WO2010039989A1 - Ventilator with biofeedback monitoring and control for improving patient activity and health - Google Patents
Ventilator with biofeedback monitoring and control for improving patient activity and health Download PDFInfo
- Publication number
- WO2010039989A1 WO2010039989A1 PCT/US2009/059272 US2009059272W WO2010039989A1 WO 2010039989 A1 WO2010039989 A1 WO 2010039989A1 US 2009059272 W US2009059272 W US 2009059272W WO 2010039989 A1 WO2010039989 A1 WO 2010039989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patient
- ventilator
- ventilation
- health status
- control unit
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0666—Nasal cannulas or tubing
- A61M16/0672—Nasal cannula assemblies for oxygen therapy
- A61M16/0677—Gas-saving devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
- A61M16/122—Preparation of respiratory gases or vapours by mixing different gases with dilution
- A61M16/125—Diluting primary gas with ambient air
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0461—Nasoendotracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0463—Tracheal tubes combined with suction tubes, catheters or the like; Outside connections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
- A61M2016/0021—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0402—Special features for tracheal tubes not otherwise provided for
- A61M16/0411—Special features for tracheal tubes not otherwise provided for with means for differentiating between oesophageal and tracheal intubation
- A61M2016/0413—Special features for tracheal tubes not otherwise provided for with means for differentiating between oesophageal and tracheal intubation with detectors of CO2 in exhaled gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3569—Range sublocal, e.g. between console and disposable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3592—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/04—Heartbeat characteristics, e.g. ECG, blood pressure modulation
- A61M2230/06—Heartbeat rate only
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/205—Blood composition characteristics partial oxygen pressure (P-O2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/42—Rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/43—Composition of exhalation
- A61M2230/432—Composition of exhalation partial CO2 pressure (P-CO2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/63—Motion, e.g. physical activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/65—Impedance, e.g. conductivity, capacity
Definitions
- the present invention relates to ventilation therapy, respiratory assist devices and other devices intended to provide ventilatory assistance. More specifically, the application relates to an activity-assist ventilation therapy that uses biofeedback control of ventilation, and includes associativity of ventilation parameters with patient activity and quality of life.
- the respiratory pump that functions as a ventilation organ that transports air into the lungs and back out again.
- the breathing center in the brain, central and peripheral nerves, the osseous thorax, and the breathing musculature as well as free, stable respiratory paths are necessary for a correct functioning of the respiratory pump.
- a disease in which there is a constant overload on or exhaustion of the respiratory pump is chronic obstructive pulmonary disease (COPD) or pulmonary emphysema with a distended or flat-standing diaphragm.
- COPD chronic obstructive pulmonary disease
- pulmonary emphysema with a distended or flat-standing diaphragm.
- Flat-standing diaphragms have reduced ability to contract.
- respiratory paths are usually extremely slack and tend to collapse. Either a flat-standing diaphragm and/or slack respiratory paths may cause respiratory insufficiency.
- supplemental oxygen provided by conventional apparatuses and methods is frequently not adequate to increase ventilation and alleviate symptoms of dyspnea and exhaustion.
- the patient can become severely dyspneic and exhausted and suffer from elevated CO 2 levels, due to the mechanical work associated with breathing which can be eight times more than the normal work required for healthy lungs.
- a traditional mechanical ventilator can be used invasively with a tracheal tube or with a non-invasive nasal mask to assist in the work of breathing and alleviate dyspnea; however conventional ventilators significantly limit upper airway functions, such as talking, eating, and swallowing, and also limit normal life activities such as ambulating and bathing. Hence, mechanical ventilators are rarely used voluntarily, and are predominantly used during acute treatment or for palliative care during late stage lung disease near the end of life. [0008] Recently, new types of ventilation therapy have been described in U.S. Patent No. 7,588,033 and U.S. Patent No. 7,487,778.
- the new respiratory therapy methods and apparatuses described in these applications provide partial respiratory support in an open transtracheal ventilation system, so the patient can have normal upper airway function such as eating, smelling, drinking, talking, swallowing, and expectorating. Because of their unique delivery systems and ventilation output parameters, these new ventilators are able to be configured in a light weight tote-able or even wearable system to enable the patient to engage in other activities of daily life such as mobility, bathing, and exercise, which are not practical or possible when using conventional ventilators. [0009] Because this new ventilation therapy enables activity and a more normal lifestyle, it now becomes meaningful to include in the ventilator's functionality certain intelligence and interactive features related to activity, health status, and lifestyle. These features would not be useful or even contemplated in a conventional ventilator.
- Activity level and exercise tolerance is a key indicator of health status of a person with an illness. Maintaining or increasing the patient's activity level via ventilation therapy is described in U.S. Patent No. 7,588,033 and U.S. Patent No. 7,487,778. As maintaining a certain level of activity is expected to improve overall health status, is it is extremely meaningful to measure and track activity level, along with other related indices of health status, and to provide this information in a manner useful to the care provider and patient.
- Embodiments of the present invention may include a ventilator system including a ventilator, which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one patient activity sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon activity level of the patient by processing measurements from the at least one breath sensor and the at least one patient activity sensor.
- a ventilator which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one patient activity sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is
- the ventilator may report activity level to a remote device.
- the patient interface may maintain an open airway system to permit the patient to breathe ambient air freely and spontaneously.
- the at least one patient activity sensor may be a pedometer to record ambulation of the patient or an actigraphy sensor to record activity level of the patient.
- the control unit may execute a patient exercise test mode.
- the control unit may detect respiration from the at least one breath sensor and patient activity measure from the at least one patient activity sensor over a predetermined time and processes the respiration and the patient activity measure to adjust the ventilation.
- the respiration may be a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate.
- the at least one breath sensor may measure respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof.
- the control unit may record trends from the at least one breath sensor and the at least one patient activity sensor.
- the at least one breath sensor may detect an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation.
- the control unit may export the onset or precursor to a respiratory exacerbation to an external source.
- the control unit may include a processor and a memory, and wherein the memory stores measured ventilation parameters regarding activity level of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations.
- the ventilation system may include a display wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure.
- the ventilation system may include a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals.
- Embodiments of the present invention may include a method of providing ventilation therapy, the method including providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying ventilation gas to the patient with a patient interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation gas with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient activity related parameter; measuring and recording a spontaneous breathing pattern of the patient; recording the spontaneous breathing pattern of the patient; and reporting the patient activity related parameter.
- Certain embodiments may include recording parameters selected from the group consisting of: general health level, vital signs, respiratory status, quality of life level, physical activity level, and combinations thereof.
- An exercise or activity test of the patient may be administered through the user interface of the ventilator.
- the method may include measuring and recording the spontaneous breathing history of the patient, and reporting the spontaneous breathing history of the patient.
- the measuring may include detecting a precursor to a respiratory exacerbation.
- the measuring may include adjusting the supplying of ventilation gas based upon the patient activity.
- Embodiments of the present invention may include ventilator system including a ventilator, which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one health status measuring sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon health status level of the patient by processing measurements from the at least one breath sensor and the at least one health status measuring sensor.
- a ventilator which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one health status measuring sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilat
- the ventilator may report activity level to a remote device.
- the patient interface may maintain an open airway system to permit the patient to breathe ambient air freely and spontaneously.
- the at least one patient activity sensor may be a pedometer to record ambulation of the patient or an actigraphy sensor to record activity level of the patient.
- the control unit may execute a patient exercise test mode.
- the control unit may detect respiration from the at least one breath sensor and patient activity measure from the at least one patient activity sensor over a predetermined time and processes the respiration and the patient activity measure to adjust the ventilation.
- the respiration may be a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate.
- the at least one breath sensor may measure respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof.
- the control unit may record trends from the at least one breath sensor and the at least one patient activity sensor.
- the at least one breath sensor may detect an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation.
- the control unit may export the onset or precursor to a respiratory exacerbation to an external source.
- the control unit may include a processor and a memory, and wherein the memory stores measured ventilation parameters regarding activity level of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations.
- the ventilation system may include a display wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure.
- the ventilation system may include a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals.
- Embodiments of the present invention may include a method of providing ventilation therapy, the method including providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying ventilation gas to the patient with a patient interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation gas with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a health status related parameter; measuring and recording a spontaneous breathing pattern of the patient; recording the spontaneous breathing pattern of the patient; and reporting the health status related parameter.
- Certain embodiments may include recording parameters selected from the group consisting of: general health level, vital signs, respiratory status, quality of life level, physical activity level, and combinations thereof.
- An exercise or activity test of the patient may be administered through the user interface of the ventilator.
- the method may include measuring and recording the spontaneous breathing history of the patient, and reporting the spontaneous breathing history of the patient.
- the measuring may include detecting a precursor to a respiratory exacerbation.
- the measuring may include adjusting the supplying of ventilation gas based upon the patient activity.
- Embodiments may include a mobility assist device including a portable ventilator with a control unit, the control unit comprising a processor and a memory; a health status measuring device, wherein the health status measuring device measures at least one parameter indicating the current health status of a patient relative to a current activity level or a health goal; and wherein information from the health status measuring device is used to adjust the control unit to adjust the ventilation parameters.
- the control unit may adjust the ventilation parameters based on information from both the health status measuring device and information from at least one breath sensor.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient and configured to be toted or worn by the patient in order to permit ambulation of a respiratory compromised patient while supporting their work of breathing, wherein the apparatus comprises a means to measure the activity or mobility level of the patient and a means to report the activity or mobility level to the user or clinician.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, wherein the apparatus comprises; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further comprising measuring the activity or mobility level of the patient and reporting the activity or mobility information to a user or clinician.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a pedometer wherein the pedometer records the ambulation of the patient and a processing unit to report the ambulation information to a user.
- a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising an actigraphy sensor wherein the actigraphy sensor records the ambulation of the patient and a processing unit to report the activity level information to a user.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a exercise test mode wherein the exercise test mode comprises a user interface to administer the test, an information processing means to manage the exercise information, and a reporting means to report the test results to a user or clinician.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, wherein the apparatus comprises; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further administering an exercise test to the patient through a user interface and information processing unit in the ventilator, and reporting the results of the exercise test to the user or clinician.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising an automatic ventilator adjustment mode, wherein the automatic ventilator adjustment mode comprises a sensor to detect a patient activity related parameter such as ambulation or physical movement, and comprising a control system to adjust the ventilator output based on the detection of the patient activity related parameter.
- a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising an automatic ventilator adjustment mode, wherein the automatic ventilator adjustment mode comprises a sensor to detect a patient activity related parameter such as ambulation or physical movement, and comprising a control system to adjust the ventilator output based on the detection of the patient activity related parameter.
- Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a spontaneous respiration rate breath sensor adapted to measure the patient's spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, and spontaneous depth of breathing, and further comprising a means to record, trend and report on the patient's spontaneous respiration information.
- a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient comprising a detection means to detect the onset or precursor to a respiratory exacerbation, wherein the detection means comprises breathing signal monitoring sensor and a breathing signal processing unit.
- the recorded values recorded and stored in memory prior to an exacerbation can be used to create a patient-specific precursor signature, which can then be programmed into the system for future detection of further exacerbation events.
- Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient activity related parameter; and reporting to a user or clinician the patient activity related parameter.
- Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient well being or quality of life related parameter; and reporting to a user or clinician the patient well being or quality of life related parameter.
- Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation, and administering an exercise or activity test of the patient through the user interface of the ventilator.
- Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation, and measuring and recording the spontaneous breathing pattern and history of the patient, and reporting the spontaneous breathing pattern variables and history of the patient to the user or clinician.
- Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further detecting the precursor to a respiratory exacerbation and reporting the precursor to the user or clinician.
- Ventilation therapy may move a patient towards increased activity, sometimes modifying the ventilation therapy to support increased activity, and, eventually, reducing or eliminating the need for ventilation therapy in those cases where the health status of a patient improves so that they can be active without the ventilation therapy.
- Patient feedback useful in this determination may include, for example, information on patient activity, or exertion level in the activity or work performed by the patient.
- the patient feedback is used to continually titrate the settings to the overall health goals selected for the patient.
- the activity or health goals are selected in advance, and may change over time.
- the monitoring of the patient may indicate how the patient is doing in comparison to the goal.
- the ventilation parameters can be continually titrated up or down as needed in order to come as close to meeting the overall health goals as possible.
- the invention is described herein in relation to ventilators, it can also be adapted for use with respiratory assist devices, oxygen therapy devices, and any respiratory therapy apparatus or method that is intended to promote or useful for promoting mobility and activities of daily living.
- FIG. IA shows a patient using an exemplary ventilation system according to the invention.
- FIGS. IB and 1C show additional non-limiting examples of different entry routes for a ventilation catheter or gas delivery circuit useful with ventilation system according to the invention.
- FIGS. 2A, 2B and 2C graphically show non-limiting examples of how a ventilation system according to embodiments of the invention can be efficacious in supporting the work of breathing, mobility and ambulation while using an open airway system.
- FIG. 3 shows a schematic of a basic embodiment of the invention describing in more detail functional aspects of embodiments of the invention.
- FIG 4 shows a flow diagram of an embodiment the invention, describing in more detail functional aspects of embodiments of the invention.
- FIG. 5 shows an overall layout of an embodiment of the invention.
- FIG. 6 shows an exemplary ventilator and ventilator-user interface and belt system to fasten the ventilator to the user, which are useful with embodiments of the present invention.
- FIG. 7 is a flow chart describing the administration of an exercise test, particularly in this case a six minute walk test, using the interface and interactive features that may comprise an embodiment of the present invention.
- FIG. 8 shows a non-limiting example of report that certain embodiments of the present inventive ventilator system may be capable of generating.
- FIG. 9 shows a non-limiting example of the use of a patient activity-related monitoring function of certain embodiments of the present inventive ventilator system, particularly in this non-limiting exemplary case, a pedometer.
- FIG. 10 shows a non- limiting example of the use of an auto-adjustment function of certain embodiments of the present inventive ventilator system, particularly in this non-limiting exemplary case, an auto-ambulation mode in which the ventilator output responds to the ambulation level of the patient.
- FIG. 11 is a flow chart showing an auto-adjustment function of the ventilation parameters based on patient need, according to an exemplary embodiment of the present invention.
- Embodiments of the present invention provide improved systems, methods, and apparatuses for supporting the respiration of a patient using patient input, providing patient feedback, or both.
- Embodiments of the present invention may provide respiratory support that promotes mobility and activities of daily living, and/or that is more compatible with mobility and activities of daily living as compared to conventional respiratory support systems, methods, and apparatuses.
- Respiratory support can be accomplished in a variety of ways, including, but not limited to, by providing controlled synchronized ventilation with a directed flow of an oxygen- bearing gas.
- the oxygen-bearing gas may be, for example, substantially pure oxygen, mixtures of oxygen and nitrogen, mixtures of oxygen and inert gases, ambient air, or various combinations thereof.
- oxygen-bearing gas may include enhancements, such as fragrances, aerosolized drugs, humidification, or heating.
- Patient input may be provided, for example, via one or more of the wired or wire-less devices discussed below, or by other suitable methods or devices that are known in the art, or which may be discovered, and which the skilled artisan will recognize as suitable when provided with the teachings herein.
- Patient feedback may be provided, for example, via one or more of the indications, reports, readouts or system data outputs discussed below, or by other suitable methods or devices that are known in the art, or which may be discovered, and which the skilled artisan will recognize as suitable when provided with the teachings herein.
- the patient may be ventilated using a ventilation gas delivery circuit and noninvasive open nasal ventilation interface or nasal interface, or a minimally invasive trans-tracheal interface.
- the nasal interface preferably does not seal against the patient's nose like in other ventilation interfaces, and rather leaves the nose open for the user to breathe normally and freely from the ambient surroundings.
- the transtracheal interface connects to the patient's trachea without sealing the airway so the patient can breathe normally and freely through their upper airway.
- Ventilation gas may be delivered at a speed which entrains ambient air, such that the combination of ventilation gas and entrained air are delivered to the user's airways and lung under power.
- the interface may optimize the physics and fluid dynamics, in order to maximize its performance, as will be explained in the subsequent detailed descriptions.
- the ventilation system may also include a ventilator and a gas supply or gas generating means.
- a spontaneous breathing respiration sensor may also be used to detect, determine and measure the spontaneous breathing pattern and phases of the user, in order to synchronized and titrate the therapy to the needs of the patient and to match the gas delivery comfortably with the patient's breathing.
- the invention may be used to support the respiration of the patient, including supporting the work of breathing by increasing pressure and volume in the lung, and can be used for maintaining airway patency of the upper airways such as the oropharyngeal airway. When using the invention, the patient breathes normally through their upper airway and through their nose, while receiving mechanical support through the interface.
- the patient can keep their mouth closed during use, to help direct the mechanical support to the lower airways, or can use a bite block or mouth guard or chin band, if necessary.
- the patient can use the therapy while stationary, while being transported, while mobile and active, or while resting or sleeping.
- the therapy has homecare, hospital, subacute care, emergency, military, pandemic, and transport applications.
- An oral interface or endotracheal tube interface is also contemplated as part of the invention, as well as a modular system that is compatible with all interface types mentioned.
- a ventilator of the invention can be borne or worn by the patient.
- the nasal interface may be placed discretely on the user's body, head and face.
- the transtracheal interface may be discrete and low profile, or in the case the patient has a typical tracheostomy tube, the interface can be minimally invasively connected to the tracheostomy tube. Because the ventilation system contributes to some of the mechanical work required for a person to breathe, the user can be active without suffering from dyspnea, hypoxemia or hypercapnia. The user can benefit from ambulation, activity, and participate in the routine activities of daily living, such as preparing meals, bathing, chores around the house, and leaving the house for outside activities.
- Embodiments of the present invention may include a ventilation therapy device with one or more of a built in or a modular: actigraphy sensor, pedometer, quality of life scale/questionnaire function, and other activity sensors.
- Embodiments of the present invention may include an exertion, exhaustion, dyspnea or well being scale/questionnaire function or input device.
- Titration of therapy may be performed based on patient's activity level, automatic adjustment mechanisms, and/or selectable settings of the ventilator system according to the patient's response to therapy.
- embodiments of the inventive ventilation therapy device may include indications and/or monitoring of known disease exacerbation prediction.
- embodiments of the inventive ventilation therapy device may include the ability to provide report(s) to the health care provider. These may include communication devices that send information from the ventilator to an external source.
- the report(s) may provide information such as, for example, information regarding a patent's activity levels; information regarding the patient's health status, such as patient vital signs such as oxygen saturation (SpO 2 ) and respiratory rate (RR), the patient's exercise tolerance, respiratory status; and/or information about the operation of the patient's ventilator, such as settings and parameters. Information about a patient's health status, the patient's activity, and the operational parameters of the patient's ventilator can be correlated or associated with each other, such as over time.
- the report(s) created by systems according to the invention preferably provide the clinician or other health care provider with a more complete picture of the patient's activity level and overall health status as a function of the operation of the ventilator.
- the additional intelligence provided by the systems according to the invention preferably facilitate the monitoring and tracking of the patient's health and progress, the optimization and/or titration of the ventilation therapy to better meet the needs of the patient, including, but not limited to, changing the parameters of the ventilation therapy to meet changing conditions in the patient's health and/or physical activity level.
- the interactive devices and features of systems according to the invention preferably enable the patient or care provider to set activity type goals, administer activity and well being type tests or questionnaires, and report on respiratory status, health status, activity level status, progress and trends.
- the intelligence and interactive features can preferably also be used to tailor and titrate the ventilation therapeutic level to the needs of the patient. Ventilation therapy may be matched as closely as possible to activity and/or health goals by a control unit.
- P designates a patient suffering from respiratory insufficiency.
- Patient P may be, for example, suffering from a breathing disorder, such as pulmonary emphysema, with overloading and exhaustion of the respiratory muscles.
- a breathing disorder such as pulmonary emphysema
- the patient P can not take sufficiently sized breaths, and thus too much CO 2 is retained in the lungs, which can not be flushed out, and insufficient oxygen is supplied to the tissues.
- Patient P may additionally suffer, for example, from slack and collapsing respiratory paths, which contribute to the patient's inability to exhale enough carbon-dioxide rich gas, thus, trapping the CO 2 rich gas in the lungs.
- IA generally includes the ability to detect the patient's spontaneous respiration via one or more sensors 13, 14 and the ability to perform some of the work of breathing for the respiratory muscles by delivering pressurized gas as a function of patient activity in a manner that results in increased lung pressure in the lung in an open airway system.
- a ventilator 4 may provide additional oxygen to the lungs and can be synchronized to augment inspiration, exhalation, or both via a control unit 1.
- the control unit 1 may include a memory and a processor.
- the control unit 1 may process measurements taken from one or more types of sensors to adjust ventilation therapy and/or match patient activity and/or health goals.
- Known patient interfaces may be used with ventilation systems of the present invention. Preferably, as is shown in FIG.
- FIGS. IB and 1C show additional non-limiting examples of patient interfaces.
- FIG. IB illustrates a ventilation catheter 5 or gas delivery circuit placed into the patient's trachea via a nasopharyngeal route.
- the ventilation catheter tip can be disposed at the entrance to the nose, or even outside the entrance to the nose.
- FIG. 1C illustrates a ventilation catheter 5 or gas delivery circuit placed into the patient's trachea via an oropharyngeal route.
- Embodiments of the present invention may also work with conventional interface devices, such as, but not limited to, a conventional nasal mask.
- FIGS. 2A - 2C show non-limiting examples of how a ventilation system according to invention can support, or perform part or all of, the patient's work of breathing in an open airway system and thus promote activity and ambulation.
- the patient's work of breathing is assisted by the ventilator gas delivery and entrainment caused by the ventilator gas to exceed the patient's spontaneous breathing flow rate, and thus elevating pressure in the lung.
- FIG. 2A represents the therapy when it is delivered during the patient's entire inspiratory phase.
- FIG. 2B represents the therapy when it is delivered at the end of the patient's inspiratory phase with oxygen therapy delivered during the beginning of the patient's inspiratory phase.
- FIG. 2C represents the therapy when it is delivered at the beginning of the patient's inspiratory phase.
- the solid line represents the indicated parameter without the therapy and the dashed line represents the indicated parameter with the therapy.
- the top graphs represent the patient's lung volume with and without the therapy, showing residual volume RV and tidal volume Vt.
- the middle graphs represent the patient's inspiratory and expiratory flow with and without the therapy, and the ventilator's inspiratory flow.
- the bottom graph represents the resultant patient's lung pressure with and without the therapy.
- FIG. 2 A shows a representative ventilator output waveform which is generally a square wave during the majority of the patient's inspiratory time. Compared to the baseline condition, this ventilator output inflates the lung faster and at the end of inspiration inflates the lung slightly more. In FIG. 2A, the patient's breath is supported by the therapy throughout inspiration, resulting in an almost neutral pressure condition in the lung, while supplying much of the volume needed by the patient. Compared to conventional ventilation which requires a relatively high positive pressure to be generated in the lung, this open system has the benefit of not requiring such a high lung pressure.
- FIG. 2B shows a ventilator output waveform timed with the back end of the inspiratory phase, and compared to baseline, inflates the lung deeper, increasing the tidal volume of the patient, thus, increasing ventilation.
- supplemental oxygen is delivered early in the breath.
- a slight positive lung pressure occurs late in the inspiratory phase.
- FIG. 2C shows a ventilator output waveform timed with the front part of the inspiratory phase, and compared to baseline, inflates the lung faster, helping the patient to achieve the needed tidal volume much earlier than without the therapy, thus, keeping the patient's lung distended for a longer period of time thus improving gas exchange.
- the ventilator can alternate between these three alternative timing modes of FIGS. 2 A, 2B and 2C as needed or as desired.
- the ventilator described in the invention may be capable of facilitating mobility and even exertion of a patient with respiratory insufficiency without the patient fatiguing, yet in an open airway system.
- the respiration support of patient P in accordance with the principles of the invention may preferably be implemented in a system, method, or apparatus that may be compact and/or portable. As shown, for example in Figure IA, the respiration support of patient P in accordance with the principles of the invention may be implemented in a system, method, or apparatus that may be wearable or carry-able by the patient. The principles of the invention may, however, also be used with other types of ventilation systems.
- Non- limiting examples of ventilation systems with which the principles of the invention may be used include stationary ventilators, ventilators suitable for use in vehicles, ventilators suitable for home use, ventilators sized for a patient to carry or wheel on a cart, wearable ventilators, carry-able ventilators, and central respiratory systems, such as those in medical facilities.
- the invention may also be applied to oxygen therapy systems and interventional respiratory treatments.
- FIG. 3 An exemplary overall system 19 is illustrated in FIG. 3, indicating ventilator V, gas source O 2 21, gas pump or control valve 23, control unit 25, ventilation catheter or other patient interface 27, one or more internal sensors 29, and patient P.
- the gas source O 2 21 , gas pump or control valve 23, and control unit 25 can be separate or integrated components of the system 19.
- the control unit 25 may be connected to one or more internal sensors 29 and/or one or more external sensors 31 (as shown in FIG. IA).
- the one or more internal sensors 29 may preferably be spontaneous breath sensors.
- the one or more internal sensors 29 and/or one or more external sensors 31 may be any of the sensors or devices described herein in any combination.
- Reference numerals 20, 30, 40, and 50 may represent non-limiting examples of sensors and interfaces that may by used with embodiments of the present invention.
- sensors may be internal activity-related sensors 20, such as actigraphy or a pedometer; ventilation related sensors 30, such as etCO 2 , SpO 2 , depth of respiration, or rate of respiration; user interface for well-being scale 40, such as BORG, quality of life, or tiredness scale; or user interface for administering an exercise test 50, such as a six minute walk.
- sensors and interfaces may be integral to or inside the ventilator, as shown in FIG. 3, they may also be modular and operably connected to the ventilator.
- the control unit 25 may receive input from internal or external activity-related sensors 33 and/or external ventilation-related sensors 35.
- the control unit 25 may report output via hardwire 37, wireless transmitter 39 or other suitable procedure.
- An optional implanted sensor 41 within a patient P may transmit information I via hardwire, wireless transmitter or other suitable procedure.
- An oxygen blender 24 may be provided between the gas supply 21 and the control valve 23 in order to provide the required or desired concentration of oxygen to the patient.
- the end-tidal CO2 sensor, or other sensor can be used to determine the concentration of oxygen being delivered to the patient, and can be used to adjust the blender as necessary.
- the oxygen can alternatively be bled into the gas delivery circuit to the patient neat the outlet of the ventilator 19 to the gas delivery circuit 27.
- a breath sensor may provide feedback from a patient P and/or the gas delivery circuit 27 to the control unit 25 and/or control valve 23.
- a patient's spontaneous breathing preferably can be detected by way of sensors.
- a catheter or gas delivery circuit can be used to introduce oxygen-rich gas into the lungs as needed to contribute to work of breathing by performing work on the respiratory muscles as described in FIGS. 2A - 2C.
- the patient's airway may be operably connected to the ventilator via a catheter 5 or gas delivery circuit.
- the sensors and catheter or gas delivery circuit can be associated with the patient in a variety of ways. For example, as illustrated in FIG. IA, a catheter 5 or gas delivery circuit may be introduced in the trachea transtracheally, or can be coupled to the channel of a tracheostomy tube.
- a catheter 5 or gas delivery circuit may be introduced at other points into a patient P, including, as further non- limiting examples, through the mouth or nose of the patient P (as in FIGS. IB and 1C), or by positioning the tip of the catheter at the entrance to or outside of he nostrils, or introducing a catheter via an artificially created entry point somewhere on the body and tunneling it internally to and into the trachea.
- Any other suitable technique may be employed to operably connect the patient's airway to a ventilator.
- the patient's airway may be operably connected to a ventilator using a noninvasive breathing mask and a single or dual limb breathing circuit.
- the devices or sensors that provide input to a control unit 12 may be any suitable known devices or sensors, and may be chosen based, for example, on parameters to be measured, system configuration, and patient and system interaction.
- Devices or sensors may be implanted on or in a patient, worn on or attached to the patient or the patient's clothing, integral to the ventilator, modularly attached to the ventilator, or held by the patient. Numerous devices and sensors may be used in the inventive ventilator system and are described in greater detail below.
- Non- limiting examples of useful devices and sensors include actigraphy sensors, pedometers, end-tidal CO 2 sensors, pulse oximetry sensors and a pulse oximetry sensors with heart rate monitors, spontaneous breath sensors, and intra-tracheal breath sensors.
- Ventilator systems of the present invention may also preferably include user input interfaces, such as buttons, keypads, touch screens, etc. that preferably facilitate the entering of information or setting of ventilation parameters, therapeutic goals, or overall health goals by the patient or clinician; and output interfaces or devices that preferably facilitate the provision of information by the ventilator system to the patient or clinician.
- user input interfaces such as buttons, keypads, touch screens, etc.
- output interfaces or devices that preferably facilitate the provision of information by the ventilator system to the patient or clinician.
- output interfaces or devices include devices, such as alarms, displays, printers, hand-held digital assistants, emails or text messages, etc., that preferably can alert the patient or clinician to an occurrence or condition.
- FIG. 4 The general flow diagram in FIG. 4 shows that patient activity is an important therapeutic goal, and that monitoring, assessing, and reporting on patient activity level is is used to meet the therapeutic goal. Ultimately, a determination is made regarding the ventilation parameters, and appropriate action is taken to facilitate obtaining the activity related goals.
- the functionality of they system of FIG. 4 may be carried out, for example, by the system of FIG. 3.
- activity level of a patient may be monitored 41. Assessed activity level may be compared to ventilator settings, and other health status identifiers 43.
- a control unit may then determine the adequacy of ventilation for the activity level 45.
- the control unit may then report on the activity level and adequacy of the ventilation for that activity level 47. If necessary, the control unit may adjust the ventilator or respiratory support device settings 49. As such, the therapy may be improved by correlating physical activity level with mobile, unobtrusive respiratory support 51.
- Respiratory devices may include a control unit that directs the operation of function of the ventilator, such as, for example, providing gas flow to the patient, optionally in synchronization with the patient's breathing.
- monitoring and reporting capabilities are provided by enhancing or modifying the capabilities of the respiratory device control unit.
- Control unit modification and/or enhancement may be provided using any of a wide variety of techniques known to those of ordinary skill in the electronic and software arts. As such, there are numerous alternative ways to enhance the control system capabilities to realize the improved capabilities of the inventive system.
- Control system modification or enhancement may include all or some of: additional or modified stand alone electronics; additional or modified integrated electronics; additional or modified hardware; additional or modified software; additional or modified firm ware; additional or modified memory and/or additional or modified input/output functionality.
- one or more additional control units may be added to the respiratory device to provide the inventive monitoring and reporting capabilities. Any additional control unit(s) may preferably work in cooperation with, and share data, such as respiration data, with control unit.
- known respiratory devices can be modified to perform the monitoring and reporting capabilities of the present invention.
- the specific component(s) added, system modification(s) or enhancement(s) or degree or combination thereof will depend on the inventive reporting or functionality capability being implemented.
- a number of non- limiting exemplary monitoring and reporting functions and capabilities that may be implemented by or provided by embodiments of the inventive ventilator systems are described below.
- Non- limiting exemplary functions and capabilities include activity level monitoring, pedometer feedback and estimation, such as 6 minute walk test data collection and report generation, well being interface, end tidal CO 2 monitoring and control system feedback, oxygen saturation monitoring and control system feedback, spontaneous respiration rate monitoring and control system feedback, therapy utilization and compliance monitoring and control system feedback, breathing source gas level/duration monitoring and control system feedback, ventilator auto set-up function, automatic therapy titration, spirometry, and exacerbation detection and prevention, monitoring, and control system feedback.
- activity level monitoring such as 6 minute walk test data collection and report generation, well being interface
- end tidal CO 2 monitoring and control system feedback oxygen saturation monitoring and control system feedback, spontaneous respiration rate monitoring and control system feedback, therapy utilization and compliance monitoring and control system feedback, breathing source gas level/duration monitoring and control system feedback, ventilator auto set-up function, automatic therapy titration, spirometry, and exacerbation detection and prevention, monitoring, and control system feedback.
- FIG. 5 illustrates an overall view of an exemplary embodiment of the present invention, in which various diagnostic assessments and reporting of or interaction with those assessments are made to determine the adequacy of the therapy.
- Therapy 61 may include mechanical support of breathing 63 administered in relation to patient physical activity, normal activities of daily living and normal social activities 65.
- Therapeutic goals 67 may be entered to a ventilatory support/ambulation device 69 adapted to be borne by a patient and adapted so that the patient has an open upper airway to enable normal upper airway functions.
