei; Angelo L. Mixer-injectors with twisting and straightening vanes
JP3650543B2 (ja) 1999-07-01 2005-05-18 株式会社リンテック 気化装置
KR100412307B1 (ko) * 2001-05-23 2003-12-31 주식회사두합크린텍 미세기포 발생장치 및 발생방법
US20030015481A1 (en) * 2001-06-28 2003-01-23 Eidem Ola Magne Method and apparatus for treating/disinfecting ballast water in ships
JP3763521B2 (ja) * 2001-10-26 2006-04-05 株式会社オ−ラテック マイクロバブル発生装置
WO2003093176A2 (en) * 2002-05-02 2003-11-13 Peter Drummond Mcnulty Apparatus and method for water treatment
JP2005144320A (ja) * 2003-11-14 2005-06-09 Yamato:Kk 流体混合装置
KR100814658B1 (ko) * 2004-02-13 2008-03-18 미츠비시 쥬고교 가부시키가이샤 액체의 무해화 처리 방법 및 그 장치
JP2006088115A (ja) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd バラスト水の処理方法および装置
US7624969B2 (en) * 2004-09-30 2009-12-01 Justin Schletz Two-stage injector-mixer
JP4844244B2 (ja) 2005-06-10 2011-12-28 Jfeエンジニアリング株式会社 バラスト水処理装置及び処理方法
KR100963351B1 (ko) * 2005-06-10 2010-06-14 제이에프이 엔지니어링 가부시키가이샤 밸러스트수 처리 장치 및 처리 방법
JP5034210B2 (ja) * 2005-10-14 2012-09-26 Jfeエンジニアリング株式会社 バラスト水処理装置
JP2007069071A (ja) * 2005-09-05 2007-03-22 Sharp Corp 微細気泡発生装置およびそれが組み込まれた微細気泡循環システム
JP4099200B2 (ja) * 2006-10-17 2008-06-11 東フロコーポレーション株式会社 気液混合装置
JP4370342B2 (ja) * 2007-03-30 2009-11-25 大晃機械工業株式会社 水中微細物等の処理装置
JP2008100225A (ja) * 2007-11-02 2008-05-01 Toflo Corporation Kk 気液混合装置
KR20100006610A (ko) * 2008-07-10 2010-01-21 장학정 와류되는 유체를 이용한 온수 가열장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003723A1 (ja) * 2004-07-05 2006-01-12 Daiki Ataka Engineering Co., Ltd. バラスト水の処理方法およびその処理装置
JP2006212513A (ja) * 2005-02-02 2006-08-17 Ishikawajima Harima Heavy Ind Co Ltd バラスト水浄化装置
JP2006218458A (ja) * 2005-02-14 2006-08-24 Mitsui Eng & Shipbuild Co Ltd バラスト水の処理装置
JP2009513333A (ja) * 2005-10-28 2009-04-02 リーソース バラスト テクノロジーズ (プロプライアタリー) リミテッド 水生生物を除去するための水処理のための方法および装置
JP2007152264A (ja) * 2005-12-07 2007-06-21 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2008246268A (ja) * 2006-02-03 2008-10-16 Osamu Matsumoto 気泡発生装置
JP2008086892A (ja) * 2006-09-29 2008-04-17 Nippon Kainan Boshi Kyokai 船舶バラスト水の処理装置
JP2008114099A (ja) * 2006-10-31 2008-05-22 Sanyo Facilities Industry Co Ltd マイクロバブル生成装置及びバブル微小化器具。
JP2009066532A (ja) * 2007-09-13 2009-04-02 Jfe Engineering Kk ベンチュリ管装置及び該ベンチュリ管装置を用いたバラスト水処理装置
JP2009136864A (ja) * 2007-11-16 2009-06-25 Nippon Sozai Kk マイクロバブル発生装置
JP2010000402A (ja) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd マイクロバブル発生装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKUNI INOKO ET AL.: "Dai 6 Ko Filter/Yakuzai/Cavitation Hoshiki ni yoru Ballast Mizu Shori System no Kaihatsu Jirei, Ballast Mizu Kisei to Ballast Mizu Shori Sochi no Kaihatsu Jirei", KABUSHIKI KAISHA NTS, 3 September 2008 (2008-09-03), pages 89 - 105 *
See also references of EP2476652A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013192000A2 (en) * 2012-06-18 2013-12-27 The Government Of The Usa Of America As Represented By The Secretary Of The Dept. Of The Interior Nozzle mixing methods for ship ballast tanks
WO2013192000A3 (en) * 2012-06-18 2014-02-27 The Government Of The Usa Of America As Represented By The Secretary Of The Dept. Of The Interior Nozzle mixing methods for ship ballast tanks
US9688551B2 (en) 2012-06-18 2017-06-27 The United States Of America As Represented By The Secretary Of The Interior Nozzle mixing apparatus and methods for treating water in ship ballast tanks
JP2014223627A (ja) * 2014-07-30 2014-12-04 三菱電機株式会社 微細気泡発生装置
JP2016203082A (ja) * 2015-04-21 2016-12-08 沖野 晃俊 ラジカル機能液の製造方法およびラジカル機能液を用いた浄化方法
JP2017170277A (ja) * 2016-03-18 2017-09-28 株式会社ノリタケカンパニーリミテド 気泡含有液体の製造装置及びその使用方法
JP2018038394A (ja) * 2016-09-01 2018-03-15 株式会社晃和工業 害敵水生々物殺滅用部材及び後付型殺滅装置並びに養殖設備
WO2018043269A1 (ja) * 2016-09-01 2018-03-08 株式会社晃和工業 害敵水生生物殺滅用の多孔ノズル
JP6230738B1 (ja) * 2016-09-01 2017-11-15 株式会社晃和工業 害敵水生々物殺滅用の多孔ノズル
JP2018038393A (ja) * 2016-09-01 2018-03-15 株式会社晃和工業 害敵水生々物殺滅用の多孔ノズル
WO2019049650A1 (ja) * 2017-09-05 2019-03-14 株式会社富士計器 微細気泡液生成器
JP2019042700A (ja) * 2017-09-05 2019-03-22 株式会社富士計器 微細気泡液生成器
CN111093817A (zh) * 2017-09-05 2020-05-01 株式会社富士计器 微细气泡液生成器
CN111093817B (zh) * 2017-09-05 2022-06-14 株式会社富士计器 微细气泡液生成器
WO2019069350A1 (ja) * 2017-10-02 2019-04-11 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法
WO2019069349A1 (ja) * 2017-10-02 2019-04-11 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法
JPWO2019069350A1 (ja) * 2017-10-02 2020-10-22 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法
JPWO2019069349A1 (ja) * 2017-10-02 2020-10-22 Hack Japan ホールディングス株式会社 気泡生成装置、気泡生成方法

