WO2010013566A1 - Magnetoresistive element, magnetic random access memory, and initialization method thereof - Google Patents
Magnetoresistive element, magnetic random access memory, and initialization method thereof Download PDFInfo
- Publication number
- WO2010013566A1 WO2010013566A1 PCT/JP2009/061833 JP2009061833W WO2010013566A1 WO 2010013566 A1 WO2010013566 A1 WO 2010013566A1 JP 2009061833 W JP2009061833 W JP 2009061833W WO 2010013566 A1 WO2010013566 A1 WO 2010013566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- film
- magnetization
- ferromagnetic layer
- magnetization fixed
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 126
- 238000011423 initialization method Methods 0.000 title claims description 17
- 230000005415 magnetization Effects 0.000 claims abstract description 160
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 134
- 230000000694 effects Effects 0.000 claims description 59
- 230000015654 memory Effects 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 23
- 229910010169 TiCr Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910000684 Cobalt-chrome Inorganic materials 0.000 claims description 8
- 239000010952 cobalt-chrome Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910052703 rhodium Inorganic materials 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 193
- 238000004519 manufacturing process Methods 0.000 description 17
- 125000006850 spacer group Chemical group 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 239000002772 conduction electron Substances 0.000 description 8
- 229910000531 Co alloy Inorganic materials 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018509 Al—N Inorganic materials 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910019222 CoCrPt Inorganic materials 0.000 description 1
- 229910019092 Mg-O Inorganic materials 0.000 description 1
- 229910019395 Mg—O Inorganic materials 0.000 description 1
- 229910018553 Ni—O Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
- G11C11/1655—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Definitions
- the present invention relates to a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof, and more particularly to a domain wall motion type magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof.
- Magnetic random access memory Magnetic Random Access Memory
- MRAM Magnetic Random Access Memory
- a magnetoresistive effect element is used for a memory cell, and data is stored as the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element.
- Several methods have been proposed as a method for switching the magnetization of the ferromagnetic layer, all of which are common in that current is used. In putting MRAM into practical use, it is very important how much the write current can be reduced. For example, 2006 Symposium on VLSI Circuits, Digest of Technical Papers, p. 136 requires a reduction to 0.5 mA or less, and more preferably to 0.2 mA or less.
- the most common method for writing information to the MRAM is the following method. That is, this is a method in which wiring for passing a write current is arranged around the magnetoresistive effect element, and the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element is switched by a current magnetic field generated by passing the write current.
- This method can be written in 1 nanosecond or less in principle, and is suitable for realizing a high-speed MRAM.
- Japanese Patent Laid-Open No. 2005-150303 discloses a structure in which the magnetization of the end portion of the magnetization fixed layer is directed in the film thickness direction for an MRAM that performs data writing by a current magnetic field.
- the magnetic field for switching the magnetization of the magnetic material that has ensured thermal stability and disturbance magnetic field resistance is generally about several tens (Oe), and in order to generate such a magnetic field, about several mA.
- a large write current is required.
- the write current is large, the chip area is inevitably increased, and the power consumption required for writing increases, so that it is inferior in competitiveness compared to other random access memories.
- the write current further increases, which is not preferable in terms of scaling.
- a magnetoresistive element of a memory cell includes a first ferromagnetic layer having a reversible magnetization (often referred to as a free layer) and a second strong magnetic layer having a fixed magnetization.
- a magnetic layer (often referred to as a pinned layer) and a laminated body including a tunnel barrier layer provided between these ferromagnetic layers.
- spin injection magnetization is reversed.
- the presence or absence of spin injection magnetization reversal depends on the current density (not the absolute value of the current). Therefore, when spin injection magnetization reversal is used for data writing, if the memory cell size is reduced, the write current is also reduced. Reduced. That is, it can be said that the spin injection magnetization reversal method is excellent in scaling.
- the second method is a method using a current-driven domain wall motion phenomenon.
- the magnetization reversal method using the current-driven domain wall motion phenomenon can solve the above-described problems of spin injection magnetization reversal.
- Japanese Patent Application Laid-Open Nos. 2005-191032, 2006-73930, and 2006-270069 disclose MRAMs that use the current-driven domain wall motion phenomenon.
- a ferromagnetic layer (often called a magnetic recording layer) that holds data is provided with a magnetization reversal unit having reversible magnetization and both ends thereof. It is comprised by the two magnetization fixed parts which have the fixed magnetization connected.
- the data is stored as the magnetization of the magnetization switching unit.
- the magnetizations of the two magnetization fixed portions are fixed so as to be substantially antiparallel to each other.
- the magnetization is arranged in this way, a domain wall is introduced into the magnetic recording layer.
- the MRAM using current-driven domain wall motion has a problem that the absolute value of the write current becomes relatively large.
- the width of the ferromagnetic film may be reduced and the film thickness may be reduced.
- the current density required for writing is further increased (for example, Japan Journal of Applied Physics, vol. 45, No. 5A, pp. 3850-3853, (2006)). reference).
- reducing the width of the ferromagnetic film to 100 nm or less is accompanied by great difficulty in terms of processing technology.
- writing is performed using a current density close to 1 ⁇ 10 8 [A / cm 2], there is a concern about the effects of electron migration and temperature rise.
- JP 2005-150303 A Japanese Patent Laid-Open No. 2005-191032 JP 2006-73930 A JP 2006-270069 A
- An object of the present invention is to provide a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof that have a sufficiently small write current and can be easily manufactured.
- the magnetoresistive element of the present invention includes a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer.
- the first ferromagnetic layer has a shape that is long in the longitudinal direction on the nonmagnetic underlayer, the first magnetization fixed portion on one end side in the longitudinal direction, the second magnetization fixed portion on the other end side, and
- a domain wall moving unit is provided between the first magnetization fixed unit and the second magnetization fixed unit.
- the nonmagnetic layer is provided on the domain wall moving part.
- the second ferromagnetic layer is provided on the nonmagnetic layer and has a fixed magnetization.
- the second ferromagnetic layer has magnetic anisotropy in the film thickness direction.
- the first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction
- the domain wall moving part has magnetic anisotropy in the film thickness direction.
- the magnetic random access memory includes a plurality of magnetic memory cells arranged in a matrix and a control circuit that controls writing and reading to each of the plurality of magnetic memory cells.
- Each of the plurality of magnetic memory cells includes the magnetoresistive element described above.
- the present invention is a method for initializing a magnetic random access memory.
- the magnetic random access memory includes a plurality of magnetic memory cells arranged in a matrix and a control circuit that controls writing and reading to each of the plurality of magnetic memory cells.
- the magnetoresistive element includes a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer.
- the first ferromagnetic layer has a shape that is long in the longitudinal direction on the nonmagnetic underlayer, the first magnetization fixed portion on one end side in the longitudinal direction, the second magnetization fixed portion on the other end side, and
- a domain wall moving unit is provided between the first magnetization fixed unit and the second magnetization fixed unit.
- the nonmagnetic layer is provided on the domain wall moving part.
- the second ferromagnetic layer is provided on the nonmagnetic layer and has a fixed magnetization.
- the second ferromagnetic layer has magnetic anisotropy in the film thickness direction.
- the first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction, and the domain wall moving part has magnetic anisotropy in the film thickness direction.
- the method for initializing a magnetic random access memory includes a step of applying a first external magnetic field having a component in a direction from the first seed layer to the second seed layer to a plurality of magnetic memory cells; And a step of applying a second external magnetic field having a component in the film thickness direction of the first ferromagnetic layer to the plurality of magnetic memory cells.
- the initialization method of the magnetic random access memory includes a step of flowing a current from one of the first seed layer and the second seed layer to the other through the first ferromagnetic layer, and a step of stopping the current. It comprises.
- a magnetoresistive effect element a magnetic random access memory, and an initialization method thereof that have a sufficiently small write current and can be easily manufactured.
- FIG. 1A is a plan view showing the structure of the main part of the magnetoresistive element according to the embodiment of the present invention.
- FIG. 1B is a cross-sectional view showing the structure of the main part of the magnetoresistive effect element according to the exemplary embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing magnetic anisotropy in the magnetoresistive element of FIG. 1B.
- FIG. 3A is a cross-sectional view illustrating a method for initializing a magnetoresistive effect element according to an embodiment of the present invention.
- FIG. 3B is a cross-sectional view for explaining the initialization method of the magnetoresistive effect element according to the embodiment of the present invention.
- FIG. 1A is a plan view showing the structure of the main part of the magnetoresistive element according to the embodiment of the present invention.
- FIG. 1B is a cross-sectional view showing the structure of the main part of the magnetoresistive effect element according to the exemplary embodiment of the present invention
- FIG. 3C is a cross-sectional view for explaining the initialization method of the magnetoresistive effect element according to the embodiment of the present invention.
- FIG. 4A is a cross-sectional view illustrating a method for initializing a magnetoresistive effect element according to an embodiment of the present invention.
- FIG. 4B is a cross-sectional view for explaining the initialization method of the magnetoresistive effect element according to the embodiment of the present invention.
- FIG. 4C is a cross-sectional view for explaining the initialization method of the magnetoresistive effect element according to the embodiment of the present invention.
- FIG. 5A is an xz sectional view showing the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive effect element according to the exemplary embodiment of the present invention stores data.
- FIG. 5B is an xz sectional view showing the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive effect element according to the exemplary embodiment of the present invention stores other data.
- FIG. 6A is a cross-sectional view showing the magnetization direction in each configuration of the “0” state in the magnetoresistive effect element according to the exemplary embodiment of the present invention.
- FIG. 6B is a cross-sectional view showing the magnetization direction in each configuration of the “1” state in the magnetoresistive effect element according to the exemplary embodiment of the present invention.
- FIG. 7 is a circuit diagram showing a configuration example of a 1-bit circuit of a magnetic memory cell using the magnetoresistive effect element according to the embodiment of the present invention.
- FIG. 8 is a block diagram showing an example of the configuration of the magnetic random access memory according to the embodiment of the present invention.
- FIG. 9A is sectional drawing which shows an example of the manufacturing method of the magnetoresistive effect element based on embodiment of this invention.
- FIG. 9B is sectional drawing which shows an example of the manufacturing method of the magnetoresistive effect element based on embodiment of this invention.
- FIG. 9C is a cross-sectional view showing an example of a method for manufacturing a magnetoresistance effect element according to the exemplary embodiment of the present invention.
- FIG. 9D is a cross-sectional view showing an example of a method for manufacturing a magnetoresistance effect element according to the exemplary embodiment of the present invention.
- FIG. 9E is a cross-sectional view showing an example of a method for manufacturing a magnetoresistance effect element according to the exemplary embodiment of the present invention.
- the magnetic random access memory has a plurality of memory cells arranged in an array. Each memory cell has a magnetoresistive element.
- the configuration of the magnetoresistive effect element (memory cell) will be described.
- FIG. 1A is a plan view showing the structure of the main part of the magnetoresistive effect element according to the present embodiment.
- FIG. 1B is a cross-sectional view (AA ′ plane of FIG. 1A) showing the structure of the main part of the magnetoresistive effect element according to the present exemplary embodiment.
- the magnetoresistive effect element 60 includes a first ferromagnetic layer 10, a spacer layer 20, and a second ferromagnetic layer 30.
- the first ferromagnetic layer 10 is provided extending in the x-axis direction.
- the second ferromagnetic layer 30 is provided approximately above the central portion (z-axis direction) of the first ferromagnetic layer 10 via the spacer layer 20.
- the spacer layer 20 is sandwiched between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
- the first ferromagnetic layer 10 and the second ferromagnetic layer 30 are formed of a ferromagnetic material.
- the spacer layer 20 is a nonmagnetic material, and is preferably formed of an insulator. In this case, a magnetic tunnel junction (MTJ) is formed by the first ferromagnetic layer 10, the spacer layer 20, and the second ferromagnetic layer 30.
- the spacer layer 20 is preferably made of an insulator, but may be made of a nonmagnetic conductor or semiconductor.
- the first seed layer 40a and the second seed layer 40b are joined to the surface of the first ferromagnetic layer 10 opposite to the surface to which the spacer layer 20 is joined.
- the first seed layer 40 a is joined in the vicinity of one end of the first ferromagnetic layer 10
- the second seed layer 40 b is joined in the vicinity of the other end of the first ferromagnetic layer 10.
- FIG. 2 is a cross-sectional view showing magnetic anisotropy in the magnetoresistive element of FIG. 1B.
- the directions of magnetic anisotropy of the first ferromagnetic layer 10 and the second ferromagnetic layer 30 are indicated by arrows.
- the first ferromagnetic layer has magnetization in the in-plane direction at portions in contact with the seed layers 40a and 40b, and has magnetization in the direction perpendicular to the film surface at the other portions.
- the magnetization of the second ferromagnetic layer 30 is fixed in one direction substantially in the direction perpendicular to the film surface.
- the magnetization of at least a portion of the first ferromagnetic layer 10 facing the second ferromagnetic layer 30 can be reversed.
- the magnetization of the portion is directed in a direction parallel or antiparallel to the magnetization of the second ferromagnetic layer 30 according to stored data.
- the second ferromagnetic layer 30 is made of a single layer film formed of a material having perpendicular magnetic anisotropy or a laminate formed of a plurality of films in order to realize magnetic anisotropy in the film thickness direction. Preferably it is formed.
- the laminated body in this case may be a laminated body composed of a plurality of ferromagnetic films or a laminated body composed of a ferromagnetic film and a nonmagnetic film.
- the material of the first ferromagnet 10 As the material of the first ferromagnet 10, a combination of materials that have in-plane magnetization when stacked on the seed layers 40 a and 40 b and have vertical magnetization when stacked on the nonmagnetic underlayer 50.
- Cr is a body-centered cubic (bcc) metal.
- hcp hexagonal close-packed structure
- the c-axis side of the easy magnetization surface has good consistency with the length of the easy magnetization surface (110) of Cr, and the Co alloy is made of Cr ( 110), it is epitaxially grown so as to lie on the surface, and is thus in-plane oriented.
- a fourth periodic element of the periodic table such as Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, or Se or an alloy film of these and Cr is used as an element having a body-centered cubic structure other than Cr. Also good.
- the Co alloy film is affected by the atomic arrangement of the nonmagnetic base 50 and the (0001) plane is the base. Since the parallel polycrystalline alignment film grows and the easy magnetization surface faces in the film thickness direction, it becomes a perpendicular magnetization film.
- a base film Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr, Pt / Co3O4,
- the material of the seed layers 40a and 40b and the material of the nonmagnetic underlayer 50 are as follows.
- the material of the seed layers 40a and 40b include body-centered cubic (bcc) Cr, periodic table fourth periodic elements such as Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se. It is an alloy of Cr and the above-mentioned periodic table fourth periodic element.
- the material of the nonmagnetic underlayer 50 Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr Pt / Co 3 O 4 , Pt / Ti, Pd / Ti, Ta / MgO, CoCrRu / MgO, Ru / Ru-oxide, Ru / Ta, or a combination thereof.
