WO2010008059A1 - Method for storing cells and device therefor - Google Patents
Method for storing cells and device therefor Download PDFInfo
- Publication number
- WO2010008059A1 WO2010008059A1 PCT/JP2009/062918 JP2009062918W WO2010008059A1 WO 2010008059 A1 WO2010008059 A1 WO 2010008059A1 JP 2009062918 W JP2009062918 W JP 2009062918W WO 2010008059 A1 WO2010008059 A1 WO 2010008059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage
- cells
- pressure
- cell
- container
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000003860 storage Methods 0.000 claims abstract description 186
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000012546 transfer Methods 0.000 claims abstract description 10
- 238000002425 crystallisation Methods 0.000 claims abstract description 7
- 230000008025 crystallization Effects 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 50
- 239000000126 substance Substances 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 8
- 238000004321 preservation Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 230000003834 intracellular effect Effects 0.000 claims description 3
- 230000004083 survival effect Effects 0.000 abstract description 16
- 210000004027 cell Anatomy 0.000 description 152
- 239000002609 medium Substances 0.000 description 62
- 238000002474 experimental method Methods 0.000 description 31
- 230000003833 cell viability Effects 0.000 description 22
- 239000007789 gas Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 8
- 239000004809 Teflon Substances 0.000 description 8
- 229920006362 Teflon® Polymers 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000006285 cell suspension Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 210000004748 cultured cell Anatomy 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 241000700159 Rattus Species 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 210000004498 neuroglial cell Anatomy 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- -1 for example Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/14—Mechanical aspects of preservation; Apparatus or containers therefor
- A01N1/146—Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/16—Physical preservation processes
- A01N1/165—Pressure processes, e.g. following predefined pressure changes over time
Definitions
- Cells collected from living organisms can be cultured in vitro to examine their physiological activities and functions, used as samples for pharmaceutical development, and used for treatments such as transplantation. Yes. Particularly in recent years, due to social criticism of animal experiments, it has become an international trend to minimize animal experiments and replace them with cultured cells.
- Patent Document 1 a method for storing food and microorganisms under high pressure of 500 to 10000 atm (about 50 to 1000 MPa) in order to store them without freezing has been disclosed.
- Patent Document 2 a storage method is disclosed under a low temperature and a high pressure of 70 to 1000 atmospheres (about 7 to 100 MPa) in combination with a storage solution.
- the storage temperature is higher than the crystallization temperature of intracellular water to be stored, the cell activity optimum temperature or less, and the storage pressure is 0.11 to This is a storage method of 10 MPa.
- the optimum temperature of the cell activity means a temperature suitable for the life activity of the cell, and the temperature varies depending on the cell type. For example, in the case of an animal cell, the body temperature of the animal is That is true.
- the storage temperature is 1 ° C. to 37 ° C.
- the storage pressure is 0.11 to 6.5 MPa.
- the cells are seeded or suspended in a medium that is liquid under the aforementioned storage conditions.
- the pressure medium is a liquid.
- the cell storage device includes a pressurized container capable of maintaining pressure by filling with a pressure medium, and can be accommodated in the pressurized container.
- a pressurized container capable of maintaining pressure by filling with a pressure medium, and can be accommodated in the pressurized container.
- One or two or more cell storage containers capable of pressurizing cells enclosed inside by having a material that can be transmitted to a substance.
- the cell storage device adjusts the pressure in the pressurized container by sending the pressure medium into the pressurized container by a fluid transfer device.
- the storage container is placed in a container for applying pressure (hereinafter referred to as “pressurized container”), and a gas or liquid is used as a pressure medium in the storage container. Apply pressure to the cells.
- the number of storage containers stored in the pressurized container may be one, or two or more may be used when several types of cells are desired to be stored at the same time.
- the number of storage containers stored in the pressurized container is preferably 100 or less from the design of the apparatus.
- the cells placed in the storage container as described above are stored at a temperature higher than the crystallization temperature of the water in the cells, not more than the optimum temperature for cell activity, and a pressure of 0.11 to 10 MPa.
- the water crystallization temperature varies depending on the cell type, but is generally 0 to -10 ° C. If the temperature is lower than the crystallization temperature, the water in the cell may crystallize and destroy the cell. If the temperature is higher than the optimum temperature for the activity, it is generally an unsuitable environment for the cell and the cell viability decreases. is there.
- the storage pressure is preferably 0.11 MPa or more in terms of cell viability, and more preferably 0.15 MPa or more in consideration of the risk of pressure leakage during storage.
- the maximum pressure is preferably 6.5 MPa or less, more preferably 5.5 MPa or less, from the viewpoint of maintaining the cell viability for a long period of time.
- the size of the cell storage device of the present invention is not particularly limited as long as it is theoretically possible in terms of production, but for the purpose of cell storage, a cell storage container capacity of 0.01 mL to several L is practical. Preferably 0.1 mL to 1 L.
- the pressurized container is designed in accordance with the size of the storage container and the number of the storage containers stored in the pressurized container.
- the liquid feed pump 2 and the pressurized container 4 are connected by a Teflon (registered trademark) tube through a valve 5, and after storing the storage container 3 in the pressurized container 4 and closing the open / close hatch, the valve 6 is turned on.
- the valve 6 In an open state, the water in the storage tank 1 is fed into the pressurized container 4 by the liquid feed pump 2. Alternatively, water may be fed into the pressurized container before storing the storage container.
- the valve 6 is closed. In this state, while monitoring the pressure in the pressurized container 4 with the pressure indicator 8, further water is fed in until the desired pressure is reached. At this time, it is desirable that water as the pressure medium is maintained at a desired storage temperature.
- the storage container 3 and the pressurized container 4 are both cylindrical.
- the storage container 3 may have a spherical shape or a bag shape such as an infusion bag.
- a rectangular parallelepiped or a cube having a hollow inside, a so-called cooler box-like shape may be used. That is, for example, a storage method may be used in which a plurality of drip bag-like storage containers are arranged in a cooler box-like pressurized container.
- the valve 5 or 6 or both may be opened to discharge the liquid pressure medium (water in this embodiment) to return the pressure to atmospheric pressure.
- the liquid pressure medium may be discharged at a desired speed using a liquid feed pump. If the temperature at the time of cell storage and the temperature at the time of treatment after storage are different, the temperature may be adjusted before returning the pressure to atmospheric pressure, or the temperature may be adjusted after returning the pressure to atmospheric pressure. Although it is good, it is preferable to return to atmospheric pressure after adjusting the temperature.
- Comparative Examples 1 and 2 The sample was stored under the same conditions as in Example 1 except that the storage pressure was 0.1 or 14 MPa (Comparative Examples 1, 2, and so on). As a result, the cell survival rate was about 20% under 0.1 MPa and less than 10% at 14 MPa.
- Comparative Examples 5-6 It was stored under the same conditions as in Example 6 except that the storage pressure was 0.1 or 11 MPa. As a result, the cell viability in each case was less than 10%.
- Examples 8-11 It was stored under the same conditions as in Example 6 except that the storage temperature was 4 ° C. and the storage pressure was 0.2, 0.5, 1.0, or 6.5 MPa. As a result, the cell viability when the storage pressure was 0.2, 0.5, or 1.0 MPa was good at 60% or more. In the case of 6.5 MPa, it was about 50%.
- Comparative Example 7 It was stored under the same conditions as in Example 6 except that the storage temperature was 4 ° C. and the storage pressure was 0.1 MPa. As a result, the cell survival rate was almost 0%.
- Comparative Examples 9-10 It was stored under the same conditions as in Example 14 except that the storage pressure was 0.1 or 11 MPa. As a result, the cell viability in each case was almost 0%.
- Table 2 shows the results for a storage period of 1 day.
- Table 3 shows the results for a storage period of 4 days.
- Table 4 shows the results for a storage period of 5 days.
- Cells are subjected to experiments for various purposes in a wide range such as medical fields, pharmaceutical fields, livestock fields, and academic fields such as biochemistry. It also plays an important role in transplantation treatment.
- the experiment may be temporarily interrupted to be stored. In such cases, simply refrigeration not only lowers cell viability, but some cells cannot be preserved.
- the cells are frozen or a storage solution is used, as described above, there are cases where the method cannot be employed due to lack of rapid storage and resumption of experiments.
- the storage method of the present invention these disadvantages can be solved, and storage and experiments can be resumed quickly and easily. For example, primary cultured cells that maintain their properties in vivo are desired to be used for experiments quickly. It is possible to meet the demand for cell preservation in a wide range of fields.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本発明は細胞の保存方法及びその装置に関し、詳しくは、細胞を冷凍することなく保存する保存方法の改良及びその装置に関する。 The present invention relates to a cell storage method and an apparatus thereof, and more particularly to an improvement of a storage method for storing cells without freezing and an apparatus thereof.
