WO2010113541A1 - Power transmission mechanism for working device - Google Patents
Power transmission mechanism for working device Download PDFInfo
- Publication number
- WO2010113541A1 WO2010113541A1 PCT/JP2010/051526 JP2010051526W WO2010113541A1 WO 2010113541 A1 WO2010113541 A1 WO 2010113541A1 JP 2010051526 W JP2010051526 W JP 2010051526W WO 2010113541 A1 WO2010113541 A1 WO 2010113541A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eccentric cam
- gear
- plates
- cam
- blade
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 57
- 230000007246 mechanism Effects 0.000 title claims abstract description 23
- 230000006854 communication Effects 0.000 claims description 82
- 238000004891 communication Methods 0.000 claims description 81
- 238000003860 storage Methods 0.000 claims description 21
- 230000033001 locomotion Effects 0.000 claims description 14
- 238000010030 laminating Methods 0.000 claims description 13
- 238000003466 welding Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000005461 lubrication Methods 0.000 abstract description 11
- 239000000314 lubricant Substances 0.000 description 36
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000004308 accommodation Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001965 increasing effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G3/00—Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
- A01G3/04—Apparatus for trimming hedges, e.g. hedge shears
- A01G3/047—Apparatus for trimming hedges, e.g. hedge shears portable
- A01G3/053—Apparatus for trimming hedges, e.g. hedge shears portable motor-driven
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/01—Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
- A01D34/02—Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having reciprocating cutters
- A01D34/30—Driving mechanisms for the cutters
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G3/00—Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
- A01G3/02—Secateurs; Flower or fruit shears
- A01G3/033—Secateurs; Flower or fruit shears having motor-driven blades
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G3/00—Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
- A01G3/06—Hand-held edge trimmers or shears for lawns
- A01G3/062—Motor-driven edge trimmers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G3/00—Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
- A01G3/06—Hand-held edge trimmers or shears for lawns
- A01G3/067—Motor-driven shears for lawns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
Definitions
- the present invention relates to a power transmission mechanism of a working device that converts the power of a driving source into a reciprocating linear motion, such as used in a handheld work machine represented by a hedge trimmer and a brush cutter.
- a pair of blades are arranged facing each other, and a predetermined operation is performed by performing a relative reciprocating linear motion.
- Such a double-edged hedge trimmer includes a gear that rotates by receiving power from a drive source, a pair of eccentric cams provided on both sides of the gear, and a crank that connects a blade to each of the eccentric cams.
- a power transmission mechanism including a member is provided.
- the accommodation chamber that accommodates the gear is filled with a lubricant so that the sliding contact surfaces of the gear, the eccentric cam, and the crank member are lubricated.
- a recess is formed at a predetermined position of the gear so that the lubricant is reliably supplied to the sliding contact surface between the eccentric cam and the crank member.
- a concave portion is formed on the sliding contact surface between the eccentric cam and the crank member, and the volume change of the storage chamber (the pressure change of the storage chamber) accompanying the swing of the crank member. Is used to discharge the lubricant into the recess.
- the power transmission mechanism as described above is based on the premise that a concave portion is formed on the sliding contact surface between the gear and the crank member, or a through hole is formed on the gear.
- the lubricant can be positively supplied to the sliding contact surface and the location along the through hole.
- the lubrication agent can be supplied along the sliding contact surface. A recess must be formed and a complex supply oil path must be formed.
- An object of the present invention is to provide a power transmission mechanism for a working device in which lubrication performance is improved by lubricating an arbitrary portion.
- the invention according to claim 1 of the present invention is a power transmission mechanism of a working device for converting rotational power transmitted from a drive source into a reciprocating linear motion and transmitting it to a first blade and a second blade.
- a first surface that is an end surface and a first surface formed by laminating a case and a plurality of rotating plates that are housed in a housing chamber provided in the case and in which a through-hole is formed in a plane.
- a rotation transmission body that communicates with openings provided on different phase planes in the plane, and rotates by receiving power from the drive source, and rotation of the first surface of the rotation transmission body
- a first eccentric cam provided at a position eccentric from the center
- a second eccentric cam provided at a position deviated from the center of rotation of the second surface of the rolling transmission member in a direction different from the first eccentric cam, and one end slidable on the sliding surface of the first eccentric cam. The other end is connectable to the second blade, and the other end is slidably connected to the sliding surface of the second eccentric cam.
- a second crank member is provided.
- the shape and the power transmission structure are not particularly limited as long as the rotation transmission body rotates by receiving the power of the drive source.
- the rotation transmission body may be, for example, a disk-like member that is directly connected to and linked to the drive source, or may be a gear that meshes with and rotates with another gear linked to the drive source.
- the first blade and the second blade perform predetermined work by reciprocating linear motion, but the shape and structure of the blade or the action provided by the blade is not particularly limited.
- the first crank member connects the first eccentric cam (second eccentric cam) and the first blade (second blade), and the rotational movement of the rotation transmitting body is both performed. Convert to reciprocating linear motion of the blade.
- the connection structure between the crank members, the eccentric cams, and the blades is not particularly limited.
- an eccentric cam may be slidably inserted into the end of the crank member, or may be connected by another method.
- the connection structure is not particularly limited as long as the rotational motion of the rotation transmitting body is converted into the reciprocating linear motion of the first blade and the second blade.
- the opening of the communication path is configured so that the sliding surface of the first eccentric cam and the first surface and / or the second surface where the communication path opens are It faces one or both of the sliding surfaces of the second eccentric cam.
- the invention according to claim 3 is a power transmission mechanism of a working device for converting the rotational power transmitted from the drive source into a reciprocating linear motion and transmitting it to the first blade and the second blade.
- the rotating plates adjacent to each other among the plurality of rotating plates are formed by laminating a plurality of rotating plates accommodated in a storage chamber provided in the case and having through holes formed in a plane in the thickness direction.
- a transmission body a first eccentric cam provided at a position eccentric from the rotation center of the first surface of the rotation transmission body, and the first eccentric cam from the rotation center of the second surface of the rotation transmission body; Provided in an eccentric position in a different direction Two eccentric cams, one end slidably connected to the sliding surface of the first eccentric cam, the other end connected to the first blade, and one end slidable by the second eccentric cam. And a second crank member that is slidably connected to the moving surface and that can be connected to the second blade at the other end.
- the invention according to claim 4 is characterized in that the opening of the communication path faces one or both of the sliding surface of the first eccentric cam and the sliding surface of the second eccentric cam.
- the invention according to claim 5 is characterized in that the communication path is formed by shifting the through holes of adjacent rotating plates from each other.
- the invention described in claim 6 is characterized in that a concave portion communicating with the communication path is provided on an outer peripheral surface of one or both of the first eccentric cam and the second eccentric cam.
- the invention described in claim 7 is characterized in that the rotating plate is a metal plate and adjacent rotating plates are laminated by welding.
- either one or both of the first eccentric cam and the second eccentric cam are obtained by laminating a plurality of cam plates in the thickness direction, and are integrated with the rotation transmission body. It is fixed.
- the invention according to claim 9 is characterized in that the plurality of cam plates are constituted by metal plates, and the adjacent cam plates and the cam plates and the rotation transmission body are laminated by welding.
- the rotation transmitting body is configured by laminating a plurality of rotating plates in the thickness direction, but the method for fixing each rotating plate is not particularly limited.
- the communication path must be formed by a through hole formed in each rotating plate.
- the communication path opens on different phase planes. This is because the through-holes of adjacent rotating plates among the stacked rotating plates shift the phase and position or change the hole shape. This is realized by communicating.
- Each rotating plate may be stacked so that the phase of all adjacent through holes is shifted, or only the phase of the through holes of any two adjacent rotating plates may be stacked. What is necessary is just to determine suitably according to the position which opens a communicating path. Further, the rotating plates to be stacked may all be the same member, or may have different through hole shapes, for example.
- the communication path can be easily formed at any location inside the rotation transmission body, and the opening of the communication path can be opened at any location on the end face of the rotation transmission body. Can be provided respectively. Therefore, the communication path as the lubrication path can be efficiently configured, and it is possible to provide a power transmission mechanism for a working device with improved lubrication performance.
- the communication passage is formed inside the rotation transmission body, the passage portion other than the opening is not slid by sliding parts such as a crank member, and a stable oil passage can be supplied.
- the concave portion communicating with the communication path is provided on the outer peripheral surface of the first eccentric cam or the second eccentric cam, the sliding between the eccentric cam and the crank member via the communication path.
- Lubricant is supplied to the moving contact surface, and the recess receives the lubricant, so that the lubricating performance can be improved.
- extremely high lubrication performance can be realized by supplying the lubricant to the concave portion using the change in volume of the storage chamber (change in pressure in the storage chamber).
- the first eccentric cam and the second eccentric cam are provided with a phase difference of 180 degrees, and the communication paths are opened in front of the rotational direction of both the eccentric cams.
- the volume of the storage chamber is contracted with the swing of the first crank member, and the lubricant is discharged from the opening on the first surface side to the communication path, so that a recess formed on the outer peripheral surface of the eccentric cam.
- the lubricant is led to After that, when the rotation transmission body rotates 180 degrees, the volume of the storage chamber is contracted with the swing of the second crank member, and the lubricant is discharged from the opening on the second surface side to the communication path.
- the lubricant is again introduced into the recess.
- the communicating path communicates with the first surface and the second surface of the rotation transmission body, the lubricant is supplied twice to the same recess while the rotation transmission body makes one rotation. Therefore, extremely high lubrication performance can be realized by supplying the lubricant to the recess using the change in volume of the storage chamber (change in pressure in the storage chamber).
- the rotation transmission body can be easily manufactured.
- the eccentric cam is formed by laminating a plurality of cam plates in the thickness direction, it is possible to share parts for design changes such as thickness changes. Can do.
- the cam plate constituted by the metal plate and the rotation transmission body are laminated by welding, so that the eccentric cam and the rotation transmission body can be easily and integrally manufactured.
- FIG. 3 is a development view of parts of a driven gear and an eccentric cam. It is an assembly drawing of a driven gear and an eccentric cam. It is a figure for demonstrating the volume fluctuation
- FIG. 1A and 1B show a bottom view and a cross-sectional view of the hedge trimmer H.
- the hedge trimmer H includes a case 3 formed by joining the main body case 1 and the bottom case 2 with bolts.
- the case 3 is continuously formed with a drive gear storage chamber 3a, a driven gear storage chamber 3b which is a storage chamber of the present invention, and a blade storage chamber 3c.
- Various members are provided in each of the storage chambers 3a to 3c. Be contained.
- a first blade 4 and a second blade 5 having a large number of blades on both side surfaces in the longitudinal direction are supported in the blade housing chamber 3c so as to be capable of reciprocating. These both blades 4 and 5 repeat reciprocating linear motion in a face-to-face arrangement, and perform cutting work of branches and leaves by alternately appearing and retracting from the case 3.
- the first blade 4 and the second blade 5 are operated by a driving force of a driving source (not shown) (for example, an engine or an electric motor) that is fixed to the upper surface of the main body case 1.
- the power transmission device 10 provided in the case 3 transmits to the 4 and the second blade 5.
- the power transmission device 10 converts the rotational power transmitted from the drive source into a reciprocating linear motion of the first blade 4 and the second blade 5 and transmits the drive power 11, and the rotational transmission body of the present invention.
- a driven gear 12, eccentric cams 13 and 14, and crank members 15 and 16 are provided.
- the drive gear 11 has a shaft portion 11 a and a tooth portion 11 b formed on the outer periphery of the tip of the shaft portion 11 a, and rotates to the drive gear housing chamber 3 a via a bearing 20. It is supported freely.
- the drive gear 11 is linked to an output shaft of a drive source fixed above the main body case 1 and rotates by receiving power from the drive source.
- the driven gear 12 is accommodated in the driven gear accommodating chamber 3b of the case 3 so as to be rotatable.
- the driven gear 12 has a rotating shaft 22 inserted through a shaft hole 21 formed at the center thereof, and the rotating shaft 22 is fixed to the case 3 so that the driven gear 12 is rotatably accommodated in the driven gear accommodating chamber 3b. Is done.
- the driven gear 12 meshes with the drive gear 11 and rotates together with the drive gear 11.
- the driven gear 12 has a larger diameter than the drive gear 11, and a deceleration action occurs in the process of transmitting power from the drive gear 11 to the driven gear 12.
- a first eccentric cam 13 is provided on the first surface 12a, which is one plane of the driven gear 12, and the second surface 12b corresponding to the back surface of the first surface 12a is provided with the first surface 12a.
- a second eccentric cam 14 identical to the first eccentric cam 13 is provided.
- the first eccentric cam 13 and the second eccentric cam 14 are formed in a disk shape that is slightly thinner than the driven gear 12, and the center thereof is eccentrically positioned outside the rotational axis center of the driven gear 13. ing.
- the centers of the first eccentric cam 13 and the second eccentric cam 14 are positioned 180 degrees out of phase in the rotational direction of the driven gear 12.
- shaft holes 21 are also provided in the first eccentric cam 13 and the second eccentric cam 14, respectively, and a rotating shaft 22 is provided in each shaft hole 21 of the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14. Is inserted.
- the driven gear 12 is configured by laminating a plurality of metal gear plates such as iron in the thickness direction
- the first eccentric cam 13 and the second eccentric cam 14 are also configured as follows. A plurality of metal cam plates are laminated in the thickness direction. All these gear plates and cam plates are welded with a brazing material such as copper, and the driven gear 12, the first eccentric cam 13 and the second eccentric cam 14 are integrally formed.
- the first crank member 15 and the second crank member 16 convert the rotational power of the driven gear 12 into the reciprocating linear motion of the first blade 4 and the second blade 5. Since the first crank member 15 and the second crank member 16 are composed of the same member, the first crank member 15 will be described here.
- the first crank member 15 is made of a thin metal member having the same thickness as the first eccentric cam 13, and has a fitting ring portion 15b at one end of the rod portion 15a. ing.
- the fitting ring part 15b is the first eccentric cam 13 and the insertion hole 15b 1 to relatively rotatably inserted is formed, the outer circumferential surface and the inner circumferential surface of the insertion hole 15b 1 of the first eccentric cam 13 is in contact Face to face.
- a small ring portion 15c having a smaller diameter than the fitting ring portion 15b is provided at the other end of the rod portion 15a.
- the inner peripheral surface of the is facing in contact.
- the first crank member 15 swings as the driven gear 12 rotates, and the first blade 4. Will reciprocate linearly.
- the 2nd crank member 16 similarly has the rod part 16a, the fitting ring part 16b, and the small ring part 16c. Then, the second eccentric cam 14 into the insertion hole 16b 1 of the fitting ring part 16b is rotatable relative to the insertion, the insertion hole 16c 1 of the small ring portion 16c, the connecting pin 5a provided on the second blade 5 relative It is inserted in a rotatable manner.
- the first eccentric cam 13 and the second eccentric cam 14 are provided on both surfaces 12a and 12b of the driven gear 12 with a phase shifted by 180 degrees in the rotational direction of the driven gear 12. Therefore, the first blade 4 and the second blade 5 always move in the opposite direction, such that when one protrudes from the case 3, the other enters the case 3. In other words, the first blade 4 and the second blade 5 are alternately raised and retracted, whereby the blades provided on the sides of the blades 4 and 5 are engaged with each other, and a cutting action is brought about.
- each of the sliding contact portions is lubricated by filling each of the storage chambers 3a to 3c with a lubricant such as grease.
- the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14 are configured as follows, so that the first eccentric cam 13 and the first crank member 15 (insertion hole 15b 1 ) High lubrication performance is realized on the sliding contact surface and the sliding contact surface between the second eccentric cam 14 and the second crank member 16 (insertion hole 16b 1 ).
- the driven gear 12 includes a plurality of gear plates 50 to 55 (rotary plates or gear plates of the present invention) made of metal thin circular members having teeth around the periphery at a predetermined pitch. In the embodiment, 6 sheets) are stacked in the thickness direction. In the present embodiment, the gear plates 50 and 55 are the same member, and the gear plates 51 to 54 are the same member, but all the gear plates 50 to 55 have the same tooth pitch.
- the driven gear 12 is constructed by laminating and welding the gear plates 50 to 55 in the thickness direction so that the tooth surfaces coincide with each other.
- curved elliptical through holes 50a and 55a penetrating the plane are formed in the vicinity of the outer periphery, and in the vicinity of the through holes 50a and 55a, small diameter introduction holes 50b, 55b is formed.
- the gear plates 51 to 54 are formed with through holes 51a to 54a and through holes 51b to 54b penetrating the planes in the vicinity of the outer periphery.
- the through holes 51a to 54a are arc-shaped (crescent-shaped) holes that are curved along the peripheral surfaces of the gear plates 51 to 54, and the length of the through holes is from the through holes 50a and 55a formed in the gear plates 50 and 55. Is longer (about twice).
- the through holes 51b to 54b are provided at positions facing the through holes 51a to 54a, that is, positions shifted in phase by 180 degrees from the through holes 51a to 54a in the rotation direction of the gear plates 51 to 54.
- These through-holes 51b to 54b are formed to be smaller in width and length than the through-holes 51a to 54a.
- Each of the gear plates 50 to 55 is formed with a shaft hole 21 at the center thereof, and each of the through holes 50a to 55a and the through holes 51b to 54b has the same distance from the shaft hole 21. is doing.
- the six gear plates 50 to 55 having the above-described configuration are stacked with their phases slightly shifted in the rotational direction.
- the gear plate 50 and the gear plate 55 are 180 degrees out of phase in the rotational direction
- the through hole 50a of the gear plate 50 and the through hole 55a of the gear plate 55 face each other with a 180 degree phase shift.
- the gear plate 51 is disposed so that the through hole 51a faces the through hole 50a and the introduction hole 50b of the gear plate 50
- the gear plate 54 has the through hole 54a in the through hole 55a and the introduction hole 55b of the gear plate 55. Arranged to face.
- the through hole 50a and the introduction hole 50b of the gear plate 50 communicate with each other via the through hole 51a of the gear plate 51, and the through hole 55a and the introduction hole 55b of the gear plate 55 are communicated with the through hole of the gear plate 54. It will communicate via 54a.
- the gear plate 52 and the gear plate 53 are rotated in a range in which the through hole 52a and the through hole 53a formed in the gear plate 52 and the through hole 53a partially face, in other words, in a range in which the through hole 52a and the through hole 53a communicate with each other.
- the gear plate 52 is arranged so that the through hole 52 a communicates with the through hole 51 a of the gear plate 51, and the gear plate 53 has the through hole 53 a also connected to the through hole 54 a of the gear plate 54. It arrange
- the driven gear 12 is configured as shown in FIG.
- the communication path 60 is formed by the through holes 50a to 55a, and the communication path 60 opens (60a) on the first surface 12a side and the second surface 12b side of the driven gear 12.
- the introduction hole 50b of the gear plate 50 faces the through hole 51a of the gear plate 51
- the introduction hole 55b of the gear plate 55 faces the through hole 54a of the gear plate 54 (FIG. 3). ). Therefore, both the introduction hole 50 b of the gear plate 50 and the introduction hole 55 b of the gear plate 55 communicate with the communication path 60. Since the through holes 51b to 54b formed in the gear plates 51 to 54 are blocked by the planes of the gear plates 50 and 55, in the state where the driven gear 12 is configured by laminating the gear plates 50 to 55, respectively. I can't confirm.
