WO2011038259A1 - Glycosyle hydrolase synthétique à base de nano-armures d'adn - Google Patents
Glycosyle hydrolase synthétique à base de nano-armures d'adn Download PDFInfo
- Publication number
- WO2011038259A1 WO2011038259A1 PCT/US2010/050246 US2010050246W WO2011038259A1 WO 2011038259 A1 WO2011038259 A1 WO 2011038259A1 US 2010050246 W US2010050246 W US 2010050246W WO 2011038259 A1 WO2011038259 A1 WO 2011038259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial
- glycosyl hydrolase
- hydrolase enzyme
- acid
- dna
- Prior art date
Links
- 125000003147 glycosyl group Chemical group 0.000 title claims abstract description 45
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 73
- 108020004414 DNA Proteins 0.000 claims abstract description 72
- 108090000604 Hydrolases Proteins 0.000 claims abstract description 45
- 102000004157 Hydrolases Human genes 0.000 claims abstract description 45
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 39
- 230000003197 catalytic effect Effects 0.000 claims abstract description 37
- 230000007246 mechanism Effects 0.000 claims abstract description 27
- 150000001413 amino acids Chemical class 0.000 claims abstract description 25
- -1 guanidinyl Chemical group 0.000 claims abstract description 20
- 230000007062 hydrolysis Effects 0.000 claims abstract description 18
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 18
- 239000000816 peptidomimetic Substances 0.000 claims abstract description 13
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 10
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 10
- 102000053602 DNA Human genes 0.000 claims abstract description 8
- 150000001408 amides Chemical class 0.000 claims abstract description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 claims abstract description 7
- 150000001412 amines Chemical class 0.000 claims abstract description 7
- 125000003118 aryl group Chemical group 0.000 claims abstract description 7
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 7
- 229920002477 rna polymer Polymers 0.000 claims abstract description 7
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004202 carbamide Substances 0.000 claims abstract description 3
- 150000003573 thiols Chemical class 0.000 claims abstract description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 34
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 17
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 14
- 150000007942 carboxylates Chemical class 0.000 claims description 12
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229940104230 thymidine Drugs 0.000 claims description 8
- 229940035893 uracil Drugs 0.000 claims description 8
- 238000006352 cycloaddition reaction Methods 0.000 claims description 6
- 229940104302 cytosine Drugs 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 230000026030 halogenation Effects 0.000 claims description 5
- 238000005658 halogenation reaction Methods 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 4
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 4
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 4
- 150000001540 azides Chemical class 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000006880 cross-coupling reaction Methods 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229920001542 oligosaccharide Polymers 0.000 claims description 4
- 150000002482 oligosaccharides Chemical class 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 150000003852 triazoles Chemical class 0.000 claims description 4
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims description 3
- 150000001345 alkine derivatives Chemical group 0.000 claims description 3
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 claims description 3
- 229920001277 pectin Polymers 0.000 claims description 3
- 239000001814 pectin Substances 0.000 claims description 3
- 235000010987 pectin Nutrition 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- WKGZJBVXZWCZQC-UHFFFAOYSA-N 1-(1-benzyltriazol-4-yl)-n,n-bis[(1-benzyltriazol-4-yl)methyl]methanamine Chemical compound C=1N(CC=2C=CC=CC=2)N=NC=1CN(CC=1N=NN(CC=2C=CC=CC=2)C=1)CC(N=N1)=CN1CC1=CC=CC=C1 WKGZJBVXZWCZQC-UHFFFAOYSA-N 0.000 claims description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Chemical class C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 claims description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Chemical class C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 239000007983 Tris buffer Substances 0.000 claims description 2
- NPKGQBIUYHHPOT-UHFFFAOYSA-N [Cu+2].[C-]#[C-] Chemical compound [Cu+2].[C-]#[C-] NPKGQBIUYHHPOT-UHFFFAOYSA-N 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 230000029936 alkylation Effects 0.000 claims description 2
- 238000005804 alkylation reaction Methods 0.000 claims description 2
- 230000009435 amidation Effects 0.000 claims description 2
- 238000007112 amidation reaction Methods 0.000 claims description 2
- 238000005576 amination reaction Methods 0.000 claims description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 150000004662 dithiols Chemical class 0.000 claims description 2
- 230000032050 esterification Effects 0.000 claims description 2
- 238000005886 esterification reaction Methods 0.000 claims description 2
- 238000006266 etherification reaction Methods 0.000 claims description 2
- 229940029575 guanosine Drugs 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 claims description 2
- 235000010378 sodium ascorbate Nutrition 0.000 claims description 2
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 claims description 2
- 229960005055 sodium ascorbate Drugs 0.000 claims description 2
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 2
- 150000003838 adenosines Chemical class 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 36
- 108090000790 Enzymes Proteins 0.000 abstract description 36
- 238000003786 synthesis reaction Methods 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 13
- 239000000126 substance Substances 0.000 abstract description 10
- 238000010504 bond cleavage reaction Methods 0.000 abstract description 2
- 229940088598 enzyme Drugs 0.000 description 37
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 28
- 239000002585 base Substances 0.000 description 27
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 24
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 229940024606 amino acid Drugs 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 230000002255 enzymatic effect Effects 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 10
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 0 CC**(*C)=N Chemical compound CC**(*C)=N 0.000 description 9
- 235000003704 aspartic acid Nutrition 0.000 description 9
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Natural products ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 8
- 125000005647 linker group Chemical group 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 7
- 229950011008 tetrachloroethylene Drugs 0.000 description 7
- 229960002415 trichloroethylene Drugs 0.000 description 7
- 102000004310 Ion Channels Human genes 0.000 description 6
