WO2011158139A2 - Matériau dégradable pour différentes applications pétrolifères - Google Patents
Matériau dégradable pour différentes applications pétrolifères Download PDFInfo
- Publication number
- WO2011158139A2 WO2011158139A2 PCT/IB2011/052052 IB2011052052W WO2011158139A2 WO 2011158139 A2 WO2011158139 A2 WO 2011158139A2 IB 2011052052 W IB2011052052 W IB 2011052052W WO 2011158139 A2 WO2011158139 A2 WO 2011158139A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zein
- fluid
- tubular
- subterranean formation
- wellbore
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/68—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
- C09K8/805—Coated proppants
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/08—Down-hole devices using materials which decompose under well-bore conditions
Definitions
- This invention relates to methods and fluids used in treating a subterranean formation.
- the invention relates to the preparation and use of fluid delivery systems comprising a biodegradable material.
- degradable polymers that may be used in the oil field services industry such as polysaccharides (e.g. starch, guar, chitosan, hydroxypropyl guar, hydroxymethyl guar, xanthan, hydroxy etyl cellulose) and proteins (e.g. collagen, fibrin, and gelatin).
- polysaccharides e.g. starch, guar, chitosan, hydroxypropyl guar, hydroxymethyl guar, xanthan, hydroxy etyl cellulose
- proteins e.g. collagen, fibrin, and gelatin
- Synthetic degradable polymers derived from polyesters, polyanhydride and polyamide have also been developed to target specific applications.
- Starch is currently used in oilfield applications such as fracturing, drilling and diversion. In fracturing application starch is mainly used as a fluid loss additive. Starch is also used as a viscosifier and as a fluid loss additive in drilling fluids
- the starch is not fully solubilized and is deposited onto the fracture surface or formation wall as part of the filtercake.
- Considerable effort is placed in the cleanup of filter cakes e.g. prior to gravel packing to ensure minimum impairment to flow of formation fluids.
- the mode of degrading the polymers is through hydrolysis, oxidation or exposure to heat.
- Some biopolymers may be degraded through the use of enzymes however, it has temperature limitations. In any event, a low cost, reliable, readily available material is desirable for use in the oil field services industry.
- Embodiments of this invention relate to compositions and methods of treating a subterranean formation including forming a fluid comprising zein, and introducing the fluid to a subterranean formation.
- Embodiments of this invention relate to compositions and methods of treating a subterranean formation comprising a wellbore, including introducing a tubular to the wellbore wherein the tubular comprises zein.
- Figure 1 is a plot of viscosity as a function of shear rate of an embodiment of the invention.
- Figure 2 is a schematic view of a tubular comprising an embodiment of the invention.
- Figure 3 is a schematic view of a tubular comprising an additional embodiment of the invention.
- Figure 4 is a schematic view of a tubular comprising an additional embodiment of the invention.
- compositions of the present invention are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
- zein may be selected for a variety of oil field services applications. Furthermore, the material properties can be adjusted to target a wide range of specific oilfield applications. The degradability of the material can be controlled by using different chemistries. The applications that can be targeted ranges from swelling packers, degradable completion hardware, degradable canister, screenless completions, degradable bridge or temporary plugs, degradable piping, degradable fluid loss additive, surface modification of proppants, coatings on breakers, coated additives, coating as barriers to oil or water, coating for controlled release of materials with controlled delivery, reactive coating on proppants that become sticky, diversion, lost circulation, conformance, water control, drilling, cementing, gravel packing, wormhole, etc. Shapes and sizes of zein particles or particles coated with zein may be selected to control fluid loss and diversion.
- Some embodiments may benefit from using zein to coat the proppant to change its wettability profile. Likewise, some embodiments may benefit from using zein to change the wettability profile of the subterranean formation.
- Zein is 45-50 percent of the protein present in corn. It is a group of alcohol soluble proteins (prolamins) found in corn endosperm. Centrifugal separation of starch from the endosperm leaves protein rich mass (corn gluten) from which zein is extracted. It is rich in glutamic acid, leucine, alanine and proline that gives it high hydropobicity. Zein is an alcohol soluble protein and exhibits hydrophobic properties and low water uptake. Zein has alpha, beta, and gamma protein fractions. Alpha accounts from 75-85 percent of the total protein and is dominated by Z19 and Z22 protein corresponding to 19 kDa and 22 kDa molecular weight. Zein is commercially available from Sigma- Aldrich of Houston, TX, Showa Sangyo Co Ltd of Japan and Freeman Industries of Tuckahoe, NY.