Also Published As

Publication number Publication date
US8557122B2 (en) 2013-10-15
JPWO2011108032A1 (ja) 2013-06-20
KR20130051433A (ko) 2013-05-20
US20120318751A1 (en) 2012-12-20
DK2476652T3 (en) 2015-12-14
KR101677479B1 (ko) 2016-11-18
JP5551585B2 (ja) 2014-07-16
EP2476652B1 (en) 2015-09-16
EP2476652A1 (en) 2012-07-18
EP2476652A4 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5551585B2 (ja) バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
JP4844244B2 (ja) バラスト水処理装置及び処理方法
CN101193824B (zh) 压载水处理装置和压载水处理方法
JP4821361B2 (ja) バラスト水処理方法
US9061925B2 (en) Liquid treatment methods and apparatus
EP1900693B1 (en) Ballast water treating apparatus
US20100072143A1 (en) Water treatment system
KR101466113B1 (ko) 이산화탄소를 이용한 고효율 전기분해 선박평형수 처리장치 및 처리방법
KR101118055B1 (ko) 선박평형수의 인라인 처리 장치
JP4737157B2 (ja) バラスト水処理装置およびバラスト水処理方法
JP4915313B2 (ja) バラスト水処理装置
JP5132229B2 (ja) ベンチュリ管装置及び該ベンチュリ管装置を用いたバラスト水処理装置
JP4915811B2 (ja) ベンチュリ管装置及び該ベンチュリ管装置を用いたバラスト水処理装置
EP2913305B1 (en) Method for treating ballast water and device for treating ballast water used therefor
JP4978002B2 (ja) バラスト水処理方法
JP2006263563A (ja) バラスト水中の微生物等の殺減装置
JP5034210B2 (ja) バラスト水処理装置
CN204714623U (zh) 一种船舶压载水处理装置
CN106915844A (zh) 一种海洋赤潮羟基自由基应急处置方法及船载装置
AU2012203894B2 (en) Ballast water treatment methods and apparatus
JP2007330957A (ja) 気液混合装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010510003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010825825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12677032

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127023001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载