- the materials of the seed layers 40a and 40b and the ferromagnetic layer 10 are preferably adjusted so that the lattice constants of these materials are close to each other.
- the base film nonmagnetic base 50
- the first seed layer 40 a, and the second seed layer 40 b are in the magnetization arrangement as described above, the magnetization of the region of the first ferromagnetic layer 10 that faces the second ferromagnetic layer 30. Depending on the direction, a domain wall is formed in the first ferromagnetic layer 10.
- the magnetization directions of the in-plane magnetization regions 10a and 10b at both ends of the first ferromagnetic layer 10 are oriented in the same direction parallel to the x-axis direction. This is effective for facilitating the manufacturing process of the MRAM.
- the initialization can be easily performed by applying an external magnetic field.
- the magnetizations of the in-plane magnetization regions 10a and 10b are all directed in the + x direction (right direction in FIG. 2).
- the in-plane magnetization region 10a which is a portion joined to the first seed layer in the first ferromagnetic layer 10
- the in-plane magnetization region 10a may be referred to as the first magnetization fixed portion 10a.
- the in-plane magnetization region 10b that is a portion joined to the second seed layer 40b in the first ferromagnetic layer 10 may be referred to as a second magnetization fixed portion 10b.
- the perpendicular magnetization region 10c which is a portion between the first magnetization fixed portion 10a and the second magnetization fixed portion 10b, the domain wall can move.
- the perpendicular magnetization region 10c may be referred to as a domain wall motion unit 10c.
- the second ferromagnetic layer 30, the first seed layer 40a, and the second seed layer 40b are electrically connected to different external wirings (not shown).
- the magnetoresistive element 60 is a three-terminal element.
- the electrode layers for obtaining electrical connection with the wiring are respectively the second ferromagnetic layer 30, the first seed layer 40a, and the second seed layer 40b. It is preferable to be joined to each other.
- the spacer layer 20 is preferably made of an insulator. Specifically, Mg—O, Al—O, Al—N, Ni—O, Hf—O, Ti—O, SrTiO 3, etc. can be used as the material of the spacer layer 20. However, it should be noted that the present invention can be implemented even if a semiconductor or a metal material is used for the spacer layer 20. Specific examples of semiconductors and metal materials that can be used as the spacer layer 20 include Cr, Al, Cu, and Zn.
- FIGS. 3A to 3C and FIGS. 4A to 4C are cross-sectional views illustrating a method for initializing the magnetoresistive effect element according to the present embodiment.
- the magnetoresistive effect element 60 it is necessary to introduce a domain wall into the first ferromagnetic layer 10, and FIGS. 3A to 3C and FIGS. 4A to 4C show the domain wall introduction process.
- 3A to 3C and FIGS. 4A to 4C show only the first ferromagnetic layer 10, the first seed layer 40a, and the second seed layer 40b.
- a uniform and sufficiently large external magnetic field is applied to the magnetoresistive element 60 substantially parallel to the x-axis direction (which is the longitudinal direction of the first ferromagnetic layer 10). Applied in the direction. At this time, as shown in FIG. 3A, all the magnetic moments are aligned and saturated in the direction of the external magnetic field. Next, the external magnetic field is reduced from this state. The rate of decrease of the external magnetic field is preferably moderately slow. When the external magnetic field starts to decrease, magnetization relaxation begins. As shown in FIG.
- first the first seed layer 40a and the second seed layer of the first ferromagnetic layer 10 are first used. Magnetization near the connection surface with 40b starts to rotate in the z-axis direction. The magnetization that has begun to rotate forms a magnetic domain having a magnetization in the film thickness direction, and this magnetic domain grows in the first ferromagnetic layer 10.
- FIG. 3C the two magnetic domains grown in the first ferromagnetic layer 10 have magnetizations in antiparallel directions. Therefore, as shown in FIG. 3C, when two magnetic domains grow and meet, a domain wall is formed there. The above is the first initialization process of the magnetoresistive element 60 in the present embodiment.
- FIG. 4A shows an example of the magnetization state at the time when the first initialization process is completed.
- a magnetic field is applied in the film thickness direction (that is, the z-axis direction) of the first ferromagnetic layer 10.
- This magnetic field is preferably reasonably small.
- the magnetic field may be applied in either the + z direction or the ⁇ z direction.
- 4A is on the right side (ie, the second seed layer 40b) as shown in FIG. 4B. Move to the vicinity). Conversely, when a magnetic field is applied in the ⁇ z direction, the domain wall formed near the center of the first ferromagnetic layer 10 is on the left side (ie, the first seed layer as shown in FIG. 4C). Move to the vicinity of 40a).
- 4B and 4C correspond to states in which different data are stored, respectively. As described above, by applying a small external magnetic field in the z-axis direction (+ z direction or ⁇ z direction) in the state of FIG. 4A, initialization to a state in which arbitrary data is stored is possible.
- the applied magnetic field is a y component (that is, a component that is not parallel to the x-axis direction excluding the z-axis direction). You may have.
- the applied magnetic field has an x component and a y component (that is, a component that is not parallel to the z-axis direction). It may be.
- the memory state may be initialized by passing a write current through the first ferromagnetic layer 10 without using an external magnetic field.
- FIG. 5A shows the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive effect element according to the present embodiment stores data (“0” state storing data “0”).
- FIG. 5B shows the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive element according to the present embodiment stores other data (the “1” state storing data “1”). It is xz sectional drawing shown. In the drawing, the second ferromagnetic layer 30 and the spacer layer 20 are omitted.
- a state in which the magnetization of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is directed in the ⁇ z direction is defined as a “0” state (see FIG. 5A).
- a state in which the magnetization of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is directed in the + z direction is defined as a “1” state (see FIG. 5B).
- the definition regarding the magnetization direction and stored data is not limited to the above case.
- the domain wall is formed on the right side of the first ferromagnetic layer 10 (that is, in the vicinity of the second seed layer 40b).
- the domain wall is formed on the left side of the first ferromagnetic layer 10 (that is, in the vicinity of the first seed layer 40a).
- data writing is performed by passing a write current through the first ferromagnetic layer 10 in the in-plane direction. By appropriately selecting the direction of the write current, the domain wall is moved to a desired position in the first ferromagnetic layer 10, and thereby, data “0” and data “1” can be written separately.
- the magnetization of the part is again directed to the original state, that is, the + x direction when the write current is turned off. If designed to recover to the above, overwriting as described above becomes possible. The same applies when a write current is passed in the + x direction when the magnetoresistive effect element 60 is in the “1” state of FIG. 5B, that is, when data “1” is written. Since the first magnetization fixed portion 10a has magnetic anisotropy in the in-plane direction, it is possible to overwrite the data “1” when the magnetoresistive element 60 is in the “1” state.
- reducing the film thickness of the first magnetization fixed portion 10a and the second magnetization fixed portion 10b provides anisotropy in the in-plane direction and stably maintains the in-plane magnetization. And more preferable. Further, it is more preferable to increase the thickness of the magnetization moving part 10c from the viewpoint of providing anisotropy in the vertical direction and stably maintaining the perpendicular magnetization. Therefore, it is more preferable to make the film thickness of the first magnetization fixed part 10a and the second magnetization fixed part 10b thinner than the film thickness of the magnetization moving part 10c.
- data read Next, reading of information from the magnetoresistive effect element 60 according to the present exemplary embodiment will be described.
- data is stored as the magnetization direction of the first ferromagnetic layer 10, while the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is the spacer layer. It is joined to the second ferromagnetic layer 30 via 20.
- a change in the MTJ resistance value due to the magnetoresistive effect is used for data reading.
- the data stored in the first ferromagnetic layer 10 can be read by passing a read current between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
- FIG. 6A and 6B are cross-sectional views showing the magnetization directions in the respective configurations of the “0” state and the “1” state in the magnetoresistive effect element according to the present embodiment.
- FIG. 6A when the relationship between the magnetization direction of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 and the magnetization direction of the second ferromagnetic layer 30 is parallel (that is, data “0”). ”Is stored), the resistance value of the MTJ formed in the magnetoresistive effect element 60 is relatively low.
- FIG. 6B that is, when data “1” is stored).
- the resistance value of MTJ becomes relatively high.
- the data stored in the first ferromagnetic layer 10 can be determined by reading the resistance value of the MTJ as a current signal or a voltage signal.
- a magnetic random access memory having a reduced write current and an excellent scaling property can be provided by an easy manufacturing process. This is due to the fact that the magnetization direction of the part (domain wall moving part 10c) related to domain wall movement in the first ferromagnetic layer 10 is oriented in the vertical direction.
- the first seed layer 40 a and the second seed layer 40 b are provided adjacent to both ends of the first ferromagnetic layer 10.
- the magnetization directions of both end portions are in-plane directions
- the magnetization of the central portion can be controlled to be the film thickness direction.
- the domain wall can be easily introduced into the first ferromagnetic layer 10. That is, the in-plane magnetization film and the perpendicular magnetization film can be formed in the same film. As a result, the number of processes is reduced and the manufacturing cost is reduced.
- Circuit configuration Next, a circuit configuration for introducing a write current and a read current into the magnetic memory cell 80 having the magnetoresistive effect element 60 according to the present embodiment will be described.
- FIG. 7 is a circuit diagram showing a configuration example of a circuit for one bit of the magnetic memory cell 80 using the magnetoresistive effect element 60 according to the present exemplary embodiment.
- the magnetic memory element 60 is a three-terminal element, and is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb.
- the terminal connected to the second ferromagnetic layer 30 is connected to the ground line GL for reading.
- a terminal connected to the first magnetization fixed portion 10a is connected to one of the source / drain of the transistor TRa, and the other of the source / drain is connected to the bit line BLa.
- a terminal connected to the second magnetization fixed portion 10b is connected to one of the source / drain of the transistor TRb, and the other of the source / drain is connected to the bit line BLb.
- the gates of the transistors TRa and TRb are connected to a common word line WL.
- the word line WL is set to the high level, and the transistors TRa and TRb are turned on.
- one of the bit line pair BLa and BLb is set to a high level, and the other is set to a low level (ground level).
- a write current flows between the bit line BLa and the bit line BLb via the transistors TRa and TRb and the first ferromagnetic layer 10.
- the word line WL is set to a high level, and the transistors TRa and TRb are turned on. Further, the bit line BLa is set to an open state, and the bit line BLb is set to a high level. As a result, a read current flows from the bit line BLb through the transistor TRb and the MTJ of the magnetoresistive element 60 to the ground line GL. This enables reading using the magnetoresistive effect.
- FIG. 8 is a block diagram showing an example of the configuration of the magnetic random access memory 90 according to the present embodiment.
- the magnetic random access memory 90 includes a memory cell array 110, an X driver 120, a Y driver 130, and a controller 140.
- the memory cell array 110 has a plurality of magnetic memory cells 80 arranged in an array (matrix). Each of the magnetic memory cells 80 has the magnetoresistive element 60 described above. As shown in FIG. 7 described above, each magnetic memory cell 80 is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb.
- the X driver 120 is connected to a plurality of word lines WL.
- the selected word line connected to the magnetic memory cell 80 to be accessed is driven among the plurality of word lines WL.
- the Y driver 130 is connected to a plurality of bit line pairs BLa and BLb. Each bit line is set to a state corresponding to data writing or data reading.
- the controller 140 controls each of the X driver 120 and the Y driver 130 in accordance with data writing or data reading.
- the configuration including the X driver 120, the Y driver 130, and the controller 140 can be regarded as a control circuit that controls writing and reading of each memory cell in the memory cell array 110.
- FIG. 9A is cross-sectional views showing an example of a method for manufacturing the magnetoresistive effect element according to the present embodiment.
- a nonmagnetic underlayer 50 and a seed layer 40 are formed on a CMOS substrate (not shown).
- an insulating film such as SiO, SiN, SiCN, or Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr, Pt / Co3O4, Pt / Ti, Pd / Ti, Ta / MgO, CoCrRu / MgO, Ru / Ru-oxide, Ru / Ta, etc.
- the material is selected from crystal-oriented materials so that the ferromagnetic film has magnetization in the vertical direction.
- the seed layer 40 is selected from materials such as Cr or Cr—Mn, which are crystal-oriented so that the ferromagnetic film formed thereon has magnetization in the in-plane direction.
- an amorphous material SiO, SiN, Al 2 O 3 or the like may be sandwiched between the nonmagnetic underlayer 50 and the seed layer 40 in order to remove the influence of the crystal orientation from the material of the upper nonmagnetic underlayer 50.
- the seed layer 40 is patterned into a predetermined shape.
- the patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask.
- a ferromagnetic layer 10 a nonmagnetic layer (spacer layer) 20, and a ferromagnetic layer 30 are further stacked thereon.
- the ferromagnetic layer 30 and the nonmagnetic layer 20 are patterned.
- the patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask.
- the ferromagnetic layer 10 is patterned.
- the patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask.
- the magnetoresistive effect element 60 can be manufactured like an abnormality.
- the magnetoresistive effect element of the present invention is adiabatic in the LLG equation that takes into account the spin-polarized current because the first ferromagnetic layer in which current-driven domain wall motion occurs has magnetic anisotropy in the film thickness direction.
- the domain wall can be driven with a small current density by the spin torque term. That is, the write current can be reduced.
- the domain wall when the domain wall is driven, the domain wall can be moved almost without being affected by the threshold magnetic field at which the domain wall is depinned. Therefore, the current required for writing is maintained while maintaining high thermal stability and disturbance magnetic field resistance. Can be reduced.
- the magnetization of the first ferromagnetic layer is directed in the in-plane direction, and the domain wall is easily introduced at a desired position. can do. Since in-plane magnetization and perpendicular magnetization can be created only with the first ferromagnetic layer, it is not necessary to introduce a new ferromagnetic film, and the manufacturing is facilitated.
- the first seed layer 40 a and the second seed layer 40 b are formed on the nonmagnetic underlayer 50.
- the first seed layer 40 a and the second seed layer 40 b may be embedded in the nonmagnetic underlayer 50. That is, the lower surface of the first ferromagnetic layer 10 may be flat.
- another nonmagnetic underlayer is further formed between the above-described FIG. 9B and FIG. 9C, and a flattening process (CMP or etching) is performed, so that the nonmagnetic underlayer 50 can be easily formed.
- the first seed layer 40a and the second seed layer 40b can be buried.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
A magnetoresistive element includes a first ferromagnetic layer (10), a non-magnetic layer (20), and a second ferromagnetic layer (30). The first ferromagnetic layer (10) having a prolonged shape in the longitudinal direction on a non-magnetic undercoat (50) includes magnetization fixing units (10a, 10b) at the both ends of the longitudinal direction and a magnetic wall moving portion (10c) between the magnetization fixing units (10a, 10b). The non-magnetic layer (20) is arranged on the magnetic wall moving portion (10c). The second ferromagnetic layer (30) is arranged on the non-magnetic layer (10) and magnetization thereof is fixed. The second ferromagnetic layer (30) has a magnetic anisotropy in the film thickness direction. The magnetization fixing units (10a, 10b) have a magnetic anisotropy in the in-plane direction. The magnetic wall moving portion (10c) has a magnetic anisotropy in the film thickness direction.