- Zein can form tough greaseproof coatings, with flexibility and compressibility. Zein is commercially utilized due to its film formation capability in the food and pharmaceutical industries. The thin films of zein are formed that may be edible or may be utilized in biodegradable packaging.
- Zein films on its own are generally brittle but when the films are plasticized they are flexible. Addition of different plasticizers and cross linkers will give films of different mechanical and barrier properties that could be utilized accordingly for specific applications. Plasticization and crosslinking affects its mechanical and barrier properties. Polyethylene glycol and glycerol are effective plasticizer for zein dispersion. Zein dissolves in ethyl alcohol/water 90/10 w/w mixture. Stability of the aqueous zein dispersion is dependent on pH and electrolyte content. The dispersion is stable at pH of 3-4. Glass transition temperature of pure zein powder is 170.8 C. Zein dissolves in ethanol and is hydrophobic. Water resistance of zein can be achieved by modifying the hydrophilic side groups such NH 2 , OH, COOH, and SH by hydrophobic groups.
- plasticizers for zein include glycerol, glyceryl monesters, PEG and fatty acids. Zein is also plasticized by water although it is not soluble in water. Additional plasticizers include glycols such as triethylene glycol, propylene glycol, ethylene glycol, polyethylene glycol, and polypropylene glycol; sulfonamides such as benzene sulfonamide, N— ethyl benzene sulfonamide, p-toluene sulfonamide, and N-ethyl p-toluene sulfonamide; fatty acids such as oleic acid, palmitic acid, myristic acid, and stearic acid; amides such as acetamide, acetanilide, and urea; amides such as triethanolamine and diethanolamine; glyceryl esters such as glyceryl monooleate, glyceryl monopal
- Zein on its own has a glass transition temperature of 139 °C and its glass transition temperature decreases rapidly with moisture content.
- Zein may be utilized in the oilfield applications as a tunable glass transition temperature material e.g. in forming a plug of zein that is later removed due to absorption of water and lowering of glass transition temperature.
- Biodegradable fibers of zein on its own or its blend with other polymers such as chitosan may also be used as additives in drilling fluid, fracturing fluids or cement. These fibres could be used to generate diversion during fracturing operations, in the form of plugs, in the form of near wellbore screenouts, or in the form of far field diversion pills. The fibers could be also used as proppant suspension additives or as lost circulation material. Fibers of zein could also be used as strengthening fillers for materials requiring improved compressive, tensile or shear properties, such as cement, plugs, darts for applications such as treat and produce completions, etc.
- Zein could be used to generate thermoplastic parts and pieces, such as plugs for low temperature applications where the material is to be insoluble in water and oil, but might be solubilized and thus removed by injection of alcohol blends of specific composition.
- Zein can be also used in order to prepare melt composites with polyester materials, to alter the mechanical properties and the dissolution and degradation rate of said polyesters to acid, base and alcohol initiated hydrolysis alcoholysis.
- Zein would be used to alter the Tg and Tm (glass transition temperature, melting temperature) of the blend resulting typically in plasticized polymers, or polymers which would more easily swell, resulting in materials with enhanced degradation rates. This would be used for low temperature fiber applications.
- Zein may be adsorbed preferentially on hydrophobic or hydrophilic surfaces. Such surface modification with zein may be used on proppant coating or targeting specific sites in the subterranean formation. Zein may be used as binding agent e.g. in proppant and preventing proppant flowback.
- Zein may be used for some parts of conventional completions that will eventually degrade.
- Zein articles are degradable with temperature, time, and solvents.
- Zein articles may be made of different size and shape including fibers, particulates, tubulars, rods, and containers.
- the material may be used for casing, cementing, or general completions operations.
- perforating steps may benefit from using materials comprising zein.
- Zein may be used as a viscosifier. Zein may be x-linked to give unique material properties for oilfield applications. Crosslinkers such as borates, zirconium, or other crosslinkers often used in fracturing fluids may also be desirable for fluids comprising zein. Some zein compositions may benefit from further comprising other polymers such as guar or modified guar. Some compositions comprising zein may be used to form energized fluids and/or foams.
- the material may be especially desirable as a coating to protect from brine -based degradation.
- small particles and/or chemicals may be encapsulated with the material for process steps that include the presence of brine.
- zein may be used to encapsulate acids or oils for controlled release.
- Biodegradable nanospherical particles may be formed using zein to encapsulate solids such as breakers and liquids such as acids and alkalis.
- Zein may be used as an oxygen barrier e.g. in sensors since zein has excellent resistance to oxygen permeation.
- Zein may be used to protect encapsulated material from oxidation due to its pronounced oxygen barrier property.