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 6
- LQZMLBORDGWNPD-UHFFFAOYSA-N N-iodosuccinimide Chemical compound IN1C(=O)CCC1=O LQZMLBORDGWNPD-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 235000013922 glutamic acid Nutrition 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- 238000005907 ketalization reaction Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000004220 glutamic acid Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000037427 ion transport Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 229920005610 lignin Polymers 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 3
- 108010059892 Cellulase Proteins 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- 108091064358 Holliday junction Proteins 0.000 description 3
- 102000039011 Holliday junction Human genes 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 229960005305 adenosine Drugs 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 150000003983 crown ethers Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000007071 enzymatic hydrolysis Effects 0.000 description 3
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012038 nucleophile Substances 0.000 description 3
- 230000005588 protonation Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 125000000899 L-alpha-glutamyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 230000006652 catabolic pathway Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000012866 crystallographic experiment Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229930182470 glycoside Natural products 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000302 molecular modelling Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 150000008300 phosphoramidites Chemical class 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- YHBMHZJVJIENBK-UHFFFAOYSA-N undec-10-ynamide Chemical compound NC(=O)CCCCCCCCC#C YHBMHZJVJIENBK-UHFFFAOYSA-N 0.000 description 2
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- OAOUTNMJEFWJPO-UHFFFAOYSA-N 10-undecynoic acid Chemical compound OC(=O)CCCCCCCCC#C OAOUTNMJEFWJPO-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- JVVRCYWZTJLJSG-UHFFFAOYSA-N 4-dimethylaminophenol Chemical compound CN(C)C1=CC=C(O)C=C1 JVVRCYWZTJLJSG-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-dimethylaminopyridine Substances CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- XJGFWWJLMVZSIG-UHFFFAOYSA-N 9-aminoacridine Chemical compound C1=CC=C2C(N)=C(C=CC=C3)C3=NC2=C1 XJGFWWJLMVZSIG-UHFFFAOYSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- PZAXWUJICUEBDB-UHFFFAOYSA-N C#CCCCCCCCCC(NCC(C(N1)=O)=CN(C(C2)OC(CO)C2O)C1=O)=O Chemical compound C#CCCCCCCCCC(NCC(C(N1)=O)=CN(C(C2)OC(CO)C2O)C1=O)=O PZAXWUJICUEBDB-UHFFFAOYSA-N 0.000 description 1
- QFEIYPPSKKRMMI-UHFFFAOYSA-N CC(OCC(C(C1)OC(C)=O)OC1N(C=C(CNC(CCCCCC#C)=O)C(N1)=O)C1=O)=O Chemical compound CC(OCC(C(C1)OC(C)=O)OC1N(C=C(CNC(CCCCCC#C)=O)C(N1)=O)C1=O)=O QFEIYPPSKKRMMI-UHFFFAOYSA-N 0.000 description 1
- CVWMHLARQFGZDD-UHFFFAOYSA-N CC(OCC(C(C1)OC(C)=O)OC1N(C=C(CNC(CCCCCCCCC#C)=O)C(N1)=O)C1=O)=O Chemical compound CC(OCC(C(C1)OC(C)=O)OC1N(C=C(CNC(CCCCCCCCC#C)=O)C(N1)=O)C1=O)=O CVWMHLARQFGZDD-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- GZZYFBHJTRULRK-UHFFFAOYSA-N NC(N)=S.NC(N)=S.NC(N)=S.NC(N)=S.I Chemical compound NC(N)=S.NC(N)=S.NC(N)=S.NC(N)=S.I GZZYFBHJTRULRK-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960001441 aminoacridine Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000005810 carbonylation reaction Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 235000005513 chalcones Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- IDNJBJJSMDYULP-UHFFFAOYSA-N chlorophosphonamidous acid Chemical compound NP(O)Cl IDNJBJJSMDYULP-UHFFFAOYSA-N 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- RFKZUAOAYVHBOY-UHFFFAOYSA-M copper(1+);acetate Chemical compound [Cu+].CC([O-])=O RFKZUAOAYVHBOY-UHFFFAOYSA-M 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 108091062164 depurinated DNA Proteins 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- LHWWETDBWVTKJO-UHFFFAOYSA-N et3n triethylamine Chemical compound CCN(CC)CC.CCN(CC)CC LHWWETDBWVTKJO-UHFFFAOYSA-N 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- HXJZHJLLMIGFCM-UHFFFAOYSA-N hydroxy-imino-di(propan-2-yloxy)-$l^{5}-phosphane Chemical compound CC(C)OP(N)(=O)OC(C)C HXJZHJLLMIGFCM-UHFFFAOYSA-N 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006362 organocatalysis Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000006385 ozonation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 125000004192 tetrahydrofuran-2-yl group Chemical group [H]C1([H])OC([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000583 toxicological profile Toxicity 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009901 transfer hydrogenation reaction Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01074—Glucan 1,4-beta-glucosidase (3.2.1.74)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
Definitions
- the present invention concerns DNA-based nanostructures that display hydrolytic activity against oligosaccharide polymers.
- All complex carbohydrates are comprised of repeating saccharide units; the nature of these monomers, as well as their relative connectivity, determines the overall chemical stability and function of the polysaccharide or oligosaccharide.
- Cellulose for example, consists exclusively of D- Glucose monomers bearing ⁇ -1,4 linkages, which render it extremely stable to environmental stresses due to the uniform hydrogen bonding network (see Fig. 1).
- hemicellulose is heterogeneously comprised of glucose, mannose, and galactose, and the relative linkages between the monomer units vary considerably. This randomness renders the oligomer susceptible to hydrolysis under mild conditions.
- Other saccharide constructs such as pectin and glycogen vary in their monomer constitutions, connectivities, and biological functions.
- the amino acids are 5.5A apart, and it is the conjugate base which intercepts the oxocarbenium ion.
- This glycosyl acetate adduct is highly susceptible to hydrolysis, and does so under a S n 2-like mechanism to afford the ⁇ -product.
- the glycosidic bond is also susceptible to hydrolysis by a number of organic and mineral acids, however many of these acids lead to substrate dehydration, rearrangement or degradation, and furthermore present issues regarding recyclability.
- the thiourea group is related to these acids in terms of hydrogen bonding ability, and is also able to cleave glycosidic bonds in a manner similar to that of acid catalysts (Fig. 3).
- 1,2:5, 6-di-isopropylidene glucose can be deketalized in a 0.8M aqueous thiourea sol ution (Fig. 4).
- Enzymes based on oligonucleotides include catalytic NA or ribozymes, which are essential for the production of proteins, and catalytic DNA, which regulates the hydrolysis of RNA.
- the present invention can be constructed on a matrix comprising a multitude of biopolymeric helical bundles. These bundles are comprised of com puter designed, custom synthesized single stranded DNA molecules, which will anneal in solution according to Watson-Crick base pairing.