生体から採取された細胞は、生体外で培養してその生理活性や生理機能を検査したり、製薬開発のための試料として種々の実験に供されたり、移植等の治療に使用されたりしている。特に近年、動物実験への社会的批判から、動物実験を最小限に抑え、実験を培養細胞等で代替することが国際的な潮流となっている。細胞の培養には、生体内での細胞の性質を高度に維持している初代培養と、一定の安定した性質を持った細胞株を作るための継体培養がある。このうち、初代培養細胞については前述の動物実験の代替ニーズが高まってきているが、そのためには、生体内での性質を維持させつつ種々の実験を数多く、さらには同一条件化での比較実験を迅速に実施できるように、細胞を良好な生存率でかつ簡便に保存及び運搬できることが求められている。また、それ以外の細胞においても迅速かつ簡便な保存方法に対する要望は高い。 Cells collected from living organisms can be cultured in vitro to examine their physiological activities and functions, used as samples for pharmaceutical development, and used for treatments such as transplantation. Yes. Particularly in recent years, due to social criticism of animal experiments, it has become an international trend to minimize animal experiments and replace them with cultured cells. There are two types of cell culture: primary culture that maintains a high level of cell properties in vivo, and subculture for making a cell line with certain stable properties. Of these, primary cell cultures are increasingly being used as alternatives to the animal experiments described above. To that end, many different experiments have been performed while maintaining the properties in vivo, and comparison experiments under the same conditions have been performed. Therefore, it is required that the cells can be stored and transported easily with a good survival rate. In addition, there is a high demand for a quick and simple storage method for other cells.
細胞の一般的な保存方法として冷凍保存があるが、この方法では前記の「迅速、簡便」という要請を満足できない。近年、食品及び微生物を冷凍せずに保存するため、500~10000気圧(約50~1000MPa)の高圧下で保存する方法が開示されている(特許文献1)。また、血液、血小板、心臓等の生物学的物質の保存において、保存溶液と組み合わせて低温下、70~1000気圧(約7~100MPa)の高圧下での保存方法が開示されている(特許文献2)。これらはいずれもできる限りの低温下でかつ非凍結、そのために超高圧を付与するという技術思想である。 As a general storage method of cells, there is frozen storage, but this method cannot satisfy the above-mentioned requirement of “rapid and simple”. In recent years, a method for storing food and microorganisms under high pressure of 500 to 10000 atm (about 50 to 1000 MPa) in order to store them without freezing has been disclosed (Patent Document 1). In addition, in the storage of biological substances such as blood, platelets, and heart, a storage method is disclosed under a low temperature and a high pressure of 70 to 1000 atmospheres (about 7 to 100 MPa) in combination with a storage solution (Patent Literature). 2). All of these are technical ideas of applying as low pressure as possible and non-freezing, and thus applying ultra-high pressure.
したがって、これらの保存状態は極度の過冷却状態にあり、当該保存物質を運搬するような場合、運搬中の物理的ショックにより過冷却状態のバランスが崩れ、一気に保存物質中の水分が氷結して当該保存物質がダメージを受けるという危険性を含んでいる。また、該先行技術は細胞そのものについて加圧して保存するという技術ではない。 Therefore, these storage states are extremely supercooled, and when transporting the preserved material, the balance of the supercooled state is lost due to physical shock during transportation, and moisture in the preserved material freezes at a stretch. There is a risk that the stored material will be damaged. Further, the prior art is not a technique for storing the cells themselves under pressure.
以上の事情から、既存の保存方法の不便さを容認して実験に供するか、生体内性質の保持が最優先される場合には実験の都度生物個体から細胞を採取しているのが現状である。 Based on the above circumstances, the inconvenience of the existing storage method is accepted and used for the experiment, or when preserving in vivo properties is the top priority, cells are collected from living organisms every time the experiment is conducted. is there.
そこで、本発明の目的は、細胞の生存率を良好に維持しつつ、細胞の保存前後における処置の迅速さ、簡便さ、及び運搬の容易性の要請に応えうる細胞の保存方法及びその装置を提供することにある。さらに、本発明の目的には、細胞に生体内又は培養時の性質を維持させつつ種々の実験を数多く実施したい場合、及び同一条件化での比較実験を迅速に実施したい場合等に、数種の細胞を一度に同一条件で保存可能な保存方法及びその装置を提供することも含まれる。 Accordingly, an object of the present invention is to provide a cell storage method and apparatus capable of meeting the demands of quickness, simplicity, and ease of transportation before and after cell storage while maintaining good cell viability. It is to provide. Further, the purpose of the present invention is to provide several types of experiments when it is desired to carry out many various experiments while maintaining the properties of cells in vivo or during culture, and when it is desired to quickly conduct comparative experiments under the same conditions. It is also included to provide a storage method and apparatus capable of storing the cells at the same time under the same conditions.
前記課題を解決するために、本発明者らは鋭意研究を重ねた結果、細胞を一定の圧力下に置くことにより、低温ではあるが細胞内の水の結晶化温度より高く、及び細胞の活動至適温度以下であれば細胞を高生存率で保存できることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, by placing the cells under a certain pressure, the temperature of the water is higher than the crystallization temperature of the intracellular water, but the activity of the cells is low. The inventors have found that cells can be stored with a high survival rate if the temperature is not more than the optimum temperature, and the present invention has been completed.
すなわち、本発明の第1の観点の細胞の保存方法は、保存温度を保存すべき細胞内の水の結晶化温度より高く、及び細胞の活動至適温度以下、並びに保存圧力を0.11~10MPaにする保存方法である。ここで、細胞の活動至適温度とは、該細胞が生命活動をする上で好適な温度のことを言い、細胞種によってその温度は異なるが、例えば、動物細胞であれば該動物の体温がそれに該当する。 That is, in the cell storage method of the first aspect of the present invention, the storage temperature is higher than the crystallization temperature of intracellular water to be stored, the cell activity optimum temperature or less, and the storage pressure is 0.11 to This is a storage method of 10 MPa. Here, the optimum temperature of the cell activity means a temperature suitable for the life activity of the cell, and the temperature varies depending on the cell type. For example, in the case of an animal cell, the body temperature of the animal is That is true.
好適には、前記保存温度が1℃~37℃、及び前記保存圧力が0.11~6.5MPaである。 Preferably, the storage temperature is 1 ° C. to 37 ° C., and the storage pressure is 0.11 to 6.5 MPa.
好適には、前記保存条件下において液体である培地に、細胞を培地に播種又は懸濁した状態で保存する。 Preferably, the cells are seeded or suspended in a medium that is liquid under the aforementioned storage conditions.
好適には、外部からの圧力を内部の物質に伝達できる材質を有する保存容器に細胞を封入し、圧力媒体により前記保存容器を介して細胞を加圧する。 Preferably, the cells are sealed in a storage container made of a material that can transmit external pressure to the internal substance, and the cells are pressurized through the storage container with a pressure medium.
好適には、前記細胞の保存方法は、外部からの圧力を内部の物質に伝達できる材質を有する保存容器内に細胞を封入する工程と、該細胞を封入した1個又は2個以上の前記保存容器を加圧容器内に収める工程と、該加圧容器内を前記温度内に維持する工程と、及び前記加圧容器内に圧力媒体を充填することにより前記圧力を維持し、前記保存容器内の細胞を加圧する工程と、を備えている。 Preferably, the method for storing cells includes a step of enclosing cells in a storage container having a material capable of transmitting external pressure to an internal substance, and one or more of the storages including the cells. Storing the container in a pressurized container; maintaining the pressure container in the temperature; and maintaining the pressure by filling the pressurized container with a pressure medium; And pressurizing the cells.
好適には、前記圧力媒体は液体である。 Preferably, the pressure medium is a liquid.
本発明の第2の観点の細胞保存装置は、圧力媒体を充填することにより圧力を維持できる加圧容器と、該加圧容器内に収めることが可能であって、外部からの圧力を内部の物質に伝達できる材質を有することにより内部に封入される細胞を加圧できる1個又は2個以上の細胞保存容器と、を有する。 The cell storage device according to the second aspect of the present invention includes a pressurized container capable of maintaining pressure by filling with a pressure medium, and can be accommodated in the pressurized container. One or two or more cell storage containers capable of pressurizing cells enclosed inside by having a material that can be transmitted to a substance.
好適には、前記圧力媒体を流体移送装置により前記加圧容器内に送入することにより、前記加圧容器内の圧力を調整する前記細胞保存装置である。 Preferably, the cell storage device adjusts the pressure in the pressurized container by sending the pressure medium into the pressurized container by a fluid transfer device.
好適には、前記圧力媒体が液体である前記細胞保存装置である。 Preferably, in the cell storage device, the pressure medium is a liquid.
好適には、前記流体移送装置によって前記圧力媒体の送入及び排出を制御することにより、加減圧速度を調整可能とする前記細胞保存装置である。 Preferably, in the cell storage device, the pressure increase / decrease rate can be adjusted by controlling the feeding and discharging of the pressure medium by the fluid transfer device.
本発明によれば、細胞の生存率を良好に維持しつつ、細胞の保存前後における処置の迅速さ、簡便さ、及び運搬の容易性の要請に応えて細胞を保存することができる。さらに本発明によれば、生体内又は培養時の性質を維持させつつ種々の実験を数多く実施したい場合、及び同一条件化での比較実験を迅速に実施したい場合等に、数種の細胞を一度に同一条件で保存することができる。 According to the present invention, cells can be preserved in response to demands for quickness, simplicity, and ease of transportation before and after cell preservation while maintaining good cell viability. Furthermore, according to the present invention, several types of cells can be used once when a large number of various experiments are performed while maintaining the properties in vivo or during culture, or when a comparative experiment under the same conditions is performed quickly. Can be stored under the same conditions.