- Zein may be used individually or blended with other resins such as rosin or neutral resins for coating proppants. The coated proppant may aid proppant transport during fracturing.
- Zein may be used to coat tubulars to prevent corrosion. Zein coating on tubulars to give improved cement bonding.
- Zein and fatty acid resin may be used for preparing semi solid resin plugs in oilfield applications.
- Zein may also be used as a barrier to oil and grease e.g. temporary plugs made from zein are dissolved using specific solvent such as methanol, ethylene glycol, DEG, ethyl ether, furfuryl alcohol, ethyl alcohol/water 90/10 w/w, acetic acid, lactic acid, citric acid, phenol + alcohol +water, ionic liquids (e.g. l-butyl-3-methylimidazolium chloride), benzene, tolune, xylene and acetone.
- specific solvent such as methanol, ethylene glycol, DEG, ethyl ether, furfuryl alcohol, ethyl alcohol/water 90/10 w/w, acetic acid, lactic acid, citric acid, phenol + alcohol +water, ionic liquids (e.g. l-butyl-3-methylimid
- solvents include acetamide, acetic acid, 2-amino-2-efhyl-l ,3-propanediol, 2- amino-2-methyl- 1 -propanol, 2-amino-2-mefhyl-l ,3-propanediol, o-aminophenol, m- aminophenol, aniline, benzyl alcohol, benzyl cellosolve, butylamine, butyl tartrate, 1,3-butylene glycol, o-cyclohexylphenol, 1,3-diaminopropanol, di[- -hydroxyethyl] janiline, diethanolamine, diefhylene glycol, diethylene glycol monoethyl ether (carbitol), diefhylene glycol monomethyl ether (methyl carbitol), diethylenetriamine, diglycol chlorohydrins, diisopropanolamine, diphenylquanidine, -diphenyl
- Additional solvents include water with acetone, acetonyl acetone, n- butanol, /-butanol, s-butanol, dioxalane, dioxane, ethanol, isobutanol, isopropanol, methanol, or «-propanol.
- solvents include a lower aliphatic alcohol with acetaldehyde, acetone, benzene, butyl lactate, chloroform, dichloromethane, diethylene glycol monoethyl ether, ethyl lactate, ethylene, dichloride, ethylene glycol,ethylene glycol monoethyl ether, furfural, methyl ethyl ketone, methylene chloride, nitroethane, nitromethane, propylene glycol, 1,1,2,2- tetrachloroethane, 1 ,2,3-trichloroethane, or toluene.
- solvents include a lower aliphatic alcohol with acetaldehyde, acetone, benzene, butyl lactate, chloroform, dichloromethane, diethylene glycol monoethyl ether, ethyl lactate, ethylene, dichloride, ethylene glycol,ethylene glycol monoethyl ether, fur
- ionic liquids may therefore be considered for not only the cleanup of filtercakes containing starch but also filtercakes containing zein or other biopolymers.
- EMIMEtOS03 l-ethyl-3- methylimidazolium ethylsulfate
- ionic liquid may also be used to dissolve polymers such as guar, starch and zein.
- the ionic liquid may also be used as a pre flush and post flush fluid in gravel pack operations.
- ionic liquids include l-ethyl-3 -methylimidazolium chloride, l-ethyl-3 -methylimidazolium methanesulfonate, 1-buty 1-3 -methylimidazolium chloride, 1- buty 1-3 -methylimidazolium methanesulfonate, l-ethyl-2,3-di-methylimidazolium ethylsulfate, methylimidazolium chloride, methylimidazolium hydrogensulfate, l-ethyl-3 -methylimidazolium hydrogensulfate, l-ethyl-3 -methylimidazolium tetrachloroalummate, l-butyl-3 -methylimidazolium hydrogensulfate, l-butyl-3 -methylimidazolium tetrachloroalummate, l-ethyl-3 -methylimidazolium
- zein may be used to suppress scaling especially with calcium or magnesium in either high or low temperature wells.
- This example uses ionic liquid such as l-butyl-3 -methylimidazolium chloride (BMIM CI) for filtercake cleanup containing biopolymers such as starch and zein.
- ionic liquid such as l-butyl-3 -methylimidazolium chloride (BMIM CI) for filtercake cleanup containing biopolymers such as starch and zein.
- Biopolymers such as starch and zein are soluble in ionic liquids up to 10% w/w concentration at 80 °C.
- 1 -Butyl-3 -methylimidazolium chloride (BMIM CI) ionic liquid is effective in solubilizing such biopolymers.
- Photographs show that 5% w/w of zein and starch that are insoluble in water and are soluble in 20% BMIMCl/80% water mixture at 80 C.