Description
本発明は、磁気抵抗効果素子、磁気ランダムアクセスメモリ及びその初期化方法に関し、特に、磁壁移動方式の磁気抵抗効果素子、磁気ランダムアクセスメモリ及びその初期化方法に関する。
The present invention relates to a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof, and more particularly to a domain wall motion type magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof.
磁気ランダムアクセスメモリ(Magnetic Random Access Memory;MRAM)は高速動作、及び無限回の書き換えが可能な不揮発性メモリとして期待され、盛んな開発が行われている。MRAMでは、メモリセルに磁気抵抗効果素子が用いられ、磁気抵抗効果素子の強磁性層の磁化の向きとしてデータが記憶される。この強磁性層の磁化をスイッチングさせる方法としていくつかの方式が提案されているが、いずれも電流を使う点では共通している。MRAMを実用化する上で、この書き込み電流をどれだけ小さくできるかが非常に重要である。例えば、2006 Symposium on VLSI Circuits、Digest of Technical Papers、p.136によれば0.5mA以下への低減、より好ましくは0.2mA以下への低減が求められている。
Magnetic random access memory (Magnetic Random Access Memory; MRAM) is expected to be a non-volatile memory capable of high-speed operation and infinite rewriting, and has been actively developed. In the MRAM, a magnetoresistive effect element is used for a memory cell, and data is stored as the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element. Several methods have been proposed as a method for switching the magnetization of the ferromagnetic layer, all of which are common in that current is used. In putting MRAM into practical use, it is very important how much the write current can be reduced. For example, 2006 Symposium on VLSI Circuits, Digest of Technical Papers, p. 136 requires a reduction to 0.5 mA or less, and more preferably to 0.2 mA or less.
MRAMへの情報の書き込み方法のうちで最も一般的なものは次の方法である。すなわち、磁気抵抗効果素子の周辺に書き込み電流を流すための配線を配置し、書き込み電流を流すことで発生する電流磁界によって磁気抵抗効果素子の強磁性層の磁化の方向をスイッチングさせる方法である。この方法は、原理的には1ナノ秒以下での書き込みが可能であり、高速MRAMを実現する上では好適である。例えば、特開2005-150303号公報は、電流磁界によってデータ書き込みを行うMRAMについて、磁化固定層の端部の磁化が膜厚方向に向けられている構造を開示している。しかし、熱安定性や外乱磁界耐性が確保された磁性体の磁化をスイッチングするための磁界は一般的には数10(Oe)程度となり、このような磁界を発生させるためには数mA程度の大きな書き込み電流が必要となる。書き込み電流が大きいと、チップ面積が大きくならざるを得ず、また書き込みに要する消費電力も増大するため、他のランダムアクセスメモリと比べて競争力で劣ることになる。これに加えて、メモリセルが微細化されると、書き込み電流はさらに増大してしまい、スケーリングの点でも好ましくない。
The most common method for writing information to the MRAM is the following method. That is, this is a method in which wiring for passing a write current is arranged around the magnetoresistive effect element, and the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element is switched by a current magnetic field generated by passing the write current. This method can be written in 1 nanosecond or less in principle, and is suitable for realizing a high-speed MRAM. For example, Japanese Patent Laid-Open No. 2005-150303 discloses a structure in which the magnetization of the end portion of the magnetization fixed layer is directed in the film thickness direction for an MRAM that performs data writing by a current magnetic field. However, the magnetic field for switching the magnetization of the magnetic material that has ensured thermal stability and disturbance magnetic field resistance is generally about several tens (Oe), and in order to generate such a magnetic field, about several mA. A large write current is required. When the write current is large, the chip area is inevitably increased, and the power consumption required for writing increases, so that it is inferior in competitiveness compared to other random access memories. In addition to this, when the memory cell is miniaturized, the write current further increases, which is not preferable in terms of scaling.
近年このような問題を解決する手段として、以下の2つの方法が提案されている。第1の方法は、スピン注入磁化反転を利用する方法である。スピン注入磁化反転を利用するMRAMでは、メモリセルの磁気抵抗効果素子が、反転可能な磁化を有する第1の強磁性層(しばしば、フリー層と呼ばれる)と、磁化が固定された第2の強磁性層(しばしば、ピン層と呼ばれる)と、これらの強磁性層の間に設けられたトンネルバリア層を備える積層体で構成される。このようなMRAMのデータ書き込みでは、フリー層とピン層の間で電流を流したときのスピン偏極した伝導電子とフリー層中の局在電子との間の相互作用を利用してフリー層の磁化が反転される。スピン注入磁化反転の発生の有無は、(電流の絶対値ではなく)電流密度に依存することから、スピン注入磁化反転をデータ書き込みに利用する場合、メモリセルのサイズが小さくなれば、書き込み電流も低減される。すなわち、スピン注入磁化反転方式はスケーリング性に優れていると言うことができる。
In recent years, the following two methods have been proposed as means for solving such problems. The first method uses spin injection magnetization reversal. In an MRAM using spin injection magnetization reversal, a magnetoresistive element of a memory cell includes a first ferromagnetic layer having a reversible magnetization (often referred to as a free layer) and a second strong magnetic layer having a fixed magnetization. A magnetic layer (often referred to as a pinned layer) and a laminated body including a tunnel barrier layer provided between these ferromagnetic layers. In such MRAM data writing, the interaction between the spin-polarized conduction electrons and the localized electrons in the free layer when a current is passed between the free layer and the pinned layer is used. Magnetization is reversed. The presence or absence of spin injection magnetization reversal depends on the current density (not the absolute value of the current). Therefore, when spin injection magnetization reversal is used for data writing, if the memory cell size is reduced, the write current is also reduced. Reduced. That is, it can be said that the spin injection magnetization reversal method is excellent in scaling.
しかしながら、データ書き込みの際、膜厚が薄いトンネルバリア層に書き込み電流を流さなければならず、書き換え耐性や信頼性が課題となる。また、書き込みの電流経路と読み出しの電流経路が同じになることから、読み出しの際の誤書き込みも懸念される。このようにスピン注入磁化反転はスケーリング性には優れるものの、実用化にはいくつかの障壁がある。
However, when data is written, a write current must be passed through the thin tunnel barrier layer, and rewriting resistance and reliability become problems. In addition, since the current path for writing and the current path for reading are the same, there is a concern about erroneous writing during reading. Thus, although spin transfer magnetization reversal is excellent in scaling, there are some barriers to practical use.
第2の方法は、電流駆動磁壁移動現象を利用する方法である。電流駆動磁壁移動現象を利用した磁化反転方法は、スピン注入磁化反転の抱える上述のような問題を解決することができる。電流駆動磁壁移動現象を利用したMRAMは、例えば、特開2005-191032号公報、特開2006-73930号公報、特開2006-270069号公報に開示されている。電流駆動磁壁移動現象を利用したMRAMの最も一般的な構成では、データを保持する強磁性層(しばしば、磁気記録層と呼ばれる。)が、反転可能な磁化を有する磁化反転部と、その両端に接続された、固定された磁化を有する2つの磁化固定部とで構成される。データは、磁化反転部の磁化として記憶される。2つの磁化固定部の磁化は、互いに略反平行となるように固定されている。磁化がこのように配置されると、磁気記録層に磁壁が導入される。
The second method is a method using a current-driven domain wall motion phenomenon. The magnetization reversal method using the current-driven domain wall motion phenomenon can solve the above-described problems of spin injection magnetization reversal. For example, Japanese Patent Application Laid-Open Nos. 2005-191032, 2006-73930, and 2006-270069 disclose MRAMs that use the current-driven domain wall motion phenomenon. In the most general configuration of an MRAM using a current-driven domain wall motion phenomenon, a ferromagnetic layer (often called a magnetic recording layer) that holds data is provided with a magnetization reversal unit having reversible magnetization and both ends thereof. It is comprised by the two magnetization fixed parts which have the fixed magnetization connected. The data is stored as the magnetization of the magnetization switching unit. The magnetizations of the two magnetization fixed portions are fixed so as to be substantially antiparallel to each other. When the magnetization is arranged in this way, a domain wall is introduced into the magnetic recording layer.
Physical Review Letters、vol.92、number 7、p.077205、(2004)で報告されているように、磁壁を貫通する方向に電流を流すと磁壁は伝導電子の方向に移動することから、磁気記録層に電流を流すことによりデータ書き込みが可能となる。電流駆動磁壁移動の発生の有無も電流密度に依存することから、スピン注入磁化反転と同様にスケーリング性があると言える。これに加えて、電流駆動磁壁移動を利用したMRAMのメモリセルでは、書き込み電流が絶縁層を流れることはなく、また書き込み電流経路と読み出し電流経路とは別となるため、スピン注入磁化反転で挙げられるような上述の問題は解決されることになる。
Physical Review Letters, vol. 92, number 7, p. As reported in 077205, (2004), when a current is passed in the direction penetrating the domain wall, the domain wall moves in the direction of conduction electrons, so that data can be written by passing a current through the magnetic recording layer. . Since the presence or absence of current-driven domain wall movement also depends on the current density, it can be said that there is scaling as with spin injection magnetization reversal. In addition, in an MRAM memory cell using current-driven domain wall motion, the write current does not flow through the insulating layer, and the write current path and the read current path are different from each other. The above-mentioned problems that can be solved will be solved.
しかしながら、電流駆動磁壁移動を利用したMRAMでは、書き込み電流の絶対値が比較的大きくなってしまうという課題がある。これ以下に書き込み電流を低減するためには、強磁性膜の幅を小さく、且つ、膜厚を薄くすればよい。しかしながら、膜厚を薄くすると書き込みに要する電流密度は更に上昇してしまうことが報告されている(例えば、Japanese Journal of Applied Physics、vol.45、No.5A、pp.3850-3853、(2006)参照)。また、強磁性膜の幅を100nm以下に小さくすることは、加工技術の点で大いなる困難を伴う。また、1×108[A/cm2]に近い電流密度を用いて書き込みを行う場合、エレクトロンマイグレーションや温度上昇の影響が懸念される。
However, the MRAM using current-driven domain wall motion has a problem that the absolute value of the write current becomes relatively large. In order to reduce the write current below this, the width of the ferromagnetic film may be reduced and the film thickness may be reduced. However, it has been reported that when the film thickness is reduced, the current density required for writing is further increased (for example, Japan Journal of Applied Physics, vol. 45, No. 5A, pp. 3850-3853, (2006)). reference). Moreover, reducing the width of the ferromagnetic film to 100 nm or less is accompanied by great difficulty in terms of processing technology. In addition, when writing is performed using a current density close to 1 × 10 8 [A / cm 2], there is a concern about the effects of electron migration and temperature rise.
書込み電流を低減する方法として磁壁移動素子に垂直磁化膜を利用することが提案されている。垂直磁化膜を使用することで面内磁化膜よりも低い電流でドメインウオールが駆動できることがシミュレーションで示されている。実際に、CoCrPt垂直磁化膜を用いた磁壁の電流駆動が報告されている。
It has been proposed to use a perpendicular magnetization film for the domain wall motion element as a method for reducing the write current. Simulations show that the domain wall can be driven with a lower current than the in-plane magnetization film by using the perpendicular magnetization film. Actually, domain wall current drive using a CoCrPt perpendicular magnetization film has been reported.
上述のように、書き込み電流の低減のために垂直磁化膜を有する磁壁移動素子を用いることが有効である。しかし、磁壁移動素子をメモリセルに適用しようとした場合、前述のように磁気記録層の2つの磁化固定部の磁化が互いに略反平行となるように固定される必要がある。そのため、これを実現するためには複雑な製造工程が必要となる。製造工程の複雑化は、製造コストの上昇を招く。
As described above, it is effective to use a domain wall motion element having a perpendicular magnetization film in order to reduce the write current. However, when an attempt is made to apply the domain wall motion element to a memory cell, it is necessary to fix the magnetizations of the two magnetization fixed portions of the magnetic recording layer so as to be substantially antiparallel to each other as described above. Therefore, a complicated manufacturing process is required to realize this. A complicated manufacturing process causes an increase in manufacturing cost.
本発明の目的は、書き込み電流が十分小さく、更に容易に製造することが可能な磁気抵抗効果素子、及び磁気ランダムアクセスメモリ及びその初期化方法を提供することにある。
An object of the present invention is to provide a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof that have a sufficiently small write current and can be easily manufactured.
本発明の磁気抵抗効果素子は、第1強磁性層と、非磁性層と、第2強磁性層とを具備する。第1強磁性層は、非磁性下地上に長手方向に長い形状を有し、その長手方向の一方の端部側に第1磁化固定部、他方の端部側に第2磁化固定部、及び、第1磁化固定部と第2磁化固定部との間に磁壁移動部をそれぞれ有する。非磁性層は、磁壁移動部上に設けられている。第2強磁性層は、非磁性層の上に設けられ、磁化が固定されている。第2強磁性層は、膜厚方向に磁気異方性を有する。第1磁化固定部及び第2磁化固定部は面内方向に磁気異方性を有し、磁壁移動部は膜厚方向に磁気異方性を有する。
The magnetoresistive element of the present invention includes a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer. The first ferromagnetic layer has a shape that is long in the longitudinal direction on the nonmagnetic underlayer, the first magnetization fixed portion on one end side in the longitudinal direction, the second magnetization fixed portion on the other end side, and In addition, a domain wall moving unit is provided between the first magnetization fixed unit and the second magnetization fixed unit. The nonmagnetic layer is provided on the domain wall moving part. The second ferromagnetic layer is provided on the nonmagnetic layer and has a fixed magnetization. The second ferromagnetic layer has magnetic anisotropy in the film thickness direction. The first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction, and the domain wall moving part has magnetic anisotropy in the film thickness direction.
本発明の磁気ランダムアクセスメモリは、行列状に配列された複数の磁気メモリセルと、複数の磁気メモリセルの各々に対する書き込み及び読み出しを制御する制御回路とを具備する。複数の磁気メモリセルの各々は、前述された磁気抵抗効果素子を含む。
The magnetic random access memory according to the present invention includes a plurality of magnetic memory cells arranged in a matrix and a control circuit that controls writing and reading to each of the plurality of magnetic memory cells. Each of the plurality of magnetic memory cells includes the magnetoresistive element described above.