- Therapeutic settings 71 may be used to administer therapy 61. Therapy may be adjusted as needed 73.
- Diagnostic devices 75 may be in communication 77, internally or externally, with a therapeutic device 69.
- the diagnostic device 75 may (1) measure and assess general health level and vital signs, (2) measure and assess respiratory status, (3) measure and assess quality of life level, and/or (4) measure and assess physical activity level for the purposes of measuring and assessing overall health and well-being status of a patient.
- a test or query 79 may be presented to examine exercise tolerance, overall health and well-being. Efficacy of the therapy compared to therapeutic goals may be determined 81. Capability to Improve Overall Health
- the prescribing physician cannot and has no need to set goals for the patient's overall health.
- the only goals that are set are the ventilator parameters, the goal of physiologic stability and, if possible, weaning from the ventilator.
- overall health such as activity level, quality of life measures, and exacerbations are not measured as part of the ventilation therapy, nor are goals set for these parameters.
- a ventilator is not considered in this context.
- the physician has the ability to consider the patient's overall activity level and health as part of what the therapy accomplishes. The physician can then set a goal as part of the intended therapy.
- the doctor when the patient is initially prescribed the therapy of this invention, the doctor, and optionally the patient too, can set overall health goals, along with the ventilator settings.
- the goals can adjust over time as appropriate for the patient, given the prevailing circumstances. For example, a patient with a chronic and progressive disease, the goals may decrease very slightly every year. A patient with a chronic but non-progressive disease, the goals may slightly increase every year or every month. In contrast, if the patient where using a conventional ventilation therapy, their goals (if it where possible to set them and track them, which it is not) would significantly decrease every year or stay the same, for a progressive disease and non-progressive disease respectively.
- the overall health measurements and ventilation parameters can be tracked, trended and reported. They can be stored for retrospective reporting or analysis purpose, for utilization reviews, for care providers and home care equipment providers to help them manage their patients. The reports and trending can be reported automatically to the physician so the physician can manage the patient remotely. The data can be reviewed periodically to detect trends in the patient's well being, and to interdict if and when necessary. Associativity between Overall Health Goals and Ventilator Parameter Settings [00075] Setting and tracking overall health goals with a ventilation system is possible with embodiments of the present invention such that the overall health goals and ventilation parameters can be tied together.
- the ventilation parameters can be adjusted or re-titrated, usually increasing the therapeutic level of the ventilation parameters, in attempt to meet the overall health goals. Conversely, if the overall health goals are being met, the ventilation parameters can be re-titrated or turned down, in order to reduce the patient's dependency on the mechanical ventilation, while still meeting the ultimate goals of the therapy, which is a certain level of overall health. Also, turning down the therapy when the overall health goals are being met helps conserve oxygen and is more cost effective in the long run.
- the adjustment or re-titration of the ventilation parameters can be automatic, semiautomatic, or manual, or any combination of thereof.
- the associativity can be set up in advance when prescribing the therapy to the patient, or can be established or re-established during the course of therapy, for example every month, and can be set up manually or wirelessly. Health Status Index
- the new clinical measure may be a Health Status Index (HSI), which is a dimensionless parameter that takes into account the level of therapeutic support the patient is receiving and the overall health of the patient.
- HSI Health Status Index
- the HSI can be expressed in an absolute scale, but can also be expressed in a percent predicted scale, or a percent of target scale. For instance, a patient may have an HSI of 8 out of a maximum of 10 using a 0-10 or -10 to +10 scale.
- HSI can be for example a numerator of Overall Health and a denominator of therapeutic level.
- the numerator would include overall health subcomponents (such as activity level, comfort, dyspnea, number of steps per day, RR, and speech quality), each with a relative weighting of importance relative to the other subcomponents, and the denominator would include therapeutic level subcomponents (such as oxygen percentage setting, ventilator volume setting, number of hours used per day), each with a relative weighting of importance relative to the other subcomponents.
- the HSI can include a more complex formula as well, and a wider scale than 1-10 or -10 to +10.
- the HSI can also be a value that has units associated with it, rather than unit-less as described above, such as 0.8 steps per day per ml per hour per % oxygen.
- FIG. 6 shows an exemplary ventilator 91 and ventilator-user interface 93 and belt system 95 to fasten the ventilator 91 to the user, which are useful with embodiments of the present invention.
- the user interface 93 may include displays, indicators, alarms, etc.
- the ventilator 91 may include input devices, such as buttons, touch screens, keypads, etc. Inputs 97 may allow for turning power on/off, entering activity levels, turning alarms on/off, and other options.
- FIG. 7 is a flow chart describing the administration of an exercise test 101, particularly in this case a six minute walk test, using the interface and interactive features that may comprise an embodiment of the present invention.
- a user may select a mode 105.
- the user may select a six minute walk test 107, wherein the unit defaults to active mode (higher volume setting) or a user may be prompted to change from rest mode to active mode.
- a user may be prompted to enter a target six minute walk distance and/or a target number of steps 109.
- a start button or other user input may enable a countdown 111.
- the user may press a start or other user input and begin walking 113, wherein the counter is activated upon the first step and registers the number of steps and/or counts down the remaining steps.
- the ventilator may enunciate messages to a user during the test, such as time remaining.
- a display may indicate completion of the test and display relevant information 115.
- Data may be stored in a memory and/or processed by a processor.
- FIG. 8 shows a non-limiting example of report that certain embodiments of the present inventive ventilator system may be capable of generating.
- Reports 121 may include patient information 123, ventilator settings 125, test results 127, history 129, and other relevant information.
- Information may include text, graphs, charts, graphics and other visual or auditory indicators.
- FIG. 9 shows a non-limiting example of the use of a patient activity-related monitoring function of certain embodiments of the present inventive ventilator system, particularly in this non- limiting exemplary case, a pedometer.
- a user may select a mode 205.
- the user may select a pedometer mode 207, wherein pedometer recordings are displayed.
- the ventilator may automatically count steps when a pedometer is attached and may store results in a memory.
- a user may be prompted to enter a target number of steps 209.
- a start button or other user input may set a counter to zero 211.
- the user may press a start or other user input and begin walking 213, wherein the counter is activated upon the first step and registers the number of steps or combination of steps and other measurements, such as respiration rate.
- the ventilator may enter ambulation mode when steps are registered.
- the screen defaults back to the main screen and a step counter may be displayed on the main screen 215.
- Data may be stored in a memory and/or processed by a processor. The user may enable a user input to go back to pedometer mode to see the actual number of steps versus a goal and a history 217.
- an auto-ambulation mode in which the ventilator output responds to the ambulation level of the patient. If auto-ambulation is off, a user must manually switch between sleep, rest and active settings. If auto-ambulation is on, the ventilator automatically switches between sleep, rest and active based on readings from one or more sensors or a combination thereof. Alternatively, the ventilator may prompt the patient or caregiver to manually make the change.
- FIG. 11 is a flow chart showing ambulation monitoring according to an exemplary embodiment of the present invention. Initially, a patient or physician may turn a ventilator on 301. If the ambulation sensor detects non-ambulation 305, then the ventilator begins augmentation for a rest setting 307.
- the ambulation signal is equal to the ambulation respiratory rate reference value captured from, for example, the previous three breaths.
- the ventilator may wait for a predetermined number of breaths within a predetermined time. For example, the ventilator may wait for three consecutive breaths at an ambulation level, where there are a set number of breaths per time period, such as one breath every three seconds. If these breaths indicate ambulation, then a reminder to the patient is activated 311. If and/or when the user selects ambulation, the ventilator may adjust from rest to ambulation over a set number of breaths 313, for example, three breaths in even adjustment increments. Adjustment may also be automatic.
- the respiratory rate reference value is captured from a previous number of breaths 315.
- the ventilator may wait for a set number of consecutive breaths of non-ambulation and/or a respiratory rate value of within a set number of breaths per minute 317. Results may be compared across sensor types. For example, breath sensors may indicate non-ambulation, and this could be confirmed or disputed by an activity level sensor.
- the control unit may compare values from various sensor types and make a determination of patient activity level and/or health status. Other times a sensor may malfunction or give a false reading, and the other sensor type may compensate. If a threshold limit is met, then a reminder may be activated. This may also be done automatically.
- the ventilator adjusts to a rest setting over a set number of breaths, preferably in even increments 319.
- the ventilator is set on an active or similar setting 303.
- the ventilator begins augmentation for an ambulation setting 321.
- the respiratory rate reference value is captured from previous number of breaths 323.
- the ventilator may wait for a set number of consecutive breaths of non-ambulation and/or a respiratory rate value of within a set number of breaths per minute 325. If a threshold limit is met, then a reminder may be activated. This may also be done automatically.
- the ventilator adjusts to a rest setting over a set number of breaths, preferably in even increments 327.
- an activity sensor may not register movement if a patient is active on a stationary exercise machine, but a breath sensor would indicate an active status. Therefore, multiple sensors may allow for more accurate detection and analysis of patient status and respiratory need than a single type of sensor. Information from multiple sensors may allow matching of measurements by the control unit and more accurate detection of patient activity and overall health.
- Ventilator systems according to the present invention may preferably have the capability of determining and/or monitoring the patient's activity level(s). Determination and monitoring of the patient's activity level(s) can be accomplished, for example, through the use of actigraphy sensor(s). Together with other ventilator information, readings, measurements and settings, such as sleep, rest, active, information regarding the patient's activity level(s) can be useful in titrating and optimizing the ventilation therapy, as well as managing the patient, and monitoring the efficacy of the therapy.
- the actigraphy sensor(s), the control unit(s) of the ventilator, input and output devices, and other types of sensors, acting alone or in cooperation preferably have the ability to determine or provide one or more of, or any combination of, the following types of information: average activity level; current activity level; last set time period activity level; activity level trend; activity level goal setting, and comparison of actual against goal; activity level alerts (alert if too low, alert if goal exceeded); activity level reported with correlation to other parameters (e.g., vol. setting, respiratory rate, time of day, etc.); activity level graphical display versus time; activity level feedback to control settings (e.g., vol. setting); and/or report generation.
- the actigraphy sensor(s) may be integrated into the ventilator, but alternatively may be modular.
- the particular configuration that is more preferable may be determined by, for example, the type of ventilator.
- an integrated sensor may be particularly desirable when the ventilator is wearable ventilator.
- the actigraphy sensor(s) preferably can be modular, such that the patient can wear the sensor in order for it to better record the patient's activity level. It may be useful for the patient to wear the actigraphy sensor(s) during periods when the ventilator is not operably connected to the patient or is not providing ventilation.
- a modular actigraphy sensor(s) may include the ability to store information and later transfer it to the ventilator's control unit upon connection, so that the baseline data may be to determine ventilator settings, and therapeutic values may be synchronized.
- the ventilator may have the capability of determining the patient's ambulation level. Together with other ventilator information and settings, and patient well-being parameters and optionally clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy.
- the sensor and ventilator may have the ability to provide various modes such as: [00090] Pedometer counter mode where the ventilator registers and/or records: total number of steps over a period, such as steps per day; quickness of walking (no walking, slow walking, fast walking); average steps per period; current steps per period; last time period number of steps; number of steps trend; number of steps goal setting, and comparison of actual against goal; number of steps alerts (alert if too low, alert if goal exceeded); number of steps reported with correlation to other parameters (e.g., vol. setting, respiratory rate, time of day, etc.); number of steps graphical display versus time; number of steps feedback to control settings (e.g., vol. setting); estimated distance for the above, based on selected stride distance; and/or report generation (electronic and hard copy).
- Pedometer counter mode where the ventilator registers and/or records: total number of steps over a period, such as steps per day; quickness of walking (no walking, slow walking, fast walking); average
- Auto-Ambulation Mode may allow the ventilator to adjust the therapeutic level based on the ambulation level as determined by the pedometer.
- a physician may set the following: “at rest” volume/timing setting; “exertion” volume/timing setting (the exertion setting can be an "ambulation” setting with multiple levels, for example ambulation 1, ambulation 2, ambulation 3, etc.); optionally, other settings such as sleep, max exercise, conserve, quite, etc.; a pedometer threshold setting; and/or enable auto-ambulation using physician-only key. If the patient's pedometer value is above the threshold setting, the ventilator automatically switches from “at rest” to "exertion” settings.
- the ventilator automatically switches from “at rest” to “exertion” settings.
- a patient can optionally override the "exertion” setting if needed. If programmed by the care provider, the patient can switch to "exertion” settings even if not exerting.
- the threshold values can dynamically adjust, based on recent activity or trends.
- the dynamic adjustment range can be pre-determined, determined and set by the physician, manually set, or automatically determined.
- the auto ambulation mode can also be used with the actigraphy sensor in addition to or instead of the pedometer sensor.
- a manual ambulation mode may allow a user to manually switch between the “at rest” settings, and the “exertion” settings.
- the exertion setting can be an "ambulation” setting with multiple levels, for example ambulation 1, ambulation 2, ambulation 3, etc. These settings are prescribed settings programmed in to the ventilator upon dispensing the ventilator to the patient by the care provider.
- the manual ambulation mode can also be used with the actigraphy sensor in addition to or instead of the pedometer sensor.
- a well-being scale function such as BORG Scale, comfort scale, dyspnea scale, tiredness scale, ease of breathing scale or quality of life scale may collect and store information.
- the information collected and made available in this mode can be used along with the ventilator settings and other patient information including patient activity or ambulation level and clinical parameters to determine and track the efficacy of the therapy, and to potentially make adjustments to the therapy.
- the ventilator may have a built-in user interface menu for user to enter values or to answer questionnaire or survey in order to register/record how the patient is doing or feeling.
- An end-tidal CO 2 monitoring and feedback function may utilize a sensor.
- the ventilator has an integral or modularly attached end-tidal CO 2 sensor. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical information, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy.
- the sensors and ventilator may have the ability to accomplish the following:
- EtCO2 values can be displayed, stored, trended, and provided in a report. EtCO2 reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc. EtCO2 values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode. EtCO2 values can be continuously measured and displayed. EtCO2 values can be reported as exhalation phase values, or inspiration phase values, or both exhalation and inspiration phase values, or an average value of inspiration and expiration.
- EtCO2 values can be reported as ml EtCO2/ml tidal volume, or as a percentage of tidal volume, or can be normalized to or reported as a function of the breath rate or minute volume or breathing pressure, or breathing flow rate, or I:E ratio, or residual volume.
- Oxygen saturation monitoring and feedback function may utilize a sensor.
- the ventilator may have an integral and/or modularly attached pulse oximetry sensor. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange.
- the sensors and ventilator may have the ability to provide the following functions and values: SpO2 values can be displayed, stored, trended, and provided in a report. SpO2 reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc. SpO2 values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode.
- a pulse oximeter may also provide heart rate.
- Spontaneous respiration rate sensing function may utilize sensors.
- the spontaneous breath sensors integral to the ventilation catheter and ventilator continuously un-interruptedly record the spontaneous breath rate of the patient.
- the ventilator may have the capability of determining the patient's spontaneous respiration rate. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy.
- the sensors and ventilator may have the ability to determine or provide the following functions and values:
- the spontaneous breath rate (RR Spont ) is displayed, stored, trended and provided in a report.
- RR spOnt reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc.
- RR spOnt values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode.
- Depth of breathing monitoring function may utilize sensors. Using intra-tracheal breath sensors, the depth of spontaneous respiration is recorded. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange, as well as distress level or activity level. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy.
- the sensors and ventilator may have the ability to determine or provide the following functions and values: depth of respiration can be correlated to tidal volume, and the type of breathing (at rest, sleep, exertion, exercise). The breath sensor signal can be correlated with a reference spirometry value to provide an accurate estimate of the tidal volume. Depth of breathing can be used to determine health status and ventilator settings.
- Therapy utilization and compliance function may utilize sensors. Based on the various sensors, the sensor(s) and ventilator may have the ability to determine utilization and compliance as a function of activity level and well being level.
- the ventilator may have the ability to record frequency and duration of use of the therapy. Use of therapy can be recorded and reported as a function of hours per day, hours per week, etc., and can be organized into subcategories such as hours at "rest” setting and hours at "exercise” setting, etc.
- Target values (prescribed by clinician), for example how many hours of therapy per day, can be entered into the ventilator, and actual therapy can be tracked and reported in comparison to target value. Alerts can be enabled if the actual therapy durations are shorter or longer than prescribed values, or if the therapy is not being used at the correct time of the day.
- Oxygen source level (duration) monitoring function may utilize sensors.
- a user may enter oxygen pressure or oxygen cylinder size of the source.
- the ventilator may track patient breath rate, which is the ventilator rate, and the ventilator volume setting, and provides a displayed value of duration of oxygen source remaining.
- Remaining time alert may be activated based upon a user entering a threshold setting, for example 30 minutes. At such time, the ventilator alerts the user when 30 minutes of oxygen is remaining.
- Ventilator auto-set up function may require a user to enter patient information, such as height, weight, oxygen therapy flow rate prescription, minute ventilation requirement, tidal volume requirement.
- patient information such as height, weight, oxygen therapy flow rate prescription, minute ventilation requirement, tidal volume requirement.
- the ventilator volume setting may then be automatically adjusted to the entered patient information.
- Automatic therapy titration function may involve ventilator volume and timing setting automatically adjusted based on patient's breathing profile. For example, a steep spontaneous inspiratory flow curve may adjust the ventilator timing to trigger early and strong, versus a shallow spontaneous inspiratory flow curve that may adjust the ventilator timing to trigger with a delay and at a lower amplitude delivery flow rate, pressure or volume.
- a spirometry function may allow the ventilator to estimate the depth of breathing or tidal volume by the intra-tracheal breathing signal collected by the breath sensors.
- a patient may need a correlation factor of breath sensor signal to breathing volume which is performed when the ventilator is prescribed and provided to the patient.
- the ventilator can estimate residual volume by correlating tracheal gas composition, breath rate, tracheal breathing gas flow rate, and oxygen volume delivery to lung volume.
- Exacerbation detection and prevention may allow the ventilator, based on clinical indicators, predicts the onset of a COPD exacerbation. Once the exacerbation is predicted in advance, the ventilator can take action to help prevent the exacerbation from occurring: the ventilator can remotely notify a clinician to intervene; for example provide the appropriate medication to prevent the exacerbation from taking place; the ventilator can change its settings to provide more ventilatory support or more oxygen to prevent or minimize the exacerbation; and/or the ventilator can automatically or semi-automatically introduce a medication through the breathing circuit or ventilation catheter into the patient's airway in response to the exacerbation detection and after satisfaction of the requisite threshold values.
- Exacerbations can be predicted by frequency of coughing, type of cough, mucus production level, breath rate, activity level, SpO 2 , EtCO 2 , depth of breathing, or other clinical parameters.
- the ventilator can archive patient parameters or events, and correlate the archived parameters of the last 24 hours to the exacerbation, after the exacerbation has occurred. This can be done automatically by the ventilator or the correlation can be prompted by the clinician.
- the patient then has his/her individual signature for predicting an exacerbation.
- a coughing detection system, or bronchospasm detection can optionally be included independent of the exacerbation detection system.
- a vibration alarm function may be provided. Because the patient may be using the ventilator in public while the patient is being active and mobile, and since the patient may be wearing the ventilator, it may be desirable to have a vibration setting for alarms to avoid disturbing other people with audible alarms.
- the ventilator can optionally include a feature to sense if the ventilator is being worn, versus being toted. If toted, the ventilator can command the vibration alarm setting function to be disabled.
- the vibration setting can optionally convert to an audible alarm if the vibration alarm is not responded to in a pre-determined time frame.
- Table 1 is an example of monitored "Activity Level” performed by a ventilator, including activity level trending, along with other indices such as "Exacerbations”.
- Table 1 indicates the data recorded or received by the system as a direct input from a device, sensor or user input. Information such as that found in Table 1 may be stored, reported or used in any of a number of different ways. The information in Table 1 may be stored in memory available as part of the ventilator electronics. The information in Table 1 may be provided as part of an output for display on a monitor, a print out or as part of an ongoing evaluation of a patient's progress.
- the information in Table 1 can be displayed on the user interface of the ventilator, can be transmitted to a central monitoring station like a respiratory therapy department or nurse's station, or to a remote viewing or archiving location like a doctor's office, or can be formatted for printing and hard copy archival.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Otolaryngology (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Urology & Nephrology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
A respiratory support ventilator apparatus is described that mechanically supports the work of respiration of a patient. The ventilator apparatus is highly portable and optionally wearable so as to promote mobility and physical activity of the patient, and to improve the overall health of the patient. The respiratory support ventilator may monitor a physical activity level and overall health status of the patient, and process this information. The information is used to track efficacy of the ventilation therapy relative to activity level and quality of life, and or to titrate or optimize the ventilation parameters to improve, maintain or optimize the physical activity level and overall health status of the patient.
Description
VENTILATOR WITH BIOFEEDBACK MONITORING AND CONTROL FOR IMPROVING PATIENT ACTIVITY AND HEALTH
PRIORITY CLAIM
[0001] This application claims priority to U.S. Provisional Patent Application No. 61/101,826, filed October 1, 2008, the content of which is incorporated herein by reference in its entirety.
CROSS REFERENCE TO RELATED APPLICATIONS
[0002] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
FIELD OF THE INVENTION
[0003] The present invention relates to ventilation therapy, respiratory assist devices and other devices intended to provide ventilatory assistance. More specifically, the application relates to an activity-assist ventilation therapy that uses biofeedback control of ventilation, and includes associativity of ventilation parameters with patient activity and quality of life.
BACKGROUND OF THE INVENTION
[0004] For the body to take in oxygen and give off carbon dioxide, two components of the respiratory system must function: (1) the lungs must function as a gas-exchanging organ; and (2) the respiratory pump that functions as a ventilation organ that transports air into the lungs and back out again. The breathing center in the brain, central and peripheral nerves, the osseous thorax, and the breathing musculature as well as free, stable respiratory paths are necessary for a correct functioning of the respiratory pump.
[0005] In certain diseases there is a constant overload on or exhaustion of the respiratory pump, which often results in respiratory insufficiency, with symptoms including dyspnea and exhaustion. A non- limiting example of a disease in which there is a constant overload on or exhaustion of the respiratory pump is chronic obstructive pulmonary disease (COPD) or
pulmonary emphysema with a distended or flat-standing diaphragm. Flat-standing diaphragms have reduced ability to contract. Also, in patients suffering from pulmonary emphysema, respiratory paths are usually extremely slack and tend to collapse. Either a flat-standing diaphragm and/or slack respiratory paths may cause respiratory insufficiency. As a consequence of a flattened, over-extended diaphragm, the patient cannot inhale deeply enough. In addition, the patient cannot exhale sufficiently due to collapsing respiratory paths. This results in an insufficient respiration with an undersupply of oxygen and a rise of carbon dioxide in the blood, i.e., a respiratory insufficiency.
[0006] Patients with respiratory insufficiency often require or benefit from supplemental oxygen. However, the supplemental oxygen provided by conventional apparatuses and methods is frequently not adequate to increase ventilation and alleviate symptoms of dyspnea and exhaustion. For example, during periods of light exertion, the patient can become severely dyspneic and exhausted and suffer from elevated CO2 levels, due to the mechanical work associated with breathing which can be eight times more than the normal work required for healthy lungs.
[0007] A traditional mechanical ventilator can be used invasively with a tracheal tube or with a non-invasive nasal mask to assist in the work of breathing and alleviate dyspnea; however conventional ventilators significantly limit upper airway functions, such as talking, eating, and swallowing, and also limit normal life activities such as ambulating and bathing. Hence, mechanical ventilators are rarely used voluntarily, and are predominantly used during acute treatment or for palliative care during late stage lung disease near the end of life. [0008] Recently, new types of ventilation therapy have been described in U.S. Patent No. 7,588,033 and U.S. Patent No. 7,487,778. The new respiratory therapy methods and apparatuses described in these applications provide partial respiratory support in an open transtracheal ventilation system, so the patient can have normal upper airway function such as eating, smelling, drinking, talking, swallowing, and expectorating. Because of their unique delivery systems and ventilation output parameters, these new ventilators are able to be configured in a light weight tote-able or even wearable system to enable the patient to engage in other activities of daily life such as mobility, bathing, and exercise, which are not practical or possible when using conventional ventilators.
[0009] Because this new ventilation therapy enables activity and a more normal lifestyle, it now becomes meaningful to include in the ventilator's functionality certain intelligence and interactive features related to activity, health status, and lifestyle. These features would not be useful or even contemplated in a conventional ventilator.
[00010] Activity level and exercise tolerance is a key indicator of health status of a person with an illness. Maintaining or increasing the patient's activity level via ventilation therapy is described in U.S. Patent No. 7,588,033 and U.S. Patent No. 7,487,778. As maintaining a certain level of activity is expected to improve overall health status, is it is extremely meaningful to measure and track activity level, along with other related indices of health status, and to provide this information in a manner useful to the care provider and patient.
[00011] There is a need for improved patient feedback and monitoring in order to better assess the progress or regression in the health status of the patient and the degree of success of the ventilation therapy in enabling and promoting patient activity and overall health and quality of life.
SUMMARY OF THE INVENTION
[00012] Embodiments of the present invention may include a ventilator system including a ventilator, which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one patient activity sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon activity level of the patient by processing measurements from the at least one breath sensor and the at least one patient activity sensor.
[00013] In certain embodiments, the ventilator may report activity level to a remote device. The patient interface may maintain an open airway system to permit the patient to breathe ambient air freely and spontaneously. The at least one patient activity sensor may be a pedometer to record ambulation of the patient or an actigraphy sensor to record activity level of the patient. The control unit may execute a patient exercise test mode. The control unit may
detect respiration from the at least one breath sensor and patient activity measure from the at least one patient activity sensor over a predetermined time and processes the respiration and the patient activity measure to adjust the ventilation. The respiration may be a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate. The at least one breath sensor may measure respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof. The control unit may record trends from the at least one breath sensor and the at least one patient activity sensor. The at least one breath sensor may detect an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation. The control unit may export the onset or precursor to a respiratory exacerbation to an external source. The control unit may include a processor and a memory, and wherein the memory stores measured ventilation parameters regarding activity level of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations. The ventilation system may include a display wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure. The ventilation system may include a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals. [00014] Embodiments of the present invention may include a method of providing ventilation therapy, the method including providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying ventilation gas to the patient with a patient interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation gas with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient activity related parameter; measuring and recording a spontaneous breathing pattern of the patient; recording the spontaneous breathing pattern of the patient; and reporting the patient activity related parameter.
[00015] Certain embodiments may include recording parameters selected from the group consisting of: general health level, vital signs, respiratory status, quality of life level, physical activity level, and combinations thereof. An exercise or activity test of the patient may be administered through the user interface of the ventilator. The method may include measuring and recording the spontaneous breathing history of the patient, and reporting the spontaneous breathing history of the patient. The measuring may include detecting a precursor to a respiratory exacerbation. The measuring may include adjusting the supplying of ventilation gas based upon the patient activity.
[00016] Embodiments of the present invention may include ventilator system including a ventilator, which may include a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one health status measuring sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon health status level of the patient by processing measurements from the at least one breath sensor and the at least one health status measuring sensor.
[00017] In certain embodiments, the ventilator may report activity level to a remote device. The patient interface may maintain an open airway system to permit the patient to breathe ambient air freely and spontaneously. The at least one patient activity sensor may be a pedometer to record ambulation of the patient or an actigraphy sensor to record activity level of the patient. The control unit may execute a patient exercise test mode. The control unit may detect respiration from the at least one breath sensor and patient activity measure from the at least one patient activity sensor over a predetermined time and processes the respiration and the patient activity measure to adjust the ventilation. The respiration may be a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate. The at least one breath sensor may measure respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof. The control unit may record trends from the at least one
breath sensor and the at least one patient activity sensor. The at least one breath sensor may detect an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation. The control unit may export the onset or precursor to a respiratory exacerbation to an external source. The control unit may include a processor and a memory, and wherein the memory stores measured ventilation parameters regarding activity level of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations. The ventilation system may include a display wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure. The ventilation system may include a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals.
Embodiments of the present invention may include a method of providing ventilation therapy, the method including providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying ventilation gas to the patient with a patient interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation gas with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a health status related parameter; measuring and recording a spontaneous breathing pattern of the patient; recording the spontaneous breathing pattern of the patient; and reporting the health status related parameter.
[00018] Certain embodiments may include recording parameters selected from the group consisting of: general health level, vital signs, respiratory status, quality of life level, physical activity level, and combinations thereof. An exercise or activity test of the patient may be administered through the user interface of the ventilator. The method may include measuring and recording the spontaneous breathing history of the patient, and reporting the spontaneous breathing history of the patient. The measuring may include detecting a precursor to a respiratory exacerbation. The measuring may include adjusting the supplying of ventilation gas based upon the patient activity.
[00019] Embodiments may include a mobility assist device including a portable ventilator with a control unit, the control unit comprising a processor and a memory; a health status measuring device, wherein the health status measuring device measures at least one parameter indicating the current health status of a patient relative to a current activity level or a health goal; and wherein information from the health status measuring device is used to adjust the control unit to adjust the ventilation parameters. The control unit may adjust the ventilation parameters based on information from both the health status measuring device and information from at least one breath sensor.
[00020] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient and configured to be toted or worn by the patient in order to permit ambulation of a respiratory compromised patient while supporting their work of breathing, wherein the apparatus comprises a means to measure the activity or mobility level of the patient and a means to report the activity or mobility level to the user or clinician. [00021] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, wherein the apparatus comprises; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further comprising measuring the activity or mobility level of the patient and reporting the activity or mobility information to a user or clinician.
[00022] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a pedometer wherein the pedometer records the ambulation of the patient and a processing unit to report the ambulation information to a user. [00023] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising an actigraphy sensor wherein the actigraphy sensor records the ambulation of the patient and a processing unit to report the activity level information to a user.
[00024] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a exercise test mode wherein the exercise test mode comprises a user interface to administer the test, an information processing means to manage the exercise information, and a reporting means to report the test results to a user or clinician. [00025] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, wherein the apparatus comprises; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further administering an exercise test to the patient through a user interface and information processing unit in the ventilator, and reporting the results of the exercise test to the user or clinician. [00026] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising an automatic ventilator adjustment mode, wherein the automatic ventilator adjustment mode comprises a sensor to detect a patient activity related parameter such as ambulation or physical movement, and comprising a control system to adjust the ventilator output based on the detection of the patient activity related parameter. [00027] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a spontaneous respiration rate breath sensor adapted to measure the patient's spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, and spontaneous depth of breathing, and further comprising a means to record, trend and report on the patient's spontaneous respiration information. [00028] Embodiments of the present invention may include a ventilator apparatus to provide mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient, comprising a detection means to detect the onset or precursor to a respiratory exacerbation, wherein the detection means comprises breathing signal monitoring sensor and a breathing signal processing unit. The recorded values recorded and stored in memory prior to an exacerbation can be used to create a patient-specific precursor signature,
which can then be programmed into the system for future detection of further exacerbation events.
[00029] Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient activity related parameter; and reporting to a user or clinician the patient activity related parameter. [00030] Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; recording a patient well being or quality of life related parameter; and reporting to a user or clinician the patient well being or quality of life related parameter.
[00031] Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation, and administering an exercise or activity test of the patient through the user interface of the ventilator.
[00032] Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance with a ventilator to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation, and measuring and recording the
spontaneous breathing pattern and history of the patient, and reporting the spontaneous breathing pattern variables and history of the patient to the user or clinician.
[00033] Embodiments of the present invention may include a method of providing ventilation therapy comprising: providing mechanical assistance to the respiratory muscles to support the work of breathing of a spontaneously breathing patient; supplying the ventilation gas to the patient with an interface that maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously; providing the ventilation therapy with a mobile or wearable apparatus to enable patient mobility and ambulation; and further detecting the precursor to a respiratory exacerbation and reporting the precursor to the user or clinician. Ventilation therapy may move a patient towards increased activity, sometimes modifying the ventilation therapy to support increased activity, and, eventually, reducing or eliminating the need for ventilation therapy in those cases where the health status of a patient improves so that they can be active without the ventilation therapy. One component in the decision for the modification, reduction, or elimination of the need for ventilation therapy is patient feedback. Patient feedback useful in this determination may include, for example, information on patient activity, or exertion level in the activity or work performed by the patient. In some situations, for example when treating progressive respiratory diseases in which the activity or health goal may be reduced progression of the disease, the patient feedback is used to continually titrate the settings to the overall health goals selected for the patient. The activity or health goals are selected in advance, and may change over time. The monitoring of the patient may indicate how the patient is doing in comparison to the goal. The ventilation parameters can be continually titrated up or down as needed in order to come as close to meeting the overall health goals as possible. [00034] While the invention is described herein in relation to ventilators, it can also be adapted for use with respiratory assist devices, oxygen therapy devices, and any respiratory therapy apparatus or method that is intended to promote or useful for promoting mobility and activities of daily living.