- Example 2 Zein may be used to form solid plugs e.g. degradable plugs or it may be used as zonal isolation plugs. Photographs show that zein is progressively more soluble as the concentration of zein increases at 1, 5, and 10 percent zein. This shows that plugs made from zein and utilized downhole may be dissolved using ethylene glycol.
- Zein may be used as a viscosifier for fluids used in subterranean formation.
- Figure 1 is a plot of viscosity as a function of shear rate of an embodiment of the invention.
- Figure 1 shows the effect of zein concentration on viscosity, as zein concentration increases, viscosity increases.
- Ethylene glycol was used as a base fluid to solubilize zein.
- Photographs show that zein particles are insoluble in ethylene glycol at 25 C however at 60 C they are completely soluble. This property indicates that diversion and cleanup applications may benefit from using this composition.
- a composite casing or tubular may be considered.
- Figure 2 illustrates an embodiment of a tubular.
- Such tubular will allow logging through casing of formation fluids.
- the composite tubulars/casings have the distinct advantage over the metallic tubular/casings since their non conductive properties makes them electrically transparent.
- such tubulars are also transparent to NM logging and/or resistivity measurements.
- the material may be degradable, also.
- the casing or tubular may comprise a canister.
- Figure 3 is a schematic view of a tubular comprising an additional embodiment of the invention.
- a metallic tubular that includes degradable material in a specific formatted array such that the degradable material disappears with time and creates perforations in the tubular. This concept may be used also to form a screen for sand control purposes. The shape and size of the degradable material may be varied.
- Figure 4 is a schematic view of a tubular comprising an additional embodiment of the invention. Varying the striations may be desirable for perforating process steps. Some embodiments of the invention may benefit from a non conductive, electrically transparent tubular.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Dairy Products (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011266722A AU2011266722B2 (en) | 2010-06-17 | 2011-05-10 | Degradable material for different oilfield applications |
EP11795264A EP2569392A2 (fr) | 2010-06-17 | 2011-05-10 | Matériau dégradable pour différentes applications pétrolifères |
CA2802141A CA2802141A1 (fr) | 2010-06-17 | 2011-05-10 | Materiau degradable pour differentes applications petroliferes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/817,881 US20110308802A1 (en) | 2010-06-17 | 2010-06-17 | Degradable material for different oilfield applications |
US12/817,881 | 2010-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011158139A2 true WO2011158139A2 (fr) | 2011-12-22 |
WO2011158139A3 WO2011158139A3 (fr) | 2012-04-12 |
Family
ID=45327653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/052052 WO2011158139A2 (fr) | 2010-06-17 | 2011-05-10 | Matériau dégradable pour différentes applications pétrolifères |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110308802A1 (fr) |
EP (1) | EP2569392A2 (fr) |
AU (1) | AU2011266722B2 (fr) |
CA (1) | CA2802141A1 (fr) |
WO (1) | WO2011158139A2 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8668019B2 (en) * | 2010-12-29 | 2014-03-11 | Baker Hughes Incorporated | Dissolvable barrier for downhole use and method thereof |
US20140190694A1 (en) * | 2013-01-04 | 2014-07-10 | Halliburton Energy Services, Inc. | Method of Treating Ultra-Low Permeable Subterranean Formations Using Proppant Particulates Coated with Degradable Material |
US20160060500A1 (en) * | 2013-04-09 | 2016-03-03 | Slaheddine Kefi | Composition and Methods for Completing Subterranean Wells |
AU2013402105B2 (en) * | 2013-09-24 | 2016-07-21 | Halliburton Energy Services, Inc. | Wettability altering fluids during downhole operations |
US9663707B2 (en) * | 2013-10-23 | 2017-05-30 | Baker Hughes Incorporated | Stimulation method using biodegradable zirconium crosslinker |
CN105368414A (zh) * | 2015-11-26 | 2016-03-02 | 天津滨海新区普瑞德石油科技有限公司 | 一种润湿反转剂组合物及其制备方法 |
US10961427B2 (en) | 2017-09-22 | 2021-03-30 | Baker Hughes, A Ge Company, Llc | Completion tools with fluid diffusion control layer |