本発明は、磁気ランダムアクセスメモリの初期化方法である。ここで、磁気ランダムアクセスメモリは、行列状に配列された複数の磁気メモリセルと、複数の磁気メモリセルの各々に対する書き込み及び読み出しを制御する制御回路とを具備する。ただし、複数の磁気メモリセルの各々は、磁気抵抗効果素子が、第1強磁性層と、非磁性層と、第2強磁性層とを具備する。第1強磁性層は、非磁性下地上に長手方向に長い形状を有し、その長手方向の一方の端部側に第1磁化固定部、他方の端部側に第2磁化固定部、及び、第1磁化固定部と第2磁化固定部との間に磁壁移動部をそれぞれ有する。非磁性層は、磁壁移動部上に設けられている。第2強磁性層は、非磁性層の上に設けられ、磁化が固定されている。第2強磁性層は、膜厚方向に磁気異方性を有する。第1磁化固定部及び第2磁化固定部は面内方向に磁気異方性を有し、磁壁移動部は膜厚方向に磁気異方性を有する。そして、磁気ランダムアクセスメモリの初期化方法は、第1シード層から第2シード層へ向かう方向の成分を有する第1外部磁界を複数の磁気メモリセルに印加するステップと、第1外部磁界を所定の速度で減少させるステップと、第1強磁性層の膜厚方向の成分を有する第2外部磁界を複数の磁気メモリセルに印加するステップとを具備する。又は、磁気ランダムアクセスメモリの初期化方法は、第1シード層及び第2シード層のいずれか一方から、第1強磁性層を介して、他方へ電流を流すステップと、電流を停止するステップとを具備する。
The present invention is a method for initializing a magnetic random access memory. Here, the magnetic random access memory includes a plurality of magnetic memory cells arranged in a matrix and a control circuit that controls writing and reading to each of the plurality of magnetic memory cells. However, in each of the plurality of magnetic memory cells, the magnetoresistive element includes a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer. The first ferromagnetic layer has a shape that is long in the longitudinal direction on the nonmagnetic underlayer, the first magnetization fixed portion on one end side in the longitudinal direction, the second magnetization fixed portion on the other end side, and In addition, a domain wall moving unit is provided between the first magnetization fixed unit and the second magnetization fixed unit. The nonmagnetic layer is provided on the domain wall moving part. The second ferromagnetic layer is provided on the nonmagnetic layer and has a fixed magnetization. The second ferromagnetic layer has magnetic anisotropy in the film thickness direction. The first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction, and the domain wall moving part has magnetic anisotropy in the film thickness direction. The method for initializing a magnetic random access memory includes a step of applying a first external magnetic field having a component in a direction from the first seed layer to the second seed layer to a plurality of magnetic memory cells; And a step of applying a second external magnetic field having a component in the film thickness direction of the first ferromagnetic layer to the plurality of magnetic memory cells. Alternatively, the initialization method of the magnetic random access memory includes a step of flowing a current from one of the first seed layer and the second seed layer to the other through the first ferromagnetic layer, and a step of stopping the current. It comprises.
本発明により、書き込み電流が十分小さく、更に容易に製造することが可能な磁気抵抗効果素子、及び磁気ランダムアクセスメモリ及びその初期化方法を提供することができる。
According to the present invention, it is possible to provide a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof that have a sufficiently small write current and can be easily manufactured.
以下、本発明の磁気抵抗効果素子、及び磁気ランダムアクセスメモリ及びその初期化方法の実施の形態に関して、添付図面を参照して説明する。
Hereinafter, embodiments of a magnetoresistive effect element, a magnetic random access memory, and an initialization method thereof according to the present invention will be described with reference to the accompanying drawings.
本実施の形態に係る磁気ランダムアクセスメモリは、アレイ状に配置された複数のメモリセルを有している。各メモリセルは磁気抵抗効果素子を有している。以下、磁気抵抗効果素子(メモリセル)の構成について説明する。
The magnetic random access memory according to the present embodiment has a plurality of memory cells arranged in an array. Each memory cell has a magnetoresistive element. Hereinafter, the configuration of the magnetoresistive effect element (memory cell) will be described.
(磁気抵抗効果素子の構成)
図1Aは、本実施の形態に係る磁気抵抗効果素子の主要な部分の構造を示す平面図である。図1Bは、本実施の形態に係る磁気抵抗効果素子の主要な部分の構造を示す断面図(図1AのAA’面)である。この磁気抵抗効果素子60は、第1強磁性層10と、スペーサ層20と、第2強磁性層30とを備えている。第1強磁性層10は、x軸方向に延伸して設けられている。第2強磁性層30は、第1強磁性層10の概ね中央部の上方(z軸方向)に、スペーサ層20を介して設けられている。スペーサ層20は、第1強磁性層10と第2強磁性層30に挟まれている。第1強磁性層10及び第2強磁性層30は、強磁性体で形成される。スペーサ層20は、非磁性体であり、好適には、絶縁体で形成される。この場合、第1強磁性層10、スペーサ層20、第2強磁性層30によって磁気トンネル接合(MTJ)が形成される。また、スペーサ層20は絶縁体から構成されることが望ましいが、非磁性の導体や半導体により構成されても構わない。 (Configuration of magnetoresistive element)
FIG. 1A is a plan view showing the structure of the main part of the magnetoresistive effect element according to the present embodiment. FIG. 1B is a cross-sectional view (AA ′ plane of FIG. 1A) showing the structure of the main part of the magnetoresistive effect element according to the present exemplary embodiment. Themagnetoresistive effect element 60 includes a first ferromagnetic layer 10, a spacer layer 20, and a second ferromagnetic layer 30. The first ferromagnetic layer 10 is provided extending in the x-axis direction. The second ferromagnetic layer 30 is provided approximately above the central portion (z-axis direction) of the first ferromagnetic layer 10 via the spacer layer 20. The spacer layer 20 is sandwiched between the first ferromagnetic layer 10 and the second ferromagnetic layer 30. The first ferromagnetic layer 10 and the second ferromagnetic layer 30 are formed of a ferromagnetic material. The spacer layer 20 is a nonmagnetic material, and is preferably formed of an insulator. In this case, a magnetic tunnel junction (MTJ) is formed by the first ferromagnetic layer 10, the spacer layer 20, and the second ferromagnetic layer 30. The spacer layer 20 is preferably made of an insulator, but may be made of a nonmagnetic conductor or semiconductor.
図1Aは、本実施の形態に係る磁気抵抗効果素子の主要な部分の構造を示す平面図である。図1Bは、本実施の形態に係る磁気抵抗効果素子の主要な部分の構造を示す断面図(図1AのAA’面)である。この磁気抵抗効果素子60は、第1強磁性層10と、スペーサ層20と、第2強磁性層30とを備えている。第1強磁性層10は、x軸方向に延伸して設けられている。第2強磁性層30は、第1強磁性層10の概ね中央部の上方(z軸方向)に、スペーサ層20を介して設けられている。スペーサ層20は、第1強磁性層10と第2強磁性層30に挟まれている。第1強磁性層10及び第2強磁性層30は、強磁性体で形成される。スペーサ層20は、非磁性体であり、好適には、絶縁体で形成される。この場合、第1強磁性層10、スペーサ層20、第2強磁性層30によって磁気トンネル接合(MTJ)が形成される。また、スペーサ層20は絶縁体から構成されることが望ましいが、非磁性の導体や半導体により構成されても構わない。 (Configuration of magnetoresistive element)
FIG. 1A is a plan view showing the structure of the main part of the magnetoresistive effect element according to the present embodiment. FIG. 1B is a cross-sectional view (AA ′ plane of FIG. 1A) showing the structure of the main part of the magnetoresistive effect element according to the present exemplary embodiment. The
第1強磁性層10のスペーサ層20が接合されている面と反対側の面には、第1シード層40aと第2シード層40bが接合されている。第1シード層40aは、第1強磁性層10の一方の端の近傍に接合され、第2シード層40bは、第1強磁性層10の他方の端の近傍に接合されている。
The first seed layer 40a and the second seed layer 40b are joined to the surface of the first ferromagnetic layer 10 opposite to the surface to which the spacer layer 20 is joined. The first seed layer 40 a is joined in the vicinity of one end of the first ferromagnetic layer 10, and the second seed layer 40 b is joined in the vicinity of the other end of the first ferromagnetic layer 10.
図2は、図1Bの磁気抵抗効果素子における磁気異方性を示す断面図である。この図では、第1強磁性層10、第2強磁性層30の磁気異方性の向きが矢印で示されている。第2強磁性層30は、垂直磁化膜が使用される。第1強磁性層は、シード層40a、40bに接する部分では面内方向に磁化を持ち、それ以外の部分では膜面垂直方向に磁化を持つ。第2強磁性層30の磁化は実質的に膜面垂直方向で一方向に固定される。一方、第1強磁性層10のうちの、少なくとも第2強磁性層30と対向する部分の磁化は反転可能である。当該部分の磁化は、記憶されるデータに応じて、第2強磁性層30の磁化に対して平行又は反平行の方向に向けられる。第2強磁性層30については、膜厚方向に磁気異方性を実現させるために、垂直磁気異方性を有する材料で形成された単層膜、または複数の膜で形成された積層体により形成されることが好ましい。この場合の積層体とは、複数の強磁性体膜で構成された積層体でもよいし、強磁性体膜と非磁性体膜とからなる積層体でもよい。
FIG. 2 is a cross-sectional view showing magnetic anisotropy in the magnetoresistive element of FIG. 1B. In this figure, the directions of magnetic anisotropy of the first ferromagnetic layer 10 and the second ferromagnetic layer 30 are indicated by arrows. As the second ferromagnetic layer 30, a perpendicular magnetization film is used. The first ferromagnetic layer has magnetization in the in-plane direction at portions in contact with the seed layers 40a and 40b, and has magnetization in the direction perpendicular to the film surface at the other portions. The magnetization of the second ferromagnetic layer 30 is fixed in one direction substantially in the direction perpendicular to the film surface. On the other hand, the magnetization of at least a portion of the first ferromagnetic layer 10 facing the second ferromagnetic layer 30 can be reversed. The magnetization of the portion is directed in a direction parallel or antiparallel to the magnetization of the second ferromagnetic layer 30 according to stored data. The second ferromagnetic layer 30 is made of a single layer film formed of a material having perpendicular magnetic anisotropy or a laminate formed of a plurality of films in order to realize magnetic anisotropy in the film thickness direction. Preferably it is formed. The laminated body in this case may be a laminated body composed of a plurality of ferromagnetic films or a laminated body composed of a ferromagnetic film and a nonmagnetic film.
第1強磁性10の材料としては、シード層40a、40b上に積層したときに面内方向の磁化を持ち、非磁性下地50上に積層したときに垂直方向の磁化をもつような組み合わせの材料を選択する。例えば、Crは体心立方構造(bcc)の金属である。この上に六方最密充填構造(hcp)のCo合金を成膜すると磁化容易面のc軸辺はCrの磁化容易面(110)の長さに良い整合性があり、Co合金がCrの(110)の上に横たわるようにエピタキシャル成長して面内配向しやすいために、面内磁化膜となる。Cr以外の体心立方構造の元素として例えばMn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seなどの周期律表第4周期元素あるいは、これらとCrの合金膜を用いても良い。
As the material of the first ferromagnet 10, a combination of materials that have in-plane magnetization when stacked on the seed layers 40 a and 40 b and have vertical magnetization when stacked on the nonmagnetic underlayer 50. Select. For example, Cr is a body-centered cubic (bcc) metal. When a Co alloy having a hexagonal close-packed structure (hcp) is formed thereon, the c-axis side of the easy magnetization surface has good consistency with the length of the easy magnetization surface (110) of Cr, and the Co alloy is made of Cr ( 110), it is epitaxially grown so as to lie on the surface, and is thus in-plane oriented. For example, a fourth periodic element of the periodic table such as Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, or Se or an alloy film of these and Cr is used as an element having a body-centered cubic structure other than Cr. Also good.
一方、Co合金と同じ六方最密充填構造(hcp)を持つ下地上にCo合金を成膜した場合、Co合金膜は非磁性下地50の原子配列の影響を受けて(0001)面を下地と平行にした多結晶配向膜が成長し、磁化容易面が膜厚方向に向くため、垂直磁化膜となる。このような下地膜としてTi、TiCr、Ta、Ru、非磁性CoCr、Ge、Si、C、Au、Al、Pt、Ti/Ge、非磁性CoCr/TiCr、非磁性CoCrRu/TiCr、Pt/Co3O4、Pt/Ti、Pd/Ti、Ta/MgO、CoCrRu/MgO、Ru/Ru-oxide、Ru/Taなどを単独あるいはこれらを組み合わせた積層膜が用いられる。
On the other hand, when a Co alloy is formed on a base having the same hexagonal close-packed structure (hcp) as the Co alloy, the Co alloy film is affected by the atomic arrangement of the nonmagnetic base 50 and the (0001) plane is the base. Since the parallel polycrystalline alignment film grows and the easy magnetization surface faces in the film thickness direction, it becomes a perpendicular magnetization film. As such a base film, Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr, Pt / Co3O4, A laminated film in which Pt / Ti, Pd / Ti, Ta / MgO, CoCrRu / MgO, Ru / Ru-oxide, Ru / Ta, or the like is used alone or in combination is used.
すなわち、第1強磁性10の材料として六方最密充填構造(hcp)のCo合金を用いる場合、シード層40a、40bの材料及び非磁性下地50の材料は以下のようになる。シード層40a、40bの材料としては、体心立方構造(bcc)のCrや、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seなどの周期律表第4周期元素、Crと前述の周期律表第4周期元素との合金である。一方、非磁性下地50の材料としては、Ti、TiCr、Ta、Ru、非磁性CoCr、Ge、Si、C、Au、Al、Pt、Ti/Ge、非磁性CoCr/TiCr、非磁性CoCrRu/TiCr、Pt/Co3O4、Pt/Ti、Pd/Ti、Ta/MgO、CoCrRu/MgO、Ru/Ru-oxide、Ru/Ta、又はこれらの組み合わせである。
That is, when a hexagonal close-packed structure (hcp) Co alloy is used as the first ferromagnetic material 10, the material of the seed layers 40a and 40b and the material of the nonmagnetic underlayer 50 are as follows. Examples of the material of the seed layers 40a and 40b include body-centered cubic (bcc) Cr, periodic table fourth periodic elements such as Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se. It is an alloy of Cr and the above-mentioned periodic table fourth periodic element. On the other hand, as the material of the nonmagnetic underlayer 50, Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr Pt / Co 3 O 4 , Pt / Ti, Pd / Ti, Ta / MgO, CoCrRu / MgO, Ru / Ru-oxide, Ru / Ta, or a combination thereof.