- each of the first eccentric cam 13 and the second eccentric cam 14 includes a plurality of cam plates made of a thin metal circular member having a smaller diameter than the gear plates 50 to 55 (this embodiment). 4 in the form) are stacked in the thickness direction.
- cam plates 70 to 73 are stacked in the thickness direction to form the first eccentric cam 13
- cam plates 74 to 77 are stacked in the thickness direction to form the second eccentric cam 14.
- These cam plates 70 to 77 are all the same member.
- the cam plates 70 to 77 are approximately half the diameter of the gear plates 50 to 55, and the thickness thereof is substantially equal to that of the gear plates 50 to 55.
- the cam plates 70 to 77 are formed with shaft holes 21 through which the rotary shaft 22 is inserted at positions shifted from the centers thereof. Further, notches 70a to 77a are formed on the outer peripheral surfaces of the cam plates 70 to 77 by partially cutting away them.
- the first eccentric cam 13 is configured by welding the cam plates 70 to 73 in a state where the shaft hole 21 and the notches 70a to 73a are aligned.
- the second eccentric cam 14 includes The cam plates 74 to 77 are welded with the shaft hole 21 and the notches 74a to 77a being aligned.
- the first eccentric cam 13 and the second eccentric cam 14 are fixed to the first surface 12a and the second surface 12b of the driven gear 12, respectively. This fixing method is also performed by welding. Therefore, in the present embodiment, the gear plates 50 to 55 and the cam plates 70 to 77 are all laminated by welding, and the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14 are integrally configured.
- the notch of the first eccentric cam 13 formed by the notches 70a to 73a of the cam plates 70 to 73 is defined as the recess 13a, and the notches 74a to 77a of the cam plates 74 to 77 are formed.
- the notch of the second eccentric cam 14 is defined as a recess 14a.
- the first eccentric cam 13 is welded to the first surface 12a (gear plate 50) of the driven gear 12 with the recess 13a aligned with the introduction hole 50b.
- the second eccentric cam 14 is welded to the second surface 12b (gear plate 55) of the driven gear 12 with the recess 14a aligned with the introduction hole 55b. Accordingly, the recesses 13a and 14a provided in the first eccentric cam 13 and the second eccentric cam 14 both communicate with the communication path 60 through the introduction holes 50b and 55b.
- FIG. 5 (a 1 ) to (d 1 ) are views showing the driven gear 12, the first eccentric cam 13 and the first crank member 15 as viewed from the first surface 12a side of the driven gear 12.
- FIG. 5 (a 2 ) to (d 2 ) show a state in which the driven gear 12, the second eccentric cam 14 and the second crank member 16 are viewed from the first surface 12a side of the driven gear 12, that is, FIG. FIG. 5 is a diagram showing a state viewed from the same direction as 5 (a 1 ) to (d 1 ).
- the driven gear housing chamber 3 b is partitioned by the driven gear 12 into a space on the first surface 12 a side of the driven gear 12 and a space on the second surface 12 b side of the driven gear 12.
- the space formed on the first surface 12a side of the driven gear 12 will be described as a first space 80
- the space formed on the second surface 12b side of the driven gear 12 will be described as a second space 90 (FIG. 1, see FIG.
- the first eccentric cam 13 and the second eccentric cam 14 are provided with a phase difference of 180 degrees in the rotational direction of the driven gear 12, the first eccentric cam 13 is shown in FIG. 5 (a 1 ).
- the second eccentric cam 14 is in the position shown in FIG. 5 (a 2 ). In this state, the first crank member 15 protrudes most from the driven gear housing chamber 3b, and the second crank member 16 is most immersed in the driven gear housing chamber 3b.
- the gear plate 50 constituting the first surface 12 a of the driven gear 12 and the gear plate 55 constituting the second surface 12 b of the driven gear 12 are also shifted by 180 degrees in the rotational direction of the driven gear 12.
- the phase is shifted by 180 degrees.
- the second space 90 is partitioned into the first chamber 90a and the second chamber 90b by the second crank member 16, and at this time
- the volumes of both chambers 90a and 90b are substantially equal.
- the opening of the communication path 60 in the second surface 12b of the driven gear 12 faces the first chamber 90a.
- the driven gear 12 rotates 90 degrees in the direction of the arrow in the drawing
- the first eccentric cam 13 is displaced and the first crank member 15 swings, resulting in the state shown in FIG. 5 (b 1 ).
- the first space 80 is partitioned by the first crank member 15 into a first chamber 80a and a second chamber 80b.
- the first chamber 80a has a larger volume than the second chamber 80b, and the opening of the communication passage 60 in the first surface 12a of the driven gear 12 is not in the first chamber. It faces 80a.
- the driven gear 12 as described above is rotated, as shown in FIG.
- the driven gear storage chamber 3b that is, the spaces 80 and 90 are filled with a lubricant such as grease
- the first chamber 90b contracts as the volume decreases.
- the pressure in the chamber 90a increases.
- the lubricant is discharged from the opening (through hole 55a) of the communication passage 60 facing the first chamber 90a to the communication passage 60 by a pump action.
- the lubricant is guided to the concave portion 14a of the second eccentric cam 14 communicating with the communication path 60. Therefore, the second eccentric cam 14 and the second crank member 16 are guided.
- the sliding contact surface with is lubricated.
- the first eccentric cam 13 is positioned as shown in FIG. 5 (b 1 ), and the opening (through hole 50a) of the communication passage 60 on the first surface 12a side of the driven gear 12 is It faces the first chamber 80a.
- the first chamber 80a formed on the first surface 12a side has a larger volume and a lower pressure than the first chamber 90a formed on the second surface 12b side. Therefore, the lubricant discharged from the second surface 12b side of the driven gear 12 to the communication path 60 is also discharged to the first chamber 80a on the first surface 12a side through the communication path 60. Become.
- the lubricant is discharged into the recess 13a in the process of being discharged into the first chamber 80a. Is also guided at the same time.
- the communication path 60 includes the first chamber 80a positioned on the first surface 12a side of the driven gear 12 and the first surface positioned on the second surface 12b side of the driven gear 12. Therefore, the lubricant is easily discharged into the communication passage 60 as the volume contracts. As the volume of the first chamber 90a contracts, the sliding contact surface between the first eccentric cam 13 and the first crank member 15 and the sliding contact between the second eccentric cam 14 and the second crank member 16 are obtained. The surfaces can be lubricated simultaneously, and the lubrication performance can be greatly enhanced. In general, a partition wall is provided at the boundary between the driven gear storage chamber 3b and the blade storage chamber 3c so that the lubricant does not leak from the driven gear storage chamber 3b.
- the communication path 60 also provides a pressure releasing action so that the pressure in the first chamber 90a does not become too high, and as a result, damage to the case 3 is reduced.
- the lubricant When the pressure in the first chamber 80a increases, the lubricant is discharged from the opening (through hole 50a) of the communication passage 60 facing the first chamber 80a to the communication passage 60 by a pump action. When the lubricant is discharged into the communication path 60 in this way, the lubricant is guided to the concave portion 13a of the first eccentric cam 13 communicating with the communication path 60. Therefore, the first eccentric cam 13 and the first crank member 15 are guided. The sliding contact surface with is lubricated.
- the second eccentric cam 14 is positioned, and the opening (through hole 55a) of the communication passage 60 on the second surface 12b side of the driven gear 12 is It faces the first chamber 90a.
- the first chamber 90a formed on the second surface 12b side has a larger volume and a lower pressure than the first chamber 80a formed on the first surface 12a side. Therefore, the lubricant discharged from the first surface 12a side of the driven gear 12 to the communication path 60 is also discharged to the first chamber 90a on the second surface 12b side via the communication path 60.
- the recess 14a formed in the second eccentric cam 14 communicates with the communication path 60, the lubricant is discharged into the recess 14a in the process of being discharged into the first chamber 90a. Will be guided at the same time.
- the lubricant is discharged from the both surfaces of the driven gear 12 to the communication path 60 once each while the driven gear 12 rotates once.
- the communication path 60 communicates with the recess 13 a of the first eccentric cam 13 and the recess 14 a of the second eccentric cam 14. Therefore, while the driven gear 12 makes one rotation, the lubricant is guided twice to the concave portion 13a of the first eccentric cam 13 and the concave portion 14a of the second eccentric cam 14, respectively. 14 and the sliding contact surface between the crank members 15 and 16 can be reliably supplied in a large amount.
- the communication passage 60 not only the sliding action of the sliding contact surfaces between the eccentric cams 13 and 14 and the crank members 15 and 16 but also the predetermined location in the driven gear accommodating chamber 3b is achieved by the communication passage 60. Pressure relief and weight reduction are realized at the same time.
- the communication path 60 is formed at an optimal position by simply changing the relative positions of the eccentric cams 13 and 14 and the driven gear 12. It can be opened. Therefore, even if a design change or the like occurs, it is possible to configure the driven gear 12 using the same gear plate, which facilitates inventory management and maintains high lubrication performance.
- the phase of the gear plates 50 to 55 is adjusted to adjust the passage width of the communication passage 60 or to form a throttle in the communication process of the communication passage 60.
- through holes 51a to 54a and through holes 51b to 54b are formed in the gear plates 51 to 54.
- the optimal communicating path 60 can be comprised by combining suitably the through-hole from which a magnitude
- the through holes of the respective gear plates are evenly arranged in the rotational direction of the driven gear 12. Should be arranged. By doing in this way, the weight balance of the driven gear 12 can be improved.
- the method of welding the gear plates 50 to 55 and the cam plates 70 to 77 is not particularly limited, and may be determined as appropriate according to the material of the member to be welded.
- the cam plates 70 to 77 are laminated to form the first eccentric cam 13 and the second eccentric cam 14, but the two eccentric cams are not necessarily required to have a laminated structure.
- FIG. 6 is an exploded perspective view of the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14.
- the driven gear 12 is configured by laminating and welding the gear plates 500 to 505 in the thickness direction.
- the gear plates 500 and 505 are the same member
- the gear plates 501 to 504 are the same member
- the gear plates 501 to 504 are located between the gear plates 500 and 505.
- the gear plates 500, 505 are formed with curved elliptical through holes 500a, 505a penetrating through the plane in the vicinity of the outer periphery, and in the vicinity of the through holes 500a, 505a, small diameter introduction holes 500b, 505b is formed.
- through holes 501a to 504a and 501b to 504b penetrating the planes are formed so as to extend from the vicinity of the outer periphery to the center.
- the gear plates 501 to 504 are stacked in a state in which the phases are adjusted so that the through holes 501a to 504a and the through holes 501b to 504b coincide.
- the gear plate 500 and the gear plate 501 are stacked such that the through hole 500a of the gear plate 500 and the vicinity of the outer periphery of the through hole 501a of the gear plate 501 overlap. Further, the gear plate 505 and the gear plate 504 are laminated such that the through hole 505a of the gear plate 505 and the through hole 504b of the gear plate 504 overlap.
- the introduction hole 500b of the gear plate 500 faces a portion extending to the center of the through hole 501a of the gear plate 501, and the introduction hole 505b of the gear plate 505 is a portion extending to the center of the through hole 504b of the gear plate 504.
- a shaft hole 21 is formed at the center of each of the gear plates 500 to 505.
- the gear plates 500 to 505 configured as described above are laminated and welded in a state where the phases of the through holes 500a to 504a and the through holes 501b to 504b and 505a are matched.
- the through-holes 501a to 504a form a communication path 600 that connects the through-hole 500a and the introduction hole 500b
- the through-holes 501b to 504b form the through-hole 505a and the introduction hole 505b.
- a communication path 601 is formed for communicating the.
- the communication path 600 is partitioned by the gear plate 505, the communication path 600 does not open to the second surface 12b of the driven gear 12, and the communication path 601 is also partitioned by the gear plate 500. There is no opening in the first surface 12a. As described above, in this embodiment, all the communication passages 600 formed in the driven gear 12 have their openings opened on the first surface 12a, and the communication passages 601 all have their openings on the second surface. 12b is opened. That is, in this embodiment, the communication path formed in the driven gear 12 opens at different positions (phases) on the same surface.
- the first eccentric cam 13 and the second eccentric cam 14 have a plurality of cam plates (four in this embodiment) made of metal thin circular members having a smaller diameter than the gear plates 500 to 505 in the thickness direction. It is constructed by laminating.
- cam plates 700 to 703 having the same diameter are stacked in the thickness direction to form the first eccentric cam 13
- cam plates 704 to 707 having the same diameter are stacked in the thickness direction to form the second eccentric cam.
- a cam 14 is configured.
- the cam plates 701 to 706 are the same member.
- the cam plates 700 to 707 have a diameter that is about half that of the gear plates 500 to 505, and the thickness thereof is substantially equal to that of the gear plates 500 to 505.
- the cam plates 700 to 707 are formed with shaft holes 21 through which the rotary shaft 22 is inserted at positions shifted from the centers thereof. Further, notches 701a to 706a are formed on the outer peripheral surfaces of the cam plates 701 to 706 by partially cutting them.
- the first eccentric cam 13 is configured to be welded in a state where the shaft holes 21 of the cam plates 700 to 703 are aligned and the notches 701a to 703a of the cam plates 701 to 703 are aligned.
- the second eccentric cam 14 is configured to be welded in a state where the shaft holes 21 of the cam plates 704 to 707 are aligned and the notches 704a to 706a of the cam plates 704 to 706 are aligned.
- the first eccentric cam 13 and the second eccentric cam 14 are fixed to the first surface 12a and the second surface 12b of the driven gear 12 by welding, respectively.
- Each of the eccentric cam 14 and the driven gear 12 has the same shaft hole 21.
- the first eccentric cam 13 and the driven gear 12 are arranged so that the introduction hole 500b and the notch 703a overlap each other, and the second eccentric cam 14 and the driven gear 12 are arranged with the introduction hole 505b and the notch 704a. Are arranged to overlap.
- the through hole 500a serves as one opening 600a
- the introduction hole 500b and the notches 701a to 703a serve as the other opening 600b.
- the communication path 600 is formed.
- the other opening 600b of the communication path 600 opens so as to face the sliding surface between the first eccentric cam 13 and the first crank member 15. .
- a communication path 601 is formed in which the through hole 505a is one opening 601a and the introduction hole 505b and the notches 704a to 706a are the other opening 601b. .
- the other opening 600b of the communication path 600 and the other opening 601b of the communication path 601 are formed on the sliding surface between the first eccentric cam 13 and the first crank member 15. And it opens so that it may face to the sliding surface of the 2nd eccentric cam 14 and the 2nd crank member 16, respectively.
- the communication passages 600 and 601 are provided on the sliding surfaces of the eccentric cams 13 and 14 and the crank members 15 and 16 as a lubricant. It will demonstrate the function that leads. However, in this embodiment, notches are not provided in the cam plates 700 and 707 corresponding to the end surfaces of the eccentric cams 13 and 14, and the sliding surfaces of the eccentric cams 13 and 14 and the crank members 15 and 16 are provided. Since the communication paths 600 and 601 face each other, the lubricity with respect to the sliding surface can be further enhanced.
- the introduction holes 500b and 505b are configured to be within a range facing the notches 703a and 704a at the joint portions with the eccentric cams 13 and 14, but the introduction holes 500b and 505b are configured.
- the eccentric cams 13 and 14 so as to extend outward from the outer periphery and overlapping the notches 703a and 704a, the lubricity of the sliding surfaces between the crank members 15 and 16 and the driven gear 12 is improved. It is also possible to increase. Furthermore, if the end face (communication path) of the driven gear 12 and the shaft hole 21 are communicated, the lubricity of the shaft hole 21 can be improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transmission Devices (AREA)
- General Details Of Gearings (AREA)
- Gears, Cams (AREA)
Abstract
Disclosed is a power transmission mechanism for a working device, in which the lubrication performance is enhanced by providing lubrication at any location. A first eccentric cam (13) and a second eccentric cam (14) are respectively provided at a phase offset of 180º in the direction of rotation on both faces of a driven gear (12) which meshes with a drive gear. The driven gear (12) has a configuration in which a plurality of gear plates (50 – 55) are stacked in the thickness direction. Through-holes (50a – 55a) are formed in the plane of the gear plates (50 – 55), and each gear plate (50 – 55) is welded in such a way that the through-holes (50a – 55a) communicate with a phase offset. By means of this, the through-holes (50a – 55a) open onto a different phase plane on either surface of the driven gear (12).
Description
本発明は、ヘッジトリマや刈払機に代表される手持ち式作業機に用いられるような、駆動源の動力を往復直線運動に変換する作業装置の動力伝達機構に関する。
The present invention relates to a power transmission mechanism of a working device that converts the power of a driving source into a reciprocating linear motion, such as used in a handheld work machine represented by a hedge trimmer and a brush cutter.
従来の両刃タイプのヘッジトリマは、一対のブレードが対面配置されており、これらが相対的な往復直線運動を行うことにより所定の作業が行われる。このような両刃タイプのヘッジトリマには、駆動源の動力を受けて回転動するギヤと、このギヤの両面それぞれに設けられた一対の偏心カムと、これら両偏心カムのそれぞれにブレードを連結するクランク部材とを備える動力伝達機構が設けられている。
In a conventional double-edged hedge trimmer, a pair of blades are arranged facing each other, and a predetermined operation is performed by performing a relative reciprocating linear motion. Such a double-edged hedge trimmer includes a gear that rotates by receiving power from a drive source, a pair of eccentric cams provided on both sides of the gear, and a crank that connects a blade to each of the eccentric cams. A power transmission mechanism including a member is provided.
そして、動力伝達機構においては、ギヤを収容する収容室に潤滑剤を満たして、ギヤ、偏心カムおよびクランク部材の各摺動接触面が潤滑されるようにしている。特許文献1に示す動力伝達機構では、特に偏心カムとクランク部材との摺動接触面に確実に潤滑剤が供給されるように、ギヤの所定箇所に凹部が形成されている。また、特許文献2に示す動力伝達機構では、偏心カムとクランク部材との摺動接触面に凹部が形成されており、クランク部材の揺動にともなう収容室の容積変化(収容室の圧力変化)を利用して、凹部に潤滑剤が吐出されるようにしている。
In the power transmission mechanism, the accommodation chamber that accommodates the gear is filled with a lubricant so that the sliding contact surfaces of the gear, the eccentric cam, and the crank member are lubricated. In the power transmission mechanism shown in Patent Document 1, a recess is formed at a predetermined position of the gear so that the lubricant is reliably supplied to the sliding contact surface between the eccentric cam and the crank member. Further, in the power transmission mechanism shown in Patent Document 2, a concave portion is formed on the sliding contact surface between the eccentric cam and the crank member, and the volume change of the storage chamber (the pressure change of the storage chamber) accompanying the swing of the crank member. Is used to discharge the lubricant into the recess.
上記のような動力伝達機構は、ギヤとクランク部材との摺動接触面に凹部を形成したり、ギヤに貫通孔を形成したりすることが前提となり、潤滑剤の摺動接触面への供給に制約が生じる。すなわち、摺動接触面や貫通孔に沿った箇所には潤滑剤を積極的に供給することができるが、その他の任意の箇所に潤滑剤を供給するためには、摺動接触面に沿って凹部を形成しなければならず、複雑な供給油路を形成しなければならない。
The power transmission mechanism as described above is based on the premise that a concave portion is formed on the sliding contact surface between the gear and the crank member, or a through hole is formed on the gear. There will be restrictions. That is, the lubricant can be positively supplied to the sliding contact surface and the location along the through hole. However, in order to supply the lubricant to any other location, the lubrication agent can be supplied along the sliding contact surface. A recess must be formed and a complex supply oil path must be formed.