本発明について、その具体的態様を以下に詳述する。本発明で保存できる細胞は特に限定されず、動物細胞、微生物細胞等の保存に適用できるが、保存目的からすれば動物細胞が好ましく、例えば、マウス、ラット、モルモット、鳥類、犬、猫、豚、羊、馬、牛、サル、ヒト等の動物から採取された種々の細胞の保存に適用することができる。細胞種としては、脳細胞、神経細胞、表皮細胞、繊維細胞、筋細胞、肝細胞、及び幹細胞等に適用することができ、また、胚性幹細胞や人口多能性幹細胞に適用することも可能と考えられる。 Specific embodiments of the present invention will be described in detail below. Cells that can be stored in the present invention are not particularly limited and can be applied to storage of animal cells, microbial cells, etc., but animal cells are preferable for the purpose of storage, for example, mice, rats, guinea pigs, birds, dogs, cats, pigs It can be applied to the preservation of various cells collected from animals such as sheep, horses, cows, monkeys, and humans. As cell types, it can be applied to brain cells, nerve cells, epidermal cells, fiber cells, muscle cells, hepatocytes, stem cells, etc. It can also be applied to embryonic stem cells and artificial pluripotent stem cells it is conceivable that.
本発明の保存方法では、プレートやフラスコのような細胞培養容器の容器壁に前記細胞を接着させた状態若しくは前記接着後に前記フラスコ内を培養液で満たした状態、又は前記細胞を適当な容器内の固体若しくは液体培地に播種した状態、あるいは適当な容器内の液体培地に前記細胞を懸濁させた状態で保存することができる。細胞に均一に圧力を付与するという観点から好ましくは、液体培地に細胞を懸濁させた状態で保存する。液体培地としては、例えばDulbeco’s Modified Eagle Medium (通称 DMEM)等を使用する。以後、前記細胞を保存するための容器を「保存容器」と称する。 In the preservation method of the present invention, the cells are adhered to the container wall of a cell culture container such as a plate or flask, or the flask is filled with a culture solution after the adhesion, or the cells are placed in a suitable container. The cells can be stored in a state inoculated in a solid or liquid medium or suspended in a liquid medium in a suitable container. From the viewpoint of uniformly applying pressure to the cells, the cells are preferably stored in a state of being suspended in a liquid medium. As the liquid medium, for example, Dulbecco's Modified Eagle Medium (commonly called “DMEM”) or the like is used. Hereinafter, the container for storing the cells is referred to as “storage container”.
細胞に圧力を付与する方法としては、前記保存容器を圧力を付与するための容器(以後、「加圧容器」と称する)内に収め、圧力媒体として気体または液体を用いて前記保存容器内の細胞に圧力を付与する。該加圧容器内へ収める保存容器は1個であってもよく、又は数種の細胞を一度に同一条件下で保存したい場合等には2個以上の複数個であってもよい。装置の設計上からは該加圧容器内へ収める保存容器の個数は100個以下が好ましい。 As a method for applying pressure to cells, the storage container is placed in a container for applying pressure (hereinafter referred to as “pressurized container”), and a gas or liquid is used as a pressure medium in the storage container. Apply pressure to the cells. The number of storage containers stored in the pressurized container may be one, or two or more may be used when several types of cells are desired to be stored at the same time. The number of storage containers stored in the pressurized container is preferably 100 or less from the design of the apparatus.
ここで、圧力媒体とは、前記保存容器内の細胞に直接又は間接的に所定の圧力を付与し、及びその圧力を維持するための物質であって、気体又は液体状のものをいう。気体としては、空気、酸素、二酸化炭素、窒素、希ガス又はこれらの混合ガス等を使用することができる。前記気体は細胞種及び保存期間等により適宜選択する。液体としては特に制限は無いが、水、メタノール、エタノール、エチレングリコール、グリセリン、不凍液、食塩若しくは芒硝等の無機塩水溶液、又は糖類の水溶液、あるいはこれらの混合物等を使用することができる。簡便さ、費用の点で水が好適である。 Here, the pressure medium is a substance for applying a predetermined pressure directly or indirectly to the cells in the storage container and maintaining the pressure, and is a gas or liquid. As the gas, air, oxygen, carbon dioxide, nitrogen, a rare gas, or a mixed gas thereof can be used. The gas is appropriately selected depending on the cell type and storage period. Although there is no restriction | limiting in particular as a liquid, Water, methanol, ethanol, ethylene glycol, glycerin, antifreeze liquid, inorganic salt aqueous solution, such as salt or sodium sulfate, aqueous solution of saccharides, these mixtures etc. can be used. Water is preferable in terms of simplicity and cost.
圧力媒体として気体を使用する場合の第1の方法は、前記保存容器を開放状態で加圧容器内に入れて圧力を付与する。なおこの場合は、加圧容器を使用せず、保存容器内を前記気体で直接圧力を付与した後密封して加圧状態にしても良い。保存容器の材質としては、付与する圧力に耐えられれば特に制限は無いが、例えば、ガラス、ステンレス、又はポリエチレン、ポリプロピレン、アクリル樹脂、シリコン樹脂、若しくはテフロン(登録商標)等の樹脂製品を使用することができ、付与する圧力の大きさによって適宜選択する。 The first method in the case of using a gas as the pressure medium applies pressure by putting the storage container into a pressurized container in an open state. In this case, the pressurized container may not be used, and the inside of the storage container may be directly pressurized with the gas and then sealed to be in a pressurized state. The material of the storage container is not particularly limited as long as it can withstand the applied pressure. For example, glass, stainless steel, or a resin product such as polyethylene, polypropylene, acrylic resin, silicon resin, or Teflon (registered trademark) is used. The pressure is appropriately selected according to the magnitude of the applied pressure.
圧力媒体として気体を使用する場合の第2の方法は、下記の圧力媒体として液体を使用する場合と同様、細胞に所定の圧力を付与するため外部からの圧力を内部の物質に伝達できる材質を有する保存容器を使用し、該保存容器は密封して加圧容器内に収める。 The second method in the case of using a gas as the pressure medium is similar to the case of using a liquid as the pressure medium described below, and uses a material that can transmit external pressure to the internal substance in order to apply a predetermined pressure to the cells. The storage container is used, and the storage container is sealed and placed in a pressurized container.
圧力媒体として液体を使用する場合は、細胞が該液体と接触するのを防止するため保存容器は密封して加圧容器内に入れる必要がある。したがってこの場合には、細胞に所定の圧力を付与するため外部からの圧力を内部の物質に伝達できる材質を有する保存容器を使用する。本要件を満足するものであれば特に制限は無いが、例えば、シリコン樹脂、天然ゴム、SBR等の合成ゴム、塩化ビニル樹脂等の合成樹脂、及びテフロン(登録商標)等を使用することができる。この場合、保存容器内の細胞に的確に圧力が伝達されるように、細胞は液体培地に懸濁されて保存容器内に密封されていることが望ましい。 When a liquid is used as the pressure medium, the storage container needs to be sealed and placed in a pressurized container in order to prevent cells from coming into contact with the liquid. Therefore, in this case, in order to apply a predetermined pressure to the cells, a storage container having a material capable of transmitting an external pressure to an internal substance is used. There is no particular limitation as long as this requirement is satisfied, but for example, synthetic resin such as silicon resin, natural rubber, SBR, synthetic resin such as vinyl chloride resin, and Teflon (registered trademark) can be used. . In this case, it is desirable that the cells are suspended in a liquid medium and sealed in the storage container so that the pressure is accurately transmitted to the cells in the storage container.
前記、圧力媒体に気体を使用する場合の第2の方法と液体を使用する場合においては、細胞は保存容器に保存期間等により適宜選択した培地と共に入れて密封され、したがって、圧力媒体とは直接触れないため該圧力媒体は細胞の種類と共に代える必要はない。 In the second method in the case of using a gas as the pressure medium and in the case of using a liquid, the cells are sealed in a storage container together with a medium appropriately selected according to the storage period, etc. The pressure medium does not need to be changed with the cell type because it is not touched.
前記保存容器の形態は、内部に圧力が伝達されるものであればどのような形態でもよく、例えば、球形、円筒形、又は点滴バッグのような袋状であってもよい。 The shape of the storage container may be any shape as long as pressure is transmitted to the inside, for example, a spherical shape, a cylindrical shape, or a bag shape such as an infusion bag.
以上のようにして保存容器内に入れられた細胞を、細胞内の水の結晶化温度より高く、及び細胞の活動至適温度以下、並びに0.11~10MPaの圧力下で保存する。前記水の結晶化温度は細胞種によって異なるが、一般的には0~-10℃である。結晶化温度以下では細胞内の水が結晶化して細胞を破壊するおそれがあり、活動至適温度より高い温度では、一般的に細胞にとって不適な環境であり、細胞の生存率が低下するからである。圧力が0.11MPaより低いときは大気圧で保存する場合と比較して有意差が見られず細胞生存率が低く、10MPaを超えるとやはり細胞生存率が低いからである。なお、物理的ショックによる細胞中の水分の凍結の不安を払拭する点において、保存温度は-3℃以上が好ましく、保存後すぐに実験等に供する点及び細胞生存率の点で-1℃以上がより好ましく、1℃以上がさらに好ましい。また、前述した通り細胞の種類により至適温度は異なるが、保存後すぐに実験等に供する点で、40℃以下が好ましく、37℃以下がさらに好ましい。保存圧力については、細胞生存率の点で0.11MPa以上が好ましく、保存時の圧力漏洩のおそれを考慮すると、0.15MPa以上がより好ましい。又、最大圧力については、細胞生存率を長期間維持する点で6.5MPa以下が好ましく、5.5MPa以下がより好ましい。 The cells placed in the storage container as described above are stored at a temperature higher than the crystallization temperature of the water in the cells, not more than the optimum temperature for cell activity, and a pressure of 0.11 to 10 MPa. The water crystallization temperature varies depending on the cell type, but is generally 0 to -10 ° C. If the temperature is lower than the crystallization temperature, the water in the cell may crystallize and destroy the cell.If the temperature is higher than the optimum temperature for the activity, it is generally an unsuitable environment for the cell and the cell viability decreases. is there. This is because when the pressure is lower than 0.11 MPa, no significant difference is observed as compared with the case of storage at atmospheric pressure, and the cell viability is low, and when it exceeds 10 MPa, the cell viability is low. Note that the storage temperature is preferably −3 ° C. or higher in order to dispel the fear of freezing of water in the cells due to physical shock, and −1 ° C. or higher in terms of providing for experiments immediately after storage and cell viability. Is more preferable, and 1 degreeC or more is further more preferable. In addition, as described above, the optimum temperature varies depending on the cell type, but it is preferably 40 ° C. or lower, more preferably 37 ° C. or lower, in that it is used for experiments immediately after storage. The storage pressure is preferably 0.11 MPa or more in terms of cell viability, and more preferably 0.15 MPa or more in consideration of the risk of pressure leakage during storage. The maximum pressure is preferably 6.5 MPa or less, more preferably 5.5 MPa or less, from the viewpoint of maintaining the cell viability for a long period of time.