シード層40a、40b及び強磁性層10の材料は、これらの材料の格子定数が近くなるように材料あるいは組成を調整することが好ましい。また、下地膜(非磁性下地50)がない場合、例えばSi酸化膜上にCo合金膜を成膜した場合でも、磁化容易面は膜厚方向に向くが結晶配向を膜厚方向に均一に揃えるためには上述したような下地膜があったほうがより好ましい。第1強磁性層10、第1シード層40a及び第2シード層40bが上述のような磁化配置にある場合、第1強磁性層10のうちの第2強磁性層30と対向する領域の磁化方向に応じて、第1強磁性層10内には磁壁が形成される。
The materials of the seed layers 40a and 40b and the ferromagnetic layer 10 are preferably adjusted so that the lattice constants of these materials are close to each other. In addition, when there is no base film (nonmagnetic base 50), for example, even when a Co alloy film is formed on a Si oxide film, the easy magnetization surface is oriented in the film thickness direction, but the crystal orientation is uniformly aligned in the film thickness direction. Therefore, it is more preferable to have the base film as described above. When the first ferromagnetic layer 10, the first seed layer 40 a, and the second seed layer 40 b are in the magnetization arrangement as described above, the magnetization of the region of the first ferromagnetic layer 10 that faces the second ferromagnetic layer 30. Depending on the direction, a domain wall is formed in the first ferromagnetic layer 10.
第1強磁性層10の両端の面内磁化領域10a、10bの磁化方向は、x軸方向に平行な同一方向に向けられている。このことは、MRAMの製造工程を容易にするために有効である。本実施例では、製造工程において面内磁化領域10a、10bの磁化が向けられるべき方向が同一であるから、外部磁界の印加により容易に初期化が可能である。図2の例では、面内磁化領域10a、10bの磁化は、いずれも、+x方向(図2では右方向)に向けられる。
The magnetization directions of the in- plane magnetization regions 10a and 10b at both ends of the first ferromagnetic layer 10 are oriented in the same direction parallel to the x-axis direction. This is effective for facilitating the manufacturing process of the MRAM. In the present embodiment, since the directions in which the magnetizations of the in- plane magnetization regions 10a and 10b should be directed in the manufacturing process are the same, the initialization can be easily performed by applying an external magnetic field. In the example of FIG. 2, the magnetizations of the in- plane magnetization regions 10a and 10b are all directed in the + x direction (right direction in FIG. 2).
第1強磁性層10のうちの第1シード層と接合されている部分である面内磁化領域10aは、磁化の反転が起こらない。このため、以下では、面内磁化領域10aを第1磁化固定部10aと記載することがある。同様に、第1強磁性層10のうちの第2シード層40bと接合されている部分である面内磁化領域10bは、第2磁化固定部10bと記載することがある。第1磁化固定部10aと第2磁化固定部10bの間の部分である垂直磁化領域10cは、磁壁が移動することができる。このため、以下では、垂直磁化領域10cを磁壁移動部10cと記載することがある。
In the in-plane magnetization region 10a, which is a portion joined to the first seed layer in the first ferromagnetic layer 10, no magnetization reversal occurs. For this reason, hereinafter, the in-plane magnetization region 10a may be referred to as the first magnetization fixed portion 10a. Similarly, the in-plane magnetization region 10b that is a portion joined to the second seed layer 40b in the first ferromagnetic layer 10 may be referred to as a second magnetization fixed portion 10b. In the perpendicular magnetization region 10c, which is a portion between the first magnetization fixed portion 10a and the second magnetization fixed portion 10b, the domain wall can move. For this reason, hereinafter, the perpendicular magnetization region 10c may be referred to as a domain wall motion unit 10c.
第2強磁性層30、第1シード層40a、第2シード層40bは、外部の異なる配線(図示されず)に電気的に接続される。これから理解されるように、磁気抵抗効果素子60は3端子素子である。図1A、図1B及び図2には示されていないが、配線との電気的接続を得るための電極層を、第2強磁性層30、第1シード層40a、第2シード層40bのそれぞれに接合させて設けることが好ましい。
The second ferromagnetic layer 30, the first seed layer 40a, and the second seed layer 40b are electrically connected to different external wirings (not shown). As will be understood from this, the magnetoresistive element 60 is a three-terminal element. Although not shown in FIG. 1A, FIG. 1B, and FIG. 2, the electrode layers for obtaining electrical connection with the wiring are respectively the second ferromagnetic layer 30, the first seed layer 40a, and the second seed layer 40b. It is preferable to be joined to each other.
スペーサ層20は、絶縁体から構成されることが望ましい。スペーサ層20の材料としては、具体的にはMg-O、Al-O、Al-N、Ni-O、Hf-O、Ti-O、SrTiO3などが使用され得る。ただし、スペーサ層20として半導体や金属材料を用いても本発明は実施できることに留意されたい。スペーサ層20として使用され得る半導体や金属材料としては、具体的にはCr、Al、Cu、Znなど挙げられる。
The spacer layer 20 is preferably made of an insulator. Specifically, Mg—O, Al—O, Al—N, Ni—O, Hf—O, Ti—O, SrTiO 3, etc. can be used as the material of the spacer layer 20. However, it should be noted that the present invention can be implemented even if a semiconductor or a metal material is used for the spacer layer 20. Specific examples of semiconductors and metal materials that can be used as the spacer layer 20 include Cr, Al, Cu, and Zn.
(初期化方法)
次に、本実施の形態に係る磁気抵抗効果素子60の初期化方法について説明する。図3A~図3C及び図4A~図4Cは、本実施の形態に係る磁気抵抗効果素子の初期化方法を説明する断面図である。本磁気抵抗効果素子60では、第1強磁性層10に磁壁を導入する必要があり、図3A~図3C及び図4A~図4Cは、その磁壁導入過程を示している。なお、図3A~図3C及び図4A~図4Cは、第1強磁性層10、第1シード層40a、及び第2シード層40bのみを示している。 (Initialization method)
Next, a method for initializing themagnetoresistive effect element 60 according to the present embodiment will be described. 3A to 3C and FIGS. 4A to 4C are cross-sectional views illustrating a method for initializing the magnetoresistive effect element according to the present embodiment. In the magnetoresistive effect element 60, it is necessary to introduce a domain wall into the first ferromagnetic layer 10, and FIGS. 3A to 3C and FIGS. 4A to 4C show the domain wall introduction process. 3A to 3C and FIGS. 4A to 4C show only the first ferromagnetic layer 10, the first seed layer 40a, and the second seed layer 40b.
次に、本実施の形態に係る磁気抵抗効果素子60の初期化方法について説明する。図3A~図3C及び図4A~図4Cは、本実施の形態に係る磁気抵抗効果素子の初期化方法を説明する断面図である。本磁気抵抗効果素子60では、第1強磁性層10に磁壁を導入する必要があり、図3A~図3C及び図4A~図4Cは、その磁壁導入過程を示している。なお、図3A~図3C及び図4A~図4Cは、第1強磁性層10、第1シード層40a、及び第2シード層40bのみを示している。 (Initialization method)
Next, a method for initializing the
第1強磁性層10に磁壁を導入するために、まず初めに磁気抵抗効果素子60に一様かつ十分大きな外部磁界が(第1強磁性層10の長手方向である)x軸方向に略平行方向に印加される。このとき、図3Aに示されるように、全ての磁気モーメントが外部磁界の方向に揃い飽和した状態となる。次に、この状態から外部磁界を減少させる。外部磁界の減少の速度は適度に遅いことが好ましい。外部磁界の減少を開始すると、磁化の緩和が始まる。図3Bに示されるように、第1強磁性層10の両端部以外はz軸方向の磁気異方性を有するため、初めに第1強磁性層10の第1シード層40a、第2シード層40bとの接続面付近の磁化が、z軸方向に回転を始める。この回転を始めた磁化は膜厚方向の磁化を有する磁区を形成し、この磁区が第1強磁性層10の中で成長する。ここで、図3Cに示されるように、第1強磁性層10の中で成長する二つの磁区は互いに反平行方向の磁化を有する。従って、図3Cに示されるように、二つの磁区が成長して出会ったとき、そこに磁壁が形成される。以上が本実施の形態における磁気抵抗効果素子60の第1の初期化過程である。
In order to introduce the domain wall into the first ferromagnetic layer 10, first, a uniform and sufficiently large external magnetic field is applied to the magnetoresistive element 60 substantially parallel to the x-axis direction (which is the longitudinal direction of the first ferromagnetic layer 10). Applied in the direction. At this time, as shown in FIG. 3A, all the magnetic moments are aligned and saturated in the direction of the external magnetic field. Next, the external magnetic field is reduced from this state. The rate of decrease of the external magnetic field is preferably moderately slow. When the external magnetic field starts to decrease, magnetization relaxation begins. As shown in FIG. 3B, since the first ferromagnetic layer 10 has magnetic anisotropy in the z-axis direction except for both end portions, first the first seed layer 40a and the second seed layer of the first ferromagnetic layer 10 are first used. Magnetization near the connection surface with 40b starts to rotate in the z-axis direction. The magnetization that has begun to rotate forms a magnetic domain having a magnetization in the film thickness direction, and this magnetic domain grows in the first ferromagnetic layer 10. Here, as shown in FIG. 3C, the two magnetic domains grown in the first ferromagnetic layer 10 have magnetizations in antiparallel directions. Therefore, as shown in FIG. 3C, when two magnetic domains grow and meet, a domain wall is formed there. The above is the first initialization process of the magnetoresistive element 60 in the present embodiment.
第1の初期化過程によって第1強磁性層10に導入された磁壁は、図4A~図4Cに示されるような第2の初期化過程によって所望の位置に移動される。図4Aは第1の初期化過程が終了した時点での磁化状態の例である。図4Aの状態において、第1強磁性層10の膜厚方向(即ち、z軸方向)に磁界が印加される。この磁界は適度に小さいことが好ましい。磁界は、+z方向、-z方向のいずれに印加されてもよい。+z方向に磁界を印加する場合、図4Aにおいて第1強磁性層10の中央付近に形成されていた磁壁は、図4Bに示されているように、右側に(即ち、第2シード層40bの近傍に)移動する。逆に、-z方向に磁界が印加された場合、第1強磁性層10の中央付近に形成されていた磁壁は、図4Cに示されているように、左側に(即ち、第1シード層40aの近傍に)移動する。図4Bと図4Cは、それぞれ、異なるデータを記憶した状態に対応している。このように、図4Aの状態においてz軸方向(+z方向又は-z方向)に小さな外部磁界を印加することにより、任意のデータを記憶した状態への初期化が可能である。
The domain wall introduced into the first ferromagnetic layer 10 by the first initialization process is moved to a desired position by the second initialization process as shown in FIGS. 4A to 4C. FIG. 4A shows an example of the magnetization state at the time when the first initialization process is completed. In the state of FIG. 4A, a magnetic field is applied in the film thickness direction (that is, the z-axis direction) of the first ferromagnetic layer 10. This magnetic field is preferably reasonably small. The magnetic field may be applied in either the + z direction or the −z direction. When a magnetic field is applied in the + z direction, the domain wall formed near the center of the first ferromagnetic layer 10 in FIG. 4A is on the right side (ie, the second seed layer 40b) as shown in FIG. 4B. Move to the vicinity). Conversely, when a magnetic field is applied in the −z direction, the domain wall formed near the center of the first ferromagnetic layer 10 is on the left side (ie, the first seed layer as shown in FIG. 4C). Move to the vicinity of 40a). 4B and 4C correspond to states in which different data are stored, respectively. As described above, by applying a small external magnetic field in the z-axis direction (+ z direction or −z direction) in the state of FIG. 4A, initialization to a state in which arbitrary data is stored is possible.
なお、ここでは第1の初期化過程でx軸方向の磁界を印加する例を示したが、印加される磁界は、y成分(即ち、z軸方向を除いたx軸方向に平行でない成分)を有していてもよい。また、ここでは第2の初期化過程でz軸方向の磁界を印加する例を示したが、印加される磁界は、x成分、y成分(即ち、z軸方向に平行でない成分)を有していてもよい。また、図5A及び図5Bを用いて後述されるように、外部磁界を用いることなく、書き込み電流を第1強磁性層10に流すことによってメモリ状態を初期化してもよい。
Although an example in which a magnetic field in the x-axis direction is applied in the first initialization process is shown here, the applied magnetic field is a y component (that is, a component that is not parallel to the x-axis direction excluding the z-axis direction). You may have. Although an example in which a magnetic field in the z-axis direction is applied in the second initialization process is shown here, the applied magnetic field has an x component and a y component (that is, a component that is not parallel to the z-axis direction). It may be. Further, as described later with reference to FIGS. 5A and 5B, the memory state may be initialized by passing a write current through the first ferromagnetic layer 10 without using an external magnetic field.
(データ書き込み)
次に、本実施の形態に係る磁気抵抗効果素子60へのデータ書き込みの方法について説明する。図5Aは、本実施の形態に係る磁気抵抗効果素子がデータを記憶している状態(データ「0」を記憶している「0」状態)での第1強磁性層の磁化状態を示すx-z断面図である。図5Bは、本実施の形態に係る磁気抵抗効果素子が他のデータを記憶している状態(データ「1」を記憶している「1」状態)での第1強磁性層の磁化状態を示すx-z断面図である。なお、図中、第2強磁性層30及びスペーサ層20は省略されている。ここで、第1強磁性層10の中央部(磁壁移動部10c)の磁化が-z方向に向けられている状態が「0」状態と定義される(図5A参照)。一方、第1強磁性層10の中央部(磁壁移動部10c)の磁化が+z方向に向けられている状態が「1」状態と定義される(図5B参照)。ただし、磁化方向と記憶されるデータに関する定義が上述の場合に限られないということは言うまでもない。 (Data writing)
Next, a method of writing data to themagnetoresistive effect element 60 according to the present embodiment will be described. FIG. 5A shows the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive effect element according to the present embodiment stores data (“0” state storing data “0”). FIG. FIG. 5B shows the magnetization state of the first ferromagnetic layer in a state where the magnetoresistive element according to the present embodiment stores other data (the “1” state storing data “1”). It is xz sectional drawing shown. In the drawing, the second ferromagnetic layer 30 and the spacer layer 20 are omitted. Here, a state in which the magnetization of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is directed in the −z direction is defined as a “0” state (see FIG. 5A). On the other hand, a state in which the magnetization of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is directed in the + z direction is defined as a “1” state (see FIG. 5B). However, it goes without saying that the definition regarding the magnetization direction and stored data is not limited to the above case.