ここで、効率よく供給油路を形成するために、ギヤの内部に油路を形成することが好ましいが、こうしたギヤには強度が要求されるため、従来、鍛造や切削加工によって製造せざるを得ず、ギヤの内部の任意の箇所に油路を形成することができないという問題があった。
Here, in order to efficiently form the supply oil passage, it is preferable to form an oil passage inside the gear. However, since such a gear requires strength, it has been conventionally produced by forging or cutting. There was a problem that an oil passage could not be formed at an arbitrary location inside the gear.
本発明は、任意の箇所を潤滑することによって潤滑性能を向上させた作業装置の動力伝達機構を提供することを目的とする。
An object of the present invention is to provide a power transmission mechanism for a working device in which lubrication performance is improved by lubricating an arbitrary portion.
本発明の請求項1に記載の発明は、駆動源から伝達された回転動力を、往復直線運動に変換して第1ブレード及び第2ブレードに伝達するための作業装置の動力伝達機構であって、ケースと、該ケースに設けられた収容室に収容され、平面に貫通孔が形成された複数枚の回転板を厚さ方向に積層することによって形成され、端面である第1の面と第2の面を有し、上記複数枚の回転板のうち隣り合う回転板の貫通孔により、上記第1の面に設けられた開口と、上記第1の面および第2の面のうち少なくとも一方の面において異なる位相平面上に設けられた開口とを連通する連通路が形成され、上記駆動源からの動力を受けて回転動する回転伝達体と、該回転伝達体の第1の面の回転中心から偏心した位置に設けられた第1偏心カムと、上記回転伝達体の第2の面の回転中心から上記第1の偏心カムと異なる方向に偏心した位置に設けられた第2偏心カムと、一端が上記第1偏心カムの摺動面に摺動自在に連結され、他端が上記第1ブレードに連結可能な第1クランク部材と、一端が上記第2偏心カムの摺動面に摺動自在に連結され、他端が上記第2ブレードに連結可能な第2クランク部材と、を含むことを特徴とする。
The invention according to claim 1 of the present invention is a power transmission mechanism of a working device for converting rotational power transmitted from a drive source into a reciprocating linear motion and transmitting it to a first blade and a second blade. A first surface that is an end surface and a first surface formed by laminating a case and a plurality of rotating plates that are housed in a housing chamber provided in the case and in which a through-hole is formed in a plane. An opening provided in the first surface and at least one of the first surface and the second surface by a through-hole of an adjacent rotating plate among the plurality of rotating plates. A rotation transmission body that communicates with openings provided on different phase planes in the plane, and rotates by receiving power from the drive source, and rotation of the first surface of the rotation transmission body A first eccentric cam provided at a position eccentric from the center; A second eccentric cam provided at a position deviated from the center of rotation of the second surface of the rolling transmission member in a direction different from the first eccentric cam, and one end slidable on the sliding surface of the first eccentric cam. The other end is connectable to the second blade, and the other end is slidably connected to the sliding surface of the second eccentric cam. And a second crank member.
ここで、本発明において、回転伝達体は駆動源の動力を受けて回転動するものであれば、その形状や動力の伝達構造は特に限定されない。回転伝達体は、例えば、駆動源に直結して連係された円盤状の部材であってもよいし、駆動源に連係する他のギヤに噛合して回転するギヤであってもよい。
本発明において、第1ブレードおよび第2ブレードは往復直線運動によって所定の作業を行うものであるが、このブレードの形状や構造、あるいはブレードによってもたらされる作用は特に限定されない。 Here, in the present invention, the shape and the power transmission structure are not particularly limited as long as the rotation transmission body rotates by receiving the power of the drive source. The rotation transmission body may be, for example, a disk-like member that is directly connected to and linked to the drive source, or may be a gear that meshes with and rotates with another gear linked to the drive source.
In the present invention, the first blade and the second blade perform predetermined work by reciprocating linear motion, but the shape and structure of the blade or the action provided by the blade is not particularly limited.
本発明において、第1ブレードおよび第2ブレードは往復直線運動によって所定の作業を行うものであるが、このブレードの形状や構造、あるいはブレードによってもたらされる作用は特に限定されない。 Here, in the present invention, the shape and the power transmission structure are not particularly limited as long as the rotation transmission body rotates by receiving the power of the drive source. The rotation transmission body may be, for example, a disk-like member that is directly connected to and linked to the drive source, or may be a gear that meshes with and rotates with another gear linked to the drive source.
In the present invention, the first blade and the second blade perform predetermined work by reciprocating linear motion, but the shape and structure of the blade or the action provided by the blade is not particularly limited.
本発明において、第1クランク部材(第2クランク部材)は、第1偏心カム(第2偏心カム)と第1ブレード(第2ブレード)とを連結するもので、回転伝達体の回転運動を両ブレードの往復直線運動に変換する。このとき、両クランク部材と、両偏心カムおよび両ブレードとの連結構造は特に限定されない。例えば、クランク部材の端部に偏心カムを摺動自在に挿通させるようにしてもよいし、また、他の方法によって連結するようにしてもよい。いずれにしても、回転伝達体の回転運動が、第1ブレードおよび第2ブレードの往復直線運動に変換されれば、その連結構造は特に限定されない。
In the present invention, the first crank member (second crank member) connects the first eccentric cam (second eccentric cam) and the first blade (second blade), and the rotational movement of the rotation transmitting body is both performed. Convert to reciprocating linear motion of the blade. At this time, the connection structure between the crank members, the eccentric cams, and the blades is not particularly limited. For example, an eccentric cam may be slidably inserted into the end of the crank member, or may be connected by another method. In any case, the connection structure is not particularly limited as long as the rotational motion of the rotation transmitting body is converted into the reciprocating linear motion of the first blade and the second blade.
請求項2に記載の発明は、上記連通路の開口が、上記連通路が開口する上記第1の面および第2の面のいずれか一方または双方において、上記第1偏心カムの摺動面および第2偏心カムの摺動面のいずれか一方または双方に臨むことを特徴とする。
請求項3に記載の発明は、駆動源から伝達された回転動力を、往復直線運動に変換して第1ブレード及び第2ブレードに伝達するための作業装置の動力伝達機構であって、ケースと、該ケースに設けられた収容室に収容され、平面に貫通孔が形成された複数枚の回転板を厚さ方向に積層することによって形成され、上記複数枚の回転板のうち隣り合う回転板の貫通孔をずらして連通させることにより、端面である第1の面および第2の面において異なる位相平面上に開口する連通路が形成され、上記駆動源からの動力を受けて回転動する回転伝達体と、該回転伝達体の第1の面の回転中心から偏心した位置に設けられた第1偏心カムと、上記回転伝達体の第2の面の回転中心から上記第1の偏心カムと異なる方向に偏心した位置に設けられた第2偏心カムと、一端が上記第1偏心カムの摺動面に摺動自在に連結され、他端が上記第1ブレードに連結可能な第1クランク部材と、一端が上記第2偏心カムの摺動面に摺動自在に連結され、他端が上記第2ブレードに連結可能な第2クランク部材と、を含むことを特徴とする。 According to a second aspect of the present invention, the opening of the communication path is configured so that the sliding surface of the first eccentric cam and the first surface and / or the second surface where the communication path opens are It faces one or both of the sliding surfaces of the second eccentric cam.
The invention according toclaim 3 is a power transmission mechanism of a working device for converting the rotational power transmitted from the drive source into a reciprocating linear motion and transmitting it to the first blade and the second blade. The rotating plates adjacent to each other among the plurality of rotating plates are formed by laminating a plurality of rotating plates accommodated in a storage chamber provided in the case and having through holes formed in a plane in the thickness direction. By shifting the through holes of the first and second through holes, communication paths that open on different phase planes are formed on the first surface and the second surface, which are end surfaces, and the rotation rotates by receiving power from the drive source. A transmission body, a first eccentric cam provided at a position eccentric from the rotation center of the first surface of the rotation transmission body, and the first eccentric cam from the rotation center of the second surface of the rotation transmission body; Provided in an eccentric position in a different direction Two eccentric cams, one end slidably connected to the sliding surface of the first eccentric cam, the other end connected to the first blade, and one end slidable by the second eccentric cam. And a second crank member that is slidably connected to the moving surface and that can be connected to the second blade at the other end.
請求項3に記載の発明は、駆動源から伝達された回転動力を、往復直線運動に変換して第1ブレード及び第2ブレードに伝達するための作業装置の動力伝達機構であって、ケースと、該ケースに設けられた収容室に収容され、平面に貫通孔が形成された複数枚の回転板を厚さ方向に積層することによって形成され、上記複数枚の回転板のうち隣り合う回転板の貫通孔をずらして連通させることにより、端面である第1の面および第2の面において異なる位相平面上に開口する連通路が形成され、上記駆動源からの動力を受けて回転動する回転伝達体と、該回転伝達体の第1の面の回転中心から偏心した位置に設けられた第1偏心カムと、上記回転伝達体の第2の面の回転中心から上記第1の偏心カムと異なる方向に偏心した位置に設けられた第2偏心カムと、一端が上記第1偏心カムの摺動面に摺動自在に連結され、他端が上記第1ブレードに連結可能な第1クランク部材と、一端が上記第2偏心カムの摺動面に摺動自在に連結され、他端が上記第2ブレードに連結可能な第2クランク部材と、を含むことを特徴とする。 According to a second aspect of the present invention, the opening of the communication path is configured so that the sliding surface of the first eccentric cam and the first surface and / or the second surface where the communication path opens are It faces one or both of the sliding surfaces of the second eccentric cam.
The invention according to
請求項4に記載の発明は、上記連通路の開口が、上記第1偏心カムの摺動面および第2偏心カムの摺動面のいずれか一方または双方に臨むことを特徴とする。
請求項5に記載の発明は、上記連通路が、隣り合う回転板の貫通孔を互いに位相をずらすことにより形成されることを特徴とする。
請求項6に記載の発明は、上記第1偏心カムおよび第2偏心カムのいずれか一方または双方の外周面に、上記連通路に連通する凹部が設けられることを特徴とする。
請求項7に記載の発明は、上記回転板が金属板であり、隣り合う回転板が溶着によって積層されることを特徴とする。
請求項8に記載の発明は、上記第1偏心カムおよび第2偏心カムのいずれか一方または双方が、複数枚のカム板を厚さ方向に積層したものであり、上記回転伝達体に一体に固定されることを特徴とする。
請求項9に記載の発明は、上記複数枚のカム板が金属板によって構成されるとともに、隣り合うカム板およびカム板と回転伝達体とが溶着によって積層されることを特徴とする。 The invention according toclaim 4 is characterized in that the opening of the communication path faces one or both of the sliding surface of the first eccentric cam and the sliding surface of the second eccentric cam.
The invention according toclaim 5 is characterized in that the communication path is formed by shifting the through holes of adjacent rotating plates from each other.
The invention described in claim 6 is characterized in that a concave portion communicating with the communication path is provided on an outer peripheral surface of one or both of the first eccentric cam and the second eccentric cam.
The invention described in claim 7 is characterized in that the rotating plate is a metal plate and adjacent rotating plates are laminated by welding.
According to an eighth aspect of the present invention, either one or both of the first eccentric cam and the second eccentric cam are obtained by laminating a plurality of cam plates in the thickness direction, and are integrated with the rotation transmission body. It is fixed.
The invention according to claim 9 is characterized in that the plurality of cam plates are constituted by metal plates, and the adjacent cam plates and the cam plates and the rotation transmission body are laminated by welding.
請求項5に記載の発明は、上記連通路が、隣り合う回転板の貫通孔を互いに位相をずらすことにより形成されることを特徴とする。
請求項6に記載の発明は、上記第1偏心カムおよび第2偏心カムのいずれか一方または双方の外周面に、上記連通路に連通する凹部が設けられることを特徴とする。
請求項7に記載の発明は、上記回転板が金属板であり、隣り合う回転板が溶着によって積層されることを特徴とする。
請求項8に記載の発明は、上記第1偏心カムおよび第2偏心カムのいずれか一方または双方が、複数枚のカム板を厚さ方向に積層したものであり、上記回転伝達体に一体に固定されることを特徴とする。
請求項9に記載の発明は、上記複数枚のカム板が金属板によって構成されるとともに、隣り合うカム板およびカム板と回転伝達体とが溶着によって積層されることを特徴とする。 The invention according to
The invention according to
The invention described in claim 6 is characterized in that a concave portion communicating with the communication path is provided on an outer peripheral surface of one or both of the first eccentric cam and the second eccentric cam.
The invention described in claim 7 is characterized in that the rotating plate is a metal plate and adjacent rotating plates are laminated by welding.
According to an eighth aspect of the present invention, either one or both of the first eccentric cam and the second eccentric cam are obtained by laminating a plurality of cam plates in the thickness direction, and are integrated with the rotation transmission body. It is fixed.
The invention according to claim 9 is characterized in that the plurality of cam plates are constituted by metal plates, and the adjacent cam plates and the cam plates and the rotation transmission body are laminated by welding.
本発明において、回転伝達体は複数枚の回転板を厚さ方向に積層して構成されるが、各回転板を固定する方法は特に問わない。ただし、回転板を積層して固定する際には、各回転板に形成された貫通孔により連通路が形成されるようにしなければならない。
このとき、連通路は、異なる位相平面上に開口することとなるが、これは積層される回転板のうち、隣り合う回転板の貫通孔が、位相や位置をずらしたり、孔形状を変えたりして連通することによって実現される。なお、各回転板は、隣り合う全ての貫通孔の位相等をずらすようにして積層してもよいし、任意の隣り合う2枚の回転板の貫通孔の位相のみをずらして積層してもよく、連通路を開口させる位置に応じて適宜決定すればよい。
また、積層される各回転板は、全て同一の部材であってもよいし、例えば貫通孔の形状等が個々に異なるものであってもよい。 In the present invention, the rotation transmitting body is configured by laminating a plurality of rotating plates in the thickness direction, but the method for fixing each rotating plate is not particularly limited. However, when the rotating plates are stacked and fixed, the communication path must be formed by a through hole formed in each rotating plate.
At this time, the communication path opens on different phase planes. This is because the through-holes of adjacent rotating plates among the stacked rotating plates shift the phase and position or change the hole shape. This is realized by communicating. Each rotating plate may be stacked so that the phase of all adjacent through holes is shifted, or only the phase of the through holes of any two adjacent rotating plates may be stacked. What is necessary is just to determine suitably according to the position which opens a communicating path.
Further, the rotating plates to be stacked may all be the same member, or may have different through hole shapes, for example.
このとき、連通路は、異なる位相平面上に開口することとなるが、これは積層される回転板のうち、隣り合う回転板の貫通孔が、位相や位置をずらしたり、孔形状を変えたりして連通することによって実現される。なお、各回転板は、隣り合う全ての貫通孔の位相等をずらすようにして積層してもよいし、任意の隣り合う2枚の回転板の貫通孔の位相のみをずらして積層してもよく、連通路を開口させる位置に応じて適宜決定すればよい。
また、積層される各回転板は、全て同一の部材であってもよいし、例えば貫通孔の形状等が個々に異なるものであってもよい。 In the present invention, the rotation transmitting body is configured by laminating a plurality of rotating plates in the thickness direction, but the method for fixing each rotating plate is not particularly limited. However, when the rotating plates are stacked and fixed, the communication path must be formed by a through hole formed in each rotating plate.
At this time, the communication path opens on different phase planes. This is because the through-holes of adjacent rotating plates among the stacked rotating plates shift the phase and position or change the hole shape. This is realized by communicating. Each rotating plate may be stacked so that the phase of all adjacent through holes is shifted, or only the phase of the through holes of any two adjacent rotating plates may be stacked. What is necessary is just to determine suitably according to the position which opens a communicating path.
Further, the rotating plates to be stacked may all be the same member, or may have different through hole shapes, for example.
請求項1~9に記載の発明によれば、回転伝達体の内部の任意の箇所に連通路を容易に形成することができ、しかも、回転伝達体の端面の任意の箇所に連通路の開口をそれぞれ設けることができる。したがって、潤滑通路としての連通路を効率よく構成することができ、潤滑性能を向上させた作業装置の動力伝達機構の提供が可能となる。
しかも、回転伝達体の内部に連通路が形成されるため、開口以外の通路部分は、クランク部材等の摺動部品によって摺動することがなく、安定した油路の供給が可能となる。 According to the first to ninth aspects of the present invention, the communication path can be easily formed at any location inside the rotation transmission body, and the opening of the communication path can be opened at any location on the end face of the rotation transmission body. Can be provided respectively. Therefore, the communication path as the lubrication path can be efficiently configured, and it is possible to provide a power transmission mechanism for a working device with improved lubrication performance.
In addition, since the communication passage is formed inside the rotation transmission body, the passage portion other than the opening is not slid by sliding parts such as a crank member, and a stable oil passage can be supplied.
しかも、回転伝達体の内部に連通路が形成されるため、開口以外の通路部分は、クランク部材等の摺動部品によって摺動することがなく、安定した油路の供給が可能となる。 According to the first to ninth aspects of the present invention, the communication path can be easily formed at any location inside the rotation transmission body, and the opening of the communication path can be opened at any location on the end face of the rotation transmission body. Can be provided respectively. Therefore, the communication path as the lubrication path can be efficiently configured, and it is possible to provide a power transmission mechanism for a working device with improved lubrication performance.
In addition, since the communication passage is formed inside the rotation transmission body, the passage portion other than the opening is not slid by sliding parts such as a crank member, and a stable oil passage can be supplied.
特に請求項2および4に記載の発明によれば、上記連通路の開口が特に潤滑の必要な第1偏心カム、第2偏心カムの摺動面に臨むので、これら偏心カムの潤滑性を高めて、摩耗劣化を低減することができる。
特に請求項5に記載の発明によれば、同一形状の回転板を重ねて連通路を形成することができるので、何種類もの回転板を用いる必要がなくなり、回転伝達体の製造コストを低減することができる。 In particular, according to the invention described in claims 2 and 4, since the opening of the communication path faces the sliding surfaces of the first and second eccentric cams that particularly need to be lubricated, the lubricity of these eccentric cams is improved. Thus, wear deterioration can be reduced.
In particular, according to the invention described inclaim 5, since the communication plates can be formed by stacking the same shape of the rotating plates, it is not necessary to use various types of rotating plates, thereby reducing the manufacturing cost of the rotation transmitting body. be able to.
特に請求項5に記載の発明によれば、同一形状の回転板を重ねて連通路を形成することができるので、何種類もの回転板を用いる必要がなくなり、回転伝達体の製造コストを低減することができる。 In particular, according to the invention described in
In particular, according to the invention described in
特に請求項6に記載の発明によれば、連通路に連通する凹部が第1偏心カムまたは第2偏心カムの外周面に設けられたので、連通路を介して偏心カムとクランク部材との摺動接触面に潤滑剤が供給されるとともに凹部が潤滑剤を受容し、潤滑性能を向上することができる。
しかも、収容室の容積変化(収容室の圧力変化)を利用して凹部に潤滑剤を供給することにより、極めて高い潤滑性能を実現することができる。例えば、第1偏心カムと第2偏心カムとを180度位相をずらして設け、これら両偏心カムの回転方向前方に連通路をそれぞれ開口させたとする。この場合、第1クランク部材の揺動にともなって収容室の容積が収縮されるとともに、第1の面側の開口から連通路に潤滑剤が吐出され、偏心カムの外周面に形成された凹部に潤滑剤が導かれる。その後、回転伝達体が180度回転すると、今度は第2クランク部材の揺動にともなって収容室の容積が収縮されるとともに、第2の面側の開口から連通路に潤滑剤が吐出され、上記の凹部に再び潤滑剤が導かれる。このように、連通路は回転伝達体の第1の面と第2の面とに連通しているので、回転伝達体が1回転する間に同一の凹部に潤滑剤が2回供給される。したがって、収容室の容積変化(収容室の圧力変化)を利用して凹部に潤滑剤を供給することにより、極めて高い潤滑性能を実現することができる。 In particular, according to the sixth aspect of the present invention, since the concave portion communicating with the communication path is provided on the outer peripheral surface of the first eccentric cam or the second eccentric cam, the sliding between the eccentric cam and the crank member via the communication path. Lubricant is supplied to the moving contact surface, and the recess receives the lubricant, so that the lubricating performance can be improved.
In addition, extremely high lubrication performance can be realized by supplying the lubricant to the concave portion using the change in volume of the storage chamber (change in pressure in the storage chamber). For example, it is assumed that the first eccentric cam and the second eccentric cam are provided with a phase difference of 180 degrees, and the communication paths are opened in front of the rotational direction of both the eccentric cams. In this case, the volume of the storage chamber is contracted with the swing of the first crank member, and the lubricant is discharged from the opening on the first surface side to the communication path, so that a recess formed on the outer peripheral surface of the eccentric cam. The lubricant is led to After that, when the rotation transmission body rotates 180 degrees, the volume of the storage chamber is contracted with the swing of the second crank member, and the lubricant is discharged from the opening on the second surface side to the communication path. The lubricant is again introduced into the recess. Thus, since the communicating path communicates with the first surface and the second surface of the rotation transmission body, the lubricant is supplied twice to the same recess while the rotation transmission body makes one rotation. Therefore, extremely high lubrication performance can be realized by supplying the lubricant to the recess using the change in volume of the storage chamber (change in pressure in the storage chamber).
しかも、収容室の容積変化(収容室の圧力変化)を利用して凹部に潤滑剤を供給することにより、極めて高い潤滑性能を実現することができる。例えば、第1偏心カムと第2偏心カムとを180度位相をずらして設け、これら両偏心カムの回転方向前方に連通路をそれぞれ開口させたとする。この場合、第1クランク部材の揺動にともなって収容室の容積が収縮されるとともに、第1の面側の開口から連通路に潤滑剤が吐出され、偏心カムの外周面に形成された凹部に潤滑剤が導かれる。その後、回転伝達体が180度回転すると、今度は第2クランク部材の揺動にともなって収容室の容積が収縮されるとともに、第2の面側の開口から連通路に潤滑剤が吐出され、上記の凹部に再び潤滑剤が導かれる。このように、連通路は回転伝達体の第1の面と第2の面とに連通しているので、回転伝達体が1回転する間に同一の凹部に潤滑剤が2回供給される。したがって、収容室の容積変化(収容室の圧力変化)を利用して凹部に潤滑剤を供給することにより、極めて高い潤滑性能を実現することができる。 In particular, according to the sixth aspect of the present invention, since the concave portion communicating with the communication path is provided on the outer peripheral surface of the first eccentric cam or the second eccentric cam, the sliding between the eccentric cam and the crank member via the communication path. Lubricant is supplied to the moving contact surface, and the recess receives the lubricant, so that the lubricating performance can be improved.
In addition, extremely high lubrication performance can be realized by supplying the lubricant to the concave portion using the change in volume of the storage chamber (change in pressure in the storage chamber). For example, it is assumed that the first eccentric cam and the second eccentric cam are provided with a phase difference of 180 degrees, and the communication paths are opened in front of the rotational direction of both the eccentric cams. In this case, the volume of the storage chamber is contracted with the swing of the first crank member, and the lubricant is discharged from the opening on the first surface side to the communication path, so that a recess formed on the outer peripheral surface of the eccentric cam. The lubricant is led to After that, when the rotation transmission body rotates 180 degrees, the volume of the storage chamber is contracted with the swing of the second crank member, and the lubricant is discharged from the opening on the second surface side to the communication path. The lubricant is again introduced into the recess. Thus, since the communicating path communicates with the first surface and the second surface of the rotation transmission body, the lubricant is supplied twice to the same recess while the rotation transmission body makes one rotation. Therefore, extremely high lubrication performance can be realized by supplying the lubricant to the recess using the change in volume of the storage chamber (change in pressure in the storage chamber).
特に請求項7に記載の発明によれば、金属板によって構成される回転板を溶着によって積層するので、回転伝達体を容易に製造することができる。
特に請求項8に記載の発明によれば、偏心カムが複数枚のカム板を厚さ方向に積層して構成されるので、厚さ変更等の設計変更に対して部品の共通化を図ることができる。
特に請求項9に記載の発明によれば、金属板によって構成されるカム板と回転伝達体とを溶着によって積層するので、偏心カムおよび回転伝達体を一体的に容易に製造することができる。 In particular, according to the seventh aspect of the invention, since the rotating plates constituted by the metal plates are laminated by welding, the rotation transmission body can be easily manufactured.
In particular, according to the invention described in claim 8, since the eccentric cam is formed by laminating a plurality of cam plates in the thickness direction, it is possible to share parts for design changes such as thickness changes. Can do.
In particular, according to the ninth aspect of the present invention, the cam plate constituted by the metal plate and the rotation transmission body are laminated by welding, so that the eccentric cam and the rotation transmission body can be easily and integrally manufactured.
特に請求項8に記載の発明によれば、偏心カムが複数枚のカム板を厚さ方向に積層して構成されるので、厚さ変更等の設計変更に対して部品の共通化を図ることができる。
特に請求項9に記載の発明によれば、金属板によって構成されるカム板と回転伝達体とを溶着によって積層するので、偏心カムおよび回転伝達体を一体的に容易に製造することができる。 In particular, according to the seventh aspect of the invention, since the rotating plates constituted by the metal plates are laminated by welding, the rotation transmission body can be easily manufactured.
In particular, according to the invention described in claim 8, since the eccentric cam is formed by laminating a plurality of cam plates in the thickness direction, it is possible to share parts for design changes such as thickness changes. Can do.
In particular, according to the ninth aspect of the present invention, the cam plate constituted by the metal plate and the rotation transmission body are laminated by welding, so that the eccentric cam and the rotation transmission body can be easily and integrally manufactured.
以下、本発明の実施形態について図面を参照しながら具体的に説明する。本実施形態は、枝や葉を刈り取るヘッジトリマに本発明の動力伝達機構を適用したものである。
図1(a)および図1(b)は、ヘッジトリマHの下面図及び断面図を示している。ヘッジトリマHは、本体ケース1および底面ケース2をボルトで接合してなるケース3を備えている。ケース3には、駆動ギヤ収容室3a、本発明の収容室である従動ギヤ収容室3b、およびブレード収容室3cが連続して形成されており、これら各収容室3a~3cに各種の部材が収容される。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In this embodiment, the power transmission mechanism of the present invention is applied to a hedge trimmer that cuts branches and leaves.
1A and 1B show a bottom view and a cross-sectional view of the hedge trimmer H. FIG. The hedge trimmer H includes acase 3 formed by joining the main body case 1 and the bottom case 2 with bolts. The case 3 is continuously formed with a drive gear storage chamber 3a, a driven gear storage chamber 3b which is a storage chamber of the present invention, and a blade storage chamber 3c. Various members are provided in each of the storage chambers 3a to 3c. Be contained.
図1(a)および図1(b)は、ヘッジトリマHの下面図及び断面図を示している。ヘッジトリマHは、本体ケース1および底面ケース2をボルトで接合してなるケース3を備えている。ケース3には、駆動ギヤ収容室3a、本発明の収容室である従動ギヤ収容室3b、およびブレード収容室3cが連続して形成されており、これら各収容室3a~3cに各種の部材が収容される。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In this embodiment, the power transmission mechanism of the present invention is applied to a hedge trimmer that cuts branches and leaves.
1A and 1B show a bottom view and a cross-sectional view of the hedge trimmer H. FIG. The hedge trimmer H includes a
ブレード収容室3cには、長手方向の両側面に多数の刃を有する第1ブレード4および第2ブレード5が往復動自在に支持されている。これら両ブレード4,5は、対面配置された状態で往復直線運動を繰り返し、ケース3から交互に出没することで枝や葉の刈り取り作業を行うものである。
第1ブレード4および第2ブレード5は、本体ケース1の上面に固定される不図示の駆動源(例えばエンジンや電動モータ等)の駆動力によって作動するが、駆動源の駆動力を第1ブレード4および第2ブレード5に伝達するのが、ケース3に設けられた動力伝達装置10である。 Afirst blade 4 and a second blade 5 having a large number of blades on both side surfaces in the longitudinal direction are supported in the blade housing chamber 3c so as to be capable of reciprocating. These both blades 4 and 5 repeat reciprocating linear motion in a face-to-face arrangement, and perform cutting work of branches and leaves by alternately appearing and retracting from the case 3.
Thefirst blade 4 and the second blade 5 are operated by a driving force of a driving source (not shown) (for example, an engine or an electric motor) that is fixed to the upper surface of the main body case 1. The power transmission device 10 provided in the case 3 transmits to the 4 and the second blade 5.
第1ブレード4および第2ブレード5は、本体ケース1の上面に固定される不図示の駆動源(例えばエンジンや電動モータ等)の駆動力によって作動するが、駆動源の駆動力を第1ブレード4および第2ブレード5に伝達するのが、ケース3に設けられた動力伝達装置10である。 A
The
動力伝達装置10は、駆動源から伝達された回転動力を、第1ブレード4および第2ブレード5の往復直線運動に変換して伝達するものであり、駆動ギヤ11、本発明の回転伝達体である従動ギヤ12、偏心カム13,14およびクランク部材15,16を備えている。
駆動ギヤ11は、図2に示すように、軸部11aと、この軸部11aの先端外周に形成された歯部11bとを有しており、ベアリング20を介して駆動ギヤ収容室3aに回転動自在に支持されている。この駆動ギヤ11は、本体ケース1の上方に固定された駆動源の出力軸が連係され、当該駆動源の動力を受けて回転動する。 Thepower transmission device 10 converts the rotational power transmitted from the drive source into a reciprocating linear motion of the first blade 4 and the second blade 5 and transmits the drive power 11, and the rotational transmission body of the present invention. A driven gear 12, eccentric cams 13 and 14, and crank members 15 and 16 are provided.
As shown in FIG. 2, thedrive gear 11 has a shaft portion 11 a and a tooth portion 11 b formed on the outer periphery of the tip of the shaft portion 11 a, and rotates to the drive gear housing chamber 3 a via a bearing 20. It is supported freely. The drive gear 11 is linked to an output shaft of a drive source fixed above the main body case 1 and rotates by receiving power from the drive source.
駆動ギヤ11は、図2に示すように、軸部11aと、この軸部11aの先端外周に形成された歯部11bとを有しており、ベアリング20を介して駆動ギヤ収容室3aに回転動自在に支持されている。この駆動ギヤ11は、本体ケース1の上方に固定された駆動源の出力軸が連係され、当該駆動源の動力を受けて回転動する。 The
As shown in FIG. 2, the
そして、ケース3の従動ギヤ収容室3bには、従動ギヤ12が回転動自在に収容されている。この従動ギヤ12は、その中心に形成される軸孔21に回転軸22を挿通させており、この回転軸22がケース3に固定されることで、従動ギヤ収容室3bに回転動自在に収容される。この従動ギヤ12は、上記の駆動ギヤ11と噛合しており、駆動ギヤ11と一体となって回転する。この従動ギヤ12は、駆動ギヤ11よりも大径にしており、駆動ギヤ11から従動ギヤ12への動力の伝達過程で、減速作用が生じる。
The driven gear 12 is accommodated in the driven gear accommodating chamber 3b of the case 3 so as to be rotatable. The driven gear 12 has a rotating shaft 22 inserted through a shaft hole 21 formed at the center thereof, and the rotating shaft 22 is fixed to the case 3 so that the driven gear 12 is rotatably accommodated in the driven gear accommodating chamber 3b. Is done. The driven gear 12 meshes with the drive gear 11 and rotates together with the drive gear 11. The driven gear 12 has a larger diameter than the drive gear 11, and a deceleration action occurs in the process of transmitting power from the drive gear 11 to the driven gear 12.
また、従動ギヤ12の一方の平面である第1の面12aには、第1偏心カム13が設けられており、第1の面12aの裏面に相当する第2の面12bには、上記第1偏心カム13と同一の第2偏心カム14が設けられている。第1偏心カム13および第2偏心カム14は、従動ギヤ12よりも僅かに厚さが薄い円盤状に構成されており、その中心を従動ギヤ13の回転軸中心よりも外側に偏心して位置させている。
A first eccentric cam 13 is provided on the first surface 12a, which is one plane of the driven gear 12, and the second surface 12b corresponding to the back surface of the first surface 12a is provided with the first surface 12a. A second eccentric cam 14 identical to the first eccentric cam 13 is provided. The first eccentric cam 13 and the second eccentric cam 14 are formed in a disk shape that is slightly thinner than the driven gear 12, and the center thereof is eccentrically positioned outside the rotational axis center of the driven gear 13. ing.
このとき、第1偏心カム13および第2偏心カム14の中心は、従動ギヤ12の回転方向に180度位相をずらして位置している。また、第1偏心カム13および第2偏心カム14にも軸孔21がそれぞれ設けられており、従動ギヤ12、第1偏心カム13、および第2偏心カム14の各軸孔21に回転軸22が挿通している。
なお、詳しくは後述するが、従動ギヤ12は鉄等の金属製のギヤ板を複数枚厚さ方向に積層して構成されており、また、第1偏心カム13および第2偏心カム14も、金属製のカム板を複数枚厚さ方向に積層して構成されている。そして、これら全てのギヤ板およびカム板が銅等のろう材で溶着されて、従動ギヤ12、第1偏心カム13および第2偏心カム14が一体成形されている。 At this time, the centers of the firsteccentric cam 13 and the second eccentric cam 14 are positioned 180 degrees out of phase in the rotational direction of the driven gear 12. Further, shaft holes 21 are also provided in the first eccentric cam 13 and the second eccentric cam 14, respectively, and a rotating shaft 22 is provided in each shaft hole 21 of the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14. Is inserted.
As will be described in detail later, the drivengear 12 is configured by laminating a plurality of metal gear plates such as iron in the thickness direction, and the first eccentric cam 13 and the second eccentric cam 14 are also configured as follows. A plurality of metal cam plates are laminated in the thickness direction. All these gear plates and cam plates are welded with a brazing material such as copper, and the driven gear 12, the first eccentric cam 13 and the second eccentric cam 14 are integrally formed.
なお、詳しくは後述するが、従動ギヤ12は鉄等の金属製のギヤ板を複数枚厚さ方向に積層して構成されており、また、第1偏心カム13および第2偏心カム14も、金属製のカム板を複数枚厚さ方向に積層して構成されている。そして、これら全てのギヤ板およびカム板が銅等のろう材で溶着されて、従動ギヤ12、第1偏心カム13および第2偏心カム14が一体成形されている。 At this time, the centers of the first
As will be described in detail later, the driven
そして、従動ギヤ12の回転動力を、第1ブレード4および第2ブレード5の往復直線運動に変換するのが、第1クランク部材15および第2クランク部材16である。第1クランク部材15および第2クランク部材16は同一部材で構成されているので、ここでは第1クランク部材15について説明する。
図1および図2に示すように、第1クランク部材15は、第1偏心カム13と厚さを等しくする薄板状の金属部材からなり、ロッド部15aの一端に嵌合リング部15bを有している。嵌合リング部15bには、第1偏心カム13を相対回転可能に挿通する挿通孔15b1が形成されており、第1偏心カム13の外周面と挿通孔15b1の内周面とが接触状態で対面している。一方で、ロッド部15aの他端には、嵌合リング部15bよりも小径の小リング部15cが設けられている。この小リング部15cには、第1ブレード4の基端に設けられた連結ピン4aを相対回転可能に挿通する挿通孔15c1が形成されており、連結ピン4aの外周面と挿通孔16c1の内周面とが接触状態で対面している。 Thefirst crank member 15 and the second crank member 16 convert the rotational power of the driven gear 12 into the reciprocating linear motion of the first blade 4 and the second blade 5. Since the first crank member 15 and the second crank member 16 are composed of the same member, the first crank member 15 will be described here.
As shown in FIGS. 1 and 2, thefirst crank member 15 is made of a thin metal member having the same thickness as the first eccentric cam 13, and has a fitting ring portion 15b at one end of the rod portion 15a. ing. The fitting ring part 15b is the first eccentric cam 13 and the insertion hole 15b 1 to relatively rotatably inserted is formed, the outer circumferential surface and the inner circumferential surface of the insertion hole 15b 1 of the first eccentric cam 13 is in contact Face to face. On the other hand, a small ring portion 15c having a smaller diameter than the fitting ring portion 15b is provided at the other end of the rod portion 15a. This is the small ring portion 15c, the outer peripheral surface and the insertion hole 16c 1 of the first connecting pin 4a provided on the proximal end of the blade 4 has insertion holes 15c 1 to relatively rotatably inserted is formed, the connecting pin 4a The inner peripheral surface of the is facing in contact.
図1および図2に示すように、第1クランク部材15は、第1偏心カム13と厚さを等しくする薄板状の金属部材からなり、ロッド部15aの一端に嵌合リング部15bを有している。嵌合リング部15bには、第1偏心カム13を相対回転可能に挿通する挿通孔15b1が形成されており、第1偏心カム13の外周面と挿通孔15b1の内周面とが接触状態で対面している。一方で、ロッド部15aの他端には、嵌合リング部15bよりも小径の小リング部15cが設けられている。この小リング部15cには、第1ブレード4の基端に設けられた連結ピン4aを相対回転可能に挿通する挿通孔15c1が形成されており、連結ピン4aの外周面と挿通孔16c1の内周面とが接触状態で対面している。 The
As shown in FIGS. 1 and 2, the
このようにして、従動ギヤ12と第1ブレード4とが第1クランク部材15を介して連結されると、従動ギヤ12の回転にともなって第1クランク部材15が揺動し、第1ブレード4が往復直線運動することとなる。
なお、ここでは第1クランク部材15について説明したが、第2クランク部材16も同様に、ロッド部16a、嵌合リング部16bおよび小リング部16cを有している。そして、嵌合リング部16bの挿通孔16b1に第2偏心カム14を相対回転可能に挿通させ、小リング部16cの挿通孔16c1に、第2ブレード5に設けられた連結ピン5aを相対回転可能に挿通させている。
また、すでに説明したとおり、第1偏心カム13および第2偏心カム14は、従動ギヤ12の両面12a,12bにおいて、従動ギヤ12の回転方向に180度位相をずらして設けられている。したがって、第1ブレード4および第2ブレード5は、一方がケース3から突出したときに他方がケース3に没入するといった具合に、常に反対方向に移動する。言い換えれば、第1ブレード4および第2ブレード5は出没を交互に繰り返すこととなり、これにより両ブレード4,5の側辺に設けられた刃が噛み合って、刈り取り作用がもたらされることとなる。 Thus, when the drivengear 12 and the first blade 4 are connected via the first crank member 15, the first crank member 15 swings as the driven gear 12 rotates, and the first blade 4. Will reciprocate linearly.
In addition, although the 1st crankmember 15 was demonstrated here, the 2nd crank member 16 similarly has the rod part 16a, the fitting ring part 16b, and the small ring part 16c. Then, the second eccentric cam 14 into the insertion hole 16b 1 of the fitting ring part 16b is rotatable relative to the insertion, the insertion hole 16c 1 of the small ring portion 16c, the connecting pin 5a provided on the second blade 5 relative It is inserted in a rotatable manner.
Further, as already described, the firsteccentric cam 13 and the second eccentric cam 14 are provided on both surfaces 12a and 12b of the driven gear 12 with a phase shifted by 180 degrees in the rotational direction of the driven gear 12. Therefore, the first blade 4 and the second blade 5 always move in the opposite direction, such that when one protrudes from the case 3, the other enters the case 3. In other words, the first blade 4 and the second blade 5 are alternately raised and retracted, whereby the blades provided on the sides of the blades 4 and 5 are engaged with each other, and a cutting action is brought about.
なお、ここでは第1クランク部材15について説明したが、第2クランク部材16も同様に、ロッド部16a、嵌合リング部16bおよび小リング部16cを有している。そして、嵌合リング部16bの挿通孔16b1に第2偏心カム14を相対回転可能に挿通させ、小リング部16cの挿通孔16c1に、第2ブレード5に設けられた連結ピン5aを相対回転可能に挿通させている。
また、すでに説明したとおり、第1偏心カム13および第2偏心カム14は、従動ギヤ12の両面12a,12bにおいて、従動ギヤ12の回転方向に180度位相をずらして設けられている。したがって、第1ブレード4および第2ブレード5は、一方がケース3から突出したときに他方がケース3に没入するといった具合に、常に反対方向に移動する。言い換えれば、第1ブレード4および第2ブレード5は出没を交互に繰り返すこととなり、これにより両ブレード4,5の側辺に設けられた刃が噛み合って、刈り取り作用がもたらされることとなる。 Thus, when the driven
In addition, although the 1st crank
Further, as already described, the first
上記の構成からなる動力伝達装置10は、両クランク部材15,16と、両偏心カム13,14や連結ピン4a,5aとの摺動接触面をはじめ、さまざまな部分で摩擦が生じる。そこで、各収容室3a~3cをグリス等の潤滑剤で満たすことにより、各摺動接触部が潤滑される。
本実施形態においては、従動ギヤ12、第1偏心カム13および第2偏心カム14を次のように構成することで、第1偏心カム13と第1クランク部材15(挿通孔15b1)との摺動接触面、および第2偏心カム14と第2クランク部材16(挿通孔16b1)との摺動接触面における高い潤滑性能が実現される。 In thepower transmission device 10 configured as described above, friction occurs in various portions including sliding contact surfaces between the crank members 15 and 16 and the eccentric cams 13 and 14 and the connecting pins 4a and 5a. Therefore, each of the sliding contact portions is lubricated by filling each of the storage chambers 3a to 3c with a lubricant such as grease.
In the present embodiment, the drivengear 12, the first eccentric cam 13, and the second eccentric cam 14 are configured as follows, so that the first eccentric cam 13 and the first crank member 15 (insertion hole 15b 1 ) High lubrication performance is realized on the sliding contact surface and the sliding contact surface between the second eccentric cam 14 and the second crank member 16 (insertion hole 16b 1 ).
本実施形態においては、従動ギヤ12、第1偏心カム13および第2偏心カム14を次のように構成することで、第1偏心カム13と第1クランク部材15(挿通孔15b1)との摺動接触面、および第2偏心カム14と第2クランク部材16(挿通孔16b1)との摺動接触面における高い潤滑性能が実現される。 In the
In the present embodiment, the driven
図3は、従動ギヤ12、第1偏心カム13および第2偏心カム14の展開斜視図である。図3に示すように、従動ギヤ12は、周囲に所定のピッチで歯を有する金属製の薄板円形部材からなるギヤ板50~55(本発明の回転板またはギヤ板)を、複数枚(本実施形態においては6枚)厚さ方向に積層して構成される。本実施形態においては、ギヤ板50,55が同一部材であり、ギヤ板51~54が同一部材であるが、これら全てのギヤ板50~55は、歯のピッチを等しくしている。そして、歯面が一致するようにギヤ板50~55を厚さ方向に積層して溶着することで、従動ギヤ12が構成されることとなる。
3 is an exploded perspective view of the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14. FIG. As shown in FIG. 3, the driven gear 12 includes a plurality of gear plates 50 to 55 (rotary plates or gear plates of the present invention) made of metal thin circular members having teeth around the periphery at a predetermined pitch. In the embodiment, 6 sheets) are stacked in the thickness direction. In the present embodiment, the gear plates 50 and 55 are the same member, and the gear plates 51 to 54 are the same member, but all the gear plates 50 to 55 have the same tooth pitch. The driven gear 12 is constructed by laminating and welding the gear plates 50 to 55 in the thickness direction so that the tooth surfaces coincide with each other.
ギヤ板50,55には、その平面を貫通する湾曲した楕円形状の貫通孔50a,55aが外周近傍に形成されており、また、貫通孔50a,55aの近傍には、小径の導入孔50b,55bが形成されている。
また、ギヤ板51~54には、その平面を貫通する貫通孔51a~54aおよび貫通孔51b~54bが外周近傍に形成されている。貫通孔51a~54aは、ギヤ板51~54の周面に沿って湾曲する弧状(三日月形状)の孔からなり、その長さを上記ギヤ板50,55に形成された貫通孔50a,55aよりも長く(約2倍)している。一方、貫通孔51b~54bは、上記貫通孔51a~54aに対面する位置、すなわち、貫通孔51a~54aからギヤ板51~54の回転方向に180度位相をずらした位置に設けられている。これら貫通孔51b~54bは、その幅、長さがともに貫通孔51a~54aよりも小さく形成されている。
なお、各ギヤ板50~55には、その中心にそれぞれ軸孔21が形成されており、また、上記の各貫通孔50a~55aおよび貫通孔51b~54bは、軸孔21からの距離を等しくしている。 In the gear plates 50 and 55, curved elliptical through holes 50a and 55a penetrating the plane are formed in the vicinity of the outer periphery, and in the vicinity of the through holes 50a and 55a, small diameter introduction holes 50b, 55b is formed.
Further, thegear plates 51 to 54 are formed with through holes 51a to 54a and through holes 51b to 54b penetrating the planes in the vicinity of the outer periphery. The through holes 51a to 54a are arc-shaped (crescent-shaped) holes that are curved along the peripheral surfaces of the gear plates 51 to 54, and the length of the through holes is from the through holes 50a and 55a formed in the gear plates 50 and 55. Is longer (about twice). On the other hand, the through holes 51b to 54b are provided at positions facing the through holes 51a to 54a, that is, positions shifted in phase by 180 degrees from the through holes 51a to 54a in the rotation direction of the gear plates 51 to 54. These through-holes 51b to 54b are formed to be smaller in width and length than the through-holes 51a to 54a.
Each of thegear plates 50 to 55 is formed with a shaft hole 21 at the center thereof, and each of the through holes 50a to 55a and the through holes 51b to 54b has the same distance from the shaft hole 21. is doing.
また、ギヤ板51~54には、その平面を貫通する貫通孔51a~54aおよび貫通孔51b~54bが外周近傍に形成されている。貫通孔51a~54aは、ギヤ板51~54の周面に沿って湾曲する弧状(三日月形状)の孔からなり、その長さを上記ギヤ板50,55に形成された貫通孔50a,55aよりも長く(約2倍)している。一方、貫通孔51b~54bは、上記貫通孔51a~54aに対面する位置、すなわち、貫通孔51a~54aからギヤ板51~54の回転方向に180度位相をずらした位置に設けられている。これら貫通孔51b~54bは、その幅、長さがともに貫通孔51a~54aよりも小さく形成されている。
なお、各ギヤ板50~55には、その中心にそれぞれ軸孔21が形成されており、また、上記の各貫通孔50a~55aおよび貫通孔51b~54bは、軸孔21からの距離を等しくしている。 In the
Further, the
Each of the
上記の構成からなる6枚のギヤ板50~55は、図3に示すように、回転方向に少しずつ位相をずらして積層される。具体的には、ギヤ板50とギヤ板55とが回転方向に180度位相をずらしており、ギヤ板50の貫通孔50aおよびギヤ板55の貫通孔55aが、180度位相をずらして臨むようにしている。
また、ギヤ板51は、貫通孔51aがギヤ板50の貫通孔50aおよび導入孔50bに臨むように配置され、ギヤ板54は、貫通孔54aがギヤ板55の貫通孔55aおよび導入孔55bに臨むように配置される。これにより、ギヤ板50の貫通孔50aおよび導入孔50bは、ギヤ板51の貫通孔51aを介して連通することとなり、ギヤ板55の貫通孔55aおよび導入孔55bは、ギヤ板54の貫通孔54aを介して連通することとなる。 As shown in FIG. 3, the sixgear plates 50 to 55 having the above-described configuration are stacked with their phases slightly shifted in the rotational direction. Specifically, the gear plate 50 and the gear plate 55 are 180 degrees out of phase in the rotational direction, and the through hole 50a of the gear plate 50 and the through hole 55a of the gear plate 55 face each other with a 180 degree phase shift. Yes.
Thegear plate 51 is disposed so that the through hole 51a faces the through hole 50a and the introduction hole 50b of the gear plate 50, and the gear plate 54 has the through hole 54a in the through hole 55a and the introduction hole 55b of the gear plate 55. Arranged to face. Thus, the through hole 50a and the introduction hole 50b of the gear plate 50 communicate with each other via the through hole 51a of the gear plate 51, and the through hole 55a and the introduction hole 55b of the gear plate 55 are communicated with the through hole of the gear plate 54. It will communicate via 54a.
また、ギヤ板51は、貫通孔51aがギヤ板50の貫通孔50aおよび導入孔50bに臨むように配置され、ギヤ板54は、貫通孔54aがギヤ板55の貫通孔55aおよび導入孔55bに臨むように配置される。これにより、ギヤ板50の貫通孔50aおよび導入孔50bは、ギヤ板51の貫通孔51aを介して連通することとなり、ギヤ板55の貫通孔55aおよび導入孔55bは、ギヤ板54の貫通孔54aを介して連通することとなる。 As shown in FIG. 3, the six
The
そして、ギヤ板52およびギヤ板53は、それらに形成される貫通孔52aおよび貫通孔53aが部分的に臨む範囲内で、言い換えれば、貫通孔52aおよび貫通孔53aが連通する範囲内で回転方向に位相をずらして配置される。しかも、このとき、ギヤ板52は、その貫通孔52aがギヤ板51の貫通孔51aにも連通するように配置され、ギヤ板53は、その貫通孔53aがギヤ板54の貫通孔54aにも連通するように配置される。つまり、ギヤ板51~ギヤ板54を回転方向に少しずつ位相をずらして配置することにより、全てのギヤ板50~55の貫通孔50a~55aが連通することとなる。
The gear plate 52 and the gear plate 53 are rotated in a range in which the through hole 52a and the through hole 53a formed in the gear plate 52 and the through hole 53a partially face, in other words, in a range in which the through hole 52a and the through hole 53a communicate with each other. Are arranged out of phase. In addition, at this time, the gear plate 52 is arranged so that the through hole 52 a communicates with the through hole 51 a of the gear plate 51, and the gear plate 53 has the through hole 53 a also connected to the through hole 54 a of the gear plate 54. It arrange | positions so that it may communicate. That is, by disposing the gear plates 51 to 54 with their phases slightly shifted in the rotation direction, the through holes 50a to 55a of all the gear plates 50 to 55 are communicated.
このようにして各ギヤ板50~55を溶着すると、図4に示すように、従動ギヤ12が構成される。この従動ギヤ12によれば、貫通孔50a~55aによって連通路60が形成され、この連通路60が、従動ギヤ12の第1の面12a側および第2の面12b側に開口(60a)することとなる。また、上記したとおり、ギヤ板50の導入孔50bは、ギヤ板51の貫通孔51aに臨んでおり、ギヤ板55の導入孔55bは、ギヤ板54の貫通孔54aに臨んでいる(図3)。したがって、ギヤ板50の導入孔50bおよびギヤ板55の導入孔55bは、いずれも連通路60に連通することとなる。
なお、ギヤ板51~54に形成された貫通孔51b~54bは、ギヤ板50,55の平面によって塞がれるため、各ギヤ板50~55を積層して従動ギヤ12が構成された状態では確認することができない。 When thegear plates 50 to 55 are welded in this manner, the driven gear 12 is configured as shown in FIG. According to the driven gear 12, the communication path 60 is formed by the through holes 50a to 55a, and the communication path 60 opens (60a) on the first surface 12a side and the second surface 12b side of the driven gear 12. It will be. As described above, the introduction hole 50b of the gear plate 50 faces the through hole 51a of the gear plate 51, and the introduction hole 55b of the gear plate 55 faces the through hole 54a of the gear plate 54 (FIG. 3). ). Therefore, both the introduction hole 50 b of the gear plate 50 and the introduction hole 55 b of the gear plate 55 communicate with the communication path 60.
Since the throughholes 51b to 54b formed in the gear plates 51 to 54 are blocked by the planes of the gear plates 50 and 55, in the state where the driven gear 12 is configured by laminating the gear plates 50 to 55, respectively. I can't confirm.
なお、ギヤ板51~54に形成された貫通孔51b~54bは、ギヤ板50,55の平面によって塞がれるため、各ギヤ板50~55を積層して従動ギヤ12が構成された状態では確認することができない。 When the
Since the through
また、図3に示すように、第1偏心カム13および第2偏心カム14は、上記各ギヤ板50~55よりも小径の金属製の薄板円形部材からなるカム板を、複数枚(本実施形態においては4枚)厚さ方向に積層して構成される。本実施形態においては、カム板70~73を厚さ方向に積層して第1偏心カム13を構成し、カム板74~77を厚さ方向に積層して第2偏心カム14を構成しているが、これらカム板70~77は全て同一部材である。
カム板70~77は、その直径がギヤ板50~55の約半分程度に形成されており、厚さはギヤ板50~55とほぼ等しい。カム板70~77は、その中心からずらした位置に、上記回転軸22を挿通させるための軸孔21が形成されている。
また、カム板70~77の外周面には、その一部を切り欠いた切り欠き70a~77aが形成されている。 As shown in FIG. 3, each of the firsteccentric cam 13 and the second eccentric cam 14 includes a plurality of cam plates made of a thin metal circular member having a smaller diameter than the gear plates 50 to 55 (this embodiment). 4 in the form) are stacked in the thickness direction. In the present embodiment, cam plates 70 to 73 are stacked in the thickness direction to form the first eccentric cam 13, and cam plates 74 to 77 are stacked in the thickness direction to form the second eccentric cam 14. These cam plates 70 to 77 are all the same member.
Thecam plates 70 to 77 are approximately half the diameter of the gear plates 50 to 55, and the thickness thereof is substantially equal to that of the gear plates 50 to 55. The cam plates 70 to 77 are formed with shaft holes 21 through which the rotary shaft 22 is inserted at positions shifted from the centers thereof.
Further,notches 70a to 77a are formed on the outer peripheral surfaces of the cam plates 70 to 77 by partially cutting away them.
カム板70~77は、その直径がギヤ板50~55の約半分程度に形成されており、厚さはギヤ板50~55とほぼ等しい。カム板70~77は、その中心からずらした位置に、上記回転軸22を挿通させるための軸孔21が形成されている。
また、カム板70~77の外周面には、その一部を切り欠いた切り欠き70a~77aが形成されている。 As shown in FIG. 3, each of the first
The
Further,
そして、第1偏心カム13は、上記のカム板70~73を、軸孔21および切り欠き70a~73aを一致させた状態で溶着して構成され、同様に、第2偏心カム14は、上記のカム板74~77を、軸孔21および切り欠き74a~77aを一致させた状態で溶着して構成される。
また、第1偏心カム13および第2偏心カム14は、従動ギヤ12の第1の面12aおよび第2の面12bにそれぞれ固定されるが、この固定方法も溶着によってなされている。したがって、本実施形態においては、ギヤ板50~55およびカム板70~77が全て溶着によって積層され、従動ギヤ12、第1偏心カム13および第2偏心カム14が一体に構成される。 The firsteccentric cam 13 is configured by welding the cam plates 70 to 73 in a state where the shaft hole 21 and the notches 70a to 73a are aligned. Similarly, the second eccentric cam 14 includes The cam plates 74 to 77 are welded with the shaft hole 21 and the notches 74a to 77a being aligned.
The firsteccentric cam 13 and the second eccentric cam 14 are fixed to the first surface 12a and the second surface 12b of the driven gear 12, respectively. This fixing method is also performed by welding. Therefore, in the present embodiment, the gear plates 50 to 55 and the cam plates 70 to 77 are all laminated by welding, and the driven gear 12, the first eccentric cam 13, and the second eccentric cam 14 are integrally configured.
また、第1偏心カム13および第2偏心カム14は、従動ギヤ12の第1の面12aおよび第2の面12bにそれぞれ固定されるが、この固定方法も溶着によってなされている。したがって、本実施形態においては、ギヤ板50~55およびカム板70~77が全て溶着によって積層され、従動ギヤ12、第1偏心カム13および第2偏心カム14が一体に構成される。 The first
The first
なお、図4に示すように、カム板70~73の切り欠き70a~73aによって形成される第1偏心カム13の切り欠きを凹部13aとし、カム板74~77の切り欠き74a~77aによって形成される第2偏心カム14の切り欠きを凹部14aとする。
そして、第1偏心カム13は、上記の凹部13aを導入孔50bに一致させて、従動ギヤ12の第1の面12a(ギヤ板50)に溶着される。同様に、第2偏心カム14は、上記の凹部14aを導入孔55bに一致させて、従動ギヤ12の第2の面12b(ギヤ板55)に溶着される。これにより、第1偏心カム13および第2偏心カム14に設けられた凹部13a,14aは、いずれも導入孔50b,55bを介して、連通路60に連通する。 As shown in FIG. 4, the notch of the firsteccentric cam 13 formed by the notches 70a to 73a of the cam plates 70 to 73 is defined as the recess 13a, and the notches 74a to 77a of the cam plates 74 to 77 are formed. The notch of the second eccentric cam 14 is defined as a recess 14a.
The firsteccentric cam 13 is welded to the first surface 12a (gear plate 50) of the driven gear 12 with the recess 13a aligned with the introduction hole 50b. Similarly, the second eccentric cam 14 is welded to the second surface 12b (gear plate 55) of the driven gear 12 with the recess 14a aligned with the introduction hole 55b. Accordingly, the recesses 13a and 14a provided in the first eccentric cam 13 and the second eccentric cam 14 both communicate with the communication path 60 through the introduction holes 50b and 55b.
そして、第1偏心カム13は、上記の凹部13aを導入孔50bに一致させて、従動ギヤ12の第1の面12a(ギヤ板50)に溶着される。同様に、第2偏心カム14は、上記の凹部14aを導入孔55bに一致させて、従動ギヤ12の第2の面12b(ギヤ板55)に溶着される。これにより、第1偏心カム13および第2偏心カム14に設けられた凹部13a,14aは、いずれも導入孔50b,55bを介して、連通路60に連通する。 As shown in FIG. 4, the notch of the first
The first
次に、上記の構成からなる従動ギヤ12が、従動ギヤ収容室3b内で回転した状態を、図5を用いて説明する。
図5(a1)~(d1)は、従動ギヤ12、第1偏心カム13および第1クランク部材15を、従動ギヤ12の第1の面12a側から見た状態を示す図である。また、図5(a2)~(d2)は、従動ギヤ12、第2偏心カム14および第2クランク部材16を、従動ギヤ12の第1の面12a側から見た状態、つまり、図5(a1)~(d1)と同一方向から見た状態を示す図である。ただし、図5(a2)~(d2)は、図5(a1)~(d1)との相対位置変位を説明する都合上、第2偏心カム14および第2クランク部材16を実線で示している。
また、従動ギヤ収容室3bは、従動ギヤ12によって、当該従動ギヤ12の第1の面12a側の空間と、従動ギヤ12の第2の面12b側の空間とに仕切られる。ここでは、従動ギヤ12の第1の面12a側に形成される空間を第1空間80とし、従動ギヤ12の第2の面12b側に形成される空間を第2空間90として説明する(図1、図2参照)。 Next, a state where the drivengear 12 having the above-described configuration is rotated in the driven gear accommodating chamber 3b will be described with reference to FIG.
5 (a 1 ) to (d 1 ) are views showing the drivengear 12, the first eccentric cam 13 and the first crank member 15 as viewed from the first surface 12a side of the driven gear 12. FIG. 5 (a 2 ) to (d 2 ) show a state in which the driven gear 12, the second eccentric cam 14 and the second crank member 16 are viewed from the first surface 12a side of the driven gear 12, that is, FIG. FIG. 5 is a diagram showing a state viewed from the same direction as 5 (a 1 ) to (d 1 ). However, in FIGS. 5 (a 2 ) to (d 2 ), the second eccentric cam 14 and the second crank member 16 are shown as solid lines for the convenience of explaining the relative position displacement with respect to FIGS. 5 (a 1 ) to (d 1 ). Is shown.
The drivengear housing chamber 3 b is partitioned by the driven gear 12 into a space on the first surface 12 a side of the driven gear 12 and a space on the second surface 12 b side of the driven gear 12. Here, the space formed on the first surface 12a side of the driven gear 12 will be described as a first space 80, and the space formed on the second surface 12b side of the driven gear 12 will be described as a second space 90 (FIG. 1, see FIG.
図5(a1)~(d1)は、従動ギヤ12、第1偏心カム13および第1クランク部材15を、従動ギヤ12の第1の面12a側から見た状態を示す図である。また、図5(a2)~(d2)は、従動ギヤ12、第2偏心カム14および第2クランク部材16を、従動ギヤ12の第1の面12a側から見た状態、つまり、図5(a1)~(d1)と同一方向から見た状態を示す図である。ただし、図5(a2)~(d2)は、図5(a1)~(d1)との相対位置変位を説明する都合上、第2偏心カム14および第2クランク部材16を実線で示している。
また、従動ギヤ収容室3bは、従動ギヤ12によって、当該従動ギヤ12の第1の面12a側の空間と、従動ギヤ12の第2の面12b側の空間とに仕切られる。ここでは、従動ギヤ12の第1の面12a側に形成される空間を第1空間80とし、従動ギヤ12の第2の面12b側に形成される空間を第2空間90として説明する(図1、図2参照)。 Next, a state where the driven
5 (a 1 ) to (d 1 ) are views showing the driven
The driven
すでに説明したとおり、第1偏心カム13と第2偏心カム14とは、従動ギヤ12の回転方向に180度位相をずらして設けられているので、第1偏心カム13が図5(a1)に示す位置にあるとき、第2偏心カム14は図5(a2)に示す位置にある。この状態では、第1クランク部材15がもっとも従動ギヤ収容室3bから突出するとともに、第2クランク部材16はもっとも従動ギヤ収容室3bに没入している。
As already described, since the first eccentric cam 13 and the second eccentric cam 14 are provided with a phase difference of 180 degrees in the rotational direction of the driven gear 12, the first eccentric cam 13 is shown in FIG. 5 (a 1 ). The second eccentric cam 14 is in the position shown in FIG. 5 (a 2 ). In this state, the first crank member 15 protrudes most from the driven gear housing chamber 3b, and the second crank member 16 is most immersed in the driven gear housing chamber 3b.
また、従動ギヤ12の第1の面12aを構成するギヤ板50、および従動ギヤ12の第2の面12bを構成するギヤ板55も、当該従動ギヤ12の回転方向に180度位相をずらして配置されている。したがって、従動ギヤ12を貫通して第1の面12aと第2の面12bとを連通する連通路60の開口、すなわち貫通孔50aおよび貫通孔55aも、図5(a1)および図5(a2)に示すように、180度位相をずらして位置している。
なお、この状態では、図5(a2)に示すように、第2空間90が、第2クランク部材16によって第1の室90aと第2の室90bとに仕切られており、このときの両室90a,90bの容積はほぼ等しい。そして、従動ギヤ12の第2の面12bにおける連通路60の開口は、第1の室90aに臨んでいる。 Further, thegear plate 50 constituting the first surface 12 a of the driven gear 12 and the gear plate 55 constituting the second surface 12 b of the driven gear 12 are also shifted by 180 degrees in the rotational direction of the driven gear 12. Has been placed. Accordingly, the opening of the communication passage 60 for communicating the first surface 12a and second surface 12b through the driven gear 12, i.e., the through hole 50a and the through hole 55a, FIG. 5 (a 1) and 5 ( As shown in a 2 ), the phase is shifted by 180 degrees.
In this state, as shown in FIG. 5 (a 2 ), thesecond space 90 is partitioned into the first chamber 90a and the second chamber 90b by the second crank member 16, and at this time The volumes of both chambers 90a and 90b are substantially equal. The opening of the communication path 60 in the second surface 12b of the driven gear 12 faces the first chamber 90a.
なお、この状態では、図5(a2)に示すように、第2空間90が、第2クランク部材16によって第1の室90aと第2の室90bとに仕切られており、このときの両室90a,90bの容積はほぼ等しい。そして、従動ギヤ12の第2の面12bにおける連通路60の開口は、第1の室90aに臨んでいる。 Further, the
In this state, as shown in FIG. 5 (a 2 ), the
上記の状態から、従動ギヤ12が図中矢印方向に90度回転すると、第1偏心カム13が位置変位するとともに第1クランク部材15が揺動し、図5(b1)に示す状態となる。このとき、第1空間80は、第1クランク部材15によって第1の室80aと第2の室80bとに仕切られる。図5(b1)に示す状態では、第1の室80aは第2の室80bに比べて容積が大きく、従動ギヤ12の第1の面12aにおける連通路60の開口は、第1の室80aに臨んでいる。
一方、上記のように従動ギヤ12が回転すると、図5(b2)に示すように、第2偏心カム14が位置変位して第2クランク部材16が揺動し、第1の室90aが収縮するとともに、第2の室90bが拡大する。この図5(b2)に示す状態では、連通路60の開口(貫通孔55a)は、その大半が第2クランク部材16によって塞がれるものの、その一部を第1の室90aに臨ませている。 From the above state, when the drivengear 12 rotates 90 degrees in the direction of the arrow in the drawing, the first eccentric cam 13 is displaced and the first crank member 15 swings, resulting in the state shown in FIG. 5 (b 1 ). . At this time, the first space 80 is partitioned by the first crank member 15 into a first chamber 80a and a second chamber 80b. In the state shown in FIG. 5 (b 1 ), the first chamber 80a has a larger volume than the second chamber 80b, and the opening of the communication passage 60 in the first surface 12a of the driven gear 12 is not in the first chamber. It faces 80a.
On the other hand, the drivengear 12 as described above is rotated, as shown in FIG. 5 (b 2), the second eccentric cam 14 is swung and the second crank member 16 is positioned displaced, the first chamber 90a While contracting, the second chamber 90b expands. In the state shown in FIG. 5 (b 2 ), most of the opening (through hole 55a) of the communication passage 60 is closed by the second crank member 16, but part of the opening faces the first chamber 90a. ing.
一方、上記のように従動ギヤ12が回転すると、図5(b2)に示すように、第2偏心カム14が位置変位して第2クランク部材16が揺動し、第1の室90aが収縮するとともに、第2の室90bが拡大する。この図5(b2)に示す状態では、連通路60の開口(貫通孔55a)は、その大半が第2クランク部材16によって塞がれるものの、その一部を第1の室90aに臨ませている。 From the above state, when the driven
On the other hand, the driven
従動ギヤ収容室3bすなわち空間80,90には、グリス等の潤滑剤が満たされているため、上記のように第1の室90aの容積が収縮すると、この容積の収縮にともなって第1の室90a内の圧力が上昇する。そして、第1の室90a内の圧力が上昇すると、ポンプ作用によって、第1の室90aに臨む連通路60の開口(貫通孔55a)から連通路60へと潤滑剤が吐出される。
このようにして連通路60へと潤滑剤が吐出されると、連通路60に連通する第2偏心カム14の凹部14aに潤滑剤が導かれるため、第2偏心カム14と第2クランク部材16との摺動接触面が潤滑される。 Since the drivengear storage chamber 3b, that is, the spaces 80 and 90 are filled with a lubricant such as grease, when the volume of the first chamber 90a contracts as described above, the first chamber 90b contracts as the volume decreases. The pressure in the chamber 90a increases. When the pressure in the first chamber 90a rises, the lubricant is discharged from the opening (through hole 55a) of the communication passage 60 facing the first chamber 90a to the communication passage 60 by a pump action.
When the lubricant is discharged to thecommunication path 60 in this way, the lubricant is guided to the concave portion 14a of the second eccentric cam 14 communicating with the communication path 60. Therefore, the second eccentric cam 14 and the second crank member 16 are guided. The sliding contact surface with is lubricated.
このようにして連通路60へと潤滑剤が吐出されると、連通路60に連通する第2偏心カム14の凹部14aに潤滑剤が導かれるため、第2偏心カム14と第2クランク部材16との摺動接触面が潤滑される。 Since the driven
When the lubricant is discharged to the
また、上記の状態では、図5(b1)に示すように第1偏心カム13が位置するとともに、従動ギヤ12の第1の面12a側における連通路60の開口(貫通孔50a)を、第1の室80aに臨ませている。このとき、第1の面12a側に形成される第1の室80aは、第2の面12b側に形成される第1の室90aに比べて容積が大きく、その圧力が低い。したがって、従動ギヤ12の第2の面12b側から連通路60に吐出された潤滑剤は、当該連通路60を介して第1の面12a側の第1の室80aにも吐出されることとなる。そして、すでに説明したとおり、連通路60には第1偏心カム13に形成された凹部13aも連通しているため、潤滑剤は、第1の室80aへと吐出される過程で、凹部13aにも同時に導かれる。
Further, in the above state, the first eccentric cam 13 is positioned as shown in FIG. 5 (b 1 ), and the opening (through hole 50a) of the communication passage 60 on the first surface 12a side of the driven gear 12 is It faces the first chamber 80a. At this time, the first chamber 80a formed on the first surface 12a side has a larger volume and a lower pressure than the first chamber 90a formed on the second surface 12b side. Therefore, the lubricant discharged from the second surface 12b side of the driven gear 12 to the communication path 60 is also discharged to the first chamber 80a on the first surface 12a side through the communication path 60. Become. And as already explained, since the recess 13a formed in the first eccentric cam 13 communicates with the communication path 60, the lubricant is discharged into the recess 13a in the process of being discharged into the first chamber 80a. Is also guided at the same time.
このように、本実施形態においては、連通路60が、従動ギヤ12の第1の面12a側に位置する第1の室80aと、従動ギヤ12の第2の面12b側に位置する第1の室90aとに連通しているので、容積の収縮にともなって潤滑剤が連通路60に吐出されやすくなる。そして、第1の室90aの容積の収縮にともなって、第1偏心カム13と第1クランク部材15との摺動接触面、および第2偏心カム14と第2クランク部材16との摺動接触面を同時に潤滑することができ、潤滑性能を極めて高めることが可能となる。
なお、従動ギヤ収容室3bとブレード収容室3cとの境目に仕切り壁を設け、従動ギヤ収容室3bから潤滑剤が漏れないようにするのが一般的であるが、このとき、仕切り壁は、第1の室90aの昇圧作用によって長期的に破壊されるおそれがある。しかしながら、本実施形態のように、従動ギヤ12の反対側面において相対的に圧力の低い第1の室80aに潤滑剤が吐出されるようにすれば、第1の室90a内が高圧になるのを防ぐことができる。つまり、連通路60は、第1の室90a内の圧力が高圧になりすぎないように、圧抜き作用をも同時にもたらすこととなり、その結果、ケース3の損傷を低減することとなる。 As described above, in the present embodiment, thecommunication path 60 includes the first chamber 80a positioned on the first surface 12a side of the driven gear 12 and the first surface positioned on the second surface 12b side of the driven gear 12. Therefore, the lubricant is easily discharged into the communication passage 60 as the volume contracts. As the volume of the first chamber 90a contracts, the sliding contact surface between the first eccentric cam 13 and the first crank member 15 and the sliding contact between the second eccentric cam 14 and the second crank member 16 are obtained. The surfaces can be lubricated simultaneously, and the lubrication performance can be greatly enhanced.
In general, a partition wall is provided at the boundary between the drivengear storage chamber 3b and the blade storage chamber 3c so that the lubricant does not leak from the driven gear storage chamber 3b. There is a risk of long-term destruction due to the pressure increasing action of the first chamber 90a. However, if the lubricant is discharged into the first chamber 80a having a relatively low pressure on the opposite side surface of the driven gear 12 as in the present embodiment, the pressure in the first chamber 90a becomes high. Can be prevented. That is, the communication path 60 also provides a pressure releasing action so that the pressure in the first chamber 90a does not become too high, and as a result, damage to the case 3 is reduced.
なお、従動ギヤ収容室3bとブレード収容室3cとの境目に仕切り壁を設け、従動ギヤ収容室3bから潤滑剤が漏れないようにするのが一般的であるが、このとき、仕切り壁は、第1の室90aの昇圧作用によって長期的に破壊されるおそれがある。しかしながら、本実施形態のように、従動ギヤ12の反対側面において相対的に圧力の低い第1の室80aに潤滑剤が吐出されるようにすれば、第1の室90a内が高圧になるのを防ぐことができる。つまり、連通路60は、第1の室90a内の圧力が高圧になりすぎないように、圧抜き作用をも同時にもたらすこととなり、その結果、ケース3の損傷を低減することとなる。 As described above, in the present embodiment, the
In general, a partition wall is provided at the boundary between the driven
上記図5(b1)および図5(b2)に示す状態から、さらに従動ギヤ12が90度回転すると、図5(c1)および図5(c2)に示す状態となる。この状態では、図5(c1)に示すように、第1空間80は、第1クランク部材15によって第1の室80aと第2の室80bとに仕切られており、このときの両室80a,80bの容積はほぼ等しい。また、このとき、図5(c2)に示すように、第2空間90は、第2クランク部材16によって仕切られていない。
When the driven gear 12 further rotates 90 degrees from the state shown in FIG. 5 (b 1 ) and FIG. 5 (b 2 ), the state shown in FIG. 5 (c 1 ) and FIG. 5 (c 2 ) is obtained. In this state, as shown in FIG. 5 (c 1 ), the first space 80 is partitioned into a first chamber 80a and a second chamber 80b by the first crank member 15, and both chambers at this time The volumes of 80a and 80b are almost equal. At this time, as shown in FIG. 5C 2 , the second space 90 is not partitioned by the second crank member 16.
そして、さらに従動ギヤ12が90度回転すると、図5(d1)および図5(d2)に示す状態となる。図5(d1)に示すように、今度は従動ギヤ12の第1の面12a側において、第1偏心カム13および第1クランク部材15が位置変位して第1の室80aが収縮する。この図5(d1)に示す状態では、連通路60の開口(貫通孔50a)は、その大半が第1クランク部材15によって塞がれるものの、その一部を第1の室80aに臨ませている。
上記のように第1の室80aの容積が収縮すると、この容積の収縮にともなって第1の室80a内の圧力が上昇する。そして、第1の室80aの圧力が上昇すると、ポンプ作用によって、第1の室80aに臨む連通路60の開口(貫通孔50a)から連通路60へと潤滑剤が吐出される。
このようにして連通路60へと潤滑剤が吐出されると、連通路60に連通する第1偏心カム13の凹部13aに潤滑剤が導かれるため、第1偏心カム13と第1クランク部材15との摺動接触面が潤滑される。 When the drivengear 12 further rotates 90 degrees, the state shown in FIG. 5 (d 1 ) and FIG. 5 (d 2 ) is obtained. As shown in FIG. 5 (d 1 ), the first eccentric cam 13 and the first crank member 15 are now displaced on the first surface 12a side of the driven gear 12 and the first chamber 80a contracts. In the state shown in FIG. 5 (d 1 ), most of the opening (through hole 50a) of the communication passage 60 is closed by the first crank member 15, but a part of the opening faces the first chamber 80a. ing.
When the volume of thefirst chamber 80a contracts as described above, the pressure in the first chamber 80a increases as the volume contracts. When the pressure in the first chamber 80a increases, the lubricant is discharged from the opening (through hole 50a) of the communication passage 60 facing the first chamber 80a to the communication passage 60 by a pump action.
When the lubricant is discharged into thecommunication path 60 in this way, the lubricant is guided to the concave portion 13a of the first eccentric cam 13 communicating with the communication path 60. Therefore, the first eccentric cam 13 and the first crank member 15 are guided. The sliding contact surface with is lubricated.
上記のように第1の室80aの容積が収縮すると、この容積の収縮にともなって第1の室80a内の圧力が上昇する。そして、第1の室80aの圧力が上昇すると、ポンプ作用によって、第1の室80aに臨む連通路60の開口(貫通孔50a)から連通路60へと潤滑剤が吐出される。
このようにして連通路60へと潤滑剤が吐出されると、連通路60に連通する第1偏心カム13の凹部13aに潤滑剤が導かれるため、第1偏心カム13と第1クランク部材15との摺動接触面が潤滑される。 When the driven
When the volume of the
When the lubricant is discharged into the
また、上記の状態では、図5(d2)に示すように第2偏心カム14が位置するとともに、従動ギヤ12の第2の面12b側における連通路60の開口(貫通孔55a)を、第1の室90aに臨ませている。このとき、第2の面12b側に形成される第1の室90aは、第1の面12a側に形成される第1の室80aに比べて容積が大きく、その圧力が低い。したがって、従動ギヤ12の第1の面12a側から連通路60に吐出された潤滑剤は、当該連通路60を介して第2の面12b側の第1の室90aにも吐出されることとなる。そして、すでに説明したとおり、連通路60には第2偏心カム14に形成された凹部14aも連通しているため、潤滑剤は、第1の室90aへと吐出される過程で、凹部14aにも同時に導かれることとなる。
Further, in the above state, as shown in FIG. 5 (d 2 ), the second eccentric cam 14 is positioned, and the opening (through hole 55a) of the communication passage 60 on the second surface 12b side of the driven gear 12 is It faces the first chamber 90a. At this time, the first chamber 90a formed on the second surface 12b side has a larger volume and a lower pressure than the first chamber 80a formed on the first surface 12a side. Therefore, the lubricant discharged from the first surface 12a side of the driven gear 12 to the communication path 60 is also discharged to the first chamber 90a on the second surface 12b side via the communication path 60. Become. As already described, since the recess 14a formed in the second eccentric cam 14 communicates with the communication path 60, the lubricant is discharged into the recess 14a in the process of being discharged into the first chamber 90a. Will be guided at the same time.
以上のように、本実施形態においては、従動ギヤ12が1回転する間に、当該従動ギヤ12の両面からそれぞれ1回ずつ連通路60に潤滑剤が吐出される。そして、この連通路60には、第1偏心カム13の凹部13aと第2偏心カム14の凹部14aとが連通している。したがって、従動ギヤ12が1回転する間に、第1偏心カム13の凹部13aと、第2偏心カム14の凹部14aとに、それぞれ2回ずつ潤滑剤が導かれることとなり、両偏心カム13,14と、両クランク部材15,16との摺動接触面に確実かつ大量に潤滑剤を供給することができる。
As described above, in the present embodiment, the lubricant is discharged from the both surfaces of the driven gear 12 to the communication path 60 once each while the driven gear 12 rotates once. The communication path 60 communicates with the recess 13 a of the first eccentric cam 13 and the recess 14 a of the second eccentric cam 14. Therefore, while the driven gear 12 makes one rotation, the lubricant is guided twice to the concave portion 13a of the first eccentric cam 13 and the concave portion 14a of the second eccentric cam 14, respectively. 14 and the sliding contact surface between the crank members 15 and 16 can be reliably supplied in a large amount.
また、本実施形態によれば、連通路60によって、両偏心カム13,14と両クランク部材15,16との摺動接触面の潤滑作用のみならず、従動ギヤ収容室3b内の所定箇所の圧抜き作用や軽量化をも同時に実現される。
そして、両偏心カム13,14や両クランク部材15,16が変更されたり、ケース3の形状等が変更されたりすると、凹部13a,14aに潤滑剤を供給するための連通路60の最適な開口位置が異なる。本実施形態においては、両偏心カム13,14を従動ギヤ12に溶着する際に、両偏心カム13,14と従動ギヤ12との相対位置を変更するだけで、最適な位置に連通路60を開口させることができる。したがって、設計変更等が生じても、同一のギヤ板を利用して従動ギヤ12を構成することが可能となり、在庫管理が容易となるばかりか、高い潤滑性能を維持することができる。 Further, according to the present embodiment, not only the sliding action of the sliding contact surfaces between the eccentric cams 13 and 14 and the crank members 15 and 16 but also the predetermined location in the driven gear accommodating chamber 3b is achieved by the communication passage 60. Pressure relief and weight reduction are realized at the same time.
When the eccentric cams 13 and 14 and the crank members 15 and 16 are changed or the shape of the case 3 is changed, the optimum opening of the communication passage 60 for supplying the lubricant to the recesses 13a and 14a. The position is different. In the present embodiment, when the eccentric cams 13 and 14 are welded to the driven gear 12, the communication path 60 is formed at an optimal position by simply changing the relative positions of the eccentric cams 13 and 14 and the driven gear 12. It can be opened. Therefore, even if a design change or the like occurs, it is possible to configure the driven gear 12 using the same gear plate, which facilitates inventory management and maintains high lubrication performance.
そして、両偏心カム13,14や両クランク部材15,16が変更されたり、ケース3の形状等が変更されたりすると、凹部13a,14aに潤滑剤を供給するための連通路60の最適な開口位置が異なる。本実施形態においては、両偏心カム13,14を従動ギヤ12に溶着する際に、両偏心カム13,14と従動ギヤ12との相対位置を変更するだけで、最適な位置に連通路60を開口させることができる。したがって、設計変更等が生じても、同一のギヤ板を利用して従動ギヤ12を構成することが可能となり、在庫管理が容易となるばかりか、高い潤滑性能を維持することができる。 Further, according to the present embodiment, not only the sliding action of the sliding contact surfaces between the
When the
また、本実施形態によれば、各ギヤ板50~55を溶着する際に、その位相を調整することにより、連通路60の通路幅を調整したり、連通路60の連通過程に絞りを形成したりすることが容易にできる。これにより、従動ギヤ12の第1の面12aと第2の面12bとの間における潤滑剤の流通量を調整することが可能となり、凹部13a,14aへの潤滑剤の供給量や圧抜き効果を最適にすることができる。なお、本実施形態においては、ギヤ板51~54に、貫通孔51a~54aと貫通孔51b~54bとが形成されている。このように、大きさの異なる貫通孔を適宜組み合わせることにより、最適な連通路60を構成することができる。
Further, according to the present embodiment, when the gear plates 50 to 55 are welded, the phase of the gear plates 50 to 55 is adjusted to adjust the passage width of the communication passage 60 or to form a throttle in the communication process of the communication passage 60. Can be easily done. Thereby, it becomes possible to adjust the amount of lubricant flow between the first surface 12a and the second surface 12b of the driven gear 12, and the amount of lubricant supplied to the recesses 13a and 14a and the pressure relief effect. Can be optimized. In the present embodiment, through holes 51a to 54a and through holes 51b to 54b are formed in the gear plates 51 to 54. Thus, the optimal communicating path 60 can be comprised by combining suitably the through-hole from which a magnitude | size differs.
また、両偏心カム13,14と両クランク部材15,16との摺動接触面の潤滑性能の向上が特段必要ない場合には、各ギヤ板の貫通孔を、従動ギヤ12の回転方向に均等に配置すればよい。このようにすることで、従動ギヤ12の重量バランスを向上することができる。
なお、各ギヤ板50~55やカム板70~77の溶着方法は特に問わず、溶着する部材の材質に応じて適宜決定すればよい。
また、本実施形態においては、カム板70~77を積層して第1偏心カム13および第2偏心カム14を構成したが、これら両偏心カムは必ずしも積層構造にする必要はない。 Further, when it is not particularly necessary to improve the lubrication performance of the sliding contact surfaces between the eccentric cams 13 and 14 and the crank members 15 and 16, the through holes of the respective gear plates are evenly arranged in the rotational direction of the driven gear 12. Should be arranged. By doing in this way, the weight balance of the driven gear 12 can be improved.
The method of welding thegear plates 50 to 55 and the cam plates 70 to 77 is not particularly limited, and may be determined as appropriate according to the material of the member to be welded.
In the present embodiment, thecam plates 70 to 77 are laminated to form the first eccentric cam 13 and the second eccentric cam 14, but the two eccentric cams are not necessarily required to have a laminated structure.
なお、各ギヤ板50~55やカム板70~77の溶着方法は特に問わず、溶着する部材の材質に応じて適宜決定すればよい。
また、本実施形態においては、カム板70~77を積層して第1偏心カム13および第2偏心カム14を構成したが、これら両偏心カムは必ずしも積層構造にする必要はない。 Further, when it is not particularly necessary to improve the lubrication performance of the sliding contact surfaces between the
The method of welding the
In the present embodiment, the
図6~図8を用いて別の実施形態を示す。
この実施形態においては、従動ギヤおよび偏心カムの構造のみが異なり、その他の構成は上記の実施形態と同じである。したがって、ここでは上記実施形態と異なる構成について説明することとし、他の構成については説明を省略する。
図6は、従動ギヤ12、第1偏心カム13および第2偏心カム14の展開斜視図である。この実施形態においては、ギヤ板500~505を厚さ方向に積層して溶着することにより、従動ギヤ12が構成されている。ここでは、ギヤ板500,505が同一部材であり、ギヤ板501~504が同一部材であり、ギヤ板500,505の間にギヤ板501~504が位置している。 Another embodiment is shown with reference to FIGS.
In this embodiment, only the structures of the driven gear and the eccentric cam are different, and the other configurations are the same as those of the above embodiment. Therefore, the configuration different from the above embodiment will be described here, and the description of other configurations will be omitted.
6 is an exploded perspective view of the drivengear 12, the first eccentric cam 13, and the second eccentric cam 14. FIG. In this embodiment, the driven gear 12 is configured by laminating and welding the gear plates 500 to 505 in the thickness direction. Here, the gear plates 500 and 505 are the same member, the gear plates 501 to 504 are the same member, and the gear plates 501 to 504 are located between the gear plates 500 and 505.
この実施形態においては、従動ギヤおよび偏心カムの構造のみが異なり、その他の構成は上記の実施形態と同じである。したがって、ここでは上記実施形態と異なる構成について説明することとし、他の構成については説明を省略する。
図6は、従動ギヤ12、第1偏心カム13および第2偏心カム14の展開斜視図である。この実施形態においては、ギヤ板500~505を厚さ方向に積層して溶着することにより、従動ギヤ12が構成されている。ここでは、ギヤ板500,505が同一部材であり、ギヤ板501~504が同一部材であり、ギヤ板500,505の間にギヤ板501~504が位置している。 Another embodiment is shown with reference to FIGS.
In this embodiment, only the structures of the driven gear and the eccentric cam are different, and the other configurations are the same as those of the above embodiment. Therefore, the configuration different from the above embodiment will be described here, and the description of other configurations will be omitted.
6 is an exploded perspective view of the driven
ギヤ板500,505には、その平面を貫通する湾曲した楕円形状の貫通孔500a,505aが外周近傍に形成されており、また、貫通孔500a,505aの近傍には、小径の導入孔500b,505bが形成されている。
一方、ギヤ板501~504には、その平面を貫通する貫通孔501a~504a、501b~504bが、外周近傍から中心に延伸するように形成されている。ギヤ板501~504は、貫通孔501a~504aおよび貫通孔501b~504bが一致するように位相を合わせた状態で積層される。
そして、ギヤ板500の貫通孔500aと、ギヤ板501の貫通孔501aの外周近傍とが重なるようにして、ギヤ板500およびギヤ板501が積層される。また、ギヤ板505の貫通孔505aと、ギヤ板504の貫通孔504bとが重なるようにして、ギヤ板505およびギヤ板504が積層される。
このとき、ギヤ板500の導入孔500bは、ギヤ板501の貫通孔501aの中心に延伸する部分に臨み、ギヤ板505の導入孔505bは、ギヤ板504の貫通孔504bの中心に延伸する部分に臨むようにしている。
なお、各ギヤ板500~505の中心には、それぞれ軸孔21が形成されている。 The gear plates 500, 505 are formed with curved elliptical through holes 500a, 505a penetrating through the plane in the vicinity of the outer periphery, and in the vicinity of the through holes 500a, 505a, small diameter introduction holes 500b, 505b is formed.
On the other hand, in thegear plates 501 to 504, through holes 501a to 504a and 501b to 504b penetrating the planes are formed so as to extend from the vicinity of the outer periphery to the center. The gear plates 501 to 504 are stacked in a state in which the phases are adjusted so that the through holes 501a to 504a and the through holes 501b to 504b coincide.
Thegear plate 500 and the gear plate 501 are stacked such that the through hole 500a of the gear plate 500 and the vicinity of the outer periphery of the through hole 501a of the gear plate 501 overlap. Further, the gear plate 505 and the gear plate 504 are laminated such that the through hole 505a of the gear plate 505 and the through hole 504b of the gear plate 504 overlap.
At this time, theintroduction hole 500b of the gear plate 500 faces a portion extending to the center of the through hole 501a of the gear plate 501, and the introduction hole 505b of the gear plate 505 is a portion extending to the center of the through hole 504b of the gear plate 504. To face.
Ashaft hole 21 is formed at the center of each of the gear plates 500 to 505.
一方、ギヤ板501~504には、その平面を貫通する貫通孔501a~504a、501b~504bが、外周近傍から中心に延伸するように形成されている。ギヤ板501~504は、貫通孔501a~504aおよび貫通孔501b~504bが一致するように位相を合わせた状態で積層される。
そして、ギヤ板500の貫通孔500aと、ギヤ板501の貫通孔501aの外周近傍とが重なるようにして、ギヤ板500およびギヤ板501が積層される。また、ギヤ板505の貫通孔505aと、ギヤ板504の貫通孔504bとが重なるようにして、ギヤ板505およびギヤ板504が積層される。
このとき、ギヤ板500の導入孔500bは、ギヤ板501の貫通孔501aの中心に延伸する部分に臨み、ギヤ板505の導入孔505bは、ギヤ板504の貫通孔504bの中心に延伸する部分に臨むようにしている。
なお、各ギヤ板500~505の中心には、それぞれ軸孔21が形成されている。 The
On the other hand, in the
The
At this time, the
A
上記の構成からなるギヤ板500~505は、図6に示すように、貫通孔500a~504aおよび貫通孔501b~504b、505aの位相を一致させた状態で積層して溶着される。これにより、図8に示すように、貫通孔501a~504aによって、貫通孔500aと導入孔500bとを連通させる連通路600が形成され、貫通孔501b~504bによって、貫通孔505aと導入孔505bとを連通させる連通路601が形成される。なお、連通路600は、ギヤ板505によって仕切られるので、従動ギヤ12の第2の面12bに開口することはなく、また、連通路601も、ギヤ板500によって仕切られるので、従動ギヤ12の第1の面12aに開口することはない。
このように、この実施形態においては、従動ギヤ12に形成される連通路600は、その開口をいずれも第1の面12aに開口させ、連通路601は、その開口をいずれも第2の面12bに開口させる。つまり、この実施形態においては、従動ギヤ12に形成される連通路は、同一の面上において異なる位置(位相)に開口することとなる。 As shown in FIG. 6, thegear plates 500 to 505 configured as described above are laminated and welded in a state where the phases of the through holes 500a to 504a and the through holes 501b to 504b and 505a are matched. As a result, as shown in FIG. 8, the through-holes 501a to 504a form a communication path 600 that connects the through-hole 500a and the introduction hole 500b, and the through-holes 501b to 504b form the through-hole 505a and the introduction hole 505b. A communication path 601 is formed for communicating the. Since the communication path 600 is partitioned by the gear plate 505, the communication path 600 does not open to the second surface 12b of the driven gear 12, and the communication path 601 is also partitioned by the gear plate 500. There is no opening in the first surface 12a.
As described above, in this embodiment, all thecommunication passages 600 formed in the driven gear 12 have their openings opened on the first surface 12a, and the communication passages 601 all have their openings on the second surface. 12b is opened. That is, in this embodiment, the communication path formed in the driven gear 12 opens at different positions (phases) on the same surface.
このように、この実施形態においては、従動ギヤ12に形成される連通路600は、その開口をいずれも第1の面12aに開口させ、連通路601は、その開口をいずれも第2の面12bに開口させる。つまり、この実施形態においては、従動ギヤ12に形成される連通路は、同一の面上において異なる位置(位相)に開口することとなる。 As shown in FIG. 6, the
As described above, in this embodiment, all the
また、第1偏心カム13および第2偏心カム14は、上記各ギヤ板500~505よりも小径の金属製の薄板円形部材からなるカム板を複数枚(この実施形態では4枚)厚さ方向に積層して構成される。この実施形態においては、直径の等しいカム板700~703を厚さ方向に積層して第1偏心カム13を構成し、直径の等しいカム板704~707を厚さ方向に積層して第2偏心カム14を構成している。このうちカム板701~706は同一部材である。
カム板700~707は、その直径がギヤ板500~505の約半分程度に形成されており、厚さはギヤ板500~505とほぼ等しい。カム板700~707は、その中心からずらした位置に、回転軸22を挿通させるための軸孔21が形成されている。また、カム板701~706の外周面には、その一部を切り欠いた切り欠き701a~706aが形成されている。 The firsteccentric cam 13 and the second eccentric cam 14 have a plurality of cam plates (four in this embodiment) made of metal thin circular members having a smaller diameter than the gear plates 500 to 505 in the thickness direction. It is constructed by laminating. In this embodiment, cam plates 700 to 703 having the same diameter are stacked in the thickness direction to form the first eccentric cam 13, and cam plates 704 to 707 having the same diameter are stacked in the thickness direction to form the second eccentric cam. A cam 14 is configured. Of these, the cam plates 701 to 706 are the same member.
Thecam plates 700 to 707 have a diameter that is about half that of the gear plates 500 to 505, and the thickness thereof is substantially equal to that of the gear plates 500 to 505. The cam plates 700 to 707 are formed with shaft holes 21 through which the rotary shaft 22 is inserted at positions shifted from the centers thereof. Further, notches 701a to 706a are formed on the outer peripheral surfaces of the cam plates 701 to 706 by partially cutting them.
カム板700~707は、その直径がギヤ板500~505の約半分程度に形成されており、厚さはギヤ板500~505とほぼ等しい。カム板700~707は、その中心からずらした位置に、回転軸22を挿通させるための軸孔21が形成されている。また、カム板701~706の外周面には、その一部を切り欠いた切り欠き701a~706aが形成されている。 The first
The
そして、第1偏心カム13は、上記のカム板700~703の軸孔21を一致させるとともに、カム板701~703の切り欠き701a~703aを一致させた状態で溶着して構成される。また、第2偏心カム14は、上記のカム板704~707の軸孔21を一致させるとともに、カム板704~706の切り欠き704a~706aを一致させた状態で溶着して構成される。
なお、第1偏心カム13および第2偏心カム14は、従動ギヤ12の第1の面12aおよび第2の面12bにそれぞれ溶着により固定されることとなるが、第1偏心カム13、第2偏心カム14、従動ギヤ12のぞれぞれは軸孔21が一致している。また、このとき、第1偏心カム13および従動ギヤ12は、導入孔500bと切り欠き703aとが重なるように配置され、第2偏心カム14および従動ギヤ12は、導入孔505bと切り欠き704aとが重なるように配置される。 The firsteccentric cam 13 is configured to be welded in a state where the shaft holes 21 of the cam plates 700 to 703 are aligned and the notches 701a to 703a of the cam plates 701 to 703 are aligned. Further, the second eccentric cam 14 is configured to be welded in a state where the shaft holes 21 of the cam plates 704 to 707 are aligned and the notches 704a to 706a of the cam plates 704 to 706 are aligned.
The firsteccentric cam 13 and the second eccentric cam 14 are fixed to the first surface 12a and the second surface 12b of the driven gear 12 by welding, respectively. Each of the eccentric cam 14 and the driven gear 12 has the same shaft hole 21. At this time, the first eccentric cam 13 and the driven gear 12 are arranged so that the introduction hole 500b and the notch 703a overlap each other, and the second eccentric cam 14 and the driven gear 12 are arranged with the introduction hole 505b and the notch 704a. Are arranged to overlap.
なお、第1偏心カム13および第2偏心カム14は、従動ギヤ12の第1の面12aおよび第2の面12bにそれぞれ溶着により固定されることとなるが、第1偏心カム13、第2偏心カム14、従動ギヤ12のぞれぞれは軸孔21が一致している。また、このとき、第1偏心カム13および従動ギヤ12は、導入孔500bと切り欠き703aとが重なるように配置され、第2偏心カム14および従動ギヤ12は、導入孔505bと切り欠き704aとが重なるように配置される。 The first
The first
このようにすることで、図8に示すように、従動ギヤ12の第1の面12aにおいては、貫通孔500aを一方の開口600aとし、導入孔500bおよび切り欠き701a~703aを他方の開口600bとする連通路600が形成されることとなる。上記のように、切り欠き701a~703aを設けることにより、連通路600の他方の開口600bは、第1偏心カム13と第1クランク部材15との摺動面に臨むように開口することとなる。また、従動ギヤ12の第2の面12bにおいては、貫通孔505aを一方の開口601aとし、導入孔505bおよび切り欠き704a~706aを他方の開口601bとする連通路601が形成されることとなる。上記のように、切り欠き701a~706aを設けることにより、連通路600の他方の開口600bおよび連通路601の他方の開口601bは、第1偏心カム13と第1クランク部材15との摺動面および第2偏心カム14と第2クランク部材16の摺動面にそれぞれ臨むように開口することとなる。
By doing so, as shown in FIG. 8, in the first surface 12a of the driven gear 12, the through hole 500a serves as one opening 600a, and the introduction hole 500b and the notches 701a to 703a serve as the other opening 600b. The communication path 600 is formed. As described above, by providing the notches 701a to 703a, the other opening 600b of the communication path 600 opens so as to face the sliding surface between the first eccentric cam 13 and the first crank member 15. . Further, in the second surface 12b of the driven gear 12, a communication path 601 is formed in which the through hole 505a is one opening 601a and the introduction hole 505b and the notches 704a to 706a are the other opening 601b. . As described above, by providing the notches 701a to 706a, the other opening 600b of the communication path 600 and the other opening 601b of the communication path 601 are formed on the sliding surface between the first eccentric cam 13 and the first crank member 15. And it opens so that it may face to the sliding surface of the 2nd eccentric cam 14 and the 2nd crank member 16, respectively.
以上のように、この実施形態によれば、先に説明した実施形態と同様に、連通路600,601が、両偏心カム13,14と両クランク部材15,16との摺動面に潤滑剤を導く機能を発揮することとなる。
ただし、この実施形態においては、両偏心カム13,14の端面に相当するカム板700,707に切り欠きが設けられず、両偏心カム13,14と両クランク部材15,16との摺動面に連通路600,601が臨むので、摺動面に対する潤滑性をさらに高めることができる。
なお、この実施形態では、導入孔500b,505bが、両偏心カム13,14との接合部分で切り欠き703a,704aに臨む範囲内に収まるように構成しているが、導入孔500b,505bを、両偏心カム13,14の外周よりも外側に広がるように形成し、切り欠き703a,704aと重なるようにすることで、両クランク部材15,16と従動ギヤ12との摺動面に対する潤滑性を高めることも可能となる。
さらには、従動ギヤ12の端面(連通路)と軸孔21とを連通すれば、軸孔21の潤滑性をも高めることができる。 As described above, according to this embodiment, as in the above-described embodiment, the communication passages 600 and 601 are provided on the sliding surfaces of the eccentric cams 13 and 14 and the crank members 15 and 16 as a lubricant. It will demonstrate the function that leads.
However, in this embodiment, notches are not provided in the cam plates 700 and 707 corresponding to the end surfaces of the eccentric cams 13 and 14, and the sliding surfaces of the eccentric cams 13 and 14 and the crank members 15 and 16 are provided. Since the communication paths 600 and 601 face each other, the lubricity with respect to the sliding surface can be further enhanced.
In this embodiment, the introduction holes 500b and 505b are configured to be within a range facing the notches 703a and 704a at the joint portions with the eccentric cams 13 and 14, but the introduction holes 500b and 505b are configured. By forming the eccentric cams 13 and 14 so as to extend outward from the outer periphery and overlapping the notches 703a and 704a, the lubricity of the sliding surfaces between the crank members 15 and 16 and the driven gear 12 is improved. It is also possible to increase.
Furthermore, if the end face (communication path) of the drivengear 12 and the shaft hole 21 are communicated, the lubricity of the shaft hole 21 can be improved.
ただし、この実施形態においては、両偏心カム13,14の端面に相当するカム板700,707に切り欠きが設けられず、両偏心カム13,14と両クランク部材15,16との摺動面に連通路600,601が臨むので、摺動面に対する潤滑性をさらに高めることができる。
なお、この実施形態では、導入孔500b,505bが、両偏心カム13,14との接合部分で切り欠き703a,704aに臨む範囲内に収まるように構成しているが、導入孔500b,505bを、両偏心カム13,14の外周よりも外側に広がるように形成し、切り欠き703a,704aと重なるようにすることで、両クランク部材15,16と従動ギヤ12との摺動面に対する潤滑性を高めることも可能となる。
さらには、従動ギヤ12の端面(連通路)と軸孔21とを連通すれば、軸孔21の潤滑性をも高めることができる。 As described above, according to this embodiment, as in the above-described embodiment, the
However, in this embodiment, notches are not provided in the
In this embodiment, the introduction holes 500b and 505b are configured to be within a range facing the
Furthermore, if the end face (communication path) of the driven
1 本体ケース
2 底面ケース
3 ケース
3a 駆動ギヤ収容室
3b 従動ギヤ収容室
3c ブレード収容室
4 第1ブレード
4a 連結ピン
5 第2ブレード
5a 連結ピン
10 動力伝達装置
11 駆動ギヤ
11a 軸部
11b 歯部
12 従動ギヤ
12a 第1の面
12b 第2の面
13 第1偏心カム
13a 凹部
14 第2偏心カム
14a 凹部
15 第1クランク部材
15a ロッド部
15b 嵌合リング部
15b1 挿通孔
15c 小リング部
15c1 挿通孔
16 第2クランク部材
16a ロッド部
16b 嵌合リング部
16b1 挿通孔
16c 小リング部
16c1 挿通孔
20 ベアリング
21 軸孔
22 回転軸
50~55 ギヤ板
50a~55a 貫通孔
50b,55b 導入孔
51b~54b 貫通孔
60 連通路
60a 連通路の開口
70~77 カム板
70a~77a 切り欠き
80 第1空間
90 第2空間
80a,90a 第1の室
80b,90b 第2の室
500~505 ギヤ板
500a~505a 貫通孔
501b~504b 貫通孔
500b,505b 導入孔
600,601 連通路
600a,600b,601a,601b 連通路の開口 DESCRIPTION OFSYMBOLS 1 Main body case 2 Bottom case 3 Case 3a Drive gear accommodation chamber 3b Drive gear accommodation chamber 3c Blade accommodation chamber 4 First blade 4a Connection pin 5 Second blade 5a Connection pin 10 Power transmission device 11 Drive gear 11a Shaft portion 11b Tooth portion 12 Driven gear 12a first surface 12b second surface 13 first eccentric cam 13a recess 14 second eccentric cam 14a recess 15 first crank member 15a rod portion 15b fitting ring portion 15b 1 insertion hole 15c small ring portion 15c 1 insertion Hole 16 Second crank member 16a Rod portion 16b Fitting ring portion 16b 1 insertion hole 16c Small ring portion 16c 1 insertion hole 20 Bearing 21 shaft hole 22 Rotating shaft 50 to 55 Gear plates 50a to 55a Through holes 50b and 55b Introduction hole 51b 54b Through hole 60 Communication path 60a Communication path openings 70-77 Cam plates 70a-77a Notch 80 First space 90 Second space 80a, 90a First chamber 80b, 90b Second chamber 500-505 Gear plate 500a-505a Through hole 501b-504b Through hole 500b, 505b Introduction hole 600, 601 Communication path 600a , 600b, 601a, 601b Communication passage opening
2 底面ケース
3 ケース
3a 駆動ギヤ収容室
3b 従動ギヤ収容室
3c ブレード収容室
4 第1ブレード
4a 連結ピン
5 第2ブレード
5a 連結ピン
10 動力伝達装置
11 駆動ギヤ
11a 軸部
11b 歯部
12 従動ギヤ
12a 第1の面
12b 第2の面
13 第1偏心カム
13a 凹部
14 第2偏心カム
14a 凹部
15 第1クランク部材
15a ロッド部
15b 嵌合リング部
15b1 挿通孔
15c 小リング部
15c1 挿通孔
16 第2クランク部材
16a ロッド部
16b 嵌合リング部
16b1 挿通孔
16c 小リング部
16c1 挿通孔
20 ベアリング
21 軸孔
22 回転軸
50~55 ギヤ板
50a~55a 貫通孔
50b,55b 導入孔
51b~54b 貫通孔
60 連通路
60a 連通路の開口
70~77 カム板
70a~77a 切り欠き
80 第1空間
90 第2空間
80a,90a 第1の室
80b,90b 第2の室
500~505 ギヤ板
500a~505a 貫通孔
501b~504b 貫通孔
500b,505b 導入孔
600,601 連通路
600a,600b,601a,601b 連通路の開口 DESCRIPTION OF
Claims (9)
- 駆動源から伝達された回転動力を、往復直線運動に変換して第1ブレード及び第2ブレードに伝達するための作業装置の動力伝達機構であって、
ケースと、
該ケースに設けられた収容室に収容され、平面に貫通孔が形成された複数枚の回転板を厚さ方向に積層することによって形成され、端面である第1の面と第2の面を有し、上記複数枚の回転板のうち隣り合う回転板の貫通孔により、上記第1の面に設けられた開口と、上記第1の面および第2の面のうち少なくとも一方の面において異なる位相平面上に設けられた開口とを連通する連通路が形成され、上記駆動源からの動力を受けて回転動する回転伝達体と、
該回転伝達体の第1の面の回転中心から偏心した位置に設けられた第1偏心カムと、
上記回転伝達体の第2の面の回転中心から上記第1の偏心カムと異なる方向に偏心した位置に設けられた第2偏心カムと、
一端が上記第1偏心カムの摺動面に摺動自在に連結され、他端が上記第1ブレードに連結可能な第1クランク部材と、
一端が上記第2偏心カムの摺動面に摺動自在に連結され、他端が上記第2ブレードに連結可能な第2クランク部材と、を含む作業装置の動力伝達機構。 A power transmission mechanism of a working device for converting rotational power transmitted from a drive source into a reciprocating linear motion and transmitting it to a first blade and a second blade,
Case and
The first surface and the second surface, which are end surfaces, are formed by laminating a plurality of rotating plates accommodated in a storage chamber provided in the case and having a through-hole formed in a plane in the thickness direction. And the opening provided in the first surface is different from at least one of the first surface and the second surface by a through-hole of an adjacent rotating plate among the plurality of rotating plates. A communication path that communicates with an opening provided on the phase plane is formed, and a rotation transmission body that rotates by receiving power from the drive source;
A first eccentric cam provided at a position eccentric from the rotation center of the first surface of the rotation transmission body;
A second eccentric cam provided at a position eccentric from a rotation center of the second surface of the rotation transmission body in a direction different from the first eccentric cam;
A first crank member having one end slidably connected to the sliding surface of the first eccentric cam and the other end connectable to the first blade;
And a second crank member having one end slidably connected to the sliding surface of the second eccentric cam and the other end connectable to the second blade. - 上記連通路の開口は、上記連通路が開口する上記第1の面および第2の面のいずれか一方または双方において、上記第1偏心カムの摺動面および第2偏心カムの摺動面のいずれか一方または双方に臨む請求項1記載の作業装置の動力伝達機構。 The opening of the communication path is formed by the sliding surface of the first eccentric cam and the sliding surface of the second eccentric cam on one or both of the first surface and the second surface where the communication path opens. The power transmission mechanism of the working device according to claim 1, which faces either one or both.
- 駆動源から伝達された回転動力を、往復直線運動に変換して第1ブレード及び第2ブレードに伝達するための作業装置の動力伝達機構であって、
ケースと、
該ケースに設けられた収容室に収容され、平面に貫通孔が形成された複数枚の回転板を厚さ方向に積層することによって形成され、上記複数枚の回転板のうち隣り合う回転板の貫通孔をずらして連通させることにより、端面である第1の面および第2の面において異なる位相平面上に開口する連通路が形成され、上記駆動源からの動力を受けて回転動する回転伝達体と、
該回転伝達体の第1の面の回転中心から偏心した位置に設けられた第1偏心カムと、
上記回転伝達体の第2の面の回転中心から上記第1の偏心カムと異なる方向に偏心した位置に設けられた第2偏心カムと、
一端が上記第1偏心カムの摺動面に摺動自在に連結され、他端が上記第1ブレードに連結可能な第1クランク部材と、
一端が上記第2偏心カムの摺動面に摺動自在に連結され、他端が上記第2ブレードに連結可能な第2クランク部材と、を含む作業装置の動力伝達機構。 A power transmission mechanism of a working device for converting rotational power transmitted from a drive source into a reciprocating linear motion and transmitting it to a first blade and a second blade,
Case and
Formed by laminating a plurality of rotating plates accommodated in a storage chamber provided in the case and having a through-hole formed in a plane in the thickness direction, of adjacent rotating plates among the plurality of rotating plates. By shifting the through-holes to communicate with each other, communication paths that open on different phase planes are formed on the first surface and the second surface, which are the end surfaces, and the rotation transmission that rotates by receiving power from the drive source. Body,
A first eccentric cam provided at a position eccentric from the rotation center of the first surface of the rotation transmission body;
A second eccentric cam provided at a position eccentric from a rotation center of the second surface of the rotation transmission body in a direction different from the first eccentric cam;
A first crank member having one end slidably connected to the sliding surface of the first eccentric cam and the other end connectable to the first blade;
And a second crank member having one end slidably connected to the sliding surface of the second eccentric cam and the other end connectable to the second blade. - 上記連通路の開口は、上記第1偏心カムの摺動面および第2偏心カムの摺動面のいずれか一方または双方に臨む請求項3記載の作業装置の動力伝達機構。 4. The power transmission mechanism for a working device according to claim 3, wherein the opening of the communication path faces one or both of the sliding surface of the first eccentric cam and the sliding surface of the second eccentric cam.
- 上記連通路は、隣り合う回転板の貫通孔を互いに位相をずらすことにより形成される請求項1~4のいずれかに記載の作業装置の動力伝達機構。 The power transmission mechanism of the working device according to any one of claims 1 to 4, wherein the communication path is formed by shifting the through holes of adjacent rotating plates from each other.
- 上記第1偏心カムおよび第2偏心カムのいずれか一方または双方の外周面には、上記連通路に連通する凹部が設けられる請求項1~5のいずれかに記載の作業装置の動力伝達機構。 The power transmission mechanism for a working device according to any one of claims 1 to 5, wherein a concave portion communicating with the communication path is provided on an outer peripheral surface of one or both of the first eccentric cam and the second eccentric cam.
- 上記回転板は金属板であり、
隣り合う回転板は溶着によって積層される請求項1~6のいずれかに記載の作業装置の動力伝達機構。 The rotating plate is a metal plate,
The power transmission mechanism for a working device according to any one of claims 1 to 6, wherein adjacent rotating plates are laminated by welding. - 上記第1偏心カムおよび第2偏心カムのいずれか一方または双方は、複数枚のカム板を厚さ方向に積層したものであり、上記回転伝達体に一体に固定される請求項1~7のいずれかに記載の作業装置の動力伝達機構。 Either one or both of the first eccentric cam and the second eccentric cam is formed by laminating a plurality of cam plates in the thickness direction, and is integrally fixed to the rotation transmission body. The power transmission mechanism of the working device according to any one of the above.
- 上記複数枚のカム板は金属板であり、
隣り合うカム板およびカム板と回転伝達体とは溶着によって積層される請求項8に記載の作業装置の動力伝達機構。 The plurality of cam plates are metal plates,
The power transmission mechanism of the working device according to claim 8, wherein the adjacent cam plate and the cam plate and the rotation transmission body are stacked by welding.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009090317A JP2010242812A (en) | 2009-04-02 | 2009-04-02 | Power transmission mechanism of working device |
JP2009-090317 | 2009-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113541A1 true WO2010113541A1 (en) | 2010-10-07 |
Family
ID=42827845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051526 WO2010113541A1 (en) | 2009-04-02 | 2010-02-03 | Power transmission mechanism for working device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010242812A (en) |
WO (1) | WO2010113541A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140007717A1 (en) * | 2012-07-04 | 2014-01-09 | Makita Corporation | Electrically powered gardening tool |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9844186B2 (en) * | 2015-09-29 | 2017-12-19 | Deere & Company | Drive linkage for cleaning shoe |
JP7035953B2 (en) * | 2018-10-17 | 2022-03-15 | トヨタ自動車株式会社 | Vehicle gear |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53143528A (en) * | 1977-05-18 | 1978-12-14 | Hitachi Ltd | Reciprocating clipper for gardening |
JPH10136784A (en) * | 1996-10-29 | 1998-05-26 | Fa Andreas Stihl | Hand working device provided with driving motor |
JP2000217431A (en) * | 1999-01-28 | 2000-08-08 | Delta Kogyo Co Ltd | Cam structure, cam device using this cam structure, and pruning machine using this cam device |
JP2006254785A (en) * | 2005-03-17 | 2006-09-28 | Fuji Robin Ind Ltd | Lubrication structure of work equipment |
JP2008035821A (en) * | 2006-08-09 | 2008-02-21 | Makita Numazu Corp | Drive component-lubricating structure for hand-carrying type power working machine |
-
2009
- 2009-04-02 JP JP2009090317A patent/JP2010242812A/en active Pending
-
2010
- 2010-02-03 WO PCT/JP2010/051526 patent/WO2010113541A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53143528A (en) * | 1977-05-18 | 1978-12-14 | Hitachi Ltd | Reciprocating clipper for gardening |
JPH10136784A (en) * | 1996-10-29 | 1998-05-26 | Fa Andreas Stihl | Hand working device provided with driving motor |
JP2000217431A (en) * | 1999-01-28 | 2000-08-08 | Delta Kogyo Co Ltd | Cam structure, cam device using this cam structure, and pruning machine using this cam device |
JP2006254785A (en) * | 2005-03-17 | 2006-09-28 | Fuji Robin Ind Ltd | Lubrication structure of work equipment |
JP2008035821A (en) * | 2006-08-09 | 2008-02-21 | Makita Numazu Corp | Drive component-lubricating structure for hand-carrying type power working machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140007717A1 (en) * | 2012-07-04 | 2014-01-09 | Makita Corporation | Electrically powered gardening tool |
US9357711B2 (en) * | 2012-07-04 | 2016-06-07 | Makita Corporation | Electrically powered gardening tool |
Also Published As
Publication number | Publication date |
---|---|
JP2010242812A (en) | 2010-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5205327B2 (en) | Lubrication structure of work equipment | |
KR100279788B1 (en) | Volumetric Fluid Machine | |
US20170204939A1 (en) | Modified Parallel Eccentric Rotary Actuator | |
JP4407771B2 (en) | Rotary fluid machine | |
RU2184874C2 (en) | Two-cylinder vane pump | |
WO2010113541A1 (en) | Power transmission mechanism for working device | |
JP5161306B2 (en) | Reciprocating rotational power converter | |
KR20140048823A (en) | Rotary compressor | |
JP4026584B2 (en) | Variable compression ratio internal combustion engine | |
JP2006523279A (en) | Machine with rotating piston | |
KR20080079692A (en) | Rotary piston device with two piston mounts on the shaft | |
US20040216540A1 (en) | Torus crank mechanism | |
KR101167141B1 (en) | Hydraulic motor/pump | |
KR19990073188A (en) | Rotary pump by the piston | |
JP5061300B2 (en) | Crank device | |
KR100404446B1 (en) | Torus crank | |
KR101874804B1 (en) | Switching divice for motion direction | |
JP6134930B2 (en) | Hydraulic pump device | |
KR102451043B1 (en) | Twin cylinder pump | |
JP3889592B2 (en) | Variable capacity swash plate type hydraulic rotating machine | |
JP6532386B2 (en) | Eccentric rocking gear | |
JP7502638B2 (en) | Rotary Compressor | |
KR100448013B1 (en) | Torus crank | |
WO2014162774A1 (en) | Vane compressor | |
JP3619462B2 (en) | High speed hydraulic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758318 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758318 Country of ref document: EP Kind code of ref document: A1 |