なお、多くの細胞を保存する場合、細胞の保存処理の迅速性と当該細胞の生存率の高さを両立させる上で、保存される細胞を静水圧で均一に加圧する事が好ましいため、前記方法において、保存する細胞を外部からの圧力を内部の物質に伝達できる材質を有する保存容器内で液体培地に懸濁させて密封し、該保存容器を加圧容器内に入れて液体圧力媒体で加圧する方法が好ましい。 In addition, when storing many cells, it is preferable to pressurize the stored cells uniformly with hydrostatic pressure in order to achieve both the rapidity of the cell storage process and the high survival rate of the cells. In the method, cells to be stored are suspended in a liquid medium in a storage container having a material capable of transmitting external pressure to an internal substance and sealed, and the storage container is placed in a pressurized container with a liquid pressure medium. A method of applying pressure is preferred.
以上のようにして圧力が付与された保存容器又は保存容器が収められた加圧容器を、恒温槽、恒温室、又は前記保存温度が維持できれば室内で保存する。 The storage container to which pressure is applied as described above or the pressurized container in which the storage container is stored is stored in a thermostatic chamber, a constant temperature room, or indoors if the storage temperature can be maintained.
本発明の細胞保存装置をより具体的に説明すると以下の通りである。まず、加圧容器は圧力調整用のためのバルブを有し、該バルブは加圧と減圧を兼ねるものであっても良く、加圧と減圧が別々のバルブであっても良い。バルブの型式は前記圧力に耐えられれば特に制限は無く、例えば、ゲートバルブ、ボールバルブ、ニードルバルブ、及びストップバルブ等を使用することができる。 The cell storage device of the present invention will be described more specifically as follows. First, the pressurized container has a valve for pressure adjustment, and the valve may serve both as pressurization and decompression, and the pressurization and decompression may be separate valves. The type of the valve is not particularly limited as long as it can withstand the pressure. For example, a gate valve, a ball valve, a needle valve, a stop valve, or the like can be used.
前記加圧容器内を所望の圧力に昇圧する方法としては、圧力媒体が気体の場合は流体移送装置としてコンプレッサー等を使用する方法があり、液体の場合は送液ポンプを使用する方法がある。前記理由により、送液ポンプ等の送液装置を使用して液体圧力媒体により加圧することが好ましい。保存後、保存細胞を取り出すために加圧容器内を大気圧に戻す操作においては、単にバルブを開放して圧力媒体を排出させて減圧してもよく、送液ポンプ等を減圧装置として使用して圧力媒体を排出させてもよい。 As a method for increasing the pressure inside the pressurized container to a desired pressure, there is a method using a compressor or the like as a fluid transfer device when the pressure medium is a gas, and a method using a liquid feed pump when the pressure medium is liquid. For the above reasons, it is preferable to pressurize with a liquid pressure medium using a liquid delivery device such as a liquid delivery pump. In the operation of returning the inside of the pressurized container to the atmospheric pressure in order to take out the preserved cells after storage, the pressure medium may be discharged by simply opening the valve, and the pressure may be reduced. The pressure medium may be discharged.
本発明の前記細胞保存装置の好ましい態様は、前記の通り保存細胞に均一に圧力をかけるため、図1に示すような構成からなるものである。すなわち、外部からの圧力を内部の物質に伝達できる材質からなる保存容器、該保存容器を1個又は複数個内部に収めることができる加圧容器、前記液体圧力媒体、該液体圧力媒体を貯蔵する貯蔵槽、該液体圧力媒体を移送する送液ポンプ(流体移送装置)及び配管を基本構成とする。また、圧力付与状態を監視するために、前記加圧容器には内部圧力を表示するための圧力ゲージ等の圧力表示器を取り付けるのが好ましい。さらに、前記加圧容器内部を観察するためにガラス又は透明な樹脂製の窓を適宜取り付けてもよい。 A preferred embodiment of the cell storage device of the present invention is configured as shown in FIG. 1 in order to uniformly apply pressure to the stored cells as described above. That is, a storage container made of a material capable of transmitting an external pressure to an internal substance, a pressurized container capable of storing one or a plurality of the storage containers, the liquid pressure medium, and the liquid pressure medium are stored. A storage tank, a liquid feed pump (fluid transfer device) for transferring the liquid pressure medium, and piping are basically constructed. In order to monitor the pressure application state, it is preferable that a pressure indicator such as a pressure gauge for displaying the internal pressure is attached to the pressurized container. Furthermore, in order to observe the inside of the pressurized container, a glass or transparent resin window may be appropriately attached.
なお、前記加圧容器には前記圧力調整用のバルブが取り付けられており、加圧処理をした後バルブを閉め、配管及び送液ポンプ等を取り外すことにより、前記加圧容器(内部には細胞保存容器が収められている)のみを運搬することができる。前記配管の管の材質としては特に制限は無く、ステンレス、鉄鋼、銅、真鍮、若しくは塩化ビニル樹脂等が挙げられ、又はテフロン(登録商標)チューブ、シリコンチューブ、若しくは耐圧ゴム管等のフレキシブルタイプの管も好適である。 The pressure adjusting valve is attached to the pressure vessel. After the pressure treatment, the valve is closed, and the piping and the liquid feed pump are removed to remove the pressure vessel (inside the cell Only storage containers can be transported. The pipe material is not particularly limited, and examples include stainless steel, steel, copper, brass, or vinyl chloride resin, or a flexible type such as a Teflon (registered trademark) tube, a silicon tube, or a pressure-resistant rubber tube. Tubes are also suitable.
本発明の前記細胞保存装置の大きさについては、理論的かつ製造面で可能であれば特に制限は無いが、細胞の保存という目的において、細胞保存容器の容量として0.01mL~数Lが実用的であり、好ましくは0.1mL~1Lである。加圧容器は、該保存容器の大きさ及び該加圧容器へ収める該保存容器の個数に合わせて設計する。 The size of the cell storage device of the present invention is not particularly limited as long as it is theoretically possible in terms of production, but for the purpose of cell storage, a cell storage container capacity of 0.01 mL to several L is practical. Preferably 0.1 mL to 1 L. The pressurized container is designed in accordance with the size of the storage container and the number of the storage containers stored in the pressurized container.
以上述べた本発明の細胞の保存方法及びその装置によると、生体から採取直後の細胞又は培養中の細胞を迅速かつ簡便に保存環境におくことができる。本発明においては、極端な低温とする必要も無く、極端な高圧とする必要も無く、かつ保存溶液の調整及び該保存溶液と細胞の混合操作も必要としないためである。したがって、後の実験または細胞移植等のために、必要であれば数種の細胞又は培地の異なる同種の細胞等を、同一の条件で迅速に保存環境におくことができ、比較実験の精度向上や生体機能の保持に有効である。 According to the cell storage method and apparatus of the present invention described above, cells immediately after being collected from a living body or cells in culture can be quickly and easily placed in a storage environment. This is because, in the present invention, it is not necessary to set an extremely low temperature, it is not necessary to set an extremely high pressure, and the preparation of the storage solution and the mixing operation of the storage solution and cells are not required. Therefore, for later experiments or cell transplantation, if necessary, several types of cells or the same type of cells with different media can be quickly placed in a storage environment under the same conditions, improving the accuracy of comparative experiments. And is effective in maintaining biological functions.
本発明の方法及び装置により、細胞は1日間から数週間の間高い生存率で保存することができ、保存状態を解除するに当たっても、加圧状態が極端に高圧ではないため短時間に大気圧に戻すことができる。また、該保存細胞は凍結等されていないので、保存期間終了後直ぐにプレートなどに該細胞を接着させる等、迅速に実験準備に着手できる。なお、前記保存期間の長さについては、細胞種によって生命力の強さ又は環境変化に対する適応性に差があるため一概には言えないが、2~4週間保存することが可能である。 According to the method and apparatus of the present invention, cells can be stored with a high survival rate for one day to several weeks, and even when releasing the storage state, the pressurized state is not extremely high pressure, so the atmospheric pressure can be reduced in a short time. Can be returned to. In addition, since the preserved cells are not frozen or the like, the preparation for the experiment can be quickly started by attaching the cells to a plate or the like immediately after the preservation period. The length of the storage period cannot be generally described because there is a difference in the strength of vitality or adaptability to environmental changes depending on the cell type, but it can be stored for 2 to 4 weeks.