次に、本実施の形態に係る磁気抵抗効果素子60へのデータ書き込みの方法について説明する。図5Aは、本実施の形態に係る磁気抵抗効果素子がデータを記憶している状態(データ「0」を記憶している「0」状態)での第1強磁性層の磁化状態を示すx-z断面図である。図5Bは、本実施の形態に係る磁気抵抗効果素子が他のデータを記憶している状態(データ「1」を記憶している「1」状態)での第1強磁性層の磁化状態を示すx-z断面図である。なお、図中、第2強磁性層30及びスペーサ層20は省略されている。ここで、第1強磁性層10の中央部(磁壁移動部10c)の磁化が-z方向に向けられている状態が「0」状態と定義される(図5A参照)。一方、第1強磁性層10の中央部(磁壁移動部10c)の磁化が+z方向に向けられている状態が「1」状態と定義される(図5B参照)。ただし、磁化方向と記憶されるデータに関する定義が上述の場合に限られないということは言うまでもない。 (Data writing)
Next, a method of writing data to the
磁気抵抗効果素子60が上述のような磁化状態を有するとき、「0」状態では磁壁が第1強磁性層10の右側(すなわち、第2シード層40bの近傍)に形成される。一方、「1」状態では磁壁が第1強磁性層10の左側(すなわち、第1シード層40aの近傍)に形成される。本実施の形態では、第1強磁性層10に書き込み電流を面内方向に流すことによってデータ書き込みが行われる。この書き込み電流の向きを適切に選択することにより、磁壁を第1強磁性層10内で所望の位置に移動させ、これにより、データ「0」及びデータ「1」を書き分けることができる。
When the magnetoresistive effect element 60 has the magnetization state as described above, in the “0” state, the domain wall is formed on the right side of the first ferromagnetic layer 10 (that is, in the vicinity of the second seed layer 40b). On the other hand, in the “1” state, the domain wall is formed on the left side of the first ferromagnetic layer 10 (that is, in the vicinity of the first seed layer 40a). In the present embodiment, data writing is performed by passing a write current through the first ferromagnetic layer 10 in the in-plane direction. By appropriately selecting the direction of the write current, the domain wall is moved to a desired position in the first ferromagnetic layer 10, and thereby, data “0” and data “1” can be written separately.
例えば、磁気抵抗効果素子60が図5Aの「0」状態にあるときに、+x方向(図5Aの右方向)に書き込み電流を流すと、-x方向(図5Aの左方向)に伝導電子の流れが発生する。第1強磁性層10の右側にあった磁壁は、伝導電子によるスピントランスファートルクを受けて伝導電子と同じ方向、即ち、第1強磁性層10の左側に移動する。それにより、「1」状態へデータが書き込まれる。同様に、磁気抵抗効果素子60が図5Bの「1」状態にあるときに、-x方向(図5Bの左方向)に書き込み電流を流すと、+x方向(図5Bの右方向)に伝導電子の流れが発生する。第1強磁性層10の左側にあった磁壁は、伝導電子によるスピントランスファートルクを受けて伝導電子と同じ方向、即ち、第1強磁性層10の右側に移動する。それにより、「1」状態へデータが書き込まれる。このようにして「0」状態から「1」状態へ、及び「1」状態から「0」状態への書き込みができる。
For example, when the magnetoresistive element 60 is in the “0” state of FIG. 5A, if a write current is passed in the + x direction (right direction in FIG. 5A), conduction electrons in the −x direction (left direction in FIG. 5A). Flow occurs. The domain wall on the right side of the first ferromagnetic layer 10 receives the spin transfer torque due to the conduction electrons and moves to the same direction as the conduction electrons, that is, to the left side of the first ferromagnetic layer 10. As a result, data is written to the “1” state. Similarly, when a write current is passed in the −x direction (left direction in FIG. 5B) when the magnetoresistive element 60 is in the “1” state of FIG. 5B, conduction electrons in the + x direction (right direction in FIG. 5B). Flow occurs. The domain wall on the left side of the first ferromagnetic layer 10 receives the spin transfer torque due to the conduction electrons and moves in the same direction as the conduction electrons, that is, on the right side of the first ferromagnetic layer 10. As a result, data is written to the “1” state. In this way, writing can be performed from the “0” state to the “1” state and from the “1” state to the “0” state.
また、磁気抵抗効果素子60が図5Aの「0」状態にあるときに-x方向に書き込み電流を流した場合、つまりデータ「0」を書き込んだ場合、磁壁は+x方向に移動しようとする。しかしながら、第1強磁性層10のうちの第2磁化固定部10bの領域は面内方向に異方性を有するため、実質的にz軸方向に大きな磁化成分を有することはできず、したがって、第1強磁性層10のうちの第2磁化固定部10bの領域での磁壁移動は起こらない。すなわち、「0」状態にあるときにデータ「0」を書き込むオーバーライトが可能である。或いは、磁壁移動により、第1強磁性層10の一部分の磁化が+z方向に反転を起こしても、書き込み電流が切られたときに当該部分の磁化が再び元の状態、すなわち+x方向を向く状態に回復するように設計すれば、上述のようなオーバーライトは可能となる。磁気抵抗効果素子60が図5Bの「1」状態にあるときに+x方向に書き込み電流を流した場合、つまりデータ「1」を書き込んだ場合も同様である。第1磁化固定部10aが面内方向の磁気異方性を有することにより、磁気抵抗効果素子60が「1」状態にあるときにデータ「1」を書き込むオーバーライトが可能である。
Further, when a write current is passed in the −x direction when the magnetoresistive effect element 60 is in the “0” state of FIG. 5A, that is, when data “0” is written, the domain wall tends to move in the + x direction. However, since the region of the second magnetization fixed portion 10b of the first ferromagnetic layer 10 has anisotropy in the in-plane direction, it cannot have a large magnetization component substantially in the z-axis direction. The domain wall motion does not occur in the region of the second magnetization fixed portion 10b of the first ferromagnetic layer 10. That is, it is possible to overwrite the data “0” when it is in the “0” state. Alternatively, even if the magnetization of a part of the first ferromagnetic layer 10 is reversed in the + z direction due to the domain wall movement, the magnetization of the part is again directed to the original state, that is, the + x direction when the write current is turned off. If designed to recover to the above, overwriting as described above becomes possible. The same applies when a write current is passed in the + x direction when the magnetoresistive effect element 60 is in the “1” state of FIG. 5B, that is, when data “1” is written. Since the first magnetization fixed portion 10a has magnetic anisotropy in the in-plane direction, it is possible to overwrite the data “1” when the magnetoresistive element 60 is in the “1” state.
本実施の形態において、第1磁化固定部10a及び第2磁化固定部10bの膜厚をより薄くすることは、面内方向に異方性を持たせ、安定的に面内磁化を維持する点でより好ましい。また、磁化移動部10cの膜厚をより厚くすることは、垂直方向に異方性を持たせ、安定的に垂直磁化を維持する点でより好ましい。したがって、第1磁化固定部10a及び第2磁化固定部10bの膜厚を、磁化移動部10cの膜厚に対して薄くすることがより好ましい。
In the present embodiment, reducing the film thickness of the first magnetization fixed portion 10a and the second magnetization fixed portion 10b provides anisotropy in the in-plane direction and stably maintains the in-plane magnetization. And more preferable. Further, it is more preferable to increase the thickness of the magnetization moving part 10c from the viewpoint of providing anisotropy in the vertical direction and stably maintaining the perpendicular magnetization. Therefore, it is more preferable to make the film thickness of the first magnetization fixed part 10a and the second magnetization fixed part 10b thinner than the film thickness of the magnetization moving part 10c.
(データ読み出し)
次に、本実施の形態に係る磁気抵抗効果素子60からの情報の読み出しについて説明する。これまでに述べたように、本実施の形態では、第1強磁性層10の磁化方向としてデータが記憶される一方で、第1強磁性層10の中央部(磁壁移動部10c)がスペーサ層20を介して第2強磁性層30に接合されている。磁気抵抗効果素子60では、データ読み出しに磁気抵抗効果によるMTJの抵抗値の変化が利用される。すなわち、第1強磁性層10と第2強磁性層30との間で読み出し電流を流すことにより、第1強磁性層10に記憶されたデータを読み出すことができる。 (Data read)
Next, reading of information from themagnetoresistive effect element 60 according to the present exemplary embodiment will be described. As described above, in the present embodiment, data is stored as the magnetization direction of the first ferromagnetic layer 10, while the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 is the spacer layer. It is joined to the second ferromagnetic layer 30 via 20. In the magnetoresistive effect element 60, a change in the MTJ resistance value due to the magnetoresistive effect is used for data reading. In other words, the data stored in the first ferromagnetic layer 10 can be read by passing a read current between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
次に、本実施の形態に係る磁気抵抗効果素子60からの情報の読み出しについて説明する。これまでに述べたように、本実施の形態では、第1強磁性層10の磁化方向としてデータが記憶される一方で、第1強磁性層10の中央部(磁壁移動部10c)がスペーサ層20を介して第2強磁性層30に接合されている。磁気抵抗効果素子60では、データ読み出しに磁気抵抗効果によるMTJの抵抗値の変化が利用される。すなわち、第1強磁性層10と第2強磁性層30との間で読み出し電流を流すことにより、第1強磁性層10に記憶されたデータを読み出すことができる。 (Data read)
Next, reading of information from the
図6A及び図6Bは、それぞれ本実施の形態に係る磁気抵抗効果素子における「0」状態及び「1」状態の各構成における磁化方向を示す断面図である。例えば、図6Aのように第1強磁性層10の中央部(磁壁移動部10c)の磁化の向きと第2強磁性層30の磁化の向きとの関係が平行のとき(即ち、データ「0」が記憶されているとき)には磁気抵抗効果素子60に形成されるMTJの抵抗値が相対的に低くなる。一方、図6Bのように第1強磁性層10の中央部の磁化の向きと第2強磁性層30の磁化の向きが反平行のとき(即ち、データ「1」が記憶されているとき)には、MTJの抵抗値が相対的に高くなる。そのMTJの抵抗値を、電流信号、又は電圧信号として読み出すことにより、第1強磁性層10に記憶されているデータを判別することができる。
6A and 6B are cross-sectional views showing the magnetization directions in the respective configurations of the “0” state and the “1” state in the magnetoresistive effect element according to the present embodiment. For example, as shown in FIG. 6A, when the relationship between the magnetization direction of the central portion (domain wall moving portion 10c) of the first ferromagnetic layer 10 and the magnetization direction of the second ferromagnetic layer 30 is parallel (that is, data “0”). ”Is stored), the resistance value of the MTJ formed in the magnetoresistive effect element 60 is relatively low. On the other hand, when the magnetization direction of the central portion of the first ferromagnetic layer 10 and the magnetization direction of the second ferromagnetic layer 30 are antiparallel as shown in FIG. 6B (that is, when data “1” is stored). The resistance value of MTJ becomes relatively high. The data stored in the first ferromagnetic layer 10 can be determined by reading the resistance value of the MTJ as a current signal or a voltage signal.
(本実施例の磁気抵抗効果素子の技術的優位性)
本実施の形態に係る磁気抵抗効果素子60を使用することにより、書き込み電流が低減され、さらにスケーリング性に優れた磁気ランダムアクセスメモリを容易な製造プロセスで提供することができる。これは、第1強磁性層10における磁壁移動に関わる部分(磁壁移動部10c)の磁化方向が垂直方向を向いていることに因っている。 (Technical advantage of magnetoresistive element of this example)
By using themagnetoresistive effect element 60 according to the present exemplary embodiment, a magnetic random access memory having a reduced write current and an excellent scaling property can be provided by an easy manufacturing process. This is due to the fact that the magnetization direction of the part (domain wall moving part 10c) related to domain wall movement in the first ferromagnetic layer 10 is oriented in the vertical direction.
本実施の形態に係る磁気抵抗効果素子60を使用することにより、書き込み電流が低減され、さらにスケーリング性に優れた磁気ランダムアクセスメモリを容易な製造プロセスで提供することができる。これは、第1強磁性層10における磁壁移動に関わる部分(磁壁移動部10c)の磁化方向が垂直方向を向いていることに因っている。 (Technical advantage of magnetoresistive element of this example)
By using the
更に、本実施の形態に係る磁気抵抗効果素子60では、第1シード層40a、第2シード層40bを第1強磁性層10の両端部に隣接して設けている。それにより、一つの第1強磁性層10において、両端部分(第1磁化固定部10a、第2磁化固定部10b)の磁化の向きを面内方向とし、中央部分(磁壁移動部10c)の磁化の向きを膜厚方向とするように制御することができる。それにより、第1強磁性層10内に容易に磁壁を導入することができる。すなわち、面内磁化膜と垂直磁化膜を同じ膜中に形成することができる。その結果、工程数が低減され、製造コストが低減される。
Furthermore, in the magnetoresistive effect element 60 according to the present exemplary embodiment, the first seed layer 40 a and the second seed layer 40 b are provided adjacent to both ends of the first ferromagnetic layer 10. Thereby, in one first ferromagnetic layer 10, the magnetization directions of both end portions (first magnetization fixed portion 10 a and second magnetization fixed portion 10 b) are in-plane directions, and the magnetization of the central portion (domain wall moving portion 10 c). Can be controlled to be the film thickness direction. Thereby, the domain wall can be easily introduced into the first ferromagnetic layer 10. That is, the in-plane magnetization film and the perpendicular magnetization film can be formed in the same film. As a result, the number of processes is reduced and the manufacturing cost is reduced.
(回路構成)
次に、本実施の形態に係る磁気抵抗効果素子60を有する磁気メモリセル80に書き込み電流及び読み出し電流を導入するための回路構成を説明する。 (Circuit configuration)
Next, a circuit configuration for introducing a write current and a read current into themagnetic memory cell 80 having the magnetoresistive effect element 60 according to the present embodiment will be described.
次に、本実施の形態に係る磁気抵抗効果素子60を有する磁気メモリセル80に書き込み電流及び読み出し電流を導入するための回路構成を説明する。 (Circuit configuration)
Next, a circuit configuration for introducing a write current and a read current into the
図7は、本実施の形態に係る磁気抵抗効果素子60を用いた磁気メモリセル80の1ビット分の回路の構成例を示す回路図である。図7に示される例では、磁気記憶素子60は3端子の素子であり、ワード線WL、グラウンド線GL、及びビット線対BLa、BLbに接続されている。例えば、第2強磁性層30につながる端子は、読み出しのためのグラウンド線GLに接続されている。第1磁化固定部10aにつながる端子は、トランジスタTRaのソース/ドレインの一方に接続され、そのソース/ドレインの他方は、ビット線BLaに接続されている。第2磁化固定部10bにつながる端子は、トランジスタTRbのソース/ドレインの一方に接続され、そのソース/ドレインの他方は、ビット線BLbに接続されている。トランジスタTRa、TRbのゲートは、共通のワード線WLに接続されている。
FIG. 7 is a circuit diagram showing a configuration example of a circuit for one bit of the magnetic memory cell 80 using the magnetoresistive effect element 60 according to the present exemplary embodiment. In the example shown in FIG. 7, the magnetic memory element 60 is a three-terminal element, and is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb. For example, the terminal connected to the second ferromagnetic layer 30 is connected to the ground line GL for reading. A terminal connected to the first magnetization fixed portion 10a is connected to one of the source / drain of the transistor TRa, and the other of the source / drain is connected to the bit line BLa. A terminal connected to the second magnetization fixed portion 10b is connected to one of the source / drain of the transistor TRb, and the other of the source / drain is connected to the bit line BLb. The gates of the transistors TRa and TRb are connected to a common word line WL.