[00035] Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
[00036] FIG. IA shows a patient using an exemplary ventilation system according to the invention.
[00037] FIGS. IB and 1C show additional non-limiting examples of different entry routes for a ventilation catheter or gas delivery circuit useful with ventilation system according to the invention.
[00038] FIGS. 2A, 2B and 2C graphically show non-limiting examples of how a ventilation system according to embodiments of the invention can be efficacious in supporting the work of breathing, mobility and ambulation while using an open airway system.
[00039] FIG. 3 shows a schematic of a basic embodiment of the invention describing in more detail functional aspects of embodiments of the invention.
[00040] FIG 4 shows a flow diagram of an embodiment the invention, describing in more detail functional aspects of embodiments of the invention.
[00041] FIG. 5 shows an overall layout of an embodiment of the invention.
[00042] FIG. 6 shows an exemplary ventilator and ventilator-user interface and belt system to fasten the ventilator to the user, which are useful with embodiments of the present invention.
[00043] FIG. 7 is a flow chart describing the administration of an exercise test, particularly in this case a six minute walk test, using the interface and interactive features that may comprise an embodiment of the present invention.
[00044] FIG. 8 shows a non-limiting example of report that certain embodiments of the present inventive ventilator system may be capable of generating.
[00045] FIG. 9 shows a non-limiting example of the use of a patient activity-related monitoring function of certain embodiments of the present inventive ventilator system, particularly in this non-limiting exemplary case, a pedometer.
[00046] FIG. 10 shows a non- limiting example of the use of an auto-adjustment function of certain embodiments of the present inventive ventilator system, particularly in this non-limiting exemplary case, an auto-ambulation mode in which the ventilator output responds to the ambulation level of the patient.
[00047] FIG. 11 is a flow chart showing an auto-adjustment function of the ventilation parameters based on patient need, according to an exemplary embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[00048] Embodiments of the present invention provide improved systems, methods, and apparatuses for supporting the respiration of a patient using patient input, providing patient feedback, or both. Embodiments of the present invention may provide respiratory support that promotes mobility and activities of daily living, and/or that is more compatible with mobility and activities of daily living as compared to conventional respiratory support systems, methods, and apparatuses. Respiratory support can be accomplished in a variety of ways, including, but not limited to, by providing controlled synchronized ventilation with a directed flow of an oxygen- bearing gas. The oxygen-bearing gas may be, for example, substantially pure oxygen, mixtures of oxygen and nitrogen, mixtures of oxygen and inert gases, ambient air, or various combinations thereof. In addition, the oxygen-bearing gas may include enhancements, such as fragrances, aerosolized drugs, humidification, or heating. Patient input may be provided, for example, via one or more of the wired or wire-less devices discussed below, or by other suitable methods or devices that are known in the art, or which may be discovered, and which the skilled artisan will recognize as suitable when provided with the teachings herein. Patient feedback may be provided, for example, via one or more of the indications, reports, readouts or system data outputs discussed below, or by other suitable methods or devices that are known in the art, or which may be discovered, and which the skilled artisan will recognize as suitable when provided with the teachings herein.
[00049] The patient may be ventilated using a ventilation gas delivery circuit and noninvasive open nasal ventilation interface or nasal interface, or a minimally invasive trans-tracheal interface. The nasal interface preferably does not seal against the patient's nose like in other ventilation interfaces, and rather leaves the nose open for the user to breathe normally and freely from the ambient surroundings. The transtracheal interface connects to the patient's trachea without sealing the airway so the patient can breathe normally and freely through their upper airway. Ventilation gas may be delivered at a speed which entrains ambient air, such that the combination of ventilation gas and entrained air are delivered to the user's airways and lung
under power. The interface may optimize the physics and fluid dynamics, in order to maximize its performance, as will be explained in the subsequent detailed descriptions. The ventilation system may also include a ventilator and a gas supply or gas generating means. A spontaneous breathing respiration sensor may also be used to detect, determine and measure the spontaneous breathing pattern and phases of the user, in order to synchronized and titrate the therapy to the needs of the patient and to match the gas delivery comfortably with the patient's breathing. The invention may be used to support the respiration of the patient, including supporting the work of breathing by increasing pressure and volume in the lung, and can be used for maintaining airway patency of the upper airways such as the oropharyngeal airway. When using the invention, the patient breathes normally through their upper airway and through their nose, while receiving mechanical support through the interface. In the case of the nasal interface, the patient can keep their mouth closed during use, to help direct the mechanical support to the lower airways, or can use a bite block or mouth guard or chin band, if necessary. The patient can use the therapy while stationary, while being transported, while mobile and active, or while resting or sleeping. The therapy has homecare, hospital, subacute care, emergency, military, pandemic, and transport applications. An oral interface or endotracheal tube interface is also contemplated as part of the invention, as well as a modular system that is compatible with all interface types mentioned. [00050] A ventilator of the invention can be borne or worn by the patient. The nasal interface may be placed discretely on the user's body, head and face. The transtracheal interface may be discrete and low profile, or in the case the patient has a typical tracheostomy tube, the interface can be minimally invasively connected to the tracheostomy tube. Because the ventilation system contributes to some of the mechanical work required for a person to breathe, the user can be active without suffering from dyspnea, hypoxemia or hypercapnia. The user can benefit from ambulation, activity, and participate in the routine activities of daily living, such as preparing meals, bathing, chores around the house, and leaving the house for outside activities. Further, the user can communicate, eat, drink and swallow, while receiving mechanical ventilation, as opposed to other ventilation interfaces in which the patient's airway is closed with an external mask, or sealed internally with a cuffed airway tube. The ventilation parameters, ventilation timing algorithms, and the effect on the lung are described in subsequent detailed descriptions. [00051] Embodiments of the present invention may include a ventilation therapy device with one or more of a built in or a modular: actigraphy sensor, pedometer, quality of life
scale/questionnaire function, and other activity sensors. Embodiments of the present invention may include an exertion, exhaustion, dyspnea or well being scale/questionnaire function or input device. Titration of therapy may be performed based on patient's activity level, automatic adjustment mechanisms, and/or selectable settings of the ventilator system according to the patient's response to therapy. Alternatively or in addition, embodiments of the inventive ventilation therapy device may include indications and/or monitoring of known disease exacerbation prediction. Alternatively or in addition, embodiments of the inventive ventilation therapy device may include the ability to provide report(s) to the health care provider. These may include communication devices that send information from the ventilator to an external source. The report(s) may provide information such as, for example, information regarding a patent's activity levels; information regarding the patient's health status, such as patient vital signs such as oxygen saturation (SpO2) and respiratory rate (RR), the patient's exercise tolerance, respiratory status; and/or information about the operation of the patient's ventilator, such as settings and parameters. Information about a patient's health status, the patient's activity, and the operational parameters of the patient's ventilator can be correlated or associated with each other, such as over time. The report(s) created by systems according to the invention preferably provide the clinician or other health care provider with a more complete picture of the patient's activity level and overall health status as a function of the operation of the ventilator. The additional intelligence provided by the systems according to the invention preferably facilitate the monitoring and tracking of the patient's health and progress, the optimization and/or titration of the ventilation therapy to better meet the needs of the patient, including, but not limited to, changing the parameters of the ventilation therapy to meet changing conditions in the patient's health and/or physical activity level.
[00052] The interactive devices and features of systems according to the invention, non- limiting examples of which are described in more detail below, preferably enable the patient or care provider to set activity type goals, administer activity and well being type tests or questionnaires, and report on respiratory status, health status, activity level status, progress and trends. The intelligence and interactive features can preferably also be used to tailor and titrate the ventilation therapeutic level to the needs of the patient. Ventilation therapy may be matched as closely as possible to activity and/or health goals by a control unit.
[00053] Referring to FIG. IA, in accordance with one embodiment of the invention, P designates a patient suffering from respiratory insufficiency. Patient P may be, for example, suffering from a breathing disorder, such as pulmonary emphysema, with overloading and exhaustion of the respiratory muscles. As a consequence, the patient P can not take sufficiently sized breaths, and thus too much CO2 is retained in the lungs, which can not be flushed out, and insufficient oxygen is supplied to the tissues. Patient P may additionally suffer, for example, from slack and collapsing respiratory paths, which contribute to the patient's inability to exhale enough carbon-dioxide rich gas, thus, trapping the CO2 rich gas in the lungs. The system of FIG. IA generally includes the ability to detect the patient's spontaneous respiration via one or more sensors 13, 14 and the ability to perform some of the work of breathing for the respiratory muscles by delivering pressurized gas as a function of patient activity in a manner that results in increased lung pressure in the lung in an open airway system. In addition, a ventilator 4 may provide additional oxygen to the lungs and can be synchronized to augment inspiration, exhalation, or both via a control unit 1. The control unit 1 may include a memory and a processor. The control unit 1 may process measurements taken from one or more types of sensors to adjust ventilation therapy and/or match patient activity and/or health goals. Known patient interfaces may be used with ventilation systems of the present invention. Preferably, as is shown in FIG. IA, a transtracheal catheter 5 or gas delivery circuit is placed into the patient's airway without sealing the airway, so that the patient's airway is open ambient, thus, permitting and promoting spontaneous breathing through the natural air passages. The ventilation system may promote mobility and normal airway function while still assisting in the work of breathing. The ventilation system may be portable and does not prevent spontaneous breathing. FIGS. IB and 1C show additional non-limiting examples of patient interfaces. FIG. IB illustrates a ventilation catheter 5 or gas delivery circuit placed into the patient's trachea via a nasopharyngeal route. Optionally, in FIG. IB, the ventilation catheter tip can be disposed at the entrance to the nose, or even outside the entrance to the nose. FIG. 1C illustrates a ventilation catheter 5 or gas delivery circuit placed into the patient's trachea via an oropharyngeal route. Embodiments of the present invention may also work with conventional interface devices, such as, but not limited to, a conventional nasal mask.
[00054] FIGS. 2A - 2C show non-limiting examples of how a ventilation system according to invention can support, or perform part or all of, the patient's work of breathing in an open airway
system and thus promote activity and ambulation. The patient's work of breathing is assisted by the ventilator gas delivery and entrainment caused by the ventilator gas to exceed the patient's spontaneous breathing flow rate, and thus elevating pressure in the lung. FIG. 2A represents the therapy when it is delivered during the patient's entire inspiratory phase. FIG. 2B represents the therapy when it is delivered at the end of the patient's inspiratory phase with oxygen therapy delivered during the beginning of the patient's inspiratory phase. FIG. 2C represents the therapy when it is delivered at the beginning of the patient's inspiratory phase. Each of these three therapeutic timing options has unique therapeutic effects. In the figures, the solid line represents the indicated parameter without the therapy and the dashed line represents the indicated parameter with the therapy. The top graphs represent the patient's lung volume with and without the therapy, showing residual volume RV and tidal volume Vt. The middle graphs represent the patient's inspiratory and expiratory flow with and without the therapy, and the ventilator's inspiratory flow. The bottom graph represents the resultant patient's lung pressure with and without the therapy.
[00055] FIG. 2 A shows a representative ventilator output waveform which is generally a square wave during the majority of the patient's inspiratory time. Compared to the baseline condition, this ventilator output inflates the lung faster and at the end of inspiration inflates the lung slightly more. In FIG. 2A, the patient's breath is supported by the therapy throughout inspiration, resulting in an almost neutral pressure condition in the lung, while supplying much of the volume needed by the patient. Compared to conventional ventilation which requires a relatively high positive pressure to be generated in the lung, this open system has the benefit of not requiring such a high lung pressure.
[00056] FIG. 2B shows a ventilator output waveform timed with the back end of the inspiratory phase, and compared to baseline, inflates the lung deeper, increasing the tidal volume of the patient, thus, increasing ventilation. To assure achieving the necessary oxygenation, supplemental oxygen is delivered early in the breath. A slight positive lung pressure occurs late in the inspiratory phase.
[00057] FIG. 2C shows a ventilator output waveform timed with the front part of the inspiratory phase, and compared to baseline, inflates the lung faster, helping the patient to achieve the needed tidal volume much earlier than without the therapy, thus, keeping the patient's lung distended for a longer period of time thus improving gas exchange. The ventilator
can alternate between these three alternative timing modes of FIGS. 2 A, 2B and 2C as needed or as desired. Hence, the ventilator described in the invention may be capable of facilitating mobility and even exertion of a patient with respiratory insufficiency without the patient fatiguing, yet in an open airway system.
[00058] The respiration support of patient P in accordance with the principles of the invention may preferably be implemented in a system, method, or apparatus that may be compact and/or portable. As shown, for example in Figure IA, the respiration support of patient P in accordance with the principles of the invention may be implemented in a system, method, or apparatus that may be wearable or carry-able by the patient. The principles of the invention may, however, also be used with other types of ventilation systems. Non- limiting examples of ventilation systems with which the principles of the invention may be used include stationary ventilators, ventilators suitable for use in vehicles, ventilators suitable for home use, ventilators sized for a patient to carry or wheel on a cart, wearable ventilators, carry-able ventilators, and central respiratory systems, such as those in medical facilities. The invention may also be applied to oxygen therapy systems and interventional respiratory treatments.
[00059] An exemplary overall system 19 is illustrated in FIG. 3, indicating ventilator V, gas source O2 21, gas pump or control valve 23, control unit 25, ventilation catheter or other patient interface 27, one or more internal sensors 29, and patient P. The gas source O2 21 , gas pump or control valve 23, and control unit 25 can be separate or integrated components of the system 19. The control unit 25 may be connected to one or more internal sensors 29 and/or one or more external sensors 31 (as shown in FIG. IA). The one or more internal sensors 29 may preferably be spontaneous breath sensors. The one or more internal sensors 29 and/or one or more external sensors 31 may be any of the sensors or devices described herein in any combination. Reference numerals 20, 30, 40, and 50 may represent non-limiting examples of sensors and interfaces that may by used with embodiments of the present invention. For example, sensors may be internal activity-related sensors 20, such as actigraphy or a pedometer; ventilation related sensors 30, such as etCO2, SpO2, depth of respiration, or rate of respiration; user interface for well-being scale 40, such as BORG, quality of life, or tiredness scale; or user interface for administering an exercise test 50, such as a six minute walk. It is important to note that, although sensors and interfaces may be integral to or inside the ventilator, as shown in FIG. 3, they may also be modular and operably connected to the ventilator.
[00060] The control unit 25 may receive input from internal or external activity-related sensors 33 and/or external ventilation-related sensors 35. The control unit 25 may report output via hardwire 37, wireless transmitter 39 or other suitable procedure. An optional implanted sensor 41 within a patient P may transmit information I via hardwire, wireless transmitter or other suitable procedure. An oxygen blender 24 may be provided between the gas supply 21 and the control valve 23 in order to provide the required or desired concentration of oxygen to the patient. The end-tidal CO2 sensor, or other sensor, can be used to determine the concentration of oxygen being delivered to the patient, and can be used to adjust the blender as necessary. The oxygen can alternatively be bled into the gas delivery circuit to the patient neat the outlet of the ventilator 19 to the gas delivery circuit 27. A breath sensor may provide feedback from a patient P and/or the gas delivery circuit 27 to the control unit 25 and/or control valve 23. [00061] A patient's spontaneous breathing preferably can be detected by way of sensors. A catheter or gas delivery circuit can be used to introduce oxygen-rich gas into the lungs as needed to contribute to work of breathing by performing work on the respiratory muscles as described in FIGS. 2A - 2C. As shown in FIG. IA, the patient's airway may be operably connected to the ventilator via a catheter 5 or gas delivery circuit. The sensors and catheter or gas delivery circuit can be associated with the patient in a variety of ways. For example, as illustrated in FIG. IA, a catheter 5 or gas delivery circuit may be introduced in the trachea transtracheally, or can be coupled to the channel of a tracheostomy tube.
[00062] Alternatively, a catheter 5 or gas delivery circuit may be introduced at other points into a patient P, including, as further non- limiting examples, through the mouth or nose of the patient P (as in FIGS. IB and 1C), or by positioning the tip of the catheter at the entrance to or outside of he nostrils, or introducing a catheter via an artificially created entry point somewhere on the body and tunneling it internally to and into the trachea. Any other suitable technique may be employed to operably connect the patient's airway to a ventilator. As another non-limiting example of a ventilator system that may be useful with the present invention, the patient's airway may be operably connected to a ventilator using a noninvasive breathing mask and a single or dual limb breathing circuit.
[00063] The devices or sensors that provide input to a control unit 12 may be any suitable known devices or sensors, and may be chosen based, for example, on parameters to be measured, system configuration, and patient and system interaction. Devices or sensors may be implanted
on or in a patient, worn on or attached to the patient or the patient's clothing, integral to the ventilator, modularly attached to the ventilator, or held by the patient. Numerous devices and sensors may be used in the inventive ventilator system and are described in greater detail below. Non- limiting examples of useful devices and sensors include actigraphy sensors, pedometers, end-tidal CO2 sensors, pulse oximetry sensors and a pulse oximetry sensors with heart rate monitors, spontaneous breath sensors, and intra-tracheal breath sensors. Other useful devices and sensors are known in the art, or may be discovered, which the skilled artisan will recognize as suitable for use with the invention when provided with the teachings herein. [00064] Ventilator systems of the present invention may also preferably include user input interfaces, such as buttons, keypads, touch screens, etc. that preferably facilitate the entering of information or setting of ventilation parameters, therapeutic goals, or overall health goals by the patient or clinician; and output interfaces or devices that preferably facilitate the provision of information by the ventilator system to the patient or clinician. Non-limiting examples of output interfaces or devices include devices, such as alarms, displays, printers, hand-held digital assistants, emails or text messages, etc., that preferably can alert the patient or clinician to an occurrence or condition.
[00065] The general flow diagram in FIG. 4 shows that patient activity is an important therapeutic goal, and that monitoring, assessing, and reporting on patient activity level is is used to meet the therapeutic goal. Ultimately, a determination is made regarding the ventilation parameters, and appropriate action is taken to facilitate obtaining the activity related goals. The functionality of they system of FIG. 4 may be carried out, for example, by the system of FIG. 3. [00066] In FIG. 4, activity level of a patient may be monitored 41. Assessed activity level may be compared to ventilator settings, and other health status identifiers 43. A control unit may then determine the adequacy of ventilation for the activity level 45. The control unit may then report on the activity level and adequacy of the ventilation for that activity level 47. If necessary, the control unit may adjust the ventilator or respiratory support device settings 49. As such, the therapy may be improved by correlating physical activity level with mobile, unobtrusive respiratory support 51.
[00067] Respiratory devices may include a control unit that directs the operation of function of the ventilator, such as, for example, providing gas flow to the patient, optionally in synchronization with the patient's breathing. In some embodiments, monitoring and reporting
capabilities are provided by enhancing or modifying the capabilities of the respiratory device control unit. Control unit modification and/or enhancement may be provided using any of a wide variety of techniques known to those of ordinary skill in the electronic and software arts. As such, there are numerous alternative ways to enhance the control system capabilities to realize the improved capabilities of the inventive system. Control system modification or enhancement may include all or some of: additional or modified stand alone electronics; additional or modified integrated electronics; additional or modified hardware; additional or modified software; additional or modified firm ware; additional or modified memory and/or additional or modified input/output functionality. Alternatively, one or more additional control units may be added to the respiratory device to provide the inventive monitoring and reporting capabilities. Any additional control unit(s) may preferably work in cooperation with, and share data, such as respiration data, with control unit.
[00068] Likewise, known respiratory devices can be modified to perform the monitoring and reporting capabilities of the present invention. The specific component(s) added, system modification(s) or enhancement(s) or degree or combination thereof will depend on the inventive reporting or functionality capability being implemented. A number of non- limiting exemplary monitoring and reporting functions and capabilities that may be implemented by or provided by embodiments of the inventive ventilator systems are described below. Non- limiting exemplary functions and capabilities include activity level monitoring, pedometer feedback and estimation, such as 6 minute walk test data collection and report generation, well being interface, end tidal CO2 monitoring and control system feedback, oxygen saturation monitoring and control system feedback, spontaneous respiration rate monitoring and control system feedback, therapy utilization and compliance monitoring and control system feedback, breathing source gas level/duration monitoring and control system feedback, ventilator auto set-up function, automatic therapy titration, spirometry, and exacerbation detection and prevention, monitoring, and control system feedback.
[00069] FIG. 5 illustrates an overall view of an exemplary embodiment of the present invention, in which various diagnostic assessments and reporting of or interaction with those assessments are made to determine the adequacy of the therapy. Therapy 61 may include mechanical support of breathing 63 administered in relation to patient physical activity, normal activities of daily living and normal social activities 65. Therapeutic goals 67 may be entered to
a ventilatory support/ambulation device 69 adapted to be borne by a patient and adapted so that the patient has an open upper airway to enable normal upper airway functions. Therapeutic settings 71 may be used to administer therapy 61. Therapy may be adjusted as needed 73. [00070] Diagnostic devices 75 may be in communication 77, internally or externally, with a therapeutic device 69. The diagnostic device 75 may (1) measure and assess general health level and vital signs, (2) measure and assess respiratory status, (3) measure and assess quality of life level, and/or (4) measure and assess physical activity level for the purposes of measuring and assessing overall health and well-being status of a patient. A test or query 79 may be presented to examine exercise tolerance, overall health and well-being. Efficacy of the therapy compared to therapeutic goals may be determined 81. Capability to Improve Overall Health
[00071] Overall health (such as activity, quality of life, dyspnea, comfort, exacerbation frequency, exercise tolerance, spontaneous respiratory rate, number of steps taken per day, etc.) can be improved by the ventilation system of this invention because the ventilator is designed to be borne by the patient, and designed to provide mechanical ventilatory support using an open airway ventilation system. Therefore, the ventilator enables activities of daily living, such as normal use of upper, being able to ambulate and move, and being able to exert oneself without immobilizing levels of dyspnea. Overall Health Measurements
[00072] Overall health measurements (such as activity level, quality of life scales, dyspnea scales, comfort scales, disease exacerbation frequency, exercise tolerance, spontaneous respiratory rate, number of steps taken per day, etc.), conventionally are measurements that are made manually. With respect to mechanical ventilation, these types of measurements have not been made as part of a ventilation system, since conventional ventilators are not used to improve or optimize the patient's overall health. Conventional ventilators, when used for respiratory support, have historically been used only to optimize the patient's blood gases and other respiratory parameters, but not overall health. The system of this invention includes the capability of measuring and assessing these overall health indicators. Capability to Set Goals for Overall Health
[00073] With existing conventional ventilation systems, the prescribing physician cannot and has no need to set goals for the patient's overall health. The only goals that are set are the
ventilator parameters, the goal of physiologic stability and, if possible, weaning from the ventilator. But overall health, such as activity level, quality of life measures, and exacerbations are not measured as part of the ventilation therapy, nor are goals set for these parameters. A ventilator is not considered in this context. However, with a mobility assist device, such as the ventilator of this invention, the physician has the ability to consider the patient's overall activity level and health as part of what the therapy accomplishes. The physician can then set a goal as part of the intended therapy. Therefore, when the patient is initially prescribed the therapy of this invention, the doctor, and optionally the patient too, can set overall health goals, along with the ventilator settings. The goals can adjust over time as appropriate for the patient, given the prevailing circumstances. For example, a patient with a chronic and progressive disease, the goals may decrease very slightly every year. A patient with a chronic but non-progressive disease, the goals may slightly increase every year or every month. In contrast, if the patient where using a conventional ventilation therapy, their goals (if it where possible to set them and track them, which it is not) would significantly decrease every year or stay the same, for a progressive disease and non-progressive disease respectively. Trending and Reporting
[00074] The overall health measurements and ventilation parameters can be tracked, trended and reported. They can be stored for retrospective reporting or analysis purpose, for utilization reviews, for care providers and home care equipment providers to help them manage their patients. The reports and trending can be reported automatically to the physician so the physician can manage the patient remotely. The data can be reviewed periodically to detect trends in the patient's well being, and to interdict if and when necessary. Associativity between Overall Health Goals and Ventilator Parameter Settings [00075] Setting and tracking overall health goals with a ventilation system is possible with embodiments of the present invention such that the overall health goals and ventilation parameters can be tied together. If the overall health goals are not being met, the ventilation parameters can be adjusted or re-titrated, usually increasing the therapeutic level of the ventilation parameters, in attempt to meet the overall health goals. Conversely, if the overall health goals are being met, the ventilation parameters can be re-titrated or turned down, in order to reduce the patient's dependency on the mechanical ventilation, while still meeting the ultimate goals of the therapy, which is a certain level of overall health. Also, turning down the therapy
when the overall health goals are being met helps conserve oxygen and is more cost effective in the long run. The adjustment or re-titration of the ventilation parameters can be automatic, semiautomatic, or manual, or any combination of thereof. The associativity can be set up in advance when prescribing the therapy to the patient, or can be established or re-established during the course of therapy, for example every month, and can be set up manually or wirelessly. Health Status Index
[00076] With the advent of a mobility enhancement ventilator, setting overall health goals, and associativity between overall health and ventilator parameters, a new clinical measure may be possible that was not possible before. The new clinical measure may be a Health Status Index (HSI), which is a dimensionless parameter that takes into account the level of therapeutic support the patient is receiving and the overall health of the patient. The HSI can be expressed in an absolute scale, but can also be expressed in a percent predicted scale, or a percent of target scale. For instance, a patient may have an HSI of 8 out of a maximum of 10 using a 0-10 or -10 to +10 scale. Their predicted value might be a 7, giving them a HSI percent predicted of 114%, meaning they have over-achieved the normal value for that patient type. Their target value might have been 8, giving them a HSI percent of target of 100%. The HSI can be for example a numerator of Overall Health and a denominator of therapeutic level. For example, the numerator would include overall health subcomponents (such as activity level, comfort, dyspnea, number of steps per day, RR, and speech quality), each with a relative weighting of importance relative to the other subcomponents, and the denominator would include therapeutic level subcomponents (such as oxygen percentage setting, ventilator volume setting, number of hours used per day), each with a relative weighting of importance relative to the other subcomponents. The HSI can include a more complex formula as well, and a wider scale than 1-10 or -10 to +10. The HSI can also be a value that has units associated with it, rather than unit-less as described above, such as 0.8 steps per day per ml per hour per % oxygen. Defining an HSI goal, and tracking to that goal, and adjusting the therapy to meet that goal, is one of the ultimate goals of the therapy. [00077] FIG. 6 shows an exemplary ventilator 91 and ventilator-user interface 93 and belt system 95 to fasten the ventilator 91 to the user, which are useful with embodiments of the present invention. The user interface 93 may include displays, indicators, alarms, etc. The ventilator 91 may include input devices, such as buttons, touch screens, keypads, etc. Inputs 97
may allow for turning power on/off, entering activity levels, turning alarms on/off, and other options.
[00078] FIG. 7 is a flow chart describing the administration of an exercise test 101, particularly in this case a six minute walk test, using the interface and interactive features that may comprise an embodiment of the present invention. From a main screen 103, a user may select a mode 105. In an exemplary embodiment, the user may select a six minute walk test 107, wherein the unit defaults to active mode (higher volume setting) or a user may be prompted to change from rest mode to active mode. A user may be prompted to enter a target six minute walk distance and/or a target number of steps 109. A start button or other user input may enable a countdown 111. The user may press a start or other user input and begin walking 113, wherein the counter is activated upon the first step and registers the number of steps and/or counts down the remaining steps. In certain embodiments, the ventilator may enunciate messages to a user during the test, such as time remaining. At the conclusion of the test, a display may indicate completion of the test and display relevant information 115. Data may be stored in a memory and/or processed by a processor.
[00079] FIG. 8 shows a non-limiting example of report that certain embodiments of the present inventive ventilator system may be capable of generating. Reports 121 may include patient information 123, ventilator settings 125, test results 127, history 129, and other relevant information. Information may include text, graphs, charts, graphics and other visual or auditory indicators.
[00080] FIG. 9 shows a non-limiting example of the use of a patient activity-related monitoring function of certain embodiments of the present inventive ventilator system, particularly in this non- limiting exemplary case, a pedometer. From a main screen 203, a user may select a mode 205. In an exemplary embodiment, the user may select a pedometer mode 207, wherein pedometer recordings are displayed. The ventilator may automatically count steps when a pedometer is attached and may store results in a memory. A user may be prompted to enter a target number of steps 209. A start button or other user input may set a counter to zero 211. The user may press a start or other user input and begin walking 213, wherein the counter is activated upon the first step and registers the number of steps or combination of steps and other measurements, such as respiration rate. In certain embodiments, the ventilator may enter ambulation mode when steps are registered. In certain embodiments, the screen defaults back to
the main screen and a step counter may be displayed on the main screen 215. Data may be stored in a memory and/or processed by a processor. The user may enable a user input to go back to pedometer mode to see the actual number of steps versus a goal and a history 217. [00081] FIG. 10 shows a non- limiting example of the use of an auto-adjustment function of certain embodiments of the present inventive ventilator system, particularly in this non-limiting exemplary case, an auto-ambulation mode in which the ventilator output responds to the ambulation level of the patient. If auto-ambulation is off, a user must manually switch between sleep, rest and active settings. If auto-ambulation is on, the ventilator automatically switches between sleep, rest and active based on readings from one or more sensors or a combination thereof. Alternatively, the ventilator may prompt the patient or caregiver to manually make the change.
[00082] Multiple types of sensors may be used to collect data regarding a patient and analyzed together to make a determination of patient status. In preferred embodiments, a breath sensor may be used in combination with an activity sensor or health sensor. The information from both types of sensors can be analyzed together to adjust ventilation, as needed. One exemplary embodiment may be the system and method as shown in FIG. 11. FIG. 11 is a flow chart showing ambulation monitoring according to an exemplary embodiment of the present invention. Initially, a patient or physician may turn a ventilator on 301. If the ambulation sensor detects non-ambulation 305, then the ventilator begins augmentation for a rest setting 307. If a patient then begins ambulation 309, the ambulation signal is equal to the ambulation respiratory rate reference value captured from, for example, the previous three breaths. The ventilator may wait for a predetermined number of breaths within a predetermined time. For example, the ventilator may wait for three consecutive breaths at an ambulation level, where there are a set number of breaths per time period, such as one breath every three seconds. If these breaths indicate ambulation, then a reminder to the patient is activated 311. If and/or when the user selects ambulation, the ventilator may adjust from rest to ambulation over a set number of breaths 313, for example, three breaths in even adjustment increments. Adjustment may also be automatic. When an ambulation signal indicates non-ambulation, the respiratory rate reference value is captured from a previous number of breaths 315. The ventilator may wait for a set number of consecutive breaths of non-ambulation and/or a respiratory rate value of within a set number of breaths per minute 317. Results may be compared across sensor types. For example, breath
sensors may indicate non-ambulation, and this could be confirmed or disputed by an activity level sensor. The control unit may compare values from various sensor types and make a determination of patient activity level and/or health status. Other times a sensor may malfunction or give a false reading, and the other sensor type may compensate. If a threshold limit is met, then a reminder may be activated. This may also be done automatically. When the user selects a rest setting, the ventilator adjusts to a rest setting over a set number of breaths, preferably in even increments 319.
[00083] If the ambulation sensor detects ambulation, then the ventilator is set on an active or similar setting 303. The ventilator begins augmentation for an ambulation setting 321. When an ambulation signal indicates non-ambulation, the respiratory rate reference value is captured from previous number of breaths 323. The ventilator may wait for a set number of consecutive breaths of non-ambulation and/or a respiratory rate value of within a set number of breaths per minute 325. If a threshold limit is met, then a reminder may be activated. This may also be done automatically. When the user selects a rest setting, the ventilator adjusts to a rest setting over a set number of breaths, preferably in even increments 327.
[00084] It may be preferable to include multiple sensor types to confirm reading prior to adjusting therapy. For example, an activity sensor may not register movement if a patient is active on a stationary exercise machine, but a breath sensor would indicate an active status. Therefore, multiple sensors may allow for more accurate detection and analysis of patient status and respiratory need than a single type of sensor. Information from multiple sensors may allow matching of measurements by the control unit and more accurate detection of patient activity and overall health.