- the phenomenon of helical cross linking is well known to those in the art of DNA weaving or DNA origami, and originated with the discovery of the Holliday Junction quadruplex (See Holliday, Genet Res 5, 282 (2005)). For instance, if four single strands (one half of a double helix) of DNA with the following sequences were placed in solution, they would naturally form a cross-link between two helices: Strand 1: CCACCTTTTCAGCTCGCGCCCCAAAT
- the present invention concerns the synthesis of an artificial glycosyl hydrolase enzyme, comprising an active site capable of bifunctional catalysis, which has been covalently bonded to a rigid organic matrix through the use of a tethering construct.
- the active site of this enzyme can comprise natural amino acids, unnatural amino acids, which incl ude enantiomers, disastereomers, or homologues of a natural amino acid, or peptidomimetic amino acids that contain a catalytic moiety typically found on an amino acid, including carboxylic acid, hydroxyl, thiol, amine, amide, guanidinyl, imidazoyl, selenyl, or aryl.
- the rigid organic matrix of this artificial enzyme comprises a singularity or plurality of biopolymeric matrices, including deoxyribonucleic acid, ribonucleic acid, locked nucleic acid, morpholino nucleic acid, or peptide nucleic acid helices or helical bundles.
- the unique chemical function can comprise glycosidic bond hydrolysis using a bifunctional catalytic mechanism.
- Fig. 1 shows exemplary amino acids typically found in the active sites of all glycosyl hydrolases, along with typical polysaccharide bonding motifs.
- Fig. 2 shows the "inversion” and “retention” mechanisms of hydrolysis, along with requisite intermolecular distances.
- Fig. 3 shows exemplary thiourea catalysts, including a chiral and resin bound variants.
- Fig. 4 shows exemplary synthetic mechanisms and methods for glycosyl bond modifications using thiourea catalysis.
- Fig. 5a illustrates the interaction of four semi-complementary single strands of DNA to create a "Holliday Junction" (See Holliday, Genet Res 5, 282 (2005)).
- Fig. 5b illustrates a ball-and-stick model of a Holliday Junction.
- Fig. 6 shows an exemplary catalytic system attached to a DNA helix using an acridine intercalator. This system was effective in the cycloaddition reaction between cyclopentadiene and chalcone (See Roelfes and Feringa, Angew Chem Int Ed 44, 3230 (2005)).
- Fig. 7 shows an exemplary catalytic system wherein DNA cleavage could be affected by a chemically modified DNA strand containing a lysine and histidine peptidomimetic (See May et al., J Am Chem Soc 126, 4145, (2004)).
- Fig. 8 shows an exemplary tetra-helical DNA construct, containing 6 aspartic acid pairings which are covalently attached to helices 1 and 4.
- Fig. 9 shows a space-filling model of an artificial enzyme for use in the hydrolysis of glycosidic bonds.
- Fig. 10 shows an exemplary synthetic representation of the attachment of a multiplicity of thiourea groups onto a single modified nucleotide base using a dendrimer-like approach.
- Fig. 11 shows an exemplary multihelical thiourea-based artificial enzyme.
- Fig. 12 shows an exemplary synthetic "click" reaction between an alkyne-containing thymidine derivative, with an azido-acid molecule to generate a peptidomimetic aspartic acid residue for use in hydrolysis.
- Fig. 13 shows the synthetic route for the production of the preferred phosphoramidite base for use in solid phase DNA synthesis to produce the synthetic enzyme.
- Fig. 14 shows an analytic gel electrophoresis image showing successive additions of single strands to the growing structure.
- the second lane from the right corresponds to the addition of all of the DNA strands, to produce a single band, with no indication of unannealed strands below it.
- Fig. 15 is a schematic illustration of enzymatic hydrolysis of glycosidic bonds.
- Fig. 16 is a schematic illustration of an inversion mechanism and a retention mechanism.
- Fig. 17 is a schematic view of an example bionanolattice according to the present invention.
- Fig. 18 is a schematic illustration of an example application of a target molecule according to the present invention.
- Fig. 19 is a schematic illustration of properties of thiourea. Illustrated in Fig. 19: 1: unfunctionalized thiourea; 2: a highly-reactivity thiourea with two 3,5-bis-trifluoromethylphenyl groups; 3: a bi- functional thiourea catalyst capable of generating high levels of enantioselectivity in the Michael reaction ; 4: a thiourea catalyst bound to a polystyrene resin.
- Fig. 20 is a schematic illustration of bonding properties of thiourea.
- Fig. 21 is a schematic illustration of the front view of a bionanolattice according to the present invention.
- Fig. 22 is a schematic illustration of the top view of a bionanolattice according to the present invention.
- Fig. 23 is a schematic illustration of the use of attached thiourea moieties to serve as a binding site for glycosidic polymers containing uronic acid derivatives.
- Fig. 24 is a schematic illustration of the chemical synthesis of a target compound.
- Fig. 25 is a depiction of a multi-helical protein that spans the cellular membrane.
- Fig. 26 is a depiction of an example six-helical DNA synthetic ion channel selective for positive ions.
- the molecules in blue represent compounds capable of hydrophobic interactions, of which a few examples are shown.
- the central red crown ether represents the ionophilic interior to facilitate ion transport.
- Fig. 27 is a depiction of an example six-helical DNA synthetic ion channel selective for negative ions.
- Fig. 28 is a depiction of an example of a dipole-based ion gated channel, beginning from crown ether (neutral) to a carboxylate (mono-anionic) to a phosphate (di-anionic).
- Fig. 29 is a depiction of an example dipole-based ion gated channel, representing an increase in local concentrations of carboxylate residues.
- Fig. 30 is a depiction of a representative monomer unit of the creation of a functional DNA bionanolattice synthetic ion pore.
- an artificial glycosyl hydrolase can meet the requirement of having two carboxylic acid residues, either glutamic acid, aspartic acid, or mimic of such, at specified intermolecular distances.
- a distance of about 10A is required for the "inversion mechanism” of hydrolysis, allowing for both a water molecule and the substrate to be contained in the active site.
- An effective distance of 5.5A between these residues allows for the "retention mechanism” of hydrolysis, which is seen in other members of this enzymatic family.
- the appropriate intermolecular distance between the active catalytic residues can be between 2-20A, with 5.5A the preferred distance in some embodiments.
- An example of an artificial glycosyl hydrolase that is capable of this requirement comprises the utilization of a singularity or plurality of individual DNA single strands, the sequences of which have been engineered such that annealing in solution will generate a rigid construct based on Watson-Crick base pairing tenets.