データ書き込み時、ワード線WLはHighレベルに設定され、トランジスタTRa、TRbがONされる。また、ビット線対BLa、BLbのいずれか一方がHighレベルに設定され、他方がLowレベル(グラウンドレベル)に設定される。その結果、トランジスタTRa、TRb、第1強磁性層10を経由して、ビット線BLaとビット線BLbとの間で書き込み電流が流れる。
At the time of data writing, the word line WL is set to the high level, and the transistors TRa and TRb are turned on. In addition, one of the bit line pair BLa and BLb is set to a high level, and the other is set to a low level (ground level). As a result, a write current flows between the bit line BLa and the bit line BLb via the transistors TRa and TRb and the first ferromagnetic layer 10.
データ読み出し時、ワード線WLはHighレベルに設定され、トランジスタTRa、TRbがONされる。また、ビット線BLaはオープン状態に設定され、ビット線BLbはHighレベルに設定される。その結果、読み出し電流が、ビット線BLbからトランジスタTRb及び磁気抵抗効果素子60のMTJを貫通してグラウンド線GLへ流れる。これによって磁気抵抗効果を利用した読み出しが可能となる。
When reading data, the word line WL is set to a high level, and the transistors TRa and TRb are turned on. Further, the bit line BLa is set to an open state, and the bit line BLb is set to a high level. As a result, a read current flows from the bit line BLb through the transistor TRb and the MTJ of the magnetoresistive element 60 to the ground line GL. This enables reading using the magnetoresistive effect.
図8は、本実施の形態に係る磁気ランダムアクセスメモリ90の構成の一例を示すブロック図である。磁気ランダムアクセスメモリ90は、メモリセルアレイ110、Xドライバ120、Yドライバ130、コントローラ140を備えている。メモリセルアレイ110は、アレイ状(行列状)に配置された複数の磁気メモリセル80を有している。磁気メモリセル80の各々は、上述の磁気抵抗効果素子60を有している。既出の図7で示されたように、各磁気メモリセル80は、ワード線WL、グラウンド線GL、及びビット線対BLa、BLbに接続されている。Xドライバ120は、複数のワード線WLに接続されている。そして、それら複数のワード線WLのうちアクセス対象の磁気メモリセル80につながる選択ワード線を駆動する。Yドライバ130は、複数のビット線対BLa、BLbに接続されている。そして、各ビット線をデータ書き込みあるいはデータ読み出しに応じた状態に設定する。コントローラ140は、データ書き込みあるいはデータ読み出しに応じて、Xドライバ120とYドライバ130のそれぞれを制御する。Xドライバ120、Yドライバ130、コントローラ140を含む構成はメモリセルアレイ110の各メモリセルの書き込み及び読み出しを制御する制御回路と見ることもできる。
FIG. 8 is a block diagram showing an example of the configuration of the magnetic random access memory 90 according to the present embodiment. The magnetic random access memory 90 includes a memory cell array 110, an X driver 120, a Y driver 130, and a controller 140. The memory cell array 110 has a plurality of magnetic memory cells 80 arranged in an array (matrix). Each of the magnetic memory cells 80 has the magnetoresistive element 60 described above. As shown in FIG. 7 described above, each magnetic memory cell 80 is connected to the word line WL, the ground line GL, and the bit line pair BLa, BLb. The X driver 120 is connected to a plurality of word lines WL. Then, the selected word line connected to the magnetic memory cell 80 to be accessed is driven among the plurality of word lines WL. The Y driver 130 is connected to a plurality of bit line pairs BLa and BLb. Each bit line is set to a state corresponding to data writing or data reading. The controller 140 controls each of the X driver 120 and the Y driver 130 in accordance with data writing or data reading. The configuration including the X driver 120, the Y driver 130, and the controller 140 can be regarded as a control circuit that controls writing and reading of each memory cell in the memory cell array 110.
(製法の説明)
次に、本実施の形態に係る磁気抵抗効果素子の製造方法について説明する。図9A~図9Eは、本実施の形態に係る磁気抵抗効果素子の製造方法の一例を示す断面図である。
まず、図9Aに示されるように、CMOS基板上(図示されず)に非磁性下地50およびシード層40を成膜する。非磁性下地50の材料としては、SiO、SiN、SiCNなどの絶縁膜あるいはTi、TiCr、Ta、Ru、非磁性CoCr、Ge、Si、C、Au、Al、Pt、Ti/Ge、非磁性CoCr/TiCr、非磁性CoCrRu/TiCr、Pt/Co3O4、Pt/Ti、Pd/Ti、Ta/MgO、CoCrRu/MgO、Ru/Ru-oxide、Ru/Taなどのような、この上に成膜される強磁性膜が垂直方向に磁化を持つように結晶配向する材料の中から選択する。また、シード層40としては、CrあるいはCr-Mnなどのような、この上に成膜される強磁性膜が面内方向に磁化を持つように結晶配向する材料の中から選択する。また、このとき、上の非磁性下地50の材料からの結晶配向の影響を取り除くために非磁性下地50とシード層40との間に非晶質材料SiO、SiN、Al2O3などを挟んでも良い。 (Description of manufacturing method)
Next, a method for manufacturing the magnetoresistive effect element according to this embodiment will be described. 9A to 9E are cross-sectional views showing an example of a method for manufacturing the magnetoresistive effect element according to the present embodiment.
First, as shown in FIG. 9A, anonmagnetic underlayer 50 and a seed layer 40 are formed on a CMOS substrate (not shown). As the material of the nonmagnetic underlayer 50, an insulating film such as SiO, SiN, SiCN, or Ti, TiCr, Ta, Ru, nonmagnetic CoCr, Ge, Si, C, Au, Al, Pt, Ti / Ge, nonmagnetic CoCr / TiCr, nonmagnetic CoCrRu / TiCr, Pt / Co3O4, Pt / Ti, Pd / Ti, Ta / MgO, CoCrRu / MgO, Ru / Ru-oxide, Ru / Ta, etc. The material is selected from crystal-oriented materials so that the ferromagnetic film has magnetization in the vertical direction. The seed layer 40 is selected from materials such as Cr or Cr—Mn, which are crystal-oriented so that the ferromagnetic film formed thereon has magnetization in the in-plane direction. At this time, an amorphous material SiO, SiN, Al 2 O 3 or the like may be sandwiched between the nonmagnetic underlayer 50 and the seed layer 40 in order to remove the influence of the crystal orientation from the material of the upper nonmagnetic underlayer 50.
次に、本実施の形態に係る磁気抵抗効果素子の製造方法について説明する。図9A~図9Eは、本実施の形態に係る磁気抵抗効果素子の製造方法の一例を示す断面図である。
まず、図9Aに示されるように、CMOS基板上(図示されず)に非磁性下地50およびシード層40を成膜する。非磁性下地50の材料としては、SiO、SiN、SiCNなどの絶縁膜あるいはTi、TiCr、Ta、Ru、非磁性CoCr、Ge、Si、C、Au、Al、Pt、Ti/Ge、非磁性CoCr/TiCr、非磁性CoCrRu/TiCr、Pt/Co3O4、Pt/Ti、Pd/Ti、Ta/MgO、CoCrRu/MgO、Ru/Ru-oxide、Ru/Taなどのような、この上に成膜される強磁性膜が垂直方向に磁化を持つように結晶配向する材料の中から選択する。また、シード層40としては、CrあるいはCr-Mnなどのような、この上に成膜される強磁性膜が面内方向に磁化を持つように結晶配向する材料の中から選択する。また、このとき、上の非磁性下地50の材料からの結晶配向の影響を取り除くために非磁性下地50とシード層40との間に非晶質材料SiO、SiN、Al2O3などを挟んでも良い。 (Description of manufacturing method)
Next, a method for manufacturing the magnetoresistive effect element according to this embodiment will be described. 9A to 9E are cross-sectional views showing an example of a method for manufacturing the magnetoresistive effect element according to the present embodiment.
First, as shown in FIG. 9A, a
次に、図9Bに示されるように、シード層40を所定の形にパターニングする。パターニングはフォトレジストあるいはハードマスク材料をマスクにして、物理的あるいは化学的にエッチングして行う。続いて、図9Cに示されるように、更に、その上に強磁性層10、非磁性層(スペーサ層)20および強磁性層30を積層する。この際、強磁性材料を非磁性層及びシード層上にエピタキシャル成長させるために、表面の酸化膜などの不純物を物理的あるいは化学的にエッチングしてから成膜を行うことが重要である。また、これらのプロセスは真空中で一貫して行われることが望ましい。
Next, as shown in FIG. 9B, the seed layer 40 is patterned into a predetermined shape. The patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask. Subsequently, as shown in FIG. 9C, a ferromagnetic layer 10, a nonmagnetic layer (spacer layer) 20, and a ferromagnetic layer 30 are further stacked thereon. At this time, in order to epitaxially grow the ferromagnetic material on the nonmagnetic layer and the seed layer, it is important to perform film formation after etching impurities such as an oxide film on the surface physically or chemically. Also, it is desirable that these processes be performed consistently in a vacuum.
次に、図9Dに示されるように、強磁性層30と非磁性層20をパターニングする。パターニングはフォトレジストあるいはハードマスク材料をマスクにして、物理的あるいは化学的にエッチングして行う。最後に、図9Eに示されるように、強磁性層10をパターニングする。パターニングはフォトレジストあるいはハードマスク材料をマスクにして、物理的あるいは化学的にエッチングして行う。異常のようにして、磁気抵抗効果素子60を製造することができる。
Next, as shown in FIG. 9D, the ferromagnetic layer 30 and the nonmagnetic layer 20 are patterned. The patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask. Finally, as shown in FIG. 9E, the ferromagnetic layer 10 is patterned. The patterning is performed by physical or chemical etching using a photoresist or a hard mask material as a mask. The magnetoresistive effect element 60 can be manufactured like an abnormality.
本発明の磁気抵抗効果素子は、電流駆動磁壁移動の起こる第1強磁性層が、膜厚方向に磁気異方性を有することにより、スピン偏極電流を考慮に入れたLLG方程式のうちの断熱スピントルク項によって小さな電流密度でも磁壁を駆動することができる。すなわち、書き込み電流を低減することができる。
加えて、磁壁を駆動の際、磁壁がデピンされる閾値磁界による影響をほとんど受けることなく磁壁移動が可能となるため、高い熱安定性や外乱磁界耐性を維持したままで、書き込みに要する電流を低減することができる。
更に、第1強磁性層の両端の下部に接するように第1および第2シード層を設けることにより、第1強磁性層の磁化を面内方向に向け、所望の位置に磁壁を容易に導入することができる。第1強磁性層のみで面内磁化と垂直磁化を作成することができるので新たな強磁性膜を導入する必要がなく製造が容易となる。 The magnetoresistive effect element of the present invention is adiabatic in the LLG equation that takes into account the spin-polarized current because the first ferromagnetic layer in which current-driven domain wall motion occurs has magnetic anisotropy in the film thickness direction. The domain wall can be driven with a small current density by the spin torque term. That is, the write current can be reduced.
In addition, when the domain wall is driven, the domain wall can be moved almost without being affected by the threshold magnetic field at which the domain wall is depinned. Therefore, the current required for writing is maintained while maintaining high thermal stability and disturbance magnetic field resistance. Can be reduced.
Furthermore, by providing the first and second seed layers so as to be in contact with the lower portions of both ends of the first ferromagnetic layer, the magnetization of the first ferromagnetic layer is directed in the in-plane direction, and the domain wall is easily introduced at a desired position. can do. Since in-plane magnetization and perpendicular magnetization can be created only with the first ferromagnetic layer, it is not necessary to introduce a new ferromagnetic film, and the manufacturing is facilitated.
加えて、磁壁を駆動の際、磁壁がデピンされる閾値磁界による影響をほとんど受けることなく磁壁移動が可能となるため、高い熱安定性や外乱磁界耐性を維持したままで、書き込みに要する電流を低減することができる。
更に、第1強磁性層の両端の下部に接するように第1および第2シード層を設けることにより、第1強磁性層の磁化を面内方向に向け、所望の位置に磁壁を容易に導入することができる。第1強磁性層のみで面内磁化と垂直磁化を作成することができるので新たな強磁性膜を導入する必要がなく製造が容易となる。 The magnetoresistive effect element of the present invention is adiabatic in the LLG equation that takes into account the spin-polarized current because the first ferromagnetic layer in which current-driven domain wall motion occurs has magnetic anisotropy in the film thickness direction. The domain wall can be driven with a small current density by the spin torque term. That is, the write current can be reduced.
In addition, when the domain wall is driven, the domain wall can be moved almost without being affected by the threshold magnetic field at which the domain wall is depinned. Therefore, the current required for writing is maintained while maintaining high thermal stability and disturbance magnetic field resistance. Can be reduced.
Furthermore, by providing the first and second seed layers so as to be in contact with the lower portions of both ends of the first ferromagnetic layer, the magnetization of the first ferromagnetic layer is directed in the in-plane direction, and the domain wall is easily introduced at a desired position. can do. Since in-plane magnetization and perpendicular magnetization can be created only with the first ferromagnetic layer, it is not necessary to introduce a new ferromagnetic film, and the manufacturing is facilitated.
なお、図2の例では、第1シード層40aと第2シード層40bとは非磁性下地50上に形成されている。しかし、第1強磁性層10のシード層40a、40bに接する部分が面内方向に磁化を持ち、第1強磁性層10のそれ以外の部分が膜面垂直方向に磁化を持っていれば、第1シード層40aと第2シード層40bとは非磁性下地50内に埋没していても良い。すなわち、第1強磁性層10の下面は平坦であっても良い。その場合、製造方法としては、上記の図9Bと図9Cとの間に、更に他の非磁性下地を形成し、平坦化プロセス(CMPやエッチング)を実行することにより、容易に非磁性下地50に第1シード層40aと第2シード層40bを埋没させることができる。
In the example of FIG. 2, the first seed layer 40 a and the second seed layer 40 b are formed on the nonmagnetic underlayer 50. However, if the portion of the first ferromagnetic layer 10 in contact with the seed layers 40a and 40b has magnetization in the in-plane direction, and the other portion of the first ferromagnetic layer 10 has magnetization in the direction perpendicular to the film surface, The first seed layer 40 a and the second seed layer 40 b may be embedded in the nonmagnetic underlayer 50. That is, the lower surface of the first ferromagnetic layer 10 may be flat. In that case, as a manufacturing method, another nonmagnetic underlayer is further formed between the above-described FIG. 9B and FIG. 9C, and a flattening process (CMP or etching) is performed, so that the nonmagnetic underlayer 50 can be easily formed. The first seed layer 40a and the second seed layer 40b can be buried.
