+

WO2011099300A1 - Terminal apparatus and signal transmission control method - Google Patents

Terminal apparatus and signal transmission control method Download PDF

Info

Publication number
WO2011099300A1
WO2011099300A1 PCT/JP2011/000772 JP2011000772W WO2011099300A1 WO 2011099300 A1 WO2011099300 A1 WO 2011099300A1 JP 2011000772 W JP2011000772 W JP 2011000772W WO 2011099300 A1 WO2011099300 A1 WO 2011099300A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
response signal
terminal
signal
nack
Prior art date
Application number
PCT/JP2011/000772
Other languages
French (fr)
Japanese (ja)
Inventor
中尾正悟
今村大地
西尾昭彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011099300A1 publication Critical patent/WO2011099300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6908Spread spectrum techniques using time hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a terminal device and a signal transmission control method.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SCH Synchronization Channel
  • BCH Broadcast Channel
  • the terminal first secures synchronization with the base station by capturing the SCH. Thereafter, the terminal acquires parameters (eg, frequency bandwidth) unique to the base station by reading the BCH information (see Non-Patent Documents 1, 2, and 3).
  • the terminal establishes communication with the base station by making a connection request to the base station after the acquisition of the parameters unique to the base station is completed.
  • the base station transmits control information via a PDCCH (Physical ⁇ Downlink Control CHannel) as necessary to a terminal with which communication has been established.
  • PDCCH Physical ⁇ Downlink Control CHannel
  • the terminal performs “blind determination” for each of the plurality of control information included in the received PDCCH signal. That is, the control information includes a CRC (Cyclic Redundancy Check) part, and this CRC part is masked by the terminal ID of the transmission target terminal in the base station. Therefore, the terminal cannot determine whether or not the received control information is control information destined for the own device until the CRC part of the received control information is demasked with the terminal ID of the own device. In this blind determination, if the CRC calculation is OK as a result of demasking, it is determined that the control information is addressed to the own device.
  • CRC Cyclic Redundancy Check
  • ARQ Automatic Repeat Request
  • the terminal feeds back a response signal indicating an error detection result of downlink data to the base station.
  • BPSK Binary Phase Shift Shift Keying
  • PUCCH Physical-Uplink-Control-Channel
  • the base station transmits retransmission data to the terminal.
  • the control information (that is, downlink allocation control information) transmitted from the base station includes resource allocation information including resource information allocated to the terminal by the base station.
  • the PDCCH is used for transmitting the control information.
  • This PDCCH is composed of one or a plurality of L1 / L2 CCHs (L1 / L2 Control Channel).
  • Each L1 / L2CCH is composed of one or a plurality of CCEs (Control Channel Element). That is, CCE is a basic unit for mapping control information to PDCCH.
  • a plurality of CCEs having consecutive identification numbers (Index) are assigned to the L1 / L2CCH.
  • the base station allocates L1 / L2 CCH to the resource allocation target terminal according to the number of CCEs required for reporting control information to the resource allocation target terminal. Then, the base station maps the physical resource corresponding to the CCE of this L1 / L2CCH and transmits control information.
  • each CCE is associated with the PUCCH configuration resource on a one-to-one basis. Therefore, the terminal that has received the L1 / L2CCH can implicitly specify the configuration resource of the PUCCH corresponding to the CCE that configures the L1 / L2CCH, and uses this specified resource to transmit a response signal. Transmit to the base station.
  • the terminal may use one of a plurality of PUCCH configuration resources corresponding to the plurality of CCEs (for example, a PUCCH configuration corresponding to the CCE having the smallest Index). Resource) is used to transmit a response signal to the base station.
  • downlink communication resources are efficiently used.
  • a plurality of response signals transmitted from a plurality of terminals include a ZAC (Zero Auto-correlation) sequence having a Zero Auto-correlation characteristic on the time axis, a Walsh sequence, and a DFT ( Discrete Fourier Transform) sequence and code-multiplexed in PUCCH.
  • ZAC Zero Auto-correlation
  • W 1 , W 2 , W 3 represents a Walsh sequence with a sequence length of 4
  • (F 0 , F 1 , F 2 ) represents a DFT sequence with a sequence length of 3.
  • an ACK or NACK response signal is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis.
  • the response signal after first spreading is subjected to IFFT (Inverse Fast Fourier Transform) corresponding to W 0 to W 3 and F 0 to F 2, respectively.
  • IFFT Inverse Fast Fourier Transform
  • a response signal spread by a ZAC sequence having a sequence length of 12 on the frequency axis is converted into a ZAC sequence having a sequence length of 12 on the time axis by the IFFT.
  • the signal after IFFT is further subjected to second order spreading using a Walsh sequence (sequence length 4) and a DFT sequence (sequence length 3).
  • the base station can separate a plurality of response signals that are code-multiplexed by using conventional despreading processing and correlation processing (see Non-Patent Document 4).
  • each terminal blindly determines downlink allocation control information addressed to itself in each subframe (transmission unit time), reception of downlink allocation control information is not always successful on the terminal side.
  • a terminal fails to receive downlink assignment control information addressed to itself in a certain downlink unit band, the terminal cannot even know whether downlink data addressed to itself exists in the downlink unit band. Therefore, when the terminal fails to receive downlink allocation control information in a certain downlink unit band, the terminal does not generate a response signal for downlink data in the downlink unit band.
  • This error case is defined as DTX (DTX (Discontinuous transmission) of ACK / NACK signals) of the response signal in the sense that the response signal is not transmitted on the terminal side.
  • LTE-A system The 3GPP LTE-Advanced system
  • LTE system follows the 3GPP LTE system (hereinafter sometimes referred to as “LTE system”).
  • LTE-A system a base station and a terminal capable of communicating in a wideband frequency of 40 MHz or more are expected to be introduced in order to realize a downlink transmission speed of 1 Gbps or more at the maximum.
  • the bandwidth for the LTE-A system is changed to LTE. It is divided into “unit bands” of 20 MHz or less, which is the support bandwidth of the system. That is, the “unit band” is a band having a maximum width of 20 MHz, and is defined as a basic unit of the communication band. Furthermore, the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” in the uplink is a band delimited by uplink frequency band information in the BCH broadcast from the base station, or a PUSCH (Physical-Uplink) near the center. It may be defined as a basic unit of a communication band of 20 MHz or less including a Shared (CHAnel) region and including PUCCH for LTE at both ends.
  • the “unit band” may be expressed as “Component Carrier (s)” in English in 3GPP LTE-Advanced.
  • the above-described uplink control channel may be expressed as SR (Scheduling Request) (SRI: Scheduling Request Indicator) which is an uplink control signal indicating the generation of uplink data to be transmitted from the terminal side.
  • SR resource a resource to be used for SR transmission
  • OOK On-Off-Keying
  • the base station side determines the SR from the terminal based on whether or not the terminal transmits an arbitrary signal using the SR resource. Is detected.
  • spreading using a ZAC sequence, a Walsh sequence, and a DFT sequence is applied to SR similarly to the response signal described above.
  • SR and response signal may occur within the same subframe.
  • the PAPR Peak-to-Average-Power-Ratio
  • the terminal since the amplifier efficiency of the terminal is regarded as important, when the SR and the response signal are generated in the same subframe on the terminal side, the terminal should use the resource (hereinafter, referred to as the resource to be transmitted).
  • the response signal is transmitted using SR resources individually allocated in advance for each terminal without using ACK / NACK resources).
  • the base station side detects the SR from the terminal side based on whether or not the SR resource is used. Further, on the base station side, based on the phase of the signal transmitted with the SR resource (or the ACK / NACK resource when SR resource is not used) (that is, the BPSK demodulation result), the terminal performs ACK or NACK. Determine which one was sent.
  • ACK / NACK resources and SR resources are allocated to different code resources.
  • the base station uses the L1 / L2CCH (channel constituted by one or a plurality of CCEs) included in the PDCCH to indicate downlink allocation control indicating resources for transmitting downlink data. Send information.
  • the base station allocates in advance one arbitrary PUCCH resource included in the PUCCH of the uplink unit band as a PUCCH resource (SR resource) for SR.
  • the terminal uses one PUCCH resource associated with the CCE (PDCCH) occupied by the downlink allocation control information in the downlink unit band as a PUCCH resource (ACK / NACK resource) for response signals.
  • the terminal when the terminal transmits the SR and the response signal simultaneously in a certain subframe (that is, when transmitting SR + ACK or SR + NACK), the terminal transmits the downlink data channel ( A response signal ("A / N") for downlink data (DL data) received by PDSCH is assigned to one SR resource included in the PUCCH of the uplink unit band shown in FIG. 3A. And a terminal determines the phase of the signal transmitted using SR resource according to whether a response signal is ACK or NACK.
  • the terminal when the terminal transmits only a response signal within a certain subframe (that is, when only ACK or NACK is transmitted), the terminal receives the downlink received on the PDSCH shown in FIG.
  • a response signal ("A / N") for data (DL data) is allocated to one ACK / NACK resource included in the PUCCH of the uplink unit band shown in FIG. 3B.
  • a terminal determines the phase of the signal transmitted using an ACK / NACK resource according to whether a response signal is ACK or NACK.
  • the terminal when the terminal transmits only SR within a certain subframe, the terminal allocates SR to one SR resource included in the PUCCH of the uplink unit band illustrated in FIG. 3C. Then, the terminal sets a NACK phase point for the SR resource.
  • the terminal side since the terminal side does not always succeed in receiving downlink allocation control information, there is a difference in recognition regarding the success or failure of downlink signal reception at the terminal side between the base station side and the terminal side. there is a possibility.
  • the base station transmits downlink allocation control information (and downlink data) to the terminal
  • when the terminal transmits an uplink signal using SR resources not only the SR detection is performed on the base station side, It is determined whether the phase of the signal allocated to the SR resource indicates ACK or NACK information.
  • reception of downlink allocation control information has failed on the terminal side (that is, when DTX occurs)
  • the terminal transmits using SR resources without including response signal information in the uplink signal. .
  • the terminal when the terminal notifies only the SR to the base station (FIG. 3C), the SR and NACK information are simultaneously transmitted to the base station so that these recognition differences do not become a big problem.
  • the same signal point that is, the phase point of NACK
  • the base station transmits the signal and the SR and NACK information at the same time. Therefore, the downlink data retransmission control can be executed without any major problem.
  • the terminal includes a plurality of transmission antennas, and SCTD (Space Code Transmit Diversity.) Using a plurality of different code resources for the SR or response signal.
  • SCTD Spatial Orthogonal-Resource Transmit Diversity
  • SCTD Spatial Orthogonal-Resource Transmit Diversity
  • the base station allocates two ACK / NACK resources to one response signal, and the terminal transmits the same response signal respectively allocated to different code resources by two antennas (non-patent). Reference 5).
  • hybrid ARQ Hybrid ARQ: HARQ
  • HARQ Hybrid ARQ
  • IR Incmental Redundancy
  • 3GPP TS 36.211 V8.7.0 “Physical Channels and Modulation (Release 8),” March 2009
  • 3GPP TS 36.212 V8.7.0 “Multiplexing and channel coding (Release 8)”
  • March 2009 3GPP TS 36.213 V8.7.0, “Physical layer procedures (Release 8),” March 2009 Seigo Nakao, Tomofumi Takata, Daichi Imamura, and Katsuhiko Hiramatsu, “Performance enhancement of E-UTRA uplink control channel in fast fading environments,” Proceeding of IEEE VTC 2009 spring, April.
  • the terminal side has successfully received downlink allocation control information at the previous transmission, and the terminal has received downlink data (including errors). ) Must be recognizable on the base station side.
  • the base station cannot distinguish between the (SR + NACK) state and the (SR + DTX) state, that is, Whether or not the downlink allocation control information is received on the terminal side cannot be determined. If the base station cannot determine whether or not the downlink allocation control information is received successfully on the terminal side, the base station simply transmits the same information as the previous transmission at the time of retransmission (and is therefore less efficient than IR).
  • the base station uses a subframe in which the base station should receive a response signal from the terminal (that is, a subframe in which a response signal is transmitted if the terminal has received downlink allocation control information correctly).
  • SR occurs on the terminal side, the base station may not be able to determine whether the terminal side has received downlink allocation control information, and there is a problem that efficient retransmission control by IR or the like cannot be performed.
  • An object of the present invention is to provide a subframe in which a base station should receive a response signal from a terminal (that is, a subframe in which a response signal is transmitted if the terminal has correctly received downlink allocation control information) in the LTE-A system.
  • a terminal device and a signal transmission control method capable of improving the retransmission efficiency by allowing the base station to determine whether or not the terminal side has received downlink allocation control information even when SR occurs in the terminal. It is to be.
  • the terminal apparatus of the present invention allocates either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data to a code resource, and the response signal assigned to the code resource or
  • a terminal device for transmitting uplink control signals from a plurality of antennas, receiving means for receiving the downlink data assigned to a downlink data channel, and generating the response signal based on an error detection result of the downlink data Means, transmission means for transmitting the response signal or the uplink control signal using the code resource, and transmission of the response signal or the uplink control signal based on the generation status of the response signal and the uplink control signal And a control means for controlling the uplink control signal and the response signal within a transmission unit time.
  • the uplink control signal is generated within the transmission unit time, at least one resource among the first code resources to which the uplink control signal is allocated and the transmission unit time
  • the response signal is transmitted using at least one resource among the second code resources to which the response signal is assigned.
  • the signal transmission control method of the present invention assigns either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data to a code resource, and the response assigned to the code resource
  • a subframe in which a base station should receive a response signal from a terminal that is, a subframe in which a response signal is transmitted if the terminal has correctly received downlink allocation control information. Even when SR occurs on the terminal side, the base station can determine whether or not the terminal side has received downlink allocation control information, and retransmission efficiency can be improved.
  • diffusion method of a response signal and a reference signal The figure which shows the operation
  • the figure which shows the transmission control process of the terminal according to the generation condition of SR, and the generation condition of a response signal The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention.
  • movement of the terminal which concerns on Embodiment 1 of this invention (when the number of SR resources: 2 and the number of ACK / NACK resources: 2)
  • movement of the terminal which concerns on Embodiment 1 of this invention (when the number of SR resources: 2 and the number of ACK / NACK resources: 1)
  • movement of the terminal which concerns on Embodiment 1 of this invention when the number of SR resources is 1 piece and the number of ACK / NACK resources is 2 pieces)
  • the block diagram which shows the structure of the base station which concerns on Embodiment 2 of this invention The block diagram which shows the structure of the terminal which concerns on Embodiment 2 of this invention.
  • FIG. 4 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • the base station 100 includes a control unit 101, a control information generation unit 102, an encoding unit 103, a modulation unit 104, an encoding unit 105, a data transmission control unit 106, a modulation unit 107, Mapping unit 108, IFFT unit 109, CP adding unit 110, radio transmitting unit 111, radio receiving unit 112, CP removing unit 113, PUCCH extracting unit 114, despreading unit 115, and sequence control unit 116
  • the control unit 101 transmits a downlink resource (that is, downlink control information allocation resource) for transmitting control information and downlink data included in the control information to a resource allocation target terminal 200 to be described later.
  • a downlink resource that is, downlink control information allocation resource
  • the downlink control information allocation resource is selected in a resource corresponding to the downlink control channel (PDCCH) in the downlink unit band.
  • the downlink data allocation resource is selected in a resource corresponding to the downlink data channel (PDSCH) in the downlink unit band.
  • the control unit 101 allocates different resources to each of the resource allocation target terminals 200.
  • the downlink control information allocation resource is equivalent to the above-mentioned L1 / L2CCH. That is, the downlink control information allocation resource is composed of one or a plurality of CCEs. Further, each CCE included in the downlink control information allocation resource is associated with the configuration resource of the uplink control channel (PUCCH) on a one-to-one basis. However, the association between the CCE and the PUCCH configuration resource is made by associating the downlink unit band and the uplink unit band broadcasted for the LTE system.
  • control unit 101 determines a coding rate used when transmitting control information to the resource allocation target terminal 200. Since the data amount of control information differs according to the coding rate, downlink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped are allocated by the control unit 101.
  • control part 101 outputs the information regarding a downlink data allocation resource with respect to the control information generation part 102.
  • the control unit 101 outputs information on the coding rate used when transmitting control information to the coding unit 103.
  • Control section 101 also determines the coding rate of transmission data (that is, downlink data) and outputs the coding rate to coding section 105.
  • the control unit 101 outputs information on the downlink data allocation resource and the downlink control information allocation resource to the mapping unit 108.
  • the control information generation unit 102 generates control information including downlink data allocation resources and outputs the control information to the encoding unit 103. Further, when there are a plurality of resource allocation target terminals 200, the control information includes the terminal ID of the destination terminal in order to distinguish the resource allocation target terminals 200 from each other. For example, CRC bits masked with the terminal ID of the destination terminal are included in the control information. This control information may be referred to as “downlink allocation control information”.
  • the encoding unit 103 encodes the control information input from the control information generation unit 102 according to the encoding rate received from the control unit 101, and outputs the encoded control information to the modulation unit 104.
  • Modulation section 104 modulates the encoded control information and outputs the obtained modulated signal to mapping section 108.
  • Encoding section 105 receives transmission data (that is, downlink data) for each transmission destination terminal 200 and encoding rate information from control section 101, and encodes transmission data at the encoding rate indicated by the encoding rate information. And output to the data transmission control unit 106.
  • the data transmission control unit 106 holds the encoded transmission data and outputs the encoded transmission data to the modulation unit 107 during the initial transmission.
  • the encoded transmission data is held for each transmission destination terminal 200.
  • data transmission control section 106 outputs retained data corresponding to the retransmission control signal to modulation section 107.
  • the data transmission control unit 106 deletes the retained data corresponding to the retransmission control signal. In this case, the data transmission control unit 106 outputs the next initial transmission data to the modulation unit 107.
  • Modulation section 107 modulates the encoded transmission data received from data transmission control section 106 and outputs the modulated signal to mapping section 108.
  • Mapping section 108 maps the modulation signal (downlink allocation control information) of the control information received from modulation section 104 to the resource (resource in PDCCH) indicated by the downlink control information allocation resource received from control section 101, and passes to IFFT section 109. Output.
  • mapping section 108 maps the modulation signal (downlink data) of the transmission data received from modulation section 107 to the resource (resource in PDSCH) indicated by the downlink data allocation resource received from control section 101, and to IFFT section 109. Output.
  • Control information and transmission data (downlink data) mapped to a plurality of subcarriers in the downlink unit band by mapping section 108 are converted from frequency domain signals to time domain signals by IFFT section 109, and CP adding section 110 After the CP is added to form an OFDM signal, transmission processing such as D / A conversion, amplification, and up-conversion is performed by the wireless transmission unit 111 and transmitted to the terminal 200 via the antenna.
  • the radio reception unit 112 receives an uplink control channel signal (PUCCH signal) transmitted from the terminal 200 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the received signal.
  • PUCCH signal may include a response signal, SR, and a reference signal.
  • the CP removal unit 113 removes the CP added to the reception signal after the reception process.
  • the PUCCH extraction unit 114 extracts the SR resource and the ACK / NACK resource from the PUCCH signal included in the received signal, and distributes the PUCCH signal corresponding to the extracted resource for each processing system corresponding to each resource.
  • the base station 100 is provided with a processing system of a despreading unit 115 and a correlation processing unit 117 that perform processing on each of the extracted resources.
  • the despreading units 115-1 to 115-n and the correlation processing units 117-1 to 11-n are respectively associated with any of the resources (SR resource and ACK / NACK resource).
  • the despreading unit 115 uses a Walsh sequence (a code used for secondary spreading of the data portion) and a DFT sequence (a code used for spreading the reference signal portion) corresponding to each resource, and The signal received via these resources is despread, and the despread signal is output to the correlation processing unit 117.
  • a Walsh sequence a code used for secondary spreading of the data portion
  • a DFT sequence a code used for spreading the reference signal portion
  • Sequence control section 116 generates a ZAC sequence corresponding to each of the data part and reference signal part of the SR resource or ACK / NACK resource transmitted from terminal 200. In addition, sequence control section 116 specifies a correlation window from which a signal is to be extracted in association with these resources. Then, sequence control unit 116 outputs information indicating the identified correlation window and the generated ZAC sequence to correlation processing unit 117.
  • the correlation processing unit 117 uses the information indicating the correlation window input from the sequence control unit 116 and the ZAC sequence to obtain the correlation value between the despread signal and the ZAC sequence in the data portion (ie, as shown in FIG. 1). S 0 to S 3 ) and the reference signal portion (that is, R 0 to R 2 shown in FIG. 1) are obtained separately. Then, the correlation processing unit 117 outputs information regarding the obtained correlation value to the determination unit 118.
  • the determination unit 118 determines whether the SR and the response signal are transmitted from the terminal based on the correlation value input from the correlation processing unit 117. That is, the determination unit 118 includes two ACK / NACK resources, one ACK / NACK resource, two SR resources, one SR resource, or one SR resource and one ACK / NACK resource. Which of these is used by the terminal 200 is determined. Details of the SR and response signal determination processing in the determination unit 118 of the base station 100 will be described later.
  • the determining unit 118 when determining that the terminal 200 is transmitting SR, the determining unit 118 outputs information on the SR to an uplink resource allocation control unit (not shown). When determining that the terminal 200 is transmitting a response signal, the determining unit 118 further determines, for example, by synchronous detection whether the response signal indicates ACK or NACK. Then, determination section 118 outputs a determination result (ACK or NACK) for each terminal to retransmission control signal generation section 119. In addition, when determining that terminal 200 has not transmitted a response signal, determining section 118 outputs DTX information to retransmission control signal generating section 119.
  • the base station 100 transmits the uplink allocation control information for reporting the uplink data allocation resource to the terminal so that the terminal 200 can transmit the uplink data. 200. In this way, base station 100 determines whether it is necessary to allocate resources for uplink data to terminal 200 based on the uplink control channel. Details of operations in the uplink resource allocation control unit and details of resource allocation operations for uplink data for terminal 200 in base station 100 are omitted.
  • retransmission control signal generation section 119 should retransmit the data (downlink data) transmitted in the downlink unit band based on the determination result (ACK or NACK) or the DTX information related to the response signal input from determination section 118 And a retransmission control signal is generated based on the determination result.
  • retransmission control signal generation section 119 when receiving a response signal indicating DACK or DTX, retransmission control signal generation section 119 generates a retransmission control signal indicating a retransmission command and outputs the retransmission control signal to data transmission control section 106.
  • retransmission control signal generation section 119 When receiving a response signal indicating ACK, retransmission control signal generation section 119 generates a retransmission control signal indicating that retransmission is not performed, and outputs the retransmission control signal to data transmission control section 106.
  • FIG. 5 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • a terminal 200 includes a radio reception unit 201, a CP removal unit 202, an FFT unit 203, an extraction unit 204, a demodulation unit 205, a decoding unit 206, a determination unit 207, a control unit 208, It has a demodulation unit 209, a decoding unit 210, a CRC unit 211, a response signal generation unit 212, an uplink control channel signal generation unit 213, and a radio transmission unit 214.
  • 5 has two antennas 1 and 2.
  • the radio reception unit 201 receives the OFDM signal transmitted from the base station 100 via the antennas 1 and 2 and performs reception processing such as down-conversion and A / D conversion on the received OFDM signal.
  • the received OFDM signal includes a PDSCH signal (downlink data) assigned to a resource in PDSCH or a PDCCH signal (downlink assignment control information) assigned to a resource in PDCCH.
  • CP removing section 202 removes the CP added to the OFDM signal after reception processing.
  • the FFT unit 203 performs FFT on the received OFDM signal and converts it into a frequency domain signal, and outputs the obtained received signal to the extracting unit 204.
  • the extraction unit 204 extracts a downlink control channel signal (PDCCH signal) from the received signal received from the FFT unit 203 according to the input coding rate information. That is, since the number of CCEs constituting the downlink control information allocation resource changes according to the coding rate, the extraction unit 204 extracts the downlink control channel signal using the number of CCEs corresponding to the coding rate as an extraction unit. .
  • the extracted downlink control channel signal is output to demodulation section 205.
  • the extraction unit 204 extracts downlink data (downlink data channel signal (PDSCH signal)) from the received signal based on the information on the downlink data allocation resource addressed to the own device received from the determination unit 207, and sends it to the demodulation unit 209. Output.
  • PDSCH signal downlink data channel signal
  • the demodulation unit 205 demodulates the downlink control channel signal received from the extraction unit 204 and outputs the obtained demodulation result to the decoding unit 206.
  • the decoding unit 206 decodes the demodulation result received from the demodulation unit 205 according to the input coding rate information, and outputs the obtained decoding result to the determination unit 207.
  • the determination unit 207 identifies the CCE to which the control information addressed to itself is mapped, and outputs the identified CCE identification information to the control unit 208.
  • the control unit 208 identifies the PUCCH resource (frequency / code) corresponding to the CCE indicated by the CCE identification information received from the determination unit 207 as an ACK / NACK resource. Then, the control unit 208 transmits the ZAC sequence and the cyclic shift amount respectively corresponding to the identified ACK / NACK resource and the SR resource previously notified from the base station 100 to the spreading unit 222 of the uplink control channel signal generation unit 213. And output the frequency resource information to the IFFT unit 223. In addition, control section 208 outputs a ZAC sequence and frequency resource information as a reference signal corresponding to each resource to IFFT section 226, and outputs a Walsh sequence corresponding to an ACK / NACK resource and an SR resource to spreading section 225. The DFT sequence corresponding to the reference signal is output to spreading section 228.
  • control unit 208 when there is no response signal to be transmitted in the subframe that has received the SR (that is, when no downlink allocation control information is detected), the control unit 208 notifies the response signal generation unit 212 of “NACK Is output to the uplink control channel signal generation unit 213. As described above, the control unit 208 controls the transmission of the response signal or SR based on the response signal and the generation status of the SR. Details of SR and response signal transmission control in control unit 208 will be described later.
  • Demodulation section 209 demodulates the downlink data received from extraction section 204, and outputs the demodulated downlink data to decoding section 210.
  • Decoding section 210 decodes the downlink data received from demodulation section 209 and outputs the decoded downlink data to CRC section 211.
  • the response signal generation unit 212 generates a response signal to be transmitted to the base station 100 based on the downlink data reception status (downlink data error detection result) input from the CRC unit 211. However, the response signal generation unit 212 generates a NACK when there is an instruction from the control unit 208 (that is, when the terminal 200 transmits only SR). Then, the response signal generation unit 212 outputs the generated “response signal or NACK” (hereinafter simply referred to as “response signal”) to the uplink control channel signal generation units 213-1 and 213-2.
  • the uplink control channel signal generation unit 213 generates an uplink control channel signal (PUCCH signal) based on the response signal received from the response signal generation unit 212.
  • Terminal 200 is provided with uplink control channel signal generation sections 213-1 and 213-2 corresponding to antenna 1 and antenna 2 of terminal 200, respectively. Also, uplink control channel signal generation sections 213-1 and 213-2 correspond to either SR resource or ACK / NACK resource in PUCCH.
  • the uplink control channel signal generation unit 213 includes a modulation unit 221, a spreading unit 222, an IFFT unit 223, a CP adding unit 224, a spreading unit 225, an IFFT unit 226, and a CP adding unit 227. , A diffusion unit 228 and a multiplexing unit 229.
  • the modulation unit 221 modulates the response signal input from the response signal generation unit 212 and outputs it to the spreading unit 222.
  • the spreading unit 222 performs first spreading of the response signal based on the ZAC sequence and the cyclic shift amount set by the control unit 208, and outputs the response signal after the first spreading to the IFFT unit 223. That is, spreading section 222 performs first spreading of the response signal in accordance with an instruction from control section 208.
  • the IFFT unit 223 arranges the response signal after the first spreading on the frequency axis based on the frequency resource information input from the control unit 208, and performs IFFT. Then, IFFT section 223 outputs the response signal after IFFT to CP adding section 224.
  • the CP adding unit 224 adds the same signal as the tail part of the response signal after IFFT to the head of the response signal as a CP.
  • Spreading section 225 uses the Walsh sequence set by control section 208 to secondarily spread the response signal after CP addition, and outputs the response signal after the second spreading to multiplexing section 229. That is, spreading section 225 performs second spreading on the response signal after the first spreading using a Walsh sequence corresponding to the resource selected by control section 208.
  • the IFFT unit 226 arranges the reference signal on the frequency axis based on the frequency resource information input from the control unit 208, and performs IFFT. Then, IFFT unit 226 outputs the reference signal after IFFT to CP adding unit 227.
  • the CP adding unit 227 adds the same signal as the tail part of the reference signal after IFFT to the head of the reference signal as a CP.
  • Spreading section 228 spreads the reference signal after adding the CP with the DFT sequence instructed from control section 208 and outputs the spread reference signal to multiplexing section 229.
  • the multiplexing unit 229 time-multiplexes the response signal after second spreading and the reference signal after spreading into one slot, and outputs the result to the radio transmitting unit 214 corresponding to each of the antennas 1 and 2.
  • the radio transmission unit 214 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal received from the multiplexing unit 229 of the uplink control channel signal generation unit 213, and transmits the signal from the antenna to the base station 100.
  • Terminal 200 is provided with radio transmission sections 214-1 and 214-2 corresponding to antenna 1 and antenna 2 of terminal 200, respectively, and radio transmission sections 214-1 and 214-2 are SR resources or A response signal or SR is transmitted using any one of the ACK / NACK resources.
  • the terminal 200 includes two antennas. Also, terminal 200 allocates SR resources (or ACK / NACK resources) one by one to two antennas, and transmits the same signal from the two antennas. That is, in terminal 200, SORTD is applied to one or both of SR and the response signal.
  • SR resources or ACK / NACK resources
  • terminal 200 assigns either one of the response signal or SR to the code resource (SR resource or ACK / NACK resource), and a plurality of (here, two) response signals or SRs assigned to the code resource. Transmit from each antenna.
  • FIG. 6A a case where two SR resources (first SR resource and second SR resource) are set in advance for terminal 200 and there are two ACK / NACK resources. Assume that “state 1” (FIG. 7A). Also, as shown in FIG. 6A, a case where two SR resources are set in advance for terminal 200 and there is one ACK / NACK resource is referred to as “state 2” (FIG. 8A). Furthermore, as shown in FIG. 6B, a case where one SR resource is preset for terminal 200 and there are two ACK / NACK resources is referred to as “state 3” (FIG. 9A). Hereinafter, the operation of terminal 200 in the three cases of “state 1” to “state 3” will be described in detail.
  • ⁇ State 1 When two SR resources are preset for terminal 200 and there are two ACK / NACK resources (FIGS. 6A and 7A to 7D)>
  • the base station 100 provides information on two SR resources to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) shown in FIG. Is notified in advance.
  • the number of CCEs occupied by the L1 / L2 CCH received by the terminal 200 is two or more. That is, as illustrated in FIG. 7A, the control unit 208 of the terminal 200 is associated with the information regarding the two SR resources notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. Information about two ACK / NACK resources.
  • terminal 200 selects two ACK / NACK resources associated with two CCEs according to a preset rule. To do.
  • two SR resources (first SR resource and second SR resource) and two ACK / NACK resources (first ACK / NACK resource and second SR resource).
  • ACK / NACK resources are different code resources in which at least one of a ZAC sequence (first spreading) or an orthogonal code sequence is different.
  • the PUCCH of the uplink unit band shown in FIG. 7A corresponds to the SR occurrence status in a certain subframe and the response signal occurrence status (that is, the detection status of downlink allocation control information in terminal 200).
  • the detailed operation of the transmission control process in terminal 200 (control unit 208) will be described with reference to FIGS. 7B to 7D.
  • control section 208 transmits information corresponding to the second SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) to uplink control channel signal generation section 213-1. ) Is output. Further, control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • the terminal 200 when both the SR and the response signal are generated simultaneously in a certain subframe, the terminal 200, as shown in FIG. 7B, the second SR resource and the first ACK / NACK resource (that is, SR A response signal ("A / N") for downlink data is transmitted using both resources and ACK / NACK resources). Specifically, terminal 200 transmits the same response signal from antenna 1 using the second SR resource, and transmits from antenna 2 using the first ACK / NACK resource. That is, terminal 200 transmits the same response signals respectively assigned to the second SR resource and the first ACK / NACK resource, which are different code resources, from two antennas 1 and 2, respectively.
  • the determination unit 118 of the base station 100 uses the second SR resource and the first ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Furthermore, the base station 100 determines that the terminal 200 receives ACK or NACK as a response signal based on the phase of the signal received by the second SR resource and the first ACK / NACK resource (that is, based on the demodulation result by BPSK). Which of these is transmitted is determined.
  • control section 208 When only a response signal is generated in terminal 200 (FIG. 7C)>
  • control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, etc.) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-1. DFT sequence) is output.
  • Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 receives the first ACK / NACK resource and the second ACK / NACK resource (that is, ACK / NACK) as shown in FIG. 7C.
  • a response signal ("A / N") for downlink data is transmitted using (resource only).
  • terminal 200 transmits the same response signal from antenna 1 using the first ACK / NACK resource and transmits from antenna 2 using the second ACK / NACK resource. That is, terminal 200 transmits the same response signal allocated to the first and second ACK / NACK resources, which are different code resources, from two antennas 1 and 2, respectively.
  • the determination unit 118 of the base station 100 uses the first ACK / NACK resource and the second ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Also, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the first and second ACK / NACK resources.
  • control section 208 When SR only occurs in terminal 200 (FIG. 7D)>, control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first SR resource to uplink control channel signal generation section 213-1. ) Is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second SR resource to uplink control channel signal generation section 213-2.
  • control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 uses the first SR resource and the second SR resource (that is, only SR resource) as shown in FIG.
  • An SR having the same phase point as “NACK” is transmitted. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 7D. Specifically, terminal 200 transmits the same SR (NACK) from antenna 1 using the first SR resource and transmits from antenna 2 using the second SR resource. That is, terminal 200 transmits the same SR (NACK) respectively assigned to the first and second SR resources, which are different code resources, using two antennas 1 and 2, respectively.
  • terminal 200 shown in FIG. 7D (that is, the operation in which terminal 200 transmits only SR) is when only SR occurs in terminal 200 when downlink data is not assigned to terminal 200.
  • Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
  • ⁇ State 1 When neither SR nor a response signal is generated in terminal 200 (not shown)> In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
  • the base station 100 can distinguish the state in which the terminal 200 has failed to receive downlink allocation control information and SR has occurred simultaneously (that is, the state of (SR + DTX) (FIG. 7D)).
  • base station 100 determines that SR and NACK are transmitted from terminal 200 because signals are allocated to SR resources and ACK / NACK resources, and terminal 200 is It is determined that the allocation control information has been successfully received.
  • base station 100 determines that only SR (that is, SR + DTX) has been transmitted from terminal 200 because a signal is allocated only to SR resources, and terminal 200 allocates downlink allocation. It is determined that reception of control information has failed.
  • base station 100 can determine whether terminal 200 has received downlink allocation control information or not, retransmission control of downlink data (for example, IR, for example) depends on whether terminal 200 has received downlink allocation control information. Etc.) can be performed efficiently. That is, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
  • IR downlink allocation control information
  • ⁇ State 2 When two SR resources are preset for terminal 200 and there is one ACK / NACK resource (FIGS. 6A and 8A to 8D)>
  • the base station 100 provides information on two SR resources to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) shown in FIG. Is notified in advance.
  • the L1 / L2CCH received by the terminal 200 has only one CCE. That is, as illustrated in FIG. 8A, the control unit 208 of the terminal 200 is associated with the information regarding the two SR resources notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. It holds information about a single ACK / NACK resource.
  • two SR resources (first SR resource and second SR resource) and one ACK / NACK resource are ZAC sequences (first spreading) or orthogonal codes.
  • the code resources are different from each other in which at least one of the sequences is different.
  • control section 208 transmits information corresponding to the second SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) to uplink control channel signal generation section 213-1. ) Is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the ACK / NACK resource to uplink control channel signal generation section 213-2.
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • a response signal ("A / N") for downlink data is transmitted using ACK / NACK resources (that is, both SR resources and ACK / NACK resources).
  • the determination unit 118 of the base station 100 transmits the SR and the response signal because the second SR resource and the ACK / NACK resource are used in the uplink unit band PUCCH illustrated in FIG. 8B. Is determined. Furthermore, based on the phase of the signal received by the second SR resource and the ACK / NACK resource (that is, based on the demodulation result by BPSK), the base station 100 receives either ACK or NACK as a response signal. Determine if it has been sent.
  • control section 208 transmits information corresponding to ACK / NACK resources (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence) to uplink control channel signal generation sections 213-1 and 213-2. , DFT sequence).
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 uses only one ACK / NACK resource with both two antennas as shown in FIG. A response signal (“A / N”) is transmitted. Specifically, terminal 200 transmits the same response signal from antenna 1 and antenna 2 using the same ACK / NACK resource.
  • the determination unit 118 of the base station 100 determines that the terminal 200 has transmitted a response signal because only one ACK / NACK resource is used in the PUCCH of the uplink unit band shown in FIG. 8C. Further, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the ACK / NACK resource.
  • control section 208 When SR only occurs in terminal 200 (FIG. 8D)>
  • control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first SR resource to uplink control channel signal generation section 213-1. ) Is output.
  • Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second SR resource to uplink control channel signal generation section 213-2.
  • control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 when only SR occurs in a certain subframe, terminal 200 performs the first SR resource and the second SR resource as in state 1 (FIG. 7D) as shown in FIG. 8D. (That is, only SR resource) is used to transmit an SR having the same phase point as “NACK”. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 8D.
  • terminal 200 shown in FIG. 8D (that is, the operation in which terminal 200 transmits only SR) is the case where only SR occurs in terminal 200 when downlink data is not assigned to terminal 200.
  • Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
  • ⁇ State 2 When neither SR nor a response signal is generated in terminal 200 (not shown)> In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
  • terminal 200 when there are two SR resources that can be used by terminal 200 and one ACK / NACK resource (state 2), terminal 200 (control unit 208) according to the SR generation status and the response signal generation status.
  • the base station 100 can determine whether or not the terminal 200 has received downlink allocation control information, the base station 100 performs downlink data retransmission control (for example, IR or the like) according to whether or not the terminal 200 has received downlink allocation control information. It can be done efficiently. Therefore, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
  • ⁇ State 3 When one SR resource is set in advance for terminal 200 and there are two ACK / NACK resources (FIGS. 6B and 9A to 9D)>
  • the base station 100 provides information on one SR resource to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) illustrated in FIG. Is notified in advance.
  • the number of CCEs occupied by the L1 / L2 CCH received by the terminal 200 is two or more. That is, as illustrated in FIG. 9A, the control unit 208 of the terminal 200 is associated with information on one SR resource notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. Information about two ACK / NACK resources.
  • terminal 200 selects two ACK / NACK resources associated with two CCEs according to a preset rule. To do.
  • one SR resource and two ACK / NACK resources are ZAC sequences (first spreading).
  • different code resources in which at least one of the orthogonal code sequences is different.
  • control section 208 When both SR and response signal occur simultaneously in terminal 200 (FIG. 9B)>
  • control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the SR resource to uplink control channel signal generation section 213-1. To do.
  • control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 performs the same as in state 1 (FIG. 7B) or state 2 (FIG. 8B) as shown in FIG. 9B.
  • a response signal (“A / N”) for downlink data is transmitted using the SR resource and the first ACK / NACK resource (that is, both the SR resource and the ACK / NACK resource).
  • terminal 200 transmits the same response signal from antenna 1 using the SR resource and transmits from antenna 2 using the first ACK / NACK resource.
  • the determination unit 118 of the base station 100 transmits the SR and the response signal because the SR resource and the first ACK / NACK resource are used in the uplink unit band PUCCH illustrated in FIG. 9B. Is determined. Furthermore, based on the phase of the signal received using the SR resource and the first ACK / NACK resource (that is, based on the result of demodulation by BPSK), base station 100 determines whether ACK or NACK is received by terminal 200 as a response signal. Determine if it has been sent.
  • control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, etc.) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-1. DFT sequence) is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
  • control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 when only a response signal is generated in a certain subframe, terminal 200, as shown in FIG. 9C, similarly to state 1 (FIG. 7C), first ACK / NACK resource and second ACK A response signal ("A / N") for downlink data is transmitted using the / NACK resource. Specifically, terminal 200 transmits the same response signal from antenna 1 using the first ACK / NACK resource and transmits from antenna 2 using the second ACK / NACK resource.
  • the determination unit 118 of the base station 100 uses the first ACK / NACK resource and the second ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Also, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the first and second ACK / NACK resources.
  • control section 208 transmits information corresponding to the SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT) to uplink control channel signal generation sections 213-1 and 213-2. Output).
  • control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
  • terminal 200 uses only SR resources as in state 1 (FIG. 7D) or state 2 (FIG. 8D) as shown in FIG. 9D. And transmit SR which is the same phase point as “NACK”. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 9D. Specifically, terminal 200 transmits the same SR (NACK) from antenna 1 and antenna 2 using the same SR resource.
  • NACK the same SR
  • terminal 200 shown in FIG. 9D (that is, the operation in which terminal 200 transmits only SR) is the case where only SR occurs in terminal 200 when downlink data is not assigned to terminal 200.
  • Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
  • ⁇ State 3 When neither SR nor a response signal is generated in terminal 200 (not shown)> In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
  • terminal 200 when there is one SR resource that can be used by terminal 200 and there are two ACK / NACK resources (state 3), terminal 200 (control unit 208) corresponding to the SR generation status and the response signal generation status.
  • terminal 200 control unit 208 corresponding to the SR generation status and the response signal generation status.
  • the base station 100 since the base station 100 can determine whether or not the terminal 200 has received downlink allocation control information, the base station 100 performs downlink data retransmission control (for example, IR or the like) according to whether or not the terminal 200 has received downlink allocation control information. It can be done efficiently. Therefore, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
  • downlink data retransmission control for example, IR or the like
  • control unit 208 of terminal 200 transmits SR using only “SR resource”. To control.
  • control unit 208 transmits the response signal using only “ACK / NACK resource”. Control.
  • the control unit 208 is configured when only SR is generated in a certain subframe (FIG. 7). 7D, FIG. 8D, or FIG. 9D) when at least one of the “SR resources” to which SR is assigned (herein, the second SR resource) and only a response signal is generated in a certain subframe (The response signal is transmitted using at least one of the “ACK / NACK resources” (here, the first ACK / NACK resource) to which the response signal is allocated in FIG. 7C, FIG. 8C, or FIG. 9C. Control to do.
  • the terminal 200 when the SR and the response signal are simultaneously generated in a certain subframe, the terminal 200, as shown in FIG. 7B, FIG. 8B, or FIG. 9B, part of the response signal transmitted from the terminal 200.
  • the SR resource instead of the ACK / NACK resource (for example, the second ACK / NACK resource in FIG. 7B).
  • terminal 200 transmits a signal (SR or response signal) to be transmitted in a certain subframe using a resource including a code resource corresponding to the signal.
  • SR resource that is a resource to be used for transmission of SR.
  • ACK / NACK resource that is a resource to be used for transmitting the response signal. Therefore, terminal 200 uses both “SR resource” and “ACK / NACK resource” when transmitting SR and response signal simultaneously in a certain subframe.
  • base station 100 determines which code resource (only SR resource, only ACK / NACK resource, or both SR resource and ACK / NACK resource) is transmitted using signal from terminal 200.
  • the content of the signal (SR only (or SR + DTX), response signal only, or both SR and response signal) can be specified. That is, in base station 100 and terminal 200, in the resources (SR resource and ACK / NACK resource) that terminal 200 can use in a certain subframe, the generation status of SR and response signals and the resources used in that status Are associated with each other. For example, the situation shown in FIG. 7B in which the SR and the response signal are generated simultaneously is associated with the second SR resource and the first ACK / NACK resource as resources used in the situation. Therefore, the base station 100 can grasp the signal generation status at the terminal 200 by determining the code resource used for signal transmission from the terminal 200.
  • the base station 100 can receive a signal by distinguishing between the (SR + NACK) state and the (SR + DTX) state. That is, the base station 100 can determine whether or not reception of downlink allocation control information on the terminal 200 side is successful. Thereby, base station 100 can efficiently perform downlink data retransmission control (such as IR) in accordance with the success or failure of downlink allocation control information reception on terminal 200 side.
  • downlink data retransmission control such as IR
  • a subframe in which a base station should receive a response signal from a terminal that is, a response signal if the terminal has correctly received downlink allocation control information. Even if SR occurs on the terminal side, the base station can determine whether or not reception of downlink allocation control information on the terminal side is successful, and retransmission efficiency can be improved.
  • Embodiment 2 As one of the determination methods for determining which code resource is used by the terminal on the base station side, there is a determination method (likelihood determination) based on the likelihood after synchronous detection. Specifically, the base station first performs synchronous detection on signals allocated to different code resources (for example, SR resource and ACK / NACK resource in Embodiment 1), respectively. Next, the base station combines each signal with a set of code resources that can be used by the terminal using, for example, maximum ratio combining (also referred to as MRC: Maximum Ratio Combining).
  • maximum ratio combining also referred to as MRC: Maximum Ratio Combining
  • the base station calculates a likelihood indicating how close the combined result of each set is to the signal point of the response signal. For example, in the first embodiment, in the state 1 (FIG. 7A) in which the number of SR resources and ACK / NACK resources that each terminal can use is two, the base station and the terminal 200 both receive SR and response signals at the same time A case will be described in which a case where the error occurs (FIG. 7B) and a case where only SR occurs in the terminal 200 (FIG. 7D) are discriminated.
  • the base station obtains the Euclidean distance between the combination result of each set and the signal point of the response signal that is closest (in FIG. 10, the phase point (1, 0)), and the reciprocal of the Euclidean distance. Is calculated as a likelihood. Then, the base station determines that the code resource of the group with the higher likelihood (that is, the group with the shorter Euclidean distance) is the code resource used by the terminal.
  • a set of the first ACK / NACK resource and the second SR resource (when SR + response signal is transmitted (FIG. 7B)) is a set of the first SR resource and the second SR resource (only SR). Likelihood is larger than when transmitting (FIG. 7D) (Euclidean distance is short). Therefore, in FIG. 10, the base station determines that the set of the first ACK / NACK resource and the second SR resource is used by the terminal.
  • ACK is associated with the phase point ( ⁇ 1, 0)
  • NACK is associated with the phase point (1, 0).
  • the signal component (white circle shown in FIG. 11) is the NACK phase point (1, 0). Appears near (black circle shown in FIG. 11). Note that although nothing is assigned to the first SR resource in the terminal, a noise component appears in the first SR resource in the base station as shown in FIG. 11B. In general, the noise component appears at a position away from the NACK phase point (1, 0) (black circle shown in FIG. 11).
  • the base station first assigns the signal component assigned to the first ACK / NACK resource (near the phase point (1, 0) in FIG. 11A) and the second SR resource.
  • the obtained signal components are synthesized.
  • a signal near the phase point (1, 0) is obtained as a synthesis result.
  • the base station as shown in FIG. 11B, the noise component present in the first SR resource and the signal component assigned to the second SR resource (in the vicinity of the phase point (1, 0) in FIG. 11B).
  • FIG. 11B a signal slightly separated from the phase point (1, 0) is obtained as a synthesis result.
  • the base station is closest to the likelihood calculated using the Euclidean distance between the combined result shown in FIG. 11A and the closest NACK (phase point (1, 0)) and the combined result shown in FIG. 11B.
  • the likelihood calculated using the Euclidean distance to NACK (phase point (1, 0)) is compared.
  • the noise component is likely to appear at a position distant from the NACK phase point (1, 0) (black circle shown in FIG. 11). Therefore, as shown in FIG. 11A and FIG.
  • the Euclidean distance between the synthesis result shown in FIG. 11B and the NACK phase point is likely to be longer than the Euclidean distance between the synthesis result shown in FIG. 11A and the NACK phase point.
  • the base station is more likely to receive the first ACK / NACK resource and second SR resource set shown in FIG. 11A than the first SR resource and second SR resource set shown in FIG. 11B. Is large (because the Euclidean distance is short), it can be determined that the set of the first ACK / NACK resource and the second SR resource is used by the terminal. Also, the base station determines that the response signal is NACK because the combination result of the first ACK / NACK resource and second SR resource set shown in FIG. 11A is the phase point (1, 0). Can do.
  • the terminal uses the first SR resource and the second SR resource (when only SR occurs).
  • a signal assigned to the second SR resource and a signal assigned to the second SR resource when the first ACK / NACK resource and the second SR resource are used (when the SR and the response signal occur simultaneously).
  • the phase rotation amounts are different from each other.
  • FIG. 12 shows the configuration of base station 300 according to the present embodiment.
  • the same components as those of base station 100 shown in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • two SR resources are notified in advance to the terminal, and despreading sections 115-1 and 115-2 and correlation processing sections 117-1 and 117-2. Is associated with the first and second SR resources, respectively.
  • correlation processing section 117-2 corresponding to the second SR resource includes information on correlation values (data part and reference signal part) between the despread signal and the ZAC sequence.
  • the data is output to the determination unit 318 and the phase rotation unit 301.
  • the phase rotation unit 301 only applies a preset angle (eg, ⁇ 90 degrees) only to the data portion of the signal input from the correlation processing unit 117-2 (ie, S 0 to S 3 shown in FIG. 1). Rotate the phase (ie, multiply the data part by exp ( ⁇ j ⁇ / 2)). Note that the angle set in advance in the phase rotation unit 301 is opposite to the angle (90 degrees) set in advance in the phase rotation unit 401 (FIG. 13) of the terminal 400 described later, and has the same size. . Note that the phase rotation unit 301 does not rotate the phase of the reference signal portion (ie, R 0 to R 2 shown in FIG. 1) of the signal input from the correlation processing unit 117-2. Then, phase rotation section 301 outputs a signal obtained by rotating the phase of the data portion (a signal obtained by multiplying the data portion by exp ( ⁇ j ⁇ / 2)) to determination section 318.
  • a preset angle eg, ⁇ 90 degrees
  • the determination unit 318 determines whether the SR and the response signal are transmitted from the terminal based on the signals (correlation values) input from the correlation processing units 117-1 to 117-n and the phase rotation unit 301. For example, the determination unit 318 determines which of the first SR resource and the second SR resource pair or the first ACK / NACK resource and the second SR resource pair is used by the terminal 400. To do.
  • the determination unit 318 includes a signal input from the correlation processing unit 117-1 (correlation value corresponding to the first SR resource) and a signal input from the correlation processing unit 117-2 (second The correlation values corresponding to the SR resources (without phase rotation of the data portion) are combined using MRC or the like.
  • determination section 318 includes a signal input from correlation processing section 117-3 (correlation value corresponding to the first ACK / NACK resource) and a signal input from phase rotation section 301 (second SR resource). And a correlation value corresponding to (with phase rotation of the data portion) are synthesized using MRC or the like.
  • the determination unit 318 includes a combination result of the first SR resource and the second SR resource, a combination result of the first ACK / NACK resource and the second SR resource, and each combination.
  • the closest Euclidean distance from the signal point of the response signal is obtained from the result.
  • the determination unit 318 calculates a likelihood (likelihood) indicating how close the synthesis result of each set is to the signal point of the response signal using the obtained Euclidean distance of each set. For example, the determination unit 318 uses the reciprocal of each set of Euclidean distances as the likelihood of each set. That is, the likelihood becomes larger as the Euclidean distance is shorter.
  • the determination unit 318 compares the likelihoods of the respective groups, and determines that the group having the higher likelihood is a group used by the terminal 400. Specifically, when the set of the first SR resource and the second SR resource has a higher likelihood than the set of the first ACK / NACK resource and the second SR resource (the signal point of the response signal and When the Euclidean distance is short), the determination unit 318 determines that the terminal 400 uses the set of the first SR resource and the second SR resource. In this case, since determination section 318 determines that only SR is transmitted from terminal 400, SR is output to an uplink resource allocation control section (not shown), and retransmission control signal generation section 119 is transmitted. To output DTX.
  • the determination unit 318 determines that the terminal 400 is using a combination of the first ACK / NACK resource and the second SR resource.
  • determination section 318 outputs SR to an uplink resource allocation control section (not shown) and determines retransmission control signal generation section 119 in order to determine that SR and a response signal are transmitted from terminal 400.
  • a response signal (ACK or NACK) is output.
  • FIG. 13 shows the configuration of terminal 400 according to the present embodiment.
  • the same components as those of terminal 200 shown in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted.
  • two SR resources are notified in advance to terminal 400, and first SR resource or first ACK / NACK resource is provided to uplink control channel signal generation section 213-1.
  • first SR resource or first ACK / NACK resource is provided to uplink control channel signal generation section 213-1.
  • the second SR resource is associated with the uplink control channel signal generation section 213-2.
  • the control unit 408 when the control unit 408 receives only SR from the uplink data generation unit (not shown), information corresponding to the first SR resource (ZAC sequence, cyclic shift amount, Frequency resource information, Walsh sequence and DFT sequence) are output to uplink control channel signal generation section 213-1 and information corresponding to the second SR resource (ZAC sequence, cyclic shift amount, frequency resource information, Walsh sequence and DFT sequence) ) To the uplink control channel signal generator 213-2. Further, the control unit 408 outputs an instruction signal that does not rotate the phase of the signal to the phase rotation unit 401.
  • the control unit 408 when the control unit 408 simultaneously receives the SR and the response signal from the uplink data generation unit (not shown), the information corresponding to the first ACK / NACK resource (ZAC sequence, cyclic shift amount, frequency) (Resource information, Walsh sequence and DFT sequence) are output to uplink control channel signal generation section 213-1 and information corresponding to the second SR resource (ZAC sequence, cyclic shift amount, frequency resource information, Walsh sequence and DFT sequence) Is output to the uplink control channel signal generation section 213-2.
  • the control unit 408 outputs an instruction signal for rotating the phase of the signal by a preset angle (for example, 90 degrees) to the phase rotation unit 401 (multiplying the signal by exp (j ⁇ / 2)). To do.
  • the response signal generation unit 212 outputs the generated response signal or NACK (when there is an instruction from the control unit 408) to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1.
  • the phase rotation unit 401 determines whether to rotate the phase of the signal input from the response signal generation unit 212 according to the instruction signal from the control unit 408. Specifically, when an instruction signal for rotating the phase of the signal is input from the control unit 408, the phase rotation unit 401 rotates the phase of the signal by 90 degrees (multiply the signal by exp (j ⁇ / 2). To do). On the other hand, when an instruction signal that does not rotate the phase of the signal is input from the control unit 408, the phase rotation unit 401 does not rotate the phase of the signal (does not multiply the signal by exp (j ⁇ / 2)).
  • the phase rotation unit 401 uses the signal after phase rotation processing according to the instruction signal (that is, a signal with phase rotation or a signal without phase rotation) as an uplink control channel signal generation unit corresponding to the second SR resource.
  • the data is output to the modulation unit 221 of 213-2.
  • base station 300 transmits, to terminal 400, the uplink unit band shown in FIG. 2 (uplink unit band set in terminal 400).
  • the information regarding the two SR resources is notified in advance. That is, the control unit 408 of the terminal 400 holds information regarding the two SR resources notified from the base station 300.
  • terminal 400 identifies one or two ACK / NACK resources (FIG. 7A or FIG. 8A) associated with the CCE occupied by the downlink allocation control information received by the own device.
  • angles set in advance in the phase rotation unit 301 and the phase rotation unit 401 are set to ⁇ 90 degrees and 90 degrees, respectively.
  • values that are preset in the phase rotation unit 301 and the phase rotation unit 401 and are multiplied by the signal are expressed as exp ( ⁇ j ⁇ / 2) and exp (j ⁇ / 2), respectively.
  • ACK is associated with the phase point (-1, 0)
  • NACK is associated with the phase point (1, 0).
  • terminal 400 transmits a response signal (“A / N”) for downlink data using the first ACK / NACK resource and the second SR resource, as in Embodiment 1 (FIG. 7B). To do. Specifically, control unit 408 of terminal 400 transmits the same response signal from antenna 1 using the first ACK / NACK resource, and transmits from antenna 2 using the second SR resource. To control.
  • a / N response signal
  • control unit 408 of terminal 400 transmits the same response signal from antenna 1 using the first ACK / NACK resource, and transmits from antenna 2 using the second SR resource.
  • control unit 408 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1. To do.
  • the control unit 408 also causes the phase rotation unit 401 to rotate the response signal input from the response signal generation unit 212 by 90 degrees (multiply the response signal by exp (j ⁇ / 2). ) Output the instruction signal.
  • phase rotation unit 401 rotates the phase of the response signal input from the response signal generation unit 212 by 90 degrees (that is, the response signal is multiplied by exp (j ⁇ / 2)).
  • the first ACK / NACK resource As the signal point arrangement of the response signal (“A / N”), ACK is associated with the phase point ( ⁇ 1, 0), and NACK is associated with the phase point (1, 0).
  • the second SR resource ACK is associated with the phase point (0, ⁇ j) as the signal point arrangement of the response signal (“A / N”), and NACK Is associated with the phase point (0, j).
  • terminal 400 performs the second SR with respect to the constellation of the response signal allocated to the first ACK / NACK resource.
  • the response signal constellation assigned to the resource is rotated 90 degrees.
  • the constellation of the response signal allocated to the first ACK / NACK resource is different from the constellation of the response signal allocated to the second SR resource by 90 degrees.
  • the terminal 400 rotates only the phase of the response signal in the phase rotation unit 401 and does not rotate the phase of the reference signal (RS in FIG. 14). Therefore, as shown in FIG. 14, the reference signal (RS) transmitted by each of the first ACK / NACK resource and the second SR resource is associated with the same phase point (1, 0).
  • terminal 400 uses the first ACK / NACK resource and the second ACK / NACK resource as in Embodiment 1 (FIG. 7C) to respond to the downlink data (“A / N”).
  • a / N downlink data
  • control section 408 of terminal 400 transmits the same response signal from antenna 1 using the first ACK / NACK resource, and transmits from antenna 2 using the second ACK / NACK resource. Control to do.
  • control unit 408 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1. To do.
  • control unit 408 instructs the phase rotation unit 401 not to rotate the phase of the response signal input from the response signal generation unit 212 (do not multiply the response signal by exp (j ⁇ / 2)). Output a signal.
  • the phase rotation unit 401 outputs the response signal input from the response signal generation unit 212 to the modulation unit 221 of the uplink control channel signal generation unit 213-2 without rotating the phase of the response signal.
  • the response signal (“A / N ′′), ACK is associated with the phase point ( ⁇ 1, 0), and NACK is associated with the phase point (1, 0).
  • the second ACK / NACK resource ACK is associated with the phase point ( ⁇ 1, 0) as the signal point arrangement of the response signal (“A / N”), and NACK is the phase Corresponding to the point (1, 0). That is, when only a response signal occurs in a certain subframe, the constellation of the response signal assigned to the first ACK / NACK resource and the response signal assigned to the second ACK / NACK resource The constellation is the same.
  • terminal 400 transmits the SR using the same phase point as “NACK” using the first SR resource and the second SR resource, as in Embodiment 1 (FIG. 7D). Specifically, control unit 408 of terminal 400 transmits the same SR (NACK) from antenna 1 using the first SR resource and transmits from antenna 2 using the second SR resource. To control.
  • control unit 408 instructs the response signal generation unit 212 to output “NACK” to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1.
  • the control unit 408 also sets exp (j ⁇ / 2) to the signal (NACK) so that the phase of the signal (NACK) input from the response signal generation unit 212 is not rotated by 90 degrees with respect to the phase rotation unit 401.
  • Output instruction signal (so as not to multiply).
  • phase rotation unit 401 outputs the signal (NACK) input from the response signal generation unit 212 as it is to the uplink control channel signal generation unit 213-2 without rotating the phase.
  • the signal (NACK) is the phase point (1,1) in the first SR resource. 0). As shown in FIG. 14, the signal (NACK) is also associated with the phase point (1, 0) in the second SR resource. That is, when only SR occurs in a certain subframe, the constellation of SR (NACK) allocated to the first SR resource and the constellation of SR (NACK) allocated to the second SR resource Is the same.
  • terminal 400 does not transmit the SR and response signal in the PUCCH resource.
  • base station 300 Next, the operation of base station 300 according to the present embodiment will be described.
  • a case where both SR and a response signal are generated at the same time in a certain subframe (during simultaneous transmission of SR and a response signal shown in FIG. 14) will be described as an example.
  • a case where the response signal is NACK will be described.
  • At least one of the SR resources (here, the second SR) Resource) and at least one of the ACK / NACK resources (here, the first ACK / NACK resource) is used. That is, in terminal 400, as shown in FIG. 14, NACK (phase point (1, 0)) is assigned to the first ACK / NACK resource, and NACK (phase point (0, 0, 0)) is assigned to the second SR resource. j)) is assigned. 15A and 15B show only the components of the data portion of the data portion and the reference signal portion of the signal allocated to each resource.
  • the signal component assigned to the first ACK / NACK resource (the white circle in the first ACK / NACK resource shown in FIG. 15A) is the NACK phase point (1,0). ) (Black circle in the first ACK / NACK resource shown in FIG. 15A) and the signal component assigned to the second SR resource (white circle in the second SR resource shown in FIG. 15A) is the phase of NACK It appears near the point (0, j) (black circle in the second SR resource shown in FIG. 15A).
  • nothing is assigned to the first SR resource, but as shown in FIG. 15B, in base station 300, a noise component appears in the first SR resource. In general, the noise component appears at a position away from the NACK phase point (1, 0) (black circle in the first SR resource shown in FIG. 15B).
  • the phase rotation unit 301 of the base station 300 obtains the likelihood for the set of the first ACK / NACK resource and the second SR resource, as shown in FIG. 15A, the signal obtained with the second SR resource
  • the phase of the component near the NACK phase point (0, j) in the second SR resource in FIG. 15A
  • the data portion of the correlation value is multiplied by exp ( ⁇ j ⁇ / 2)).
  • the signal component is in the vicinity of the phase point (1, 0) after the phase rotation.
  • the determination unit 318 first inputs a signal component assigned to the first ACK / NACK resource (in the vicinity of the phase point (1, 0) in FIG. 15A) and the phase rotation unit 301. (That is, a signal component obtained by rotating the signal component allocated to the second SR resource by ⁇ 90 degrees (a result obtained by multiplying the signal component by exp ( ⁇ j ⁇ / 2))).
  • a signal near the phase point (1, 0) is obtained as a synthesis result.
  • the determination unit 318 when determining the likelihood for the set of the first SR resource and the second SR resource, the determination unit 318, as shown in FIG. 15B, the components present in the first SR resource (in FIG. 15B, Noise component) and the signal component assigned to the second SR resource (in the vicinity of the phase point (0, j) in FIG. 15B) are combined. As a result, as shown in FIG. 15B, a signal near the phase point (0, j) is obtained as a synthesis result.
  • the determining unit 318 calculates the likelihood calculated using the Euclidean distance between the combined signal component (combined result) and NACK (phase point (1, 0)) shown in FIG. 15A, and FIG.
  • the likelihood calculated using the Euclidean distance between the indicated signal component (synthesis result) and NACK (phase point (1, 0)) is compared. Therefore, the determination unit 318 is more likely to use the first ACK / NACK resource and second SR resource set shown in FIG. 15A than the first SR resource and second SR resource set shown in FIG. 15B. Since the degree is large (because the Euclidean distance is short), it is determined by the terminal 400 that the set of the first ACK / NACK resource and the second SR resource is used. Also, the determination unit 318 determines that the response signal is NACK because the combination result of the first ACK / NACK resource and second SR resource combination is near the phase point (1, 0).
  • the terminal 400 performs the second SR resource for the signal constellation allocated to the first ACK / NACK resource.
  • the signal constellation assigned to is rotated 90 degrees (the signal is multiplied by exp (j ⁇ / 2)). That is, terminal 400, as shown in FIG. 14, constellation of a signal assigned to the first ACK / NACK resource and the second SR resource when SR and the response signal are simultaneously generated in a certain subframe. Different from the constellation of the signal assigned to.
  • terminal 400 uses the constellation of signals allocated to SR resources and ACK / NACK resources when only a response signal is generated within a certain subframe and when only SR is generated. Make the constellation of the assigned signals the same. That is, as shown in FIG. 14, terminal 400 changes the constellation of the signal allocated to the second SR resource when only a response signal is generated in a certain subframe or only SR is generated. I won't let you.
  • terminal 400 changes the phase rotation amount of the signal (SR or response signal) allocated to the second SR resource depending on whether SR and the response signal are generated simultaneously in the same subframe.
  • terminal 400 has a phase point that can be taken by a signal assigned to the first ACK / NACK resource when SR and a response signal are simultaneously generated in a certain subframe (ACK ( ⁇ 1, 0 in FIG. 14)).
  • (1, 0)) (0 degree in FIG. 14) is made different from each other.
  • the terminal 400 when the SR and the response signal are simultaneously generated in a certain subframe, the terminal 400 has the same content in the first ACK / NACK resource and the second SR resource.
  • phase points for example, NACK indicating that there is an error
  • Phase difference 90 degrees ( ⁇ / 2 radians)
  • only SR or response signal
  • terminal 400 arranges signals (ACK or NACK) in the first ACK / NACK resource and the second SR resource, respectively, when SR and a response signal are simultaneously generated in a certain subframe.
  • each resource for example, the first SR resource and the second resource when only SR occurs
  • the difference between the phase difference between the phase points where the signal (ACK or NACK) may be arranged in the SR resource) is maximum (here, 90 degrees (that is, ⁇ / 2 radians)).
  • base station 300 when obtaining the likelihood for the set of the first ACK / NACK resource and the second SR resource, the phase of the reverse rotation with respect to terminal 400 is performed with respect to the data portion of the second SR resource.
  • the phase rotation is not applied to the data portion of the second SR resource. That is, base station 300 uses a set of first ACK / NACK resource and second SR resource by terminal 400 (that is, when terminal 400 performs phase rotation on the second SR resource). ), The second SR resource in the correct resource set (that is, the first ACK / NACK resource and the second SR resource set) is rotated in the opposite phase to terminal 400.
  • phase rotation is not performed on the second SR resource in the wrong resource set (that is, other resource set).
  • the base station 300 determines the correct resource. While the phase rotation is not performed on the second SR resource in the set (that is, the set of resources other than the set of the first ACK / NACK resource and the second SR resource), the wrong set of resources Phase rotation is performed on the second SR resource in (that is, the set of the first ACK / NACK resource and the second SR resource).
  • the combination result after MRC (in the vicinity of the combined phase point (1, 0)) in the first ACK / NACK resource and second SR resource set is the response. It is located near the signal point (1,0) of the signal.
  • FIG. 15A the combination result after MRC (in the vicinity of the combined phase point (1, 0)) in the first ACK / NACK resource and second SR resource set (here, the correct resource set) is the response. It is located near the signal point (1,0) of the signal.
  • FIG. 15A the combination result after MRC (in the vicinity of the combined phase point (1, 0)) in the first ACK / NACK resource and second SR resource set (here, the correct resource set) is the response. It is located near the signal point (1,0) of the signal.
  • the combination result after MRC in the set of the first SR resource and the second SR resource (here, the incorrect set of resources) (near the phase point (0, j) after the combination) Is a position where the phase difference from the signal point (1, 0) of the response signal is approximately 90 degrees ( ⁇ / 2 radians) (the amount of phase rotation given by the terminal 400).
  • an incorrect resource set that is, a resource set not used by terminal 400. ) Is likely to be far away from the signal point of the response signal.
  • the base station 300 has a likelihood calculated based on an incorrect resource set (for example, in FIG. 15A and FIG. 15B, the first SR resource and second SR resource set shown in FIG. 15B).
  • an incorrect resource set for example, in FIG. 15A and FIG. 15B, the first SR resource and second SR resource set shown in FIG. 15B.
  • the Euclidean distance between the combination result in the combination of the SR resource and the second SR resource) and the signal point of the response signal is longer than that in FIG. 11B. That is, the likelihood of the wrong resource set in FIG. 15B is significantly degraded from the likelihood of the wrong resource set in FIG. 11B. That is, the difference between the likelihood of the correct resource set in FIG. 15A and the likelihood of the incorrect resource set in FIG. 15B is the likelihood of the correct resource set in FIG. 11A and the likelihood of the incorrect resource set in FIG. Greater than the difference in degrees.
  • the difference in likelihood can be greatly different between the correct resource set and the incorrect resource set. For this reason, it is possible to improve the determination accuracy for determining which of the first ACK / NACK resource and second SR resource set and the other resource set is used by the terminal 400.
  • a subframe in which a base station should receive a response signal from a terminal that is, a response if the terminal has correctly received downlink allocation control information.
  • Signal transmission subframe even if SR occurs on the terminal side, the base station can more accurately determine whether the terminal side has received downlink allocation control information or not, and improve retransmission efficiency. be able to.
  • the constellation of the second SR resource is rotated 90 degrees (phase) with respect to the constellation of the first ACK / NACK resource.
  • the phase rotation unit 401 may be referred to as a scramble unit.
  • the second SR resource constellation is rotated by 90 degrees with respect to the first ACK / NACK resource constellation.
  • the constellation of the second SR resource is rotated by an arbitrary angle ⁇ (radian) with respect to the constellation of the first ACK / NACK resource (exp ( In the case of multiplying j ⁇ ), the same effect as this embodiment can be obtained.
  • phase rotation that is, multiplication by exp (j ⁇ / 2) which is a scramble code
  • primary spreading and secondary spreading are performed.
  • the order of scramble processing, primary spreading, and secondary spreading is not limited to this. That is, since the scramble process, the first spread and the second spread are all represented by multiplication, for example, after the first spread is performed on the response signal or the second spread is performed, the scramble code is changed. Even if multiplication is performed, the same result as in the present embodiment can be obtained.
  • a GCL Generalized Chirp like
  • a CAZAC Constant Amplitude Zero Auto Correlation
  • a ZC Zero Auto Correlation
  • a PN sequence such as an M sequence or an orthogonal gold code sequence
  • a time randomly generated by a computer A sequence having a sharp autocorrelation characteristic on the axis may be used for the first spreading.
  • any sequence may be used as the orthogonal code sequence as long as the sequences are orthogonal to each other or sequences that can be regarded as being substantially orthogonal to each other.
  • the response signal resource (for example, PUCCH resource) is defined by the cyclic shift amount of the ZAC sequence and the sequence number of the orthogonal code sequence.
  • the terminal when L1 / L2CCH occupies N (N> 2) CCEs, the terminal (terminal 200, terminal 400) has two ACK / links associated with any two CCEs.
  • NACK resource is selected has been described.
  • the intersymbol interference between two ACK / NACK resources associated with consecutive CCEs with an Index is large.
  • the ACK / NACK resource associated with the CCE with the smallest Index and the Index with N Two ACK / NACK resources of the ACK / NACK resource associated with the CCE / 2 may be used. Thereby, the interference between two ACK / NACK resources can be reduced, and the transmission performance of a response signal can be improved.
  • the response signal transmitted from the terminal is modulated by BPSK
  • the present invention can be applied to a case where the response signal is not limited to BPSK but is modulated by QPSK, for example.
  • the terminal rotates the phase of the response signal allocated to the second SR resource by 45 degrees. By multiplying the response signal by exp (j ⁇ / 4), the same effect as in the above embodiment can be obtained.
  • the antenna is described as an antenna.
  • the present invention can be similarly applied to an antenna port.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a mobile communication system or the like.
  • Control unit 102 Control information generation unit 103, 105 Coding unit 104, 107, 221 Modulation unit 106 Data transmission control unit 108 Mapping unit 109, 223, 226 IFFT unit 110 , 224, 227 CP addition unit 111, 214 Radio transmission unit 112, 201 Radio reception unit 113, 202 CP removal unit 114 PUCCH extraction unit 115 Despreading unit 116 Sequence control unit 117 Correlation processing unit 118, 207, 318 Determination unit 119 Retransmission Control signal generation unit 203 FFT unit 204 Extraction unit 205, 209 Demodulation unit 206, 210 Decoding unit 211 CRC unit 212 Response signal generation unit 213 Uplink control channel signal generation unit 222, 225, 228 Spreading unit 229 Multiplexing unit 301, 401 Phase rotation Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a terminal apparatus whereby, even when SR occurs, on the terminal side, in a subframe in which a base station is to receive a response signal from the terminal in an LTE-A system, the base station can determine whether downstream allocation control information has successfully been received on the terminal side, thereby improving the retransmission efficiency. The terminal apparatus (200), which is operative to allocate one of a response signal and SR to code resources and transmit, via a plurality of antennas, the response signal or SR allocated to the code resources, comprises a control unit (208) that, when SR and a response signal concurrently occur within a transmission unit time, transmits the response signal by use of both at least one of SR resources to which SR is to be allocated when only SR occurs within the transmission unit time and at least one of ACK/NACK resources to which a response signal is to be allocated when only the response signal occurs within the transmission unit time.