- An embodiment of this invention includes hairpin loops of DNA that will generate pockets into which catalytic residues can be inserted, such as in the following sequence:
- Another embodiment of the present invention can also comprise the utilization of several semi-complementary single DNA strands, such that when annealed in solution will generate a complex three dimensional shape, drawing on techniques concerning DNA weaving or DNA origami.
- Cross links between DNA helices can be designed pre-synthesis through computer aided design programs, such as Tiamat.
- the development of three dimensional shapes can arise from helical torque phenomena, using the assumption that a full DNA helical turn requires approximately 10.5 base pairs. In this way, it is possible to design a trough-like or barrel-like design through minimal helical domains.
- An example of an artificial glycosyl hydrolase that is capable of this requirement can also comprise the use of /V-phenyl thiourea moieties, which have been covalently attached onto a multiplicity of DNA helices.
- /V-phenyl thiourea moieties which have been covalently attached onto a multiplicity of DNA helices.
- These thioureas can also decorate the exterior of a multi-helical barrel construct, or the periphery of a single DNA duplex (Fig. 11).
- RNA ribonucleic acids
- LNA locked nucleic acids
- PNA peptide nucleic acids
- morpholino- base nucleic acids although for this embodiment the deoxyribonucleic acid bases (A, C, T, G) are preferred.
- the modified "X" base refers to any of the above nucleobases, which have been modified using methods known in the art of organic chemistry.
- the aspartic acid - like mimetic molecule can be covalently attached to any point on these nucleobases, including the phosphate, the ribose, the deoxyribose, the locked ribose bicycle, the morpholino ring positions, or the nucleobase heterocycle or other pendant groups, using etherification, esterification, amidation, amination, alkylation, cycloaddition, cross-coupling, or other appropriate reactions.
- An example embodiment can include the halogenation of thymidine at the 5' position, followed by azide displacement and reduction to afford aminomethyl thymidine.
- the amine group can serve as a handle for subsequent manipulations.
- halogen sources include bromine, chlorine, iodine, N-bromosuccinimide, N-chlorosuccinimide, or N-iodosuccinimide, or other electrophilic halogen sources, with N-bromosuccinimide being the preferred method in some embodiments.
- halogenation of uracil is followed by Sonagashira cross- coupling with a copper acetylide to form an alkynyl uracil derivative.
- halogen sources include bromine, chlorine, iodine, N-bromosuccinimide, N-chlorosuccinimide, or N-iodosuccinimide, or other electrophilic halogen sources, with iodine being the preferred method in some embodiments.
- the method includes the hydroxymethylenation of uracil with a hydroxymethylene precursor, such as formaldehyde, paraformaldehyde, or 1,3,5-trioxane, with paraformaldehyde as the preferred method in some embodiments.
- a hydroxymethylene precursor such as formaldehyde, paraformaldehyde, or 1,3,5-trioxane
- the present invention would include the halogenation of adenosine, cytosine, or guanosine at positions known to be nucleophilic, by electrophilic halogen sources such as bromine, chlorine, iodine, N-bromosuccinimide, N-chlorosuccinimide, or N- iodosuccinimide, with N-bromosuccinimide being the preferred method.
- electrophilic halogen sources such as bromine, chlorine, iodine, N-bromosuccinimide, N-chlorosuccinimide, or N- iodosuccinimide, with N-bromosuccinimide being the preferred method.
- the method includes attachment of the linker to the 5'- phosphate at the conclusion of solid phase DNA synthesis.
- the tethering construct can comprise any organic chain of known length that serves to covalently attach the peptidomimetic group to the biopolymeric matrix.
- This chain can be designed to project the catalytic group into a specific location, and can be comprised of carbon, oxygen, sulfur or nitrogen, in combinations typically found in bioconjugate constructs, such as (poly)ethylene glycol (PEG), ketal, triazole, dithiol, phthalimide, maleimide or alkyl.
- the preferred tethering constructs can be designed to project carboxylic acid residues such that the relative spacing between two acid residues is approximately 5.5A. These distances can also be varied to achieve distances between 2 - 20A.
- the present invention can make use of a maleimide-containing molecule that is combined with a thiolized fragment through a conjugate addition reaction, to generate the polymer-tether- catalytic residue construct.
- the present invention can also include a copper-catalyzed [3+2] dipolar cycloaddition between a terminal alkyne and an azide fragment to form a triazole attachment point (Fig. 12).
- the exemplary reactions known to those in the art as "bioconjugate reactions" can be performed before or after the DNA synthesis or DNA weaving procedures, as these are known to involve minimal byproducts and very mild reaction conditions.
- the copper-catalyzed [3+2] dipolar cycloaddition is the preferred method of attachment of the carboxylic acid group; wherein the copper catalyst can include copper (II) sulfate, copper (I) iodide, copper (I) bromide, copper (I) chloride, copper (I) acetate or copper metal, with the preferred method being copper (I) bromide; wherein the preferred stabilizing ligand is TBTA, Tris[(l-benzyl-lH-l,2,3-triazol-4-yl)methyl]amine; wherein the stoichiometric oxidizing agent is ascorbic acid or any salt thereof, or atmospheric oxygen, with the preferred method being sodium ascorbate.
- the copper catalyst can include copper (II) sulfate, copper (I) iodide, copper (I) bromide, copper (I) chloride, copper (I) acetate or copper metal, with the preferred method being copper (I) bromide; wherein
- the phosphoramidite was incorporated into twelve positions labeled with an X, as shown above using an Expedite Nucleic Acid Synthesis System.
- the resin was heated to 65 Q C in concentrated NH 4 OH for 15h, followed by removal of volatile components and purified by gel electrophoresis.
- DNA solution concentrations were quantified by absorbance analysis by a Nanodrop spectrophotomer. Equimolar DNA solutions were annealed by variable temperature step gradients, and gel electrophoresis showed the production of a single band in the appropriate lane ( Figure 14).
- Example Embodiments relate to synthesis of enzymes, and the use of enzymes, in various applications. Several representative applications are described; those skilled in the art will appreciate variations within the scope of the described invention(s), and other applications that are also within the scope of the described inventions.
- PCE Perchloroethylene
- Trichloroethylene TCE
- PCE and TCE pose such a prevalent problem are both migrate quickly through the unsaturated soil in the form of dense non-aqueous phase liquid (DNAPL) and pool on top of a confining layer.
- DNAPL dense non-aqueous phase liquid
- PCE and TCE serve as a long-term (hundreds of years) source for the contamination of drinking water. Due to the extremely high volatility of PCE, pooled PCE in soil will partition into the soil vapor and migrate upwards into residential facilities, degrading air quality and posing serious health hazards in large areas around where leaks had occurred.
- PCE and TCE can be divided into three types: physical, chemical and biological.
- Physical approaches such as pump-and-treat and soil-vapor-extraction have failed in capturing the majority of the contaminated plume.
- In-situ chemical remediation Ozonation, permeable reactive barrier, etc.
- Ozonation, permeable reactive barrier, etc. are usually very expensive and fail to achieve cost-effective results within a reasonable timeframe.
- One promising technology is biological. Biodegradation mechanisms of PCE have been studied and defined for a variety of organisms. Bacteria use specific enzymes to degrade both PCE and TCE (TCE is manufactured artificially and is also a daughter product of PCE).
- bacteria that can degrade PCE and TCE are highly susceptible to environmental conditions such as O P, DO, pH, electron donors and acceptors, nutrients, bacteria scavengers, etc.
- the large size of the bacteria prevents it from accessing many of the small pores that are saturated with PCE in the soil, hence compromising the activity of this technology.
- Another disadvantage of the biological process is that vinyl chloride (VC), a potent toxic molecule, is produced as part of the degradation pathway. If for any reason the biological degradation pathway is not complete, water and air quality will be reduced even further.
- VC vinyl chloride
- the present example embodiments can provide a novel, cost-effective nanotechnology for treating both PCE and TCE in situ. Rapid degradation of PCE and TCE to Ethylene, a non-toxic organic compound, can be achieved by immobilizing two enzymes (tetrachloroethene reductive dehydrogenase and trichloroethene reductive dehydrogenase) onto a well-defined nanostructure. Once nanostructure concept has been established, a completely synthetic version of it can be built, utilizing only the active sites mechanisms from both enzymes. This synthetic enzymatic catalytic pathway can degrade PCE and TCE efficiently, while avoiding all of the problems that are associated with bacteria, including the production of VC.
- bi-functional chemical linkers can be attached to the two enzymes, and the enzymes linked to the nanostructure.
- the degradation rates of PCE and TCE as the starting substrate can be determined, and compared to the literature.
- the enzymatic active sites can be replaced with computer modeled synthetic counterparts, either both at once, or one at a time. Displaying high structural rigidity, this complex structure can show enhanced durability as compared to the multi-enzyme counterpart.
- This example embodiment involves a metal-based synthetic enzyme for the generation of substituted phenols from lignin.
- Lignin comprises approximately 20% of the world's biomass, though its practical application towards the fuel or specialty chemicals industry has been limited due to its unusual chemical bonding motifs. Depolymerization of this material using enzymatic methods has proven difficult, though 48-60% of the cross-linking bonds are benzylic ethers. Irreversible cleavage of this bond can be affected through transfer hydrogenation with formic acid, however this requires exceptionally high temperatures. State of the art organic methods typically utilize palladium, either on charcoal or substituted with ligands, as a catalyst for the cleavage of this bond such that it can be run at ambient temperatures. This example embodiment generates a synthetic enzyme in which palladium has been immobilized by surface displayed thiourea ligands.
- this enzyme will be facile, and leaching of palladium into solution can be minimal.
- this synthetic enzyme can be robust concerning pH, salinity, and temperature in comparison to known lignases.
- palladium, an appropriate hydrogen source pressurized hydrogen gas, formic acid, cyclohexa-l,4-diene
- crude lignin, in solution are reacted in a polar solvent.
- This reaction can be monitored by GC-MS to observe the formation of phenol products.
- the reaction rates at ambient temperatures in this catalytic system can be compared to the non-catalytic literature reaction.
- a synthetic enzyme can be constructed such that thiourea ligands are displayed on the surface in a square formation. This structure can be incubated with palladium to introduce the metal cofactor onto the solid support. In analogy to the first example embodiment, the same reaction can be run with the synthetic enzyme to determine catalytic efficiency.
- An effect of this example is the immobilization of this array of enzymes onto a well-defined nanostructure, to create a supramolecular multi-enzyme. Covalently linking these enzymes to a matrix will aid in their recovery from fermentation mixtures, and allow for their reuse.
- This multi- enzyme can be applicable to a wide range of cellulosic sources, and its efficiency of hydrogen production can be compared to those found in literature sources.
- bi-functional chemical linkers are attached to the necessary enzymes, and these are linked to the nanostructure.
- the yield of evolved hydrogen based on the digestion of cellobiose as the starting substrate can be determined, and yield and rate compared to the literature source.
- the enzymatic active sites can be replaced with computer modeled synthetic counterparts, either both at once, or one at a time. Displaying high structural rigidity, this complex structure can provide enhanced durability as compared to the multi-enzyme counterpart.
- Example Embodiments The enzymatic hydrolysis of glycosidic bonds follows one of two operative mechanisms, with the amino acid residues actively involved in this process being highly conserved across all families. Situated directly above and below the anomeric carbon center, two carboxylic acid bearing amino acids, glutamic acid (Glu) or aspartic acid (Asp, Fig. 15), have been proven to operate in concert by a general acid - nucleophile/base mechanism. Within this mechanism, either “inversion” or “retention” can be in operation, and these sub-mechanisms can be determined based on the relative stereochemistry of the resultant saccharide, or else based on the relative distance between the two active amino acids in the active site.
- Glu glutamic acid
- Asp aspartic acid
- the amino acids are 5.5A apart, and it is the conjugate base which intercepts the oxocarbenium ion.
- This glycosyl acetate adduct is highly susceptible to hydrolysis, and does so under a S n 2-like mechanism to afford the ⁇ -product.
- the present examples contemplate mimicking the function of glycosyl hydrolase enzymes by incorporating peptidomimetic constructs onto multi-helical DNA bionanolattices.
- These glutamic acid / aspartic acid surrogates can be positioned to a high degree of precision in space through linkages to modified thymidine derivatives comprising the DNA helical backbone of the lattice.
- These DNA helices can be ⁇ 63 base pairs in length, and assuming 10.5 base pairs per turn, up to 6 active sites can be displayed per tetrameric bionanolattice (Fig. 17).