[00085] The following sections describe various exemplary embodiments and aspects of the inventive ventilator system, sensors, and methods of use. Any of the embodiments and aspects of the inventive ventilator system, sensors, and methods of use may be used in combination with any other embodiments and aspects. Actigraphy sensor and monitoring function
[00086] Ventilator systems according to the present invention may preferably have the capability of determining and/or monitoring the patient's activity level(s). Determination and monitoring of the patient's activity level(s) can be accomplished, for example, through the use of actigraphy sensor(s). Together with other ventilator information, readings, measurements and
settings, such as sleep, rest, active, information regarding the patient's activity level(s) can be useful in titrating and optimizing the ventilation therapy, as well as managing the patient, and monitoring the efficacy of the therapy.
[00087] The actigraphy sensor(s), the control unit(s) of the ventilator, input and output devices, and other types of sensors, acting alone or in cooperation preferably have the ability to determine or provide one or more of, or any combination of, the following types of information: average activity level; current activity level; last set time period activity level; activity level trend; activity level goal setting, and comparison of actual against goal; activity level alerts (alert if too low, alert if goal exceeded); activity level reported with correlation to other parameters (e.g., vol. setting, respiratory rate, time of day, etc.); activity level graphical display versus time; activity level feedback to control settings (e.g., vol. setting); and/or report generation. [00088] The actigraphy sensor(s) may be integrated into the ventilator, but alternatively may be modular. The particular configuration that is more preferable may be determined by, for example, the type of ventilator. For example, an integrated sensor may be particularly desirable when the ventilator is wearable ventilator. When the ventilator is not worn by the patient, but is, for example, carried, wheeled, or even stationary, the actigraphy sensor(s) preferably can be modular, such that the patient can wear the sensor in order for it to better record the patient's activity level. It may be useful for the patient to wear the actigraphy sensor(s) during periods when the ventilator is not operably connected to the patient or is not providing ventilation. This would facilitate the determination of a baseline value for the patient's activity level while the patient is not receiving ventilation. It may be preferable for a modular actigraphy sensor(s) to include the ability to store information and later transfer it to the ventilator's control unit upon connection, so that the baseline data may be to determine ventilator settings, and therapeutic values may be synchronized. Pedometer Sensing
[00089] Based on a pedometer sensor or sensors, the ventilator may have the capability of determining the patient's ambulation level. Together with other ventilator information and settings, and patient well-being parameters and optionally clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy. The sensor and ventilator may have the ability to provide various modes such as:
[00090] Pedometer counter mode where the ventilator registers and/or records: total number of steps over a period, such as steps per day; quickness of walking (no walking, slow walking, fast walking); average steps per period; current steps per period; last time period number of steps; number of steps trend; number of steps goal setting, and comparison of actual against goal; number of steps alerts (alert if too low, alert if goal exceeded); number of steps reported with correlation to other parameters (e.g., vol. setting, respiratory rate, time of day, etc.); number of steps graphical display versus time; number of steps feedback to control settings (e.g., vol. setting); estimated distance for the above, based on selected stride distance; and/or report generation (electronic and hard copy).
[00091] Six minute walk test monitoring mode (steps and estimated distance) where the ventilator has a user interface to administer test and display/report results, and registers and/or records: goal setting; results history; countdown timer, prompts and visual/audible indicators (such as "pace is 100 steps per minute", or "good job", etc.); estimated distance function (estimates distance from stride length entered by user); comparison against 6 minute walk with ventilator off (ventilator receives input from standalone pedometer used by patient without the ventilator, or the Ventilator OFF results are entered into the ventilator by user); and/or report generation (electronic and hard copy).
[00092] Auto-Ambulation Mode may allow the ventilator to adjust the therapeutic level based on the ambulation level as determined by the pedometer. A physician may set the following: "at rest" volume/timing setting; "exertion" volume/timing setting (the exertion setting can be an "ambulation" setting with multiple levels, for example ambulation 1, ambulation 2, ambulation 3, etc.); optionally, other settings such as sleep, max exercise, conserve, quite, etc.; a pedometer threshold setting; and/or enable auto-ambulation using physician-only key. If the patient's pedometer value is above the threshold setting, the ventilator automatically switches from "at rest" to "exertion" settings. If the patient's pedometer value is below the threshold setting, the ventilator automatically switches from "at rest" to "exertion" settings. A patient can optionally override the "exertion" setting if needed. If programmed by the care provider, the patient can switch to "exertion" settings even if not exerting. The threshold values can dynamically adjust, based on recent activity or trends. The dynamic adjustment range can be pre-determined, determined and set by the physician, manually set, or automatically determined. The auto
ambulation mode can also be used with the actigraphy sensor in addition to or instead of the pedometer sensor.
[00093] A manual ambulation mode may allow a user to manually switch between the "at rest" settings, and the "exertion" settings. The exertion setting can be an "ambulation" setting with multiple levels, for example ambulation 1, ambulation 2, ambulation 3, etc. These settings are prescribed settings programmed in to the ventilator upon dispensing the ventilator to the patient by the care provider. The manual ambulation mode can also be used with the actigraphy sensor in addition to or instead of the pedometer sensor.
[00094] A well-being scale function, such as BORG Scale, comfort scale, dyspnea scale, tiredness scale, ease of breathing scale or quality of life scale may collect and store information. The information collected and made available in this mode can be used along with the ventilator settings and other patient information including patient activity or ambulation level and clinical parameters to determine and track the efficacy of the therapy, and to potentially make adjustments to the therapy. The ventilator may have a built-in user interface menu for user to enter values or to answer questionnaire or survey in order to register/record how the patient is doing or feeling.
[00095] An end-tidal CO2 monitoring and feedback function may utilize a sensor. The ventilator has an integral or modularly attached end-tidal CO2 sensor. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical information, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy. The sensors and ventilator may have the ability to accomplish the following:
[00096] EtCO2 values can be displayed, stored, trended, and provided in a report. EtCO2 reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc. EtCO2 values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode. EtCO2 values can be continuously measured and displayed. EtCO2 values can be reported as exhalation phase values, or inspiration phase values, or both exhalation and inspiration phase values, or an average value of inspiration and expiration. EtCO2 values can be reported as ml EtCO2/ml tidal volume, or as
a percentage of tidal volume, or can be normalized to or reported as a function of the breath rate or minute volume or breathing pressure, or breathing flow rate, or I:E ratio, or residual volume. [00097] Oxygen saturation monitoring and feedback function may utilize a sensor. The ventilator may have an integral and/or modularly attached pulse oximetry sensor. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy. The sensors and ventilator may have the ability to provide the following functions and values: SpO2 values can be displayed, stored, trended, and provided in a report. SpO2 reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc. SpO2 values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode. A pulse oximeter may also provide heart rate.
[00098] Spontaneous respiration rate sensing function may utilize sensors. The spontaneous breath sensors integral to the ventilation catheter and ventilator, continuously un-interruptedly record the spontaneous breath rate of the patient. Based on the sensor, the ventilator may have the capability of determining the patient's spontaneous respiration rate. Together with other ventilator information and settings, and patient activity level and well being information and optionally other patient clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy. The sensors and ventilator may have the ability to determine or provide the following functions and values: The spontaneous breath rate (RRSpont) is displayed, stored, trended and provided in a report. RRspOnt reporting can be reported with other information such as ventilator parameters, other monitored values such as pedometer reading, etc. RRspOnt values can be used to automatically or manually adjust ventilator output, for example to go from rest mode to active mode.
[00099] Depth of breathing monitoring function may utilize sensors. Using intra-tracheal breath sensors, the depth of spontaneous respiration is recorded. Based on the sensor, the ventilator may have the capability of determining the patient's ventilation efficiency and gas exchange, as well as distress level or activity level. Together with other ventilator information
and settings, and patient activity level and well being information and optionally other patient clinical parameters, the information can be useful in titrating and optimizing the therapy as well as managing the patient, and monitoring the efficacy of the therapy. The sensors and ventilator may have the ability to determine or provide the following functions and values: depth of respiration can be correlated to tidal volume, and the type of breathing (at rest, sleep, exertion, exercise). The breath sensor signal can be correlated with a reference spirometry value to provide an accurate estimate of the tidal volume. Depth of breathing can be used to determine health status and ventilator settings.
[000100] Therapy utilization and compliance function may utilize sensors. Based on the various sensors, the sensor(s) and ventilator may have the ability to determine utilization and compliance as a function of activity level and well being level. The ventilator may have the ability to record frequency and duration of use of the therapy. Use of therapy can be recorded and reported as a function of hours per day, hours per week, etc., and can be organized into subcategories such as hours at "rest" setting and hours at "exercise" setting, etc. Target values (prescribed by clinician), for example how many hours of therapy per day, can be entered into the ventilator, and actual therapy can be tracked and reported in comparison to target value. Alerts can be enabled if the actual therapy durations are shorter or longer than prescribed values, or if the therapy is not being used at the correct time of the day.
[000101] Oxygen source level (duration) monitoring function may utilize sensors. A user may enter oxygen pressure or oxygen cylinder size of the source. The ventilator may track patient breath rate, which is the ventilator rate, and the ventilator volume setting, and provides a displayed value of duration of oxygen source remaining. Remaining time alert may be activated based upon a user entering a threshold setting, for example 30 minutes. At such time, the ventilator alerts the user when 30 minutes of oxygen is remaining.
[000102] Ventilator auto-set up function may require a user to enter patient information, such as height, weight, oxygen therapy flow rate prescription, minute ventilation requirement, tidal volume requirement. The ventilator volume setting may then be automatically adjusted to the entered patient information.
[000103] Automatic therapy titration function may involve ventilator volume and timing setting automatically adjusted based on patient's breathing profile. For example, a steep spontaneous inspiratory flow curve may adjust the ventilator timing to trigger early and strong, versus a
shallow spontaneous inspiratory flow curve that may adjust the ventilator timing to trigger with a delay and at a lower amplitude delivery flow rate, pressure or volume.
[000104] A spirometry function may allow the ventilator to estimate the depth of breathing or tidal volume by the intra-tracheal breathing signal collected by the breath sensors. A patient may need a correlation factor of breath sensor signal to breathing volume which is performed when the ventilator is prescribed and provided to the patient. The ventilator can estimate residual volume by correlating tracheal gas composition, breath rate, tracheal breathing gas flow rate, and oxygen volume delivery to lung volume.
[000105] Exacerbation detection and prevention may allow the ventilator, based on clinical indicators, predicts the onset of a COPD exacerbation. Once the exacerbation is predicted in advance, the ventilator can take action to help prevent the exacerbation from occurring: the ventilator can remotely notify a clinician to intervene; for example provide the appropriate medication to prevent the exacerbation from taking place; the ventilator can change its settings to provide more ventilatory support or more oxygen to prevent or minimize the exacerbation; and/or the ventilator can automatically or semi-automatically introduce a medication through the breathing circuit or ventilation catheter into the patient's airway in response to the exacerbation detection and after satisfaction of the requisite threshold values. Exacerbations can be predicted by frequency of coughing, type of cough, mucus production level, breath rate, activity level, SpO2, EtCO2, depth of breathing, or other clinical parameters. The ventilator can archive patient parameters or events, and correlate the archived parameters of the last 24 hours to the exacerbation, after the exacerbation has occurred. This can be done automatically by the ventilator or the correlation can be prompted by the clinician. The patient then has his/her individual signature for predicting an exacerbation. A coughing detection system, or bronchospasm detection can optionally be included independent of the exacerbation detection system. The cough and bronchospasm events can be measured, recorded, trended and reported to a user or clinician for use in determining the appropriate intervention. [000106] A vibration alarm function may be provided. Because the patient may be using the ventilator in public while the patient is being active and mobile, and since the patient may be wearing the ventilator, it may be desirable to have a vibration setting for alarms to avoid disturbing other people with audible alarms. The ventilator can optionally include a feature to sense if the ventilator is being worn, versus being toted. If toted, the ventilator can command the
vibration alarm setting function to be disabled. The vibration setting can optionally convert to an audible alarm if the vibration alarm is not responded to in a pre-determined time frame. [000107] Table 1 is an example of monitored "Activity Level" performed by a ventilator, including activity level trending, along with other indices such as "Exacerbations". Table 1 indicates the data recorded or received by the system as a direct input from a device, sensor or user input. Information such as that found in Table 1 may be stored, reported or used in any of a number of different ways. The information in Table 1 may be stored in memory available as part of the ventilator electronics. The information in Table 1 may be provided as part of an output for display on a monitor, a print out or as part of an ongoing evaluation of a patient's progress.
TABLE 1
[000108] In addition or alternatively, the information in Table 1 can be displayed on the user interface of the ventilator, can be transmitted to a central monitoring station like a respiratory therapy department or nurse's station, or to a remote viewing or archiving location like a doctor's office, or can be formatted for printing and hard copy archival.
[000109] Additionally or alternatively, when a particular parameter from Table 1 is selected, for example, "Spontaneous Respiratory Rate", additional information can be viewed or expanded, as shown in the example Table 2 below, so that the therapeutic value can be compared with the baseline value.
TABLE 2
[000110] Additional details of ventilation systems and methods for providing ventilation therapy are described in International Application Number PCT/US2006/036600 and United States Patent Publication No. US2008/0135044.
[000111] Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.
Claims
1. A ventilator system comprising: a ventilator comprising a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one patient activity sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon activity level of the patient by processing measurements from the at least one breath sensor and the at least one patient activity sensor.
2. The ventilator system of claim 1 , wherein the ventilator reports activity level to a remote device.
3. The ventilator system of claim 1 , wherein the patient interface maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously.
4. The ventilator system of claim 1 , wherein the at least one patient activity sensor is a pedometer to record ambulation of the patient.
5. The ventilator system of claim 1 , wherein the at least one patient activity sensor is an actigraphy sensor to record activity level of the patient.
6. The ventilator system of claim 1 , wherein the control unit executes a patient exercise test mode.
7. The ventilator system of claim 1 , wherein the control unit detects respiration from the at least one breath sensor and patient activity measure from the at least one patient activity sensor over a predetermined time and processes the respiration and the patient activity measure to adjust the ventilation.
8. The ventilator system of claim 7, wherein the respiration is a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate.
9. The ventilator system of claim 1 , wherein the at least one breath sensor measures respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof.
10. The ventilator system of claim 8, wherein the control unit records trends from the at least one breath sensor and the at least one patient activity sensor.
11. The ventilation system of claim 1 , wherein the at least one breath sensor detects an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation.
12. The ventilator system of claim 1 , wherein the control unit exports the onset or precursor to a respiratory exacerbation to an external source.
13. The ventilator system of claim 1 , wherein the control unit comprises a processor and a memory, and wherein the memory stores measured ventilation parameters regarding activity level of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations.
14. The ventilator system of claim 1, further comprising a display, and wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure.
15. The ventilator system of claim 1 , further comprising a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals.
16. The ventilator system of claim 1 , wherein the at least one breath sensor measures respiration rate and the at least one patient activity sensor measures patient activity, and the combination of measurements is used to adjust the ventilation.
17. A ventilator system comprising: a ventilator comprising a ventilation gas source, a ventilation gas delivery circuit, and a control unit; a patient interface in communication with the ventilation gas delivery circuit; at least one breath sensor; at least one health status measuring sensor; wherein the ventilator is adapted to provide mechanical assistance to respiratory muscles to support work of breathing of a spontaneously breathing patient; wherein the ventilator is adapted to be coupled to a patient for permitting ambulation of a respiratory compromised patient while supporting the work of breathing; and wherein the control unit adjusts ventilation based upon health status level of the patient by processing measurements from the at least one breath sensor and the at least one health status measuring sensor.
18. The ventilator system of claim 17, wherein the ventilator reports health status to a remote device.
19. The ventilator system of claim 17, wherein the patient interface maintains an open airway system to permit the patient to breathe ambient air freely and spontaneously.
20. The ventilator system of claim 17, wherein the control unit executes a patient exercise test mode.
21. The ventilator system of claim 17, wherein the control unit detects respiration from the at least one breath sensor and patient health status measure from the at least one health status measuring sensor over a predetermined time and processes the respiration and the health status measure to adjust the ventilation.
22. The ventilator system of claim 21 , wherein the respiration is a measure of consecutive breaths over the predetermined time, and ventilation is adjusted after a predetermined number of breaths at a predetermined rate.
23. The ventilator system of claim 17, wherein the at least one breath sensor measures respiration information selected from the group consisting of: spontaneous breath rate, spontaneous breathing I:E ratio, spontaneous inspiratory and expiratory time, spontaneous depth of breathing, and combinations thereof.
24. The ventilator system of claim 17, wherein the control unit records trends from the at least one breath sensor and the at least one health status measuring sensor.
25. The ventilator system of claim 17, wherein the at least one breath sensor detects an onset or precursor to a respiratory exacerbation, and the control unit executes a change in ventilator parameters to avoid or alleviate the exacerbation.
26. The ventilator system of claim 17, wherein the control unit exports the onset or precursor to a respiratory exacerbation to an external source.
27. The ventilator system of claim 17, wherein the control unit comprises a processor and a memory, and wherein the memory stores measured ventilation parameters regarding health status of the patient, and wherein after a respiratory exacerbation, the stored respiratory status parameters prior to the respiratory exacerbation are used to program a signature for predicting future respiratory exacerbations.
28. The ventilator system of claim 17, further comprising a display, and wherein the display indicates an overall health index, wherein the overall health index comprises at least one patient health status measure, and at least one ventilator parameter measure.
29. The ventilator system of claim 17, further comprising a patient interface for inputting health status normal values or health status goals, and wherein the patient interface displays patient health status compared to the at least one health status normal values or health status goals.
30. The ventilator system of claim 17, wherein a user interface for the control unit comprises an input for a health status goal, and wherein the control unit adjusts the ventilator to result in a health status that matches as close as possible to the health status goal.
31. The ventilator system of claim 17, wherein the at least one breath sensor measures respiration rate and the at least one health status measuring sensor measures patient health status, and the combination of measurements is used to adjust the ventilation.
32. A mobility assist device comprising: a portable ventilator with a control unit, the control unit comprising a processor and a memory; a health status measuring device, wherein the health status measuring device measures at least one parameter indicating the current health status of a patient relative to a current activity level or a health goal; and wherein information from the health status measuring device is used to adjust the control unit to adjust the ventilation parameters.
33. The mobility assist device of claim 32, wherein the control unit adjusts the ventilation parameters based on information from both the health status measuring device and information from at least one breath sensor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011530250A JP5711661B2 (en) | 2008-10-01 | 2009-10-01 | Ventilator with biofeedback monitoring and controls to improve patient activity and health |
EP09818525.9A EP2344791B1 (en) | 2008-10-01 | 2009-10-01 | Ventilator with biofeedback monitoring and control for improving patient activity and health |
CA2739435A CA2739435A1 (en) | 2008-10-01 | 2009-10-01 | Ventilator with biofeedback monitoring and control for improving patient activity and health |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10182608P | 2008-10-01 | 2008-10-01 | |
US61/101,826 | 2008-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010039989A1 true WO2010039989A1 (en) | 2010-04-08 |
Family
ID=42073891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/059272 WO2010039989A1 (en) | 2008-10-01 | 2009-10-01 | Ventilator with biofeedback monitoring and control for improving patient activity and health |
Country Status (5)
Country | Link |
---|---|
US (1) | US10252020B2 (en) |
EP (1) | EP2344791B1 (en) |
JP (1) | JP5711661B2 (en) |
CA (1) | CA2739435A1 (en) |
WO (1) | WO2010039989A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
WO2012128704A1 (en) | 2011-03-24 | 2012-09-27 | Fraanberg Oskar | A device and method for supplying and dosing gas to a breathing person |
US8335992B2 (en) | 2009-12-04 | 2012-12-18 | Nellcor Puritan Bennett Llc | Visual indication of settings changes on a ventilator graphical user interface |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8418694B2 (en) | 2003-08-11 | 2013-04-16 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8443294B2 (en) | 2009-12-18 | 2013-05-14 | Covidien Lp | Visual indication of alarms on a ventilator graphical user interface |
WO2013067580A1 (en) * | 2011-11-07 | 2013-05-16 | Resmed Limited | Methods and apparatus for providing ventilation to a patient |
US8453645B2 (en) | 2006-09-26 | 2013-06-04 | Covidien Lp | Three-dimensional waveform display for a breathing assistance system |
US8555881B2 (en) | 1997-03-14 | 2013-10-15 | Covidien Lp | Ventilator breath display and graphic interface |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8924878B2 (en) | 2009-12-04 | 2014-12-30 | Covidien Lp | Display and access to settings on a ventilator graphical user interface |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US8955518B2 (en) | 2003-06-18 | 2015-02-17 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8985099B2 (en) | 2006-05-18 | 2015-03-24 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US9119925B2 (en) | 2009-12-04 | 2015-09-01 | Covidien Lp | Quick initiation of respiratory support via a ventilator user interface |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US9262588B2 (en) | 2009-12-18 | 2016-02-16 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US10582880B2 (en) | 2006-04-21 | 2020-03-10 | Covidien Lp | Work of breathing display for a ventilation system |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US11672934B2 (en) | 2020-05-12 | 2023-06-13 | Covidien Lp | Remote ventilator adjustment |
WO2024257015A1 (en) * | 2023-06-16 | 2024-12-19 | Breas Medical Ab | System and methods for dynamically controlling operation of a mechanical ventilator for automatic intervention during a detected respiratory episode |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8888713B2 (en) | 2007-03-07 | 2014-11-18 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
MX372563B (en) | 2007-03-07 | 2025-03-04 | Becton Dickinson Co | Safety blood collection assembly with indicator |
US7974689B2 (en) | 2007-06-13 | 2011-07-05 | Zoll Medical Corporation | Wearable medical treatment device with motion/position detection |
US8140154B2 (en) | 2007-06-13 | 2012-03-20 | Zoll Medical Corporation | Wearable medical treatment device |
US8603009B2 (en) | 2008-03-07 | 2013-12-10 | Becton, Dickinson And Company | Flashback blood collection needle |
US20100204016A1 (en) * | 2009-02-09 | 2010-08-12 | Inventec Corporation | System and method for editing walking procedure |
GB2474917B (en) * | 2009-11-02 | 2015-12-23 | Scott Health & Safety Ltd | Improvements to powered air breathing apparatus |
WO2011073815A2 (en) * | 2009-12-19 | 2011-06-23 | Koninklijke Philips Electronics N.V. | Copd exacerbation prediction system and method |
US20130102855A1 (en) * | 2009-12-21 | 2013-04-25 | Koninklijke Philips Electronics N.V. | Bode index measurement |
US8695591B2 (en) | 2010-05-26 | 2014-04-15 | Lloyd Verner Olson | Apparatus and method of monitoring and responding to respiratory depression |
US10335060B1 (en) * | 2010-06-19 | 2019-07-02 | Dp Technologies, Inc. | Method and apparatus to provide monitoring |