GB201807489D0 (en) * | 2018-05-08 | 2018-06-20 | Sentinel Subsea Ltd | Apparatus and method |
US10961812B2 (en) | 2019-04-05 | 2021-03-30 | Baker Hughes Oilfield Operations Llc | Disintegratable bismaleimide composites for downhole tool applications |
CN111154468B (zh) * | 2020-01-06 | 2022-08-26 | 西南石油大学 | 一种用于油田堵水的选择性堵水剂 |
CN117860793B (zh) * | 2024-02-28 | 2024-05-07 | 云南白药集团中药资源有限公司 | 一种中药茯苓的产地趁鲜加工方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3839260A (en) * | 1971-07-12 | 1974-10-01 | Dow Chemical Co | Cementitious compositions and methods |
CA2405316A1 (fr) * | 2000-04-07 | 2001-10-18 | Schlumberger Canada Limited | Liquides pour puits de forage et leurs utilisations |
US6840318B2 (en) * | 2002-06-20 | 2005-01-11 | Schlumberger Technology Corporation | Method for treating subterranean formation |
US7398825B2 (en) * | 2004-12-03 | 2008-07-15 | Halliburton Energy Services, Inc. | Methods of controlling sand and water production in subterranean zones |
US8481462B2 (en) * | 2006-09-18 | 2013-07-09 | Schlumberger Technology Corporation | Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids |
US20080314594A1 (en) * | 2007-06-25 | 2008-12-25 | Still John W | Method of Heterogeneous Etching of Sandstone Formations |
US8084402B2 (en) * | 2007-07-24 | 2011-12-27 | Baker Huges Incorporated | Method of using ionic liquids to inhibit or prevent the swelling of clay |
US20090221453A1 (en) * | 2008-02-29 | 2009-09-03 | Sumitra Mukhopadhyay | Treatment Fluid With Oxidizer Breaker System and Method |
US20100004146A1 (en) * | 2008-07-02 | 2010-01-07 | Panga Mohan K R | Leak-Off Control Agent |
US8109335B2 (en) * | 2009-07-13 | 2012-02-07 | Halliburton Energy Services, Inc. | Degradable diverting agents and associated methods |
US8082992B2 (en) * | 2009-07-13 | 2011-12-27 | Halliburton Energy Services, Inc. | Methods of fluid-controlled geometry stimulation |
US8240379B2 (en) * | 2009-10-28 | 2012-08-14 | Schlumberger Technology Corporation | Shear-activated viscoelastic surfactant fluid and method |
-
2010
- 2010-06-17 US US12/817,881 patent/US20110308802A1/en not_active Abandoned
-
2011
- 2011-05-10 AU AU2011266722A patent/AU2011266722B2/en not_active Ceased
- 2011-05-10 CA CA2802141A patent/CA2802141A1/fr not_active Abandoned
- 2011-05-10 EP EP11795264A patent/EP2569392A2/fr not_active Withdrawn
- 2011-05-10 WO PCT/IB2011/052052 patent/WO2011158139A2/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20110308802A1 (en) | 2011-12-22 |
WO2011158139A3 (fr) | 2012-04-12 |
AU2011266722B2 (en) | 2014-07-03 |
EP2569392A2 (fr) | 2013-03-20 |
AU2011266722A1 (en) | 2013-01-10 |
CA2802141A1 (fr) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011266722B2 (en) | Degradable material for different oilfield applications | |
US7748452B2 (en) | Polymeric microspheres as degradable fluid loss additives in oilfield applications | |
US7703527B2 (en) | Aqueous two-phase emulsion gel systems for zone isolation | |
US8720555B2 (en) | Self-diverting high-rate water packs | |
US8003577B2 (en) | Method of treating subterranean formation with crosslinked polymer fluid | |
US6279656B1 (en) | Downhole chemical delivery system for oil and gas wells | |
US7981845B2 (en) | Partially neutralized polyhydroxy acids for well treatments | |
US20170015887A1 (en) | Smart lcm for strengthening earthen formations | |
CN108026439A (zh) | 具有可调降解特性的纤维素酯材料 | |
MX2011007485A (es) | Microesferas polimericas como aditivos degradables de perdida de fluido en aplicaciones de campo petrolifero. | |
SA516371315B1 (ar) | توليد وتحسين موصلية صدع دقيق | |
US10190040B2 (en) | Self-suspending proppant for hydraulic fracturing | |
CA3001565C (fr) | Methodes d'acidification de formations souterraines | |
SA517381528B1 (ar) | طرق معالجة بئر لحرف المائع أو العزل النطاقي | |
CA2822208C (fr) | Pilule polymere visqueuse du type a declenchement et ses procedes d'utilisation | |
US9932515B2 (en) | Fracturing fluid containing a viscosifying agent and curable resin additive | |
US10870795B2 (en) | Rheology modifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11795264 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2802141 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011795264 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011266722 Country of ref document: AU Date of ref document: 20110510 Kind code of ref document: A |