Description

端末装置及び信号送信制御方法Terminal apparatus and signal transmission control method
 本発明は、端末装置及び信号送信制御方法に関する。 The present invention relates to a terminal device and a signal transmission control method.
 3GPP LTEでは、下り回線の通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用されている。3GPP LTEが適用された無線通信システムでは、基地局が予め定められた通信リソースを用いて同期信号(Synchronization Channel:SCH)及び報知信号(Broadcast Channel:BCH)を送信する。そして、端末は、まず、SCHを捕まえることによって基地局との同期を確保する。その後、端末は、BCH情報を読むことにより基地局独自のパラメータ(例えば、周波数帯域幅など)を取得する(非特許文献1、2、3参照)。 In 3GPP LTE, OFDMA (Orthogonal Frequency Division Multiple Access) is adopted as a downlink communication method. In a wireless communication system to which 3GPP LTE is applied, a base station transmits a synchronization signal (Synchronization Channel: SCH) and a broadcast signal (Broadcast Channel: BCH) using predetermined communication resources. The terminal first secures synchronization with the base station by capturing the SCH. Thereafter, the terminal acquires parameters (eg, frequency bandwidth) unique to the base station by reading the BCH information (see Non-Patent Documents 1, 2, and 3).
 また、端末は、基地局独自のパラメータの取得が完了した後、基地局に対して接続要求を行うことにより、基地局との通信を確立する。基地局は、通信が確立された端末に対して、必要に応じてPDCCH(Physical Downlink Control CHannel)を介して制御情報を送信する。 The terminal establishes communication with the base station by making a connection request to the base station after the acquisition of the parameters unique to the base station is completed. The base station transmits control information via a PDCCH (Physical 確立 Downlink Control CHannel) as necessary to a terminal with which communication has been established.
 そして、端末は、受信したPDCCH信号に含まれる複数の制御情報をそれぞれ「ブラインド判定」する。すなわち、制御情報は、CRC(Cyclic Redundancy Check)部分を含み、このCRC部分は、基地局において、送信対象端末の端末IDによってマスクされる。従って、端末は、受信した制御情報のCRC部分を自機の端末IDでデマスクしてみるまでは、自機宛の制御情報であるか否かを判定できない。このブラインド判定では、デマスクした結果、CRC演算がOKとなれば、その制御情報が自機宛であると判定される。 Then, the terminal performs “blind determination” for each of the plurality of control information included in the received PDCCH signal. That is, the control information includes a CRC (Cyclic Redundancy Check) part, and this CRC part is masked by the terminal ID of the transmission target terminal in the base station. Therefore, the terminal cannot determine whether or not the received control information is control information destined for the own device until the CRC part of the received control information is demasked with the terminal ID of the own device. In this blind determination, if the CRC calculation is OK as a result of demasking, it is determined that the control information is addressed to the own device.
 また、3GPP LTEでは、基地局から端末への下り回線データに対してARQ(Automatic Repeat Request)が適用される。つまり、端末は下り回線データの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は下り回線データに対しCRCを行って、CRC=OK(誤り無し)であればACK(Acknowledgment)を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)を応答信号として基地局へフィードバックする。ただし、この応答信号(つまり、ACK/NACK信号)の変調にはBPSK(Binary Phase Shift Keying)が用いられている。また、この応答信号のフィードバックには、PUCCH(Physical Uplink Control Channel)等の上り回線制御チャネルが用いられる。そして、受信した応答信号がNACKを示す場合には、基地局は、端末に対して再送データを送信する。 In 3GPP LTE, ARQ (Automatic Repeat Request) is applied to downlink data from the base station to the terminal. That is, the terminal feeds back a response signal indicating an error detection result of downlink data to the base station. The terminal performs CRC on the downlink data, and if CRC = OK (no error), ACK (Acknowledgment) is sent to the base station as a response signal, and if CRC = NG (error is found), NACK (Negative Acknowledgment) is sent to the base station as a response signal. provide feedback. However, BPSK (Binary Phase Shift Shift Keying) is used to modulate the response signal (that is, ACK / NACK signal). Further, an uplink control channel such as PUCCH (Physical-Uplink-Control-Channel) is used for feedback of the response signal. If the received response signal indicates NACK, the base station transmits retransmission data to the terminal.
 ここで、基地局から送信される上記制御情報(すなわち、下り割当制御情報)には、基地局が端末に対して割り当てたリソース情報等を含むリソース割当情報が含まれる。この制御情報の送信には、前述の通りPDCCHが用いられる。このPDCCHは、1つ又は複数のL1/L2CCH(L1/L2 Control Channel)から構成される。各L1/L2CCHは、1つ又は複数のCCE(Control Channel Element)から構成される。すなわち、CCEは、制御情報をPDCCHにマッピングするときの基本単位である。また、1つのL1/L2CCHが複数のCCEから構成される場合には、そのL1/L2CCHには識別番号(Index)が連続する複数のCCEが割り当てられる。基地局は、リソース割当対象端末に対する制御情報の通知に必要なCCE数に従って、そのリソース割当対象端末に対してL1/L2CCHを割り当てる。そして、基地局は、このL1/L2CCHのCCEに対応する物理リソースにマッピングして制御情報を送信する。 Here, the control information (that is, downlink allocation control information) transmitted from the base station includes resource allocation information including resource information allocated to the terminal by the base station. As described above, the PDCCH is used for transmitting the control information. This PDCCH is composed of one or a plurality of L1 / L2 CCHs (L1 / L2 Control Channel). Each L1 / L2CCH is composed of one or a plurality of CCEs (Control Channel Element). That is, CCE is a basic unit for mapping control information to PDCCH. When one L1 / L2CCH is composed of a plurality of CCEs, a plurality of CCEs having consecutive identification numbers (Index) are assigned to the L1 / L2CCH. The base station allocates L1 / L2 CCH to the resource allocation target terminal according to the number of CCEs required for reporting control information to the resource allocation target terminal. Then, the base station maps the physical resource corresponding to the CCE of this L1 / L2CCH and transmits control information.
 またここで、各CCEは、PUCCHの構成リソースと1対1に対応付けられている。従って、L1/L2CCHを受信した端末は、このL1/L2CCHを構成するCCEに対応するPUCCHの構成リソースを暗黙的(Implicit)に特定することができ、この特定されたリソースを用いて応答信号を基地局へ送信する。ただし、L1/L2CCHが連続する複数のCCEを占有する場合には、端末は、複数のCCEにそれぞれ対応する複数のPUCCH構成リソースのうち1つ(例えば、Indexが最も小さいCCEに対応するPUCCH構成リソース)を利用して、応答信号を基地局へ送信する。こうして下り回線の通信リソースが効率良く使用される。 Also, here, each CCE is associated with the PUCCH configuration resource on a one-to-one basis. Therefore, the terminal that has received the L1 / L2CCH can implicitly specify the configuration resource of the PUCCH corresponding to the CCE that configures the L1 / L2CCH, and uses this specified resource to transmit a response signal. Transmit to the base station. However, when the L1 / L2 CCH occupies a plurality of continuous CCEs, the terminal may use one of a plurality of PUCCH configuration resources corresponding to the plurality of CCEs (for example, a PUCCH configuration corresponding to the CCE having the smallest Index). Resource) is used to transmit a response signal to the base station. Thus, downlink communication resources are efficiently used.
 複数の端末から送信される複数の応答信号は、図1に示すように、時間軸上でZero Auto-correlation特性を持つZAC(Zero Auto-correlation)系列、ウォルシュ(Walsh)系列、及び、DFT(Discrete Fourier Transform)系列によって拡散され、PUCCH内でコード多重されている。図1において(W,W,W,W)は系列長4のウォルシュ系列を表わし、(F,F,F)は系列長3のDFT系列を表す。図1に示すように、端末では、ACK又はNACKの応答信号が、まず周波数軸上でZAC系列(系列長12)によって1SC-FDMAシンボル内に1次拡散される。次いで1次拡散後の応答信号がW~W、F~Fそれぞれに対応させられてIFFT(Inverse Fast Fourier Transform)される。周波数軸上で系列長12のZAC系列によって拡散された応答信号は、このIFFTにより時間軸上の系列長12のZAC系列に変換される。そして、IFFT後の信号がさらにウォルシュ系列(系列長4)、DFT系列(系列長3)を用いて2次拡散される。 As shown in FIG. 1, a plurality of response signals transmitted from a plurality of terminals include a ZAC (Zero Auto-correlation) sequence having a Zero Auto-correlation characteristic on the time axis, a Walsh sequence, and a DFT ( Discrete Fourier Transform) sequence and code-multiplexed in PUCCH. In FIG. 1, (W 0 , W 1 , W 2 , W 3 ) represents a Walsh sequence with a sequence length of 4, and (F 0 , F 1 , F 2 ) represents a DFT sequence with a sequence length of 3. As shown in FIG. 1, in the terminal, an ACK or NACK response signal is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis. Next, the response signal after first spreading is subjected to IFFT (Inverse Fast Fourier Transform) corresponding to W 0 to W 3 and F 0 to F 2, respectively. A response signal spread by a ZAC sequence having a sequence length of 12 on the frequency axis is converted into a ZAC sequence having a sequence length of 12 on the time axis by the IFFT. The signal after IFFT is further subjected to second order spreading using a Walsh sequence (sequence length 4) and a DFT sequence (sequence length 3).
 ここで、異なる端末からそれぞれ送信される応答信号間では、異なる巡回シフト量(Cyclic shift Index)に対応する系列又は異なる直交符号系列(Orthogonal cover Index:OC Index)(すなわち、ウォルシュ系列とDFT系列の組)を用いて拡散されている。よって、基地局では、従来の逆拡散処理及び相関処理を用いることにより、これらのコード多重された複数の応答信号を分離することができる(非特許文献4参照)。 Here, between response signals transmitted from different terminals, sequences corresponding to different cyclic shift amounts (Cyclic shift Index) or different orthogonal code sequences (Orthogonal cover Index: OC Index) (that is, Walsh sequences and DFT sequences) Set). Therefore, the base station can separate a plurality of response signals that are code-multiplexed by using conventional despreading processing and correlation processing (see Non-Patent Document 4).
 ただし、各端末は各サブフレーム(送信単位時間)において自機宛の下り割当制御情報をブラインド判定するので、端末側では、必ずしも下り割当制御情報の受信が成功するとは限らない。端末が或る下り単位バンドにおける自機宛の下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおいて自機宛の下り回線データが存在するか否かさえも知り得ない。従って、端末が或る下り単位バンドにおける下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおける下り回線データに対する応答信号も生成しない。このエラーケースは、端末側で応答信号の送信が行われないという意味で、応答信号のDTX(DTX (Discontinuous transmission) of ACK/NACK signals)として定義されている。 However, since each terminal blindly determines downlink allocation control information addressed to itself in each subframe (transmission unit time), reception of downlink allocation control information is not always successful on the terminal side. When a terminal fails to receive downlink assignment control information addressed to itself in a certain downlink unit band, the terminal cannot even know whether downlink data addressed to itself exists in the downlink unit band. Therefore, when the terminal fails to receive downlink allocation control information in a certain downlink unit band, the terminal does not generate a response signal for downlink data in the downlink unit band. This error case is defined as DTX (DTX (Discontinuous transmission) of ACK / NACK signals) of the response signal in the sense that the response signal is not transmitted on the terminal side.
 また、3GPP LTEよりも更なる通信の高速化を実現する3GPP LTE-Advancedの標準化が開始された。3GPP LTE-Advancedシステム(以下、「LTE-Aシステム」と呼ばれることがある)は、3GPP LTEシステム(以下、「LTEシステム」と呼ばれることがある)を踏襲する。3GPP LTE-Advancedでは、最大1Gbps以上の下り伝送速度を実現するために、40MHz以上の広帯域周波数で通信可能な基地局及び端末が導入される見込みである。 In addition, standardization of 3GPP LTE-Advanced, which realizes higher communication speed than 3GPP LTE, has started. The 3GPP LTE-Advanced system (hereinafter sometimes referred to as “LTE-A system”) follows the 3GPP LTE system (hereinafter sometimes referred to as “LTE system”). In 3GPP LTE-Advanced, a base station and a terminal capable of communicating in a wideband frequency of 40 MHz or more are expected to be introduced in order to realize a downlink transmission speed of 1 Gbps or more at the maximum.
 LTE-Aシステムにおいては、LTEシステムにおける伝送速度の数倍もの超高速伝送速度による通信、及び、LTEシステムに対するバックワードコンパチビリティーを同時に実現するために、LTE-Aシステム向けの帯域が、LTEシステムのサポート帯域幅である20MHz以下の「単位バンド」に区切られる。すなわち、「単位バンド」は、ここでは、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位として定義される。さらに、下り回線における「単位バンド」(以下、「下り単位バンド」という)は基地局から報知されるBCHの中の下り周波数帯域情報によって区切られた帯域、又は、下り制御チャネル(PDCCH)が周波数領域に分散配置される場合の分散幅によって定義される帯域として定義されることもある。また、上り回線における「単位バンド」(以下、「上り単位バンド」という)は、基地局から報知されるBCHの中の上り周波数帯域情報によって区切られた帯域、又は、中心付近にPUSCH(Physical Uplink Shared CHannel)領域を含み、両端部にLTE向けのPUCCHを含む20MHz以下の通信帯域の基本単位として定義されることもある。また、「単位バンド」は、3GPP LTE-Advancedにおいて、英語でComponent Carrier(s)と表記されることがある。 In the LTE-A system, in order to simultaneously realize communication at an ultra-high transmission rate several times the transmission rate in the LTE system and backward compatibility with the LTE system, the bandwidth for the LTE-A system is changed to LTE. It is divided into “unit bands” of 20 MHz or less, which is the support bandwidth of the system. That is, the “unit band” is a band having a maximum width of 20 MHz, and is defined as a basic unit of the communication band. Furthermore, the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency. It may be defined as a band defined by a dispersion width when distributed in a region. Also, the “unit band” (hereinafter referred to as “uplink unit band”) in the uplink is a band delimited by uplink frequency band information in the BCH broadcast from the base station, or a PUSCH (Physical-Uplink) near the center. It may be defined as a basic unit of a communication band of 20 MHz or less including a Shared (CHAnel) region and including PUCCH for LTE at both ends. In addition, the “unit band” may be expressed as “Component Carrier (s)” in English in 3GPP LTE-Advanced.
 ところで、前述した上り回線制御チャネル(PUCCH)は、端末側から送信すべき上り回線データの発生を示す上り制御信号であるSR(Scheduling Request)(SRI:Scheduling Request Indicatorと表現されることもある。)の伝送にも用いられる。基地局は、端末との間で接続を確立した際、SRの送信に用いるべきリソース(以下、SRリソースという)を各端末に対して個別に割り当てる。また、このSRにはOOK(On-Off-Keying)が適用されており、基地局側では、端末がSRリソースを用いて任意の信号を送信しているか否かに基づいて、端末からのSRを検出する。また、SRには前述した応答信号と同様にして、ZAC系列、ウォルシュ系列及びDFT系列を用いた拡散が適用される。 By the way, the above-described uplink control channel (PUCCH) may be expressed as SR (Scheduling Request) (SRI: Scheduling Request Indicator) which is an uplink control signal indicating the generation of uplink data to be transmitted from the terminal side. ) Transmission. When establishing a connection with a terminal, the base station individually allocates a resource to be used for SR transmission (hereinafter referred to as SR resource) to each terminal. Moreover, OOK (On-Off-Keying) is applied to this SR, and the base station side determines the SR from the terminal based on whether or not the terminal transmits an arbitrary signal using the SR resource. Is detected. In addition, spreading using a ZAC sequence, a Walsh sequence, and a DFT sequence is applied to SR similarly to the response signal described above.
 LTEシステムでは、SRと応答信号とが同一サブフレーム内で発生する場合がある。この場合、端末側でSRと応答信号とをコード多重して送信すると、端末が送信する信号の合成波形のPAPR(Peak to Average Power Ratio)が大きく劣化してしまう。しかし、LTEシステムでは、端末のアンプ効率を重要視するため、端末側でSRと応答信号とが同一サブフレーム内で発生した場合には、端末は、応答信号の送信に用いるべきリソース(以下、ACK/NACKリソースという)を用いずに、端末毎に予め個別に割り当てられたSRリソースを用いて応答信号を送信する。これにより、端末が送信する信号の合成波形のPAPRを低く抑えることができる。このとき、基地局側では、SRリソースが用いられているか否かに基づいて、端末側からのSRを検出する。さらに、基地局側では、SRリソース(SRリソースが用いられていない場合にはACK/NACKリソース)で送信された信号の位相(すなわち、BPSKの復調結果)に基づいて、端末がACK又はNACKのいずれを送信したかを判定する。 In the LTE system, SR and response signal may occur within the same subframe. In this case, when the terminal and the response signal are code-multiplexed and transmitted on the terminal side, the PAPR (Peak-to-Average-Power-Ratio) of the composite waveform of the signal transmitted by the terminal is greatly deteriorated. However, in the LTE system, since the amplifier efficiency of the terminal is regarded as important, when the SR and the response signal are generated in the same subframe on the terminal side, the terminal should use the resource (hereinafter, referred to as the resource to be transmitted). The response signal is transmitted using SR resources individually allocated in advance for each terminal without using ACK / NACK resources). As a result, the PAPR of the composite waveform of the signal transmitted by the terminal can be kept low. At this time, the base station side detects the SR from the terminal side based on whether or not the SR resource is used. Further, on the base station side, based on the phase of the signal transmitted with the SR resource (or the ACK / NACK resource when SR resource is not used) (that is, the BPSK demodulation result), the terminal performs ACK or NACK. Determine which one was sent.
 ここで、上述した、LTEシステムにおける端末側でのSR及び応答信号の送信に関わる動作について、図2及び図3を用いて説明する。図2では、ACK/NACKリソース及びSRリソースがそれぞれ異なる符号リソースに割り当てられている。基地局は、図2に示す下り単位バンドにおいて、PDCCHに含まれるL1/L2CCH(1つ又は複数のCCEによって構成されるチャネル)を用いて、下り回線データが送信されるリソースを示す下り割当制御情報を送信する。また、基地局は、図2に示すように、上り単位バンドのPUCCHに含まれる任意の1つのPUCCHリソースを、SR向けのPUCCHリソース(SRリソース)として予め割り当てる。また、端末は、下り単位バンドで下り割当制御情報が占有していたCCE(PDCCH)に関連付けられた1つのPUCCHリソースを、応答信号向けのPUCCHリソース(ACK/NACKリソース)として用いる。 Here, the operation related to the transmission of the SR and the response signal on the terminal side in the LTE system described above will be described with reference to FIGS. In FIG. 2, ACK / NACK resources and SR resources are allocated to different code resources. In the downlink unit band shown in FIG. 2, the base station uses the L1 / L2CCH (channel constituted by one or a plurality of CCEs) included in the PDCCH to indicate downlink allocation control indicating resources for transmitting downlink data. Send information. Further, as shown in FIG. 2, the base station allocates in advance one arbitrary PUCCH resource included in the PUCCH of the uplink unit band as a PUCCH resource (SR resource) for SR. Also, the terminal uses one PUCCH resource associated with the CCE (PDCCH) occupied by the downlink allocation control information in the downlink unit band as a PUCCH resource (ACK / NACK resource) for response signals.
 まず、図3Aに示すように、端末が或るサブフレーム内でSRと応答信号とを同時に送信する場合(すなわち、SR+ACK又はSR+NACKを送信する場合)、端末は、図2に示す下りデータチャネル(PDSCH)で受信した下り回線データ(DL data)に対する応答信号(「A/N」)を、図3Aに示す上り単位バンドのPUCCHに含まれる1つのSRリソースに割り当てる。そして、端末は、応答信号がACKであるかNACKであるかに応じて、SRリソースを用いて送信する信号の位相を決定する。 First, as shown in FIG. 3A, when the terminal transmits the SR and the response signal simultaneously in a certain subframe (that is, when transmitting SR + ACK or SR + NACK), the terminal transmits the downlink data channel ( A response signal ("A / N") for downlink data (DL data) received by PDSCH is assigned to one SR resource included in the PUCCH of the uplink unit band shown in FIG. 3A. And a terminal determines the phase of the signal transmitted using SR resource according to whether a response signal is ACK or NACK.
 次いで、図3Bに示すように、端末が或るサブフレーム内で応答信号のみを送信する場合(すなわち、ACK又はNACKのみを送信する場合)、端末は、図2に示すPDSCHで受信した下り回線データ(DL data)に対する応答信号(「A/N」)を、図3Bに示す上り単位バンドのPUCCHに含まれる1つのACK/NACKリソースに割り当てる。そして、端末は、応答信号がACKであるかNACKであるかに応じて、ACK/NACKリソースを用いて送信する信号の位相を決定する。 Next, as shown in FIG. 3B, when the terminal transmits only a response signal within a certain subframe (that is, when only ACK or NACK is transmitted), the terminal receives the downlink received on the PDSCH shown in FIG. A response signal ("A / N") for data (DL data) is allocated to one ACK / NACK resource included in the PUCCH of the uplink unit band shown in FIG. 3B. And a terminal determines the phase of the signal transmitted using an ACK / NACK resource according to whether a response signal is ACK or NACK.
 次いで、図3Cに示すように、端末が或るサブフレーム内でSRのみを送信する場合、端末は、SRを、図3Cに示す上り単位バンドのPUCCHに含まれる1つのSRリソースに割り当てる。そして、端末は、SRリソースに対してNACKの位相点を設定する。 Next, as illustrated in FIG. 3C, when the terminal transmits only SR within a certain subframe, the terminal allocates SR to one SR resource included in the PUCCH of the uplink unit band illustrated in FIG. 3C. Then, the terminal sets a NACK phase point for the SR resource.
 ただし、前述の通り、端末側では下り割当制御情報の受信に常に成功するわけではないので、基地局側と端末側との間で、端末での下り信号の受信成否に関する認識の違いが発生する可能性がある。具体的には、基地局が下り割当制御情報(及び、下り回線データ)を端末に送信した際に端末がSRリソースを用いて上り信号を送信した場合、基地局側ではSR検出だけではなく、SRリソースに割り当てられた信号の位相がACK又はNACKのいずれの情報を示しているかを判定する。しかしながら、端末側で下り割当制御情報の受信に失敗していた場合(すなわち、DTX発生時)には、端末は、上り信号に応答信号の情報を含まずにSRリソースを用いて送信している。そこで、LTEシステムでは、これらの認識違いが大きな問題とならないように、図3に示すように、端末がSRのみを基地局に通知する場合(図3C)と、SR及びNACK情報を同時に基地局に通知する場合(図3A)とで、同一の信号点(すなわち、NACKの位相点)が用いられる。こうすることで、仮に端末が下り割当制御情報の受信に失敗し、SRのみを通知した場合(すなわち、SR+DTX送信時)であっても、基地局側では当該信号をSR及びNACK情報が同時に送信されている(すなわち、SR+NACK)と判定するため、下り回線データの再送制御は大きな問題なく実行できる。 However, as described above, since the terminal side does not always succeed in receiving downlink allocation control information, there is a difference in recognition regarding the success or failure of downlink signal reception at the terminal side between the base station side and the terminal side. there is a possibility. Specifically, when the base station transmits downlink allocation control information (and downlink data) to the terminal, when the terminal transmits an uplink signal using SR resources, not only the SR detection is performed on the base station side, It is determined whether the phase of the signal allocated to the SR resource indicates ACK or NACK information. However, when reception of downlink allocation control information has failed on the terminal side (that is, when DTX occurs), the terminal transmits using SR resources without including response signal information in the uplink signal. . Therefore, in the LTE system, as shown in FIG. 3, when the terminal notifies only the SR to the base station (FIG. 3C), the SR and NACK information are simultaneously transmitted to the base station so that these recognition differences do not become a big problem. The same signal point (that is, the phase point of NACK) is used. By doing so, even if the terminal fails to receive the downlink allocation control information and notifies only the SR (that is, when transmitting SR + DTX), the base station transmits the signal and the SR and NACK information at the same time. Therefore, the downlink data retransmission control can be executed without any major problem.
 更に、LTE-Aシステムでは、端末が複数の送信アンテナを具備することが想定されており、上記SR又は応答信号に対して互いに異なる複数の符号リソースを用いたSCTD(Space Code Transmit Diversity。又は、SORTD(Spatial Orthogonal-Resource Transmit Diversity)と呼ばれることもある)の適用が検討されている。SCTDでは、例えば、基地局が1つの応答信号に対して2つのACK/NACKリソースを割り当て、端末では異なる符号リソースにそれぞれ割り当てられた同一の応答信号を2本のアンテナでそれぞれ送信する(非特許文献5参照)。 Furthermore, in the LTE-A system, it is assumed that the terminal includes a plurality of transmission antennas, and SCTD (Space Code Transmit Diversity.) Using a plurality of different code resources for the SR or response signal. Application of SORTD (sometimes called Spatial Orthogonal-Resource Transmit Diversity) is being studied. In SCTD, for example, the base station allocates two ACK / NACK resources to one response signal, and the terminal transmits the same response signal respectively allocated to different code resources by two antennas (non-patent). Reference 5).
 また、LTE及びLTE-Aシステムでは、ARQと誤り訂正とを組み合わせたハイブリッドARQ(Hybrid ARQ:HARQ)が適用される。HARQでは、再送されるデータを受信するときに、再送データと前回受信した誤りの含まれるデータとを合成することにより、受信側の受信品質を高めることができる。例えば、HARQにおける効率の良いデータの再送方法の1つとして、IR(Incremental Redundancy)が知られている(非特許文献6参照)。 Also, in LTE and LTE-A systems, hybrid ARQ (Hybrid ARQ: HARQ) that combines ARQ and error correction is applied. In HARQ, when data to be retransmitted is received, the reception quality on the receiving side can be improved by combining the retransmitted data and the data including the error received last time. For example, IR (Incremental Redundancy) is known as one of the efficient data retransmission methods in HARQ (see Non-Patent Document 6).
 上述したように、LTEシステムでは、端末がSRのみを送信(SR+DTX送信)する場合(図3C)と、端末がSR及びNACK情報を同時に送信(SR+NACK送信)する場合(図3A)とで同一のリソース(すなわち、SRリソース)を用いて、同一の位相点(すなわち、NACKの位相点)によって情報を通知する。そのため、基地局側で実際に端末に対して下り回線データを送信した場合、基地局は、端末側で下り割当制御情報の受信に失敗し、且つ端末側でSRが発生した状態(すなわち、SR+DTX送信。以下、‘(SR+DTX)’と表す)であるのか、端末側で下り割当制御情報の受信には成功したが下り回線データに対しCRC=NGを検出し、且つ端末側でSRが発生した状態(すなわち、SR+NACK送信。以下、‘(SR+NACK)’と表す)であるのかを判別できない。 As described above, in the LTE system, the case where the terminal transmits only SR (SR + DTX transmission) (FIG. 3C) and the case where the terminal transmits SR and NACK information simultaneously (SR + NACK transmission) (FIG. 3A) are the same. Information is notified by the same phase point (that is, the phase point of NACK) using the resource (that is, SR resource). Therefore, when the downlink data is actually transmitted to the terminal on the base station side, the base station fails to receive the downlink allocation control information on the terminal side, and SR is generated on the terminal side (that is, SR + DTX (Hereinafter referred to as “(SR + DTX)”), the terminal side successfully received the downlink allocation control information, but detected CRC = NG for the downlink data and an SR occurred on the terminal side It is not possible to determine whether the state is (ie, SR + NACK transmission; hereinafter referred to as “(SR + NACK)”).
 ここで、上述したHARQにおける優れた再送方法の1つであるIRを適用するためには、前回送信時に、端末側で下り割当制御情報の受信に成功し、端末が下り回線データ(誤りを含む)を保持しているか否かを基地局側で認識できなければならない。しかし、上述したように、端末側がSRリソースでNACKの位相点を用いて情報を通知する場合には、基地局が、(SR+NACK)の状態と(SR+DTX)の状態とを区別できないため、つまり、端末側での下り割当制御情報の受信成否を判別できない。基地局側で、端末側での下り割当制御情報の受信成否を判別できない場合、基地局は、再送時に前回送信時と同一の情報を送信するという単純な制御(従って、IRよりも効率が悪い制御)しか行えないという課題が生じる。換言すると、LTEシステムでは、基地局は、基地局が端末からの応答信号を受信すべきサブフレーム(すなわち、端末が下り割当制御情報を正しく受信できていれば応答信号を送信するサブフレーム)において端末側でSRが発生した場合、基地局が、端末側での下り割当制御情報の受信成否を判別できない場合があり、IR等による効率的な再送制御が行えなくなるという課題が生じる。 Here, in order to apply IR, which is one of the excellent retransmission methods in HARQ, the terminal side has successfully received downlink allocation control information at the previous transmission, and the terminal has received downlink data (including errors). ) Must be recognizable on the base station side. However, as described above, when the terminal side notifies information using the NACK phase point in the SR resource, the base station cannot distinguish between the (SR + NACK) state and the (SR + DTX) state, that is, Whether or not the downlink allocation control information is received on the terminal side cannot be determined. If the base station cannot determine whether or not the downlink allocation control information is received successfully on the terminal side, the base station simply transmits the same information as the previous transmission at the time of retransmission (and is therefore less efficient than IR). The problem arises that only control is possible. In other words, in the LTE system, the base station uses a subframe in which the base station should receive a response signal from the terminal (that is, a subframe in which a response signal is transmitted if the terminal has received downlink allocation control information correctly). When SR occurs on the terminal side, the base station may not be able to determine whether the terminal side has received downlink allocation control information, and there is a problem that efficient retransmission control by IR or the like cannot be performed.
 本発明の目的は、LTE-Aシステムにおいて、基地局が端末からの応答信号を受信すべきサブフレーム(すなわち、端末が下り割当制御情報を正しく受信できていれば応答信号を送信するサブフレーム)において端末側でSRが発生した場合でも、基地局が、端末側での下り割当制御情報の受信成否を判別することができ、再送効率を向上させることができる端末装置及び信号送信制御方法を提供することである。 An object of the present invention is to provide a subframe in which a base station should receive a response signal from a terminal (that is, a subframe in which a response signal is transmitted if the terminal has correctly received downlink allocation control information) in the LTE-A system. Provided is a terminal device and a signal transmission control method capable of improving the retransmission efficiency by allowing the base station to determine whether or not the terminal side has received downlink allocation control information even when SR occurs in the terminal. It is to be.
 本発明の端末装置は、下りデータの誤り検出結果に基づく応答信号又は上りデータの発生を示す上り制御信号のいずれか1つを符号リソースに割り当てて、前記符号リソースに割り当てられた前記応答信号又は上り制御信号を複数のアンテナからそれぞれ送信する端末装置であって、下りデータチャネルに割り当てられた前記下りデータを受信する受信手段と、前記下りデータの誤り検出結果に基づく前記応答信号を生成する生成手段と、前記符号リソースを用いて、前記応答信号又は前記上り制御信号を送信する送信手段と、前記応答信号及び前記上り制御信号の発生状況に基づいて、前記応答信号又は前記上り制御信号の送信を制御する制御手段と、を具備し、前記制御手段は、送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合には、前記送信単位時間内に前記上り制御信号のみが発生した場合に前記上り制御信号が割り当てられる第1の符号リソースのうち少なくとも1つ以上のリソースと、前記送信単位時間内に前記応答信号のみが発生した場合に前記応答信号が割り当てられる第2の符号リソースのうち少なくとも1つ以上のリソースと、を用いて、前記応答信号を送信する構成を採る。 The terminal apparatus of the present invention allocates either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data to a code resource, and the response signal assigned to the code resource or A terminal device for transmitting uplink control signals from a plurality of antennas, receiving means for receiving the downlink data assigned to a downlink data channel, and generating the response signal based on an error detection result of the downlink data Means, transmission means for transmitting the response signal or the uplink control signal using the code resource, and transmission of the response signal or the uplink control signal based on the generation status of the response signal and the uplink control signal And a control means for controlling the uplink control signal and the response signal within a transmission unit time. If only the uplink control signal is generated within the transmission unit time, at least one resource among the first code resources to which the uplink control signal is allocated and the transmission unit time When only the response signal is generated, the response signal is transmitted using at least one resource among the second code resources to which the response signal is assigned.
 本発明の信号送信制御方法は、下りデータの誤り検出結果に基づく応答信号又は上りデータの発生を示す上り制御信号のいずれか1つを符号リソースに割り当てて、前記符号リソースに割り当てられた前記応答信号又は上り制御信号を複数のアンテナからそれぞれ送信する端末装置における信号送信制御方法であって、下りデータチャネルに割り当てられた前記下りデータを受信する受信ステップと、前記下りデータの誤り検出結果に基づく前記応答信号を生成する生成ステップと、前記符号リソースを用いて、前記応答信号又は前記上り制御信号を送信する送信ステップと、前記応答信号及び前記上り制御信号の発生状況に基づいて、前記応答信号又は前記上り制御信号の送信を制御する制御ステップと、を具備し、前記制御ステップは、送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合には、前記送信単位時間内に前記上り制御信号のみが発生した場合に前記上り制御信号が割り当てられる第1の符号リソースのうち少なくとも1つ以上のリソースと、前記送信単位時間内に前記応答信号のみが発生した場合に前記応答信号が割り当てられる第2の符号リソースのうち少なくとも1つ以上のリソースと、を用いて、前記応答信号を送信するようにする。 The signal transmission control method of the present invention assigns either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data to a code resource, and the response assigned to the code resource A signal transmission control method in a terminal device for transmitting a signal or an uplink control signal from a plurality of antennas, respectively, based on a reception step of receiving the downlink data assigned to a downlink data channel and an error detection result of the downlink data Based on the generation step of generating the response signal, the transmission step of transmitting the response signal or the uplink control signal using the code resource, and the occurrence status of the response signal and the uplink control signal, the response signal Or a control step for controlling transmission of the uplink control signal, the control step comprising A first code resource to which the uplink control signal is allocated when only the uplink control signal is generated within the transmission unit time when the uplink control signal and the response signal are generated simultaneously within the transmission unit time And at least one resource among second code resources to which the response signal is assigned when only the response signal is generated within the transmission unit time, and The response signal is transmitted.
 本発明によれば、LTE-Aシステムにおいて、基地局が端末からの応答信号を受信すべきサブフレーム(すなわち、端末が下り割当制御情報を正しく受信できていれば応答信号を送信するサブフレーム)において端末側でSRが発生した場合でも、基地局が、端末側での下り割当制御情報の受信成否を判別することができ、再送効率を向上させることができる。 According to the present invention, in the LTE-A system, a subframe in which a base station should receive a response signal from a terminal (that is, a subframe in which a response signal is transmitted if the terminal has correctly received downlink allocation control information). Even when SR occurs on the terminal side, the base station can determine whether or not the terminal side has received downlink allocation control information, and retransmission efficiency can be improved.
応答信号及び参照信号の拡散方法を示す図The figure which shows the spreading | diffusion method of a response signal and a reference signal 端末側でのSR及び応答信号の送信に関わる動作を示す図The figure which shows the operation | movement regarding transmission of SR and a response signal by the terminal side SRの発生状況及び応答信号の発生状況に応じた端末の送信制御処理を示す図The figure which shows the transmission control process of the terminal according to the generation condition of SR, and the generation condition of a response signal 本発明の実施の形態1に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るSRリソースを示す図The figure which shows SR resource which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る端末の動作を示す図(SRリソース数:2個、ACK/NACKリソース数:2個の場合)The figure which shows the operation | movement of the terminal which concerns on Embodiment 1 of this invention (when the number of SR resources: 2 and the number of ACK / NACK resources: 2) 本発明の実施の形態1に係る端末の動作を示す図(SRリソース数:2個、ACK/NACKリソース数:1個の場合)The figure which shows the operation | movement of the terminal which concerns on Embodiment 1 of this invention (when the number of SR resources: 2 and the number of ACK / NACK resources: 1) 本発明の実施の形態1に係る端末の動作を示す図(SRリソース数:1個、ACK/NACKリソース数:2個の場合)The figure which shows the operation | movement of the terminal which concerns on Embodiment 1 of this invention (when the number of SR resources is 1 piece and the number of ACK / NACK resources is 2 pieces) 本発明の実施の形態2に係る基地局における尤度判定処理を示す図The figure which shows the likelihood determination process in the base station which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局における合成処理を示す図The figure which shows the synthetic | combination process in the base station which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る端末の動作を示す図The figure which shows operation | movement of the terminal which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局における合成処理を示す図The figure which shows the synthetic | combination process in the base station which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、各実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that, in each embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted because it is redundant.