後述の実施例にて詳述するが、本発明の保存方法を用いることにより、圧力を付与せず保存した場合と比較して細胞の生存率が飛躍的に増加する。本効果が得られる理由は、明確ではないが、オタマジャクシが高圧下で仮眠状態になるのが知られているように加圧により細胞が仮眠状態(麻酔効果が働き)になることにより代謝が遅くなり、培地の栄養等の消費も少なく長時間培地も代えることなく生存出来るのではないかと推測される。 As will be described in detail in the examples described later, by using the storage method of the present invention, the survival rate of the cells is dramatically increased as compared with the case of storing without applying pressure. The reason why this effect is obtained is not clear, but as it is known that tadpoles go into a nap state under high pressure, the cell is put into a nap state (anesthetic effect works) by pressurization, and the metabolism is slow. Therefore, it is presumed that the medium can be viable without changing the medium for a long time with little consumption of the medium.
次に、本発明の実施形態について図を参照しながら以下に説明する。前述した図1は本発明の細胞保存装置の代表例を概念的に示したものである。また、図2は保存容器を加圧容器に収めた状態であって、両容器の断面図を表したものである。なお、図2では該保存容器が圧力媒体中で浮遊しているように描かれているが、これは判り易くするためであって、実際は、加圧容器の内壁と接触しているか、又は加圧容器内に保存容器用支持体を設けているときにはその支持体によって支持されている。貯蔵槽1に液体圧力媒体を充填し、送液ポンプ2と配管9で連結する。本実施形態では、液体圧力媒体として水を主体として使用し、配管はテフロン(登録商標)チューブを使用している。 Next, an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 described above conceptually shows a typical example of the cell storage device of the present invention. FIG. 2 shows a state in which the storage container is housed in a pressurized container, and shows a cross-sectional view of both containers. In FIG. 2, the storage container is depicted as floating in the pressure medium. However, this is for ease of understanding, and is actually in contact with the inner wall of the pressurized container or applied. When the storage container support is provided in the pressure vessel, it is supported by the support. The storage tank 1 is filled with a liquid pressure medium and connected to the liquid feed pump 2 by a pipe 9. In this embodiment, water is mainly used as the liquid pressure medium, and a Teflon (registered trademark) tube is used as the pipe.
細胞、例えばラット新生仔脳の初代培養系(2×107/dish)を20~30日間培養し,グリア細胞が成熟後トリプシン(0.05%)ではがし取り、保存容器3に液体培地に懸濁させて充填する。液体培地としては、広く種々細胞培養用培地を使用することができ、本実施形態ではDMEM培地を使用した。表1に本研究で用いたGIBCO社製のDMEM培地の組成を示した。保存容器3は円筒形のものを使用し、筒部分はシリコン樹脂チューブであり、円筒の上面及び底面部はガラス又はテフロン(登録商標)樹脂製の栓を用いて該シリコン樹脂チューブに栓をする構造である。該円筒の上面又は底面に栓をし、細胞懸濁液体培地を充填後もう一方の面も栓をして密封する。
Cells, for example, rat neonatal brain primary culture system (2 × 10 7 / dish) is cultured for 20-30 days, and after glial cells mature, trypsin (0.05%) is removed and stored in
前記の細胞を封入した保存容器3を加圧容器4内に収める。本実施形態では該加圧容器4はステンレス製の円筒形状で、上面又は底面に開閉ハッチ7を備えており、該ハッチから前記保存容器3を中に収める。本実施形態では、前記保存容器3を前記加圧容器4の中で特に支持はしていないが、加圧容器内に支持体を設けて、保存容器3を例えば加圧容器の中央に支持できるようにすることもできる。複数の保存容器を同時に保存するために支持体を複数加圧容器内に設置することも好適である。
The
なお、図1の加圧容器4には前記開閉ハッチとしてビューポート(観察窓)11付のものを示しているが、窓は別の位置に設置されたものであってもよく、当該窓部はなくてもよい。さらには、開閉ハッチは必須ではなく、保存容器3を加圧容器4内に収めることができれば、その装置構造はどのようなものであってもよい。
In addition, although the thing with the viewport (observation window) 11 is shown as the opening-and-closing hatch in the pressurized container 4 of FIG. 1, the window may be installed in another position, The said window part Is not necessary. Furthermore, the open / close hatch is not essential, and the device structure may be any as long as the
送液ポンプ2と加圧容器4とは、バルブ5を介してテフロン(登録商標)チューブにより連結され、保存容器3を該加圧容器4内に収めて開閉ハッチを閉じた後、バルブ6を開放状態にして、送液ポンプ2により貯蔵槽1の水を加圧容器4内に送入する。あるいは保存容器を収める前に加圧容器内に水を送入してもよい。加圧容器4の内部が完全に水で満たされたらバルブ6を閉じる。この状態で該加圧容器4内の圧力を圧力表示器8でモニターしながら、所望の圧力になるまでさらに水を送入する。このとき、圧力媒体である水は所望の保存温度に保持されていることが望ましい。
The liquid feed pump 2 and the pressurized container 4 are connected by a Teflon (registered trademark) tube through a valve 5, and after storing the
前記細胞保存装置をあらかじめ恒温室に設置し、前記操作終了後そのまま所望の温度で保存してもよく、又は前記したとおり保存容器3を内包している加圧容器4を送液ポンプ等から取り外し、該加圧容器4(保存容器3を内包)のみを恒温槽等で保存してもよい。
The cell storage device may be installed in a temperature-controlled room in advance and stored at a desired temperature as it is after the operation is completed, or the pressurized container 4 containing the
本実施形態では保存容器3及び加圧容器4いずれも円筒形の例を示したが、前述の通り保存容器3は球形や点滴バッグのようなバッグ形状であってもよく、加圧容器4も中が空洞である直方体又は立方体、いわゆるクーラーボックス様であってもよい。すなわち、例えばクーラーボックス様の加圧容器内に点滴バッグ様の保存容器を整列させて複数個収めるような保存方法であってもよい。
In the present embodiment, the
本発明の保存装置は、前記したとおり加圧容器4のみを取り外すことができるので、細胞を採取等した場所と実験場所あるいは治療場所が離れている場合にも簡便に運搬することができる。必要であれば、該加圧容器をさらにクーラーボックス等の恒温容器に入れて所望の温度を保持しつつ運搬することができる。 Since the storage device of the present invention can remove only the pressurized container 4 as described above, it can be easily transported even when the place where the cells are collected and the experiment place or the treatment place are separated. If necessary, the pressurized container can be further put into a thermostatic container such as a cooler box and transported while maintaining a desired temperature.
保存状態を解除して細胞を取り出す場合は、バルブ5又は6、あるいは両方を開放して液体圧力媒体(本実施形態では水)を排出させて圧力を大気圧に戻せばよい。あるいは大気圧に戻す際の減圧速度を精密にコントロールしたい場合は、送液ポンプを使用して所望の速度で該液体圧力媒体を排出させてもよい。なお、細胞の保存時の温度と保存後の処置時の温度が異なる場合、圧力を大気圧に戻す前に温度調節を行ってもよく、圧力を大気圧に戻した後に温度調節を行ってもよいが、好ましくは温度調節を行ってから大気圧に戻すほうがよい。 When the stored state is released and the cells are taken out, the valve 5 or 6 or both may be opened to discharge the liquid pressure medium (water in this embodiment) to return the pressure to atmospheric pressure. Alternatively, when it is desired to precisely control the pressure reduction speed when returning to the atmospheric pressure, the liquid pressure medium may be discharged at a desired speed using a liquid feed pump. If the temperature at the time of cell storage and the temperature at the time of treatment after storage are different, the temperature may be adjusted before returning the pressure to atmospheric pressure, or the temperature may be adjusted after returning the pressure to atmospheric pressure. Although it is good, it is preferable to return to atmospheric pressure after adjusting the temperature.
以下、実施例を用いて本発明についてさらに詳しく説明する。本実験は培養細胞の分離、加圧処理、及び保存後の細胞観察の3つの部分に大きく分けられる。 Hereinafter, the present invention will be described in more detail using examples. This experiment is roughly divided into three parts: separation of cultured cells, pressure treatment, and cell observation after storage.
<実験方法及び条件>
1.培養細胞の分離
試料の細胞としてはラット新生仔脳の初代培養系(2×107dish)を20~30日間培養し、グリア細胞が成熟した状態のものを使用した。また、細胞数等の条件は細胞をカウントしてなるべく同じになるように調整しているが細胞のロット等で必ずしも同じ条件にはならない。そこで毎回同じ細胞を3つに分け、比較として必ず1つは未加圧(すなわち大気圧;約0.1MPa)で保存し、残り2つを加圧保存試料とした。
<Experimental method and conditions>
1. As a cell of the isolated sample of the cultured cells, a rat neonatal brain primary culture system (2 × 10 7 dish) was cultured for 20 to 30 days and the glial cells were matured. In addition, the conditions such as the number of cells are adjusted to be the same as possible by counting the cells, but the conditions are not necessarily the same depending on the lot of cells. Therefore, the same cells were divided into three each time, and for comparison, one was always stored under no pressure (ie, atmospheric pressure; about 0.1 MPa), and the other two were used as pressure storage samples.
(1)ラット新生仔脳から取り出した初代培養系(2×107dish)グリア細胞を37℃のCO2インキュベーター(WAKENYAKU Model9100、CO2濃度5%)を用いて20~30日間、250mL培養フラスコでDMEM培地を用いて培養し成熟させた。グリア細胞はフラスコの底面に接着し、突起を伸ばした状態で生存している。 (1) Primary culture system (2 × 10 7 dish) glial cells removed from the rat neonatal brain were cultured in a 250 mL culture flask for 20-30 days using a CO 2 incubator (WAKENYAKU Model 9100, CO 2 concentration 5%) at 37 ° C. And matured using DMEM medium. The glial cells adhere to the bottom of the flask and survive with the protrusions extended.
(2)前記(1)の培養フラスコから細胞を取り出すため、まず、該フラスコから培地をアスピレーターで吸い出した。 (2) In order to take out the cells from the culture flask of (1), first, the medium was sucked out of the flask with an aspirator.
(3)細胞に付着している培地をさらに洗い流すために、前記フラスコにPBS(生理食塩水入りのリン酸緩衝液)を6mL加え軽く振った後、該洗浄溶液をアスピレーターで吸って取り除いた。 (3) To further wash away the medium adhering to the cells, 6 mL of PBS (phosphate buffer solution containing physiological saline) was added to the flask and shaken gently, and then the washing solution was removed by sucking with an aspirator.
(4)酵素反応を利用して前記フラスコに付着している細胞を剥離すために該フラスコに0.05%トリプシンを2mL加えた。 (4) 2 mL of 0.05% trypsin was added to the flask in order to detach cells adhering to the flask using an enzyme reaction.
(5)トリプシンを効率よく働かせるため37℃の恒温槽に2~3分間保持した。その後インキュベーターから取り出し、前記フラスコを軽くたたいて細胞を剥がした。 (5) To make trypsin work efficiently, it was kept in a constant temperature bath at 37 ° C. for 2 to 3 minutes. Thereafter, the cells were removed from the incubator, and the cells were detached by tapping the flask.
(6)馬の血清2mLとPBS6mLとを前記フラスコに加えてトリプシンの活性をとめた。 (6) 2 mL of horse serum and 6 mL of PBS were added to the flask to stop trypsin activity.
(7)前記フラスコから遠沈管に溶液を移し、日立製遠心機himac-CT4iを用い800rpmで7分間遠心して剥離した細胞を沈殿させ、底に沈殿している細胞を吸い取らないように注意しながら上澄み液をアスピレーターで吸い取った。 (7) Transfer the solution from the flask to a centrifuge tube, and centrifuge at 800 rpm for 7 minutes using a Hitachi centrifuge, himac-CT4i to precipitate the detached cells, taking care not to absorb the cells that have settled on the bottom. The supernatant was sucked up with an aspirator.
(8)1.5mLのDMEM培地を前記遠沈管に加え、細胞を十分に懸濁させた。 (8) 1.5 mL of DMEM medium was added to the centrifuge tube to sufficiently suspend the cells.
(9)以後の実験で前記細胞懸濁溶液を数個に小分けして使うが、このとき各小分けしたものの該細胞溶液の濃度(細胞の個数)を同じにするためには、でき得る限り該細胞が1個ずつ単独で均一に培地中に分散していることが必要である。そこで、複数個が凝集している細胞の大部分を取り除くため、100μmのフィルターでロ過し、該細胞がほぼ1個ずつ単一に分散しているロ液(細胞懸濁液)を回収した。 (9) In the subsequent experiments, the cell suspension solution is used by dividing it into several pieces. At this time, in order to make the concentration of the cell solution (number of cells) the same in each subdivision, the cell suspension solution is used as much as possible. It is necessary that the cells are individually and uniformly dispersed in the medium. Therefore, in order to remove most of the aggregated cells, it was filtered with a 100 μm filter, and the filtrate (cell suspension) in which the cells were dispersed in a single unit was collected. .
(10)ピペットマンで前記細胞懸濁液を少量取り、均一に分布するように血球計算板に入れ、定法に従って顕微鏡で視野内の細胞数を数え、細胞数を計算した。 (10) A small amount of the cell suspension was taken with a pipetman, placed in a hemocytometer so as to be uniformly distributed, and the number of cells in the field of view was counted with a microscope according to a conventional method, and the number of cells was calculated.
(11)前記(10)で計算した細胞数をもとに細胞濃度が4×106~6×106個/300μLになるようにDMEM培地で濃度を調整した。 (11) Based on the number of cells calculated in (10) above, the concentration was adjusted with DMEM medium so that the cell concentration was 4 × 10 6 to 6 × 10 6 cells / 300 μL.
(12)前記(11)の細胞懸濁液を300μLずつ均一に量り取って、保存容器であるシリコンチューブに入れ、空気が入らないように注意してテフロン(登録商標)のふたで密封した。 (12) 300 μL of the cell suspension of (11) was weighed out uniformly, put into a silicon tube as a storage container, and sealed with a Teflon (registered trademark) lid, taking care not to enter air.
2.加圧処理(保存条件)
(13)加圧容器(最大加圧可能圧力15MPa)に、各保存温度に設定した水(圧力媒体)を入れた。前記温度はそれぞれ0℃、4℃、20℃又は37℃のいずれかである。なお、保存温度が0℃のときには、圧力媒体が氷るのを防ぐため、水にエチレングリコールを少量加えたものを使用した(なお、以後、該水-エチレングリコール混合液も含め本実施例及び比較例の圧力媒体は水と総称する)。
2. Pressure treatment (storage conditions)
(13) Water (pressure medium) set to each storage temperature was put into a pressurized container (maximum pressurizable pressure 15 MPa). Said temperatures are either 0 ° C., 4 ° C., 20 ° C. or 37 ° C., respectively. When the storage temperature was 0 ° C., a solution in which a small amount of ethylene glycol was added to water was used in order to prevent the pressure medium from icing (hereinafter, this example and the mixed solution including the water-ethylene glycol mixture were also compared). An example pressure medium is generically referred to as water).
(14)前記(12)で準備した保存容器を水で満たした前記加圧容器に収めた。 (14) The storage container prepared in (12) was placed in the pressurized container filled with water.
(15)島津製HPLC用送液ポンプLC6Aを使用して、水を送液して加圧容器内部を静水圧で加圧した。0.15~5.0MPa/分の加圧速度で目的の保存圧力まで加圧した。圧力は山崎製作所製の圧力ゲージで測定した。保存圧力は、下記表2~4に示した各圧力とした。 (15) Using a Shimadzu HPLC liquid feed pump LC6A, water was fed and the inside of the pressurized container was pressurized with hydrostatic pressure. Pressurization was carried out to a desired storage pressure at a pressurization rate of 0.15 to 5.0 MPa / min. The pressure was measured with a pressure gauge manufactured by Yamazaki Seisakusho. The storage pressure was the pressure shown in Tables 2 to 4 below.
(16)各設定保存温度及び設定保存圧力下で1日間、4日間又は5日間保存した。 (16) The sample was stored for 1 day, 4 days or 5 days under each set storage temperature and set storage pressure.
3.保存後の細胞観察
(17)保存容器を加圧容器から取り出した後、テフロン(登録商標)のふたを取り外し、細胞を均一に懸濁させた後、液体培地と共にピペットで吸い取り、15mLのコーニングチューブに移した。
3. Cell observation after storage (17) After removing the storage container from the pressurized container, remove the lid of Teflon (Registered Trademark), suspend the cells uniformly, and suck up with a liquid medium with a pipette, and a 15 mL Corning tube Moved to.
(18)前記コーニングチューブに血清入りのDMEM培地を3mL加えて細胞の濃度を1.5×105~2×105個/300μLに希釈後、12穴の培養用プレートの3ヶ所の穴に分けて前記培地と共に播いた。 (18) Add 3 mL of serum-containing DMEM medium to the above-mentioned Corning tube to dilute the cell concentration to 1.5 × 10 5 to 2 × 10 5 cells / 300 μL, and then add it to 3 holes in the 12-well culture plate. Separately seeded with the medium.
(19)前記培養用プレートを37℃のCO2インキュベーター内に入れて、該保存後の細胞を2日間培養した。 (19) The culture plate was placed in a 37 ° C. CO 2 incubator, and the preserved cells were cultured for 2 days.
(20)細胞の生存率の評価は次のように行った。本実施例で用いた細胞は培養用プレートから剥離すると球形の形状になるという性質があるので、保存時には該細胞は球状で液体培地中に懸濁している。保存後、該細胞が生存していれば、再度培養用プレートに播くと1~2日ほどでプレートの底に接着し、突起をのばして成長するのが観察される。その反面、生存していなければ球状で液体培地中に浮遊したままである。そこで、前記(19)の培養後にプレート底面に接着した細胞の数を顕微鏡で数えて生存細胞数とする。一方、前記「1.培養細胞分離」で調製した細胞懸濁液を保存せず直ぐに、前記(18)及び(19)の処理を行った場合の生存細胞数をブランクとし、これに対する生存細胞数の割合を百分率で表したものを細胞の生存率とした。 (20) The cell viability was evaluated as follows. Since the cells used in this example have a property of forming a spherical shape when detached from the culture plate, the cells are spherical and suspended in a liquid medium during storage. If the cells are alive after storage, they are observed to adhere to the bottom of the plate in about 1 to 2 days and grow with protrusions when they are seeded again on the culture plate. On the other hand, if it is not alive, it is spherical and remains suspended in the liquid medium. Therefore, the number of cells adhering to the bottom of the plate after the culture of (19) is counted with a microscope to obtain the number of viable cells. On the other hand, without storing the cell suspension prepared in “1. Cultured cell separation”, the number of viable cells in the case where the treatments (18) and (19) were performed was set as a blank, and the number of viable cells corresponding thereto was determined. The cell survival rate was expressed as a percentage.