- the target molecule in Fig. 18 contains the necessary covalent linker to position two carboxylic acid units approximately 5.5A apart, when placed in the opposed 1 and 4 helices. These calculations are based on the fact that both the effective trough distance and the width of a DNA helix will be 30A. By placing these surrogates at this distance, the present examples can provide the ability to mimic the function of the retention mechanism. The present examples also contemplate a molecule containing spaces to separate two carboxylic acid groups at 10A, thus simulating the inversion mechanism. Disproportionation into a carboxylic acid - conjugate base pair on the lattice can be accomplished by adjusting the solution pH to approximately 5.5.
- This monomer can be divided into three subsections: the nucleobase (green), the linker (red), and the amino acid surrogate (blue).
- the chemical synthesis of this compound can take advantage of disconnections between the amide bonds.
- the green and red retrons shown in Fig. 18 can be covalently linked via standard peptide coupling conditions (EDCI, HOBt), and the red and blue retrons can be condensed under ambient conditions owing to the reactivity of succinic anhydride (blue).
- EDCI, HOBt standard peptide coupling conditions
- HOBt succinic anhydride
- Using a PEG (poly-ethylene glycol) linker (red) was chosen due to ease of synthesis and ubiquity in the literature, though other covalent linkers containing other atoms would be amenable.
- Example Embodiments Every naturally occurring cellulase operates via a general acid / nucleophilic mechanism.
- the exocyclic glycosidic oxygen atom is protonated by a glutamic or aspartic acid, thus weakening the C-0 bond and facilitating cleavage.
- the two major mechanisms termed “inversion” and “retention,” diverge after this step, but both involve interception of the oxocarbenium intermediate by a proximal aspartate or glutamate residue and subsequent hydrolysis to produce a shortened cellulose polymer.
- the present examples provide a non-peptidomimetic approach to cellulose hydrolysis using thiourea catalysis.
- a second example is put forth by Kotke and Shreiner, who were able to show the converse; namely the ketalization of free alcohols with dihydropyran (DHP) under anhydrous conditions.
- DHP dihydropyran
- ketalization is an equilibrium process which is greatly affected by the presence of exogenous water, it can be assumed that the former reaction would not proceed unless water was vigorously excluded, and indeed their experimental shows the use of oven dried glassware in which the reaction was performed. It can also be inferred that the inclusion of water after the ketalization step would most likely affect the reverse reaction.
- the present examples can provide the ability to mimic the function of traditional aspartate- based glycosyl hydrolase enzymes by incorporating thiourea catalysts onto DNA bionanolattices (Fig. 21 and Fig. 22).
- the manipulation of DNA into various two and three dimensional shapes has been pioneered by the work of Seeman and Shih, though the application of these constructs towards practical purposes has yet to be disclosed.
- the present examples can use multi-helical bundles which are capable of creating clefts or pockets in which catalytic activity could take place, in analogy to enzymatic active sites. These helices can be interlocked using shorter "staple strands" of DNA, in analogy to the "DNA Origami” approach by otheman.
- the present examples can use a chemically modified thymidine derivative for this purpose, although the other four DNA bases (cytosine, adenine, guanine, and uracil) can be used for this purpose.
- the reaction requires a highly concentrated 0.8 M solution of thiourea (61 g/L) to affect the desired transformation.
- the present examples provide at least two advantages. First, by attaching the catalyst to a solid support, removal from solution can be facile. This particular solid support, a DNA bionanolattice, is also expected to display a high degree of thermal stability due to its massive hydrogen bonding network. Therefore it is expected that a nanostructure according to the present invention will continue to function at high temperatures, in the case of recalcitrant ketals / glycosides seen in cellulose polymers.
- the present examples can emulate local concentrations around the lattice close to 0.8 M, though the overall average solution molarity of thiourea would be substantially less. This can further be enhanced through the use of dendrimer-type branching, where several catalytic residues would share a single anchor point onto the lattice (Fig. 22).
- thiourea While not peptidomimetic, thiourea shares some similarity to arginine in its effectiveness for complexing carboxylic acid salts (carboxylates).
- the polygalactonurase family of hydrolases makes use of an arginine residue in their active site, which is believed to function as a molecular recognition factor for binding with the free carboxylate of galactonuric acid.
- the present examples can use the attached thiourea moieties to serve as a binding site for glycosidic polymers containing uronic acid derivatives (Fig. 23).
- a derivatized nucleobase in this case will be thymidine, although this can be extended to the other four DNA bases (guanine, cytosine, adenine, uracil, Fig. 24).
- the linking chain can be altered to accommodate any physical length, and can be comprised of (poly)ether, amide, ester, sulfide, or any related connection of atoms generally found in organic molecules.
- the nature of the R group on the thiourea can include H, but preferably any electron-deficient aromatic group, where said electron-deficient groups include trifluoromethyl, carbonyl (amide, ester, ketone), nitro or nitrile located on the o, m, or p positions of the ring.
- the chemical synthesis of the target compound in Fig. 24 can take advantage of the shown disconnections, involving an amide coupling between the green and blue fragments, a reduction of the terminal azide, and a condensation between the resultant amine and the red aryl thioisocyanate derivative.
- Example Embodiments Proteins that span cellular membranes and serve as conduits for ion transport between the cytosol and the environment have been a source of intense study. While the function of such channels is well understood, their isolation and crystallization in non- membrane environments has met with great difficulty. In order to gain a better understanding of their natural conformations, synthetic variants of these structures have been synthesized and assayed, employing two key structural elements: an ionophoric interior to facilitate ion transport, and a hydrophobic exterior to allow for incorporation into the cellular membrane.
- Cystic Fibrosis which is an aberration of the chloride transport protein.
- Bacteria have capitalized on this phenomenon in the production of the natural antibiotics Gramicidin and Amphotericin, which will self-assemble into amphiphilic synthetic pores and rapidly depolarize the cellular ion gradient of target organisms. Though a good starting point for synthetic design, it is the end goal of this field to create a true "gated" channel which will not simply act as a non-selective pore, but can rather respond to external stimuli or gradient concentrations.
- the present examples apply DNA bionanolattice technology to the creation of synthetic ion channels, through the covalent attachment of both hydrophobic and hydrophilic residues to the exterior and interior of the lattice, respectively.
- the manipulation of DNA into various two and three dimensional shapes has been pioneered by the work of Seeman and Shih, though the application of these constructs towards practical purposes has yet to be disclosed.
- the present examples can use multi-helical bundles, which are capable of creating clefts or pockets in which catalytic activity could take place, in analogy to enzymatic active sites, or in this case a centralized pore which has been lined with hydrophilic moieties.
- helices can be interlocked using shorter "staple strands" of DNA, in analogy to the "DNA Origami” approach by otheman.
- the present examples can use a chemically modified thymidine derivative for this purpose; the other four DNA bases (cytosine, adenine, guanine, and uracil) can also be used for this purpose.
- the present examples can connect hydrophobic compounds to the perimeter of the lattice through covalent linkages to modified thymidine derivatives. These compounds include saturated or unsaturated aliphatic chains, phenyl, naphthyl, indoyl, or other aromatic groups, or any steroidal compound (Fig. 26).
- the present examples can attach different functional groups, depending on the nature of the ion to be transported.
- cyclic polyethers (crown ethers) can be attached to the DNA weave as amine or catechol derivatives, though the present examples can also utilize carboxylate and hydroxyalkyl moieties for the same function.
- the present examples can also use tetraalkyl ammonium derivatives for negatively charged ions.
- the second method is based on a report by Fyles, and makes use only of carboxylate residues; however, the relative charge per m3 is varied along the length of the pore.
- carboxylate mono-anionic
- succinate two carboxylates, di-anionic
- a gradient is developed for the shuttling of cationic atoms.
- the present examples can create a charge gradient by increasing the concentration of carboxylate residues along the interior of the DNA bionanolattice to create a gradual gradient from one end to the other (Fig. 29).
- the present examples can provide the advantage in the ability to place these charged groups at all positions in the interior of the pore. Accordingly, the present examples can facilitate ion transfer through the remainder of the pore, as the two previous examples contained charge-neutral groups along the interior.
- the monomers needed to create both the ionophilic and hydrophobic residues will be based on a thymidine - linker - functional group motif, with covalent linkages being created either before or after DNA solid phase synthesis.
- R' represent a covalent linkage between the thymidine base and the linking molecule, or the linking molecule and the functional group, respectively, and can include triazole, amide, ether, sulfide, disulfide or alkene linkage; R" represents the active functional group.
- this can encompass any of the "R" groups shown in blue displayed in Fig. 26 and Fig. 27.
- any carboxylate, phosphate, succinate, hydroxyalkyl, tetraalkyl-ammonium or (aza)-crown ether can be incorporated.
- NTP National Toxicology Program
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
La présente invention concerne la synthèse d'une enzyme glycosyle hydrolase artificielle, comprenant un site actif capable de catalyse bifonctionnelle, qui a été lié de façon covalente à une matrice organique rigide par l'utilisation d'un produit de recombinaison fixant. Le site actif de cette enzyme peut comprendre des acides aminés naturels, des acides aminés non naturels, notamment des énantiomères, des diastéréomères, ou des homologues d'un acide aminé naturel, ou des acides aminés peptidomimétiques qui contiennent un fragment catalytique que l'on trouve classiquement sur un acide aminé, notamment l'acide carboxylique, un hydroxyle, un thiol, une amine, un amide, un guanidinyle, un imidazoyl, un sélényle, ou un aryle. D'autres groupes non biotiques connus pour participer à la coupure de la liaison glycosidique comprennent l'urée et la thio-urée. La matrice organique rigide de cette enzyme artificielle comprend une ou plusieurs matrice(s) biopolymère(s), notamment des hélices ou des faisceaux d'hélices d'acide désoxyribonucléique, d'acide ribonucléique, d'acide nucléique bloqué, d'acide nucléique morpholino, ou d'acide nucléique peptidique. La fonction chimique unique peut comprendre une hydrolyse de la liaison glycosidique à l'aide d'un mécanisme catalytique bifonctionnel.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24602009P | 2009-09-25 | 2009-09-25 | |
US24589009P | 2009-09-25 | 2009-09-25 | |
US61/246,020 | 2009-09-25 | ||
US61/245,890 | 2009-09-25 | ||
US25050309P | 2009-10-10 | 2009-10-10 | |
US61/250,503 | 2009-10-10 | ||
US25094809P | 2009-10-13 | 2009-10-13 | |
US61/250,948 | 2009-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011038259A1 true WO2011038259A1 (fr) | 2011-03-31 |
Family
ID=43796234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/050246 WO2011038259A1 (fr) | 2009-09-25 | 2010-09-24 | Glycosyle hydrolase synthétique à base de nano-armures d'adn |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011038259A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013151468A (ja) * | 2011-11-30 | 2013-08-08 | Agilent Technologies Inc | オリゴマーの合成及び精製の新規方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162218A (en) * | 1988-11-18 | 1992-11-10 | The Regents Of The University Of California | Conjugated polypeptides and methods for their preparation |
US5948897A (en) * | 1996-06-14 | 1999-09-07 | Simon Fraser University | Method of binding two or more DNA double helices and products formed |
WO2006090400A2 (fr) * | 2005-02-28 | 2006-08-31 | Bionnections Inc. | Procede et structure pour dispositifs et interconnexions a nanotubes remplis de metal a auto-assemblage et a induction biologique |
WO2006117247A1 (fr) * | 2005-05-02 | 2006-11-09 | Genoplante-Valor | Glycosylhydrolase possedant a la fois une activite alpha-l-arabinofuranosidase et une activite beta-d-xylosidase. |
-
2010
- 2010-09-24 WO PCT/US2010/050246 patent/WO2011038259A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162218A (en) * | 1988-11-18 | 1992-11-10 | The Regents Of The University Of California | Conjugated polypeptides and methods for their preparation |
US5948897A (en) * | 1996-06-14 | 1999-09-07 | Simon Fraser University | Method of binding two or more DNA double helices and products formed |
WO2006090400A2 (fr) * | 2005-02-28 | 2006-08-31 | Bionnections Inc. | Procede et structure pour dispositifs et interconnexions a nanotubes remplis de metal a auto-assemblage et a induction biologique |
WO2006117247A1 (fr) * | 2005-05-02 | 2006-11-09 | Genoplante-Valor | Glycosylhydrolase possedant a la fois une activite alpha-l-arabinofuranosidase et une activite beta-d-xylosidase. |
Non-Patent Citations (14)
Title |
---|
AMBLARD ET AL.: "The Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide and oligonucleotide chemistry.", CHEM REV., vol. 109, no. 9, 2 July 2009 (2009-07-02), pages 4207 - 4220, XP055261215, doi:10.1021/cr9001462 * |
CHARNOCK ET AL.: "The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved.", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 48, 1998, pages 32187 - 32199 * |
DAVIES ET AL.: "Nomenclature for sugar-binding subsites in glycosyl hydrolases.", BIOCHEM. J., vol. 321, 1997, pages 557 - 559 * |
DEVARAJ ET AL.: "Chemoselective Covalent Coupling of Oligonucleotide Probes to Self-Assembled Monolayers.", J. AM. CHEM. SOC., vol. 127, 2005, pages 8600 - 8601, XP002491162, doi:10.1021/ja051462l * |
DURAND ET AL.: "Active-site motifs of lysosomal acid hydrolases: invariant features of clan GH-A glycosyl hydrolases deduced from hydrophobic cluster analysis.", GLYCOBIOLOGY, vol. 7, no. 2, 1997, pages 277 - 284 * |
GEERSING ET AL.: "Modular Assembly of Cyclodextrin Containing Bio-mimetic Catalysts.", STUDENT THESIS, 2010, Retrieved from the Internet <URL:http://scripties.fwn.eldoc.ub.rug.nUFILES/scripties/Scheikunde/Bachelor/2010/Geersing.A./Chem_BC-2010_AGeersing.pdf> [retrieved on 20110221] * |
HENRISSAT.: "A classification of glycosyl hydrolases based on amino acid sequence similarities.", BIOCHEM. J., vol. 280, 1991, pages 309 - 316 * |
HRMOVA ET AL.: "Structural Basis for Broad Substrate Specificity in Higher Plant beta-Glucan Glucohydrolases.", THE PLANT CELL, vol. 14, 2002, pages 1033 - 1052 * |
LE ET AL.: "DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface.", NANO LETT., vol. 4, no. 12, 2004, pages 2343 - 2347 * |
LIU ET AL.: "Tensegrity: Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions.", J. AM. CHEM. SOC., vol. 126, 2004, pages 2324 - 2325 * |
PARK ET AL.: "Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins.", NANO LETTERS, vol. 5, no. 4, 2005, pages 729 - 733, XP002396598, doi:10.1021/nl050175c * |
RINKER ET AL.: "Self-assembled DNA nanostructures for distance dependent multivalent ligand- protein binding.", NAT NANOTECHNOL., vol. 3, no. 7, 2008, pages 418 - 422, XP002561873, doi:10.1038/nnano.2008.164 * |
ROTHEMUND ET AL.: "Folding DNA to create nanoscale shapes and patterns.", NATURE, vol. 440, no. 16, 2006, pages 297 - 302 * |
WILNER ET AL.: "Enzyme cascades activated on topologically programmed DNA scaffolds.", NATURE NANOTECHNOLOGY, vol. 4, 29 March 2009 (2009-03-29), pages 249 - 254, XP055156379, doi:10.1038/nnano.2009.50 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013151468A (ja) * | 2011-11-30 | 2013-08-08 | Agilent Technologies Inc | オリゴマーの合成及び精製の新規方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5637683A (en) | Nucleic acid analog with amide linkage and method of making that analog | |
KR100225090B1 (ko) | 이중가닥 핵산을 위한 서열특이적 결합 중합체 | |
EP2540734B1 (fr) | Procédé et réactifs pour la synthèse et la purification d'oligonucléotides | |
EP2216415B1 (fr) | Procédés de préparation de courtes molécules d'ARN | |
Katolik et al. | Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates | |
Uehara et al. | Solid-phase synthesis of P-boronated oligonucleotides by the H-boranophosphonate method | |
WO2011038259A1 (fr) | Glycosyle hydrolase synthétique à base de nano-armures d'adn | |
WO2007050789A2 (fr) | Conjugues de glycosyle-oligonucleotide et procedes | |
De Napoli et al. | Synthesis and triple helix formation by alternate strand recognition of oligonucleotides containing 3 ‘-3 ‘phosphodiester bonds | |
CN118984717A (zh) | Arnatar化合物和用于增强细胞摄取的方法 | |
Liu et al. | Synthesis of 2′, 4′-propylene-bridged (carba-ENA) thymidine and its analogues: the engineering of electrostatic and steric effects at the bottom of the minor groove for nuclease and thermodynamic stabilities and elicitation of RNase H | |
Horiba et al. | Synthesis and properties of oligonucleotides having ethynylphosphonate linkages | |
Meldgaard et al. | 3 ‘-C-Branched LNA-Type Nucleosides Locked in an N-Type Furanose Ring Conformation: Synthesis, Incorporation into Oligodeoxynucleotides, and Hybridization Studies | |
Gooch et al. | Binding of Helix‐Threading Peptides to E. coli 16S Ribosomal RNA and Inhibition of the S15–16S Complex | |
Saraya et al. | A facile and general tandem oligonucleotide synthesis methodology for DNA and RNA | |
CN112266911A (zh) | 核酸分子 | |
Srivatsan | Modeling prebiotic catalysis with nucleic acid-like polymers and its implications for the proposed RNA world | |
Seliger et al. | An Update on Protection of 5′‐Hydroxyl Functions of Nucleosides and Oligonucleotides | |
Tomaya et al. | Convenient RNA synthesis using a phosphoramidite possessing a biotinylated photocleavable group | |
Miduturu et al. | Synthesis and Application of a 5 ‘-Aldehyde Phosphoramidite for Covalent Attachment of DNA to Biomolecules | |
Slott et al. | MicroRNA Pools Synthesized Using Tandem Solid-Phase Oligonucleotide Synthesis | |
McPherson et al. | An Improved Process for the Manufacture of 5′-O-(4, 4′-Dimethoxytrityl)-N 2-isobutyryl-2′-O-(2-methoxyethyl) guanosine | |
Cawrse et al. | An Alternate Process for the Solid‐Phase Synthesis and Solid‐Phase Purification of Synthetic Nucleic Acid Sequences | |
Wincott | Strategies for oligoribonucleotide synthesis according to the phosphoramidite method | |
CN117510562B (zh) | 一种医药中间体2'-o-丙炔基-尿苷的合成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10819554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10819554 Country of ref document: EP Kind code of ref document: A1 |