 (実施の形態1)
 [基地局の構成]
 図4は、本実施の形態に係る基地局100の構成を示すブロック図である。図4において、基地局100は、制御部101と、制御情報生成部102と、符号化部103と、変調部104と、符号化部105と、データ送信制御部106と、変調部107と、マッピング部108と、IFFT部109と、CP付加部110と、無線送信部111と、無線受信部112と、CP除去部113と、PUCCH抽出部114と、逆拡散部115と、系列制御部116と、相関処理部117と、判定部118と、再送制御信号生成部119とを有する。
(Embodiment 1)
[Base station configuration]
FIG. 4 is a block diagram showing a configuration of base station 100 according to the present embodiment. In FIG. 4, the base station 100 includes a control unit 101, a control information generation unit 102, an encoding unit 103, a modulation unit 104, an encoding unit 105, a data transmission control unit 106, a modulation unit 107, Mapping unit 108, IFFT unit 109, CP adding unit 110, radio transmitting unit 111, radio receiving unit 112, CP removing unit 113, PUCCH extracting unit 114, despreading unit 115, and sequence control unit 116 A correlation processing unit 117, a determination unit 118, and a retransmission control signal generation unit 119.
 制御部101は、後述するリソース割当対象端末200に対して、制御情報を送信するための下りリソース(つまり、下り制御情報割当リソース)、及び、当該制御情報に含まれる、下り回線データを送信するための下りリソース(つまり、下りデータ割当リソース)を割り当てる(Assignする)。また、下り制御情報割当リソースは、下り単位バンドにおける下り制御チャネル(PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、下り単位バンドにおける下りデータチャネル(PDSCH)に対応するリソース内で選択される。また、リソース割当対象端末200が複数存在する場合には、制御部101は、リソース割当対象端末200のそれぞれに異なるリソースを割り当てる。 The control unit 101 transmits a downlink resource (that is, downlink control information allocation resource) for transmitting control information and downlink data included in the control information to a resource allocation target terminal 200 to be described later. To allocate (assign) downlink resources (that is, downlink data allocation resources). Further, the downlink control information allocation resource is selected in a resource corresponding to the downlink control channel (PDCCH) in the downlink unit band. Further, the downlink data allocation resource is selected in a resource corresponding to the downlink data channel (PDSCH) in the downlink unit band. When there are a plurality of resource allocation target terminals 200, the control unit 101 allocates different resources to each of the resource allocation target terminals 200.
 下り制御情報割当リソースは、上記したL1/L2CCHと同等である。すなわち、下り制御情報割当リソースは、1つ又は複数のCCEから構成される。また、下り制御情報割当リソースに含まれる各CCEは、上り制御チャネル(PUCCH)の構成リソースと1対1に対応づけられている。ただし、CCEとPUCCH構成リソースとの関連付けは、LTEシステム向けに報知された下り単位バンドと上り単位バンドの関連付けにおいてなされる。 The downlink control information allocation resource is equivalent to the above-mentioned L1 / L2CCH. That is, the downlink control information allocation resource is composed of one or a plurality of CCEs. Further, each CCE included in the downlink control information allocation resource is associated with the configuration resource of the uplink control channel (PUCCH) on a one-to-one basis. However, the association between the CCE and the PUCCH configuration resource is made by associating the downlink unit band and the uplink unit band broadcasted for the LTE system.
 また、制御部101は、リソース割当対象端末200に対して制御情報を送信する際に用いる符号化率を決定する。この符号化率に応じて制御情報のデータ量が異なるので、このデータ量の制御情報をマッピング可能な数のCCEを持つ下り制御情報割当リソースが、制御部101によって割り当てられる。 Also, the control unit 101 determines a coding rate used when transmitting control information to the resource allocation target terminal 200. Since the data amount of control information differs according to the coding rate, downlink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped are allocated by the control unit 101.
 そして、制御部101は、制御情報生成部102に対して、下りデータ割当リソースに関する情報を出力する。また、制御部101は、符号化部103に対して、制御情報を送信する際に用いる符号化率に関する情報を出力する。また、制御部101は、送信データ(つまり、下り回線データ)の符号化率を決定し、符号化部105に出力する。また、制御部101は、下りデータ割当リソース及び下り制御情報割当リソースに関する情報をマッピング部108に対して出力する。 And the control part 101 outputs the information regarding a downlink data allocation resource with respect to the control information generation part 102. FIG. In addition, the control unit 101 outputs information on the coding rate used when transmitting control information to the coding unit 103. Control section 101 also determines the coding rate of transmission data (that is, downlink data) and outputs the coding rate to coding section 105. In addition, the control unit 101 outputs information on the downlink data allocation resource and the downlink control information allocation resource to the mapping unit 108.
 制御情報生成部102は、下りデータ割当リソースを含む制御情報を生成して符号化部103へ出力する。また、リソース割当対象端末200が複数存在する場合には、リソース割当対象端末200同士を区別するために、制御情報には、宛先端末の端末IDが含まれる。例えば、宛先端末の端末IDでマスキングされたCRCビットが制御情報に含まれる。この制御情報は、「下り割当制御情報」と呼ばれることがある。 The control information generation unit 102 generates control information including downlink data allocation resources and outputs the control information to the encoding unit 103. Further, when there are a plurality of resource allocation target terminals 200, the control information includes the terminal ID of the destination terminal in order to distinguish the resource allocation target terminals 200 from each other. For example, CRC bits masked with the terminal ID of the destination terminal are included in the control information. This control information may be referred to as “downlink allocation control information”.
 符号化部103は、制御部101から受け取る符号化率に従って、制御情報生成部102から入力される制御情報を符号化し、符号化した制御情報を変調部104へ出力する。 The encoding unit 103 encodes the control information input from the control information generation unit 102 according to the encoding rate received from the control unit 101, and outputs the encoded control information to the modulation unit 104.
 変調部104は、符号化後の制御情報を変調し、得られた変調信号をマッピング部108へ出力する。 Modulation section 104 modulates the encoded control information and outputs the obtained modulated signal to mapping section 108.
 符号化部105は、送信宛先端末200毎の送信データ(つまり、下り回線データ)及び制御部101からの符号化率情報を入力として、送信データを符号化率情報の示す符号化率で符号化し、データ送信制御部106に出力する。 Encoding section 105 receives transmission data (that is, downlink data) for each transmission destination terminal 200 and encoding rate information from control section 101, and encodes transmission data at the encoding rate indicated by the encoding rate information. And output to the data transmission control unit 106.
 データ送信制御部106は、初回送信時には、符号化後の送信データを保持するとともに符号化後の送信データを変調部107へ出力する。なお、符号化後の送信データは、送信宛先端末200毎に保持される。また、データ送信制御部106は、再送制御信号生成部119から受け取る再送制御信号が再送命令を示す場合には、当該再送制御信号に対応する保持データを、変調部107へ出力する。また、データ送信制御部106は、再送制御信号生成部119から受け取る再送制御信号が再送しないことを示す場合には、当該再送制御信号に対応する保持データを削除する。この場合には、データ送信制御部106は、次の初回送信データを変調部107へ出力する。 The data transmission control unit 106 holds the encoded transmission data and outputs the encoded transmission data to the modulation unit 107 during the initial transmission. The encoded transmission data is held for each transmission destination terminal 200. In addition, when the retransmission control signal received from retransmission control signal generation section 119 indicates a retransmission command, data transmission control section 106 outputs retained data corresponding to the retransmission control signal to modulation section 107. In addition, when the retransmission control signal received from the retransmission control signal generation unit 119 indicates that the retransmission control signal is not retransmitted, the data transmission control unit 106 deletes the retained data corresponding to the retransmission control signal. In this case, the data transmission control unit 106 outputs the next initial transmission data to the modulation unit 107.
 変調部107は、データ送信制御部106から受け取る符号化後の送信データを変調し、変調信号をマッピング部108へ出力する。 Modulation section 107 modulates the encoded transmission data received from data transmission control section 106 and outputs the modulated signal to mapping section 108.
 マッピング部108は、制御部101から受け取る下り制御情報割当リソースの示すリソース(PDCCH内のリソース)に、変調部104から受け取る制御情報の変調信号(下り割当制御情報)をマッピングし、IFFT部109へ出力する。 Mapping section 108 maps the modulation signal (downlink allocation control information) of the control information received from modulation section 104 to the resource (resource in PDCCH) indicated by the downlink control information allocation resource received from control section 101, and passes to IFFT section 109. Output.
 また、マッピング部108は、制御部101から受け取る下りデータ割当リソースの示すリソース(PDSCH内のリソース)に、変調部107から受け取る送信データの変調信号(下り回線データ)をマッピングし、IFFT部109へ出力する。 Further, mapping section 108 maps the modulation signal (downlink data) of the transmission data received from modulation section 107 to the resource (resource in PDSCH) indicated by the downlink data allocation resource received from control section 101, and to IFFT section 109. Output.
 マッピング部108にて下り単位バンドにおける複数のサブキャリアにマッピングされた制御情報及び送信データ(下り回線データ)は、IFFT部109で周波数領域信号から時間領域信号に変換され、CP付加部110にてCPが付加されてOFDM信号とされた後に、無線送信部111にてD/A変換、増幅及びアップコンバート等の送信処理が施され、アンテナを介して端末200へ送信される。 Control information and transmission data (downlink data) mapped to a plurality of subcarriers in the downlink unit band by mapping section 108 are converted from frequency domain signals to time domain signals by IFFT section 109, and CP adding section 110 After the CP is added to form an OFDM signal, transmission processing such as D / A conversion, amplification, and up-conversion is performed by the wireless transmission unit 111 and transmitted to the terminal 200 via the antenna.
 無線受信部112は、端末200から送信された、上り制御チャネル信号(PUCCH信号)をアンテナを介して受信し、受信信号に対しダウンコンバート、A/D変換等の受信処理を行う。なお、PUCCH信号には、応答信号、SR及び参照信号が含まれる可能性がある。 The radio reception unit 112 receives an uplink control channel signal (PUCCH signal) transmitted from the terminal 200 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the received signal. Note that the PUCCH signal may include a response signal, SR, and a reference signal.
 CP除去部113は、受信処理後の受信信号に付加されているCPを除去する。 The CP removal unit 113 removes the CP added to the reception signal after the reception process.
 PUCCH抽出部114は、受信信号に含まれるPUCCH信号から、SRリソース及びACK/NACKリソースを抽出し、抽出したリソースに対応するPUCCH信号を、各リソースに対応する処理系統毎に振り分ける。なお、端末200では、SRリソース及びACK/NACKリソースの互いに異なる2種類の符号リソースのうち、2つのACK/NACKリソース、1つのACK/NACKリソース、2つのSRリソース、1つのSRリソース、又は、1つのSRリソース及び1つのACK/NACKリソースの合計2つのリソースを用いて、上り制御情報(すなわち、応答信号、SR、又は、SR及び応答信号の両方)が送信される。 The PUCCH extraction unit 114 extracts the SR resource and the ACK / NACK resource from the PUCCH signal included in the received signal, and distributes the PUCCH signal corresponding to the extracted resource for each processing system corresponding to each resource. In terminal 200, two ACK / NACK resources, one ACK / NACK resource, two SR resources, one SR resource, or two types of code resources different from each other in SR resource and ACK / NACK resource, or Uplink control information (that is, response signal, SR, or both SR and response signal) is transmitted using a total of two resources of one SR resource and one ACK / NACK resource.
 基地局100には、抽出された前記リソースのそれぞれに対する処理を行う逆拡散部115及び相関処理部117の処理系統が設けられている。具体的には、逆拡散部115-1~n及び相関処理部117-1~nは前記リソース(SRリソース及びACK/NACKリソース)のいずれかにそれぞれ対応付けられている。 The base station 100 is provided with a processing system of a despreading unit 115 and a correlation processing unit 117 that perform processing on each of the extracted resources. Specifically, the despreading units 115-1 to 115-n and the correlation processing units 117-1 to 11-n are respectively associated with any of the resources (SR resource and ACK / NACK resource).
 具体的には、逆拡散部115は、それぞれのリソースに対応するウォルシュ系列(データ部分の2次拡散に用いられる符号)及びDFT系列(参照信号部分の拡散に用いられる符号)を用いて、これらのリソースを介して受信した信号を逆拡散し、逆拡散後の信号を相関処理部117に出力する。 Specifically, the despreading unit 115 uses a Walsh sequence (a code used for secondary spreading of the data portion) and a DFT sequence (a code used for spreading the reference signal portion) corresponding to each resource, and The signal received via these resources is despread, and the despread signal is output to the correlation processing unit 117.
 系列制御部116は、端末200から送信されるSRリソース又はACK/NACKリソースのデータ部分及び参照信号部分にそれぞれ対応するZAC系列を生成する。また、系列制御部116は、これらのリソースに対応付けて、信号を抽出すべき相関窓を特定する。そして、系列制御部116は、特定した相関窓を示す情報及び生成したZAC系列を相関処理部117に出力する。 Sequence control section 116 generates a ZAC sequence corresponding to each of the data part and reference signal part of the SR resource or ACK / NACK resource transmitted from terminal 200. In addition, sequence control section 116 specifies a correlation window from which a signal is to be extracted in association with these resources. Then, sequence control unit 116 outputs information indicating the identified correlation window and the generated ZAC sequence to correlation processing unit 117.
 相関処理部117は、系列制御部116から入力される相関窓を示す情報及びZAC系列を用いて、逆拡散後の信号と前記ZAC系列との相関値を、データ部分(すなわち、図1に示すS~S)及び参照信号部分(すなわち、図1に示すR~R)の別々に求める。そして、相関処理部117は、求めた相関値に関する情報を判定部118に出力する。 The correlation processing unit 117 uses the information indicating the correlation window input from the sequence control unit 116 and the ZAC sequence to obtain the correlation value between the despread signal and the ZAC sequence in the data portion (ie, as shown in FIG. 1). S 0 to S 3 ) and the reference signal portion (that is, R 0 to R 2 shown in FIG. 1) are obtained separately. Then, the correlation processing unit 117 outputs information regarding the obtained correlation value to the determination unit 118.
 判定部118は、相関処理部117から入力される相関値に基づいて、SR及び応答信号が端末から送信されているか否かを判定する。すなわち、判定部118は、2つのACK/NACKリソース、1つのACK/NACKリソース、2つのSRリソース、1つのSRリソース、又は、1つのSRリソース及び1つのACK/NACKリソースの合計2つのリソースのうち、いずれが端末200によって用いられているかを判定する。なお、基地局100の判定部118におけるSR及び応答信号の判定処理の詳細については後述する。 The determination unit 118 determines whether the SR and the response signal are transmitted from the terminal based on the correlation value input from the correlation processing unit 117. That is, the determination unit 118 includes two ACK / NACK resources, one ACK / NACK resource, two SR resources, one SR resource, or one SR resource and one ACK / NACK resource. Which of these is used by the terminal 200 is determined. Details of the SR and response signal determination processing in the determination unit 118 of the base station 100 will be described later.
 また、判定部118は、端末200がSRを送信していると判定した場合にはSRに関する情報を上り回線リソース割当制御部(図示せず)に出力する。また、判定部118は、端末200が応答信号を送信していると判定した場合には、更に、当該応答信号がACK又はNACKのいずれを示しているかを例えば同期検波によって判定する。そして、判定部118は、端末毎の判定結果(ACK又はNACK)を再送制御信号生成部119に出力する。また、判定部118は、端末200が応答信号を送信していないと判定した場合にはDTX情報を再送制御信号生成部119へ出力する。 Further, when determining that the terminal 200 is transmitting SR, the determining unit 118 outputs information on the SR to an uplink resource allocation control unit (not shown). When determining that the terminal 200 is transmitting a response signal, the determining unit 118 further determines, for example, by synchronous detection whether the response signal indicates ACK or NACK. Then, determination section 118 outputs a determination result (ACK or NACK) for each terminal to retransmission control signal generation section 119. In addition, when determining that terminal 200 has not transmitted a response signal, determining section 118 outputs DTX information to retransmission control signal generating section 119.
 また、上り回線リソース割当制御部(図示せず)がSRを受け取ると、当該端末200が上り回線データを送信できるように、基地局100は、上りデータ割当リソースを通知する上り割当制御情報を端末200へ送信する。このようにして、基地局100は、上り制御チャネルに基づいて、端末200への上り回線データ向けのリソース割当の要否を判断する。なお、上り回線リソース割当制御部における動作の詳細、及び、基地局100における、端末200に対する上り回線データ向けのリソース割当動作の詳細については省略する。 Further, when the uplink resource allocation control unit (not shown) receives the SR, the base station 100 transmits the uplink allocation control information for reporting the uplink data allocation resource to the terminal so that the terminal 200 can transmit the uplink data. 200. In this way, base station 100 determines whether it is necessary to allocate resources for uplink data to terminal 200 based on the uplink control channel. Details of operations in the uplink resource allocation control unit and details of resource allocation operations for uplink data for terminal 200 in base station 100 are omitted.
 再送制御信号生成部119は、判定部118から入力される応答信号に関する判定結果(ACK又はNACK)又はDTX情報に基づいて、下り単位バンドで送信したデータ(下り回線データ)を再送すべきか否かを判定し、判定結果に基づいて再送制御信号を生成する。具体的には、再送制御信号生成部119は、NACKを示す応答信号又はDTXを受け取る場合には、再送命令を示す再送制御信号を生成して、再送制御信号をデータ送信制御部106へ出力する。また、再送制御信号生成部119は、ACKを示す応答信号を受け取る場合には、再送しないことを示す再送制御信号を生成して、再送制御信号をデータ送信制御部106へ出力する。 Whether retransmission control signal generation section 119 should retransmit the data (downlink data) transmitted in the downlink unit band based on the determination result (ACK or NACK) or the DTX information related to the response signal input from determination section 118 And a retransmission control signal is generated based on the determination result. Specifically, when receiving a response signal indicating DACK or DTX, retransmission control signal generation section 119 generates a retransmission control signal indicating a retransmission command and outputs the retransmission control signal to data transmission control section 106. . When receiving a response signal indicating ACK, retransmission control signal generation section 119 generates a retransmission control signal indicating that retransmission is not performed, and outputs the retransmission control signal to data transmission control section 106.
 [端末の構成]
 図5は、本実施の形態に係る端末200の構成を示すブロック図である。図5において、端末200は、無線受信部201と、CP除去部202と、FFT部203と、抽出部204と、復調部205と、復号部206と、判定部207と、制御部208と、復調部209と、復号部210と、CRC部211と、応答信号生成部212と、上り制御チャネル信号生成部213と、無線送信部214とを有する。また、図5に示す端末200は、2本のアンテナ1、2を有する。
[Terminal configuration]
FIG. 5 is a block diagram showing a configuration of terminal 200 according to the present embodiment. In FIG. 5, a terminal 200 includes a radio reception unit 201, a CP removal unit 202, an FFT unit 203, an extraction unit 204, a demodulation unit 205, a decoding unit 206, a determination unit 207, a control unit 208, It has a demodulation unit 209, a decoding unit 210, a CRC unit 211, a response signal generation unit 212, an uplink control channel signal generation unit 213, and a radio transmission unit 214. 5 has two antennas 1 and 2. The terminal 200 shown in FIG.
 無線受信部201は、基地局100から送信されたOFDM信号をアンテナ1、2を介して受信し、受信OFDM信号に対しダウンコンバート、A/D変換等の受信処理を行う。なお、受信OFDM信号には、PDSCH内のリソースに割り当てられたPDSCH信号(下り回線データ)又はPDCCH内のリソースに割り当てられたPDCCH信号(下り割当制御情報)が含まれる。 The radio reception unit 201 receives the OFDM signal transmitted from the base station 100 via the antennas 1 and 2 and performs reception processing such as down-conversion and A / D conversion on the received OFDM signal. The received OFDM signal includes a PDSCH signal (downlink data) assigned to a resource in PDSCH or a PDCCH signal (downlink assignment control information) assigned to a resource in PDCCH.
 CP除去部202は、受信処理後のOFDM信号に付加されているCPを除去する。 CP removing section 202 removes the CP added to the OFDM signal after reception processing.
 FFT部203は、受信OFDM信号をFFTして周波数領域信号に変換し、得られた受信信号を抽出部204へ出力する。 The FFT unit 203 performs FFT on the received OFDM signal and converts it into a frequency domain signal, and outputs the obtained received signal to the extracting unit 204.
 抽出部204は、入力される符号化率情報に従って、FFT部203から受け取る受信信号から下り制御チャネル信号(PDCCH信号)を抽出する。すなわち、符号化率に応じて下り制御情報割当リソースを構成するCCEの数が変わるので、抽出部204は、その符号化率に対応する個数のCCEを抽出単位として、下り制御チャネル信号を抽出する。抽出された下り制御チャネル信号は、復調部205へ出力される。 The extraction unit 204 extracts a downlink control channel signal (PDCCH signal) from the received signal received from the FFT unit 203 according to the input coding rate information. That is, since the number of CCEs constituting the downlink control information allocation resource changes according to the coding rate, the extraction unit 204 extracts the downlink control channel signal using the number of CCEs corresponding to the coding rate as an extraction unit. . The extracted downlink control channel signal is output to demodulation section 205.
 また、抽出部204は、判定部207から受け取る自機宛の下りデータ割当リソースに関する情報に基づいて、受信信号から下り回線データ(下りデータチャネル信号(PDSCH信号))を抽出し、復調部209へ出力する。 Further, the extraction unit 204 extracts downlink data (downlink data channel signal (PDSCH signal)) from the received signal based on the information on the downlink data allocation resource addressed to the own device received from the determination unit 207, and sends it to the demodulation unit 209. Output.
 復調部205は、抽出部204から受け取る下り制御チャネル信号を復調し、得られた復調結果を復号部206に出力する。 The demodulation unit 205 demodulates the downlink control channel signal received from the extraction unit 204 and outputs the obtained demodulation result to the decoding unit 206.
 復号部206は、入力される符号化率情報に従って、復調部205から受け取る復調結果を復号して、得られた復号結果を判定部207に出力する。 The decoding unit 206 decodes the demodulation result received from the demodulation unit 205 according to the input coding rate information, and outputs the obtained decoding result to the determination unit 207.
 判定部207は、復号部206から受け取る復号結果に含まれる制御情報が自機宛の制御情報であるか否かをブラインド判定する。この判定は、上記した抽出単位に対応する復号結果を単位として行われる。例えば、判定部207は、自機の端末IDでCRCビットをデマスキングし、CRC=OK(誤り無し)となった制御情報を自機宛の制御情報であると判定する。そして、判定部207は、自機宛の制御情報に含まれる、自機に対する下りデータ割当リソースに関する情報を抽出部204へ出力する。 The determination unit 207 blindly determines whether or not the control information included in the decoding result received from the decoding unit 206 is control information addressed to the own device. This determination is performed in units of decoding results corresponding to the above extraction units. For example, the determination unit 207 demasks the CRC bits with the terminal ID of the own device, and determines that the control information with CRC = OK (no error) is the control information addressed to the own device. Then, the determination unit 207 outputs information related to downlink data allocation resources for the own device included in the control information addressed to the own device to the extraction unit 204.
 また、判定部207は、自機宛の制御情報がマッピングされていたCCEを特定し、特定したCCEの識別情報を制御部208へ出力する。 Also, the determination unit 207 identifies the CCE to which the control information addressed to itself is mapped, and outputs the identified CCE identification information to the control unit 208.
 制御部208は、判定部207から受け取るCCEの識別情報が示すCCEに対応するPUCCHリソース(周波数・符号)をACK/NACKリソースとして特定する。そして、制御部208は、特定したACK/NACKリソース、及び、基地局100から予め通知されているSRリソースにそれぞれ対応するZAC系列及び循環シフト量を、上り制御チャネル信号生成部213の拡散部222へ出力し、周波数リソース情報をIFFT部223に出力する。また、制御部208は、それぞれのリソースに対応する参照信号としてのZAC系列及び周波数リソース情報をIFFT部226へ出力し、ACK/NACKリソース及びSRリソースに対応するウォルシュ系列を拡散部225へ出力し、参照信号に対応するDFT系列を拡散部228へ出力する。 The control unit 208 identifies the PUCCH resource (frequency / code) corresponding to the CCE indicated by the CCE identification information received from the determination unit 207 as an ACK / NACK resource. Then, the control unit 208 transmits the ZAC sequence and the cyclic shift amount respectively corresponding to the identified ACK / NACK resource and the SR resource previously notified from the base station 100 to the spreading unit 222 of the uplink control channel signal generation unit 213. And output the frequency resource information to the IFFT unit 223. In addition, control section 208 outputs a ZAC sequence and frequency resource information as a reference signal corresponding to each resource to IFFT section 226, and outputs a Walsh sequence corresponding to an ACK / NACK resource and an SR resource to spreading section 225. The DFT sequence corresponding to the reference signal is output to spreading section 228.
 また、制御部208は、SRを受け取ったサブフレームで送信すべき応答信号が存在しない場合(すなわち、下り割当制御情報を1つも検出しなかった場合)、応答信号生成部212に対して「NACK」を上り制御チャネル信号生成部213へ出力するように指示する。このように、制御部208は、応答信号及びSRの発生状況に基づいて、応答信号又はSRの送信を制御する。なお、制御部208におけるSR及び応答信号の送信制御の詳細については後述する。 Also, when there is no response signal to be transmitted in the subframe that has received the SR (that is, when no downlink allocation control information is detected), the control unit 208 notifies the response signal generation unit 212 of “NACK Is output to the uplink control channel signal generation unit 213. As described above, the control unit 208 controls the transmission of the response signal or SR based on the response signal and the generation status of the SR. Details of SR and response signal transmission control in control unit 208 will be described later.
 復調部209は、抽出部204から受け取る下り回線データを復調し、復調後の下り回線データを復号部210へ出力する。 Demodulation section 209 demodulates the downlink data received from extraction section 204, and outputs the demodulated downlink data to decoding section 210.
 復号部210は、復調部209から受け取る下り回線データを復号し、復号後の下り回線データをCRC部211へ出力する。 Decoding section 210 decodes the downlink data received from demodulation section 209 and outputs the decoded downlink data to CRC section 211.
 CRC部211は、復号部210から受け取る復号後の下り回線データを生成し、CRCを用いて誤り検出し、CRC=OK(誤り無し)の場合にはACKを、CRC=NG(誤り有り)の場合にはNACKを、応答信号生成部212へ出力する。また、CRC部211は、CRC=OK(誤り無し)の場合には、復号後の下り回線データを受信データとして出力する。 The CRC unit 211 generates the decoded downlink data received from the decoding unit 210, detects an error using the CRC, and when CRC = OK (no error), ACK and CRC = NG (error) In this case, NACK is output to the response signal generation unit 212. Also, CRC section 211 outputs the decoded downlink data as received data when CRC = OK (no error).
 応答信号生成部212は、CRC部211から入力される、下り回線データの受信状況(下り回線データの誤り検出結果)に基づいて、自機が基地局100へ送信すべき応答信号を生成する。ただし、応答信号生成部212は、制御部208からの指示がある場合(すなわち、端末200がSRのみを送信する場合)にはNACKを生成する。そして、応答信号生成部212は、生成した「応答信号又はNACK」(以下、単に「応答信号」と省略する)を上り制御チャネル信号生成部213-1及び213-2へ出力する。 The response signal generation unit 212 generates a response signal to be transmitted to the base station 100 based on the downlink data reception status (downlink data error detection result) input from the CRC unit 211. However, the response signal generation unit 212 generates a NACK when there is an instruction from the control unit 208 (that is, when the terminal 200 transmits only SR). Then, the response signal generation unit 212 outputs the generated “response signal or NACK” (hereinafter simply referred to as “response signal”) to the uplink control channel signal generation units 213-1 and 213-2.
 上り制御チャネル信号生成部213は、応答信号生成部212から受け取る応答信号に基づいて上り制御チャネル信号(PUCCH信号)を生成する。なお、端末200には、端末200のアンテナ1及びアンテナ2にそれぞれ対応する上り制御チャネル信号生成部213-1及び213-2が設けられている。また、上り制御チャネル信号生成部213-1及び213-2は、PUCCH内のSRリソース又はACK/NACKリソースのいずれかのリソースに対応する。 The uplink control channel signal generation unit 213 generates an uplink control channel signal (PUCCH signal) based on the response signal received from the response signal generation unit 212. Terminal 200 is provided with uplink control channel signal generation sections 213-1 and 213-2 corresponding to antenna 1 and antenna 2 of terminal 200, respectively. Also, uplink control channel signal generation sections 213-1 and 213-2 correspond to either SR resource or ACK / NACK resource in PUCCH.
 具体的には、上り制御チャネル信号生成部213は、変調部221と、拡散部222と、IFFT部223と、CP付加部224と、拡散部225と、IFFT部226と、CP付加部227と、拡散部228と、多重部229とを有する。 Specifically, the uplink control channel signal generation unit 213 includes a modulation unit 221, a spreading unit 222, an IFFT unit 223, a CP adding unit 224, a spreading unit 225, an IFFT unit 226, and a CP adding unit 227. , A diffusion unit 228 and a multiplexing unit 229.
 変調部221は、応答信号生成部212から入力される応答信号を変調して拡散部222へ出力する。 The modulation unit 221 modulates the response signal input from the response signal generation unit 212 and outputs it to the spreading unit 222.
 拡散部222は、制御部208によって設定されたZAC系列及び循環シフト量に基づいて応答信号を1次拡散し、1次拡散後の応答信号をIFFT部223へ出力する。すなわち、拡散部222は、制御部208からの指示に従って、応答信号を1次拡散する。 The spreading unit 222 performs first spreading of the response signal based on the ZAC sequence and the cyclic shift amount set by the control unit 208, and outputs the response signal after the first spreading to the IFFT unit 223. That is, spreading section 222 performs first spreading of the response signal in accordance with an instruction from control section 208.
 IFFT部223は、1次拡散後の応答信号を制御部208から入力される周波数リソース情報に基づいて周波数軸上に配置し、IFFTを行う。そして、IFFT部223は、IFFT後の応答信号をCP付加部224へ出力する。 The IFFT unit 223 arranges the response signal after the first spreading on the frequency axis based on the frequency resource information input from the control unit 208, and performs IFFT. Then, IFFT section 223 outputs the response signal after IFFT to CP adding section 224.
 CP付加部224は、IFFT後の応答信号の後尾部分と同じ信号をCPとしてその応答信号の先頭に付加する。 The CP adding unit 224 adds the same signal as the tail part of the response signal after IFFT to the head of the response signal as a CP.
 拡散部225は、制御部208によって設定されたウォルシュ系列を用いてCP付加後の応答信号を2次拡散し、2次拡散後の応答信号を多重部229へ出力する。つまり、拡散部225は、1次拡散後の応答信号を制御部208で選択されたリソースに対応するウォルシュ系列を用いて2次拡散する。 Spreading section 225 uses the Walsh sequence set by control section 208 to secondarily spread the response signal after CP addition, and outputs the response signal after the second spreading to multiplexing section 229. That is, spreading section 225 performs second spreading on the response signal after the first spreading using a Walsh sequence corresponding to the resource selected by control section 208.
 IFFT部226は、参照信号を制御部208から入力される周波数リソース情報に基づいて周波数軸上に配置し、IFFTを行う。そして、IFFT部226は、IFFT後の参照信号をCP付加部227へ出力する。 The IFFT unit 226 arranges the reference signal on the frequency axis based on the frequency resource information input from the control unit 208, and performs IFFT. Then, IFFT unit 226 outputs the reference signal after IFFT to CP adding unit 227.
 CP付加部227は、IFFT後の参照信号の後尾部分と同じ信号をCPとしてその参照信号の先頭に付加する。 The CP adding unit 227 adds the same signal as the tail part of the reference signal after IFFT to the head of the reference signal as a CP.
 拡散部228は、制御部208から指示されたDFT系列でCP付加後の参照信号を拡散し、拡散後の参照信号を多重部229へ出力する。 Spreading section 228 spreads the reference signal after adding the CP with the DFT sequence instructed from control section 208 and outputs the spread reference signal to multiplexing section 229.
 多重部229は、2次拡散後の応答信号と拡散後の参照信号とを1スロットに時間多重して、アンテナ1、2にそれぞれ対応する無線送信部214に出力する。 The multiplexing unit 229 time-multiplexes the response signal after second spreading and the reference signal after spreading into one slot, and outputs the result to the radio transmitting unit 214 corresponding to each of the antennas 1 and 2.
 無線送信部214は、上り制御チャネル信号生成部213の多重部229から受け取る信号に対しD/A変換、増幅及びアップコンバート等の送信処理を行い、アンテナから基地局100へ送信する。なお、端末200には、端末200のアンテナ1及びアンテナ2にそれぞれ対応する無線送信部214-1及び214-2が設けられており、無線送信部214-1及び214-2は、SRリソース又はACK/NACKリソースのいずれかのリソースを用いて応答信号又はSRを送信する。 The radio transmission unit 214 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal received from the multiplexing unit 229 of the uplink control channel signal generation unit 213, and transmits the signal from the antenna to the base station 100. Terminal 200 is provided with radio transmission sections 214-1 and 214-2 corresponding to antenna 1 and antenna 2 of terminal 200, respectively, and radio transmission sections 214-1 and 214-2 are SR resources or A response signal or SR is transmitted using any one of the ACK / NACK resources.
 次に、端末200の動作について説明する。以下の説明では、端末200は、2本のアンテナを具備する。また、端末200は、SRリソース(又はACK/NACKリソース)を、2本のアンテナに1つずつ割り当て、同一信号を2本のアンテナから送信する。すなわち、端末200では、SR及び応答信号のいずれか一方又は双方に対してSORTDが適用される。 Next, the operation of the terminal 200 will be described. In the following description, the terminal 200 includes two antennas. Also, terminal 200 allocates SR resources (or ACK / NACK resources) one by one to two antennas, and transmits the same signal from the two antennas. That is, in terminal 200, SORTD is applied to one or both of SR and the response signal.
 つまり、以下の説明では、LTE-Aシステムにおいて、SRリソース及びACK/NACKリソースのいずれか一方又は双方で、同一サブフレーム内に2つのリソースが設定(configure)されるものとする。そして、端末200は、応答信号又はSRのいずれか1つを符号リソース(SRリソース又はACK/NACKリソース)に割り当てて、符号リソースに割り当てられた応答信号又はSRを複数(ここでは2本)のアンテナからそれぞれ送信する。 That is, in the following description, in the LTE-A system, it is assumed that two resources are configured in the same subframe with one or both of the SR resource and the ACK / NACK resource. Then, terminal 200 assigns either one of the response signal or SR to the code resource (SR resource or ACK / NACK resource), and a plurality of (here, two) response signals or SRs assigned to the code resource. Transmit from each antenna.