WO2012020433A1 (en) * | 2010-08-09 | 2012-02-16 | Mir Srl-Medical International Research | Portable device for monitoring and reporting of medical information for the evidence -based management of patients with chronic respiratory disease |
CA2811521C (en) * | 2010-09-15 | 2019-10-29 | Allied Healthcare Products, Inc. | Ventilation system |
US9427564B2 (en) | 2010-12-16 | 2016-08-30 | Zoll Medical Corporation | Water resistant wearable medical device |
DE102010055243B4 (en) * | 2010-12-20 | 2016-10-27 | Drägerwerk AG & Co. KGaA | Automatically controlled ventilator |
DE102010055253B4 (en) * | 2010-12-20 | 2016-11-10 | Drägerwerk AG & Co. KGaA | Automatically controlled ventilator |
US10332630B2 (en) * | 2011-02-13 | 2019-06-25 | Masimo Corporation | Medical characterization system |
US8771186B2 (en) | 2011-05-17 | 2014-07-08 | Welch Allyn, Inc. | Device configuration for supporting a patient oxygenation test |
US9192326B2 (en) | 2011-07-13 | 2015-11-24 | Dp Technologies, Inc. | Sleep monitoring system |
US9737676B2 (en) | 2011-11-02 | 2017-08-22 | Vyaire Medical Capital Llc | Ventilation system |
US9687618B2 (en) | 2011-11-02 | 2017-06-27 | Carefusion 207, Inc. | Ventilation harm index |
US9352110B2 (en) | 2012-06-29 | 2016-05-31 | Carefusion 207, Inc. | Ventilator suction management |
US20130110530A1 (en) * | 2011-11-02 | 2013-05-02 | Tom Steinhauer | Ventilator report generation |
US20130110529A1 (en) * | 2011-11-02 | 2013-05-02 | Tom Steinhauer | Ventilator avoidance report |
US9072849B2 (en) | 2012-06-29 | 2015-07-07 | Carefusion 207, Inc. | Modifying ventilator operation based on patient orientation |
US20130110924A1 (en) * | 2011-11-02 | 2013-05-02 | Tom Steinhauer | Wide area ventilation management |
US9177109B2 (en) | 2011-11-02 | 2015-11-03 | Carefusion 207, Inc. | Healthcare facility ventilation management |
US9058741B2 (en) | 2012-06-29 | 2015-06-16 | Carefusion 207, Inc. | Remotely accessing a ventilator |
US9821129B2 (en) | 2011-11-02 | 2017-11-21 | Vyaire Medical Capital Llc | Ventilation management system |
US9459597B2 (en) | 2012-03-06 | 2016-10-04 | DPTechnologies, Inc. | Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user |
US10791986B1 (en) | 2012-04-05 | 2020-10-06 | Dp Technologies, Inc. | Sleep sound detection system and use |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US20130297336A1 (en) * | 2012-05-01 | 2013-11-07 | Data Diagnostix, Llc | Healthcare Data Analysis |
US10736515B2 (en) * | 2012-06-07 | 2020-08-11 | Clarkson University | Portable monitoring device for breath detection |
US9327090B2 (en) | 2012-06-29 | 2016-05-03 | Carefusion 303, Inc. | Respiratory knowledge portal |
US20140006041A1 (en) * | 2012-06-29 | 2014-01-02 | Carefusion 207, Inc. | Tracking ventilator information for reporting a ventilator-associated event |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US9474876B1 (en) | 2012-12-14 | 2016-10-25 | DPTechnologies, Inc. | Sleep aid efficacy |
US11317824B1 (en) * | 2012-12-19 | 2022-05-03 | Alert Core, Inc. | System and method for identifying breathing patterns during running and other applications |
WO2014150606A1 (en) * | 2013-03-15 | 2014-09-25 | Lutz Freitag | Respiratory support system |
US10124126B2 (en) * | 2013-04-18 | 2018-11-13 | The Regents Of The University Of Colorado, A Body Corporate | System and methods for ventilation through a body cavity |
US9594354B1 (en) | 2013-04-19 | 2017-03-14 | Dp Technologies, Inc. | Smart watch extended system |
EP2893948A1 (en) * | 2014-01-10 | 2015-07-15 | Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Methods and systems for providing oxygen to a patient |
JP6568196B2 (en) * | 2014-03-21 | 2019-08-28 | コーラブス メディカル,インコーポレイテッド | Apparatus and method for improved auxiliary ventilation |
US11963792B1 (en) | 2014-05-04 | 2024-04-23 | Dp Technologies, Inc. | Sleep ecosystem |
WO2016022823A2 (en) * | 2014-08-07 | 2016-02-11 | Board Of Regents Of The University Of Nebraska | Systems and techniques for estimating the severity of chronic obstructive pulmonary disease in a patient |
US10136859B2 (en) | 2014-12-23 | 2018-11-27 | Michael Cutaia | System and method for outpatient management of chronic disease |
US11883188B1 (en) | 2015-03-16 | 2024-01-30 | Dp Technologies, Inc. | Sleep surface sensor based sleep analysis system |
FR3036944B1 (en) * | 2015-06-08 | 2021-01-22 | Polycaptil | DEVICE FOR DIAGNOSING THE EFFICIENCY OF THE VENTILATION OF A PATIENT AND METHOD OF VENTILATION OF A PATIENT |
US10729910B2 (en) | 2015-11-23 | 2020-08-04 | Zoll Medical Corporation | Garments for wearable medical devices |
CN106334243A (en) * | 2016-01-19 | 2017-01-18 | 康泰医学系统(秦皇岛)股份有限公司 | System for supplying oxygen as required and oxygen generating plant |
US20180082033A1 (en) * | 2016-09-22 | 2018-03-22 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an artificial respiratory device via a network |
US11541255B2 (en) * | 2016-09-29 | 2023-01-03 | Honeywell International Inc. | Custom-controllable powered respirator face mask |
DE102017124256A1 (en) * | 2016-10-29 | 2018-05-03 | Sendsor Gmbh | Sensor and method for measuring the properties of the respiratory gas |
WO2018086710A1 (en) * | 2016-11-11 | 2018-05-17 | Gce Holding Ab | Remote monitoring and controlling of a patient oxygen therapy device |
JP7000423B2 (en) * | 2017-05-18 | 2022-01-19 | 帝人ファーマ株式会社 | Exacerbation Predictor, Oxygen Concentrator and Exacerbation Predictor System |
US11009870B2 (en) | 2017-06-06 | 2021-05-18 | Zoll Medical Corporation | Vehicle compatible ambulatory defibrillator |
MX2019014832A (en) * | 2017-06-07 | 2020-08-03 | Respiratory Motion Inc | Respiratory volume monitor and ventilator. |
WO2019002033A1 (en) | 2017-06-28 | 2019-01-03 | Koninklijke Philips N.V. | A system for humidification of a pressurized flow of breathable gas delivered to a patient |
US10839319B2 (en) | 2017-09-27 | 2020-11-17 | Allstate Insurance Company | Data processing system with machine learning engine to provide output generating functions |
US20190095815A1 (en) | 2017-09-27 | 2019-03-28 | Allstate Insurance Company | Data Processing System with Machine Learning Engine to Provide Output Generating Functions |
US11537935B2 (en) | 2017-09-27 | 2022-12-27 | Allstate Insurance Company | Data processing system with machine learning engine to provide output generating functions |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US20190125256A1 (en) * | 2017-10-30 | 2019-05-02 | Hays, Inc. | Automatic Drug Administration Device and Method |
US11568984B2 (en) | 2018-09-28 | 2023-01-31 | Zoll Medical Corporation | Systems and methods for device inventory management and tracking |
WO2020069308A1 (en) | 2018-09-28 | 2020-04-02 | Zoll Medical Corporation | Adhesively coupled wearable medical device |
US11382534B1 (en) | 2018-10-15 | 2022-07-12 | Dp Technologies, Inc. | Sleep detection and analysis system |
EP3671760A1 (en) * | 2018-12-19 | 2020-06-24 | Linde GmbH | System and method for predicting an exacerbation |
WO2020139880A1 (en) | 2018-12-28 | 2020-07-02 | Zoll Medical Corporation | Wearable medical device response mechanisms and methods of use |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
CN114728143A (en) * | 2019-11-04 | 2022-07-08 | 费雪派克医疗保健有限公司 | Breathing assistance device and/or components thereof and/or uses thereof |
CN111346281A (en) * | 2020-03-09 | 2020-06-30 | 曹佳慧 | Control method of medical portable respirator and medical portable respirator |
WO2022006150A1 (en) * | 2020-06-29 | 2022-01-06 | GE Precision Healthcare LLC | Systems and methods for respiratory support recommendations |
EP3958274A1 (en) * | 2020-08-18 | 2022-02-23 | Löwenstein Medical Technology S.A. | Method of supporting a user of a ventilator and ventilation system |
WO2022141125A1 (en) * | 2020-12-29 | 2022-07-07 | 东南大学附属中大医院 | Respiratory support device and control method therefor, and storage medium |
USD1014517S1 (en) | 2021-05-05 | 2024-02-13 | Fisher & Paykel Healthcare Limited | Display screen or portion thereof with graphical user interface |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999013931A1 (en) | 1997-09-18 | 1999-03-25 | Caradyne (R & D) Limited | Portable respirator |
US5928189A (en) | 1997-04-22 | 1999-07-27 | Phillips; Robert E. | Activity responsive therapeutic delivery system |
US6192883B1 (en) * | 1999-08-03 | 2001-02-27 | Richard L. Miller, Jr. | Oxygen flow control system and method |
US20040159323A1 (en) | 1997-07-25 | 2004-08-19 | Minnesota Innovative Technologies And Instruments | Control of respiratory oxygen delivery |
US20050034721A1 (en) * | 2003-08-11 | 2005-02-17 | Lutz Freitag | Tracheal catheter and prosthesis and method of respiratory support of a patient |
US20070193705A1 (en) * | 2006-02-01 | 2007-08-23 | Gemmy Industries Corporation | Roll-up screen partition |
US20080135044A1 (en) | 2003-06-18 | 2008-06-12 | Breathe Technologies | Methods and devices for minimally invasive respiratory support |
US20080161653A1 (en) * | 2006-12-29 | 2008-07-03 | Industrial Technology Research Institute | Cardio-respiratory fitness evaluation method and system |
US7588033B2 (en) | 2003-06-18 | 2009-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
Family Cites Families (863)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2735432A (en) | 1956-02-21 | hudson | ||
US428592A (en) | 1890-05-27 | Inspirator | ||
US50641A (en) | 1865-10-24 | Improvement in treating diseases by condensed air | ||
US697181A (en) | 1901-08-20 | 1902-04-08 | Lundy B Smith | Instrument for cooling or for warming internal portions of the human body. |
US718785A (en) | 1902-09-16 | 1903-01-20 | James Welch Mcnary | Respirator. |
US853439A (en) | 1903-10-14 | 1907-05-14 | Albert C Clark | Inhaler. |
US859156A (en) | 1906-09-04 | 1907-07-02 | Charles E Congdon | Pneumomedical apparatus. |
US909002A (en) | 1908-06-03 | 1909-01-05 | Napoleon Lambert | Respirator. |
US1125542A (en) | 1914-03-11 | 1915-01-19 | Aubrey Humphries | Apparatus for use in administering anesthetics. |
US1129619A (en) | 1914-07-10 | 1915-02-23 | Gustave A Zapf | Inhaling system. |
US1331297A (en) | 1918-11-13 | 1920-02-17 | Luther J Walker | Ventilating apparatus |
US2178800A (en) | 1936-05-15 | 1939-11-07 | Charles F Lombard | Inhaler |
US2259817A (en) | 1939-02-27 | 1941-10-21 | Eva M Hawkins | Adjustable head attachment for oxygen tubes |
US2552595A (en) | 1948-09-21 | 1951-05-15 | Seeler Henry | Oxygen demand breathing system, including means for automatic altitude regulation |
US2693800A (en) | 1951-04-27 | 1954-11-09 | Caldwell Lyle | Nasal cannula |
US2663297A (en) | 1953-01-19 | 1953-12-22 | Harold G Belasco | Nasal adapter for oxygen inhalation |
US2792000A (en) | 1953-01-20 | 1957-05-14 | B S F A Holdings Ltd | Face mask for use in dust-laden or other contaminated conditions |
US2947938A (en) | 1954-04-09 | 1960-08-02 | Victory Engineering Corp | Electrothermal measuring apparatus and method for the calibration thereof |
US2859748A (en) | 1956-07-30 | 1958-11-11 | Charles H Hudson | Breathing mask |
US2843122A (en) | 1956-07-31 | 1958-07-15 | Charles H Hudson | Breathing mask |
US2931358A (en) | 1958-07-30 | 1960-04-05 | David S Sheridan | Nasal cannulae |
US3267935A (en) | 1961-05-04 | 1966-08-23 | Air Shield Inc | Respiratory assister |
US3172407A (en) | 1961-09-29 | 1965-03-09 | Baxter Don Inc | Gas administration apparatus |
US3357428A (en) | 1963-12-23 | 1967-12-12 | David L Carlson | Respiratory augmentor with electronic monitor and control |
US3319627A (en) | 1964-02-20 | 1967-05-16 | Mine Safety Appliances Co | Intermittent positive pressure breathing apparatus |
US3357424A (en) | 1964-12-03 | 1967-12-12 | Schreiber Gus | Respiratory device for emphysema patients |
US3460533A (en) | 1964-12-31 | 1969-08-12 | Claudio Riu Pla | Nasal expander-inhaler |
US3357427A (en) | 1965-04-21 | 1967-12-12 | John M Wittke | Aerosol introducer device for dispensing a measured charge of therapeutic composition into body cavities |
US3437274A (en) | 1966-07-26 | 1969-04-08 | Edward W Apri | Liquid spray apparatus |
US3513844A (en) | 1968-04-30 | 1970-05-26 | Metro Hospital Supply Co Inc | Adjustable nonrestrictive nasal cannula |
US3493703A (en) | 1968-08-02 | 1970-02-03 | James E Finan | Body motion sensitive electrical switch with lost motion means |
GB1261357A (en) | 1968-10-31 | 1972-01-26 | Nat Res Dev | Apnoea alarms |
US3610247A (en) | 1969-03-03 | 1971-10-05 | Richard R Jackson | Surface-anesthetizing medical appliance |
US3625206A (en) | 1969-11-03 | 1971-12-07 | John Charnley | Protective clothing |
US3643660A (en) | 1969-11-21 | 1972-02-22 | Allan C Hudson | Nasal cannula |
US3657740A (en) | 1969-11-26 | 1972-04-18 | Armando A Cialone | Ventilated welder{3 s mask assembly |
US3727606A (en) | 1970-06-12 | 1973-04-17 | Airco Inc | Apnea detection device |
US3625207A (en) | 1970-06-18 | 1971-12-07 | Boyd F Agnew | Respiratory mask and ducting |
US3794026A (en) | 1970-07-29 | 1974-02-26 | H Jacobs | Ventilating apparatus embodying selective volume or pressure operation and catheter means for use therewith |
US3721233A (en) | 1970-10-30 | 1973-03-20 | W Montgomery | T-shaped tracheal stent |
US3741208A (en) | 1971-02-23 | 1973-06-26 | B Jonsson | Lung ventilator |
US3682171A (en) | 1971-03-31 | 1972-08-08 | Baxter Laboratories Inc | Nasal cannula |
US3733008A (en) | 1971-05-17 | 1973-05-15 | Life Support | Carrying case for oxygen generators |
US3754552A (en) | 1971-06-08 | 1973-08-28 | Sandoz Ag | Flexible nasal cannula |
US3802431A (en) | 1971-10-08 | 1974-04-09 | Bard Inc C R | Nasal cannula |
US3831596A (en) | 1971-11-10 | 1974-08-27 | Synthelabo | Control device for a respiratory apparatus |
US3726275A (en) | 1971-12-14 | 1973-04-10 | I Jackson | Nasal cannulae |
FR2174782B1 (en) | 1972-03-10 | 1975-03-21 | Lafourcade Jean Michel | |
US3794072A (en) | 1972-06-26 | 1974-02-26 | Hudson Oxygen Therapy Sales Co | Oxygen diluter device |
US3972327A (en) | 1973-03-22 | 1976-08-03 | Hoffmann-La Roche Inc. | Respirator |
US3896800A (en) | 1973-07-27 | 1975-07-29 | Airco Inc | Method and apparatus for triggering the inspiratory phase of a respirator |
CH568756A5 (en) | 1973-09-07 | 1975-11-14 | Hoffmann La Roche | |
US3991790A (en) | 1973-09-28 | 1976-11-16 | Sandoz, Inc. | Patient ventilator trigger circuit |
US3905362A (en) | 1973-10-02 | 1975-09-16 | Chemetron Corp | Volume-rate respirator system and method |
US3949749A (en) | 1974-02-24 | 1976-04-13 | Bio-Med Devices Inc. | Pediatric respirator |
US3903881A (en) | 1974-04-12 | 1975-09-09 | Bourns Inc | Respirator system and method |
US3951143A (en) | 1974-11-20 | 1976-04-20 | Searle Cardio-Pulmonary Systems Inc. | Intermittent demand ventilator |
US3985131A (en) | 1974-11-20 | 1976-10-12 | Searle Cardio-Pulmonary Systems Inc. | Infant and pediatric ventilator |
GB1558060A (en) | 1975-07-29 | 1979-12-19 | Medishield Corp Ltd | Lung ventilator |
US4003377A (en) | 1975-08-21 | 1977-01-18 | Sandoz, Inc. | Patient ventilator |
US4036253A (en) | 1975-11-12 | 1977-07-19 | Peace Medical | Gas dilution device |
US4054133A (en) | 1976-03-29 | 1977-10-18 | The Bendix Corporation | Control for a demand cannula |
GB1576118A (en) | 1976-06-02 | 1980-10-01 | Boc Ltd | Lung ventilators |
US4323064A (en) | 1976-10-26 | 1982-04-06 | Puritan-Bennett Corporation | Volume ventilator |
US4106505A (en) | 1977-01-17 | 1978-08-15 | Salter Labs., Inc. | Nasal cannula assembly |
US4211086A (en) | 1977-10-11 | 1980-07-08 | Beatrice Foods Company | Cryogenic breathing system |
US4146885A (en) | 1977-10-13 | 1979-03-27 | Lawson Jr William H | Infant bed and apnea alarm |
US4306567A (en) | 1977-12-22 | 1981-12-22 | Krasner Jerome L | Detection and monitoring device |
US4231365A (en) | 1978-01-30 | 1980-11-04 | Scarberry Eugene N | Emergency resuscitation apparatus |
DE2831313A1 (en) | 1978-07-17 | 1980-02-07 | Draegerwerk Ag | DEVICE FOR SUPPORTING BREATHING AND / OR ARTIFICIAL VENTILATION |
CA1128826A (en) | 1978-07-21 | 1982-08-03 | Montreal General Hospital Research Institute | Head-supported oxygen nozzle |
US4261355A (en) | 1978-09-25 | 1981-04-14 | Glazener Edwin L | Constant positive pressure breathing apparatus |
US4216769A (en) | 1978-09-29 | 1980-08-12 | Grimes Jerry L | Bi-flow nasal cup |
US4266540A (en) | 1978-10-13 | 1981-05-12 | Donald Panzik | Nasal oxygen therapy mask |
US4231363A (en) | 1979-01-08 | 1980-11-04 | Grimes Jerry L | Gas delivery face shield |
US4256101A (en) | 1979-03-05 | 1981-03-17 | Bourns Medical Systems, Inc. | Thermistor assist sensing |
US4278082A (en) | 1979-05-11 | 1981-07-14 | Blackmer Richard H | Adjustable nasal cannula |
US4274162A (en) | 1979-05-23 | 1981-06-23 | Michael Joy | Artificial replacement for a larynx |
US4273124A (en) | 1979-06-01 | 1981-06-16 | Zimmerman J Earl | Nasal cannula |
US4263908A (en) | 1979-07-25 | 1981-04-28 | Mizerak Vladimir S | Nasal cannula mask |
US5000175A (en) | 1979-08-08 | 1991-03-19 | Pue Alexander F | Meconium aspiration device |
US4367735A (en) | 1979-12-31 | 1983-01-11 | Novametrix Medical Systems, Inc. | Nasal cannula |
SE434799B (en) | 1980-06-18 | 1984-08-20 | Gambro Engstrom Ab | SET AND DEVICE FOR CONTROL OF A LUNG FAN |
US4354488A (en) | 1980-11-24 | 1982-10-19 | Dow Corning Corporation | Nose mask gas delivery device |
US4377162A (en) | 1980-11-26 | 1983-03-22 | Staver Peter J | Facial protective device, and methods of constructing and utilizing same |
US4411267A (en) | 1981-02-23 | 1983-10-25 | Heyman Arnold M | Telemetry transmitter holder |
US4495946A (en) | 1981-03-17 | 1985-01-29 | Joseph Lemer | Artificial breathing device |
EP0074943B1 (en) | 1981-03-26 | 1986-06-18 | Vas-Es Müszeripari Szövetkezet | Respirator device, particularly for use in perinatal medicine |
US4592349A (en) | 1981-08-10 | 1986-06-03 | Bird F M | Ventilator having an oscillatory inspiratory phase and method |
EP0088761B1 (en) | 1981-04-24 | 1987-08-12 | Somed Pty. Ltd. | Device for treating snoring sickness |
US4413514A (en) | 1981-05-22 | 1983-11-08 | Hoffman Controls Corporation | Air flow sensor |
US4365636A (en) | 1981-06-19 | 1982-12-28 | Medicon, Inc. | Method of monitoring patient respiration and predicting apnea therefrom |
US4393869A (en) | 1981-06-22 | 1983-07-19 | Canadian Patents & Development Limited | Electronically controlled respirator |
US4422456A (en) | 1981-09-08 | 1983-12-27 | City Of Hope National Medical Center | Nasal cannula structure |
US4803981A (en) | 1981-09-22 | 1989-02-14 | Vickery Ian M | Anaesthesia mask |
US4481944A (en) | 1981-11-19 | 1984-11-13 | Bunnell Life Systems, Inc. | Apparatus and method for assisting respiration |
JPS58112332U (en) | 1982-01-26 | 1983-08-01 | 泉工医科工業株式会社 | Jet tube for respirator |
US4406283A (en) | 1982-02-04 | 1983-09-27 | Phillip Bir | Oxygen cannulae for continuous administration of oxygen, and its associated mounting structure and method for mounting same onto the head of a patient |
DE3206482C2 (en) | 1982-02-23 | 1984-03-15 | Drägerwerk AG, 2400 Lübeck | Ventilation device with a device for safety monitoring |
DE3212097C2 (en) | 1982-04-01 | 1985-10-03 | Drägerwerk AG, 2400 Lübeck | Ventilator with a breathing gas source that can be controlled via a control unit |
GB2118442A (en) | 1982-04-15 | 1983-11-02 | James Gordon Whitwam | Improvements in or relating to respirators |
US4454880A (en) | 1982-05-12 | 1984-06-19 | Rudolph Muto | Nasal hood with open-bottom mixing chamber |
US4469097A (en) | 1982-05-25 | 1984-09-04 | Kelman Charles D | Medical breathing apparatus |
JPS598972A (en) | 1982-07-07 | 1984-01-18 | 佐藤 暢 | Respiration synchronous type gas supply method and apparatus in open type respiratory system |
US4449523A (en) | 1982-09-13 | 1984-05-22 | Implant Technologies, Inc. | Talking tracheostomy tube |
US4506666A (en) | 1982-12-03 | 1985-03-26 | Kircaldie, Randall And Mcnab | Method and apparatus for rectifying obstructive apnea |
US4488548A (en) | 1982-12-22 | 1984-12-18 | Sherwood Medical Company | Endotracheal tube assembly |
EP0125424A1 (en) | 1983-03-15 | 1984-11-21 | van den Bergh, Jozef Erasmus | Respiratory gas flow control apparatus |
US4506667A (en) | 1983-04-06 | 1985-03-26 | Figgie Int Inc | Self-contained ventilator/resuscitator |
GB8313507D0 (en) | 1983-05-17 | 1983-06-22 | Green A W | Connector |
GB2141348B (en) | 1983-06-07 | 1986-06-18 | Racal Safety Ltd | Breathing apparatus |
DE3327342A1 (en) | 1983-07-29 | 1985-02-07 | Peter 7800 Freiburg Pedersen | DEVICE FOR DETECTING AND EVALUATING THE PRESSURE IN THE BALLOON CUFF OF A CLOSED TRACHEAL TUBE |
FR2556974B1 (en) | 1983-12-27 | 1988-02-19 | Commissariat Energie Atomique | ERGONOMIC HEAT |
JPS60124940U (en) | 1984-02-02 | 1985-08-23 | シャープ株式会社 | artificial respirator |
US4559940A (en) | 1984-02-06 | 1985-12-24 | Mcginnis Gerald E | Resuscitation apparatus |
US4584996A (en) | 1984-03-12 | 1986-04-29 | Blum Alvin S | Apparatus for conservative supplemental oxygen therapy |
US4818320A (en) | 1984-04-04 | 1989-04-04 | Sherwood Medical Company | Nasal cannula harness and method of making the same |
IL71468A (en) | 1984-04-08 | 1988-06-30 | Dan Atlas | Apnea monitoring method and apparatus |
US4684398A (en) | 1984-08-17 | 1987-08-04 | The Dow Chemical Company | Herbicidal cyanoguanidines and cyanoisothioureas |
US4660555A (en) | 1984-09-21 | 1987-04-28 | Payton Hugh W | Oxygen delivery and administration system |
US4648398A (en) | 1984-10-31 | 1987-03-10 | Sherwood Medical Company | Nasal cannula |
US4621632A (en) | 1984-11-01 | 1986-11-11 | Bear Medical Systems, Inc. | Humidifier system |
US4527557A (en) | 1984-11-01 | 1985-07-09 | Bear Medical Systems, Inc. | Medical ventilator system |
US5181509A (en) | 1984-11-21 | 1993-01-26 | Spofford Bryan T | Transtracheal catheter system |
US5090408A (en) | 1985-10-18 | 1992-02-25 | Bryan T. Spofford | Transtracheal catheter system and method |
JPH0134962Y2 (en) | 1985-03-15 | 1989-10-25 | ||
EP0196396B1 (en) | 1985-04-01 | 1991-01-16 | COSMED S.r.l. | Portable breathing monitor for telemetric measurement by a central processing station |
GB8511170D0 (en) | 1985-05-02 | 1985-06-12 | Pneupac Ltd | Resuscitator/ventilator |
GB2174609B (en) | 1985-05-02 | 1988-07-27 | Pneupac Ltd | Resuscitator/ventilator |
US4686975A (en) | 1985-05-03 | 1987-08-18 | Applied Membrane Technology, Inc. | Electronic respirable gas delivery device |
FI81500C (en) | 1985-05-23 | 1990-11-12 | Etelae Haemeen Keuhkovammayhdi | Respiratory Treatment Unit |
US4705034A (en) | 1985-10-02 | 1987-11-10 | Perkins Warren E | Method and means for dispensing respirating gases by effecting a known displacement |
US4832014A (en) | 1985-10-02 | 1989-05-23 | Perkins Warren E | Method and means for dispensing two respirating gases by effecting a known displacement |
JPS6294175A (en) | 1985-10-18 | 1987-04-30 | 鳥取大学長 | Respiration synchronous type gas blowing apparatus and method |
US4747403A (en) | 1986-01-27 | 1988-05-31 | Advanced Pulmonary Technologies, Inc. | Multi-frequency jet ventilation technique and apparatus |
DE3604325A1 (en) | 1986-02-12 | 1987-08-13 | Ulrich Kreusel | CROSS-CONNECTOR FOR TWO CROSSING PIPES |
US5052400A (en) | 1986-02-20 | 1991-10-01 | Dietz Henry G | Method and apparatus for using an inhalation sensor for monitoring and for inhalation therapy |
US4744356A (en) | 1986-03-03 | 1988-05-17 | Greenwood Eugene C | Demand oxygen supply device |
US4808160A (en) | 1986-04-14 | 1989-02-28 | Timmons John W | Nasal cannula apparatus |
US4773411A (en) | 1986-05-08 | 1988-09-27 | Downs John B | Method and apparatus for ventilatory therapy |
US4850350A (en) | 1986-06-23 | 1989-07-25 | Sheridan Catheter Corp. | Closed system combined suction and ventilation devices |
JPS6357060A (en) | 1986-08-27 | 1988-03-11 | オムロン株式会社 | Inhalator |
US5002050A (en) | 1986-09-17 | 1991-03-26 | Mcginnis Gerald E | Medical gas flow control valve, system and method |
US4841953A (en) | 1986-11-07 | 1989-06-27 | Dodrill Gregg W | Auxiliary supply system for a portable self-contained breathing apparatus |
US4784130A (en) | 1986-12-04 | 1988-11-15 | The John Bunn Company | Flow controller |
AU614731B2 (en) | 1986-12-09 | 1991-09-12 | Maersk Indoplas Pty Limited | Oxygen dilution apparatus |
US5024219A (en) | 1987-01-12 | 1991-06-18 | Dietz Henry G | Apparatus for inhalation therapy using triggered dose oxygenator employing an optoelectronic inhalation sensor |
GB8701427D0 (en) | 1987-01-22 | 1987-02-25 | Automated Process & Control Me | Anaesthetic gas scavenging system |
US4753233A (en) | 1987-02-10 | 1988-06-28 | Advantage Medical | Nasal cannula |
GB8704104D0 (en) | 1987-02-21 | 1987-03-25 | Manitoba University Of | Respiratory system load apparatus |
FR2611505B1 (en) | 1987-03-05 | 1997-01-10 | Air Liquide | METHOD AND DEVICE FOR SUPPLYING RESPIRATORY OXYGEN |
US4825859A (en) | 1987-03-11 | 1989-05-02 | Ballard Medical Products | Neonatal closed system for involuntary aspiration and ventilation and method |
US4838255A (en) | 1987-03-11 | 1989-06-13 | Ballard Medical Products | Neonatal closed system for involuntary aspiration and ventilation, and method |
US5199424A (en) | 1987-06-26 | 1993-04-06 | Sullivan Colin E | Device for monitoring breathing during sleep and control of CPAP treatment that is patient controlled |
US5522382A (en) | 1987-06-26 | 1996-06-04 | Rescare Limited | Device and method for treating obstructed breathing having a delay/ramp feature |
US4807616A (en) | 1987-07-09 | 1989-02-28 | Carmeli Adahan | Portable ventilator apparatus |
US4813431A (en) | 1987-07-22 | 1989-03-21 | David Brown | Intrapulmonary pressure monitoring system |
SE457234B (en) | 1987-07-28 | 1988-12-12 | Stig Soederberg | RESPIRATORY |
US4782832A (en) | 1987-07-30 | 1988-11-08 | Puritan-Bennett Corporation | Nasal puff with adjustable sealing means |
US4919132A (en) | 1987-08-21 | 1990-04-24 | Miser Martin G | Apparatus for supplying gas to a patient |
US4865586A (en) | 1987-09-21 | 1989-09-12 | Martha Hedberg | Suction stylet for endotracheal intubation |
US5099836A (en) | 1987-10-05 | 1992-03-31 | Hudson Respiratory Care Inc. | Intermittent oxygen delivery system and cannula |
US4938212A (en) | 1987-10-16 | 1990-07-03 | Puritan-Bennett Corporation | Inspiration oxygen saver |
DE3823381A1 (en) | 1987-11-03 | 1989-05-24 | Draegerwerk Ag | CIRCUIT BREATH PROTECTOR |
US5474062A (en) | 1987-11-04 | 1995-12-12 | Bird Products Corporation | Medical ventilator |
US4915103A (en) | 1987-12-23 | 1990-04-10 | N. Visveshwara, M.D., Inc. | Ventilation synchronizer |
US4807617A (en) | 1988-02-01 | 1989-02-28 | Massachusetts Eye And Ear Infirmary | Scavenging mask |
JPH01223966A (en) | 1988-03-01 | 1989-09-07 | Sumitomo Bakelite Co Ltd | Respirator |
EP0406258A4 (en) | 1988-03-23 | 1991-03-13 | Christa Ursula Palfy | Nasal tube holder |
US4869718A (en) | 1988-04-04 | 1989-09-26 | Brader Eric W | Transcricothyroid catheterization device |
US5335656A (en) | 1988-04-15 | 1994-08-09 | Salter Laboratories | Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis |
US4823788A (en) | 1988-04-18 | 1989-04-25 | Smith Richard F M | Demand oxygen controller and respiratory monitor |
US5074299A (en) | 1988-05-02 | 1991-12-24 | Dietz Henry G | Monitor for controlling the flow of gases for breathing during inhalation |
US5058580A (en) | 1988-05-11 | 1991-10-22 | Hazard Patrick B | Percutaneous tracheostomy tube |
US5103815A (en) | 1988-05-13 | 1992-04-14 | Chrislyn Enterprises, Inc. | Personal airflow gage for a personal breathing supply of respirable quality air, and related accessories, including a two way communication system, used while working in contaminated air spaces |
US5046492A (en) | 1988-07-15 | 1991-09-10 | Stackhouse Wyman H | Clean room helmet system |
US4919128A (en) | 1988-08-26 | 1990-04-24 | University Technologies International Inc. | Nasal adaptor device and seal |
US5042478A (en) | 1988-08-26 | 1991-08-27 | University Technologies International, Inc. | Method of ventilation using nares seal |
US5022394A (en) | 1988-10-11 | 1991-06-11 | Homecare Of Dearborn | Heat and moisture exchanger device for tracheostomy patients |
US4915105A (en) | 1988-10-28 | 1990-04-10 | Lee Tien Chu | Miniature respiratory apparatus |
US5048515A (en) | 1988-11-15 | 1991-09-17 | Sanso David W | Respiratory gas supply apparatus and method |
SE462614B (en) | 1988-12-06 | 1990-07-30 | Conny Peder Gunnar Moa | DEVICE TO GENERATE CONTINUOUS POSITIVE AIR PRESSURE IN SPONTANEOUS THROUGH EJECTOR EFFECTS |
US5165397A (en) | 1988-12-15 | 1992-11-24 | Arp Leon J | Method and apparatus for demand oxygen system monitoring and control |
US4899740A (en) | 1989-01-17 | 1990-02-13 | E. D. Bullard Company | Respirator system for use with a hood or face mask |
US4989599A (en) | 1989-01-26 | 1991-02-05 | Puritan-Bennett Corporation | Dual lumen cannula |
US4905688A (en) | 1989-02-16 | 1990-03-06 | Figgie International Inc. | Portable light weight completely self-contained emergency single patient ventilator/resuscitator |
US5184610A (en) | 1989-03-06 | 1993-02-09 | Hood Laboratories | Tracheal cannulas and stents |
US5259373A (en) | 1989-05-19 | 1993-11-09 | Puritan-Bennett Corporation | Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds |
US5845636A (en) | 1989-05-19 | 1998-12-08 | Puritan Bennett Corporation | Method and apparatus for maintaining patient airway patency |
US5134995A (en) | 1989-05-19 | 1992-08-04 | Puritan-Bennett Corporation | Inspiratory airway pressure system with admittance determining apparatus and method |
GB8913084D0 (en) | 1989-06-07 | 1989-07-26 | Whitwam James G | A medical ventilator |
US5107831A (en) | 1989-06-19 | 1992-04-28 | Bear Medical Systems, Inc. | Ventilator control system using sensed inspiratory flow rate |
US5239995A (en) | 1989-09-22 | 1993-08-31 | Respironics, Inc. | Sleep apnea treatment apparatus |
US5148802B1 (en) | 1989-09-22 | 1997-08-12 | Respironics Inc | Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders |
US5632269A (en) | 1989-09-22 | 1997-05-27 | Respironics Inc. | Breathing gas delivery method and apparatus |
US5101820A (en) | 1989-11-02 | 1992-04-07 | Christopher Kent L | Apparatus for high continuous flow augmentation of ventilation and method therefor |
US5419314A (en) | 1989-11-02 | 1995-05-30 | Christopher; Kent L. | Method and apparatus for weaning ventilator-dependent patients |
US4971049A (en) | 1989-11-06 | 1990-11-20 | Pulsair, Inc. | Pressure sensor control device for supplying oxygen |
US4990157A (en) | 1989-11-13 | 1991-02-05 | Robhill Industries Inc. | Soother retainer |
US5140045A (en) | 1989-11-30 | 1992-08-18 | Clintec Nutrition Co. | Method for improving ventilation during sleep and treating sleep related ventilation abnormalities of neonates |
US5038771A (en) | 1990-01-25 | 1991-08-13 | Dietz Henry G | Method and apparatus for respiratory therapy using intermittent flow having automatic adjustment of a dose of therapeutic gas to the rate of breathing |
US5161525A (en) | 1990-05-11 | 1992-11-10 | Puritan-Bennett Corporation | System and method for flow triggering of pressure supported ventilation |
US5127400A (en) | 1990-03-23 | 1992-07-07 | Bird Products Corp. | Ventilator exhalation valve |
US5046491A (en) | 1990-03-27 | 1991-09-10 | Derrick Steven J | Apparatus and method for respired gas collection and analysis |
SE500550C2 (en) | 1990-06-18 | 1994-07-11 | Siemens Elema Ab | Methods and apparatus for reducing gas re-breathing from the harmful space |
US5193533A (en) | 1990-07-09 | 1993-03-16 | Brigham And Women's Hospital | High-pressure jet ventilation catheter |
US5025805A (en) | 1990-07-11 | 1991-06-25 | Betty Nutter | Nasal cannula assembly |
US5018519B1 (en) | 1990-08-03 | 2000-11-28 | Porter Instr Company Inc | Mask for administering an anesthetic gas to a patient |
US5113857A (en) | 1990-08-27 | 1992-05-19 | Stair Dickerman | Breathing gas delivery system and holding clip member therefor |
US5117819A (en) | 1990-09-10 | 1992-06-02 | Healthdyne, Inc. | Nasal positive pressure device |
US5099837A (en) | 1990-09-28 | 1992-03-31 | Russel Sr Larry L | Inhalation-based control of medical gas |
US5233979A (en) | 1990-10-22 | 1993-08-10 | Ballard Medical Products | Methods and apparatus for a micro-tracheal catheter hub assembly |
US5255675A (en) | 1990-10-31 | 1993-10-26 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Device for intratracheal ventilation and intratracheal pulmonary ventilation |
US5186167A (en) | 1990-10-31 | 1993-02-16 | The United States Of America As Represented By The Department Of Health And Human Services | Catheter tip for intratracheal ventilation and intratracheal pulmonary ventilation |
US5054484A (en) | 1990-11-21 | 1991-10-08 | Hebeler Jr Robert F | Tracheostomy device |
SE9003933L (en) | 1990-12-10 | 1991-11-25 | Octagon Med Prod | KONIOSTOMITUB WHICH AATMINSTONE IN ITS OPENED OPENING PART THROUGH THE FRONT WALL OPENING PARTS HAVE A SIGNIFICANT OVEL SECTION |
EP0491969B1 (en) | 1990-12-20 | 1995-08-23 | Siemens-Elema AB | Lung ventilator with a flow rate dependent trigger threshold |
US5134996A (en) | 1991-01-09 | 1992-08-04 | Smiths Industries Medical Systems, Inc. | Inspiration and expiration indicator for a suction catheter |
US5258027A (en) | 1991-01-24 | 1993-11-02 | Willy Rusch Ag | Trachreal prosthesis |
DE4105672C1 (en) | 1991-02-22 | 1992-10-08 | Paul Ritzau Pari-Werk Gmbh, 8130 Starnberg, De | Oxygen distributor for inhalation therapy - has stirring chamber with agitator and apertures, with connector opening into chamber |
US5105807A (en) | 1991-02-26 | 1992-04-21 | Alternative Medical Products, Inc. | Device and methods for securing nasal tubing |
US5762638A (en) | 1991-02-27 | 1998-06-09 | Shikani; Alain H. | Anti-infective and anti-inflammatory releasing systems for medical devices |
US5097827A (en) | 1991-03-22 | 1992-03-24 | Ddi Industries, Inc. | Holder for medical tubing |
DE4138702A1 (en) | 1991-03-22 | 1992-09-24 | Madaus Medizin Elektronik | METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES |
US5368017A (en) | 1991-04-01 | 1994-11-29 | Sorenson Laboratories, Inc. | Apparatus for ventilating and aspirating |
US5211170A (en) | 1991-04-01 | 1993-05-18 | Press Roman J | Portable emergency respirator |
US5542415A (en) | 1991-05-07 | 1996-08-06 | Infrasonics, Inc. | Apparatus and process for controlling the ventilation of the lungs of a patient |
US5239994A (en) | 1991-05-10 | 1993-08-31 | Bunnell Incorporated | Jet ventilator system |
US5529060A (en) | 1991-05-22 | 1996-06-25 | Fisher & Paykel Limited | Humidifiers with control systems to prevent condensation |
US6085747A (en) | 1991-06-14 | 2000-07-11 | Respironics, Inc. | Method and apparatus for controlling sleep disorder breathing |
DE4122069A1 (en) | 1991-07-04 | 1993-01-07 | Draegerwerk Ag | METHOD FOR DETECTING A PATIENT'S BREATHING PHASES IN ASSISTANT VENTILATION METHODS |
US5303698A (en) | 1991-08-27 | 1994-04-19 | The Boc Group, Inc. | Medical ventilator |
US5711296A (en) | 1991-09-12 | 1998-01-27 | The United States Of America As Represented By The Department Of Health And Human Services | Continuous positive airway pressure system |
US6629527B1 (en) | 1991-10-17 | 2003-10-07 | Respironics, Inc. | Sleep apnea treatment apparatus |
US5477852A (en) | 1991-10-29 | 1995-12-26 | Airways Ltd., Inc. | Nasal positive airway pressure apparatus and method |
US5687715A (en) | 1991-10-29 | 1997-11-18 | Airways Ltd Inc | Nasal positive airway pressure apparatus and method |
US5269296A (en) | 1991-10-29 | 1993-12-14 | Landis Robert M | Nasal continuous positive airway pressure apparatus and method |
US7013892B2 (en) | 1991-11-01 | 2006-03-21 | Ric Investments, Llc | Sleep apnea treatment apparatus |
JP3566285B2 (en) | 1991-11-14 | 2004-09-15 | ユニバーシティー テクノロジーズ インターナショナル インコーポレイテッド | Automatic CPAP system |
US5687713A (en) | 1991-11-29 | 1997-11-18 | Bahr; Erik W. | Breathing mask |
US5339809A (en) | 1991-12-04 | 1994-08-23 | Beck Jr Charles A | Method of inserting a cricothyroidal endotracheal device between the cricoid and thyroid cartilages for treatment of chronic respiratory disorders |
EP1149603A3 (en) | 1991-12-20 | 2003-10-22 | Resmed Limited | Ventilator for continuous positive airway pressure breathing (CPAP) |
US5271391A (en) | 1991-12-20 | 1993-12-21 | Linda Graves | Apparatus for delivering a continuous positive airway pressure to an infant |
US5318019A (en) | 1992-03-19 | 1994-06-07 | Celaya Marty A | Emergency portable oxygen supply unit |
US5233978A (en) | 1992-04-03 | 1993-08-10 | Medway | Nasal oxygen mask |
US5298189A (en) | 1992-04-24 | 1994-03-29 | Nanoptics Incorporated | Proton transfer bis-benzazole fluors and their use in scintillator detectors |
US5490502A (en) | 1992-05-07 | 1996-02-13 | New York University | Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea |
US5645054A (en) | 1992-06-01 | 1997-07-08 | Sleepnet Corp. | Device and method for the treatment of sleep apnea syndrome |
US5331995A (en) | 1992-07-17 | 1994-07-26 | Bear Medical Systems, Inc. | Flow control system for medical ventilator |
US7081095B2 (en) | 2001-05-17 | 2006-07-25 | Lynn Lawrence A | Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions |
WO1994004071A1 (en) | 1992-08-19 | 1994-03-03 | Lynn Lawrence A | Apparatus for the diagnosis of sleep apnea |
US5388575A (en) | 1992-09-25 | 1995-02-14 | Taube; John C. | Adaptive controller for automatic ventilators |
US5349946A (en) | 1992-10-07 | 1994-09-27 | Mccomb R Carter | Microprocessor controlled flow regulated molecular humidifier |
US5349950A (en) | 1992-10-28 | 1994-09-27 | Smiths Industries Medical Systems, Inc. | Suction catheter assemblies |
US5243972A (en) | 1992-12-07 | 1993-09-14 | Huang Ho Tsun | Smoke-proof mask |
US5517983A (en) | 1992-12-09 | 1996-05-21 | Puritan Bennett Corporation | Compliance meter for respiratory therapy |
CA2109017A1 (en) | 1992-12-16 | 1994-06-17 | Donald M. Smith | Method and apparatus for the intermittent delivery of oxygen therapy to a person |
US5438980A (en) | 1993-01-12 | 1995-08-08 | Puritan-Bennett Corporation | Inhalation/exhalation respiratory phase detection circuit |
US5287852A (en) | 1993-01-13 | 1994-02-22 | Direct Trends International Ltd. | Apparatus and method for maintaining a tracheal stoma |
GB9302291D0 (en) | 1993-02-05 | 1993-03-24 | Univ Manitoba | Method for improved control of airway pressure during mechanical ventilation |
US6758217B1 (en) | 1993-02-05 | 2004-07-06 | University Of Manitoba | Control of airway pressure during mechanical ventilation |
US5443075A (en) | 1993-03-01 | 1995-08-22 | Puritan-Bennett Corporation | Flow measuring apparatus |
US5546935A (en) | 1993-03-09 | 1996-08-20 | Medamicus, Inc. | Endotracheal tube mounted pressure transducer |
US5370112A (en) | 1993-07-01 | 1994-12-06 | Devilbiss Health Care, Inc. | Method and means for powering portable oxygen supply systems |
US5513628A (en) | 1993-07-14 | 1996-05-07 | Sorenson Critical Care, Inc. | Apparatus and method for ventilating and aspirating |
US5485850A (en) | 1993-08-13 | 1996-01-23 | Dietz; Henry G. | Monitor of low pressure intervals with control capabilities |
US5394870A (en) | 1993-09-03 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Respirator blower unit housing with pommel-like strap support member comprising lower exterior support surface |
US5398676A (en) | 1993-09-30 | 1995-03-21 | Press; Roman J. | Portable emergency respirator |
GB2282542B (en) | 1993-10-06 | 1997-06-25 | Instruments & Movements Ltd | Ventilators for promoting lung function |
US6675797B1 (en) | 1993-11-05 | 2004-01-13 | Resmed Limited | Determination of patency of the airway |
DE69434028T2 (en) | 1993-11-05 | 2005-09-22 | Resmed Ltd., North Ryde | Control in continuous positive airway pressure treatment |
US5570682A (en) | 1993-12-14 | 1996-11-05 | Ethex International, Inc. | Passive inspiratory nebulizer system |
US5460174A (en) | 1994-01-24 | 1995-10-24 | Chang; Huang | Oxygen supplying system having flow control throttle |
US5375593A (en) | 1994-02-10 | 1994-12-27 | Press; John R. | Oxygenating pacifier |
US5595174A (en) | 1994-02-28 | 1997-01-21 | Gwaltney; Max R. | Nasal adaptor, mask, and method |
US5582167A (en) | 1994-03-02 | 1996-12-10 | Thomas Jefferson University | Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure |
US5535738A (en) | 1994-06-03 | 1996-07-16 | Respironics, Inc. | Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing |
US6932084B2 (en) | 1994-06-03 | 2005-08-23 | Ric Investments, Inc. | Method and apparatus for providing positive airway pressure to a patient |
US6105575A (en) | 1994-06-03 | 2000-08-22 | Respironics, Inc. | Method and apparatus for providing positive airway pressure to a patient |
US5438979A (en) | 1994-06-17 | 1995-08-08 | Johnson Enterprises, Inc. | Nasal cannula support |
NZ272354A (en) | 1994-06-17 | 1997-10-24 | Trudell Medical Ltd | Catheter system; method and apparatus for delivering an aerosol form of medication to the lungs, details of method and of catheter apparatus |
GB9413499D0 (en) | 1994-07-05 | 1994-08-24 | Pneupac Ltd | Gas mixing devices for resuscitation/lung ventilation apparatus |
US5695457A (en) | 1994-07-28 | 1997-12-09 | Heartport, Inc. | Cardioplegia catheter system |
DE4432219C1 (en) | 1994-09-10 | 1996-04-11 | Draegerwerk Ag | Automatic breathing system for patients |
FR2724322A1 (en) | 1994-09-12 | 1996-03-15 | Pierre Medical Sa | PRESSURE CONTROLLED BREATHING AID |
US5509409A (en) | 1994-09-12 | 1996-04-23 | The Living Trust Of Marjorie F. Weatherholt | Nasal cannula assembly |
FR2724564B1 (en) | 1994-09-16 | 1997-04-04 | Boussignac Georges | RESPIRATORY ASSISTANCE DEVICE |
US5503497A (en) | 1994-09-19 | 1996-04-02 | Op-D-Op, Inc. | Ratchet link |
ES2228992T3 (en) | 1994-10-14 | 2005-04-16 | Bird Products Corporation | EXHAUST VALVE WITH FLOW TRANSDUCER. |
US5503146A (en) | 1994-10-26 | 1996-04-02 | Devilbiss Health Care, Inc. | Standby control for CPAP apparatus |
US5551419A (en) | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US5533506A (en) | 1995-01-13 | 1996-07-09 | Medlife, Inc. | Nasal tube assembly |
US5537997A (en) | 1995-01-26 | 1996-07-23 | Respironics, Inc. | Sleep apnea treatment apparatus and passive humidifier for use therewith |
US5513635A (en) | 1995-02-02 | 1996-05-07 | Bedi; Shan | Nasal cannula anchoring apparatus |
US5582164A (en) | 1995-03-14 | 1996-12-10 | Stan A. Sanders | Cassette size, pressurized O2 coil structure |
US5598840A (en) | 1995-03-17 | 1997-02-04 | Sorenson Critical Care, Inc. | Apparatus and method for ventilation and aspiration |
WO1996030069A1 (en) | 1995-03-28 | 1996-10-03 | Ballard Medical Products | Anti-contaminating catheter sheath with filter/closure barriers |
US5593143A (en) | 1995-03-30 | 1997-01-14 | Ferrarin; James A. | Universal fence post connector |
US5526806A (en) | 1995-04-04 | 1996-06-18 | Sansoni; Jean | Non-invasive nasal cannula |
AUPN236595A0 (en) | 1995-04-11 | 1995-05-11 | Rescare Limited | Monitoring of apneic arousals |
US5937855A (en) | 1995-04-21 | 1999-08-17 | Respironics, Inc. | Flow regulating valve in a breathing gas delivery system |
AUPN304895A0 (en) | 1995-05-19 | 1995-06-15 | Somed Pty Limited | Device for detecting and recording snoring |
US5598837A (en) | 1995-06-06 | 1997-02-04 | Respironics, Inc. | Passive humidifier for positive airway pressure devices |
US5697364A (en) | 1995-06-07 | 1997-12-16 | Salter Labs | Intermittent gas-insufflation apparatus |
US5626131A (en) | 1995-06-07 | 1997-05-06 | Salter Labs | Method for intermittent gas-insufflation |
US5735268A (en) | 1995-06-07 | 1998-04-07 | Salter Labs | Intermitten gas-insufflation apparatus and method therefor |
US5513631A (en) | 1995-07-21 | 1996-05-07 | Infrasonics, Inc. | Triggering of patient ventilator responsive to a precursor signal |
US5603315A (en) | 1995-08-14 | 1997-02-18 | Reliable Engineering | Multiple mode oxygen delivery system |
US6000396A (en) | 1995-08-17 | 1999-12-14 | University Of Florida | Hybrid microprocessor controlled ventilator unit |
AUPN547895A0 (en) | 1995-09-15 | 1995-10-12 | Rescare Limited | Flow estimation and compenstion of flow-induced pressure swings cpap treatment |
US5687714A (en) | 1995-10-10 | 1997-11-18 | The United States Of America As Represented By The Department Of Health And Human Services | Self-cleaning endotracheal tube apparatus |
AUPN616795A0 (en) | 1995-10-23 | 1995-11-16 | Rescare Limited | Ipap duration in bilevel cpap or assisted respiration treatment |
US5921942A (en) | 1995-11-01 | 1999-07-13 | University Technologies International, Inc. | Adaptively controlled mandibular positioning device and method of using the device |
US5865173A (en) | 1995-11-06 | 1999-02-02 | Sunrise Medical Hhg Inc. | Bilevel CPAP system with waveform control for both IPAP and EPAP |
SE9504120D0 (en) | 1995-11-16 | 1995-11-16 | Siemens Elema Ab | Ventilator for respiratory treatment |
SE504285C2 (en) | 1995-12-01 | 1996-12-23 | Siemens Elema Ab | When controlling a breathing apparatus and a breathing apparatus |
SE9504313L (en) | 1995-12-01 | 1996-12-16 | Siemens Elema Ab | Method for pressure measurement in fan systems by means of two separate gas lines and one fan system |
SE9504311D0 (en) | 1995-12-01 | 1995-12-01 | Siemens Elema Ab | Breathing apparatus |
US5676132A (en) | 1995-12-05 | 1997-10-14 | Pulmonary Interface, Inc. | Pulmonary interface system |
US5682878A (en) | 1995-12-07 | 1997-11-04 | Respironics, Inc. | Start-up ramp system for CPAP system with multiple ramp shape selection |
US6158432A (en) | 1995-12-08 | 2000-12-12 | Cardiopulmonary Corporation | Ventilator control system and method |
US6463930B2 (en) | 1995-12-08 | 2002-10-15 | James W. Biondi | System for automatically weaning a patient from a ventilator, and method thereof |
US5931160A (en) | 1995-12-08 | 1999-08-03 | Cardiopulmonary Corporation | Ventilator control system and method |
US6109264A (en) | 1996-01-26 | 2000-08-29 | Lasersurge, Inc. | Apparatus for expanding body tissue |
US5669380A (en) | 1996-04-26 | 1997-09-23 | New England Medical Center Hospitals, Inc. | Laryngeal bypass |
US5692497A (en) | 1996-05-16 | 1997-12-02 | Children's Medical Center Corporation | Microprocessor-controlled ventilator system and methods |
US5690097A (en) | 1996-05-31 | 1997-11-25 | Board Of Regents, The University Of Texas System | Combination anesthetic mask and oxygen transport system |
SE9602199D0 (en) | 1996-06-03 | 1996-06-03 | Siemens Ag | ventilator |
US5904648A (en) | 1996-06-18 | 1999-05-18 | Cook Incorporated | Guided endobronchial blocker catheter |
US5975081A (en) | 1996-06-21 | 1999-11-02 | Northrop Grumman Corporation | Self-contained transportable life support system |
US5676135A (en) | 1996-06-25 | 1997-10-14 | Mcclean; Leon | Breath saver |
FR2750315B1 (en) | 1996-06-26 | 1998-12-18 | Novatech Inc | INTRALARYNGEAL PROSTHESIS |
DE19626924C2 (en) | 1996-07-04 | 1999-08-19 | Epazon B V | Breathing gas supply device |
US5669377A (en) | 1996-07-05 | 1997-09-23 | Fenn; Arthur C. | Nasal band and method for improved breathing |
US5636630A (en) | 1996-07-25 | 1997-06-10 | Miller; Wallace T. | Respiratory device and method therefor |
AUPO126596A0 (en) | 1996-07-26 | 1996-08-22 | Resmed Limited | A nasal mask and mask cushion therefor |
US6120460A (en) | 1996-09-04 | 2000-09-19 | Abreu; Marcio Marc | Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions |
AUPO247496A0 (en) | 1996-09-23 | 1996-10-17 | Resmed Limited | Assisted ventilation to match patient respiratory need |
US6152134A (en) | 1996-10-18 | 2000-11-28 | Invacare Corporation | Oxygen conserving device |
US5682881A (en) | 1996-10-21 | 1997-11-04 | Winthrop; Neil | Nasal CPAP/Cannula and securement apparatus |
US5865174A (en) | 1996-10-29 | 1999-02-02 | The Scott Fetzer Company | Supplemental oxygen delivery apparatus and method |
US6019101A (en) | 1996-10-31 | 2000-02-01 | Sleepnet Corporation | Nasal air mask |
US5778872A (en) | 1996-11-18 | 1998-07-14 | Medlis, Inc. | Artificial ventilation system and methods of controlling carbon dioxide rebreathing |
US5752511A (en) | 1996-11-22 | 1998-05-19 | Simmons; Carl J. | Universal medical tube retainer and nasal wall tissue dilator |
CA2222830C (en) | 1996-12-02 | 2004-03-30 | Fisher & Paykel Limited | Humidifier sleep apnea treatment apparatus |
EP1015057B1 (en) | 1996-12-12 | 2006-06-07 | The Johns Hopkins University School Of Medicine | Apparatus for providing ventilatory support to a patient |
AUPO418696A0 (en) | 1996-12-12 | 1997-01-16 | Resmed Limited | A substance delivery apparatus |
US5906204A (en) | 1996-12-19 | 1999-05-25 | Respiratory Support Products, Inc. | Endotracheal pressure monitoring and medication system |
US5735272A (en) | 1997-01-22 | 1998-04-07 | Dillon; Michael M. | Nasal tube holder having a nasal dilator attached thereto |
US9042952B2 (en) | 1997-01-27 | 2015-05-26 | Lawrence A. Lynn | System and method for automatic detection of a plurality of SPO2 time series pattern types |
US5915380A (en) | 1997-03-14 | 1999-06-29 | Nellcor Puritan Bennett Incorporated | System and method for controlling the start up of a patient ventilator |
US6203502B1 (en) | 1997-03-31 | 2001-03-20 | Pryon Corporation | Respiratory function monitor |
US7640932B2 (en) | 1997-04-29 | 2010-01-05 | Salter Labs | Nasal cannula for acquiring breathing information |
US6439234B1 (en) | 1998-04-03 | 2002-08-27 | Salter Labs | Nasal cannula |
US6131571A (en) | 1997-04-30 | 2000-10-17 | University Of Florida | Ventilation apparatus and anesthesia delivery system |
US5823434A (en) | 1997-05-05 | 1998-10-20 | The United States Of America As Represented By The Secretary Of The Navy | Electromechanical driver for an aerosol dispensing apparatus which dispenses a medicated vapor into the lungs of a patient |
US6093169A (en) | 1997-05-08 | 2000-07-25 | Cardoso; Norman | Nasal oxygen catheter |
US5979440A (en) | 1997-06-16 | 1999-11-09 | Sequal Technologies, Inc. | Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator |
FR2765111B1 (en) | 1997-06-30 | 1999-09-24 | Georges Boussignac | ENDOTRACHEAL SUCTION PROBE FOR ARTIFICIAL VENTILATION PATIENT |
US5927276A (en) | 1997-07-09 | 1999-07-27 | Rodriguez; Paul Isaac | Devices and methods for positioning and securing medical tubes |
US6119694A (en) | 1997-07-24 | 2000-09-19 | Respironics Georgia, Inc. | Nasal mask and headgear |
DE69829969T2 (en) | 1997-07-25 | 2006-03-09 | Minnesota Innovative Technologies & Instruments Corp. (Miti), Lino Lakes | CONTROL DEVICE FOR SUPPLYING ADDITIONAL BREATHING OXYGEN |
US6532958B1 (en) | 1997-07-25 | 2003-03-18 | Minnesota Innovative Technologies & Instruments Corporation | Automated control and conservation of supplemental respiratory oxygen |
US5921952A (en) | 1997-08-14 | 1999-07-13 | Boston Scientific Corporation | Drainage catheter delivery system |
SE508440C2 (en) | 1997-09-11 | 1998-10-05 | Siemens Elema Ab | inspiration Hose |
US6655382B1 (en) | 1997-09-18 | 2003-12-02 | The United States Of America As Represented By The Secretary Of Health And Human Services | Spontaneous breathing apparatus and method |
WO1999016491A1 (en) | 1997-09-26 | 1999-04-08 | Airon Corporation | Pneumatically controlled multifunction medical ventilator |
US5954050A (en) | 1997-10-20 | 1999-09-21 | Christopher; Kent L. | System for monitoring and treating sleep disorders using a transtracheal catheter |
US6039696A (en) | 1997-10-31 | 2000-03-21 | Medcare Medical Group, Inc. | Method and apparatus for sensing humidity in a patient with an artificial airway |
GB9723319D0 (en) | 1997-11-04 | 1998-01-07 | Protector Technologies Bv | Oxygen therapy apparatus |
AUPP026997A0 (en) | 1997-11-07 | 1997-12-04 | Resmed Limited | Administration of cpap treatment pressure in presence of apnea |
US5918597A (en) | 1998-01-15 | 1999-07-06 | Nellcor Puritan Bennett | Peep control in a piston ventilator |
IL123122A0 (en) | 1998-01-29 | 1998-09-24 | Oridion Medical Ltd | Oral/nasal cannula |
US20050121033A1 (en) | 1998-02-25 | 2005-06-09 | Ric Investments, Llc. | Respiratory monitoring during gas delivery |
US6588423B1 (en) | 1998-02-27 | 2003-07-08 | Universite De Montreal | Method and device responsive to myoelectrical activity for triggering ventilatory support |
US6021351A (en) | 1998-05-11 | 2000-02-01 | Cardiac Pacemakers, Inc. | Method and apparatus for assessing patient well-being |
IT1299222B1 (en) | 1998-05-12 | 2000-02-29 | Mallinckrodt Holding Bv | CUSTOMIZABLE MASK, FACIAL OR NASAL, FOR NON-INVASIVE VENTILATION OF PATIENTS IN GENERAL |
AUPP366398A0 (en) | 1998-05-22 | 1998-06-18 | Resmed Limited | Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing |
AUPP370198A0 (en) | 1998-05-25 | 1998-06-18 | Resmed Limited | Control of the administration of continuous positive airway pressure treatment |
CA2239673A1 (en) | 1998-06-04 | 1999-12-04 | Christer Sinderby | Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency |
JP2000005145A (en) * | 1998-06-18 | 2000-01-11 | Chest Kk | Respiratory function monitoring device |
GB2338420A (en) | 1998-06-19 | 1999-12-22 | Fisher & Paykel | Humidified sleep apnea treatment apparatus |
US6328038B1 (en) | 1998-07-14 | 2001-12-11 | Fred Bruce Kessler | Nasal cannula retainer |
US20020157673A1 (en) | 1998-07-14 | 2002-10-31 | Kessler Fred B. | Nasal cannula retainer |
US5975077A (en) | 1998-07-28 | 1999-11-02 | Hamilton Medical, Inc. | Method and apparatus for assisting in breathing |
FR2782012B1 (en) | 1998-08-05 | 2000-12-08 | Georges Boussignac | DEVICE FOR BREATHING ASSISTANCE |
EP1109588B1 (en) | 1998-09-04 | 2005-04-27 | Caradyne (R & D) Limited | A continuous positive airway pressure controller |
DE19841070A1 (en) | 1998-09-09 | 2000-05-04 | Alpo Technik Gmbh | Gas feeding apparatus for supplying oxygen to a patient has tubes with holes and compresses for insertion into the nasal cavity, is easier to use by the patient |
US6224560B1 (en) | 1998-09-11 | 2001-05-01 | Harvard: The President And Fellows Of Harvard College | Flow restrictor for measuring respiratory parameters |
US6220244B1 (en) | 1998-09-15 | 2001-04-24 | Mclaughlin Patrick L. | Conserving device for use in oxygen delivery and therapy |
US6227200B1 (en) | 1998-09-21 | 2001-05-08 | Ballard Medical Products | Respiratory suction catheter apparatus |
EP1113766B1 (en) | 1998-09-17 | 2004-11-10 | Adeva Medical Gesellschaft für Entwicklung und Vertrieb von Medizinischen Implantat-Artikeln mbH | Set for inserting a shunt valve into a shunt between the oesophagus and the trachea |
US6564797B1 (en) | 1998-09-30 | 2003-05-20 | Respironics, Inc. | Interactive pressure support system and method |
US5957136A (en) | 1998-10-08 | 1999-09-28 | Moldex-Metric, Inc. | Earplug |
US6213955B1 (en) | 1998-10-08 | 2001-04-10 | Sleep Solutions, Inc. | Apparatus and method for breath monitoring |
US6427690B1 (en) | 1998-10-21 | 2002-08-06 | Airsep Corporation | Combined oxygen regulator and conservation device |
DE19849571B4 (en) | 1998-10-27 | 2004-12-02 | Map Medizin-Technologie Gmbh | Ventilator for supplying a breathing gas to a patient under a treatment pressure that is matched to the patient |
US7047969B2 (en) | 1998-10-30 | 2006-05-23 | Linda Noble | Nasal gas delivery system and method for use thereof |
US6848446B2 (en) | 1998-10-30 | 2005-02-01 | Linda Noble | Nasal gas delivery system and method for use thereof |
US6561193B1 (en) | 1998-10-30 | 2003-05-13 | Linda J. Noble | Nasal gas delivery apparatus and a nasal vestibular airway |
AUPP693398A0 (en) | 1998-11-05 | 1998-12-03 | Resmed Limited | Fault diagnosis in CPAP and NIPPV devices |
EP1124605B1 (en) | 1998-11-06 | 2010-01-27 | Caradyne (R & D) Limited | Portable respirator |
US6394088B1 (en) | 1998-11-06 | 2002-05-28 | Mark R. Frye | Oxygen-delivery system with portable oxygen meter |
US8701664B2 (en) | 1998-11-06 | 2014-04-22 | Caradyne (R&D) Limited | Apparatus and method for relieving dyspnoea |
US6269811B1 (en) | 1998-11-13 | 2001-08-07 | Respironics, Inc. | Pressure support system with a primary and a secondary gas flow and a method of using same |
US6360741B2 (en) | 1998-11-25 | 2002-03-26 | Respironics, Inc. | Pressure support system with a low leak alarm and method of using same |
US6805126B2 (en) | 1998-12-01 | 2004-10-19 | Edward P. Dutkiewicz | Oxygen delivery and gas sensing nasal cannula system |
AUPQ102999A0 (en) | 1999-06-18 | 1999-07-08 | Resmed Limited | A connector for a respiratory mask and a respiratory mask |
US7431031B2 (en) | 1998-12-22 | 2008-10-07 | Ric Investments, Llc | Insufflation system and method |
US6102042A (en) | 1998-12-22 | 2000-08-15 | Respironics, Inc. | Insufflation system, attachment and method |
EP2263730A3 (en) | 1999-01-15 | 2017-03-15 | Resmed Limited | Method and apparatus to counterbalance intrinsic positive end expiratory pressure |
US6390091B1 (en) | 1999-02-03 | 2002-05-21 | University Of Florida | Method and apparatus for controlling a medical ventilator |
US6752150B1 (en) | 1999-02-04 | 2004-06-22 | John E. Remmers | Ventilatory stabilization technology |
JP3641151B2 (en) | 1999-02-04 | 2005-04-20 | 帝人株式会社 | Respirator for therapeutic gas injection |
DE29902267U1 (en) | 1999-02-09 | 1999-07-29 | Med In Medical Innovations Vertriebs GmbH, 81245 München | Integrable noise protection hood for device for generating a continuous positive airway pressure (CPAP device) |
FR2789593B1 (en) | 1999-05-21 | 2008-08-22 | Mallinckrodt Dev France | APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME |
GB0114272D0 (en) | 2001-06-12 | 2001-08-01 | Optinose As | Nasal delivery device |
US20070137653A1 (en) | 2000-03-13 | 2007-06-21 | Wood Thomas J | Ventilation interface for sleep apnea therapy |
US6595215B2 (en) | 2000-03-13 | 2003-07-22 | Innomed Technologies, Inc. | Ventilation interface for sleep apnea therapy |
US6478026B1 (en) | 1999-03-13 | 2002-11-12 | Thomas J. Wood | Nasal ventilation interface |
US6776162B2 (en) | 2000-03-13 | 2004-08-17 | Innomed Technologies, Inc. | Ventilation interface for sleep apnea therapy |
US6467477B1 (en) | 1999-03-26 | 2002-10-22 | Respironics, Inc. | Breath-based control of a therapeutic treatment |
FR2792210B1 (en) | 1999-04-13 | 2001-09-14 | Air Liquide Sante Int | PORTABLE MEDICAL EQUIPMENT FOR OXYGEN THERAPY AT HOME |
AU4687600A (en) | 1999-04-27 | 2000-11-10 | Loma Linda University Medical Center | Device and method for the administration of oxygen |
US6763832B1 (en) | 1999-04-27 | 2004-07-20 | Loma Linda University Medical Center | Device and method for the administration of oxygen |
AUPQ019899A0 (en) | 1999-05-06 | 1999-06-03 | Resmed Limited | Control of supplied pressure in assisted ventilation |
EP1198266A1 (en) | 1999-05-28 | 2002-04-24 | Euromedico Ltd. | Gas-supplying device |
US6505623B1 (en) | 1999-06-04 | 2003-01-14 | Mallinckrodt Inc. | Hat-held respiratory mask |
US6920875B1 (en) | 1999-06-15 | 2005-07-26 | Respironics, Inc. | Average volume ventilation |
US6357440B1 (en) | 1999-06-16 | 2002-03-19 | Mallinckrodt Inc. | Pliable respiratory mask |
US6644315B2 (en) | 1999-06-18 | 2003-11-11 | Saeed Ziaee | Nasal mask |
ATE483490T1 (en) | 1999-06-30 | 2010-10-15 | Univ Florida | MONITORING SYSTEM FOR FAN |
US6247470B1 (en) | 1999-07-07 | 2001-06-19 | Armen G. Ketchedjian | Oxygen delivery, oxygen detection, carbon dioxide monitoring (ODODAC) apparatus and method |
US6298850B1 (en) | 1999-08-05 | 2001-10-09 | Gloria Jean Argraves | Nasal cannula assembly and securing device |
US6814077B1 (en) | 1999-08-06 | 2004-11-09 | Maria Zylka-Eistert | Tracheal cannula |
US6183493B1 (en) | 1999-08-24 | 2001-02-06 | Pharmasys International, Llc | Method and apparatus for the treatment of sleep apnea and related breathing disorders |
FR2797770B1 (en) | 1999-08-30 | 2002-06-14 | Air Liquide | OXYGEN THERAPY EQUIPMENT WITH RESPIRATORY ASSISTANCE DEVICE WITHOUT NASAL TUBE |
AU778469B2 (en) | 1999-09-15 | 2004-12-09 | Resmed Limited | Patient-ventilator synchronization using dual phase sensors |
US6910480B1 (en) | 1999-09-15 | 2005-06-28 | Resmed Ltd. | Patient-ventilator synchronization using dual phase sensors |
US6758216B1 (en) | 1999-09-15 | 2004-07-06 | Resmed Limited | Ventilatory assistance using an external effort sensor |
US6315739B1 (en) | 1999-09-27 | 2001-11-13 | Instrumentarium Corporation | Apparatus and method for measuring the intratracheal pressure of an intubated patient |
US6536436B1 (en) | 1999-10-26 | 2003-03-25 | Mcglothen Roberta | Strap for nasal cannula |
AU783698B2 (en) | 1999-10-29 | 2005-11-24 | Chart Industries Luxembourg S.A.R.L. | Portable liquid oxygen unit with multiple operational orientations |
US6742517B1 (en) | 1999-10-29 | 2004-06-01 | Mallinckrodt, Inc. | High efficiency liquid oxygen system |
US6378520B1 (en) | 1999-10-29 | 2002-04-30 | Salter Labs | Variable pressure and flow control for a pneumatically-operated gas demand apparatus |
US7225809B1 (en) | 1999-11-01 | 2007-06-05 | Ric Investments, Llc | Method and apparatus for monitoring and controlling a medical device |
SE9904382D0 (en) | 1999-12-02 | 1999-12-02 | Siemens Elema Ab | High Frequency Oscillation Patient Fan System |
DE19960404A1 (en) | 1999-12-15 | 2001-07-05 | Messer Austria Gmbh Gumpoldski | Expiration-dependent gas metering |
US6631919B1 (en) | 2000-01-06 | 2003-10-14 | The Burton Corporation | Wing-shaped leg support for a highback |
US6553992B1 (en) | 2000-03-03 | 2003-04-29 | Resmed Ltd. | Adjustment of ventilator pressure-time profile to balance comfort and effectiveness |
US20060150982A1 (en) | 2003-08-05 | 2006-07-13 | Wood Thomas J | Nasal ventilation interface and system |
USD627059S1 (en) | 2000-03-13 | 2010-11-09 | Innomed Technologies, Inc. | Nasal interface |
US7059328B2 (en) | 2000-03-13 | 2006-06-13 | Innomed Technologies, Inc. | Ventilation interface for sleep apnea therapy |
DE10014427A1 (en) | 2000-03-24 | 2001-10-04 | Weinmann G Geraete Med | Method for controlling a ventilator and device for monitoring |
US6532956B2 (en) | 2000-03-30 | 2003-03-18 | Respironics, Inc. | Parameter variation for proportional assist ventilation or proportional positive airway pressure support devices |
US6571798B1 (en) | 2000-04-05 | 2003-06-03 | W. Keith Thornton | Device for improving breathing and method of constructing same |
US6648906B2 (en) | 2000-04-06 | 2003-11-18 | Innercool Therapies, Inc. | Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid |
US6644305B2 (en) | 2000-04-14 | 2003-11-11 | Trudell Medical International | Nasal inhaler |
US6595212B1 (en) | 2000-04-17 | 2003-07-22 | Richard J. Arnott | Method and apparatus for maintaining airway patency |
US20010035185A1 (en) | 2000-04-26 | 2001-11-01 | Christopher Kent L. | Method and apparatus for pharyngeal augmentation of ventilation |
US6581594B1 (en) | 2000-05-15 | 2003-06-24 | Resmed Limited | Respiratory mask having gas washout vent and gas washout vent for respiratory mask |
US6450166B1 (en) | 2000-05-17 | 2002-09-17 | Southmedic Incorporated | Patient oxygen delivery system |
FR2809329B1 (en) | 2000-05-25 | 2002-08-16 | Air Liquide | PORTABLE OXYGEN CONCENTRATOR |
US6938619B1 (en) | 2000-06-13 | 2005-09-06 | Scott Laboratories, Inc. | Mask free delivery of oxygen and ventilatory monitoring |
EP1163923B1 (en) | 2000-06-14 | 2005-11-16 | Fisher & Paykel Healthcare Limited | A nasal mask |
US20060122474A1 (en) * | 2000-06-16 | 2006-06-08 | Bodymedia, Inc. | Apparatus for monitoring health, wellness and fitness |
US6722360B2 (en) | 2000-06-16 | 2004-04-20 | Rajiv Doshi | Methods and devices for improving breathing in patients with pulmonary disease |
AUPQ821500A0 (en) | 2000-06-19 | 2000-07-13 | Australian Centre For Advanced Medical Technology Ltd | Mask |
US6575944B1 (en) | 2000-06-19 | 2003-06-10 | Portex, Inc. | Adapter for localized treatment through a tracheal tube and method for use thereof |
US6669712B1 (en) | 2000-06-30 | 2003-12-30 | Norman Cardoso | Nasal oxygen cannula with supply tube management |
US6532960B1 (en) | 2000-07-10 | 2003-03-18 | Respironics, Inc. | Automatic rise time adjustment for bi-level pressure support system |
US7237205B2 (en) | 2000-07-12 | 2007-06-26 | Home-Medicine (Usa), Inc. | Parameter evaluation system |
US6691702B2 (en) | 2000-08-03 | 2004-02-17 | Sequal Technologies, Inc. | Portable oxygen concentration system and method of using the same |
US6651658B1 (en) * | 2000-08-03 | 2003-11-25 | Sequal Technologies, Inc. | Portable oxygen concentration system and method of using the same |
US6530373B1 (en) | 2000-08-04 | 2003-03-11 | Mallinckrodt Inc. | Respirator mask |
SE0002849D0 (en) | 2000-08-08 | 2000-08-08 | Siemens Elema Ab | ventilator |
US6439229B1 (en) | 2000-08-08 | 2002-08-27 | Newport Medical Instruments, Inc. | Pressure support ventilation control system and method |
AU2001287175A1 (en) | 2000-08-11 | 2002-02-25 | Healthetech, Inc. | Achieving a relaxed state |
US6827340B2 (en) | 2000-08-14 | 2004-12-07 | Taga Medical Technologies, Inc. | CPAP humidifier |
US6450164B1 (en) | 2000-08-17 | 2002-09-17 | Michael J. Banner | Endotracheal tube pressure monitoring system and method of controlling same |
US6561188B1 (en) | 2000-08-21 | 2003-05-13 | Ellis Alan D | Nasal breathing apparatus and methods |
US6814073B2 (en) | 2000-08-29 | 2004-11-09 | Resmed Limited | Respiratory apparatus with improved flow-flattening detection |
US6595207B1 (en) | 2000-09-11 | 2003-07-22 | Southmedic Incorporated | Oxygen diffuser for patient oxygen delivery system |
US6714806B2 (en) | 2000-09-20 | 2004-03-30 | Medtronic, Inc. | System and method for determining tissue contact of an implantable medical device within a body |
US6564800B1 (en) | 2000-09-20 | 2003-05-20 | Juan Rodriguez Olivares | Nasal air passage device |
JP4293581B2 (en) | 2000-09-21 | 2009-07-08 | 日本特殊陶業株式会社 | Oxygen concentrator, control device, and recording medium |
JP2002085568A (en) | 2000-09-21 | 2002-03-26 | Ngk Spark Plug Co Ltd | Oxygen supplier, controller and recording medium therefor |
US6418928B1 (en) | 2000-09-25 | 2002-07-16 | Mallinckrodt Inc. | Multi-seal respirator mask |
US6752151B2 (en) | 2000-09-25 | 2004-06-22 | Respironics, Inc. | Method and apparatus for providing variable positive airway pressure |
US6626175B2 (en) | 2000-10-06 | 2003-09-30 | Respironics, Inc. | Medical ventilator triggering and cycling method and mechanism |
US20020133378A1 (en) * | 2000-10-13 | 2002-09-19 | Mault James R. | System and method of integrated calorie management |
US6668828B1 (en) | 2000-10-16 | 2003-12-30 | Pulmonox Technologies Corporations | System and elements for managing therapeutic gas administration to a spontaneously breathing non-ventilated patient |
US6622726B1 (en) | 2000-10-17 | 2003-09-23 | Newport Medical Instruments, Inc. | Breathing apparatus and method |
US6571794B1 (en) | 2000-10-19 | 2003-06-03 | Mallinckrodt, Inc. | Multi-lumen hose for respirators |
US6357438B1 (en) | 2000-10-19 | 2002-03-19 | Mallinckrodt Inc. | Implantable sensor for proportional assist ventilation |
US6431172B1 (en) | 2000-10-20 | 2002-08-13 | Mallinckrodt Inc. | Nasal cannula with inflatable plenum chamber |
USD449376S1 (en) | 2000-10-25 | 2001-10-16 | Southmedic Incorporated | Oxygen delivery system |
US6494202B2 (en) | 2000-12-07 | 2002-12-17 | Michael W. Farmer | Inhalation therapy assembly and method |
US7987847B2 (en) | 2000-12-29 | 2011-08-02 | Resmed Limited | Characterisation of mask systems |
US7743770B2 (en) | 2001-01-04 | 2010-06-29 | Salter Labs | Nasal and oral cannula having three or more capabilities and method of producing same |
US7832400B2 (en) | 2001-01-04 | 2010-11-16 | Salter Labs | Nasal and oral cannula having two capabilities and method of producing same |
JP4212778B2 (en) | 2001-01-10 | 2009-01-21 | 帝人株式会社 | Positive pressure ventilator |
USD449883S1 (en) | 2001-01-24 | 2001-10-30 | Southmedic Incorporated | Oxygen delivery system |
DE10103810A1 (en) | 2001-01-29 | 2002-08-01 | Map Gmbh | Device for supplying a breathing gas |
DE10105383C2 (en) | 2001-02-06 | 2003-06-05 | Heptec Gmbh | Anti-snoring device |
US6571796B2 (en) | 2001-02-08 | 2003-06-03 | University Of Florida | Tracheal pressure ventilation respiratory system |
US6644311B1 (en) | 2001-02-21 | 2003-11-11 | Respironics, Inc. | Monitoring fluid flow in a pressure support system |
US6941950B2 (en) | 2001-10-11 | 2005-09-13 | Emphasys Medical, Inc. | Bronchial flow control devices and methods of use |
US6799575B1 (en) | 2001-04-21 | 2004-10-05 | Aaron Carter | Cannula for the separation of inhaled and exhaled gases |
US20020153010A1 (en) | 2001-04-23 | 2002-10-24 | Rozenberg Allan L. | System and method for total liquid ventilation with very low priming volume |
JP4707255B2 (en) | 2001-04-26 | 2011-06-22 | ルネサスエレクトロニクス株式会社 | Semiconductor memory device |
USD451598S1 (en) | 2001-05-04 | 2001-12-04 | Southmedic Incorporated | Lightweight oxygen delivery system |
US7066175B2 (en) | 2001-05-07 | 2006-06-27 | Emergent Respiratory Products, Inc. | Portable gas powered positive pressure breathing apparatus and method |
AU2002308423B2 (en) | 2001-05-23 | 2007-11-01 | Resmed Limited | Ventilator patient synchronization |
US6651656B2 (en) | 2001-05-29 | 2003-11-25 | Deka Products Limited Partnership | Method and apparatus for non-invasive breathing assist |
WO2002097571A2 (en) * | 2001-05-29 | 2002-12-05 | Becton, Dickinson And Company | Health care management system and method |
US6520183B2 (en) | 2001-06-11 | 2003-02-18 | Memorial Sloan-Kettering Cancer Center | Double endobronchial catheter for one lung isolation anesthesia and surgery |
CA2351217C (en) | 2001-06-19 | 2008-12-02 | Teijin Limited | An apparatus for supplying a therapeutic oxygen gas |
US7520279B2 (en) | 2001-07-19 | 2009-04-21 | Resmed Limited | Pressure support ventilation of patients |
DE10139881B4 (en) | 2001-08-20 | 2017-06-08 | Resmed R&D Germany Gmbh | Apparatus for supplying a breathing gas and method for controlling the same |
US6684883B1 (en) | 2001-08-21 | 2004-02-03 | Bonnie C. Burns | Nasal cannula headband apparatus |
CA2370995C (en) | 2001-09-13 | 2010-08-17 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US6675796B2 (en) | 2001-10-12 | 2004-01-13 | Southmedic Incorporated | Lightweight oxygen delivery device for patients |
US7168429B2 (en) | 2001-10-12 | 2007-01-30 | Ric Investments, Llc | Auto-titration pressure support system and method of using same |
US7938114B2 (en) | 2001-10-12 | 2011-05-10 | Ric Investments Llc | Auto-titration bi-level pressure support system and method of using same |
US6837238B2 (en) | 2001-10-12 | 2005-01-04 | Southmedic Incorporated | Lightweight oxygen delivery device for patients |
US6910482B2 (en) | 2001-10-19 | 2005-06-28 | Chart Inc. | Self-calibrating supplemental oxygen delivery system |
US6752152B2 (en) | 2001-10-19 | 2004-06-22 | Precision Medical, Inc. | Pneumatic oxygen conserving device |
US6679265B2 (en) | 2001-10-25 | 2004-01-20 | Worldwide Medical Technologies | Nasal cannula |
FR2831825B1 (en) | 2001-11-08 | 2004-01-30 | Intertechnique Sa | DILUTION CONTROL METHOD AND DEVICE FOR RESPIRATORY APPARATUS |
AU2002363780B2 (en) | 2001-11-16 | 2007-05-31 | Fisher & Paykel Healthcare Limited | A nasal positive pressure device |
US7156097B2 (en) | 2001-11-27 | 2007-01-02 | Norman Cardoso | Nasal cannula |
US20030111081A1 (en) | 2001-12-19 | 2003-06-19 | Gupta Parshotam C. | Detachable nasal cannula assembly |
JP2003210585A (en) | 2002-01-21 | 2003-07-29 | Hiroaki Nomori | Tracheotomic tube |
US6505624B1 (en) | 2002-01-29 | 2003-01-14 | George Campbell, Sr. | Gas delivery system retention device and method for retaining a gas delivery system |
DE10204779A1 (en) | 2002-02-05 | 2003-08-21 | Kone Corp | Device for heating escalators or moving walkways |
US20070240716A1 (en) | 2002-02-15 | 2007-10-18 | Marx Alvin J | Personal air filtering and isolation device |
US7024945B2 (en) | 2002-02-22 | 2006-04-11 | Compumedics Limited | Flow sensing apparatus |
FR2836384B1 (en) | 2002-02-27 | 2004-12-10 | Georges Boussignac | RESPIRATORY ASSISTANCE DEVICE |
ATE364421T1 (en) | 2002-03-06 | 2007-07-15 | Boc Group Plc | IMPROVED Nasal Cannulas |
US6769432B1 (en) | 2002-04-10 | 2004-08-03 | Hamilton Medical, Inc. | Method and apparatus for non-abrasive cushioning seal of assisted breathing devices |
AUPS192602A0 (en) | 2002-04-23 | 2002-05-30 | Resmed Limited | Nasal mask |
US20030221687A1 (en) | 2002-05-09 | 2003-12-04 | William Kaigler | Medication and compliance management system and method |
US6866041B2 (en) | 2002-05-14 | 2005-03-15 | Evolution, Inc. | Oxygen concentrating aroma mixing breathable air delivery apparatus and method |
US7128578B2 (en) | 2002-05-29 | 2006-10-31 | University Of Florida Research Foundation, Inc. | Interactive simulation of a pneumatic system |
SE0201854D0 (en) | 2002-06-18 | 2002-06-18 | Siemens Elema Ab | Medical ventilation |
US20060249148A1 (en) | 2002-06-27 | 2006-11-09 | Magdy Younes | Method and device for monitoring and improving patient-ventilator interaction |
AU2003245018A1 (en) | 2002-07-22 | 2004-02-09 | Hasdi Matarasso | A respiratory aid apparatus and method |
US6938620B2 (en) | 2002-08-09 | 2005-09-06 | Charles E. Payne, Jr. | Headwear for use by a sleep apnea patient |
US20050061326A1 (en) | 2002-08-09 | 2005-03-24 | Payne Charles E. | Headwear for use by a sleep apnea patient |
US6807966B2 (en) | 2002-08-21 | 2004-10-26 | Medical Device Group, Inc. | Oxygen delivery system and method of using same |
US6986353B2 (en) | 2002-08-21 | 2006-01-17 | Medical Device Group, Inc. | Divided nasal cannula assembly |
US20040035431A1 (en) | 2002-08-21 | 2004-02-26 | Wright Clifford A. | Ear cannula system and method of using same |
US7080646B2 (en) | 2002-08-26 | 2006-07-25 | Sekos, Inc. | Self-contained micromechanical ventilator |
US7721736B2 (en) | 2002-08-26 | 2010-05-25 | Automedx, Inc. | Self-contained micromechanical ventilator |
US7320321B2 (en) | 2002-08-26 | 2008-01-22 | Automedx Inc. | Self-contained micromechanical ventilator |
US7891353B2 (en) | 2002-08-29 | 2011-02-22 | Resmed Paris | Breathing assistance device with several secure respirator modes and associated method |
EP2377463B1 (en) | 2002-08-30 | 2018-10-03 | University of Florida Research Foundation, Inc. | Method and apparatus for predicting work of breathing |
US8881723B2 (en) | 2002-10-16 | 2014-11-11 | Resmed Limited | Breathable gas supply apparatus |
US7225811B2 (en) | 2002-10-30 | 2007-06-05 | Ruiz Sherrie E | Headgear apparatus |
US20050010125A1 (en) | 2002-11-26 | 2005-01-13 | Joy James A. | Systems and methods for respiration measurement |
JP4598357B2 (en) | 2002-12-17 | 2010-12-15 | 帝人株式会社 | Oxygen supply equipment |
GB2396426B (en) | 2002-12-21 | 2005-08-24 | Draeger Medical Ag | Artificial respiration system |
DE10302310A1 (en) | 2003-01-20 | 2004-07-29 | Freitag, Lutz, Dr. | Patient lung reduction method, e.g. for treating pulmonary emphysema, whereby a bronchial catheter is inserted into an over-swollen lung area and the supplying bronchopulmonary closed in synchronism with patient breathing |
US7886740B2 (en) | 2003-01-28 | 2011-02-15 | Beth Israel Deaconess Medical Center, Inc. | Gas systems and methods for enabling respiratory stability |
DE202004021757U1 (en) | 2003-02-21 | 2010-09-30 | ResMed Ltd., Bella Vista | Nasal arrangement |
JP4602643B2 (en) | 2003-02-28 | 2010-12-22 | 帝人株式会社 | Respiratory gas supply device |
AU2003901042A0 (en) | 2003-03-07 | 2003-03-20 | Resmed Limited | Back-up rate for a ventilator |
NZ566148A (en) | 2003-03-24 | 2009-09-25 | Saime | Breathing assistance apparatus |
US20040206352A1 (en) | 2003-04-21 | 2004-10-21 | Conroy John D. | System and method for monitoring passenger oxygen saturation levels and estimating oxygen usage requirements |
US7246620B2 (en) | 2003-04-21 | 2007-07-24 | Conroy Jr John D | System for monitoring pilot and/or passenger oxygen saturation levels and estimating oxygen usage requirements |
US7681576B2 (en) | 2003-05-06 | 2010-03-23 | Mallinckrodt Inc. | Multiple cannula systems and methods |
US7426929B2 (en) | 2003-05-20 | 2008-09-23 | Portaero, Inc. | Intra/extra-thoracic collateral ventilation bypass system and method |
US7493902B2 (en) | 2003-05-30 | 2009-02-24 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US7878980B2 (en) | 2003-06-13 | 2011-02-01 | Treymed, Inc. | Gas flow diverter for respiratory monitoring device |
SE0301767D0 (en) | 2003-06-18 | 2003-06-18 | Siemens Elema Ab | User interface for a medical ventilator |
NZ710686A (en) | 2003-06-20 | 2017-02-24 | Resmed Ltd | Breathable gas apparatus with humidifier |
US7152598B2 (en) | 2003-06-23 | 2006-12-26 | Invacare Corporation | System and method for providing a breathing gas |
FR2856930B1 (en) | 2003-07-04 | 2007-09-07 | Saime Sarl | MODULAR TURBINE BREATHING AIDING DEVICE. |
US7066180B2 (en) | 2003-07-09 | 2006-06-27 | Airmatrix Technologies, Inc. | Method and system for measuring airflow of nares |
US6910510B2 (en) | 2003-07-16 | 2005-06-28 | Precision Medical, Inc. | Portable, cryogenic gas delivery apparatus |
US20050011524A1 (en) | 2003-07-17 | 2005-01-20 | Marguerite Thomlinson | Nasal interface apparatus |
WO2005007056A2 (en) | 2003-07-22 | 2005-01-27 | Zinder, Oren | A respiratory aid system and method |
AU2004261207B2 (en) | 2003-07-28 | 2011-02-17 | Salter Labs, Llc | Respiratory therapy system including a nasal cannula assembly |
BRPI0413275A (en) | 2003-08-04 | 2006-10-10 | Pulmonetic Systems Inc | portable fan and portable fan system |
US8156937B2 (en) | 2003-08-04 | 2012-04-17 | Carefusion 203, Inc. | Portable ventilator system |
US7614401B2 (en) | 2003-08-06 | 2009-11-10 | Paul S. Thompson | Nasal cannula assembly |
US20050121037A1 (en) | 2003-08-08 | 2005-06-09 | Wood Thomas J. | Nasal ventilation interface |
US7353826B2 (en) | 2003-08-08 | 2008-04-08 | Cardinal Health 205, Inc. | Sealing nasal cannula |
WO2005016426A1 (en) | 2003-08-14 | 2005-02-24 | Teijin Pharma Limited | Oxygen enrichment device and method of supporting home oxygen therapy execution using same |
US20050131288A1 (en) * | 2003-08-15 | 2005-06-16 | Turner Christopher T. | Flexible, patient-worn, integrated, self-contained sensor systems for the acquisition and monitoring of physiologic data |
US7468040B2 (en) | 2003-09-18 | 2008-12-23 | Cardiac Pacemakers, Inc. | Methods and systems for implantably monitoring external breathing therapy |
WO2005018524A2 (en) | 2003-08-18 | 2005-03-03 | Wondka Anthony D | Method and device for non-invasive ventilation with nasal interface |
US7469697B2 (en) | 2003-09-18 | 2008-12-30 | Cardiac Pacemakers, Inc. | Feedback system and method for sleep disordered breathing therapy |
EP2008581B1 (en) | 2003-08-18 | 2011-08-17 | Cardiac Pacemakers, Inc. | Patient monitoring, diagnosis, and/or therapy systems and methods |
US7591265B2 (en) | 2003-09-18 | 2009-09-22 | Cardiac Pacemakers, Inc. | Coordinated use of respiratory and cardiac therapies for sleep disordered breathing |
GB2405349A (en) | 2003-09-01 | 2005-03-02 | Secr Defence | Resilient mask with improved seal |
US7044129B1 (en) | 2003-09-03 | 2006-05-16 | Ric Investments, Llc. | Pressure support system and method |
WO2005027997A2 (en) | 2003-09-18 | 2005-03-31 | Oxygen Plus, Inc. | Personal oxigen and air delivery system |
AU2004273546B2 (en) | 2003-09-25 | 2011-06-02 | Resmed Limited | Ventilator mask and system |
US7255107B1 (en) | 2003-10-14 | 2007-08-14 | Gomez Roy C | Nasal mask assembly for nasal delivery |
US7478641B2 (en) | 2003-10-22 | 2009-01-20 | L'oreal | Device for the combined presentation of two items |
US7007692B2 (en) | 2003-10-29 | 2006-03-07 | Airmatrix Technologies, Inc. | Method and system of sensing airflow and delivering therapeutic gas to a patient |
US20050098179A1 (en) | 2003-11-06 | 2005-05-12 | Steve Burton | Multi-level positive air pressure method and delivery apparatus |
US8584676B2 (en) | 2003-11-19 | 2013-11-19 | Immediate Response Technologies | Breath responsive filter blower respirator system |
EP1694393A1 (en) | 2003-12-15 | 2006-08-30 | Bespak plc | Nasal drug delivery |
NZ567968A (en) | 2003-12-29 | 2009-12-24 | Resmed Ltd | Mechanical ventilation in the presence of sleep disordered breathing |
US7819120B2 (en) | 2003-12-30 | 2010-10-26 | 3M Innovative Properties Company | Respiratory component mounting assembly |
JP5031375B2 (en) | 2003-12-31 | 2012-09-19 | レスメド・リミテッド | Compact mouth and nose patient interface |
US7195016B2 (en) | 2004-01-07 | 2007-03-27 | E. Benson Hood Laboratories | Transtracheal oxygen stent |
EP1701757B1 (en) | 2004-01-07 | 2011-07-27 | ResMed Limited | Methods for providing expiratory pressure relief in positive airway pressure therapy |
US7063084B2 (en) | 2004-01-14 | 2006-06-20 | Soutmedic Incorporated | Oxygen diffuser support |
US8011366B2 (en) | 2004-02-04 | 2011-09-06 | Devilbiss Healthcare Llc | Method for acclimating a CPAP therapy patient to prescribed pressure |
US7178525B2 (en) | 2004-02-06 | 2007-02-20 | Ric Investments, Llc | Patient interface assembly supported under the mandible |
DE102004006396B4 (en) | 2004-02-10 | 2021-11-04 | Löwenstein Medical Technology S.A. | Device for ventilation and method for controlling a ventilator |
US7913691B2 (en) | 2004-02-11 | 2011-03-29 | Resmed Limited | Session-by-session adjustments of a device for treating sleep disordered breathing |
WO2005079726A1 (en) | 2004-02-23 | 2005-09-01 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US7856982B2 (en) | 2004-03-11 | 2010-12-28 | Ric Investments, Llc | Patient interface device |
DE102004014538A1 (en) | 2004-03-23 | 2005-10-13 | Seleon Gmbh | Method for controlling a BiLevel device and BiLevel device |
US7472702B2 (en) | 2004-03-25 | 2009-01-06 | Maquet Critical Care Ab | Method and device responsive to diaphragmatic activity for adjusting positive pressure assist during expiration |
EP1579882A1 (en) | 2004-03-26 | 2005-09-28 | Stephan Dr. Böhm | Non-invasive method and apparatus for optimizing the respiration for atelectatic lungs |
EP1737525B1 (en) | 2004-04-09 | 2019-05-22 | ResMed Ltd. | Nasal mask assembly |
CN1942213A (en) | 2004-04-15 | 2007-04-04 | 雷斯梅德有限公司 | Snoring treatment apparatus and methods of managing snorers |
US20050257793A1 (en) | 2004-05-18 | 2005-11-24 | Tsuyoshi Tatsumoto | Nasal inhalation device |
US7500482B2 (en) | 2004-05-21 | 2009-03-10 | Biederman Paul D | Capnography measurement adapter and airway mask system |
US6971382B1 (en) | 2004-05-24 | 2005-12-06 | Albert M Corso | Trachea tube method and device |
US8545415B2 (en) | 2004-05-26 | 2013-10-01 | The Regents Of The University Of California | Portable alveolar gas meter |
USD542912S1 (en) | 2004-05-28 | 2007-05-15 | Resmed Limited | Mask |
EP1776152A2 (en) | 2004-06-04 | 2007-04-25 | Inogen, Inc. | Systems and methods for delivering therapeutic gas to patients |
US9289566B2 (en) | 2004-06-04 | 2016-03-22 | New York University | System and method for automated titration of continuous positive airway pressure using an obstruction index |
US7481219B2 (en) | 2004-06-18 | 2009-01-27 | Mergenet Medical, Inc. | Medicine delivery interface system |
EP2774646B1 (en) | 2004-06-23 | 2017-05-03 | ResMed Limited | Apparatus with improved ventilatory support cycling |
WO2006012205A2 (en) | 2004-06-24 | 2006-02-02 | Convergent Engineering, Inc. | METHOD AND APPARATUS FOR NON-INVASIVE PREDICTION OF INTRINSIC POSITIVE END-EXPIRATORY PRESSURE (PEEPi) IN PATIENTS RECEIVING VENTILATOR SUPPORT |
US7222624B2 (en) | 2004-07-02 | 2007-05-29 | Praxair Technology, Inc. | Dual sensor oxygen therapy device |
US20060005834A1 (en) | 2004-07-07 | 2006-01-12 | Acoba, Llc | Method and system of providing therapeutic gas to a patient to prevent breathing airway collapse |
US7013898B2 (en) | 2004-07-09 | 2006-03-21 | Praxair Technology, Inc. | Nasal pressure sensor oxygen therapy device |
US7882834B2 (en) | 2004-08-06 | 2011-02-08 | Fisher & Paykel Healthcare Limited | Autotitrating method and apparatus |
AU2005270724A1 (en) | 2004-08-10 | 2006-02-16 | Resmed Limited | Method and apparatus for humidification of breathable gas with profiled delivery |
US7328703B1 (en) | 2004-08-25 | 2008-02-12 | Tiep Brian L | Oxygen delivery cannula system that improves the effectiveness of alveolar oxygenation |
US7837651B2 (en) | 2004-08-31 | 2010-11-23 | Ethicon Endo-Surgery, Inc. | Infusion pump |
US7469698B1 (en) | 2004-09-14 | 2008-12-30 | Winthrop De Childers | Parameter optimization in sleep apnea treatment apparatus |
US20060054169A1 (en) | 2004-09-15 | 2006-03-16 | Tai-Kang Han | Respiration nozzle for a medical facemask |
AU2005291858B2 (en) | 2004-10-06 | 2011-07-28 | Resmed Limited | Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing |
US7455717B2 (en) | 2004-10-25 | 2008-11-25 | Invacare Corporation | Apparatus and method of providing concentrated product gas |
US20090199855A1 (en) | 2004-11-01 | 2009-08-13 | Davenport James M | System and method for conserving oxygen delivery while maintaining saturation |
US20060096596A1 (en) | 2004-11-05 | 2006-05-11 | Occhialini James M | Wearable system for positive airway pressure therapy |
DE102004055433B3 (en) | 2004-11-17 | 2005-11-17 | Drägerwerk AG | Breathing mask with integrated suction area |
US20060107958A1 (en) | 2004-11-22 | 2006-05-25 | Sleeper Geoffrey P | Adjustable sealing nasal cannula |
US8042539B2 (en) | 2004-12-10 | 2011-10-25 | Respcare, Inc. | Hybrid ventilation mask with nasal interface and method for configuring such a mask |
US7341061B2 (en) | 2004-12-15 | 2008-03-11 | Scott Douglas Wood | Tracheostomy system |
WO2006066337A1 (en) | 2004-12-23 | 2006-06-29 | Resmed Limited | Method for detecting and disciminatng breathing patterns from respiratory signals |
US7900627B2 (en) | 2005-01-18 | 2011-03-08 | Respironics, Inc. | Trans-fill method and system |
US20060174877A1 (en) | 2005-02-09 | 2006-08-10 | Vbox, Incorporated | Portable oxygen concentrator with a docking station |
US7004170B1 (en) | 2005-02-11 | 2006-02-28 | Gillstrom Jim A | Oxygen cannula |
US20060185669A1 (en) | 2005-02-18 | 2006-08-24 | Oleg Bassovitch | Method and apparatus for intermittent hypoxic training |
US8276584B2 (en) | 2005-03-02 | 2012-10-02 | Concept 2 Manufacture Design Ocd Limited | Conserving device for breathable gas |
US20060201504A1 (en) | 2005-03-08 | 2006-09-14 | Singhal Aneesh B | High-flow oxygen delivery system and methods of use thereof |
US7195014B2 (en) | 2005-03-22 | 2007-03-27 | Hoffman Laboratories, Llc | Portable continuous positive airway pressure system |
US7329304B2 (en) | 2005-04-05 | 2008-02-12 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
US20060225737A1 (en) | 2005-04-12 | 2006-10-12 | Mr. Mario Iobbi | Device and method for automatically regulating supplemental oxygen flow-rate |
US20070181125A1 (en) | 2005-04-28 | 2007-08-09 | Mulier Jan P | ventilator safety valve |
US20060249155A1 (en) | 2005-05-03 | 2006-11-09 | China Resource Group, Inc. | Portable non-invasive ventilator with sensor |
ITRM20050217A1 (en) | 2005-05-06 | 2006-11-07 | Ginevri S R L | PROCEDURE FOR NASAL VENTILATION AND ITS APPARATUS, IN PARTICULAR FOR NEONATAL FLOW-SYNCHRONIZED ASSISTED VENTILATION. |
US7195018B1 (en) | 2005-05-26 | 2007-03-27 | Joseph Goldstein | Adjustable support system for nasal breathing devices |
US7559327B2 (en) | 2005-05-31 | 2009-07-14 | Respcare, Inc. | Ventilation interface |
CN112933363A (en) | 2005-06-06 | 2021-06-11 | 瑞思迈私人有限公司 | Mask system |
CN101203260B (en) | 2005-06-09 | 2010-12-22 | 马奎特紧急护理公司 | Respirator |
US9682207B2 (en) | 2005-06-14 | 2017-06-20 | Resmed Limited | Acclimatization therapy for first time CPAP and NIV users |
US7451762B2 (en) | 2005-06-17 | 2008-11-18 | Salter Labs | Pressure sensing device with test circuit |
US7958892B2 (en) | 2005-07-29 | 2011-06-14 | Resmed Limited | Air delivery system |
US7721733B2 (en) | 2005-07-29 | 2010-05-25 | Ric Investments, Llc | Portable liquid oxygen delivery system |
US7487774B2 (en) | 2005-08-05 | 2009-02-10 | The General Electric Company | Adaptive patient trigger threshold detection |
US20070107737A1 (en) | 2005-09-12 | 2007-05-17 | Mergenet Medical, Inc. | Nasal cannula |
US8333199B2 (en) | 2005-09-12 | 2012-12-18 | Mergenet Medical, Inc. | High flow therapy artificial airway interfaces and related methods |
US8522782B2 (en) | 2005-09-12 | 2013-09-03 | Mergenet Medical, Inc. | High flow therapy device utilizing a non-sealing respiratory interface and related methods |
US20070056590A1 (en) | 2005-09-14 | 2007-03-15 | Wolfson Ivan A | Holder for nasal cannula |
CN101454041B (en) | 2005-09-20 | 2012-12-12 | 呼吸科技公司 | Systems, methods and apparatus for respiratory support of a patient |
US7530353B2 (en) | 2005-09-21 | 2009-05-12 | The General Electric Company | Apparatus and method for determining and displaying functional residual capacity data and related parameters of ventilated patients |
US8100125B2 (en) | 2005-09-30 | 2012-01-24 | Carefusion 207, Inc. | Venturi geometry design for flow-generator patient circuit |
US8287460B2 (en) | 2005-10-04 | 2012-10-16 | Ric Investments, Llc | Disordered breathing monitoring device and method of using same including a study status indicator |
US8424514B2 (en) | 2005-10-14 | 2013-04-23 | Resmed Limited | Flow generator message system |
WO2007041786A1 (en) | 2005-10-14 | 2007-04-19 | Resmed Ltd | Nasal assembly |
US7975694B2 (en) | 2005-10-24 | 2011-07-12 | Koninklijke Philips Electronics N.V. | Non-intrusive mask interface with nasal support |
NZ612787A (en) | 2005-10-25 | 2015-01-30 | Resmed Ltd | Interchangeable mask assembly |
US20090151729A1 (en) | 2005-11-08 | 2009-06-18 | Resmed Limited | Nasal Assembly |
CN101547716B (en) | 2005-11-16 | 2013-06-26 | 心肺技术公司 | Side-stream respiratory gas monitoring system and method |
US8025052B2 (en) | 2005-11-21 | 2011-09-27 | Ric Investments, Llc | System and method of monitoring respiratory events |
US7422015B2 (en) | 2005-11-22 | 2008-09-09 | The General Electric Company | Arrangement and method for detecting spontaneous respiratory effort of a patient |
US20070113856A1 (en) | 2005-11-22 | 2007-05-24 | General Electric Company | Respiratory monitoring with cannula receiving respiratory airflows |
US20070113850A1 (en) | 2005-11-22 | 2007-05-24 | General Electric Company | Respiratory monitoring with cannula receiving respiratory airflows and differential pressure transducer |
US7578294B2 (en) | 2005-12-02 | 2009-08-25 | Allegiance Corporation | Nasal continuous positive airway pressure device and system |
US7640934B2 (en) | 2005-12-02 | 2010-01-05 | Carefusion 2200, Inc. | Infant nasal interface prong device |
US7762253B2 (en) | 2005-12-12 | 2010-07-27 | General Electric Company | Multiple lumen monitored drug delivery nasal cannula system |
US7987851B2 (en) | 2005-12-27 | 2011-08-02 | Hansa Medical Products, Inc. | Valved fenestrated tracheotomy tube having outer and inner cannulae |
WO2007082193A2 (en) | 2006-01-06 | 2007-07-19 | Doreen Cleary | Pulmonary rehabilitation providing respiratory assistance by application of positive airway pressure |
US20070163600A1 (en) | 2006-01-11 | 2007-07-19 | Leslie Hoffman | User interface and head gear for a continuous positive airway pressure device |
US7509957B2 (en) | 2006-02-21 | 2009-03-31 | Viasys Manufacturing, Inc. | Hardware configuration for pressure driver |
GB0603725D0 (en) | 2006-02-24 | 2006-04-05 | Mcmorrow Roger | Breathing apparatus |
US7373939B1 (en) | 2006-03-03 | 2008-05-20 | Cardica, Inc. | Tracheotomy procedure with integrated tool |
EP1834660A1 (en) | 2006-03-17 | 2007-09-19 | Innosuisse Management AG | Device for introducing breathing gas directly in the nose of a user |
USD588258S1 (en) | 2006-04-14 | 2009-03-10 | Resmed Limited | Respiratory mask cushion |
US8381732B2 (en) | 2008-03-21 | 2013-02-26 | The Periodic Breathing Foundation, Llc | Nasal interface device |
US8763611B2 (en) | 2006-04-27 | 2014-07-01 | S&S Medical Products, Llc | Low-profile CPR mask |
USD623288S1 (en) | 2006-04-28 | 2010-09-07 | Resmed Limited | Patient interface |
US8887725B2 (en) | 2006-05-10 | 2014-11-18 | Respcare, Inc. | Ventilation interface |
US7980245B2 (en) | 2006-05-12 | 2011-07-19 | The General Electric Company | Informative accessories |
DE102006023637A1 (en) | 2006-05-18 | 2007-11-22 | Breathe Technologies, Inc., Freemont | Tracheostoma placeholder for use in trachea opening e.g. tracheostoma, has tubular support structure that is expandable from initial condition into support condition, where diameter of support structure is increased in support condition |
US7631642B2 (en) | 2006-05-18 | 2009-12-15 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
EP2026723B1 (en) | 2006-05-23 | 2018-11-21 | Theravent, Inc. | Nasal respiratory devices |
WO2007139531A1 (en) | 2006-05-25 | 2007-12-06 | Respcare, Inc. | Hybrid ventilation mask with nasal interface and method for configuring such a mask |
DE102007026565A1 (en) | 2006-06-09 | 2007-12-27 | ResMed Ltd., Bella Vista | Accessory devices for portable positive airway device and method of use thereof |
US8475387B2 (en) | 2006-06-20 | 2013-07-02 | Adidas Ag | Automatic and ambulatory monitoring of congestive heart failure patients |
US20080011297A1 (en) | 2006-06-30 | 2008-01-17 | Scott Thomas Mazar | Monitoring physiologic conditions via transtracheal measurement of respiratory parameters |
US20080006271A1 (en) | 2006-07-08 | 2008-01-10 | Acoba, Llc | Method and system of generating indicia representative of start of an inhalation |
US20080011301A1 (en) | 2006-07-12 | 2008-01-17 | Yuancheng Qian | Out flow resistance switching ventilator and its core methods |
EP2043720A2 (en) | 2006-07-20 | 2009-04-08 | CNR Consiglio Nazionale Delle Ricerche | Apparatus for controlled and automatic medical gas dispensing |
WO2011044627A1 (en) | 2009-10-14 | 2011-04-21 | Resmed Ltd | Modification of sympathetic activation and/or respiratory function |
US7845350B1 (en) | 2006-08-03 | 2010-12-07 | Cleveland Medical Devices Inc. | Automatic continuous positive airway pressure treatment system with fast respiratory response |
US8161971B2 (en) | 2006-08-04 | 2012-04-24 | Ric Investments, Llc | Nasal and oral patient interface |
WO2008014543A1 (en) | 2006-08-04 | 2008-02-07 | Resmed Ltd | Nasal prongs for mask system |
US7556038B2 (en) | 2006-08-11 | 2009-07-07 | Ric Investments, Llc | Systems and methods for controlling breathing rate |
US8069853B2 (en) | 2006-08-14 | 2011-12-06 | Immediate Response Technologies | Breath responsive powered air-purifying respirator |
FR2904998B1 (en) | 2006-08-16 | 2010-01-01 | Air Liquide | TRANSPORTABLE STORAGE AND OXYGEN DELIVERY DEVICE |
US20080047559A1 (en) | 2006-08-22 | 2008-02-28 | Romeo Fiori | Nasal positive pressure ventilation apparatus and method |
US8307828B2 (en) | 2006-08-24 | 2012-11-13 | Inovo, Inc. | Pneumatic single-lumen medical gas conserver |
WO2008027368A2 (en) | 2006-08-29 | 2008-03-06 | Avox Systems, Inc. | Adapter for air purifying filter |
USD557802S1 (en) | 2006-09-01 | 2007-12-18 | Ric Investments, Llc | Nasal interface |
US7997272B2 (en) | 2006-09-11 | 2011-08-16 | Ric Investments, Llc. | Ventilating apparatus and method enabling a patient to talk with or without a trachostomy tube check valve |
US20080072902A1 (en) | 2006-09-27 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Preset breath delivery therapies for a breathing assistance system |
US8056562B2 (en) | 2006-09-28 | 2011-11-15 | Nellcor Puritan Bennett Llc | System and method for providing support for a breathing passage |
US20080078392A1 (en) | 2006-09-29 | 2008-04-03 | Pelletier Dana G | Breath detection system |
US8312879B2 (en) | 2006-10-16 | 2012-11-20 | General Electric Company | Method and apparatus for airway compensation control |
FR2907018B1 (en) | 2006-10-17 | 2010-05-14 | Matisec | RESPIRATORY APPARATUS, PARTICULARLY OF THE OPEN CIRCUIT TYPE |
DE102006052572B3 (en) | 2006-10-30 | 2007-09-27 | Technische Universität Dresden | Pressure-supported spontaneous respiration facilitating method, involves implementing variable pressure support breathing by using variation sample of breathing way pressure in breathing device during spontaneous respiration |
US20080110462A1 (en) | 2006-11-10 | 2008-05-15 | Chekal Michael P | Oxygen delivery system |
US7779841B2 (en) | 2006-11-13 | 2010-08-24 | Carefusion 2200, Inc. | Respiratory therapy device and method |
US8171935B2 (en) | 2006-11-15 | 2012-05-08 | Vapotherm, Inc. | Nasal cannula with reduced heat loss to reduce rainout |
ES2569880T3 (en) | 2006-12-15 | 2016-05-12 | Resmed Ltd. | Administration of respiratory therapy |
US8020558B2 (en) | 2007-01-26 | 2011-09-20 | Cs Medical, Inc. | System for providing flow-targeted ventilation synchronized to a patient's breathing cycle |
US9186476B2 (en) | 2007-01-31 | 2015-11-17 | Ric Investments, Llc | System and method for oxygen therapy |
US8789528B2 (en) | 2007-02-12 | 2014-07-29 | Ric Investments, Llc | Pressure support method with automatic comfort feature modification |
JP4998878B2 (en) | 2007-02-16 | 2012-08-15 | 日本光電工業株式会社 | Carbon dioxide gas measurement nose mask |
US8667964B2 (en) | 2007-02-16 | 2014-03-11 | Ric Investments, Llc | Nasal interface |
WO2008106716A1 (en) | 2007-03-02 | 2008-09-12 | Resmed Ltd | Respiratory mask |
US20080216841A1 (en) | 2007-03-08 | 2008-09-11 | Grimes Beverly S | Nasal cannula |
US8061353B2 (en) | 2007-03-09 | 2011-11-22 | Global Medical Holdings LLC | Method and apparatus for delivering a dose of a gaseous drug to a patient |
US7918226B2 (en) | 2007-04-10 | 2011-04-05 | General Electric Company | Method and system for detecting breathing tube occlusion |
EP2144674A4 (en) | 2007-04-13 | 2012-12-26 | Invacare Corp | Apparatus and method for providing positive airway pressure |
DE102007019487B3 (en) | 2007-04-25 | 2008-04-10 | Dräger Medical AG & Co. KG | Modular breathing system for patient, has stationary parts detachably attaching breathing module, and detachable connection interface for data, electrical energy and inhaled gas attached to stationary parts receiving module |
NZ599799A (en) | 2007-05-11 | 2013-10-25 | Resmed Ltd | Automated Control for Detection of Flow Limitation |
FR2916145A1 (en) | 2007-05-14 | 2008-11-21 | Air Liquide | DOMESTIC AND AMBULATORY OXYGEN SUPPLY DEVICE |
WO2008144589A1 (en) | 2007-05-18 | 2008-11-27 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US8833372B2 (en) | 2007-05-29 | 2014-09-16 | Carefusion 207, Inc. | Integrated mask and prongs for nasal CPAP |
US20100170512A1 (en) | 2007-05-30 | 2010-07-08 | Gilbert Jacobus Kuypers | Improvements to Electrically Operable Resuscitators |
US8794235B2 (en) | 2007-06-08 | 2014-08-05 | Ric Investments, Llc | System and method for treating ventilatory instability |
EP2022528B1 (en) | 2007-07-30 | 2016-03-09 | Resmed Limited | Patient interface |
ES2398921T3 (en) | 2007-08-02 | 2013-03-22 | Activaero Gmbh | Device and system to direct aerosolized particles to a specific area of the lungs |
JP5000607B2 (en) | 2007-08-29 | 2012-08-15 | 株式会社福島オーツー | Oxygen supply equipment |
US20090078255A1 (en) | 2007-09-21 | 2009-03-26 | Bowman Bruce R | Methods for pressure regulation in positive pressure respiratory therapy |
US20090078258A1 (en) | 2007-09-21 | 2009-03-26 | Bowman Bruce R | Pressure regulation methods for positive pressure respiratory therapy |
AU2008304203B9 (en) | 2007-09-26 | 2014-02-27 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
GB0719054D0 (en) | 2007-09-29 | 2007-11-07 | Nasir Muhammed A | Airway device |
GB0719299D0 (en) | 2007-10-03 | 2007-11-14 | Optinose As | Nasal delivery devices |
US20090095303A1 (en) | 2007-10-16 | 2009-04-16 | Bruce Sher | Nasal prongs |
WO2011014931A1 (en) | 2009-08-07 | 2011-02-10 | Resmed Ltd | Patient interface systems |
WO2009059353A1 (en) | 2007-11-05 | 2009-05-14 | Resmed Ltd | Headgear for a respiratory mask and a method for donning a respiratory mask |
US20090118632A1 (en) | 2007-11-05 | 2009-05-07 | Goepp Julius G | Effort-Independent, Portable, User-Operated Capnograph Devices And Related Methods |
AU2008321617B2 (en) | 2007-11-16 | 2014-07-17 | Fisher & Paykel Healthcare Limited | Nasal pillows with high volume bypass flow and method of using same |
WO2009074160A1 (en) | 2007-12-10 | 2009-06-18 | Nokia Corporation | Portable oxygen delivery device and method for delivering oxygen to a mobile user |
CN101903060B (en) | 2007-12-20 | 2014-07-02 | 马奎特紧急护理公司 | A computer program product, a control unit for a ventilator, a ventilator and a method for use with a ventilator |
US8210182B2 (en) | 2007-12-28 | 2012-07-03 | Carefusion 207, Inc. | Continuous positive airway pressure device |
US8371304B2 (en) | 2007-12-28 | 2013-02-12 | Carefusion | Continuous positive airway pressure device and method |
US9393375B2 (en) | 2008-01-07 | 2016-07-19 | Mergenet Solutions | Nasal ventilation interface |
USD591419S1 (en) | 2008-01-08 | 2009-04-28 | Mergenet Solutions, Inc. | Ventilation portion of a ventilation apparatus |
US20100282810A1 (en) | 2008-01-09 | 2010-11-11 | Hawes Edwina J | Portable hair dryer system |
US9550037B2 (en) | 2008-01-11 | 2017-01-24 | Koninklijke Philips N.V. | Patient control of ventilation properties |
CN101977656A (en) | 2008-01-18 | 2011-02-16 | 呼吸科技公司 | Methods and devices for improving efficacy of non-invasive ventilation |
WO2009094532A1 (en) | 2008-01-25 | 2009-07-30 | Salter Labs | Respiratory therapy system including a nasal cannula assembly |
DE102008010475A1 (en) | 2008-02-21 | 2009-08-27 | Seleon Gmbh | Applicators for a pair of aerial goggles |
CN101990448B (en) | 2008-02-26 | 2014-07-09 | 皇家飞利浦电子股份有限公司 | Pressure support system with upstream humidifier |
NZ713510A (en) | 2008-03-04 | 2017-10-27 | Resmed Ltd | Unobtrusive interface systems |
WO2009115948A1 (en) | 2008-03-17 | 2009-09-24 | Philips Intellectual Property & Standards Gmbh | A closed loop system for automatically controlling a physiological variable of a patient |
WO2009115944A1 (en) | 2008-03-17 | 2009-09-24 | Philips Intellectual Property & Standards Gmbh | Method and system for automatically controlling a physiological variable of a patient in a closed loop |
CN104958074B (en) | 2008-03-17 | 2018-07-06 | 皇家飞利浦电子股份有限公司 | Patient monitor with integrated closed loop controller |
EP2257328A2 (en) * | 2008-03-27 | 2010-12-08 | Nellcor Puritan Bennett LLC | Breathing assistance systems with lung recruitment maneuvers |
US8272380B2 (en) | 2008-03-31 | 2012-09-25 | Nellcor Puritan Bennett, Llc | Leak-compensated pressure triggering in medical ventilators |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
WO2009129506A1 (en) | 2008-04-18 | 2009-10-22 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
FR2930165B1 (en) | 2008-04-21 | 2010-08-20 | Air Liquide | DEVICE FOR DETECTING PATIENT OBSERVANCE OF OXYGEN THERAPY TREATMENT |
EP3639878B1 (en) | 2008-05-12 | 2022-02-09 | Fisher & Paykel Healthcare Limited | Patient interface |
GB0810169D0 (en) | 2008-06-04 | 2008-07-09 | Cosmeplast Ets | Improvements relating to respiratory interface devices |
JP2011522621A (en) | 2008-06-06 | 2011-08-04 | ネルコー ピューリタン ベネット エルエルシー | System and method for ventilation proportional to patient effort |
WO2009151344A1 (en) | 2008-06-12 | 2009-12-17 | Fisher & Paykel Healthcare Limited | Respiratory nasal interface with sealing cap portions |
US20100163043A1 (en) | 2008-06-25 | 2010-07-01 | Hart William T | Self-contained oral ventilation device |
CN101618247B (en) | 2008-07-03 | 2012-05-16 | 周常安 | Scalable Gas Delivery System |
WO2010021556A1 (en) | 2008-08-19 | 2010-02-25 | Fisher & Paykel Healthcare Limited | Breathing transition detection |
WO2010022363A1 (en) | 2008-08-22 | 2010-02-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US9084863B2 (en) | 2008-08-25 | 2015-07-21 | Koninklijke Philips N.V. | Respiratory patient interfaces |
US8794234B2 (en) | 2008-09-25 | 2014-08-05 | Covidien Lp | Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators |
WO2010039989A1 (en) | 2008-10-01 | 2010-04-08 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
EP3323462B1 (en) | 2008-10-10 | 2021-12-15 | Fisher & Paykel Healthcare Limited | Nasal pillows for a patient interface |
CN102186524B (en) | 2008-10-16 | 2014-07-09 | 皇家飞利浦电子股份有限公司 | Accessory connection and data synchronication in a ventilator |
NL2002225C2 (en) | 2008-11-19 | 2010-05-21 | Emergency Pulmonary Care B V | Apparatus and system for monitoring breathing or ventilation, defibrillator device, apparatus and system for monitoring chest compressions, valve apparatus. |
AU2009317882B2 (en) | 2008-11-21 | 2015-05-28 | Bidibots Pty Ltd | Respiratory assistance device and method |
DE102008060799B3 (en) | 2008-11-27 | 2010-04-15 | Technische Universität Dresden | Controller for ventilators to control a variable pressure assist ventilation |
DE102009047246A1 (en) | 2008-12-01 | 2010-06-10 | Fisher & Paykel Healthcare Ltd., East Tamaki | nasal cannula |
US8082312B2 (en) | 2008-12-12 | 2011-12-20 | Event Medical, Inc. | System and method for communicating over a network with a medical device |
WO2010070493A2 (en) | 2008-12-16 | 2010-06-24 | Koninklijke Philips Electronics, N.V. | Variable flow oxygen therapy |
WO2010070497A1 (en) | 2008-12-19 | 2010-06-24 | Koninklijke Philips Electronics, N.V. | System and method for treating lung disease using positive pressure airway support |
US9901692B2 (en) | 2008-12-19 | 2018-02-27 | Koninklijke Philips N.V. | System and method for treating lung disease using positive pressure airway support |
CN102271631B (en) | 2008-12-30 | 2013-12-04 | 皇家飞利浦电子股份有限公司 | System and respiration appliance for supporting the airway of a subject |
IL203129A (en) | 2009-01-05 | 2013-10-31 | Oridion Medical Ltd | Exhaled breath sampling systrm with delivery of gas |
WO2010080709A1 (en) | 2009-01-08 | 2010-07-15 | Hancock Medical | Self-contained, intermittent positive airway pressure systems and methods for treating sleep apnea, snoring, and other respiratory disorders |
WO2010081223A1 (en) | 2009-01-15 | 2010-07-22 | St. Michael's Hospital | Method and device for determining a level of ventilatory assist to a patient |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
CA2751485C (en) | 2009-02-04 | 2016-06-28 | Robert Tero | Nasal interface device |
US20100218766A1 (en) | 2009-02-27 | 2010-09-02 | Nellcor Puritan Bennett Llc | Customizable mandatory/spontaneous closed loop mode selection |
WO2010102094A1 (en) | 2009-03-04 | 2010-09-10 | JeMi Airway Management LLC | Nasal cannula assembly |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
EP3593847B1 (en) | 2009-04-02 | 2023-05-31 | Breathe Technologies, Inc. | Systems for non-invasive open ventilation with gas delivery nozzles within an outer tube |
EP2416706B1 (en) | 2009-04-08 | 2017-01-11 | Koninklijke Philips N.V. | System for providing feedback to a subject regarding reception of positive airway support therapy |
AU2010201032B2 (en) | 2009-04-29 | 2014-11-20 | Resmed Limited | Methods and Apparatus for Detecting and Treating Respiratory Insufficiency |
US8408203B2 (en) | 2009-04-30 | 2013-04-02 | General Electric Company | System and methods for ventilating a patient |
WO2010132853A2 (en) | 2009-05-15 | 2010-11-18 | Sequal Technologies Inc. | Apparatus and methods for treating sleep related disorders |
US8550077B2 (en) | 2009-05-19 | 2013-10-08 | The Cleveland Clinic Foundation | Ventilator control system utilizing a mid-frequency ventilation pattern |
US20100300446A1 (en) | 2009-05-26 | 2010-12-02 | Nellcor Puritan Bennett Llc | Systems and methods for protecting components of a breathing assistance system |
CH701124B1 (en) | 2009-05-28 | 2019-09-13 | Imtmedical Ag | Respirator and adjustment method for this. |
NZ725939A (en) | 2009-06-02 | 2018-06-29 | Resmed Ltd | Unobtrusive nasal mask |
US8985106B2 (en) | 2009-06-05 | 2015-03-24 | Resmed Limited | Methods and devices for the detection of hypopnoea |
DE102009023965A1 (en) | 2009-06-05 | 2010-10-14 | Drägerwerk AG & Co. KGaA | Respiratory device for pressure-supporting ventilation of patient, has control and evaluation unit analyzing functional dependency of pressure and respiratory volume, where elastance or compliance is determined from rise of pressure |
US8596277B2 (en) | 2009-06-18 | 2013-12-03 | Covidien Lp | Tracheal tube with lumen for tracheal pressure measurement and technique for using the same |
US20100326441A1 (en) | 2009-06-24 | 2010-12-30 | Shlomo Zucker | Nasal interface device |
US8844534B2 (en) | 2009-06-30 | 2014-09-30 | Covidien Lp | Tracheal tube with lumen for tracheal pressure measurement and technique for using the same |
EP2451517B1 (en) | 2009-07-09 | 2016-12-07 | Koninklijke Philips N.V. | System and method for entraining the breathing of a subject |
WO2011006184A1 (en) | 2009-07-14 | 2011-01-20 | Resmed Ltd | Setup automation for respiratory treatment apparatus |
NZ735906A (en) | 2009-07-16 | 2019-06-28 | ResMed Pty Ltd | Detection of sleep condition |
US8701665B2 (en) | 2009-07-25 | 2014-04-22 | Fleur T Tehrani | Automatic control system for mechanical ventilation for active or passive subjects |
US20110023878A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver |
US20110023881A1 (en) | 2009-07-31 | 2011-02-03 | Nellcor Puritan Bennett Llc | Method And System For Generating A Pressure Volume Loop Of A Low Flow Recruitment Maneuver |
WO2011017738A1 (en) | 2009-08-11 | 2011-02-17 | Resmed Ltd | Sound dampening in positive airway pressure devices |
US8789529B2 (en) | 2009-08-20 | 2014-07-29 | Covidien Lp | Method for ventilation |
WO2011021978A1 (en) | 2009-08-21 | 2011-02-24 | Maquet Critical Care Ab | Coordinated control of ventilator and lung assist device |
CN102596299A (en) | 2009-08-28 | 2012-07-18 | 雷斯梅德有限公司 | Pap system |
JP5517332B2 (en) | 2009-08-28 | 2014-06-11 | アルバック機工株式会社 | Ventilator and its operating method |
WO2011029074A1 (en) | 2009-09-03 | 2011-03-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
CA2773048C (en) | 2009-09-03 | 2017-01-03 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US8215302B2 (en) | 2009-09-22 | 2012-07-10 | Kassatly L Samuel A | Discontinuous positive airway pressure device and method of reducing sleep disordered breathing events |
US20130000647A1 (en) | 2009-09-22 | 2013-01-03 | Resmed Limited | Respiratory resistance systems and methods |
WO2011038407A2 (en) | 2009-09-28 | 2011-03-31 | Sequal Technologies Inc. | Controlling and communicating with respiratory care devices |
US20120266891A1 (en) | 2009-10-01 | 2012-10-25 | Covidien Ag | System for transtracheal administration of oxygen |
US9205212B2 (en) | 2009-10-01 | 2015-12-08 | Covidien Ag | Transtracheal catheter apparatus |
DE112010004380T5 (en) | 2009-11-12 | 2013-02-07 | Fisher & Paykel Healthcare Ltd. | Patient interface and its aspects |
NZ599917A (en) | 2009-11-16 | 2014-10-31 | Resmed Ltd | Methods and apparatus for adaptable pressure treatment of sleep disordered breathing |
EP3741418B1 (en) | 2009-11-18 | 2024-05-08 | Fisher & Paykel Healthcare Limited | Nasal interface |
CN102665810B (en) | 2009-11-23 | 2017-03-15 | 皇家飞利浦电子股份有限公司 | There is the patient interface device of unilateral nose piece |
US20120318271A1 (en) | 2010-01-15 | 2012-12-20 | Koninklijke Philips Electronics N.V. | Replaceable nasal pillow kit |
WO2011086438A2 (en) | 2010-01-15 | 2011-07-21 | Koninklijke Philips Electronics N.V. | Replaceable nasal pillow |
US9339208B2 (en) | 2010-01-18 | 2016-05-17 | Covidien Lp | Tracheal tube with pressure monitoring lumen and method for using the same |
US20130056010A1 (en) | 2010-03-12 | 2013-03-07 | Elijah Charles Walker | Autonomous positive airway pressure system |
FR2958549B1 (en) | 2010-04-13 | 2013-04-12 | Georges Boussignac | APPARATUS FOR RESPIRATORY ASSISTANCE. |
US20110253147A1 (en) | 2010-04-19 | 2011-10-20 | Gusky Michael H | Breathing apparatus |
US10265492B2 (en) | 2010-04-30 | 2019-04-23 | Resmed Limited | Respiratory mask |
-
2009
- 2009-10-01 WO PCT/US2009/059272 patent/WO2010039989A1/en active Application Filing
- 2009-10-01 JP JP2011530250A patent/JP5711661B2/en not_active Expired - Fee Related
- 2009-10-01 EP EP09818525.9A patent/EP2344791B1/en not_active Not-in-force
- 2009-10-01 CA CA2739435A patent/CA2739435A1/en not_active Abandoned
- 2009-10-01 US US12/572,033 patent/US10252020B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928189A (en) | 1997-04-22 | 1999-07-27 | Phillips; Robert E. | Activity responsive therapeutic delivery system |
US20040159323A1 (en) | 1997-07-25 | 2004-08-19 | Minnesota Innovative Technologies And Instruments | Control of respiratory oxygen delivery |
WO1999013931A1 (en) | 1997-09-18 | 1999-03-25 | Caradyne (R & D) Limited | Portable respirator |
US6192883B1 (en) * | 1999-08-03 | 2001-02-27 | Richard L. Miller, Jr. | Oxygen flow control system and method |
US20080135044A1 (en) | 2003-06-18 | 2008-06-12 | Breathe Technologies | Methods and devices for minimally invasive respiratory support |
US7588033B2 (en) | 2003-06-18 | 2009-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US20050034721A1 (en) * | 2003-08-11 | 2005-02-17 | Lutz Freitag | Tracheal catheter and prosthesis and method of respiratory support of a patient |
US7487778B2 (en) | 2003-08-11 | 2009-02-10 | Breathe Technologies, Inc. | Tracheal catheter and prosthesis and method of respiratory support of a patient |
US20070193705A1 (en) * | 2006-02-01 | 2007-08-23 | Gemmy Industries Corporation | Roll-up screen partition |
US20080161653A1 (en) * | 2006-12-29 | 2008-07-03 | Industrial Technology Research Institute | Cardio-respiratory fitness evaluation method and system |
Non-Patent Citations (1)
Title |
---|
See also references of EP2344791A4 * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8555881B2 (en) | 1997-03-14 | 2013-10-15 | Covidien Lp | Ventilator breath display and graphic interface |
US8555882B2 (en) | 1997-03-14 | 2013-10-15 | Covidien Lp | Ventilator breath display and graphic user interface |
US8955518B2 (en) | 2003-06-18 | 2015-02-17 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8418694B2 (en) | 2003-08-11 | 2013-04-16 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8573219B2 (en) | 2003-08-18 | 2013-11-05 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US10582880B2 (en) | 2006-04-21 | 2020-03-10 | Covidien Lp | Work of breathing display for a ventilation system |
US8985099B2 (en) | 2006-05-18 | 2015-03-24 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US8453645B2 (en) | 2006-09-26 | 2013-06-04 | Covidien Lp | Three-dimensional waveform display for a breathing assistance system |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US9227034B2 (en) | 2009-04-02 | 2016-01-05 | Beathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US9675774B2 (en) | 2009-04-02 | 2017-06-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space |
US11103667B2 (en) | 2009-04-02 | 2021-08-31 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US11707591B2 (en) | 2009-04-02 | 2023-07-25 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US10709864B2 (en) | 2009-04-02 | 2020-07-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US10695519B2 (en) | 2009-04-02 | 2020-06-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows |
US11896766B2 (en) | 2009-04-02 | 2024-02-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US10232136B2 (en) | 2009-04-02 | 2019-03-19 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US10046133B2 (en) | 2009-04-02 | 2018-08-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for providing ventilation support |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US12048813B2 (en) | 2009-09-03 | 2024-07-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US10265486B2 (en) | 2009-09-03 | 2019-04-23 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US8924878B2 (en) | 2009-12-04 | 2014-12-30 | Covidien Lp | Display and access to settings on a ventilator graphical user interface |
US8335992B2 (en) | 2009-12-04 | 2012-12-18 | Nellcor Puritan Bennett Llc | Visual indication of settings changes on a ventilator graphical user interface |
US9119925B2 (en) | 2009-12-04 | 2015-09-01 | Covidien Lp | Quick initiation of respiratory support via a ventilator user interface |
US8443294B2 (en) | 2009-12-18 | 2013-05-14 | Covidien Lp | Visual indication of alarms on a ventilator graphical user interface |
US9262588B2 (en) | 2009-12-18 | 2016-02-16 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US8499252B2 (en) | 2009-12-18 | 2013-07-30 | Covidien Lp | Display of respiratory data graphs on a ventilator graphical user interface |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US9358358B2 (en) | 2010-09-30 | 2016-06-07 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
WO2012128704A1 (en) | 2011-03-24 | 2012-09-27 | Fraanberg Oskar | A device and method for supplying and dosing gas to a breathing person |
EP2688624A1 (en) * | 2011-03-24 | 2014-01-29 | Frånberg, Oskar | A device and method for supplying and dosing gas to a breathing person |
EP2688624A4 (en) * | 2011-03-24 | 2014-10-29 | Oskar Frånberg | A device and method for supplying and dosing gas to a breathing person |
WO2013067580A1 (en) * | 2011-11-07 | 2013-05-16 | Resmed Limited | Methods and apparatus for providing ventilation to a patient |
US11642042B2 (en) | 2012-07-09 | 2023-05-09 | Covidien Lp | Systems and methods for missed breath detection and indication |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US10940281B2 (en) | 2014-10-27 | 2021-03-09 | Covidien Lp | Ventilation triggering |
US11712174B2 (en) | 2014-10-27 | 2023-08-01 | Covidien Lp | Ventilation triggering |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US11672934B2 (en) | 2020-05-12 | 2023-06-13 | Covidien Lp | Remote ventilator adjustment |
US12144925B2 (en) | 2020-05-12 | 2024-11-19 | Covidien Lp | Remote ventilator adjustment |
WO2024257015A1 (en) * | 2023-06-16 | 2024-12-19 | Breas Medical Ab | System and methods for dynamically controlling operation of a mechanical ventilator for automatic intervention during a detected respiratory episode |
Also Published As
Publication number | Publication date |
---|---|
JP5711661B2 (en) | 2015-05-07 |
US10252020B2 (en) | 2019-04-09 |
US20100083968A1 (en) | 2010-04-08 |
CA2739435A1 (en) | 2010-04-08 |
JP2012504473A (en) | 2012-02-23 |
EP2344791B1 (en) | 2016-05-18 |
EP2344791A1 (en) | 2011-07-20 |
EP2344791A4 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10252020B2 (en) | Ventilator with biofeedback monitoring and control for improving patient activity and health | |
US12214130B2 (en) | Systems and methods for assisting patient airway management | |
US11351418B2 (en) | Breathing training, monitoring and/or assistance device | |
CN103619390B (en) | There is the medical aerating system of ventilation Quality Feedback unit | |
JP5795507B2 (en) | Method and apparatus for monitoring the cardiovascular condition of a patient with sleep-disordered breathing | |
CN1622839B (en) | Patient monitoring system and nursing system | |
TWI658816B (en) | Methods and devices of real-time detection of periodic breathing | |
CA2334408C (en) | Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures | |
JP2022515534A (en) | Forecast of use or compliance | |
EP3302229B1 (en) | System for increasing a patient's compliance with a therapy relating to an upper airway disorder | |
JP5261731B2 (en) | Oxygen supply equipment | |
US20090188502A1 (en) | Energy relief control in a mechanical ventilator | |
US20160045154A1 (en) | Sleep apnea | |
MX2013002835A (en) | Ventilation system. | |
US20220361753A1 (en) | Vital parameter measurements for low care patients | |
EP3811862A1 (en) | Vital parameter measurements for low care patients | |
WO2024246788A1 (en) | Estimating respiratory parameters in respiratory systems | |
WO2020181279A1 (en) | Respiratory support device and method of providing hypoxemia relief |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09818525 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2739435 Country of ref document: CA Ref document number: 2011530250 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009818525 Country of ref document: EP |