細胞生存率の良否は次の基準で評価した。すなわち、◎(生存率:60%以上)、○(生存率:60%未満及び30%以上)、△(生存率:30%未満及び10%以上)、×(生存率:10%未満)とした。 The quality of cell viability was evaluated according to the following criteria. That is, ◎ (survival rate: 60% or more), ○ (survival rate: less than 60% and 30% or more), △ (survival rate: less than 30% and 10% or more), × (survival rate: less than 10%) did.
実施例1~4
上記実験方法及び条件に従い、保存温度4℃下、保存圧力0.11、1.0、7.5、又は10.0MPa(順に実施例1、2、3、4、以後同様)で1日間保存した後、細胞生存率を測定した。その結果、いずれの場合も細胞生存率は60%以上で良好であった。
Examples 1 to 4
According to the above experimental method and conditions, storage at 4 ° C., storage pressure of 0.11, 1.0, 7.5, or 10.0 MPa (in the order of Examples 1, 2, 3, 4, and so on) for 1 day. After that, the cell viability was measured. As a result, in all cases, the cell viability was good at 60% or more.
比較例1~2
保存圧力を0.1又は14MPa(順に比較例1、2、以後同様)とする以外は実施例1と同じ条件で保存した。その結果、0.1MPa下では細胞の生存率は約20%であり、14MPaでは10%未満であった。
Comparative Examples 1 and 2
The sample was stored under the same conditions as in Example 1 except that the storage pressure was 0.1 or 14 MPa (Comparative Examples 1, 2, and so on). As a result, the cell survival rate was about 20% under 0.1 MPa and less than 10% at 14 MPa.
実施例5
保存温度を37℃、保存圧力を10MPaとする以外は実施例1と同じ条件で保存した。その結果、細胞生存率は約50%であった。
Example 5
It was stored under the same conditions as in Example 1 except that the storage temperature was 37 ° C. and the storage pressure was 10 MPa. As a result, the cell viability was about 50%.
比較例3~4
保存温度を41℃、保存圧力を0.11又は10MPaとする以外は実施例1と同じ条件で保存した。その結果、いずれの場合の細胞生存率もほぼ0%であった。
Comparative Examples 3-4
It was stored under the same conditions as in Example 1 except that the storage temperature was 41 ° C. and the storage pressure was 0.11 or 10 MPa. As a result, the cell viability in each case was almost 0%.
実施例6~7
上記実験方法及び条件に従い、保存温度0℃下、保存圧力0.11又は10.0MPaで4日間保存した後、細胞生存率を測定した。その結果、いずれの場合も細胞生存率は60%以上で良好であった。
Examples 6-7
According to the above experimental method and conditions, the cell viability was measured after storing for 4 days at a storage pressure of 0.11 or 10.0 MPa at a storage temperature of 0 ° C. As a result, in all cases, the cell viability was good at 60% or more.
比較例5~6
保存圧力を0.1又は11MPaとする以外は実施例6と同じ条件で保存した。その結果、いずれの場合の細胞生存率も10%未満であった。
Comparative Examples 5-6
It was stored under the same conditions as in Example 6 except that the storage pressure was 0.1 or 11 MPa. As a result, the cell viability in each case was less than 10%.
実施例8~11
保存温度を4℃、保存圧力を0.2、0.5、1.0、又は6.5MPaとする以外は実施例6と同じ条件で保存した。その結果、保存圧力を0.2、0.5又は1.0MPaの場合の細胞生存率はいずれも60%以上で良好であった。6.5MPaの場合は約50%であった。
Examples 8-11
It was stored under the same conditions as in Example 6 except that the storage temperature was 4 ° C. and the storage pressure was 0.2, 0.5, 1.0, or 6.5 MPa. As a result, the cell viability when the storage pressure was 0.2, 0.5, or 1.0 MPa was good at 60% or more. In the case of 6.5 MPa, it was about 50%.
比較例7
保存温度を4℃、保存圧力を0.1MPaとする以外は実施例6と同じ条件で保存した。その結果、細胞生存率はほぼ0%であった。
Comparative Example 7
It was stored under the same conditions as in Example 6 except that the storage temperature was 4 ° C. and the storage pressure was 0.1 MPa. As a result, the cell survival rate was almost 0%.
実施例12
保存温度を20℃、保存圧力を0.6MPaとする以外は実施例6と同じ条件で保存した。その結果、細胞生存率は60%以上で良好であった。
Example 12
It was stored under the same conditions as in Example 6 except that the storage temperature was 20 ° C. and the storage pressure was 0.6 MPa. As a result, the cell survival rate was good at 60% or more.
比較例8
保存温度を20℃、保存圧力を11MPaとする以外は実施例6と同じ条件で保存した。その結果、細胞生存率はほぼ0%であった。
Comparative Example 8
It was stored under the same conditions as in Example 6 except that the storage temperature was 20 ° C. and the storage pressure was 11 MPa. As a result, the cell survival rate was almost 0%.
実施例13
保存温度を37℃、保存圧力を0.11MPaとする以外は実施例6と同じ条件で保存した。その結果、細胞生存率は60%以上で良好であった。
Example 13
It was stored under the same conditions as in Example 6 except that the storage temperature was 37 ° C. and the storage pressure was 0.11 MPa. As a result, the cell survival rate was good at 60% or more.
実施例14
上記実験方法及び条件に従い、保存温度4℃下、保存圧力3.0MPaで5日間保存した後、細胞生存率を測定した。その結果、細胞生存率は約50%であった。
Example 14
According to the experimental method and conditions described above, the cell viability was measured after storage for 5 days at a storage temperature of 4 MPa at a storage temperature of 3.0 MPa. As a result, the cell viability was about 50%.
比較例9~10
保存圧力を0.1又は11MPaとする以外は実施例14と同じ条件で保存した。その結果、いずれの場合の細胞生存率もほぼ0%であった。
Comparative Examples 9-10
It was stored under the same conditions as in Example 14 except that the storage pressure was 0.1 or 11 MPa. As a result, the cell viability in each case was almost 0%.
保存期間1日間の結果を表2に示す。 Table 2 shows the results for a storage period of 1 day.
保存期間4日間の結果を表3に示す。 Table 3 shows the results for a storage period of 4 days.
保存期間5日間の結果を表4に示す。 Table 4 shows the results for a storage period of 5 days.
細胞は、医療分野、製薬分野、畜産分野、及び生化学等の学術分野など広範な範囲で各種目的の実験等に供されている。又、移植治療等にも重要な役割を担っている。これら細胞を使った実験、例えば培養実験などにおいて一時的に実験を中断して保存が必要になる場合がある。このような場合において、単に冷蔵するだけでは細胞の生存率が低いばかりでなく、細胞によっては保存ができないものもある。一方、細胞を冷凍したり保存溶液を使用したりする場合には前述したとおり、保存及び実験再開の迅速性に欠け当該方法を採用できない場合もある。本発明の保存方法によればこれらの欠点を解決し、迅速かつ簡便に保存及び実験の再開ができるため、例えば、生体内での性質を維持している初代培養細胞を迅速に実験に供したい場合等、広範な分野での細胞保存の要請に応えることができる。 Cells are subjected to experiments for various purposes in a wide range such as medical fields, pharmaceutical fields, livestock fields, and academic fields such as biochemistry. It also plays an important role in transplantation treatment. In an experiment using these cells, for example, a culture experiment, the experiment may be temporarily interrupted to be stored. In such cases, simply refrigeration not only lowers cell viability, but some cells cannot be preserved. On the other hand, when the cells are frozen or a storage solution is used, as described above, there are cases where the method cannot be employed due to lack of rapid storage and resumption of experiments. According to the storage method of the present invention, these disadvantages can be solved, and storage and experiments can be resumed quickly and easily. For example, primary cultured cells that maintain their properties in vivo are desired to be used for experiments quickly. It is possible to meet the demand for cell preservation in a wide range of fields.
1…液体圧力媒体貯蔵槽、2…送液ポンプ(流体移送装置)、3…保存容器、4…加圧容器、5、6…バルブ、7…開閉ハッチ、8…圧力表示器、9…配管、10…液体培地に懸濁した細胞、11…観察窓
DESCRIPTION OF SYMBOLS 1 ... Liquid pressure medium storage tank, 2 ... Liquid feed pump (fluid transfer apparatus), 3 ... Storage container, 4 ... Pressurization container, 5, 6 ... Valve, 7 ... Opening-closing hatch, 8 ... Pressure indicator, 9 ...
Claims (12)
細胞の保存方法。 Under the storage conditions, the storage temperature is higher than the crystallization temperature of intracellular water to be stored, and is not more than the optimum temperature of cell activity, and the storage pressure is 0.11 to 10 MPa.
Cell preservation method.
請求項1に記載の細胞の保存方法。 The cells are seeded or suspended in a medium that is liquid under the storage conditions.
The cell storage method according to claim 1.
請求項1又は2に記載の細胞の保存方法。 Enclosing the cells in a storage container comprising a material capable of transmitting external pressure to the internal substance, and pressurizing the cells through the storage container with a pressure medium;
The cell preservation method according to claim 1 or 2.
該細胞を封入した1個又は2個以上の前記保存容器を加圧容器内に収める工程と、
該加圧容器内を前記温度内に維持する工程と、
及び前記加圧容器内に圧力媒体を充填することにより前記圧力を維持し、前記保存容器内の細胞を加圧する工程と、を具備する、
請求項3に記載の細胞の保存方法。 Encapsulating cells in the storage container;
Storing one or more of the storage containers enclosing the cells in a pressurized container;
Maintaining the inside of the pressurized container at the temperature;
And maintaining the pressure by filling the pressurized container with a pressure medium, and pressurizing the cells in the storage container,
The cell storage method according to claim 3.
請求項3に記載の細胞の保存方法。 The pressure medium is a liquid;
The cell storage method according to claim 3.
請求項4に記載の細胞の保存方法。 The pressure medium is a liquid;
The cell preservation method according to claim 4.
請求項1に記載の細胞の保存方法。 The storage temperature is 1 ° C. to 37 ° C., and the storage pressure is 0.11 to 6.5 MPa.
The cell storage method according to claim 1.
該加圧容器内に収めることが可能であって、外部からの圧力を内部の物質に伝達できる材質を具備することにより内部に封入される細胞を加圧できる1個又は2個以上の細胞保存容器と、を有する、
細胞保存装置。 A pressurized container capable of maintaining pressure by filling with a pressure medium;
Storage of one or more cells that can be stored in the pressurized container and can pressurize cells enclosed inside by providing a material capable of transmitting external pressure to the internal substance A container,
Cell storage device.
請求項8に記載の細胞保存装置。 Adjusting the pressure in the pressurized container by feeding the pressure medium into the pressurized container by a fluid transfer device;
The cell storage device according to claim 8.
請求項8又は9に記載の細胞保存装置。 The pressure medium is a liquid;
The cell storage device according to claim 8 or 9.
請求項9に記載の細胞保存装置。 By controlling the feeding and discharging of the pressure medium by the fluid transfer device, the pressure increase / decrease speed can be adjusted,
The cell storage device according to claim 9.
請求項10に記載の細胞保存装置。 By controlling the feeding and discharging of the pressure medium by the fluid transfer device, the pressure increase / decrease speed can be adjusted,
The cell storage device according to claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008187304A JP2010022269A (en) | 2008-07-18 | 2008-07-18 | Method and device for preserving cell |
JP2008-187304 | 2008-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010008059A1 true WO2010008059A1 (en) | 2010-01-21 |
Family
ID=41550459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062918 WO2010008059A1 (en) | 2008-07-18 | 2009-07-16 | Method for storing cells and device therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010022269A (en) |
WO (1) | WO2010008059A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012192061A (en) * | 2011-03-17 | 2012-10-11 | Mie Univ | Fore-crucial ligament tissue, and method for manufacturing the same |
CN103327839A (en) * | 2011-01-20 | 2013-09-25 | 弥通雅贸易有限公司 | Low temperature storage method and low temperature storage container |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015050992A (en) * | 2013-08-07 | 2015-03-19 | iPSアカデミアジャパン株式会社 | Transporting method of pluripotent stem cell |
US10669525B2 (en) | 2014-09-29 | 2020-06-02 | Public University Corporation Yokohama City University | Method for producing three-dimensional cell aggregates |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4712445U (en) * | 1971-03-11 | 1972-10-14 | ||
WO2000025580A1 (en) * | 1998-10-30 | 2000-05-11 | Hyperbaric Systems | Method and apparatus for preserving biological materials |
WO2000053008A1 (en) * | 1999-03-11 | 2000-09-14 | Hyperbaric Systems | Compositions and methods for preserving platelets |
WO2007060608A2 (en) * | 2005-11-22 | 2007-05-31 | Sempre Ltd. | Increasing the viability and stress tolerance of viable biological material |
-
2008
- 2008-07-18 JP JP2008187304A patent/JP2010022269A/en active Pending
-
2009
- 2009-07-16 WO PCT/JP2009/062918 patent/WO2010008059A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4712445U (en) * | 1971-03-11 | 1972-10-14 | ||
WO2000025580A1 (en) * | 1998-10-30 | 2000-05-11 | Hyperbaric Systems | Method and apparatus for preserving biological materials |
WO2000053008A1 (en) * | 1999-03-11 | 2000-09-14 | Hyperbaric Systems | Compositions and methods for preserving platelets |
WO2007060608A2 (en) * | 2005-11-22 | 2007-05-31 | Sempre Ltd. | Increasing the viability and stress tolerance of viable biological material |
Non-Patent Citations (9)
Title |
---|
AKIO SHIMIZU ET AL.: "Dobutsu Plankton Oyobi Tamago no Fuka ni Taisuru Atsuryoku no Eikyo Sokuteiyo Koatsu System", THE REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY, vol. 16, no. 4, 2006, pages 381 - 383, Retrieved from the Internet <URL:http://www.jstage.jst.go.jp/article/jshpreview/16/4/381/_pdf/-char/ja> * |
AKIO SHIMIZU ET AL.: "Kaatsu ni yoru Saibo no Kan'i Hozon Hoho -Mochihakobi Kano na Yuso Yoki", KOIKI TAMA(TAMA) CHIIKI NO DAIGAKU HATSU, SHIN GIJUTSU SETSUMEIKAI, TOJITSU HAIFU SHIRYO, 29 August 2008 (2008-08-29), Retrieved from the Internet <URL:http://jstshingi.jp/abst/p/08/818/tamal.pdf> * |
AKIO SHIMIZU ET AL.: "Koatsu Shori ni yoru Kosui no Jukusei Sokushin", MIRAI O HIRAKU KOATSURYOKU KAGAKU GIJUTSU SEMINAR SERIES (33), 6 March 2008 (2008-03-06), pages 20 - 25 * |
IKUO SERA ET AL.: "Biseibutsu no Atsuryoku to Ondo ni Taisuru Taisei Jikken", BIOLOGICAL SCIENCES IN SPACE, vol. 12, no. 3, 1998, pages 232 - 233 * |
IKUSHI IWATANI ET AL.: "Seisui Kaatsu ni yoru Kakushu Dobutsu Saibo no Zoshoku Seigyo", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 89 SHUNKI NENKAI (2009) KOEN YOKOSHU II, 13 March 2009 (2009-03-13), pages 1535 * |
MASAHIRO TANIUCHI ET AL.: "Koatsuryoku Shori ni yoru Kosui no Jukusei Kikan Tansyuku ni Kansuru Kenkyu", NEW FOOD IND., vol. 49, no. 12, 2007, pages 1 - 5 * |
TETSUYA MIWA: "Baiyo Saibo no Koatsuryoku ni Taisuru Oto Tokusei", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 81 SHUNKI NENKAI 2002 NEN KOEN YOKOSHU II, 2002, pages 872 * |
TETSUYA MIWA: "Koatsuka ni Okeru Baiyo Saibo no Sonoba Kansatsu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2001 NENDO TAIKAI KOEN YOSHISHU, 2001, pages 535 * |
TOMOKO YOSHIKI ET AL.: "Kaisan Dobutsu Plankton Kenkyu no Tameno Atsuryoku Sochi no Kaihatsu", 2005 NENDO THE OCEANOGRAPHIC SOCIETY OF JAPAN SHUKI TAIKAI KOEN YOSHISHU, 2005, pages 197, 341 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103327839A (en) * | 2011-01-20 | 2013-09-25 | 弥通雅贸易有限公司 | Low temperature storage method and low temperature storage container |
JP2012192061A (en) * | 2011-03-17 | 2012-10-11 | Mie Univ | Fore-crucial ligament tissue, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2010022269A (en) | 2010-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI576433B (en) | Cell culture system and cell culture method | |
US10479971B2 (en) | Cell culture device and cell culture method | |
Huang et al. | Advanced technologies for the preservation of mammalian biospecimens | |
US20080176326A1 (en) | Delivery of high cell mass in a syringe and related methods of cryopreserving cells | |
TW201546268A (en) | Automated cell culturing and harvesting device | |
CN106465710B (en) | Adipose tissue cryopreservation solution and adipose tissue cryopreservation method | |
GB2467645A (en) | Weighted cell beads for fluidised bed culture for bioartificial liver | |
WO2014166389A1 (en) | Biological sample vitrification carrier and usage thereof | |
WO2017191775A1 (en) | Method for subculturing pluripotent stem cells | |
Wu et al. | Vitreous cryopreservation of cell–biomaterial constructs involving encapsulated hepatocytes | |
WO2010008059A1 (en) | Method for storing cells and device therefor | |
JP5051716B2 (en) | Germ cell device and germ cell cryopreservation method | |
JP2009148221A (en) | Germ cell cryopreservation container and germ cell cryopreservation method | |
US9615570B2 (en) | Method of freezing cells | |
JP3726188B2 (en) | Apparatus with hollow fiber and method of using the same | |
EP3035798B1 (en) | Boron added cell cryopreservation medium | |
Vajta et al. | Disadvantages and benefits of vitrification | |
JP2010148401A (en) | Cell-preserving container | |
CN102792916B (en) | Method and device applicable to observing fish embryo development under stereo microscope | |
JP2008271915A (en) | Medium supply system for closed cell culture | |
US20190357524A1 (en) | Preservative solution for human stem cells, human stem cell suspension, and method for preserving human stem cells | |
Guo et al. | Isolation and Cryopreservation of Primary Macaque Hepatocytes | |
EP2376627B1 (en) | Improvements in or relating to growing cells | |
US20220411734A1 (en) | Bioreactor system for tissue engineering | |
Zhang et al. | Incorporate delivery, warming and washing methods into efficient cryopreservation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09797983 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09797983 Country of ref document: EP Kind code of ref document: A1 |