 ここで、図6Aに示すように、端末200に対して2つのSRリソース(第1のSRリソース及び第2のSRリソース)が予め設定されており、ACK/NACKリソースが2つである場合を「状態1」(図7A)とする。また、図6Aに示すように、端末200に対して2つのSRリソースが予め設定されており、ACK/NACKリソースが1つである場合を「状態2」(図8A)とする。更に、図6Bに示すように、端末200に対して1つのSRリソースが予め設定されており、ACK/NACKリソースが2つである場合を「状態3」(図9A)とする。以下、上記「状態1」~「状態3」の3つのケースにおける端末200の動作について詳細に説明する。 Here, as shown in FIG. 6A, a case where two SR resources (first SR resource and second SR resource) are set in advance for terminal 200 and there are two ACK / NACK resources. Assume that “state 1” (FIG. 7A). Also, as shown in FIG. 6A, a case where two SR resources are set in advance for terminal 200 and there is one ACK / NACK resource is referred to as “state 2” (FIG. 8A). Furthermore, as shown in FIG. 6B, a case where one SR resource is preset for terminal 200 and there are two ACK / NACK resources is referred to as “state 3” (FIG. 9A). Hereinafter, the operation of terminal 200 in the three cases of “state 1” to “state 3” will be described in detail.
 <状態1:端末200に対して2つのSRリソースが予め設定されており、ACK/NACKリソースが2つである場合(図6A及び図7A~D)>
 以下の説明では、図6Aに示すように、基地局100は、端末200に対して、図2に示す上り単位バンド(端末200に設定された上り単位バンド)内において、2つのSRリソースに関する情報を予め通知する。また、端末200が受信したL1/L2CCHが占有していたCCEが2つ以上であるとする。すなわち、図7Aに示すように、端末200の制御部208は、基地局100から通知された2つのSRリソースに関する情報、及び、自機が受信したL1/L2CCHが占有していたCCEに関連付けられた2つのACK/NACKリソースに関する情報を保持している。
<State 1: When two SR resources are preset for terminal 200 and there are two ACK / NACK resources (FIGS. 6A and 7A to 7D)>
In the following description, as shown in FIG. 6A, the base station 100 provides information on two SR resources to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) shown in FIG. Is notified in advance. Further, it is assumed that the number of CCEs occupied by the L1 / L2 CCH received by the terminal 200 is two or more. That is, as illustrated in FIG. 7A, the control unit 208 of the terminal 200 is associated with the information regarding the two SR resources notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. Information about two ACK / NACK resources.
 なお、L1/L2CCHがN個(N>2)のCCEを占有している場合、端末200は、予め設定されたルールに則って、2つのCCEに関連付けられた2つのACK/NACKリソースを選択する。 When L1 / L2CCH occupies N (N> 2) CCEs, terminal 200 selects two ACK / NACK resources associated with two CCEs according to a preset rule. To do.
 ここで、図7Aに示す上り単位バンドのPUCCHにおいて、2つのSRリソース(第1のSRリソース及び第2のSRリソース)及び2つのACK/NACKリソース(第1のACK/NACKリソース及び第2のACK/NACKリソース)は、ZAC系列(1次拡散)又は直交符号系列の少なくとも一方が異なる、互いに異なる符号リソースである。 Here, in the uplink unit band PUCCH shown in FIG. 7A, two SR resources (first SR resource and second SR resource) and two ACK / NACK resources (first ACK / NACK resource and second SR resource). ACK / NACK resources) are different code resources in which at least one of a ZAC sequence (first spreading) or an orthogonal code sequence is different.
 以下、図7Aに示す上り単位バンドのPUCCHにおいて、或るサブフレーム内でのSRの発生状況、及び、応答信号の発生状況(すなわち、端末200での下り割当制御情報の検出状況)に応じた端末200(制御部208)における送信制御処理の詳細な動作について図7B~Dを用いて説明する。 Hereinafter, in the PUCCH of the uplink unit band shown in FIG. 7A, it corresponds to the SR occurrence status in a certain subframe and the response signal occurrence status (that is, the detection status of downlink allocation control information in terminal 200). The detailed operation of the transmission control process in terminal 200 (control unit 208) will be described with reference to FIGS. 7B to 7D.
 <状態1:端末200でSR及び応答信号の両方が同時に発生した場合(図7B)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第2のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第1のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 1: When both SR and response signal occur simultaneously in terminal 200 (FIG. 7B)>
In this case, in terminal 200, control section 208 transmits information corresponding to the second SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) to uplink control channel signal generation section 213-1. ) Is output. Further, control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、図7Bに示すように、第2のSRリソース及び第1のACK/NACKリソース(すなわち、SRリソース及びACK/NACKリソースの双方)を用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末200は、同一の応答信号を、第2のSRリソースを用いてアンテナ1から送信するとともに、第1のACK/NACKリソースを用いてアンテナ2から送信する。つまり、端末200は、互いに異なる符号リソースである第2のSRリソース及び第1のACK/NACKリソースにそれぞれ割り当てられた同一の応答信号を、2本のアンテナ1、2からそれぞれ送信する。 That is, when both the SR and the response signal are generated simultaneously in a certain subframe, the terminal 200, as shown in FIG. 7B, the second SR resource and the first ACK / NACK resource (that is, SR A response signal ("A / N") for downlink data is transmitted using both resources and ACK / NACK resources). Specifically, terminal 200 transmits the same response signal from antenna 1 using the second SR resource, and transmits from antenna 2 using the first ACK / NACK resource. That is, terminal 200 transmits the same response signals respectively assigned to the second SR resource and the first ACK / NACK resource, which are different code resources, from two antennas 1 and 2, respectively.
 そして、基地局100の判定部118は、図7Bに示す上り単位バンドのPUCCHにおいて、第2のSRリソース及び第1のACK/NACKリソースが用いられていることより、端末200がSR及び応答信号を送信したと判定する。さらに、基地局100は、第2のSRリソース及び第1のACK/NACKリソースで受信した信号の位相に基づいて(つまり、BPSKによる復調結果に基づいて)、端末200が応答信号としてACK又はNACKのいずれを送信したかを判定する。 Then, the determination unit 118 of the base station 100 uses the second SR resource and the first ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Furthermore, the base station 100 determines that the terminal 200 receives ACK or NACK as a response signal based on the phase of the signal received by the second SR resource and the first ACK / NACK resource (that is, based on the demodulation result by BPSK). Which of these is transmitted is determined.
 <状態1:端末200で応答信号のみが発生した場合(図7C)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第1のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第2のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 1: When only a response signal is generated in terminal 200 (FIG. 7C)>
In this case, in terminal 200, control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, etc.) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-1. DFT sequence) is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内で応答信号のみが発生した場合には、図7Cに示すように、第1のACK/NACKリソース及び第2のACK/NACKリソース(すなわち、ACK/NACKリソースのみ)を用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末200は、同一の応答信号を、第1のACK/NACKリソースを用いてアンテナ1から送信するとともに、第2のACK/NACKリソースを用いてアンテナ2から送信する。つまり、端末200は、互いに異なる符号リソースである第1及び第2のACK/NACKリソースにそれぞれ割り当てられた同一の応答信号を、2本のアンテナ1、2からそれぞれ送信する。 That is, when only a response signal is generated in a certain subframe, terminal 200 receives the first ACK / NACK resource and the second ACK / NACK resource (that is, ACK / NACK) as shown in FIG. 7C. A response signal ("A / N") for downlink data is transmitted using (resource only). Specifically, terminal 200 transmits the same response signal from antenna 1 using the first ACK / NACK resource and transmits from antenna 2 using the second ACK / NACK resource. That is, terminal 200 transmits the same response signal allocated to the first and second ACK / NACK resources, which are different code resources, from two antennas 1 and 2, respectively.
 そして、基地局100の判定部118は、図7Cに示す上り単位バンドのPUCCHにおいて、第1のACK/NACKリソース及び第2のACK/NACKリソースが用いられていることより、端末200が応答信号を送信したと判定する。また、基地局100は、第1及び第2のACK/NACKリソースで受信した応答信号の位相に基づいて、端末200が応答信号としてACK又はNACKを送信したことを判定する。 Then, the determination unit 118 of the base station 100 uses the first ACK / NACK resource and the second ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Also, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the first and second ACK / NACK resources.
 <状態1:端末200でSRのみが発生した場合(図7D)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第1のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第2のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 1: When SR only occurs in terminal 200 (FIG. 7D)>
In this case, in terminal 200, control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first SR resource to uplink control channel signal generation section 213-1. ) Is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second SR resource to uplink control channel signal generation section 213-2.
 また、制御部208は、応答信号生成部212に対して、「NACK」を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSRのみが発生した場合には、図7Dに示すように、第1のSRリソース及び第2のSRリソース(すなわち、SRリソースのみ)を用いて、「NACK」と同一の位相点であるSRを送信する。すなわち、端末200は、図7Dに示す第1及び第2のSRリソースを用いてNACKを送信する。具体的には、端末200は、同一のSR(NACK)を、第1のSRリソースを用いてアンテナ1から送信するとともに、第2のSRリソースを用いてアンテナ2から送信する。つまり、端末200は、互いに異なる符号リソースである第1及び第2のSRリソースにそれぞれ割り当てられた同一のSR(NACK)を、2本のアンテナ1、2でそれぞれ送信する。 That is, when only SR occurs in a certain subframe, terminal 200 uses the first SR resource and the second SR resource (that is, only SR resource) as shown in FIG. An SR having the same phase point as “NACK” is transmitted. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 7D. Specifically, terminal 200 transmits the same SR (NACK) from antenna 1 using the first SR resource and transmits from antenna 2 using the second SR resource. That is, terminal 200 transmits the same SR (NACK) respectively assigned to the first and second SR resources, which are different code resources, using two antennas 1 and 2, respectively.
 ここで、図7Dに示す端末200の動作(つまり、端末200がSRのみを送信する動作)は、端末200に対して下り回線データが割り当てられていない際に端末200でSRのみが発生した場合、及び、端末200が自機に対する下り割当制御情報の受信に失敗した際にSRが発生した場合の2つの状況が想定される。しかし、基地局100は、端末200に対して下り回線データを割り当てたかどうかを把握しているため、これら2つの状況を区別することができる。 Here, the operation of terminal 200 shown in FIG. 7D (that is, the operation in which terminal 200 transmits only SR) is when only SR occurs in terminal 200 when downlink data is not assigned to terminal 200. Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
 <状態1:端末200でSR及び応答信号のいずれも発生しない場合(図示せず)>
 この場合、端末200は、PUCCHリソースにおけるSR及び応答信号の送信を行わない。
<State 1: When neither SR nor a response signal is generated in terminal 200 (not shown)>
In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
 以上、端末200が利用できるSRリソース及びACK/NACKリソースがそれぞれ2つである場合(状態1)について、SRの発生状況及び応答信号の発生状況に応じた端末200(制御部208)における送信制御処理の詳細な動作について説明した。 As described above, when there are two SR resources and ACK / NACK resources that can be used by terminal 200 (state 1), transmission control in terminal 200 (control unit 208) according to the SR generation status and the response signal generation status The detailed operation of the processing has been described.
 これにより、端末200が下り割当制御情報の受信に成功したが下り回線データに対してCRC=NGを検出し、且つSRが同時に発生した状態(すなわち、(SR+NACK)の状態(図7B))と、端末200が下り割当制御情報の受信に失敗し、且つSRが同時に発生した状態(すなわち、(SR+DTX)の状態(図7D))とを基地局100側で区別できるようになる。 As a result, terminal 200 has successfully received downlink allocation control information, but has detected CRC = NG for downlink data and SR has occurred simultaneously (ie, a state of (SR + NACK) (FIG. 7B)). Thus, the base station 100 can distinguish the state in which the terminal 200 has failed to receive downlink allocation control information and SR has occurred simultaneously (that is, the state of (SR + DTX) (FIG. 7D)).
 より詳細には、上述したLTEシステムにおいて、図3A(SR+NACK送信時)と図3C(SR+DTX送信時)とでは、同一リソース(SRリソース)を用いて同一位相点(NACK)で信号が送信されるため、基地局側で、(SR+NACK)と(SR+DTX)とを区別できない。これに対して、本実施の形態におけるLTE-Aシステムにおいて、図7B(SR+NACK送信時)と図7D(SR+DTX送信時)とでは、異なるリソースを用いて信号が送信されているため、基地局100側で、(SR+NACK)と(SR+DTX)とを区別できる。 More specifically, in the LTE system described above, in FIG. 3A (during SR + NACK transmission) and FIG. 3C (during SR + DTX transmission), signals are transmitted at the same phase point (NACK) using the same resource (SR resource). Therefore, (SR + NACK) and (SR + DTX) cannot be distinguished on the base station side. On the other hand, in the LTE-A system according to the present embodiment, signals are transmitted using different resources in FIG. 7B (when SR + NACK is transmitted) and FIG. 7D (when SR + DTX is transmitted). On the side, (SR + NACK) and (SR + DTX) can be distinguished.
 つまり、図7B(SR+NACK送信時)では、基地局100は、SRリソース及びACK/NACKリソースに信号が割り当てられていることより、端末200からSR及びNACKが送信されたと判断し、端末200が下り割当制御情報の受信に成功したと判断する。一方、図7D(SR+DTX送信時)では、基地局100は、SRリソースのみに信号が割り当てられていることより、端末200からSRのみ(つまりSR+DTX)が送信されたと判断し、端末200が下り割当制御情報の受信に失敗したと判断する。 That is, in FIG. 7B (at the time of SR + NACK transmission), base station 100 determines that SR and NACK are transmitted from terminal 200 because signals are allocated to SR resources and ACK / NACK resources, and terminal 200 is It is determined that the allocation control information has been successfully received. On the other hand, in FIG. 7D (during SR + DTX transmission), base station 100 determines that only SR (that is, SR + DTX) has been transmitted from terminal 200 because a signal is allocated only to SR resources, and terminal 200 allocates downlink allocation. It is determined that reception of control information has failed.
 このように、基地局100は、端末200での下り割当制御情報の受信成否を判別できるので、端末200での下り割当制御情報の受信成否に応じて、下り回線データの再送制御(例えば、IR等)を効率良く行うことができる。つまり、下り回線データの再送制御の効率(再送効率)を向上させることができる。 Thus, since base station 100 can determine whether terminal 200 has received downlink allocation control information or not, retransmission control of downlink data (for example, IR, for example) depends on whether terminal 200 has received downlink allocation control information. Etc.) can be performed efficiently. That is, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
 <状態2:端末200に対して2つのSRリソースが予め設定されており、ACK/NACKリソースが1つである場合(図6A及び図8A~D)>
 以下の説明では、図6Aに示すように、基地局100は、端末200に対して、図2に示す上り単位バンド(端末200に設定された上り単位バンド)内において、2つのSRリソースに関する情報を予め通知する。また、端末200が受信したL1/L2CCHが占有していたCCEが1つのみであるとする。すなわち、図8Aに示すように、端末200の制御部208は、基地局100から通知された2つのSRリソースに関する情報、及び、自機が受信したL1/L2CCHが占有していたCCEに関連付けられた1つのACK/NACKリソースに関する情報を保持している。
<State 2: When two SR resources are preset for terminal 200 and there is one ACK / NACK resource (FIGS. 6A and 8A to 8D)>
In the following description, as shown in FIG. 6A, the base station 100 provides information on two SR resources to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) shown in FIG. Is notified in advance. Further, it is assumed that the L1 / L2CCH received by the terminal 200 has only one CCE. That is, as illustrated in FIG. 8A, the control unit 208 of the terminal 200 is associated with the information regarding the two SR resources notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. It holds information about a single ACK / NACK resource.
 ここで、図8Aに示す上り単位バンドのPUCCHにおいて、2つのSRリソース(第1のSRリソース及び第2のSRリソース)及び1つのACK/NACKリソースは、ZAC系列(1次拡散)又は直交符号系列の少なくとも一方が異なる、互いに異なる符号リソースである。 Here, in the uplink unit band PUCCH shown in FIG. 8A, two SR resources (first SR resource and second SR resource) and one ACK / NACK resource are ZAC sequences (first spreading) or orthogonal codes. The code resources are different from each other in which at least one of the sequences is different.
 以下、図8Aに示す上り単位バンドのPUCCHにおいて、或るサブフレーム内でのSRの発生状況、及び、応答信号の発生状況(すなわち、端末200での下り割当制御情報の検出状況)に応じた端末200(制御部208)における送信制御処理の詳細な動作について図8B~Dを用いて説明する。 Hereinafter, in the PUCCH of the uplink unit band shown in FIG. 8A, depending on the occurrence status of the SR in a certain subframe and the occurrence status of the response signal (that is, the detection status of the downlink allocation control information in the terminal 200) The detailed operation of the transmission control process in terminal 200 (control unit 208) will be described using FIGS. 8B to 8D.
 <状態2:端末200でSR及び応答信号の両方が同時に発生した場合(図8B)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第2のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対してACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 2: When both SR and response signal occur simultaneously in terminal 200 (FIG. 8B)>
In this case, in terminal 200, control section 208 transmits information corresponding to the second SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) to uplink control channel signal generation section 213-1. ) Is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the ACK / NACK resource to uplink control channel signal generation section 213-2.
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、図8Bに示すように、状態1(図7B)と同様にして、第2のSRリソース及びACK/NACKリソース(すなわち、SRリソース及びACK/NACKリソースの双方)を用いて、下り回線データに対する応答信号(「A/N」)を送信する。 That is, when both the SR and the response signal are generated at the same time in a certain subframe, the terminal 200, as shown in FIG. 8B, performs the second SR resource and the same as in the state 1 (FIG. 7B). A response signal ("A / N") for downlink data is transmitted using ACK / NACK resources (that is, both SR resources and ACK / NACK resources).
 そして、基地局100の判定部118は、図8Bに示す上り単位バンドのPUCCHにおいて、第2のSRリソース及びACK/NACKリソースが用いられていることより、端末200がSR及び応答信号を送信したと判定する。さらに、基地局100は、第2のSRリソース及びACK/NACKリソースで受信した信号の位相に基づいて(つまり、BPSKによる復調結果に基づいて)、端末200が応答信号としてACK又はNACKのいずれを送信したかを判定する。 Then, the determination unit 118 of the base station 100 transmits the SR and the response signal because the second SR resource and the ACK / NACK resource are used in the uplink unit band PUCCH illustrated in FIG. 8B. Is determined. Furthermore, based on the phase of the signal received by the second SR resource and the ACK / NACK resource (that is, based on the demodulation result by BPSK), the base station 100 receives either ACK or NACK as a response signal. Determine if it has been sent.
 <状態2:端末200で応答信号のみが発生した場合(図8C)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1及び213-2に対してACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 2: When only a response signal is generated in terminal 200 (FIG. 8C)>
In this case, in terminal 200, control section 208 transmits information corresponding to ACK / NACK resources (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence) to uplink control channel signal generation sections 213-1 and 213-2. , DFT sequence).
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内で応答信号のみが発生した場合には、図8Cに示すように、1つのACK/NACKリソースのみを2本のアンテナの双方で用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末200は、同一の応答信号を、同一のACK/NACKリソースを用いてアンテナ1及びアンテナ2から送信する。 That is, when only a response signal is generated within a certain subframe, terminal 200 uses only one ACK / NACK resource with both two antennas as shown in FIG. A response signal (“A / N”) is transmitted. Specifically, terminal 200 transmits the same response signal from antenna 1 and antenna 2 using the same ACK / NACK resource.
 そして、基地局100の判定部118は、図8Cに示す上り単位バンドのPUCCHにおいて、1つのACK/NACKリソースのみが用いられていることより、端末200が応答信号を送信したと判定する。また、基地局100は、ACK/NACKリソースで受信した応答信号の位相に基づいて、端末200が応答信号としてACK又はNACKを送信したことを判定する。 Then, the determination unit 118 of the base station 100 determines that the terminal 200 has transmitted a response signal because only one ACK / NACK resource is used in the PUCCH of the uplink unit band shown in FIG. 8C. Further, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the ACK / NACK resource.
 <状態2:端末200でSRのみが発生した場合(図8D)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第1のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第2のSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 2: When SR only occurs in terminal 200 (FIG. 8D)>
In this case, in terminal 200, control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first SR resource to uplink control channel signal generation section 213-1. ) Is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second SR resource to uplink control channel signal generation section 213-2.
 また、制御部208は、応答信号生成部212に対して、「NACK」を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSRのみが発生した場合には、図8Dに示すように、状態1(図7D)と同様にして、第1のSRリソース及び第2のSRリソース(すなわち、SRリソースのみ)を用いて、「NACK」と同一の位相点であるSRを送信する。すなわち、端末200は、図8Dに示す第1及び第2のSRリソースを用いてNACKを送信する。 That is, when only SR occurs in a certain subframe, terminal 200 performs the first SR resource and the second SR resource as in state 1 (FIG. 7D) as shown in FIG. 8D. (That is, only SR resource) is used to transmit an SR having the same phase point as “NACK”. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 8D.
 ここで、図8Dに示す端末200の動作(つまり、端末200がSRのみを送信する動作)は、端末200に対して下り回線データが割り当てられていない際に端末200でSRのみが発生した場合、及び、端末200が自機に対する下り割当制御情報の受信に失敗した際にSRが発生した場合の2つの状況が想定される。しかし、基地局100は、端末200に対して下り回線データを割り当てたかどうかを把握しているため、これら2つの状況を区別することができる。 Here, the operation of terminal 200 shown in FIG. 8D (that is, the operation in which terminal 200 transmits only SR) is the case where only SR occurs in terminal 200 when downlink data is not assigned to terminal 200. Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
 <状態2:端末200でSR及び応答信号のいずれも発生しない場合(図示せず)>
 この場合、端末200は、PUCCHリソースにおけるSR及び応答信号の送信を行わない。
<State 2: When neither SR nor a response signal is generated in terminal 200 (not shown)>
In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
 以上、端末200が利用できるSRリソースが2つであり、ACK/NACKリソースが1つである場合(状態2)について、SRの発生状況及び応答信号の発生状況に応じた端末200(制御部208)における送信制御処理の詳細な動作について説明した。 As described above, when there are two SR resources that can be used by terminal 200 and one ACK / NACK resource (state 2), terminal 200 (control unit 208) according to the SR generation status and the response signal generation status. The detailed operation of the transmission control process in FIG.
 これにより、状態1(図7A~D)と同様、端末200が下り割当制御情報の受信に成功したが下り回線データに対してCRC=NGを検出し、且つSRが同時に発生した状態(すなわち、(SR+NACK)の状態(図8B))と、端末200が下り割当制御情報の受信に失敗し、且つSRが同時に発生した状態(すなわち、(SR+DTX)の状態(図8D))とを基地局100側で区別できるようになる。すなわち、基地局100は、端末200での下り割当制御情報の受信成否を判別できるので、端末200の下り割当制御情報の受信成否に応じて、下り回線データの再送制御(例えば、IR等)を効率良く行うことができる。よって、下り回線データの再送制御の効率(再送効率)を向上させることができる。 As a result, as in the state 1 (FIGS. 7A to 7D), the terminal 200 has successfully received the downlink allocation control information, but has detected CRC = NG with respect to the downlink data and the SR has occurred simultaneously (ie, The state of (SR + NACK) (FIG. 8B)) and the state in which terminal 200 has failed to receive downlink allocation control information and SR has occurred simultaneously (that is, the state of (SR + DTX) (FIG. 8D)). Can be distinguished on the side. That is, since the base station 100 can determine whether or not the terminal 200 has received downlink allocation control information, the base station 100 performs downlink data retransmission control (for example, IR or the like) according to whether or not the terminal 200 has received downlink allocation control information. It can be done efficiently. Therefore, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
 <状態3:端末200に対して1つのSRリソースが予め設定されており、ACK/NACKリソースが2つである場合(図6B及び図9A~D)>
 以下の説明では、図6Bに示すように、基地局100は、端末200に対して、図2に示す上り単位バンド(端末200に設定された上り単位バンド)内において、1つのSRリソースに関する情報を予め通知する。また、端末200が受信したL1/L2CCHが占有していたCCEが2つ以上であるとする。すなわち、図9Aに示すように、端末200の制御部208は、基地局100から通知された1つのSRリソースに関する情報、及び、自機が受信したL1/L2CCHが占有していたCCEに関連付けられた2つのACK/NACKリソースに関する情報を保持している。
<State 3: When one SR resource is set in advance for terminal 200 and there are two ACK / NACK resources (FIGS. 6B and 9A to 9D)>
In the following description, as illustrated in FIG. 6B, the base station 100 provides information on one SR resource to the terminal 200 in the uplink unit band (uplink unit band set for the terminal 200) illustrated in FIG. Is notified in advance. Further, it is assumed that the number of CCEs occupied by the L1 / L2 CCH received by the terminal 200 is two or more. That is, as illustrated in FIG. 9A, the control unit 208 of the terminal 200 is associated with information on one SR resource notified from the base station 100 and the CCE occupied by the L1 / L2 CCH received by the own device. Information about two ACK / NACK resources.
 なお、L1/L2CCHがN個(N>2)のCCEを占有している場合、端末200は、予め設定されたルールに則って、2つのCCEに関連付けられた2つのACK/NACKリソースを選択する。 When L1 / L2CCH occupies N (N> 2) CCEs, terminal 200 selects two ACK / NACK resources associated with two CCEs according to a preset rule. To do.
 ここで、図9Aに示す上り単位バンドのPUCCHにおいて、1つのSRリソース及び2つのACK/NACKリソース(第1のACK/NACKリソース及び第2のACK/NACKリソース)は、ZAC系列(1次拡散)又は直交符号系列の少なくとも一方が異なる、互いに異なる符号リソースである。 Here, in the uplink unit band PUCCH shown in FIG. 9A, one SR resource and two ACK / NACK resources (first ACK / NACK resource and second ACK / NACK resource) are ZAC sequences (first spreading). ) Or different code resources in which at least one of the orthogonal code sequences is different.
 以下、図9Aに示す上り単位バンドのPUCCHにおいて、或るサブフレーム内でのSRの発生状況、及び、応答信号の発生状況(すなわち、端末200での下り割当制御情報の検出状況)に応じた端末200(制御部208)における送信制御処理の詳細な動作について図9B~Dを用いて説明する。 Hereinafter, in the PUCCH of the uplink unit band shown in FIG. 9A, it corresponds to the SR occurrence status in a certain subframe and the response signal occurrence status (that is, the detection status of downlink allocation control information in terminal 200). The detailed operation of the transmission control process in terminal 200 (control unit 208) will be described with reference to FIGS. 9B to 9D.
 <状態3:端末200でSR及び応答信号の両方が同時に発生した場合(図9B)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対してSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第1のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 3: When both SR and response signal occur simultaneously in terminal 200 (FIG. 9B)>
In this case, in terminal 200, control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the SR resource to uplink control channel signal generation section 213-1. To do. In addition, control section 208 outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、図9Bに示すように、状態1(図7B)又は状態2(図8B)と同様にして、SRリソース及び第1のACK/NACKリソース(すなわち、SRリソース及びACK/NACKリソースの双方)を用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末200は、同一の応答信号を、SRリソースを用いてアンテナ1から送信するとともに、第1のACK/NACKリソースを用いてアンテナ2から送信する。 That is, if both the SR and the response signal are generated at the same time in a certain subframe, terminal 200 performs the same as in state 1 (FIG. 7B) or state 2 (FIG. 8B) as shown in FIG. 9B. , A response signal (“A / N”) for downlink data is transmitted using the SR resource and the first ACK / NACK resource (that is, both the SR resource and the ACK / NACK resource). Specifically, terminal 200 transmits the same response signal from antenna 1 using the SR resource and transmits from antenna 2 using the first ACK / NACK resource.
 そして、基地局100の判定部118は、図9Bに示す上り単位バンドのPUCCHにおいて、SRリソース及び第1のACK/NACKリソースが用いられていることより、端末200がSR及び応答信号を送信したと判定する。さらに、基地局100は、SRリソース及び第1のACK/NACKリソースで受信した信号の位相に基づいて(つまり、BPSKによる復調結果に基づいて)、端末200が応答信号としてACK又はNACKのいずれを送信したかを判定する。 Then, the determination unit 118 of the base station 100 transmits the SR and the response signal because the SR resource and the first ACK / NACK resource are used in the uplink unit band PUCCH illustrated in FIG. 9B. Is determined. Furthermore, based on the phase of the signal received using the SR resource and the first ACK / NACK resource (that is, based on the result of demodulation by BPSK), base station 100 determines whether ACK or NACK is received by terminal 200 as a response signal. Determine if it has been sent.
 <状態3:端末200で応答信号のみが発生した場合(図9C)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1に対して第1のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。また、制御部208は、上り制御チャネル信号生成部213-2に対して第2のACK/NACKリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 3: When only a response signal is generated in terminal 200 (FIG. 9C)>
In this case, in terminal 200, control section 208 provides information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, etc.) corresponding to the first ACK / NACK resource to uplink control channel signal generation section 213-1. DFT sequence) is output. Control section 208 also outputs information (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT sequence) corresponding to the second ACK / NACK resource to uplink control channel signal generation section 213-2. To do.
 また、制御部208は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内で応答信号のみが発生した場合には、図9Cに示すように、状態1(図7C)と同様、第1のACK/NACKリソース及び第2のACK/NACKリソースを用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末200は、同一の応答信号を、第1のACK/NACKリソースを用いてアンテナ1から送信するとともに、第2のACK/NACKリソースを用いてアンテナ2から送信する。 That is, when only a response signal is generated in a certain subframe, terminal 200, as shown in FIG. 9C, similarly to state 1 (FIG. 7C), first ACK / NACK resource and second ACK A response signal ("A / N") for downlink data is transmitted using the / NACK resource. Specifically, terminal 200 transmits the same response signal from antenna 1 using the first ACK / NACK resource and transmits from antenna 2 using the second ACK / NACK resource.
 そして、基地局100の判定部118は、図9Cに示す上り単位バンドのPUCCHにおいて、第1のACK/NACKリソース及び第2のACK/NACKリソースが用いられていることより、端末200が応答信号を送信したと判定する。また、基地局100は、第1及び第2のACK/NACKリソースで受信した応答信号の位相に基づいて、端末200が応答信号としてACK又はNACKを送信したことを判定する。 Then, the determination unit 118 of the base station 100 uses the first ACK / NACK resource and the second ACK / NACK resource in the uplink unit band PUCCH shown in FIG. Is determined to have been transmitted. Also, base station 100 determines that terminal 200 has transmitted ACK or NACK as a response signal based on the phase of the response signal received using the first and second ACK / NACK resources.
 <状態3:端末200でSRのみが発生した場合(図9D)>
 この場合、端末200において、制御部208は、上り制御チャネル信号生成部213-1及び213-2に対してSRリソースに対応する情報(循環シフト量、ZAC系列、周波数リソース情報、ウォルシュ系列、DFT系列)を出力する。
<State 3: When SR only occurs in terminal 200 (FIG. 9D)>
In this case, in terminal 200, control section 208 transmits information corresponding to the SR resource (cyclic shift amount, ZAC sequence, frequency resource information, Walsh sequence, DFT) to uplink control channel signal generation sections 213-1 and 213-2. Output).
 また、制御部208は、応答信号生成部212に対して、「NACK」を上り制御チャネル信号生成部213-1及び213-2に出力するように指示する。 Further, the control unit 208 instructs the response signal generation unit 212 to output “NACK” to the uplink control channel signal generation units 213-1 and 213-2.
 すなわち、端末200は、或るサブフレーム内でSRのみが発生した場合には、図9Dに示すように、状態1(図7D)又は状態2(図8D)と同様にして、SRリソースのみを用いて、「NACK」と同一の位相点であるSRを送信する。すなわち、端末200は、図9Dに示す第1及び第2のSRリソースを用いてNACKを送信する。具体的には、端末200は、同一のSR(NACK)を、同一のSRリソースを用いてアンテナ1及びアンテナ2から送信する。 That is, when only SR occurs in a certain subframe, terminal 200 uses only SR resources as in state 1 (FIG. 7D) or state 2 (FIG. 8D) as shown in FIG. 9D. And transmit SR which is the same phase point as “NACK”. That is, terminal 200 transmits a NACK using the first and second SR resources shown in FIG. 9D. Specifically, terminal 200 transmits the same SR (NACK) from antenna 1 and antenna 2 using the same SR resource.
 ここで、図9Dに示す端末200の動作(つまり、端末200がSRのみを送信する動作)は、端末200に対して下り回線データが割り当てられていない際に端末200でSRのみが発生した場合、及び、端末200が自機に対する下り割当制御情報の受信に失敗した際にSRが発生した場合の2つの状況が想定される。しかし、基地局100は、端末200に対して下り回線データを割り当てたかどうかを把握しているため、これら2つの状況を区別することができる。 Here, the operation of terminal 200 shown in FIG. 9D (that is, the operation in which terminal 200 transmits only SR) is the case where only SR occurs in terminal 200 when downlink data is not assigned to terminal 200. Two situations are assumed when SR occurs when terminal 200 fails to receive downlink allocation control information for the terminal 200. However, since base station 100 knows whether downlink data has been allocated to terminal 200, these two situations can be distinguished.
 <状態3:端末200でSR及び応答信号のいずれも発生しない場合(図示せず)>
 この場合、端末200は、PUCCHリソースにおけるSR及び応答信号の送信を行わない。
<State 3: When neither SR nor a response signal is generated in terminal 200 (not shown)>
In this case, terminal 200 does not transmit the SR and response signal in the PUCCH resource.
 以上、端末200が利用できるSRリソースが1つであり、ACK/NACKリソースが2つである場合(状態3)について、SRの発生状況及び応答信号の発生状況に応じた端末200(制御部208)における送信制御処理の詳細な動作について説明した。 As described above, when there is one SR resource that can be used by terminal 200 and there are two ACK / NACK resources (state 3), terminal 200 (control unit 208) corresponding to the SR generation status and the response signal generation status. The detailed operation of the transmission control process in FIG.
 これにより、状態1(図7A~D)及び状態2(図8A~D)と同様、端末200が下り割当制御情報の受信に成功したが下り回線データに対してCRC=NGを検出し、且つSRが同時に発生した状態(すなわち、(SR+NACK)の状態(図9B))と、端末200が下り割当制御情報の受信に失敗し、且つSRが同時に発生した状態(すなわち、(SR+DTX)の状態(図9D))とを基地局100側で区別できるようになる。すなわち、基地局100は、端末200での下り割当制御情報の受信成否を判別できるので、端末200の下り割当制御情報の受信成否に応じて、下り回線データの再送制御(例えば、IR等)を効率良く行うことができる。よって、下り回線データの再送制御の効率(再送効率)を向上させることができる。 As a result, as in the state 1 (FIGS. 7A to 7D) and the state 2 (FIGS. 8A to D), the terminal 200 succeeds in receiving the downlink allocation control information, but detects CRC = NG for the downlink data, and A state in which SR occurs simultaneously (that is, a state of (SR + NACK) (FIG. 9B)), a state in which terminal 200 has failed to receive downlink allocation control information, and a state in which SR occurs simultaneously (that is, a state of (SR + DTX) ( 9D)) can be distinguished from the base station 100 side. That is, since the base station 100 can determine whether or not the terminal 200 has received downlink allocation control information, the base station 100 performs downlink data retransmission control (for example, IR or the like) according to whether or not the terminal 200 has received downlink allocation control information. It can be done efficiently. Therefore, it is possible to improve the efficiency of retransmission control (retransmission efficiency) of downlink data.
 以上、状態1~状態3について説明した。 The state 1 to state 3 have been described above.
 このように、端末200の制御部208は、或るサブフレーム内にSRのみが発生した場合(図7D、図8D又は図9D)には、「SRリソース」のみを用いてSRを送信するように制御する。また、制御部208は、或るサブフレーム内に応答信号のみが発生した場合(図7C、図8C又は図9C)には、「ACK/NACKリソース」のみを用いて応答信号を送信するように制御する。 In this way, when only SR occurs in a certain subframe (FIG. 7D, FIG. 8D, or FIG. 9D), control unit 208 of terminal 200 transmits SR using only “SR resource”. To control. In addition, when only a response signal is generated in a certain subframe (FIG. 7C, FIG. 8C, or FIG. 9C), the control unit 208 transmits the response signal using only “ACK / NACK resource”. Control.
 また、制御部208は、或るサブフレーム内にSRと応答信号とが同時に発生した場合(図7B、図8B又は図9B)には、或るサブフレーム内にSRのみが発生した場合(図7D、図8D又は図9D)にSRが割り当てられる「SRリソース」のうち少なくとも1つ以上のリソース(ここでは第2のSRリソース)と、或るサブフレーム内に応答信号のみが発生した場合(図7C、図8C又は図9C)に応答信号が割り当てられる「ACK/NACKリソース」のうち少なくとも1つ以上のリソース(ここでは第1のACK/NACKリソース)と、を用いて、応答信号を送信するように制御する。 In addition, when the SR and the response signal are simultaneously generated in a certain subframe (FIG. 7B, FIG. 8B, or FIG. 9B), the control unit 208 is configured when only SR is generated in a certain subframe (FIG. 7). 7D, FIG. 8D, or FIG. 9D) when at least one of the “SR resources” to which SR is assigned (herein, the second SR resource) and only a response signal is generated in a certain subframe ( The response signal is transmitted using at least one of the “ACK / NACK resources” (here, the first ACK / NACK resource) to which the response signal is allocated in FIG. 7C, FIG. 8C, or FIG. 9C. Control to do.
 換言すると、端末200は、或るサブフレーム内にSRと応答信号とが同時に発生した場合には、図7B、図8B又は図9Bに示すように、端末200から送信される応答信号の一部を、ACK/NACKリソース(例えば図7Bでは第2のACK/NACKリソース)の代わりにSRリソースを用いて送信するように制御する。 In other words, when the SR and the response signal are simultaneously generated in a certain subframe, the terminal 200, as shown in FIG. 7B, FIG. 8B, or FIG. 9B, part of the response signal transmitted from the terminal 200. Are transmitted using the SR resource instead of the ACK / NACK resource (for example, the second ACK / NACK resource in FIG. 7B).
 すなわち、端末200は、或るサブフレーム内で送信すべき信号(SR又は応答信号)を、その信号に対応する符号リソースを含むリソースを用いて送信する。具体的には、端末200は、或るサブフレーム内でSRを送信する場合には、SRの送信に用いるべきリソースである「SRリソース」を用いる。また、端末200は、或るサブフレーム内で応答信号を送信する場合には、応答信号の送信に用いるべきリソースである「ACK/NACKリソース」を用いる。よって、端末200は、或るサブフレーム内でSR及び応答信号を同時に送信する場合には、「SRリソース」及び「ACK/NACKリソース」の双方を用いる。 That is, terminal 200 transmits a signal (SR or response signal) to be transmitted in a certain subframe using a resource including a code resource corresponding to the signal. Specifically, when transmitting SR within a certain subframe, terminal 200 uses “SR resource” that is a resource to be used for transmission of SR. In addition, when transmitting a response signal within a certain subframe, terminal 200 uses “ACK / NACK resource” that is a resource to be used for transmitting the response signal. Therefore, terminal 200 uses both “SR resource” and “ACK / NACK resource” when transmitting SR and response signal simultaneously in a certain subframe.
 これにより、基地局100は、端末200からの信号がいずれの符号リソース(SRリソースのみ、ACK/NACKリソースのみ、又は、SRリソース及びACK/NACKリソースの双方)を用いて送信されたかを判定することにより、その信号の内容(SRのみ(又はSR+DTX)、応答信号のみ、又は、SR及び応答信号の双方)を特定することができる。すなわち、基地局100及び端末200では、端末200が或るサブフレーム内で利用可能なリソース(SRリソース及びACK/NACKリソース)において、SR及び応答信号の発生状況と、その状況で使用されるリソースとが対応付けられている。例えば、図7Bに示すSRと応答信号とが同時に発生する状況と、その状況で使用されるリソースとして第2のSRリソース及び第1のACK/NACKリソースと、が対応付けられている。よって、基地局100は、端末200からの信号の送信に用いられている符号リソースを判定することにより、端末200での信号の発生状況を把握することができる。 Thereby, base station 100 determines which code resource (only SR resource, only ACK / NACK resource, or both SR resource and ACK / NACK resource) is transmitted using signal from terminal 200. Thus, the content of the signal (SR only (or SR + DTX), response signal only, or both SR and response signal) can be specified. That is, in base station 100 and terminal 200, in the resources (SR resource and ACK / NACK resource) that terminal 200 can use in a certain subframe, the generation status of SR and response signals and the resources used in that status Are associated with each other. For example, the situation shown in FIG. 7B in which the SR and the response signal are generated simultaneously is associated with the second SR resource and the first ACK / NACK resource as resources used in the situation. Therefore, the base station 100 can grasp the signal generation status at the terminal 200 by determining the code resource used for signal transmission from the terminal 200.
 このようにして、基地局100は、(SR+NACK)の状態と(SR+DTX)の状態とを区別して信号を受信することができる。つまり、基地局100は、端末200側における下り割当制御情報の受信成否を判別することができる。これにより、基地局100は、端末200側における下り割当制御情報の受信成否に応じて、下り回線データの再送制御(IR等)を効率良く行うことができる。 In this way, the base station 100 can receive a signal by distinguishing between the (SR + NACK) state and the (SR + DTX) state. That is, the base station 100 can determine whether or not reception of downlink allocation control information on the terminal 200 side is successful. Thereby, base station 100 can efficiently perform downlink data retransmission control (such as IR) in accordance with the success or failure of downlink allocation control information reception on terminal 200 side.
 このように、本実施の形態によれば、LTE-Aシステムにおいて、基地局が端末からの応答信号を受信すべきサブフレーム(すなわち、端末が下り割当制御情報を正しく受信できていれば応答信号を送信するサブフレーム)において、端末側でSRが発生した場合でも、基地局が端末側での下り割当制御情報の受信成否を判別することができ、再送効率を向上させることができる。 Thus, according to the present embodiment, in the LTE-A system, a subframe in which a base station should receive a response signal from a terminal (that is, a response signal if the terminal has correctly received downlink allocation control information). Even if SR occurs on the terminal side, the base station can determine whether or not reception of downlink allocation control information on the terminal side is successful, and retransmission efficiency can be improved.
 (実施の形態2)
 端末によっていずれの符号リソースが用いられているかを基地局側で判定する判定方法の1つとして、同期検波後の尤度に基づく判定方法(尤度判定)がある。具体的には、基地局は、まず、互いに異なる符号リソース(例えば、実施の形態1におけるSRリソース及びACK/NACKリソース)に割り当てられた信号をそれぞれ同期検波する。次いで、基地局は、端末が利用し得る符号リソースの組に対してそれぞれの信号を例えば最大比合成(MRC:Maximum Ratio Combining、MRC等化ともいう)等を用いて合成する。
(Embodiment 2)
As one of the determination methods for determining which code resource is used by the terminal on the base station side, there is a determination method (likelihood determination) based on the likelihood after synchronous detection. Specifically, the base station first performs synchronous detection on signals allocated to different code resources (for example, SR resource and ACK / NACK resource in Embodiment 1), respectively. Next, the base station combines each signal with a set of code resources that can be used by the terminal using, for example, maximum ratio combining (also referred to as MRC: Maximum Ratio Combining).
 そして、基地局は、各組の合成結果が応答信号の信号点とどの程度近いかを示す尤度(likelihood)を算出する。例えば、実施の形態1において、端末が利用できるSRリソース及びACK/NACKリソースの数がそれぞれ2つである状態1(図7A)で、基地局が、端末200でSR及び応答信号の両方が同時に発生した場合(図7B)と、端末200でSRのみが発生した場合(図7D)とを判別する場合について説明する。 Then, the base station calculates a likelihood indicating how close the combined result of each set is to the signal point of the response signal. For example, in the first embodiment, in the state 1 (FIG. 7A) in which the number of SR resources and ACK / NACK resources that each terminal can use is two, the base station and the terminal 200 both receive SR and response signals at the same time A case will be described in which a case where the error occurs (FIG. 7B) and a case where only SR occurs in the terminal 200 (FIG. 7D) are discriminated.
 この場合、基地局は、図10に示すように、各組の合成結果と最も近い応答信号の信号点(図10では位相点(1,0))とのユークリッド距離を求め、ユークリッド距離の逆数を尤度として算出する。そして、基地局は、尤度がより大きい方の組(つまり、ユークリッド距離がより短い方の組)の符号リソースを、端末によって用いられた符号リソースであると判定する。図10では、第1のACK/NACKリソース及び第2のSRリソースの組(SR+応答信号送信時(図7B))の方が、第1のSRリソース及び第2のSRリソースの組(SRのみ送信時(図7D))よりも尤度が大きい(ユークリッド距離が短い)。よって、図10では、基地局は、端末により第1のACK/NACKリソース及び第2のSRリソースの組が用いられていると判定する。 In this case, as shown in FIG. 10, the base station obtains the Euclidean distance between the combination result of each set and the signal point of the response signal that is closest (in FIG. 10, the phase point (1, 0)), and the reciprocal of the Euclidean distance. Is calculated as a likelihood. Then, the base station determines that the code resource of the group with the higher likelihood (that is, the group with the shorter Euclidean distance) is the code resource used by the terminal. In FIG. 10, a set of the first ACK / NACK resource and the second SR resource (when SR + response signal is transmitted (FIG. 7B)) is a set of the first SR resource and the second SR resource (only SR). Likelihood is larger than when transmitting (FIG. 7D) (Euclidean distance is short). Therefore, in FIG. 10, the base station determines that the set of the first ACK / NACK resource and the second SR resource is used by the terminal.
 以下、基地局における尤度判定についてより詳細に説明する。ここで、端末において、互いに異なる符号リソース(図7Aに示すSRリソース、及び、ACK/NACKリソース)にそれぞれ割り当てられる信号(SR又は応答信号)の信号点配置(コンスタレーション(constellation))として、例えば、図10に示すように、ACKが位相点(-1,0)に対応付けられ、NACKが位相点(1,0)に対応付けられる。 Hereinafter, the likelihood determination in the base station will be described in more detail. Here, in the terminal, as signal point arrangement (constellation) of signals (SR or response signals) respectively assigned to different code resources (SR resource and ACK / NACK resource shown in FIG. 7A), for example, As shown in FIG. 10, ACK is associated with the phase point (−1, 0), and NACK is associated with the phase point (1, 0).
 以下、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合(図7B)を一例として説明する。また、応答信号がNACKである場合について説明する。よって、図7Bに示すように、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、実施の形態1と同様、SRリソースのうち第2のSRリソースと、ACK/NACKリソースのうち第1のACK/NACKリソースとが用いられる。つまり、端末では、図10に示すように、第1のACK/NACKリソース及び第2のSRリソースにはNACK(位相点(1,0))が割り当てられる。 Hereinafter, a case where both SR and a response signal are simultaneously generated in a certain subframe (FIG. 7B) will be described as an example. A case where the response signal is NACK will be described. Therefore, as shown in FIG. 7B, when both SR and response signals occur simultaneously in a certain subframe, the second SR resource among the SR resources and the ACK / NACK, as in the first embodiment. Of the resources, the first ACK / NACK resource is used. That is, in the terminal, as shown in FIG. 10, NACK (phase point (1, 0)) is allocated to the first ACK / NACK resource and the second SR resource.
 よって、基地局では、図11A及び図11Bに示すように、第1のACK/NACKリソース及び第2のSRリソースでは、信号成分(図11に示す白丸)がNACKの位相点(1,0)(図11に示す黒丸)付近に現れる。なお、端末では第1のSRリソースには何も割り当てられないものの、図11Bに示すように、基地局では第1のSRリソースにノイズ成分が現れる。一般に、ノイズ成分は、NACKの位相点(1,0)(図11に示す黒丸)と離れた位置に現れる。 Therefore, in the base station, as shown in FIGS. 11A and 11B, in the first ACK / NACK resource and the second SR resource, the signal component (white circle shown in FIG. 11) is the NACK phase point (1, 0). Appears near (black circle shown in FIG. 11). Note that although nothing is assigned to the first SR resource in the terminal, a noise component appears in the first SR resource in the base station as shown in FIG. 11B. In general, the noise component appears at a position away from the NACK phase point (1, 0) (black circle shown in FIG. 11).
 そして、基地局は、まず、図11Aに示すように、第1のACK/NACKリソースに割り当てられた信号成分(図11Aでは位相点(1,0)付近)と、第2のSRリソースに割り当てられた信号成分(図11Aでは位相点(1,0)付近)とを合成する。これにより、図11Aに示すように、合成結果として位相点(1,0)付近の信号が得られる。同様にして、基地局は、図11Bに示すように、第1のSRリソースに存在するノイズ成分と、第2のSRリソースに割り当てられた信号成分(図11Bでは位相点(1,0)付近)とを合成する。これにより、図11Bに示すように、合成結果としては、位相点(1,0)から若干離れた信号が得られる。 Then, as shown in FIG. 11A, the base station first assigns the signal component assigned to the first ACK / NACK resource (near the phase point (1, 0) in FIG. 11A) and the second SR resource. The obtained signal components (in the vicinity of phase point (1, 0) in FIG. 11A) are synthesized. As a result, as shown in FIG. 11A, a signal near the phase point (1, 0) is obtained as a synthesis result. Similarly, the base station, as shown in FIG. 11B, the noise component present in the first SR resource and the signal component assigned to the second SR resource (in the vicinity of the phase point (1, 0) in FIG. 11B). ) And. As a result, as shown in FIG. 11B, a signal slightly separated from the phase point (1, 0) is obtained as a synthesis result.
 そして、基地局は、図11Aに示す合成結果と最も近いNACK(位相点(1,0))との間のユークリッド距離を用いて算出される尤度と、図11Bに示す合成結果と最も近いNACK(位相点(1,0))との間のユークリッド距離を用いて算出される尤度とを比較する。ただし、上述したように、ノイズ成分は、NACKの位相点(1,0)(図11に示す黒丸)と離れた位置に現れる可能性が高いので、図11A及び図11Bに示すように、図11Bに示す合成結果とNACKの位相点との間のユークリッド距離は、図11Aに示す合成結果とNACKの位相点との間のユークリッド距離よりも長くなる可能性が高い。 Then, the base station is closest to the likelihood calculated using the Euclidean distance between the combined result shown in FIG. 11A and the closest NACK (phase point (1, 0)) and the combined result shown in FIG. 11B. The likelihood calculated using the Euclidean distance to NACK (phase point (1, 0)) is compared. However, as described above, the noise component is likely to appear at a position distant from the NACK phase point (1, 0) (black circle shown in FIG. 11). Therefore, as shown in FIG. 11A and FIG. The Euclidean distance between the synthesis result shown in FIG. 11B and the NACK phase point is likely to be longer than the Euclidean distance between the synthesis result shown in FIG. 11A and the NACK phase point.
 よって、基地局は、図11Aに示す第1のACK/NACKリソース及び第2のSRリソースの組の方が、図11Bに示す第1のSRリソース及び第2のSRリソースの組よりも尤度が大きいので(ユークリッド距離が短いので)、端末により第1のACK/NACKリソース及び第2のSRリソースの組が用いられたと判定することができる。また、基地局は、図11Aに示す第1のACK/NACKリソース及び第2のSRリソースの組の合成結果が位相点(1,0)であるので、応答信号がNACKであると判定することができる。 Therefore, the base station is more likely to receive the first ACK / NACK resource and second SR resource set shown in FIG. 11A than the first SR resource and second SR resource set shown in FIG. 11B. Is large (because the Euclidean distance is short), it can be determined that the set of the first ACK / NACK resource and the second SR resource is used by the terminal. Also, the base station determines that the response signal is NACK because the combination result of the first ACK / NACK resource and second SR resource set shown in FIG. 11A is the phase point (1, 0). Can do.
 本実施の形態では、基地局において端末が用いたリソースの判定精度をさらに向上させるために、端末は、第1のSRリソース及び第2のSRリソースが用いられる場合(SRのみが発生した場合)の第2のSRリソースに割り当てられる信号と、第1のACK/NACKリソース及び第2のSRリソースが用いられる場合(SR及び応答信号が同時に発生した場合)の第2のSRリソースに割り当てられる信号とで、位相回転量を互いに異ならせる。 In the present embodiment, in order to further improve the determination accuracy of resources used by the terminal in the base station, the terminal uses the first SR resource and the second SR resource (when only SR occurs). A signal assigned to the second SR resource and a signal assigned to the second SR resource when the first ACK / NACK resource and the second SR resource are used (when the SR and the response signal occur simultaneously). Thus, the phase rotation amounts are different from each other.
 以下、本実施の形態について具体的に説明する。 Hereinafter, the present embodiment will be specifically described.
 本実施の形態に係る基地局300の構成を図12に示す。なお、図12において図4(実施の形態1)に示す基地局100と同一の構成部には同一符号を付し、説明を省略する。なお、ここでは、一例として、端末に対して2つのSRリソース(例えば、図6A)が予め通知されており、逆拡散部115-1、115-2及び相関処理部117-1、117-2が第1及び第2のSRリソースにそれぞれ対応付けられている場合について説明する。 FIG. 12 shows the configuration of base station 300 according to the present embodiment. In FIG. 12, the same components as those of base station 100 shown in FIG. 4 (Embodiment 1) are denoted by the same reference numerals, and description thereof is omitted. Here, as an example, two SR resources (for example, FIG. 6A) are notified in advance to the terminal, and despreading sections 115-1 and 115-2 and correlation processing sections 117-1 and 117-2. Is associated with the first and second SR resources, respectively.
 図12に示す基地局300において、第2のSRリソースに対応する相関処理部117-2は、逆拡散後の信号と前記ZAC系列との相関値(データ部分及び参照信号部分)に関する情報を、判定部318及び位相回転部301に出力する。 In base station 300 shown in FIG. 12, correlation processing section 117-2 corresponding to the second SR resource includes information on correlation values (data part and reference signal part) between the despread signal and the ZAC sequence. The data is output to the determination unit 318 and the phase rotation unit 301.
 位相回転部301は、相関処理部117-2から入力される信号のデータ部分(すなわち、図1に示すS~S)に対してのみ、予め設定された角度(例えば-90度)だけ位相を回転する(つまり、データ部分にexp(-jπ/2)を乗算する)。なお、位相回転部301に予め設定される角度は、後述する端末400の位相回転部401(図13)に予め設定される角度(90度)と逆方向であり同一の大きさの角度である。なお、位相回転部301は、相関処理部117-2から入力される信号の参照信号部分(すなわち、図1に示すR~R)の位相を回転しない。そして、位相回転部301は、データ部分の位相が回転された信号(データ部分にexp(-jπ/2)が乗算された信号)を判定部318に出力する。 The phase rotation unit 301 only applies a preset angle (eg, −90 degrees) only to the data portion of the signal input from the correlation processing unit 117-2 (ie, S 0 to S 3 shown in FIG. 1). Rotate the phase (ie, multiply the data part by exp (−jπ / 2)). Note that the angle set in advance in the phase rotation unit 301 is opposite to the angle (90 degrees) set in advance in the phase rotation unit 401 (FIG. 13) of the terminal 400 described later, and has the same size. . Note that the phase rotation unit 301 does not rotate the phase of the reference signal portion (ie, R 0 to R 2 shown in FIG. 1) of the signal input from the correlation processing unit 117-2. Then, phase rotation section 301 outputs a signal obtained by rotating the phase of the data portion (a signal obtained by multiplying the data portion by exp (−jπ / 2)) to determination section 318.
 判定部318は、相関処理部117-1~117-n及び位相回転部301から入力される信号(相関値)に基づいて、SR及び応答信号が端末から送信されているか否かを判定する。例えば、判定部318は、第1のSRリソース及び第2のSRリソースの組、又は、第1のACK/NACKリソース及び第2のSRリソースの組のいずれが端末400によって用いられているかを判定する。 The determination unit 318 determines whether the SR and the response signal are transmitted from the terminal based on the signals (correlation values) input from the correlation processing units 117-1 to 117-n and the phase rotation unit 301. For example, the determination unit 318 determines which of the first SR resource and the second SR resource pair or the first ACK / NACK resource and the second SR resource pair is used by the terminal 400. To do.
 より詳細には、例えば、判定部318は、相関処理部117-1から入力される信号(第1のSRリソースに対応する相関値)と相関処理部117-2から入力される信号(第2のSRリソースに対応する相関値(データ部分の位相回転無し))とを、MRC等を用いて合成する。同様にして、判定部318は、相関処理部117-3から入力される信号(第1のACK/NACKリソースに対応する相関値)と位相回転部301から入力される信号(第2のSRリソースに対応する相関値(データ部分の位相回転有り))とを、MRC等を用いて合成する。 More specifically, for example, the determination unit 318 includes a signal input from the correlation processing unit 117-1 (correlation value corresponding to the first SR resource) and a signal input from the correlation processing unit 117-2 (second The correlation values corresponding to the SR resources (without phase rotation of the data portion) are combined using MRC or the like. Similarly, determination section 318 includes a signal input from correlation processing section 117-3 (correlation value corresponding to the first ACK / NACK resource) and a signal input from phase rotation section 301 (second SR resource). And a correlation value corresponding to (with phase rotation of the data portion) are synthesized using MRC or the like.
 そして、判定部318は、第1のSRリソース及び第2のSRリソースの組の合成結果、及び、第1のACK/NACKリソース及び第2のSRリソースの組の合成結果のそれぞれと、各合成結果から最も近い、応答信号の信号点との間のユークリッド距離を求める。また、判定部318は、求めた各組のユークリッド距離を用いて各組の合成結果が応答信号の信号点とどの程度近いかを示す尤度(likelihood)を算出する。例えば、判定部318は、各組のユークリッド距離の逆数を各組の尤度とする。すなわち、ユークリッド距離が短いほど尤度はより大きくなる。 Then, the determination unit 318 includes a combination result of the first SR resource and the second SR resource, a combination result of the first ACK / NACK resource and the second SR resource, and each combination. The closest Euclidean distance from the signal point of the response signal is obtained from the result. In addition, the determination unit 318 calculates a likelihood (likelihood) indicating how close the synthesis result of each set is to the signal point of the response signal using the obtained Euclidean distance of each set. For example, the determination unit 318 uses the reciprocal of each set of Euclidean distances as the likelihood of each set. That is, the likelihood becomes larger as the Euclidean distance is shorter.
 そして、判定部318は、各組の尤度を比較して、尤度がより大きい組を、端末400によって用いられている組であると判定する。具体的には、第1のSRリソース及び第2のSRリソースの組の方が第1のACK/NACKリソース及び第2のSRリソースの組よりも尤度が大きい場合(応答信号の信号点とのユークリッド距離が短い場合)には、判定部318は、端末400により第1のSRリソース及び第2のSRリソースの組が用いられていると判定する。この場合、判定部318は、端末400からSRのみが送信されていると判定するため、上り回線リソース割当制御部(図示せず)に対してSRを出力し、再送制御信号生成部119に対してDTXを出力する。 Then, the determination unit 318 compares the likelihoods of the respective groups, and determines that the group having the higher likelihood is a group used by the terminal 400. Specifically, when the set of the first SR resource and the second SR resource has a higher likelihood than the set of the first ACK / NACK resource and the second SR resource (the signal point of the response signal and When the Euclidean distance is short), the determination unit 318 determines that the terminal 400 uses the set of the first SR resource and the second SR resource. In this case, since determination section 318 determines that only SR is transmitted from terminal 400, SR is output to an uplink resource allocation control section (not shown), and retransmission control signal generation section 119 is transmitted. To output DTX.
 一方、第1のACK/NACKリソース及び第2のSRリソースの組の方が第1のSRリソース及び第2のSRリソースの組よりも尤度が大きい場合(応答信号の信号点とのユークリッド距離が短い場合)には、判定部318は、端末400により第1のACK/NACKリソース及び第2のSRリソースの組が用いられていると判定する。この場合、判定部318は、端末400からSR及び応答信号が送信されていると判定するため、上り回線リソース割当制御部(図示せず)に対してSRを出力し、再送制御信号生成部119に対して応答信号(ACK又はNACK)を出力する。 On the other hand, when the set of the first ACK / NACK resource and the second SR resource has a higher likelihood than the set of the first SR resource and the second SR resource (Euclidean distance from the signal point of the response signal) Is short), the determination unit 318 determines that the terminal 400 is using a combination of the first ACK / NACK resource and the second SR resource. In this case, determination section 318 outputs SR to an uplink resource allocation control section (not shown) and determines retransmission control signal generation section 119 in order to determine that SR and a response signal are transmitted from terminal 400. A response signal (ACK or NACK) is output.
 次に、本実施の形態に係る端末400の構成を図13に示す。なお、図13において図5(実施の形態1)に示す端末200と同一の構成部には同一符号を付し、説明を省略する。なお、ここでは、一例として、端末400に対して2つのSRリソースが予め通知されており、上り制御チャネル信号生成部213-1に対しては第1のSRリソース又は第1のACK/NACKリソースが対応付けられており、上り制御チャネル信号生成部213-2に対しては第2のSRリソースが対応付けられている場合について説明する。 Next, FIG. 13 shows the configuration of terminal 400 according to the present embodiment. In FIG. 13, the same components as those of terminal 200 shown in FIG. 5 (Embodiment 1) are denoted by the same reference numerals, and description thereof is omitted. Here, as an example, two SR resources are notified in advance to terminal 400, and first SR resource or first ACK / NACK resource is provided to uplink control channel signal generation section 213-1. Are associated with each other, and the second SR resource is associated with the uplink control channel signal generation section 213-2.
 図13に示す端末400において、制御部408は、上り回線データ生成部(図示せず)からSRのみを受け取った場合には、第1のSRリソースに対応する情報(ZAC系列、循環シフト量、周波数リソース情報、ウォルシュ系列及びDFT系列)を上り制御チャネル信号生成部213-1に出力し、第2のSRリソースに対応する情報(ZAC系列、循環シフト量、周波数リソース情報、ウォルシュ系列及びDFT系列)を上り制御チャネル信号生成部213-2に出力する。また、制御部408は、位相回転部401に対して信号の位相を回転させない指示信号を出力する。 In the terminal 400 shown in FIG. 13, when the control unit 408 receives only SR from the uplink data generation unit (not shown), information corresponding to the first SR resource (ZAC sequence, cyclic shift amount, Frequency resource information, Walsh sequence and DFT sequence) are output to uplink control channel signal generation section 213-1 and information corresponding to the second SR resource (ZAC sequence, cyclic shift amount, frequency resource information, Walsh sequence and DFT sequence) ) To the uplink control channel signal generator 213-2. Further, the control unit 408 outputs an instruction signal that does not rotate the phase of the signal to the phase rotation unit 401.
 一方、制御部408は、上り回線データ生成部(図示せず)からSR及び応答信号を同時に受け取った場合には、第1のACK/NACKリソースに対応する情報(ZAC系列、循環シフト量、周波数リソース情報、ウォルシュ系列及びDFT系列)を上り制御チャネル信号生成部213-1に出力し、第2のSRリソースに対応する情報(ZAC系列、循環シフト量、周波数リソース情報、ウォルシュ系列及びDFT系列)を上り制御チャネル信号生成部213-2に出力する。また、制御部408は、位相回転部401に対して、信号の位相を予め設定された角度(例えば、90度)だけ回転させる(信号にexp(jπ/2)を乗算させる)指示信号を出力する。 On the other hand, when the control unit 408 simultaneously receives the SR and the response signal from the uplink data generation unit (not shown), the information corresponding to the first ACK / NACK resource (ZAC sequence, cyclic shift amount, frequency) (Resource information, Walsh sequence and DFT sequence) are output to uplink control channel signal generation section 213-1 and information corresponding to the second SR resource (ZAC sequence, cyclic shift amount, frequency resource information, Walsh sequence and DFT sequence) Is output to the uplink control channel signal generation section 213-2. In addition, the control unit 408 outputs an instruction signal for rotating the phase of the signal by a preset angle (for example, 90 degrees) to the phase rotation unit 401 (multiplying the signal by exp (jπ / 2)). To do.
 応答信号生成部212は、生成した応答信号、又は、NACK(制御部408からの指示がある場合)を、上り制御チャネル信号生成部213-1の変調部221及び位相回転部401に出力する。 The response signal generation unit 212 outputs the generated response signal or NACK (when there is an instruction from the control unit 408) to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1.
 位相回転部401は、制御部408からの指示信号に従って、応答信号生成部212から入力される信号の位相を回転するか否かを決定する。具体的には、位相回転部401は、信号の位相を回転させる指示信号が制御部408から入力される場合には、信号の位相を90度回転する(信号にexp(jπ/2)を乗算する)。一方、位相回転部401は、信号の位相を回転させない指示信号が制御部408から入力される場合には、信号の位相を回転させない(信号にexp(jπ/2)を乗算しない)。そして、位相回転部401は、指示信号に応じた位相回転処理後の信号(つまり、位相回転有りの信号又は位相回転無しの信号)を、第2のSRリソースに対応する上り制御チャネル信号生成部213-2の変調部221に出力する。 The phase rotation unit 401 determines whether to rotate the phase of the signal input from the response signal generation unit 212 according to the instruction signal from the control unit 408. Specifically, when an instruction signal for rotating the phase of the signal is input from the control unit 408, the phase rotation unit 401 rotates the phase of the signal by 90 degrees (multiply the signal by exp (jπ / 2). To do). On the other hand, when an instruction signal that does not rotate the phase of the signal is input from the control unit 408, the phase rotation unit 401 does not rotate the phase of the signal (does not multiply the signal by exp (jπ / 2)). Then, the phase rotation unit 401 uses the signal after phase rotation processing according to the instruction signal (that is, a signal with phase rotation or a signal without phase rotation) as an uplink control channel signal generation unit corresponding to the second SR resource. The data is output to the modulation unit 221 of 213-2.
 次に、端末400(図13)の動作について説明する。以下の説明では、実施の形態1の図6Aに示すように、基地局300(図12)は、端末400に対して、図2に示す上り単位バンド(端末400に設定された上り単位バンド)内において、2つのSRリソースに関する情報を予め通知する。つまり、端末400の制御部408は、基地局300から通知された2つのSRリソースに関する情報を保持している。また、端末400では、自機が受信した下り割当制御情報が占有していたCCEに対応付けられた1つ又は2つのACK/NACKリソース(図7A又は図8A)を特定する。 Next, the operation of the terminal 400 (FIG. 13) will be described. In the following description, as shown in FIG. 6A of the first embodiment, base station 300 (FIG. 12) transmits, to terminal 400, the uplink unit band shown in FIG. 2 (uplink unit band set in terminal 400). The information regarding the two SR resources is notified in advance. That is, the control unit 408 of the terminal 400 holds information regarding the two SR resources notified from the base station 300. In addition, terminal 400 identifies one or two ACK / NACK resources (FIG. 7A or FIG. 8A) associated with the CCE occupied by the downlink allocation control information received by the own device.
 以下、一例として、端末400で使用できるSRリソース及びACK/NACKリソースがそれぞれ2つである場合(図7A)の、或るサブフレームでのSRの発生状況及び応答信号の発生状況に応じた端末400における送信制御処理の詳細な動作について図14を用いて説明する。 Hereinafter, as an example, when there are two SR resources and ACK / NACK resources that can be used in terminal 400 (FIG. 7A), the terminal according to the SR generation status and the response signal generation status in a certain subframe The detailed operation of the transmission control process at 400 will be described with reference to FIG.
 なお、以下の説明では、位相回転部301及び位相回転部401に予め設定されている角度をそれぞれ-90度及び90度とする。すなわち、位相回転部301及び位相回転部401に予め設定されている、信号に乗算する値をそれぞれexp(-jπ/2)及びexp(jπ/2)とする。また、応答信号生成部212で生成される応答信号の信号点配置(constellation)として、ACKが位相点(-1,0)に対応付けられ、NACKが位相点(1,0)に対応付けられる。 In the following description, angles set in advance in the phase rotation unit 301 and the phase rotation unit 401 are set to −90 degrees and 90 degrees, respectively. In other words, values that are preset in the phase rotation unit 301 and the phase rotation unit 401 and are multiplied by the signal are expressed as exp (−jπ / 2) and exp (jπ / 2), respectively. Further, as a signal point constellation of the response signal generated by the response signal generation unit 212, ACK is associated with the phase point (-1, 0), and NACK is associated with the phase point (1, 0). .
 <端末400でSR及び応答信号の両方が同時に発生した場合>
 この場合、端末400は、実施の形態1(図7B)と同様、第1のACK/NACKリソース及び第2のSRリソースを用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末400の制御部408は、同一の応答信号を、第1のACK/NACKリソースを用いてアンテナ1から送信するとともに、第2のSRリソースを用いてアンテナ2から送信するように制御する。
<When both SR and response signal occur simultaneously in terminal 400>
In this case, terminal 400 transmits a response signal (“A / N”) for downlink data using the first ACK / NACK resource and the second SR resource, as in Embodiment 1 (FIG. 7B). To do. Specifically, control unit 408 of terminal 400 transmits the same response signal from antenna 1 using the first ACK / NACK resource, and transmits from antenna 2 using the second SR resource. To control.
 また、制御部408は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1の変調部221及び位相回転部401に出力するように指示する。 Further, the control unit 408 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1. To do.
 また、制御部408は、位相回転部401に対して、応答信号生成部212から入力された応答信号の位相を90度回転するように(応答信号にexp(jπ/2)を乗算するように)指示信号を出力する。 The control unit 408 also causes the phase rotation unit 401 to rotate the response signal input from the response signal generation unit 212 by 90 degrees (multiply the response signal by exp (jπ / 2). ) Output the instruction signal.
 そして、位相回転部401は、応答信号生成部212から入力される応答信号の位相を90度回転する(つまり、応答信号にexp(jπ/2)を乗算する)。 Then, the phase rotation unit 401 rotates the phase of the response signal input from the response signal generation unit 212 by 90 degrees (that is, the response signal is multiplied by exp (jπ / 2)).
 すなわち、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合(図14に示すSRと応答信号の同時送信時)には、図14に示すように、第1のACK/NACKリソースでは応答信号(「A/N」)の信号点配置として、ACKが位相点(-1,0)に対応付けられ、NACKが位相点(1,0)に対応付けられる。これに対して、図14に示すように、第2のSRリソースでは、応答信号(「A/N」)の信号点配置として、ACKが位相点(0,-j)に対応付けられ、NACKが位相点(0,j)に対応付けられる。つまり、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、端末400は、第1のACK/NACKリソースに割り当てられた応答信号のコンスタレーションに対して、第2のSRリソースに割り当てられた応答信号のコンスタレーションを90度回転させる。これにより、第1のACK/NACKリソースに割り当てられた応答信号のコンスタレーションと、第2のSRリソースに割り当てられた応答信号のコンスタレーションとは90度異なる。 That is, when both SR and response signal occur simultaneously in a certain subframe (when SR and response signal are simultaneously transmitted as shown in FIG. 14), as shown in FIG. 14, the first ACK / NACK resource Then, as the signal point arrangement of the response signal (“A / N”), ACK is associated with the phase point (−1, 0), and NACK is associated with the phase point (1, 0). On the other hand, as shown in FIG. 14, in the second SR resource, ACK is associated with the phase point (0, −j) as the signal point arrangement of the response signal (“A / N”), and NACK Is associated with the phase point (0, j). That is, when both SR and a response signal occur simultaneously in a certain subframe, terminal 400 performs the second SR with respect to the constellation of the response signal allocated to the first ACK / NACK resource. The response signal constellation assigned to the resource is rotated 90 degrees. As a result, the constellation of the response signal allocated to the first ACK / NACK resource is different from the constellation of the response signal allocated to the second SR resource by 90 degrees.
 ただし、端末400は、位相回転部401において応答信号のみの位相を回転し、参照信号(図14ではRS)の位相に回転を与えない。よって、図14に示すように、第1のACK/NACKリソース及び第2のSRリソースでそれぞれ送信される参照信号(RS)は、同一の位相点(1,0)に対応付けられている。 However, the terminal 400 rotates only the phase of the response signal in the phase rotation unit 401 and does not rotate the phase of the reference signal (RS in FIG. 14). Therefore, as shown in FIG. 14, the reference signal (RS) transmitted by each of the first ACK / NACK resource and the second SR resource is associated with the same phase point (1, 0).
 <端末400で応答信号のみが発生した場合>
 この場合、端末400は、実施の形態1(図7C)と同様、第1のACK/NACKリソース及び第2のACK/NACKリソースを用いて、下り回線データに対する応答信号(「A/N」)を送信する。具体的には、端末400の制御部408は、同一の応答信号を、第1のACK/NACKリソースを用いてアンテナ1から送信するとともに、第2のACK/NACKリソースを用いてアンテナ2から送信するように制御する。
<When only a response signal is generated in terminal 400>
In this case, terminal 400 uses the first ACK / NACK resource and the second ACK / NACK resource as in Embodiment 1 (FIG. 7C) to respond to the downlink data (“A / N”). Send. Specifically, control section 408 of terminal 400 transmits the same response signal from antenna 1 using the first ACK / NACK resource, and transmits from antenna 2 using the second ACK / NACK resource. Control to do.
 また、制御部408は、応答信号生成部212に対して、CRC部211から入力される応答信号を上り制御チャネル信号生成部213-1の変調部221及び位相回転部401に出力するように指示する。 Further, the control unit 408 instructs the response signal generation unit 212 to output the response signal input from the CRC unit 211 to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1. To do.
 また、制御部408は、位相回転部401に対して、応答信号生成部212から入力された応答信号の位相を回転しないように(応答信号にexp(jπ/2)を乗算しないように)指示信号を出力する。 Further, the control unit 408 instructs the phase rotation unit 401 not to rotate the phase of the response signal input from the response signal generation unit 212 (do not multiply the response signal by exp (jπ / 2)). Output a signal.
 そして、位相回転部401は、応答信号生成部212から入力される応答信号の位相を回転せずにそのまま上り制御チャネル信号生成部213-2の変調部221に出力する。 The phase rotation unit 401 outputs the response signal input from the response signal generation unit 212 to the modulation unit 221 of the uplink control channel signal generation unit 213-2 without rotating the phase of the response signal.
 すなわち、或るサブフレーム内で応答信号のみが発生した場合(図14に示す応答信号のみ送信時)には、図14に示すように、第1のACK/NACKリソースでは応答信号(「A/N」)の信号点配置として、ACKが位相点(-1,0)に対応付けられ、NACKが位相点(1,0)に対応付けられる。また、図14に示すように、第2のACK/NACKリソースでも応答信号(「A/N」)の信号点配置として、ACKが位相点(-1,0)に対応付けられ、NACKが位相点(1,0)に対応付けられる。つまり、或るサブフレーム内で応答信号のみが発生した場合には、第1のACK/NACKリソースに割り当てられた応答信号のコンスタレーションと、第2のACK/NACKリソースに割り当てられた応答信号のコンスタレーションとは同一になる。 That is, when only a response signal is generated in a certain subframe (when only the response signal shown in FIG. 14 is transmitted), as shown in FIG. 14, the response signal (“A / N ″), ACK is associated with the phase point (−1, 0), and NACK is associated with the phase point (1, 0). Also, as shown in FIG. 14, in the second ACK / NACK resource, ACK is associated with the phase point (−1, 0) as the signal point arrangement of the response signal (“A / N”), and NACK is the phase Corresponding to the point (1, 0). That is, when only a response signal occurs in a certain subframe, the constellation of the response signal assigned to the first ACK / NACK resource and the response signal assigned to the second ACK / NACK resource The constellation is the same.
 <端末400でSRのみが発生した場合>
 この場合、端末400は、実施の形態1(図7D)と同様、第1のSRリソース及び第2のSRリソースを用いて、「NACK」と同一の位相点を用いてSRを送信する。具体的には、端末400の制御部408は、同一のSR(NACK)を、第1のSRリソースを用いてアンテナ1から送信するとともに、第2のSRリソースを用いてアンテナ2から送信するように制御する。
<When only SR occurs in terminal 400>
In this case, terminal 400 transmits the SR using the same phase point as “NACK” using the first SR resource and the second SR resource, as in Embodiment 1 (FIG. 7D). Specifically, control unit 408 of terminal 400 transmits the same SR (NACK) from antenna 1 using the first SR resource and transmits from antenna 2 using the second SR resource. To control.
 つまり、制御部408は、応答信号生成部212に対して、「NACK」を上り制御チャネル信号生成部213-1の変調部221及び位相回転部401に出力するように指示する。 That is, the control unit 408 instructs the response signal generation unit 212 to output “NACK” to the modulation unit 221 and the phase rotation unit 401 of the uplink control channel signal generation unit 213-1.
 また、制御部408は、位相回転部401に対して、応答信号生成部212から入力された信号(NACK)の位相を90度回転しないように(信号(NACK)にexp(jπ/2)を乗算しないように)指示信号を出力する。 The control unit 408 also sets exp (jπ / 2) to the signal (NACK) so that the phase of the signal (NACK) input from the response signal generation unit 212 is not rotated by 90 degrees with respect to the phase rotation unit 401. Output instruction signal (so as not to multiply).
 そして、位相回転部401は、応答信号生成部212から入力される信号(NACK)の位相を回転せずに、そのまま上り制御チャネル信号生成部213-2に出力する。 Then, the phase rotation unit 401 outputs the signal (NACK) input from the response signal generation unit 212 as it is to the uplink control channel signal generation unit 213-2 without rotating the phase.
 すなわち、或るサブフレーム内でSRのみが発生した場合(図14に示すSRのみ送信時)には、図14に示すように、第1のSRリソースでは信号(NACK)は位相点(1,0)に対応付けられる。また、図14に示すように、第2のSRリソースでも信号(NACK)は位相点(1,0)に対応付けられる。つまり、或るサブフレーム内でSRのみが発生した場合には、第1のSRリソースに割り当てられたSR(NACK)のコンスタレーションと、第2のSRリソースに割り当てられたSR(NACK)のコンスタレーションとは同一になる。 That is, when only SR occurs in a certain subframe (when only SR shown in FIG. 14 is transmitted), as shown in FIG. 14, the signal (NACK) is the phase point (1,1) in the first SR resource. 0). As shown in FIG. 14, the signal (NACK) is also associated with the phase point (1, 0) in the second SR resource. That is, when only SR occurs in a certain subframe, the constellation of SR (NACK) allocated to the first SR resource and the constellation of SR (NACK) allocated to the second SR resource Is the same.
 <端末400でSR及び応答信号のいずれも発生しない場合(図示せず)>
 この場合、端末400は、PUCCHリソースにおけるSR及び応答信号の送信を行わない。
<When neither SR nor response signal is generated in terminal 400 (not shown)>
In this case, terminal 400 does not transmit the SR and response signal in the PUCCH resource.
 以上、SRの発生状況及び応答信号の発生状況に応じた端末400における送信制御処理の詳細な動作について説明した。 The detailed operation of the transmission control process in the terminal 400 according to the SR occurrence status and the response signal occurrence status has been described above.
 次に、本実施の形態に係る基地局300の動作について説明する。以下、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合(図14に示すSRと応答信号の同時送信時)を一例として説明する。また、応答信号がNACKである場合について説明する。 Next, the operation of base station 300 according to the present embodiment will be described. Hereinafter, a case where both SR and a response signal are generated at the same time in a certain subframe (during simultaneous transmission of SR and a response signal shown in FIG. 14) will be described as an example. A case where the response signal is NACK will be described.
 なお、或るサブフレーム内でSR及び応答信号の両方が同時に発生した場合には、実施の形態1で説明したように、SRリソースのうち少なくとも1つ以上のリソース(ここでは、第2のSRリソース)と、ACK/NACKリソースのうち少なくとも1つ以上のリソース(ここでは、第1のACK/NACKリソース)とが用いられる。つまり、端末400では、図14に示すように、第1のACK/NACKリソースにはNACK(位相点(1,0))が割り当てられ、第2のSRリソースにはNACK(位相点(0,j))が割り当てられる。なお、図15A及び図15Bでは、各リソースに割り当てられた信号のデータ部分及び参照信号部分のうち、データ部分の成分のみを示す。 If both SR and response signals occur simultaneously in a certain subframe, as described in the first embodiment, at least one of the SR resources (here, the second SR) Resource) and at least one of the ACK / NACK resources (here, the first ACK / NACK resource) is used. That is, in terminal 400, as shown in FIG. 14, NACK (phase point (1, 0)) is assigned to the first ACK / NACK resource, and NACK (phase point (0, 0, 0)) is assigned to the second SR resource. j)) is assigned. 15A and 15B show only the components of the data portion of the data portion and the reference signal portion of the signal allocated to each resource.
 基地局300では、図15Aに示すように、第1のACK/NACKリソースに割り当てられた信号成分(図15Aに示す第1のACK/NACKリソース内の白丸)がNACKの位相点(1,0)(図15Aに示す第1のACK/NACKリソース内の黒丸)付近に現れ、第2のSRリソースに割り当てられた信号成分(図15Aに示す第2のSRリソース内の白丸)がNACKの位相点(0,j)(図15Aに示す第2のSRリソース内の黒丸)付近に現れる。なお、端末400では、第1のSRリソースには何も割り当てられないものの、図15Bに示すように、基地局300では第1のSRリソースにノイズ成分が現れる。一般に、ノイズ成分は、NACKの位相点(1,0)(図15Bに示す第1のSRリソース内の黒丸)と離れた位置に現れる。 In base station 300, as shown in FIG. 15A, the signal component assigned to the first ACK / NACK resource (the white circle in the first ACK / NACK resource shown in FIG. 15A) is the NACK phase point (1,0). ) (Black circle in the first ACK / NACK resource shown in FIG. 15A) and the signal component assigned to the second SR resource (white circle in the second SR resource shown in FIG. 15A) is the phase of NACK It appears near the point (0, j) (black circle in the second SR resource shown in FIG. 15A). In terminal 400, nothing is assigned to the first SR resource, but as shown in FIG. 15B, in base station 300, a noise component appears in the first SR resource. In general, the noise component appears at a position away from the NACK phase point (1, 0) (black circle in the first SR resource shown in FIG. 15B).
 基地局300の位相回転部301は、第1のACK/NACKリソース及び第2のSRリソースの組に対する尤度を求める際には、図15Aに示すように、第2のSRリソースで得られる信号成分(図15Aの第2のSRリソースにおけるNACKの位相点(0、j)付近)の位相を-90度回転する(相関値のデータ部分にexp(-jπ/2)を乗算する)。これにより、図15Aの第2のSRリソースに示すように、位相回転後には信号成分は位相点(1,0)付近となる。 When the phase rotation unit 301 of the base station 300 obtains the likelihood for the set of the first ACK / NACK resource and the second SR resource, as shown in FIG. 15A, the signal obtained with the second SR resource The phase of the component (near the NACK phase point (0, j) in the second SR resource in FIG. 15A) is rotated by −90 degrees (the data portion of the correlation value is multiplied by exp (−jπ / 2)). As a result, as shown in the second SR resource of FIG. 15A, the signal component is in the vicinity of the phase point (1, 0) after the phase rotation.
 次いで、判定部318は、まず、図15Aに示すように、第1のACK/NACKリソースに割り当てられた信号成分(図15Aでは位相点(1,0)付近)と、位相回転部301から入力される信号成分(つまり、第2のSRリソースに割り当てられた信号成分が-90度回転した信号成分(信号成分にexp(-jπ/2)を乗算した結果))とを合成する。これにより、図15Aに示すように、合成結果として位相点(1,0)付近の信号が得られる。 Next, as illustrated in FIG. 15A, the determination unit 318 first inputs a signal component assigned to the first ACK / NACK resource (in the vicinity of the phase point (1, 0) in FIG. 15A) and the phase rotation unit 301. (That is, a signal component obtained by rotating the signal component allocated to the second SR resource by −90 degrees (a result obtained by multiplying the signal component by exp (−jπ / 2))). As a result, as shown in FIG. 15A, a signal near the phase point (1, 0) is obtained as a synthesis result.
 同様に、判定部318は、第1のSRリソース及び第2のSRリソースの組に対する尤度を求める際には、図15Bに示すように、第1のSRリソースに存在する成分(図15Bではノイズ成分)と、第2のSRリソースに割り当てられた信号成分(図15Bでは位相点(0,j)付近)とを合成する。これにより、図15Bに示すように、合成結果としては、位相点(0,j)付近の信号が得られる。 Similarly, when determining the likelihood for the set of the first SR resource and the second SR resource, the determination unit 318, as shown in FIG. 15B, the components present in the first SR resource (in FIG. 15B, Noise component) and the signal component assigned to the second SR resource (in the vicinity of the phase point (0, j) in FIG. 15B) are combined. As a result, as shown in FIG. 15B, a signal near the phase point (0, j) is obtained as a synthesis result.
 次いで、判定部318は、図15Aに示す合成後の信号成分(合成結果)とNACK(位相点(1,0))との間のユークリッド距離を用いて算出される尤度と、図15Bに示す信号成分(合成結果)とNACK(位相点(1,0))との間のユークリッド距離を用いて算出される尤度とを比較する。よって、判定部318は、図15Aに示す第1のACK/NACKリソース及び第2のSRリソースの組の方が、図15Bに示す第1のSRリソース及び第2のSRリソースの組よりも尤度が大きいので(ユークリッド距離が短いので)、端末400により第1のACK/NACKリソース及び第2のSRリソースの組が用いられたと判定する。また、判定部318は、第1のACK/NACKリソース及び第2のSRリソースの組の合成結果が位相点(1,0)付近であるので、応答信号がNACKであると判定する。 Next, the determining unit 318 calculates the likelihood calculated using the Euclidean distance between the combined signal component (combined result) and NACK (phase point (1, 0)) shown in FIG. 15A, and FIG. The likelihood calculated using the Euclidean distance between the indicated signal component (synthesis result) and NACK (phase point (1, 0)) is compared. Therefore, the determination unit 318 is more likely to use the first ACK / NACK resource and second SR resource set shown in FIG. 15A than the first SR resource and second SR resource set shown in FIG. 15B. Since the degree is large (because the Euclidean distance is short), it is determined by the terminal 400 that the set of the first ACK / NACK resource and the second SR resource is used. Also, the determination unit 318 determines that the response signal is NACK because the combination result of the first ACK / NACK resource and second SR resource combination is near the phase point (1, 0).
 このようにして、端末400は、或るサブフレーム内にSRと応答信号とが同時に発生した場合に、第1のACK/NACKリソースに割り当てられる信号のコンスタレーションに対して、第2のSRリソースに割り当てられる信号のコンスタレーションを90度回転させる(信号にexp(jπ/2)を乗算する)。つまり、端末400は、図14に示すように、或るサブフレーム内にSRと応答信号とが同時に発生した場合における第1のACK/NACKリソースに割り当てられる信号のコンスタレーションと第2のSRリソースに割り当てられる信号のコンスタレーションとを異ならせる。 In this way, when the SR and the response signal are simultaneously generated in a certain subframe, the terminal 400 performs the second SR resource for the signal constellation allocated to the first ACK / NACK resource. The signal constellation assigned to is rotated 90 degrees (the signal is multiplied by exp (jπ / 2)). That is, terminal 400, as shown in FIG. 14, constellation of a signal assigned to the first ACK / NACK resource and the second SR resource when SR and the response signal are simultaneously generated in a certain subframe. Different from the constellation of the signal assigned to.
 一方、端末400は、図14に示すように、或るサブフレーム内に応答信号のみが発生した場合及びSRのみが発生した場合における、SRリソースに割り当てられる信号のコンスタレーション及びACK/NACKリソースに割り当てられる信号のコンスタレーションを同一にする。つまり、端末400は、図14に示すように、或るサブフレーム内に応答信号のみが発生した場合及びSRのみが発生した場合には、第2のSRリソースに割り当てられる信号のコンスタレーションを変化させない。 On the other hand, as shown in FIG. 14, terminal 400 uses the constellation of signals allocated to SR resources and ACK / NACK resources when only a response signal is generated within a certain subframe and when only SR is generated. Make the constellation of the assigned signals the same. That is, as shown in FIG. 14, terminal 400 changes the constellation of the signal allocated to the second SR resource when only a response signal is generated in a certain subframe or only SR is generated. I won't let you.
 つまり、端末400では、同一サブフレーム内でSRと応答信号とが同時に発生したか否かによって、第2のSRリソースに割り当てられる信号(SR又は応答信号)の位相回転量を変化させる。 That is, terminal 400 changes the phase rotation amount of the signal (SR or response signal) allocated to the second SR resource depending on whether SR and the response signal are generated simultaneously in the same subframe.
 換言すると、端末400は、或るサブフレーム内にSRと応答信号とが同時に発生した場合における第1のACK/NACKリソースに割り当てられる信号が取り得る位相点(図14ではACK(-1,0)及びNACK(1,0))と第2のSRリソースに割り当てられる信号が取り得る位相点(図14ではACK(0,-j)及びNACK(0,j))との間の位相差(図14では90度)と、或るサブフレーム内にSR(又は応答信号)のみが発生した場合における各リソースに割り当てられる信号が取り得る位相点(図14ではACK(-1,0)及びNACK(1,0))間の位相差(図14では0度)と、を互いに異ならせる。 In other words, terminal 400 has a phase point that can be taken by a signal assigned to the first ACK / NACK resource when SR and a response signal are simultaneously generated in a certain subframe (ACK (−1, 0 in FIG. 14)). ) And NACK (1, 0)) and a phase point (ACK (0, -j) and NACK (0, j) in FIG. 14) that can be taken by the signal allocated to the second SR resource ( (90 degrees in FIG. 14) and possible phase points (ACK (−1, 0) and NACK in FIG. 14) that can be taken by signals allocated to each resource when only SR (or response signal) occurs in a certain subframe. (1, 0)) (0 degree in FIG. 14) is made different from each other.
 具体的には、図14に示すように、端末400は、或るサブフレーム内にSRと応答信号とが同時に発生した場合に、第1のACK/NACKリソース及び第2のSRリソースで同一内容の信号(例えば、誤り有りを示すNACK)がそれぞれ配置される位相点(第1のACK/NACKリソースでは位相点(1,0)、第2のSRリソースでは位相点(0,j))間の位相差(90度(π/2ラジアン))と、或るサブフレーム内にSR(又は応答信号)のみが発生した場合に、各リソース(例えば、SRのみ発生時には第1のSRリソース及び第2のSRリソース)で同一内容の信号(例えば、NACK)がそれぞれ配置される位相点間の位相差(0度)と、を互いに異ならせる。なお、誤り無しを示すACKについても同様である。 Specifically, as illustrated in FIG. 14, when the SR and the response signal are simultaneously generated in a certain subframe, the terminal 400 has the same content in the first ACK / NACK resource and the second SR resource. Between the phase points (for example, NACK indicating that there is an error) (phase point (1, 0) for the first ACK / NACK resource, phase point (0, j) for the second SR resource) Phase difference (90 degrees (π / 2 radians)) and only SR (or response signal) occurs in a certain subframe, each resource (for example, when only SR occurs, the first SR resource and 2 SR resources) and the phase difference (0 degree) between the phase points where the signals having the same contents (for example, NACK) are respectively arranged are made different from each other. The same applies to ACK indicating no error.
 また、ここでは、端末400は、或るサブフレーム内にSRと応答信号とが同時に発生した場合に、第1のACK/NACKリソース及び第2のSRリソースで信号(ACK又はNACK)がそれぞれ配置される可能性のある位相点間の位相差と、或るサブフレーム内にSR(又は応答信号)のみが発生した場合に、各リソース(例えば、SRのみ発生時には第1のSRリソース及び第2のSRリソース)で信号(ACK又はNACK)が配置される可能性のある位相点間の位相差、との間の差が最大(ここでは90度(つまり、π/2ラジアン))となるようにする。 Also, here, terminal 400 arranges signals (ACK or NACK) in the first ACK / NACK resource and the second SR resource, respectively, when SR and a response signal are simultaneously generated in a certain subframe. When only a phase difference between phase points that may be generated and SR (or a response signal) occurs in a certain subframe, each resource (for example, the first SR resource and the second resource when only SR occurs) The difference between the phase difference between the phase points where the signal (ACK or NACK) may be arranged in the SR resource) is maximum (here, 90 degrees (that is, π / 2 radians)). To.
 そして、基地局300では、第1のACK/NACKリソース及び第2のSRリソースの組に対する尤度を求める際には第2のSRリソースのデータ部分に対して、端末400とは逆回転の位相回転を与えるのに対し、その他のリソースの組に対する尤度を求める際には第2のSRリソースのデータ部分に対して位相回転を与えない。つまり、基地局300は、端末400によって第1のACK/NACKリソース及び第2のSRリソースの組が用いられた場合(つまり、端末400で第2のSRリソースに対して位相回転が行われる場合)には、正しいリソースの組(つまり、第1のACK/NACKリソース及び第2のSRリソースの組)における第2のSRリソースに対して端末400とは逆の位相回転が行われるのに対して、誤ったリソースの組(つまり、その他のリソースの組)における第2のSRリソースに対して位相回転を行わない。同様にして、基地局300は、端末400によってその他のリソースの組が用いられた場合(つまり、端末400で第2のSRリソースに対して位相回転が行われない場合)には、正しいリソースの組(つまり、第1のACK/NACKリソース及び第2のSRリソースの組以外のリソースの組)における第2のSRリソースに対して位相回転が行われないのに対して、誤ったリソースの組(つまり、第1のACK/NACKリソース及び第2のSRリソースの組)における第2のSRリソースに対して位相回転を行う。 Then, in base station 300, when obtaining the likelihood for the set of the first ACK / NACK resource and the second SR resource, the phase of the reverse rotation with respect to terminal 400 is performed with respect to the data portion of the second SR resource. In contrast to the rotation, when the likelihood for the other set of resources is obtained, the phase rotation is not applied to the data portion of the second SR resource. That is, base station 300 uses a set of first ACK / NACK resource and second SR resource by terminal 400 (that is, when terminal 400 performs phase rotation on the second SR resource). ), The second SR resource in the correct resource set (that is, the first ACK / NACK resource and the second SR resource set) is rotated in the opposite phase to terminal 400. Thus, phase rotation is not performed on the second SR resource in the wrong resource set (that is, other resource set). Similarly, when the terminal 400 uses another set of resources (that is, when the terminal 400 does not perform phase rotation with respect to the second SR resource), the base station 300 determines the correct resource. While the phase rotation is not performed on the second SR resource in the set (that is, the set of resources other than the set of the first ACK / NACK resource and the second SR resource), the wrong set of resources Phase rotation is performed on the second SR resource in (that is, the set of the first ACK / NACK resource and the second SR resource).
 よって、基地局300では、第1のACK/NACKリソース及び第2のSRリソースの組、及び、その他のリソースの組のうち、誤ったリソースの組におけるMRC後の合成結果と、応答信号の信号点との間には位相回転量に相当する分の位相差が生じる。例えば、図15Aでは、第1のACK/NACKリソース及び第2のSRリソースの組(ここでは正しいリソースの組)におけるMRC後の合成結果(合成後の位相点(1,0)付近)は応答信号の信号点(1,0)付近に位置する。これに対して、図15Bでは、第1のSRリソース及び第2のSRリソースの組(ここでは誤ったリソースの組)におけるMRC後の合成結果(合成後の位相点(0,j)付近)は、応答信号の信号点(1,0)との位相差がほぼ90度(π/2ラジアン)(端末400で与えられる位相回転量)だけ離れた位置となる。 Therefore, in base station 300, the combination result after MRC in the wrong resource set of the first ACK / NACK resource and second SR resource set and other resource sets, and the signal of the response signal A phase difference corresponding to the amount of phase rotation occurs between the points. For example, in FIG. 15A, the combination result after MRC (in the vicinity of the combined phase point (1, 0)) in the first ACK / NACK resource and second SR resource set (here, the correct resource set) is the response. It is located near the signal point (1,0) of the signal. On the other hand, in FIG. 15B, the combination result after MRC in the set of the first SR resource and the second SR resource (here, the incorrect set of resources) (near the phase point (0, j) after the combination) Is a position where the phase difference from the signal point (1, 0) of the response signal is approximately 90 degrees (π / 2 radians) (the amount of phase rotation given by the terminal 400).
 つまり、基地局300では、第1のACK/NACKリソース及び第2のSRリソースの組、及び、その他のリソースの組うち、誤ったリソースの組(つまり、端末400によって用いられていないリソースの組)の合成結果は、応答信号の信号点から大きく離れる可能性が高くなる。 That is, in base station 300, among the first ACK / NACK resource and second SR resource sets and other resource sets, an incorrect resource set (that is, a resource set not used by terminal 400). ) Is likely to be far away from the signal point of the response signal.
 これにより、基地局300は、誤ったリソースの組(例えば、図15A及び図15Bでは、図15Bに示す第1のSRリソース及び第2のSRリソースの組)に基づいて算出される尤度は、正しいリソースの組(例えば、図15A及び図15Bでは、図15Aに示す第1のACK/NACKリソース及び第2のSRリソースの組)に基づいて算出される尤度よりも大きく劣化する可能性が高い。例えば、図11B(第2のSRリソースで位相回転を行わない場合)と図15B(第2のSRリソースで位相回転を行う場合)とを比較すると、誤ったリソースの組(ここでは第1のSRリソース及び第2のSRリソースの組)での合成結果と応答信号の信号点との間のユークリッド距離は、図11Bよりも図15Bの方がより長くなる。つまり、図15Bにおける誤ったリソースの組の尤度は図11Bにおける誤ったリソースの組の尤度よりも大きく劣化する。すなわち、図15Aにおける正しいリソースの組の尤度と図15Bにおける誤ったリソースの組の尤度との差は、図11Aにおける正しいリソースの組の尤度と図11Bにおける誤ったリソースの組の尤度との差よりも大きくなる。 Thereby, the base station 300 has a likelihood calculated based on an incorrect resource set (for example, in FIG. 15A and FIG. 15B, the first SR resource and second SR resource set shown in FIG. 15B). There is a possibility of degrading much more than the likelihood calculated based on the correct resource set (for example, in FIGS. 15A and 15B, the first ACK / NACK resource and the second SR resource set shown in FIG. 15A). Is expensive. For example, comparing FIG. 11B (when phase rotation is not performed with the second SR resource) and FIG. 15B (when phase rotation is performed with the second SR resource), an incorrect resource set (here, the first In FIG. 15B, the Euclidean distance between the combination result in the combination of the SR resource and the second SR resource) and the signal point of the response signal is longer than that in FIG. 11B. That is, the likelihood of the wrong resource set in FIG. 15B is significantly degraded from the likelihood of the wrong resource set in FIG. 11B. That is, the difference between the likelihood of the correct resource set in FIG. 15A and the likelihood of the incorrect resource set in FIG. 15B is the likelihood of the correct resource set in FIG. 11A and the likelihood of the incorrect resource set in FIG. Greater than the difference in degrees.
 このように、基地局300では、正しいリソースの組と誤ったリソースの組との間で尤度の差を大きく異ならせることができる。このため、第1のACK/NACKリソース及び第2のSRリソースの組、及び、その他のリソースの組のいずれが端末400で用いられたかを判定する判定精度を向上させることができる。 Thus, in the base station 300, the difference in likelihood can be greatly different between the correct resource set and the incorrect resource set. For this reason, it is possible to improve the determination accuracy for determining which of the first ACK / NACK resource and second SR resource set and the other resource set is used by the terminal 400.
 このようにして、本実施の形態によれば、LTE-Aシステムにおいて、基地局が端末からの応答信号を受信すべきサブフレーム(すなわち、端末が下り割当制御情報を正しく受信できていれば応答信号を送信するサブフレーム)において、端末側でSRが発生した場合でも、基地局が、端末側での下り割当制御情報の受信成否を、より精度良く判別することができ、再送効率を向上させることができる。 Thus, according to the present embodiment, in the LTE-A system, a subframe in which a base station should receive a response signal from a terminal (that is, a response if the terminal has correctly received downlink allocation control information). Signal transmission subframe), even if SR occurs on the terminal side, the base station can more accurately determine whether the terminal side has received downlink allocation control information or not, and improve retransmission efficiency. be able to.
 なお、本実施の形態における、端末側でSRと応答信号とが同時に発生した場合に第1のACK/NACKリソースのコンスタレーションに対して、第2のSRリソースのコンスタレーションを90度回転(位相回転)させる動作、すなわち、第2のSRリソースの信号にexp(jπ/2)=jを乗算する動作については、exp(jπ/2)をスクランブル符号と見なし、スクランブルと称されることもある。これに伴い、位相回転部401はスクランブル部と称されることもある。 In the present embodiment, when SR and a response signal are generated simultaneously on the terminal side, the constellation of the second SR resource is rotated 90 degrees (phase) with respect to the constellation of the first ACK / NACK resource. Rotation), that is, an operation of multiplying the signal of the second SR resource by exp (jπ / 2) = j, exp (jπ / 2) is regarded as a scramble code and may be referred to as scramble. . Accordingly, the phase rotation unit 401 may be referred to as a scramble unit.
 また、本実施の形態では、端末側でSRと応答信号とが同時に発生した場合に第1のACK/NACKリソースのコンスタレーションに対して、第2のSRリソースのコンスタレーションを90度回転させる場合について説明した。しかし、端末側で、第1のACK/NACKリソースのコンスタレーションに対して、第2のSRリソースのコンスタレーションを任意の角度θ(ラジアン)だけ回転させる(第2のSRリソースの信号にexp(jθ)を乗算する)場合にも、本実施の形態と同様の効果が得られる。例えば、代表的な回転角度としては、90度の他に-90度(すなわち、第2のSRリソースの信号にexp(-jπ/2)=-jを乗算する場合)、又は、180度(すなわち、第2のSRリソースの信号にexp(-jπ)=-1を乗算する場合)が挙げられる。 Also, in the present embodiment, when the SR and the response signal are simultaneously generated on the terminal side, the second SR resource constellation is rotated by 90 degrees with respect to the first ACK / NACK resource constellation. Explained. However, on the terminal side, the constellation of the second SR resource is rotated by an arbitrary angle θ (radian) with respect to the constellation of the first ACK / NACK resource (exp ( In the case of multiplying jθ), the same effect as this embodiment can be obtained. For example, as a typical rotation angle, in addition to 90 degrees, −90 degrees (that is, when multiplying the signal of the second SR resource by exp (−jπ / 2) = − j), or 180 degrees ( In other words, the signal of the second SR resource is multiplied by exp (−jπ) = − 1).
 また、本実施の形態では、端末側の処理の順番として、位相回転(すなわち、スクランブル符号であるexp(jπ/2)による乗算)を行った後に、1次拡散、2次拡散を行う場合について説明した。しかし、スクランブル処理、1次拡散及び2次拡散の処理の順番はこれに限定されない。すなわち、スクランブル処理、1次拡散及び2次拡散は全て乗算で表される処理であるため、例えば、応答信号に対し1次拡散を行った後、又は、2次拡散を行った後にスクランブル符号を乗算しても、本実施の形態と同一の結果が得られる。 Also, in the present embodiment, as the order of processing on the terminal side, after performing phase rotation (that is, multiplication by exp (jπ / 2) which is a scramble code), primary spreading and secondary spreading are performed. explained. However, the order of scramble processing, primary spreading, and secondary spreading is not limited to this. That is, since the scramble process, the first spread and the second spread are all represented by multiplication, for example, after the first spread is performed on the response signal or the second spread is performed, the scramble code is changed. Even if multiplication is performed, the same result as in the present embodiment can be obtained.
 以上、本発明の各実施の形態について説明した。 The embodiments of the present invention have been described above.
 なお、上記実施の形態では、PUCCHリソースにおける1次拡散にZAC系列を用い、2次拡散に直交符号系列としてウォルシュ系列とDFT系列の組を用いる場合について説明した。しかし、本発明では、1次拡散には、ZAC系列以外の、互いに異なる循環シフト量により互いに分離可能な系列を用いてもよい。例えば、GCL(Generalized Chirp like)系列、CAZAC(Constant Amplitude Zero Auto Correlation)系列、ZC(Zadoff-Chu)系列、M系列や直交ゴールド符号系列等のPN系列、又は、コンピュータによってランダムに生成された時間軸上での自己相関特性が急峻な系列等を1次拡散に用いてもよい。また、2次拡散には、互いに直交する系列、又は、互いにほぼ直交すると見なせる系列であればいかなる系列を直交符号系列として用いてもよい。以上の説明では、ZAC系列の循環シフト量と直交符号系列の系列番号とによって応答信号のリソース(例えば、PUCCHリソース)が定義されている。 In the above embodiment, a case has been described in which a ZAC sequence is used for primary spreading in a PUCCH resource, and a pair of Walsh sequence and DFT sequence is used as an orthogonal code sequence for secondary spreading. However, in the present invention, sequences that can be separated from each other by different cyclic shift amounts other than ZAC sequences may be used for the first spreading. For example, a GCL (Generalized Chirp like) sequence, a CAZAC (Constant Amplitude Zero Auto Correlation) sequence, a ZC (Zadoff-Chu) sequence, a PN sequence such as an M sequence or an orthogonal gold code sequence, or a time randomly generated by a computer A sequence having a sharp autocorrelation characteristic on the axis may be used for the first spreading. For secondary spreading, any sequence may be used as the orthogonal code sequence as long as the sequences are orthogonal to each other or sequences that can be regarded as being substantially orthogonal to each other. In the above description, the response signal resource (for example, PUCCH resource) is defined by the cyclic shift amount of the ZAC sequence and the sequence number of the orthogonal code sequence.
 また、上記実施の形態では、L1/L2CCHがN個(N>2)のCCEを占有している場合、端末(端末200、端末400)は任意の2つのCCEに関連付けられた2つのACK/NACKリソースを選択する場合について説明した。しかし、Indexが連続するCCEに関連付けられた2つのACK/NACKリソース間の符号間干渉が大きいことに着眼し、例えば、Indexが最小のCCEに関連付けられたACK/NACKリソース、及び、IndexがN/2のCCEに関連付けられたACK/NACKリソースの2つのACK/NACKリソースを用いてもよい。これにより、2つのACK/NACKリソース間の干渉を低減でき、応答信号の伝送性能を向上させることができる。 Further, in the above embodiment, when L1 / L2CCH occupies N (N> 2) CCEs, the terminal (terminal 200, terminal 400) has two ACK / links associated with any two CCEs. The case where the NACK resource is selected has been described. However, attention is paid to the fact that the intersymbol interference between two ACK / NACK resources associated with consecutive CCEs with an Index is large. For example, the ACK / NACK resource associated with the CCE with the smallest Index and the Index with N Two ACK / NACK resources of the ACK / NACK resource associated with the CCE / 2 may be used. Thereby, the interference between two ACK / NACK resources can be reduced, and the transmission performance of a response signal can be improved.
 また、上記実施の形態では、端末が送信する応答信号がBPSKで変調される場合について説明した。しかし、応答信号が、BPSKに限らず、例えば、QPSKで変調される場合にも本発明を適用することができる。例えば、上記実施の形態2では、或るサブフレーム内でSRと応答信号とが同時に発生した場合には、端末は、第2のSRリソースに割り当てられた応答信号の位相を45度だけ回転させる(応答信号にexp(jπ/4)を乗算する)ことにより、上記実施の形態と同様の効果を得ることができる。 In the above embodiment, the case where the response signal transmitted from the terminal is modulated by BPSK has been described. However, the present invention can be applied to a case where the response signal is not limited to BPSK but is modulated by QPSK, for example. For example, in the second embodiment, when an SR and a response signal occur simultaneously in a certain subframe, the terminal rotates the phase of the response signal allocated to the second SR resource by 45 degrees. By multiplying the response signal by exp (jπ / 4), the same effect as in the above embodiment can be obtained.
 また、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。 In the above embodiment, the antenna is described as an antenna. However, the present invention can be similarly applied to an antenna port.
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in 3GPP LTE, it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2010年2月12日出願の特願2010-029051の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-029051 filed on February 12, 2010 is incorporated herein by reference.
 本発明は、移動体通信システム等に適用することができる。 The present invention can be applied to a mobile communication system or the like.
 100,300 基地局
 200,400 端末
 101,208,408 制御部
 102 制御情報生成部
 103,105 符号化部
 104,107,221 変調部
 106 データ送信制御部
 108 マッピング部
 109,223,226 IFFT部
 110,224,227 CP付加部
 111,214 無線送信部
 112,201 無線受信部
 113,202 CP除去部
 114 PUCCH抽出部
 115 逆拡散部
 116 系列制御部
 117 相関処理部
 118,207,318 判定部
 119 再送制御信号生成部
 203 FFT部
 204 抽出部
 205,209 復調部
 206,210 復号部
 211 CRC部
 212 応答信号生成部
 213 上り制御チャネル信号生成部
 222,225,228 拡散部
 229 多重部
 301,401 位相回転部
100, 300 Base station 200, 400 Terminal 101, 208, 408 Control unit 102 Control information generation unit 103, 105 Coding unit 104, 107, 221 Modulation unit 106 Data transmission control unit 108 Mapping unit 109, 223, 226 IFFT unit 110 , 224, 227 CP addition unit 111, 214 Radio transmission unit 112, 201 Radio reception unit 113, 202 CP removal unit 114 PUCCH extraction unit 115 Despreading unit 116 Sequence control unit 117 Correlation processing unit 118, 207, 318 Determination unit 119 Retransmission Control signal generation unit 203 FFT unit 204 Extraction unit 205, 209 Demodulation unit 206, 210 Decoding unit 211 CRC unit 212 Response signal generation unit 213 Uplink control channel signal generation unit 222, 225, 228 Spreading unit 229 Multiplexing unit 301, 401 Phase rotation Part

Claims (6)

  1.  下りデータの誤り検出結果に基づく応答信号又は上りデータの発生を示す上り制御信号のいずれか1つを符号リソースに割り当てて、前記符号リソースに割り当てられた前記応答信号又は前記上り制御信号を複数のアンテナからそれぞれ送信する端末装置であって、
     下りデータチャネルに割り当てられた前記下りデータを受信する受信手段と、
     前記下りデータの誤り検出結果に基づく前記応答信号を生成する生成手段と、
     前記符号リソースを用いて、前記応答信号又は前記上り制御信号を送信する送信手段と、
     前記応答信号及び前記上り制御信号の発生状況に基づいて、前記応答信号又は前記上り制御信号の送信を制御する制御手段と、を具備し、
     前記制御手段は、送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合には、前記送信単位時間内に前記上り制御信号のみが発生した場合に前記上り制御信号が割り当てられる第1の符号リソースのうち少なくとも1つ以上のリソースと、前記送信単位時間内に前記応答信号のみが発生した場合に前記応答信号が割り当てられる第2の符号リソースのうち少なくとも1つ以上のリソースと、を用いて、前記応答信号を送信する、
     端末装置。
    Either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data is allocated to a code resource, and the response signal or the uplink control signal allocated to the code resource is assigned to a plurality of A terminal device for transmitting from each antenna;
    Receiving means for receiving the downlink data assigned to the downlink data channel;
    Generating means for generating the response signal based on an error detection result of the downlink data;
    Transmitting means for transmitting the response signal or the uplink control signal using the code resource;
    Control means for controlling transmission of the response signal or the uplink control signal based on the generation state of the response signal and the uplink control signal,
    When the uplink control signal and the response signal are simultaneously generated within a transmission unit time, the control means is assigned the uplink control signal when only the uplink control signal is generated within the transmission unit time. At least one resource among the first code resources, and at least one resource among the second code resources to which the response signal is assigned when only the response signal occurs within the transmission unit time; The response signal is transmitted using
    Terminal device.
  2.  前記制御手段は、さらに、前記送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合に、前記第1の符号リソースのうち前記少なくとも1つ以上のリソース、及び、前記第2の符号リソースのうち前記少なくとも1つ以上のリソースで同一内容の信号がそれぞれ配置される位相点間の第1の位相差と、
     前記送信単位時間内に前記上り制御信号のみが発生した場合に、複数の前記第2の符号リソースで同一内容の信号がそれぞれ配置される位相点間の第2の位相差と、を互いに異ならせる、
     請求項1記載の端末装置。
    The control means further includes the at least one resource among the first code resources and the second resource when the uplink control signal and the response signal are generated simultaneously within the transmission unit time. A first phase difference between phase points at which signals of the same content are arranged in at least one of the code resources of
    When only the uplink control signal is generated within the transmission unit time, the second phase difference between the phase points at which signals having the same content are respectively arranged in the plurality of second code resources is made different from each other. ,
    The terminal device according to claim 1.
  3.  前記制御手段は、前記送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合における、前記第1の符号リソースのうち前記少なくとも1つ以上のリソースに割り当てられる前記応答信号のコンスタレーションと、前記第2の符号リソースのうち前記少なくとも1つ以上のリソースに割り当てられる前記応答信号のコンスタレーションとを異ならせ、
     前記送信単位時間内に前記応答信号のみが発生した場合及び前記送信単位時間内に前記上り制御信号のみが発生した場合における、前記第1の符号リソースに割り当てられる信号のコンスタレーション及び前記第2の符号リソースに割り当てられる信号のコンスタレーションを同一にする、
     請求項2記載の端末装置。
    The control means includes a constellation of the response signal allocated to the at least one resource among the first code resources when the uplink control signal and the response signal are simultaneously generated within the transmission unit time. Different from the constellation of the response signal allocated to the at least one resource among the second code resources,
    A constellation of a signal allocated to the first code resource when only the response signal occurs within the transmission unit time and when only the uplink control signal occurs within the transmission unit time, and the second Make the constellation of signals allocated to code resources the same,
    The terminal device according to claim 2.
  4.  前記制御手段は、前記送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合、前記第1の符号リソースのうち前記少なくとも1つ以上のリソースに割り当てられる前記応答信号のコンスタレーションに対して、前記第2の符号リソースのうち前記少なくとも1つ以上のリソースに割り当てられる前記応答信号のコンスタレーションを90度回転させる、
     請求項3記載の端末装置。
    The control means, when the uplink control signal and the response signal are simultaneously generated within the transmission unit time, the constellation of the response signal allocated to the at least one resource among the first code resources In contrast, the constellation of the response signal allocated to the at least one resource among the second code resources is rotated by 90 degrees.
    The terminal device according to claim 3.
  5.  前記制御手段は、前記送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合、前記第1の符号リソースのうち前記少なくとも1つ以上のリソースに割り当てられる前記応答信号にexp(jπ/2)を乗算する、
     請求項3記載の端末装置。
    When the uplink control signal and the response signal are generated at the same time within the transmission unit time, the control means uses exp () for the response signal assigned to the at least one resource among the first code resources. jπ / 2),
    The terminal device according to claim 3.
  6.  下りデータの誤り検出結果に基づく応答信号又は上りデータの発生を示す上り制御信号のいずれか1つを符号リソースに割り当てて、前記符号リソースに割り当てられた前記応答信号又は前記上り制御信号を複数のアンテナからそれぞれ送信する端末装置における信号送信制御方法であって、
     下りデータチャネルに割り当てられた前記下りデータを受信する受信ステップと、
     前記下りデータの誤り検出結果に基づく前記応答信号を生成する生成ステップと、
     前記符号リソースを用いて、前記応答信号又は前記上り制御信号を送信する送信ステップと、
     前記応答信号及び前記上り制御信号の発生状況に基づいて、前記応答信号又は前記上り制御信号の送信を制御する制御ステップと、を具備し、
     前記制御ステップは、送信単位時間内に前記上り制御信号と前記応答信号とが同時に発生した場合には、前記送信単位時間内に前記上り制御信号のみが発生した場合に前記上り制御信号が割り当てられる第1の符号リソースのうち少なくとも1つ以上のリソースと、前記送信単位時間内に前記応答信号のみが発生した場合に前記応答信号が割り当てられる第2の符号リソースのうち少なくとも1つ以上のリソースと、を用いて、前記応答信号を送信する、
     信号送信制御方法。
    Either one of a response signal based on an error detection result of downlink data or an uplink control signal indicating the occurrence of uplink data is allocated to a code resource, and the response signal or the uplink control signal allocated to the code resource is assigned to a plurality of A signal transmission control method in a terminal device for transmitting from an antenna,
    Receiving the downlink data assigned to the downlink data channel; and
    Generating the response signal based on an error detection result of the downlink data;
    A transmission step of transmitting the response signal or the uplink control signal using the code resource;
    A control step of controlling transmission of the response signal or the uplink control signal based on the generation status of the response signal and the uplink control signal,
    In the control step, when the uplink control signal and the response signal are generated simultaneously within a transmission unit time, the uplink control signal is assigned when only the uplink control signal is generated within the transmission unit time. At least one resource among the first code resources, and at least one resource among the second code resources to which the response signal is assigned when only the response signal occurs within the transmission unit time; The response signal is transmitted using
    Signal transmission control method.
PCT/JP2011/000772 2010-02-12 2011-02-10 Terminal apparatus and signal transmission control method WO2011099300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-029051 2010-02-12
JP2010029051 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099300A1 true WO2011099300A1 (en) 2011-08-18

Family

ID=44367586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000772 WO2011099300A1 (en) 2010-02-12 2011-02-10 Terminal apparatus and signal transmission control method

Country Status (1)

Country Link
WO (1) WO2011099300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532658A (en) * 2012-07-02 2014-01-22 中兴通讯股份有限公司 SR processing method, eNB and UE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056599A2 (en) * 2007-10-30 2009-05-07 Nokia Siemens Networks Oy Providing improved scheduling request signaling with ack/nack or cqi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056599A2 (en) * 2007-10-30 2009-05-07 Nokia Siemens Networks Oy Providing improved scheduling request signaling with ack/nack or cqi

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "Multiplexing of Scheduling Request and ACK/NACK and/or CQI", 3GPP TSG RAN WG1 #49BIS, R1-073011, 3GPP, 25 June 2007 (2007-06-25), ORLANDO, USA, XP050106675 *
PANASONIC: "Scheduling request indicator for LTE-Advanced", 3GPP TSG RAN WG1 MEETING #59BIS, R1-100365, 3GPP, 18 January 2010 (2010-01-18), XP050418028 *
PANASONIC: "SORTD configurations for ACK/NACK information and SRI", 3GPP TSG RAN WG1 MEETING #60, R1-101266, 3GPP, 22 February 2010 (2010-02-22), SAN FRANCISCO, USA, XP050418776 *
SAMSUNG: "Multiplexing of ACK/NACK, CQI & SR in LTE-A", 3GPP TSG RAN WG1 #57, R1-091882, 3GPP, 4 May 2009 (2009-05-04), SAN FRANCISCO, USA, XP050339376 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532658A (en) * 2012-07-02 2014-01-22 中兴通讯股份有限公司 SR processing method, eNB and UE
CN103532658B (en) * 2012-07-02 2017-12-12 中兴通讯股份有限公司 SR processing method, eNB and UE

Similar Documents

Publication Publication Date Title
JP6569119B2 (en) Terminal device, transmission method, and integrated circuit
US12232116B2 (en) Base station and related communication method
JP6094914B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
JP5526135B2 (en) Terminal apparatus and signal transmission control method
JP5759049B2 (en) Base station, receiving method and integrated circuit
JP2012104874A (en) Terminal device and retransmission control method
US20120087238A1 (en) Terminal device and retransmission control method
WO2011099300A1 (en) Terminal apparatus and signal transmission control method
WO2011040033A1 (en) Terminal device and re-transmission control method
WO2011118167A1 (en) Terminal apparatus, base station apparatus and signal transmission control method
WO2010146855A1 (en) Terminal device and signal transmission control method
WO2011052235A1 (en) Terminal device and retransmission control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载