以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
この出願は、2008年7月31日に出願された特許出願番号2008-197452号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。
This application is based on a Japanese patent application filed on July 31, 2008, patent application No. 2008-197252, which claims the benefit of priority from that application, and the disclosure of that application should be cited Is incorporated here as it is.
Claims (8)
- 非磁性下地上に長手方向に長い形状を有し、その一方の端部側に第1磁化固定部、他方の端部側に第2磁化固定部、及び、前記第1磁化固定部と前記第2磁化固定部との間に磁壁移動部をそれぞれ有する第1強磁性層と、
前記磁壁移動部上に設けられた非磁性層と、
前記非磁性層の上に設けられ、磁化が固定された第2強磁性層とを具備し、
前記第2強磁性層は、膜厚方向に磁気異方性を有し、
前記第1磁化固定部及び前記第2磁化固定部は面内方向に磁気異方性を有し、前記磁壁移動部は膜厚方向に磁気異方性を有する
磁気抵抗効果素子。 It has a shape that is long in the longitudinal direction on the nonmagnetic base, and has a first magnetization fixed portion on one end side, a second magnetization fixed portion on the other end side, and the first magnetization fixed portion and the first magnetization fixed portion. A first ferromagnetic layer having a domain wall moving part between the two magnetization fixed parts;
A nonmagnetic layer provided on the domain wall moving part;
A second ferromagnetic layer provided on the nonmagnetic layer and having a fixed magnetization;
The second ferromagnetic layer has magnetic anisotropy in the film thickness direction,
The first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in an in-plane direction, and the domain wall moving part has magnetic anisotropy in a film thickness direction. - 請求の範囲1に記載の磁気抵抗効果素子であって、
前記第1磁化固定部の下に接して設けられた第1シード層と、
前記第2磁化固定部の下に接して設けられた第2シード層とを更に具備する
磁気抵抗効果素子。 The magnetoresistive effect element according to claim 1,
A first seed layer provided in contact with the first magnetization pinned portion;
A magnetoresistive element, further comprising: a second seed layer provided in contact with the second magnetization fixed portion. - 請求の範囲2に記載の磁気抵抗効果素子であって、
前記第1シード層および前記第2シード層は、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、及び、Seで構成されるグループうちから選択される材料、又は、当該材料を用いた合金を含み、
前記第1強磁性層は、CoCrXで表される材料を含み、
前記Xは、Ta、Fe、Zr、WC、Ru、Rh、Ti、W、Mo、O、Mo、Gd、Zn、Cu、Pr、Nb、Pt、Pt-O2、Pt-SiO2、及び、Pt-TiO2で構成されるグループのうちから選択される物質である
磁気抵抗効果素子。 The magnetoresistive effect element according to claim 2,
The first seed layer and the second seed layer may be a material selected from a group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se, or Including alloys using the material,
The first ferromagnetic layer includes a material represented by CoCrX,
X is Ta, Fe, Zr, WC, Ru, Rh, Ti, W, Mo, O, Mo, Gd, Zn, Cu, Pr, Nb, Pt, Pt—O 2 , Pt—SiO 2 , and A magnetoresistive element, which is a substance selected from the group consisting of Pt—TiO 2 . - 請求の範囲2又は3に記載の磁気抵抗効果素子であって、
前記非磁性下地は、Ti膜、TiCr膜、Ta膜、Ru膜、CoCr膜、Ge膜、Si膜、C膜、Au膜、Al膜、Pt膜、Ti/Ge膜、CoCrとTiCrとの積層膜、CoCrRuとTiCrとの積層膜、PtとCo3O4の積層膜、PtとTiとの積層膜、PdとTiとの積層膜、TaとMgOとの積層膜、CoCrRuとMgOとの積層膜、RuとRu-Oとの積層膜、及び、RuとTaとの積層膜で構成されるグループのうちから選択される膜である
磁気抵抗効果素子。 The magnetoresistive effect element according to claim 2 or 3,
The nonmagnetic underlayer includes a Ti film, a TiCr film, a Ta film, a Ru film, a CoCr film, a Ge film, a Si film, a C film, an Au film, an Al film, a Pt film, a Ti / Ge film, and a laminate of CoCr and TiCr. Film, CoCrRu and TiCr laminated film, Pt and Co 3 O 4 laminated film, Pt and Ti laminated film, Pd and Ti laminated film, Ta and MgO laminated film, CoCrRu and MgO laminated film A magnetoresistive element, which is a film selected from a group consisting of a film, a laminated film of Ru and Ru—O, and a laminated film of Ru and Ta. - 請求の範囲2乃至4のいずれか一項に記載の磁気抵抗効果素子であって、
前記第1シード層及び前記第2シード層は、外部の配線に電気的に接続される
磁気抵抗効果素子。 The magnetoresistive effect element according to any one of claims 2 to 4,
The first seed layer and the second seed layer are electrically connected to an external wiring. A magnetoresistive effect element. - 行列状に配列された複数の磁気メモリセルと、
前記複数の磁気メモリセルの各々に対する書き込み及び読み出しを制御する制御回路とを具備し、
前記複数の磁気メモリセルの各々は、
請求の範囲1乃至5のいずれか一項に記載の磁気抵抗効果素子を含む
磁気ランダムアクセスメモリ。 A plurality of magnetic memory cells arranged in a matrix;
A control circuit for controlling writing and reading to each of the plurality of magnetic memory cells,
Each of the plurality of magnetic memory cells includes:
A magnetic random access memory comprising the magnetoresistive effect element according to claim 1. - 磁気ランダムアクセスメモリの初期化方法であって、
ここで、前記磁気ランダムアクセスメモリは、
行列状に配列された複数の磁気メモリセルと、
前記複数の磁気メモリセルの各々に対する書き込み及び読み出しを制御する制御回路とを具備し、
前記複数の磁気メモリセルの各々は、
非磁性下地上に長手方向に長い形状を有し、その長手方向の一方の端部側に第1磁化固定部、他方の端部側に第2磁化固定部、及び、前記第1磁化固定部と前記第2磁化固定部との間に磁壁移動部をそれぞれ有する第1強磁性層と、
前記磁壁移動部上に設けられた非磁性層と、
前記非磁性層の上に設けられ、磁化が固定された第2強磁性層とを具備し、
前記第2強磁性層は、膜厚方向に磁気異方性を有し、
前記第1磁化固定部及び前記第2磁化固定部は面内方向に磁気異方性を有し、前記磁壁移動部は膜厚方向に磁気異方性を有し、
前記磁気ランダムアクセスメモリの初期化方法は、
前記第1シード層から前記第2シード層へ向かう方向の成分を有する第1外部磁界を前記複数の磁気メモリセルに印加するステップと、
前記第1外部磁界を所定の速度で減少させるステップと、
前記第1強磁性層の膜厚方向の成分を有する第2外部磁界を前記複数の磁気メモリセルに印加するステップとを具備する
磁気ランダムアクセスメモリの初期化方法。 An initialization method for a magnetic random access memory,
Here, the magnetic random access memory is
A plurality of magnetic memory cells arranged in a matrix;
A control circuit for controlling writing and reading to each of the plurality of magnetic memory cells,
Each of the plurality of magnetic memory cells includes:
It has a shape that is long in the longitudinal direction on the non-magnetic base, a first magnetization fixed portion on one end side in the longitudinal direction, a second magnetization fixed portion on the other end side, and the first magnetization fixed portion And a first ferromagnetic layer each having a domain wall moving part between the second magnetization fixed part and
A nonmagnetic layer provided on the domain wall moving part;
A second ferromagnetic layer provided on the nonmagnetic layer and having a fixed magnetization;
The second ferromagnetic layer has magnetic anisotropy in the film thickness direction,
The first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction, the domain wall moving part has magnetic anisotropy in the film thickness direction,
The initialization method of the magnetic random access memory is as follows:
Applying a first external magnetic field having a component in a direction from the first seed layer to the second seed layer to the plurality of magnetic memory cells;
Reducing the first external magnetic field at a predetermined rate;
Applying a second external magnetic field having a component in the film thickness direction of the first ferromagnetic layer to the plurality of magnetic memory cells. An initialization method for a magnetic random access memory. - 磁気ランダムアクセスメモリの初期化方法であって、
ここで、前記磁気ランダムアクセスメモリは、
行列状に配列された複数の磁気メモリセルと、
前記複数の磁気メモリセルの各々に対する書き込み及び読み出しを制御する制御回路とを具備し、
前記複数の磁気メモリセルの各々は、
非磁性下地上に長手方向に長い形状を有し、その長手方向の一方の端部側に第1磁化固定部、他方の端部側に第2磁化固定部、及び、前記第1磁化固定部と前記第2磁化固定部との間に磁壁移動部をそれぞれ有する第1強磁性層と、
前記磁壁移動部上に設けられた非磁性層と、
前記非磁性層の上に設けられ、磁化が固定された第2強磁性層とを具備し、
前記第2強磁性層は、膜厚方向に磁気異方性を有し、
前記第1磁化固定部及び前記第2磁化固定部は面内方向に磁気異方性を有し、前記磁壁移動部は膜厚方向に磁気異方性を有し、
前記磁気ランダムアクセスメモリの初期化方法は、
前記第1シード層及び前記第2シード層のいずれか一方から、前記第1強磁性層を介して、他方へ電流を流すステップと、
前記電流を停止するステップとを具備する
磁気ランダムアクセスメモリの初期化方法。 An initialization method for a magnetic random access memory,
Here, the magnetic random access memory is
A plurality of magnetic memory cells arranged in a matrix;
A control circuit for controlling writing and reading to each of the plurality of magnetic memory cells,
Each of the plurality of magnetic memory cells includes:
It has a shape that is long in the longitudinal direction on the non-magnetic base, a first magnetization fixed portion on one end side in the longitudinal direction, a second magnetization fixed portion on the other end side, and the first magnetization fixed portion And a first ferromagnetic layer each having a domain wall moving part between the second magnetization fixed part and
A nonmagnetic layer provided on the domain wall moving part;
A second ferromagnetic layer provided on the nonmagnetic layer and having a fixed magnetization;
The second ferromagnetic layer has magnetic anisotropy in the film thickness direction,
The first magnetization fixed part and the second magnetization fixed part have magnetic anisotropy in the in-plane direction, the domain wall moving part has magnetic anisotropy in the film thickness direction,
The initialization method of the magnetic random access memory is as follows:
Passing a current from one of the first seed layer and the second seed layer to the other through the first ferromagnetic layer;
A method of initializing a magnetic random access memory, comprising: stopping the current.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008197452 | 2008-07-31 | ||
JP2008-197452 | 2008-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013566A1 true WO2010013566A1 (en) | 2010-02-04 |
Family
ID=41610269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061833 WO2010013566A1 (en) | 2008-07-31 | 2009-06-29 | Magnetoresistive element, magnetic random access memory, and initialization method thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010013566A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013232497A (en) * | 2012-04-27 | 2013-11-14 | Renesas Electronics Corp | Magnetic material device and manufacturing method thereof |
CN115458678A (en) * | 2021-06-09 | 2022-12-09 | Tdk株式会社 | Magnetic domain wall moving element and magnetic array |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005150303A (en) * | 2003-11-13 | 2005-06-09 | Toshiba Corp | Magnetoresistance effect element and magnetic memory |
JP2006073930A (en) * | 2004-09-06 | 2006-03-16 | Canon Inc | Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory |
JP2008147488A (en) * | 2006-12-12 | 2008-06-26 | Nec Corp | Magnetoresistive element and MRAM |
WO2009057504A1 (en) * | 2007-11-02 | 2009-05-07 | Nec Corporation | Magnetoresistive element, magnetic random access memory, and initialization method thereof |
-
2009
- 2009-06-29 WO PCT/JP2009/061833 patent/WO2010013566A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005150303A (en) * | 2003-11-13 | 2005-06-09 | Toshiba Corp | Magnetoresistance effect element and magnetic memory |
JP2006073930A (en) * | 2004-09-06 | 2006-03-16 | Canon Inc | Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory |
JP2008147488A (en) * | 2006-12-12 | 2008-06-26 | Nec Corp | Magnetoresistive element and MRAM |
WO2009057504A1 (en) * | 2007-11-02 | 2009-05-07 | Nec Corporation | Magnetoresistive element, magnetic random access memory, and initialization method thereof |
Non-Patent Citations (2)
Title |
---|
C.L.PLATT ET AL.: "Structural and magnetic properties of CoCrPt perpendicular media grown on different buffer layers", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 247, 2002, pages 153 - 158 * |
HIRONOBU TANIGAWA ET AL.: "Current-Driven Domain Wall Motion in CoCrPt Wires with Perpendicular Magnetic Anisotropy", APPLIED PHYSICS EXPRESS, vol. 1, no. 1, 11 January 2008 (2008-01-11), pages 011301-1 - 011301-3 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013232497A (en) * | 2012-04-27 | 2013-11-14 | Renesas Electronics Corp | Magnetic material device and manufacturing method thereof |
CN115458678A (en) * | 2021-06-09 | 2022-12-09 | Tdk株式会社 | Magnetic domain wall moving element and magnetic array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598697B2 (en) | Magnetoresistive element and magnetic random access memory | |
US7981697B2 (en) | Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM) | |
US8456898B2 (en) | Magnetic element having perpendicular anisotropy with enhanced efficiency | |
CN102468424B (en) | For providing the method and system of the mixing magnetic tunnel junction element improving conversion performance | |
WO2010095589A1 (en) | Magnetoresistive effect element and magnetic random access memory | |
JP2009521807A (en) | Magnetic element that writes current by spin transfer method and reduces write current density by spin transfer torque | |
US20120281462A1 (en) | Storage element and storage device | |
JP5652472B2 (en) | Magnetic memory element, magnetic memory, and manufacturing method thereof | |
JP5664556B2 (en) | Magnetoresistive element and magnetic random access memory using the same | |
US20110163402A1 (en) | Magnetic memory and method of manufacturing the same | |
JP5370773B2 (en) | Magnetoresistive element, magnetic random access memory, and initialization method thereof | |
JP5445133B2 (en) | Magnetic random access memory, writing method thereof, and magnetoresistive element | |
JP5397384B2 (en) | Initialization method of magnetic memory element | |
CN112863566A (en) | A storage array, memory, preparation method and writing method | |
US9299916B2 (en) | Memory element and memory device | |
JPWO2009078244A1 (en) | Magnetic random access memory and initialization method of magnetic random access memory | |
JP5775773B2 (en) | Magnetic memory | |
JP2004303801A (en) | Magnetic memory and its writing method therein | |
WO2010013566A1 (en) | Magnetoresistive element, magnetic random access memory, and initialization method thereof | |
WO2022160226A1 (en) | Storage array, memory, manufacturing method, and writing method | |
US20130075847A1 (en) | Magnetic memory | |
JP2004055754A (en) | Magnetoresistive effect element and magnetic memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09802811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |