WO2010076322A1 - Prédiction de la réponse à une chimiothérapie à base de taxane/d'anthracycline lors d'un cancer du sein - Google Patents
Prédiction de la réponse à une chimiothérapie à base de taxane/d'anthracycline lors d'un cancer du sein Download PDFInfo
- Publication number
- WO2010076322A1 WO2010076322A1 PCT/EP2009/067990 EP2009067990W WO2010076322A1 WO 2010076322 A1 WO2010076322 A1 WO 2010076322A1 EP 2009067990 W EP2009067990 W EP 2009067990W WO 2010076322 A1 WO2010076322 A1 WO 2010076322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- response
- chemotherapy
- genes
- tumor
- gene
- Prior art date
Links
- 230000004044 response Effects 0.000 title claims abstract description 149
- 238000002512 chemotherapy Methods 0.000 title claims abstract description 76
- 206010006187 Breast cancer Diseases 0.000 title description 47
- 208000026310 Breast neoplasm Diseases 0.000 title description 45
- 229940123237 Taxane Drugs 0.000 title description 11
- 229940045799 anthracyclines and related substance Drugs 0.000 title description 11
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 title description 11
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 219
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 216
- 230000014509 gene expression Effects 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 74
- 101000946863 Homo sapiens T-cell surface glycoprotein CD3 delta chain Proteins 0.000 claims abstract description 52
- 239000003550 marker Substances 0.000 claims abstract description 52
- 102100035891 T-cell surface glycoprotein CD3 delta chain Human genes 0.000 claims abstract description 50
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims abstract description 44
- -1 NFKB1A Proteins 0.000 claims abstract description 44
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims abstract description 44
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 claims abstract description 34
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 claims abstract description 34
- 101000807354 Homo sapiens Ubiquitin-conjugating enzyme E2 C Proteins 0.000 claims abstract description 32
- 102100037256 Ubiquitin-conjugating enzyme E2 C Human genes 0.000 claims abstract description 32
- 230000008901 benefit Effects 0.000 claims abstract description 28
- 101000625739 Homo sapiens Thymosin beta-15A Proteins 0.000 claims abstract description 27
- 102100024702 Thymosin beta-15A Human genes 0.000 claims abstract description 26
- 201000011510 cancer Diseases 0.000 claims abstract description 26
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims abstract description 24
- 108091012583 BCL2 Proteins 0.000 claims abstract description 24
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 claims abstract description 19
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 claims abstract description 19
- 101000738335 Homo sapiens T-cell surface glycoprotein CD3 zeta chain Proteins 0.000 claims abstract description 18
- 102100038884 Major vault protein Human genes 0.000 claims abstract description 18
- 102100037906 T-cell surface glycoprotein CD3 zeta chain Human genes 0.000 claims abstract description 18
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims abstract description 17
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims abstract description 17
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 claims abstract description 14
- 101001055386 Homo sapiens Melanophilin Proteins 0.000 claims abstract description 13
- 101000833899 Homo sapiens Peroxisomal acyl-coenzyme A oxidase 2 Proteins 0.000 claims abstract description 13
- 102100026158 Melanophilin Human genes 0.000 claims abstract description 13
- 102100026795 Peroxisomal acyl-coenzyme A oxidase 2 Human genes 0.000 claims abstract description 13
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 claims abstract description 12
- 102100034256 Mucin-1 Human genes 0.000 claims abstract description 12
- 102100029297 Cholinephosphotransferase 1 Human genes 0.000 claims abstract description 11
- 101000989606 Homo sapiens Cholinephosphotransferase 1 Proteins 0.000 claims abstract description 11
- 108010005256 S100 Calcium Binding Protein A7 Proteins 0.000 claims abstract description 11
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims abstract description 10
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 claims abstract description 10
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 claims abstract description 9
- 102100040243 Microtubule-associated protein tau Human genes 0.000 claims abstract description 9
- 108010065942 Prostaglandin-F synthase Proteins 0.000 claims abstract description 9
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims abstract description 9
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims abstract description 9
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 claims abstract description 8
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 claims abstract description 8
- 101001052490 Homo sapiens Mitogen-activated protein kinase 3 Proteins 0.000 claims abstract description 8
- 101000642262 Homo sapiens Spondin-1 Proteins 0.000 claims abstract description 8
- 102100024192 Mitogen-activated protein kinase 3 Human genes 0.000 claims abstract description 8
- 102100036428 Spondin-1 Human genes 0.000 claims abstract description 8
- 102000003998 progesterone receptors Human genes 0.000 claims abstract description 8
- 108090000468 progesterone receptors Proteins 0.000 claims abstract description 8
- 102000058063 Glucose Transporter Type 1 Human genes 0.000 claims abstract description 6
- 101000632054 Homo sapiens Septin-8 Proteins 0.000 claims abstract description 6
- 101000701446 Homo sapiens Stanniocalcin-2 Proteins 0.000 claims abstract description 6
- 101710094960 Major vault protein Proteins 0.000 claims abstract description 6
- 101710159910 Movement protein Proteins 0.000 claims abstract description 6
- 102000005871 S100 Calcium Binding Protein A7 Human genes 0.000 claims abstract description 6
- 108091006296 SLC2A1 Proteins 0.000 claims abstract description 6
- 102100028025 Septin-8 Human genes 0.000 claims abstract description 6
- 102100030510 Stanniocalcin-2 Human genes 0.000 claims abstract description 6
- 108010075348 Activated-Leukocyte Cell Adhesion Molecule Proteins 0.000 claims abstract description 5
- 102100024210 CD166 antigen Human genes 0.000 claims abstract description 5
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 claims abstract description 5
- 102100035784 Decorin Human genes 0.000 claims abstract description 5
- 102100031150 Growth arrest and DNA damage-inducible protein GADD45 alpha Human genes 0.000 claims abstract description 5
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 claims abstract description 5
- 101001000206 Homo sapiens Decorin Proteins 0.000 claims abstract description 5
- 101001066158 Homo sapiens Growth arrest and DNA damage-inducible protein GADD45 alpha Proteins 0.000 claims abstract description 5
- 101001056473 Homo sapiens Keratin, type II cytoskeletal 5 Proteins 0.000 claims abstract description 5
- 101000990912 Homo sapiens Matrilysin Proteins 0.000 claims abstract description 5
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 claims abstract description 5
- 101000625727 Homo sapiens Tubulin beta chain Proteins 0.000 claims abstract description 5
- 101000788517 Homo sapiens Tubulin beta-2A chain Proteins 0.000 claims abstract description 5
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 claims abstract description 5
- 101001013509 Homo sapiens bMERB domain-containing protein 1 Proteins 0.000 claims abstract description 5
- 102100025756 Keratin, type II cytoskeletal 5 Human genes 0.000 claims abstract description 5
- 102100038235 Large neutral amino acids transporter small subunit 2 Human genes 0.000 claims abstract description 5
- 102100030417 Matrilysin Human genes 0.000 claims abstract description 5
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 claims abstract description 5
- 108091006238 SLC7A8 Proteins 0.000 claims abstract description 5
- 102100024717 Tubulin beta chain Human genes 0.000 claims abstract description 5
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 claims abstract description 5
- 102100031147 bMERB domain-containing protein 1 Human genes 0.000 claims abstract description 5
- 102100033587 DNA topoisomerase 2-alpha Human genes 0.000 claims abstract 2
- 239000000523 sample Substances 0.000 claims description 51
- 101000961071 Homo sapiens NF-kappa-B inhibitor alpha Proteins 0.000 claims description 21
- 102100039337 NF-kappa-B inhibitor alpha Human genes 0.000 claims description 21
- 101150029707 ERBB2 gene Proteins 0.000 claims description 19
- 101000840257 Homo sapiens Immunoglobulin kappa constant Proteins 0.000 claims description 17
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 claims description 17
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 claims description 13
- 238000002493 microarray Methods 0.000 claims description 12
- 102000004602 Aldo-Keto Reductase Family 1 Member C3 Human genes 0.000 claims description 8
- 102000001284 I-kappa-B kinase Human genes 0.000 claims description 4
- 108060006678 I-kappa-B kinase Proteins 0.000 claims description 4
- 238000012308 immunohistochemistry method Methods 0.000 claims 1
- 102100038595 Estrogen receptor Human genes 0.000 abstract description 14
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 abstract description 12
- 108010044012 STAT1 Transcription Factor Proteins 0.000 abstract description 11
- 102100029904 Signal transducer and activator of transcription 1-alpha/beta Human genes 0.000 abstract description 11
- 101000623857 Homo sapiens Serine/threonine-protein kinase mTOR Proteins 0.000 abstract description 9
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 abstract description 9
- 101000969812 Homo sapiens Multidrug resistance-associated protein 1 Proteins 0.000 abstract description 6
- 102100021339 Multidrug resistance-associated protein 1 Human genes 0.000 abstract description 6
- 101000831940 Homo sapiens Stathmin Proteins 0.000 abstract description 5
- 102100024237 Stathmin Human genes 0.000 abstract description 5
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 abstract description 3
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 abstract description 3
- 108091002437 YBX1 Proteins 0.000 abstract description 2
- 102000033021 YBX1 Human genes 0.000 abstract description 2
- 102100038074 5'-AMP-activated protein kinase subunit beta-1 Human genes 0.000 abstract 1
- 102100026446 Aldo-keto reductase family 1 member C1 Human genes 0.000 abstract 1
- 102100024090 Aldo-keto reductase family 1 member C3 Human genes 0.000 abstract 1
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 abstract 1
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 abstract 1
- 102100033589 DNA topoisomerase 2-beta Human genes 0.000 abstract 1
- 101000742701 Homo sapiens 5'-AMP-activated protein kinase subunit beta-1 Proteins 0.000 abstract 1
- 101000718028 Homo sapiens Aldo-keto reductase family 1 member C1 Proteins 0.000 abstract 1
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 abstract 1
- 101001000104 Homo sapiens Myosin-11 Proteins 0.000 abstract 1
- 101000978570 Homo sapiens Noelin Proteins 0.000 abstract 1
- 101000764357 Homo sapiens Protein Tob1 Proteins 0.000 abstract 1
- 101001096541 Homo sapiens Rac GTPase-activating protein 1 Proteins 0.000 abstract 1
- 101000838463 Homo sapiens Tubulin alpha-1A chain Proteins 0.000 abstract 1
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 abstract 1
- 102100036639 Myosin-11 Human genes 0.000 abstract 1
- 102100023731 Noelin Human genes 0.000 abstract 1
- 102100037414 Rac GTPase-activating protein 1 Human genes 0.000 abstract 1
- 102000019347 Tob1 Human genes 0.000 abstract 1
- 102100028968 Tubulin alpha-1A chain Human genes 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 58
- 238000004422 calculation algorithm Methods 0.000 description 39
- 210000004698 lymphocyte Anatomy 0.000 description 38
- 238000002560 therapeutic procedure Methods 0.000 description 32
- 238000003752 polymerase chain reaction Methods 0.000 description 25
- 238000013459 approach Methods 0.000 description 24
- 238000007477 logistic regression Methods 0.000 description 21
- 238000011227 neoadjuvant chemotherapy Methods 0.000 description 21
- 230000001575 pathological effect Effects 0.000 description 21
- 238000012549 training Methods 0.000 description 21
- 210000004881 tumor cell Anatomy 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 238000003753 real-time PCR Methods 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000002671 adjuvant Substances 0.000 description 13
- 102000004169 proteins and genes Human genes 0.000 description 13
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 10
- 238000011393 cytotoxic chemotherapy Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 238000010200 validation analysis Methods 0.000 description 9
- 210000001744 T-lymphocyte Anatomy 0.000 description 8
- 210000003719 b-lymphocyte Anatomy 0.000 description 8
- 238000001574 biopsy Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 230000008595 infiltration Effects 0.000 description 8
- 238000001764 infiltration Methods 0.000 description 8
- 230000002757 inflammatory effect Effects 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 101001092424 Homo sapiens 60S ribosomal protein L37a Proteins 0.000 description 7
- 108091008039 hormone receptors Proteins 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000491 multivariate analysis Methods 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- 102100036126 60S ribosomal protein L37a Human genes 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000002601 intratumoral effect Effects 0.000 description 6
- 230000000527 lymphocytic effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 101150005096 AKR1 gene Proteins 0.000 description 5
- 101100215778 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ptr-1 gene Proteins 0.000 description 5
- 238000002944 PCR assay Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 210000000481 breast Anatomy 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000003364 immunohistochemistry Methods 0.000 description 5
- 230000036210 malignancy Effects 0.000 description 5
- 208000030163 medullary breast carcinoma Diseases 0.000 description 5
- 210000005087 mononuclear cell Anatomy 0.000 description 5
- 230000001613 neoplastic effect Effects 0.000 description 5
- 101000713575 Homo sapiens Tubulin beta-3 chain Proteins 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 102100036790 Tubulin beta-3 chain Human genes 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 238000000513 principal component analysis Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 102100025579 Calmodulin-2 Human genes 0.000 description 3
- 238000000018 DNA microarray Methods 0.000 description 3
- 108700039887 Essential Genes Proteins 0.000 description 3
- 101000984150 Homo sapiens Calmodulin-2 Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000000090 biomarker Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 238000010195 expression analysis Methods 0.000 description 3
- 238000007489 histopathology method Methods 0.000 description 3
- 210000004969 inflammatory cell Anatomy 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 3
- 238000013188 needle biopsy Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 210000003289 regulatory T cell Anatomy 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 2
- 102100027274 Dual specificity protein phosphatase 6 Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 101000704457 Homo sapiens Protein phosphatase Slingshot homolog 3 Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 102100031805 Protein phosphatase Slingshot homolog 3 Human genes 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000003567 ascitic fluid Anatomy 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002975 chemoattractant Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 238000011254 conventional chemotherapy Methods 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009274 differential gene expression Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002651 drug therapy Methods 0.000 description 2
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- 108010038795 estrogen receptors Proteins 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- XQUXKZZNEFRCAW-UHFFFAOYSA-N fenpropathrin Chemical compound CC1(C)C(C)(C)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 XQUXKZZNEFRCAW-UHFFFAOYSA-N 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000009021 linear effect Effects 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000009826 neoplastic cell growth Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000003499 nucleic acid array Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000003498 protein array Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012340 reverse transcriptase PCR Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 238000009121 systemic therapy Methods 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 238000007473 univariate analysis Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010006223 Breast discharge Diseases 0.000 description 1
- 101150114882 CALM2 gene Proteins 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 1
- 108010014231 Chemokine CXCL9 Proteins 0.000 description 1
- 102000016937 Chemokine CXCL9 Human genes 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 108010038530 Dual Specificity Phosphatase 6 Proteins 0.000 description 1
- 102100037460 E3 ubiquitin-protein ligase Topors Human genes 0.000 description 1
- 101001057587 Homo sapiens Dual specificity protein phosphatase 6 Proteins 0.000 description 1
- 101000662670 Homo sapiens E3 ubiquitin-protein ligase Topors Proteins 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 240000004759 Inga spectabilis Species 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 238000001430 Omnibus test Methods 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000002137 anti-vascular effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000003040 circulating cell Anatomy 0.000 description 1
- 238000011281 clinical therapy Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 210000001608 connective tissue cell Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 101150070926 ct gene Proteins 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000009261 endocrine therapy Methods 0.000 description 1
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004547 gene signature Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 238000007417 hierarchical cluster analysis Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000011337 individualized treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000013345 light-cycler PCR Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000027317 positive regulation of immune response Effects 0.000 description 1
- 238000009258 post-therapy Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000022120 response to tumor cell Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009094 second-line therapy Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 108010068698 spleen exonuclease Proteins 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000010972 statistical evaluation Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013520 translational research Methods 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
Definitions
- the present invention relates to methods for prediction of the therapeutic success of cancer therapy.
- breast cancer is one of the leading causes of cancer death in women in western countries. More specifically breast cancer claims the lives of approximately 40,000 women and is diagnosed in approximately 200,000 women annually in the United States alone. Over the last few decades, adjuvant systemic therapy has led to markedly improved survival in early breast cancer. This clinical experience has led to consensus recommendations offering adjuvant systemic therapy for the vast majority of breast cancer patients. In breast cancer a multitude of treatment options are available which can be applied in addition to the routinely performed surgical removal of the tumour and subsequent radiation of the tumor bed.
- malignant tumors constitute a complex micro-ecosystem that dependents on the interplay between tumor cells, stromal cells and host inflammatory cells.
- Several studies have shown that the presence of a lymphocytic infiltrate in cancer tissue is associated with an improved clinical outcome. From animal experiments, there is evidence that the immune system participates in the elimination of tumor cells and the control of tumor growth. Recently, it has been suggested that immunological mechanisms may also be involved in the response to cytotoxic chemotherapy, and that the presence of a low level immunological response might trigger the effects of existing conventional chemotherapy approaches.
- Neoadjuvant chemotherapy of early breast cancer leads to high clinical response rates of 70-90%.
- pathological assessment of the tumor after surgery reveals the presence of residual tumor cell foci.
- a complete absence of residual invasive tumor, the so- called pathological complete response (pCR) is observed only in 10-25% of patients.
- the pCR is a surrogate marker for disease-free survival and a strong indicator of benefit from chemotherapy .
- neoadjuvant chemotherapy constitutes an in vivo chemoresistance test, it is an excellent basis for the analysis of predictive biological factors in pretherapeutic core biopsies, in order to identify those patients that would benefit most from chemotherapy.
- Accepted parameters linked to response to neoadjuvant chemotherapy are hormone receptor status as well as tumor grade.
- the present invention is based on the hypothesis that the presence of an inflammatory lymphocyte-mediated response to tumor cells may predict the response to neoadjuvant chemotherapy.
- Chemotherapy may be applied postoperative, i.e. in the adjuvant setting or preoperative, that is in the neoadjuvant setting in which patients receive several cycles of drug treatment over a limited period of time, before remaining tumor cells are removed by surgery.
- Neoadjuvant chemotherapy is used for patients with large tumors and locally advanced breast cancer. Primary goal is a reduction of tumor size in order to increase the possibility of breast-conserving treatment .
- NASH histopathological changes
- pCR pathological complete remission
- hormone receptor status As well as tumor grade.
- reaction relates to the reaction of an individual under a defined therapy. Reactions as used in this document can for example be beneficial or adverse. Possible reactions include prolongation or shortening of time to local and/or distant recurrence, prolongation or shortening of time to death, prolongation or shortening of disease progression, and prolongation or shortening of time to metastasis in an adjuvant or neoadjuvant setting. In a neoadjuvant setting, reactions to therapy additionally include the shrinkage, growth, or absence of change of the primary tumor within a given time frame and is usually measured as a quantification of change, usually given as a percentage, e.g. diameter or volume, or as a class as, for example, defined by WHO.
- pathological complete response relates to a complete disappearance or absence of invasive tumor cells in the breast and/or lymph nodes as assessed by a histopathological examination of the surgical specimen following neoadjuvant chemotherapy.
- tissue response relates to at least limited response with residual invasive tumor ⁇ 0.5cm as assessed by a histopathological examination of the surgical specimen following neoadjuvant chemotherapy.
- No tissue response was defined as no changes or limited cellular response (sclerosis, resorption, inflammation, zytopathic changes) in the tumor.
- prognosis relates to an individual assessment of the malignancy of a tumor, or to the expected response if there is no drug therapy.
- prediction relates to an individual assessment of the malignancy of a tumor, or to the expected response if the therapy contains a drug in comparison to the malignancy or response without this drug.
- prognosis under therapy relates to an individual assessment of the malignancy of a tumor, or to the expected response if there is any drug therapy without considering malignancy or response without this drug.
- response marker relates to a marker which can be used to predict the pathological and/or clinical response and/or clinical outcome of a patient towards a given treatment .
- the term “therapy modality”, “therapy mode”, “regimen” as well as “therapy” refers to a timely sequential or simultaneous administration of anti-tumor, and/or anti vascular, and/or anti stroma, and/or immune stimulating or suppressive, and/or blood cell proliferative agents, and/or radiation therapy, and/or hyperthermia, and/or hypothermia for cancer therapy.
- the administration of these can be performed in an adjuvant and/or neoadjuvant mode.
- the composition of such "protocol” may vary in the dose of each of the single agents, timeframe of application and frequency of administration within a defined therapy window.
- various combinations of various drugs and/or physical methods, and various schedules are under investigation.
- a "taxane/anthracycline-containing chemotherapy” is a therapy modality comprising the administration of taxane and/or anthracycline and therapeutically effective derivates thereof .
- the term "neoadjuvant chemotherapy” relates to a preoperative therapy regimen consisting of a panel of hormonal, chemotherapeutic and/or antibody agents, which is aimed to shrink the primary tumor, thereby rendering local therapy
- sample refers to a sample obtained from a patient.
- the sample may be of any biological tissue or fluid.
- samples include, but are not limited to, sputum, blood, serum, plasma, blood cells (e.g. white cells), circulating cells (e.g. stem cells or endothelial cells in the blood, tissue, core or fine needle biopsy samples, cell-containing body fluids, free floating nucleic acids, urine, stool, peritoneal fluid, and pleural fluid, liquor cerebrospinalis, tear fluid, or cells there from.
- Biological samples may also include sections of tissues such as frozen or fixed sections taken for histological purposes or microdissected cells or extracellular parts thereof.
- a “tumor sample” is a sample containing tumor material e.g. tissue material from a neoplastic lesion taken by aspiration or puncture, excision or by any other surgical method leading to biopsy or resected cellular material, including preserved material such as fresh frozen material, formalin fixed material, paraffin embedded material and the like.
- a biological sample may comprise cells obtained from a patient. The cells may be found in a cell "smear" collected, for example, by a nipple aspiration, ductal lavage, fine needle biopsy or from provoked or spontaneous nipple discharge.
- the sample is a body fluid.
- Such fluids include, for example, blood fluids, serum, plasma, lymph, ascitic fluids, gynecological fluids, or urine but not limited to these fluids.
- the term "marker” or “biomarker” refers to a biological molecule, e.g., a nucleic acid, peptide, protein, hormone, etc., whose presence or concentration can be detected and correlated with a known condition, such as a disease state.
- marker gene refers to a differentially expressed gene whose expression pattern may be utilized as part of a predictive, prognostic or diagnostic process in healthy conditions, premalignant disease status, malignant neoplasia or cancer evaluation, or which, alternatively, may be used in methods for identifying compounds useful for the treatment or prevention of malignant neoplasia and head and neck, colon or breast cancer in particular.
- a marker gene may also have the characteristics of a target gene.
- expression level refers, e.g., to a determined level of gene expression.
- pattern of expression levels refers to a determined level of gene expression compared either to a reference gene (e.g. housekeeper or inversely regulated genes) or to a computed average expression value (e.g. in DNA-chip analyses) .
- a pattern is not limited to the comparison of two genes but is more related to multiple comparisons of genes to reference genes or samples.
- a certain “pattern of expression levels” may also result and be determined by comparison and measurement of several genes disclosed hereafter and display the relative abundance of these transcripts to each other.
- determining the expression level of a gene/protein on a non-protein basis relates to methods which are not restricted to the secondary gene translation products, i.e proteins, but on other levels of the gene expression, like the mRNA, premRNA and genomic DNA structures.
- a differentially expressed gene disclosed herein may be used in methods for identifying reagents and compounds and uses of these reagents and compounds for the treatment of cancer as well as methods of treatment.
- the differential regulation of the gene is not limited to a specific cancer cell type or clone, but rather displays the interplay of cancer cells, muscle cells, stromal cells, connective tissue cells, other epithelial cells, endothelial cells of blood vessels as well as cells of the immune system (e.g. lymphocytes, macrophages, killer cells) .
- modulated or “modulation” or “regulated” or “regulation” and “differentially regulated” or
- “differentially expressed” as used herein refer to both upregulation (i.e., activation or stimulation (e.g., by agonizing or potentiating) and down regulation [i.e., inhibition or suppression (e.g., by antagonizing, decreasing or inhibiting) ] .
- a "reference pattern of expression levels”, within the meaning of the invention shall be understood as being any pattern of expression levels that can be used for the comparison to another pattern of expression levels.
- a reference pattern of expression levels is, e.g., an average pattern of expression levels observed in a group of healthy or diseased individuals, serving as a reference group.
- Primer pairs and “probes”, within the meaning of the invention, shall have the ordinary meaning of this term which is well known to the person skilled in the art of molecular biology.
- “primer pairs” and “probes” shall be understood as being polynucleotide molecules having a sequence identical, complementary, homologous, or homologous to the complement of regions of a target polynucleotide which is to be detected or quantified.
- nucleotide analogues and /or morpholinos are also comprised for usage as primers and/or probes.
- “Individually labeled probes”, within the meaning of the invention, shall be understood as being molecular probes comprising a polynucleotide, oligonucleotide or nucleotide analogue and a label, helpful in the detection or quantification of the probe.
- Preferred labels are fluorescent molecules, luminescent molecules, radioactive molecules, enzymatic molecules and/or quenching molecules.
- arrayed probes within the meaning of the invention, shall be understood as being a collection of immobilized probes, preferably in an orderly arrangement.
- the individual “arrayed probes” can be identified by their respective position on the solid support, e.g., on a "chip”.
- array or “matrix” an arrangement of addressable locations or “addresses” on a device is meant.
- the locations can be arranged in two dimensional arrays, three dimensional arrays, or other matrix formats.
- the number of locations can range from several to at least hundreds of thousands. Most importantly, each location represents a totally independent reaction site.
- Arrays include but are not limited to nucleic acid arrays, protein arrays and antibody arrays.
- a “nucleic acid array” refers to an array containing nucleic acid probes, such as oligonucleotides, nucleotide analogues, polynucleotides, polymers of nucleotide analogues, morpholinos or larger portions of genes.
- the nucleic acid and/or analogue on the array is preferably single stranded.
- Arrays wherein the probes are oligonucleotides are referred to as “oligonucleotide arrays" or “oligonucleotide chips.”
- the regions in a microarray have typical dimensions, e.g., diameters, in the range of between about 10-250 ⁇ m, and are separated from other regions in the array by about the same distance.
- a “protein array” refers to an array containing polypeptide probes or protein probes which can be in native form or denatured.
- An “antibody array” refers to an array containing antibodies which include but are not limited to monoclonal antibodies (e.g. from a mouse), chimeric antibodies, humanized antibodies or phage antibodies and single chain antibodies as well as fragments from antibodies .
- a PCR based method refers to methods comprising a polymerase chain reaction (PCR) .
- PCR polymerase chain reaction
- This is a method of exponentially amplifying nucleic acids, e.g. DNA by enzymatic replication in vitro.
- PCR is an in vitro technique, it can be performed without restrictions on the form of DNA, and it can be extensively modified to perform a wide array of genetic manipulations.
- a PCR based method may for example be used to detect the presence of a given mRNA by (1) reverse transcription of the complete mRNA pool (the so called transcriptome) into cDNA with help of a reverse transcriptase enzyme, and (2) detecting the presence of a given cDNA with help of respective primers.
- rtPCR reverse transcriptase PCR
- PCR-based methods comprise e.g. real time PCR, and, particularly suited for the analysis of expression levels, kinetic or quantitative PCR (qPCR) .
- Quantitative PCR refers to any type of a PCR method which allows the quantification of the template in a sample.
- Quantitative real-time PCR comprise different techniques of performance or product detection as for example the TaqMan technique or the LightCycler technique.
- the TaqMan technique for examples, uses a dual-labelled fluorogenic probe.
- the TaqMan real-time PCR measures accumulation of a product via the fluorophore during the exponential stages of the PCR, rather than at the end point as in conventional PCR.
- the exponential increase of the product is used to determine the threshold cycle, CT, i.e.
- the set up of the reaction is very similar to a conventional PCR, but is carried out in a real-time thermal cycler that allows measurement of fluorescent molecules in the PCR tubes.
- a probe is added to the reaction, i.e., a single-stranded oligonucleotide complementary to a segment of 20-60 nucleotides within the DNA template and located between the two primers.
- a fluorescent reporter or fluorophore e.g., 6- carboxyfluorescein, acronym: FAM, or tetrachlorofluorescin, acronym: TET
- quencher e.g., tetramethylrhodamine, acronym: TAMRA, of dihydrocyclopyrroloindole tripeptide "minor groove binder'', acronym: MGB
- the 5' to 3 ' exonuclease activity of the Taq polymerase degrades that proportion of the probe that has annealed to the template (Hence its name: Taq polymerase + PacMan) .
- Degradation of the probe releases the fluorophore from it and breaks the close proximity to the quencher, thus relieving the quenching effect and allowing fluorescence of the fluorophore.
- fluorescence detected in the real-time PCR thermal cycler is directly proportional to the fluorophore released and the amount of DNA template present in the PCR.
- immunohistochemistry refers to the process of localizing proteins in cells of a tissue section exploiting the principle of antibodies binding specifically to antigens in biological tissues. Immunohistochemical staining is widely used in the diagnosis and treatment of cancer. Specific molecular markers are characteristic of particular cancer types. IHC is also widely used in basic research to understand the distribution and localization of biomarkers in different parts of a tissue. "Prediction of recurrence” or “prediction of therapeutic success” does refer to the methods described in this invention. Wherein a tumor specimen is analyzed for its gene expression and furthermore classified based on correlation of the expression pattern to known ones from reference samples.
- This classification may either result in the statement that such given tumor will develop recurrence or will not achieve a pathological complete response or a tissue response following neoadjuvant chemotherapy and therefore is considered as a "non-responding" tumor to the given therapy, or may result in a classification as a tumor with a prolonged disease free post therapy time or as tumor that will achieve a pathological complete response or a tissue response.
- hybridization-based method refers to methods imparting a process of combining complementary, single-stranded nucleic acids or nucleotide analogues into a single double stranded molecule. Nucleotides or nucleotide analogues will bind to their complement under normal conditions, so two perfectly complementary strands will bind to each other readily. In bioanalytics, very often labeled, single stranded probes are in order to find complementary target sequences. If such sequences exist in the sample, the probes will hybridize to said sequences which can then be detected due to the label. Other hybridization based methods comprise microarray and/or biochip methods.
- probes are immobilized on a solid phase, which is then exposed to a sample. If complementary nucleic acids exist in the sample, these will hybridize to the probes and can thus be detected.
- array based methods Yet another hybridization based method is PCR, which is described above. When it comes to the determination of expression levels, hybridization based methods may for example be used to determine the amount of mRNA for a given gene.
- determining the protein level refers to methods which allow the quantitative and/or qualitative determination of one or more proteins in a sample. These methods include, among others, protein purification, including ultracentrifugation, precipitation and chromatography, as well as protein analysis and determination, including immunohistochemistry, immunofluorescence, ELISA (enzyme linked immuno assay) , RIA (radioimmunoassay) or the use of protein microarrays, two- hybrid screening, blotting methods including western blot, one- and two dimensional gelelectrophoresis, isoelectric focusing as well as methods being based on mass spectrometry like MALDI-TOF and the like.
- nucleic acid molecule is intended to indicate any single- or double stranded nucleic acid molecule comprising DNA (cDNA and/or genomic DNA) , RNA (preferably mRNA) , PNA, LNA and/or Morpholino, or fractions, derivatives, fragments or analogues thereof.
- the disclosed method can be used to select a suitable therapy for a neoplastic disease, particularly breast cancers.
- the invention relates to a method for predicting a response to and/or benefit from chemotherapy in a patient suffering from cancer comprising the steps of a) classifying a tumor into at least two classes said at least two classes being selected from the group consisting of a a Her 2/neu negative, ESR negative (basal / triple negative) class of tumors, and a Her 2/neu negative, ESR positive (luminal class) class of tumors,
- said at least one marker gene comprises a plurality of genes for predicting a response to and/or benefit from chemotherapy in Her 2/neu negative, ESR positive (luminal class) tumors said plurality of genes comprising the genes CD3D, CXCL9, UBE2C, and, optionally ESRl; or
- said at least one marker gene comprises a plurality of genes for predicting a response to and/or benefit from chemotherapy in Her 2/neu negative, ESR negative (basal or triple negative class) tumors, said plurality of genes comprising the genes STMNl, HER2/NEU, and NFKBIA.
- the plurality of genes is used for predicting a response to and/or benefit from chemotherapy in Her 2/neu negative, ESR positive (luminal class) tumors further comprising the gene ESRl.
- the invention provides a method for predicting a response to and/or benefit from chemotherapy in a patient suffering from cancer comprising the steps of a) classifying a tumor as belonging to at least one class,
- said at least one marker gene comprises a gene selected from the group consisting of TMSL8, ABCCl, EGFR, MVP, ACOX2 , HER2/NEU, MYHIl, TOBl, AKRlCl, ERBB4, NFKBIA, TOP2A, AKR1C3, ESRl, OLFMl, TOP2B, ALCAM, FRAPl, PGR, TP53, BCL2, GADD45A, PRKABl, TUBAlA, C16orf45, HIFlA, PTPRC, TUBB, CA12, IGKC, RACGAPl, UBE2C, CD14, IKBKB, S100A7, VEGFA, CD247, KRT5, SEPT8, YBXl, CD3D, MAPK3, SLC2A1, CDKNlA, MAPT, SLC7A8, CHPTl, MLPH, SPONl, CXCL13, MMPl, STATl, CXCL9, MMP
- the methods of the invention particularly suited for predicting a response to cytotoxic chemotherapy, preferably taxane/anthracycline-containing chemotherapy, preferably in the neodajuvant mode.
- said tumor is classified into HER2/NEU positive or negative, Luminal and Basal / triple negative classes.
- said at least one marker gene for predicting a response to and/or benefit from chemotherapy in Her 2/neu positive tumors is selected from the group consisting of ERBB4, CHPTl, BCL2, MLPH, SPONl and combinations thereof.
- said classification is performed by determining in a tumor sample the expression of at least one gene indicative for each class as described in this disclosure and depending on said gene expression, classifying the tumor.
- said gene expression is determined on a RNA level by a PCR based method and/or a microarray based method.
- Gene expression may further be determined at a protein level or non-protein level, by any suitable method, e.g. hybridization based methods or array based methods .
- said at least one marker gene is selected from the group consisting of ERBB4, CHPTl, BCL2 MLPH, and the combinations of CHPT1/ERBB4, and CHPTl /SPONl .
- said at least one marker gene is selected from the group consisting of CXCL9, MUCl, IGKC, CD3Z, and the combinations of CD3D/MUC1, FRAPl /MUCl, ACOX2/CD3D, ACOX2/CD3Z, and AKR1C3/EGFR.
- said at least one marker gene is selected from the group consisting of TMSL8, ERBB2 (HER2/NEU), MUCl and the combinations of STMNl, HER2/NEU/STMN1, HER2/NEU/TMSL8 , HER2/NEU/NFKBIA.
- the expression level of no more than five marker genes are determined in a given class, preferably no more than 4, 3, 2, or 1 marker genes.
- a low number of genes is preferred, as it reduces the amount of measurements needed to obtain a predictive result.
- Preferred embodiments of the invention allow a predictive determination to be made using just 5, 4, 3, 2, or even 1 marker gene (s) .
- the expression level of said at least one marker gene is determined as a pattern of expression relative to at least one reference gene or to a computed average expression value.
- the expression level of said at least on marker gene may be determined relative to a combination of several reference genes.
- Preferred reference genes are RPL37A CALM2, and OAZl.
- the gene TMSL8 has been determined as a new marker which is predictive for pCR in all Tumors (tables 4 and 5) , especially in ESRl negative tumors (table 8), in triple-negative / basal tumors (table 12) and in Her2/neu positive tumors (table 14) .
- the expression levels of a plurality of marker genes are mathematically combined to give a score indicative of a response to and/or benefit from chemotherapy.
- This mathematical combination may include, but is not limited to summation, weighted summation, correlation coefficients, discriminant functions, and statistical functions.
- Gene expression values of marker genes may be used relative values normalized to one or more reference genes.
- the invention further provides a kit for performing the method of any of the preceding claims comprising at least one probe specific for a gene or gene product for each at least one marker gene indicative of a response to chemotherapy for a tumor in each respective class.
- the invention further provides a use of the kit described above for performing the methods according to the invention
- AKR1C3/EGFR The following genes and gene combinations are especially predictive for basal / triple negative tumors:
- the combination of genes comprising CD3D, CXCL9, and UBE2C are used for the prediction of response to chemotherapy in luminal tumors.
- This combination of marker genes allows for a particularly reliable response to chemotherapy.
- the combination of genes comprising CD3D, CXCL9, ESRl, and UBE2C are used for the predicition of response to chemotherapy in luminal tumors.
- This combination of marker genes allows for a particularly reliable response to chemotherapy.
- the combination of genes comprising STMNl, HER2/NEU, NFKBIA are used for the prediction of response to chemotherapy in basal / triple negative tumors.
- This combination of marker genes allows for a particularly reliable response to chemotherapy. Description of the invention
- Fig. 1 schematically shows the basic classification of the finding cohort in molecular subgroups.
- Fig. 2 schematically shows a block diagram of an exemplary embodiment of the inventive method including exemplary cutoff values for classifying tumors according to the basic classification shown in figure 1.
- Fig.3 shows a Receiver Operator Characteristics Curve (ROC) for the algorithm NLRS for luminal tumors in a training cohort (top panel) and a validation cohort (bottom panel) .
- ROC Receiver Operator Characteristics Curve
- Fig. 4 shows the sensitivity and specificity for an exemplary cutoff value of -3 for the algorithm NLRS for luminal tumors in a training cohort (top panel) and a validation cohort (bottom panel) .
- Fig. 5 shows Receiver Operator Characteristics (ROC) for the algorithm NTRS for triple negative (basal) tumors in a training cohort (top panel) and a validation cohort (bottom panel) .
- ROC Receiver Operator Characteristics
- Fig. 6 shows the sensitivity and specificity for an exemplary cutoff value of -0.2 for the algorithm NTRS for triple negative (basal) tumors.
- Fig. 7 shows a decision tree for the algorithm C_NLRS for luminal tumors .
- Fig. 8 to 13 show additional data regarding the performance of exemplary best model algorithms in different tumor classes.
- Top panels each show the area under curve (AUC) of an R.O.C. curve (left scale) and the Bayesian information criterion (BIC, right scale) relative of the number of genes used to predict pCR.
- Middle panels show the probability of pCR relative to the selected cutoff value.
- Bottom panels each show the AUC.
- An embodiment of the invention is based upon a classification of tumor samples according to the diagram shown in Figure 1 :
- the tumor of the patient is classified according to Her2/neu (also referred to as ERBB2) status into Her2/neu positive or negative tumors and Her2/neu negative tumors are further classified into estrogen receptor (also referred to as "ER” or “ESR) negative tumors (so called “triple negative” or “basal” class of tumors) or Her2/neu negative ER positive tumors (so called “luminal” class of tumors) .
- ESR estrogen receptor
- TSR Her2/neu negative ER positive tumors
- luminal Her2/neu negative ER positive tumors
- the inventors For each of these classes (Her2/neu positive, basal / triple negative and luminal class) , the inventors have identified genes which are differentially expressed in patients which are responsive to chemotherapy vs. nonresponsive patients as assessed by pathological complete response (pCR) or non- response. Determining expression status of one of these genes (univariate classifier) or a plurality of these genes (multivariate classifier) thus allows prediction of a response to chemotherapy.
- TMSL8 TMSL8
- ABCCl EGFR
- MVP EGFR
- ACOX2 HER2/NEU
- MYHIl MYHIl
- TOBl quantitative Polymerase Chain Reaction
- the genes or gene combinations identified by classifier training were then validated in different patient cohorts.
- lntratumoral lymphocytes Percentage of tumor cell Only those mononuclear cells (iTu-Ly) '• / - nests with intraepithelial that are within the epithelium mononuclear cells. of the invasive tumor cell nests are evaluated. Any infiltrate of intraductal carcinoma is not included. The infiltrate must consist of mononuclear cells, any granulocyte infiltrate in the area of tumor necrosis is not included.
- Stromal lymphocytes Percentage of tumor Only tumor stroma of the (str-Ly) " > '- stroma with mononuclear invasive carcinoma is inflammatory cells. included, stromal infiltrate adjacent to intraductal carcinoma is not included. Furthermore, any inflammatory infiltrate around the normal breast tissue adjacent to the tumor is not included.
- lymphocyte-predominant those carcinomas with Although LPBC is used as a breast cancer (LPBC) either more than 60% subgroup of carcinomas for intratumoral lymphocytes this evaluation, it should be or more than 60% stromal noted that the data suggests lymphocytes. that the response to The designation indicates chemotherapy is dependent that in those tumors the on the lymphocytic infiltrate as lymphocytes are the a continuous parameter, as predominant host cells seen in the logistic regression within the as well as in comparison of microecosystem of the subgroups with different tumor. percentages of lymphocytes. Therefore LPBC should be used as a working category to indicate an increased odds ratio for pathological complete response rather than a separate tumor entity.
- lymphocyte infiltrate No detectable lymphocytes in tumor cell nests and tumor stromal.
- stromal and intratumoral lymphocytes were a strong predictor of pCR in univariate (p ⁇ 0.0005) and multivariate logistic regression (p ⁇ 0.0005) .
- the stromal lymphocytes were significantly correlated with iTu-Ly (Pearson correlation coefficient 0.80, p ⁇ 0.0005) .
- Table 2 Validation cohort (GeparTrio) - Factors associated with a pathological complete response in the GeparTrio cohort in univariate and multivariate analysis. Results of univariate and multivariate logistic regression are shown.
- the parameter str-Ly is not included in multivariate analysis as it is correlated with iTu-Ly. In a separate multivariate analysis the parameter str-Ly is significant as well (OR 1.02 (1.01- 1.02), p ⁇ 0.0005, data not shown)
- Intratumoral 1.03 1.02-1.04 ⁇ 0.0005 1.02 (1.01-1.03) ⁇ 0.0005 lymphocytes (iTu- Ly) (%) Stromal 1.02 (1.03-1.03) ⁇ 0.0005 lymphocytes (str-Ly)
- the lymphocytic infiltrate was evaluated as a continuous parameter.
- an evaluation of grouped iTu-Ly and str-Ly as well as known predictive parameters was performed.
- the odds ratio for pCR increases with the extent of iTu-Ly and str-Ly, with a maximal OR of 13.39 (95% CI 6.1-29.37, p ⁇ 0.0005) for tumors with more than 60% of iTu-Ly in tumor cell nests. Both parameters were combined in the subgroup of lymphocyte- predominant breast cancer (LPBC) as those cases with more than 60% of either iTu-Ly or str-Ly.
- LPBC lymphocyte- predominant breast cancer
- a hierarchical cluster analysis and a heat map of the expression data showed a co-regulation of the lymphocyte markers and an association of all of those markers with the achievement of a pCR and the presence of a lymphocyte infiltration. This indicates that the infiltration consisted of both, T and B cells. Moreover, the relative mRNA expression level of the lymphocyte markers significantly increased with the proportion of tumor infiltrating cells. The expression levels of the B and T cell markers were 2- to 12-fold higher in samples from patients achieving pCR in comparison with those who did not achieve pCR ( Figure x) . Finally, logistic regression analysis showed a significant association between the T cell markers CD3D, CXCL9 and CD247 whereas the B cell markers did not.
- the inventors show by using two large independent cohorts of samples from neo-adjuvant clinical trials that it is possible to identify a distinct inflammatory subgroup of tumors by standard H&E histopathological analysis of pretherapeutic core biopsies.
- This subgroup of tumors is characterized by a lymphocytic infiltrate in the tumor tissue and a particular strong response to cytotoxic chemotherapy.
- This tumor subtype may be called "lymphocyte predominant breast cancer" (LPBC) .
- LPBC lymphocyte predominant breast cancer
- MBC medullary breast cancer
- lymphocyte infiltrate In contrast an increased intratumoral lymphocyte infiltrate (>10%) was observed in 51% of cases in the GeparTrio study, and 12% of cases were LPBC. Therefore, the lymphocyte infiltrate is observed in a much larger subset of cases than the MBC group.
- chemokine CXCL9 is involved in the regulation of tumor growth and metastasis in animal models .
- lymphocyte infiltrates associated with increased response to chemotherapy is interesting in the light of other studies that have shown that parameters that are relevant for immune system function are also involved in response to chemotherapy. It may be speculated that the destruction of tumor cells by chemotherapeutic agents may release tumor-associated antigens. This may trigger an immune response directed against the tumor cells which will be particularly strong in those cases where a sensitization of the immune system against some tumor antigens is present before the onset of chemotherapy. Therefore, the chemotherapy may act as a functional immunotherapy in those tumor types and the combination of chemotherapeutic destruction of tumor cells as well as increased immune response may lead to a pathological complete remission. At present, it is not clear if this hypothesis may be the basis for further therapeutic approaches that may use a combination of stimulation of immune responses with classical chemotherapy to improve the rates of pathological complete remission in neoadjuvant chemotherapy .
- the inventors established and independently validated that the presence of a mononuclear infiltrate in tumor stroma as well as within the tumor cells nests is associated with an increased response to neo-adjuvant chemotherapy in univariate and multivariate analysis. This might be the basis for new therapeutic approaches of the combination of conventional chemotherapy with immune therapy, to use the synergies between both types of therapy.
- iTu-Ly and str-Ly are promising additional parameters for routine diagnostic reporting in combination with grading and hormone receptor status.
- the analysis of the inflammatory infiltrate in histopathological analysis of breast cancer core biopsies gives useful information to oncologists to identify the subgroup of patients with an increased chance of response to chemotherapy.
- Table 3 Single genes and gene combinations predictive in various tumor classes.
- class designates the respective tumor class
- Objective designates whether the algorithm was obtained with respect to pathological complete response or tissue response
- Gene indicates the name of the marker gene used
- model indicates the algorithm used to obtain the score which indicates the probability of achieving the objective in the respective sample
- p value indicates the p value of the respective gene
- AUC indicates the "area under curve” for the respective receiver operator curve associated with the respective algorithm given under "model”.
- T cellular immune metagene can be constructed using the first principal component of a principal component analysis (PCA) involving CD3D and CXCL9 in order to improve robustness of algorithms.
- PCA principal component analysis
- a positive coefficient or score indicates that increased expression of a gene is associated with a high probability of pCR, whereas a negative coefficient indicates an inverse association of the gene expression value with the probability of pCR.
- a positive coefficient or score indicates that increased expression of a gene is associated with a high probability of pCR
- a negative coefficient indicates an inverse association of the gene expression value with the probability of pCR.
- higher scores therefore indicate a higher likelihood of achieving a pCR.
- IMG Immunmetagene
- Proliferation metagene PMG
- UBE2C 0.439843 * RACGAPl + 0.554379 * TOP2A + 0.488023 * STMNl.
- Table 5 AUC values for the gene combinations/algorithms of table 4.
- DNase I Ambion/Applied Biosystems, Darmstadt, Germany
- Relative expression of CD3D, CD247 (CD3z) , CD45 (PTPRC), IGKC, CXCL9 and CXCL13 as well as RPL37A used for normalization was assessed by one-step kinetic reverse transcription PCR (kPCR) using the Superscript III Platinum One-Step Quantitative RT-PCR System with ROX (Invitrogen, Düsseldorf, Germany) according to manufacturer's instructions in an ABI PRISM 7900HT (Applied Biosystems, Darmstadt, Germany) .
- ⁇ Ct values positively correlate with relative gene expression. All PCR assays were performed in triplicate. STATISTICAL EVALUATION
- the combination of genes comprising CD3D, CXCL9, ESRl, and UBE2C are used for the prediction of response to chemotherapy in luminal tumors .
- the expression values for these genes may be linked in the algorithm NLRS, wherein ::
- CD3D, CXCL9 and UBE2C represent the expression values for the respective genes obtained as described below, and wherein a value of NLRS above a predetermined cutoff value in the range of -8 to 0, preferably -4 to - 2, more preferably at -3 represents a higher likelihood of a breast cancer patient having a luminal tumor responding to chemotherapy.
- a cutoff of -3 was selected for high sensitivity.
- the combination of genes comprising CD3D, CXCL9, and UBE2C are used for the prediction of response to chemotherapy in luminal tumors.
- UBE2C, CD3D, and CXCL9 represent the expression values for the respective genes obtained as described below and "no pCR” represents a higher likelihood of the patient having no response to chemotherapy and "pCR” represents a higher likelihood of the patient having a response to chemotherapy, measured as pathological complete response.
- the combination of genes comprising STMNl, NFKBIA and HER2/NEU are used for the prediction of response to chemotherapy in basal / triple negative tumors.
- STMNl, NFKBIA and HER2/NEU represent the expression values for the respective genes obtained as described below, and wherein a value of NTRS above a predetermined cutoff value in the range of -1 to 1, preferably -0.4 to 0.4, more preferably at -0.2 represents a higher likelihood of a breast cancer patient having a basal / triple negative tumor responding to chemotherapy (example shown in figure 6) .
- PCR assays were performed in duplicate in the GeparTrio training cohort and in triplicate in a further validation cohort. The PCR assays were performed blinded to the clinical outcome data. Means of the Ct values for each gene were calculated. If all duplicates or triplicates of a gene in a specific sample had no PCR signal the Ct value was set as 40 and was censored. If at least on duplicate or triplicate had a Ct value below 40 and at least one duplicate or triplicate had no PCR signal the Ct value for the well without signal was set as 40 and the mean of the duplicates or triplicates was calculated.
- ⁇ Ct values positively correlate with relative gene expression. Assuming an amplification efficacy of 100% increase of one unit corresponds to a doubling of the amount of mRNA. ⁇ Ct values ranged from 4 to
- the minus sign is to facilitate a straight-forward interpretation (higher values indicate higher expression) , the arbitrary number of 20 was added solely to ensure positivity of the values.
- These values (Delta Ct values) were used for all subsequent calculations. If the expression of a gene of interest was so low that no signal could be picked up before the last amplification cycle, this partial information was conserved when computing relative expression values; this lead to censored (one-sided) expression values ("Expression of gene is at most") . Calculations of classifiers and the prediction of response classes used this partial information whenever possible, e.g. when computing score values and comparing them with a threshold.
- T cellular immune metagene was constructed using the first principal component of a principal component analysis (PCA) involving CD3D and CXCL9 in order to improve robustness of the algorithm.
- PCA principal component analysis
- TIMG 0.526610 x CD3D + 0.850107 x CXCL9.
- a positive coefficient indicates that increased expression of a gene is associated with a high probability of pCR, whereas a negative coefficient indicates an inverse association of the gene expression value with the probability of pCR.
- NLRS ranged between -8.5 and 1.0 in the GeparTrio training cohort, and higher scores indicate a higher likelihood of achieving a pCR.
- correlation clusters which were based on the discovery of a reference profile in a set of at least three genes (a smaller number of genes does not allow such a thing) . If the correlation of a given sample to the reference profile is large (close to 1), the patient is likely to achieve a pCR. If the correlation is negative (close to -1), she is likely not to achieve a pCR.
- the training and feature selection of this model involved a constraint non-linear optimization which is not in the scope of this publication.
- centroids are characteristic for each cluster, usually the vector of the class means of the gene expressions. Unknown samples are classified such that distance to each centroid is computed, and classification is then performed by comparison of these distances. Usually, the unknown sample is classified into the class whose centroid is nearest.
- this single reference profile is determined as the parameter set fulfilling the constraints while minimizing square sum of the residuals (1-corr (ref, sample) ) A 2 for pCRs, (1+corr (ref, sample) ) A 2 for non-pCRs . Since we lose two degrees of freedom to the constraints, this approach is useful only when using sets of at least three genes .
- a positive value indicates a positive association of expression level with the achievement of pCR whereas a negative value indicates a negative association.
- ESRl estrogen receptor
- PGR progesterone receptor
- Her-2/neu status by immunohistochemistry and/or fluorescence in situ hybridization as well as to assess tumor grade by histopathology at diagnosis of breast cancer.
- Combining these markers with clinical response after 2 cycles of neo-adjuvant chemotherapy (in-vivo chemoresistance test) it is possible to select a patient group in which the pCR rate will be up to 50%. Using this approach, patients still get 2 cycles of chemotherapy and there is still a substantial number of patients who do not benefit from chemotherapy and need other therapies .
- Measurement of the markers for the algorithm can be performed on mRNA level using RT-kPCR or gene expression array platforms such as for example Affymetrix, Illumina or Planar Wave Guide or on protein level by, for example, immunological techniques such as immunohistochemistry .
- the combined marker genes can be used in breast cancer for prediction of response to a taxane/anthracycline-containing chemotherapy in the adjuvant as well as in the neo-adjuvant setting.
- the combined marker genes may be useful for prediction of taxane/anthracycline-response also in other cancer types.
- the advantage of the here presented biomarker test is that prediction of therapy response is possible by a molecular test prior to start of chemotherapy.
- the use of an "in-vivo chemoresistance test" by 2 cycles of chemotherapy is not necessary.
- the combined assessment of several genes in an algorithm helps to overcome one main issue: This approach allows the resolution of the fact that there might be not one, but multiple reasons for a given response behaviour which is the case in a heterogeneous disease such as breast cancer. This situation cannot satisfactorily be resolved using single markers.
- Tissue samples were obtained by core needle biopsies from patients with breast cancer (T4/T>2 cm, NO-3, MO) before start of neo-adjuvant chemotherapy with 4 or 6 cycles of docetaxel (75 mg/m 2 ) , doxorubin (50 mg/m 2 ) and cyclophosphamide (500 mg/m 2 ) (TAC) .
- Pathological response was assessed in each patient following completion of therapy using the tissue preparation from surgery.
- pCR no invasive tumor left in the breast or lymph nodes
- TR tissue response
- AKRlCl ERBB4, NFKBIA, TOP2A, AKR1C3, ESRl, OLFMl, TOP2B, ALCAM, FRAPl, PGR, TP53, BCL2, GADD45A, PRKABl, TUBAlA, C16orf45, HIFlA, PTPRC, TUBB, CA12, IGKC, RACGAPl, UBE2C, CD14, IKBKB, S100A7, VEGFA, CD247, KRT5, SEPT8, YBXl, CD3D, MAPK3, SLC2A1, CDKNlA, MAPT, SLC7A8, CHPTl, MLPH, SPONl,
- Training was performed by using uni- and bivariate logistic regression. Since single extreme values (e.g. outliers) can adversely impact feature selection discovery was repeated for various subsets of training data to assess robustness. Random selection of m samples (out of n original samples) with putting back was used for training. In each discovery step, best genes (significance of regression coefficient less than some cutoff value, e.g. 5%) are selected.
- informative genes predictive of response to taxane/anthracycline-containing neo-adjuvant cytotoxic chemotherapy were also identified in fresh-frozen breast cancer samples profiled by Affymetrix U133A microarrays. Again, samples were divided in three molecular subgroups according to ESRl and HER2/NEU mRNA expression: Luminal (HER2/NEU neg.;ESRl pos.), Basal / triple negative (HER2/NEU neg., ESRl neg.) and HER2 (HER2/NEU pos.) . Best significant informative genes for univariate separation of patients with pCR vs. patients without pCR were identified by standard t test statistics. Genuine multivariate classifiers can be built from that.
- the genes examined in this approach were ABCCl, ACOX2, AKR1C3,
- ESRl ESRl, FRAPl, IGKC, MAPK3, MAPT, MLPH, MMPl,
- MUCl MVP, NFKBIA, PGR, PTPRC, RACGAPl,
- Table 7 Differentially expressed genes, pCR, all tumors Genes expressed differentially with regard to tissue response vs. no tissue response in all tumors are shown in table 8, below.
- Table 12 tissue response vs. no tissue response in ER- tumors Genes expressed differentially with regard to pCR vs. no pCR in luminal tumors are shown in table 13, below.
- Table 16 tissue response vs. no tissue response in basal / triple negative tumors Genes expressed differentially with regard to pCR vs. no pCR in HER+ tumors are shown in table 17, below.
- Luminal pCR ⁇ CD3D 0,00089 43,4 0,86 86%/86%/71% 0.16/0.16/0.0
- TissueResponse ⁇ MMP1 + 1 ,60E-06 33,2 0,97 100%/93%/87% 0.85/0.68/0.5
- p designates the significance from Omnibus-Test for logistic Model
- AUC designates the Area under ROC-Curve
- BIC designates the Bayesian information criterion Specificity refers to the specificity for sensitivities of 70%, 80%, 90% respectively.
- Threshold refers to threshold for fitted probability, to reach sensitivities of 70%, 80%, 90% respectively.
- Fig. 8 all tumors
- Fig. 9 ER+
- Fig. 10 ER- tumors
- Fig. 11 luminal tumors
- Fig. 8 all tumors
- Fig. 9 ER+
- Fig. 10 ER- tumors
- Fig. 11 luminal tumors
- Fig. 8 all tumors
- Fig. 9 ER+
- Fig. 10 ER- tumors
- Fig. 11 luminal tumors
- Figs. 8 to 13 shows the values for BIC and AUC as related to the number of genes used in the respective algorithm.
- the middle panel of Figs. 8 to 13 shows the fitted probabilities of the exemplary algorithm as indicated in the middle panel.
- FIG. 13 shows the ROC curve of the exemplary algorithm as indicated in the middle panel.
- Table 17 shows 4 informative genes obtained through this approach.
- Neoadjuvant chemotherapy in breast cancer significantly enhanced response with docetaxel. J Clin Oncol. 2002 Mar 15; 20 ( 6) : 1456-66.
- Perez SA Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG, Salagianni ML, Orphanos G,
- the erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
L'invention porte sur une méthode permettant de prédire une réponse à une chimiothérapie et/ou le bénéfice apportée par celle-ci chez un patient souffrant d'un cancer. La méthode comprend les étapes consistant à (i) classifier une tumeur en au moins deux classes, (ii) déterminer dans un échantillon de tumeur l'expression d'au moins un gène marqueur indicateur d'une réponse à une chimiothérapie pour une tumeur dans chaque classe respective, (iii) selon ladite expression génique, prédire ladite réponse et/ou ledit bénéfice; ledit ou lesdits gènes marqueurs comprenant un gène choisi dans le groupe constitué par les gènes TMSL8, ABCC1, EGFR, MVP, ACOX2, HER2/NEU, MYH11, TOB1, AKR1C1, ERBB4, NFKB1A, TOP2A, AKR1C3, ESR1, OLFM1, TOP2B, ALCAM, FRAP1, PGR, TP53, BCL2, GADD45A, PRKAB1, TUBA1A, C16orf45, HIF1A, PTPRC, TUBB, CA12, 1GKC, RACGAP1, UBE2C, CD14, 1KBKB, S100A7, VEGFA, CD247, KRT5, SEPT8, YBX1, CD3D, MAPK3, SLC2A1, CDKN1A, MAPT, SLC7A8, CHPT1, MLPH, SPON1, CXCL13, MMP1, STAT1, CXCL9, MMP7, STC2, DCN, MUC1, STMN1 et les associations de ceux-ci.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08022559 | 2008-12-30 | ||
EP08022559.2 | 2008-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010076322A1 true WO2010076322A1 (fr) | 2010-07-08 |
Family
ID=42040598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/067990 WO2010076322A1 (fr) | 2008-12-30 | 2009-12-29 | Prédiction de la réponse à une chimiothérapie à base de taxane/d'anthracycline lors d'un cancer du sein |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010076322A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011120984A1 (fr) * | 2010-03-31 | 2011-10-06 | Sividon Diagnostics Gmbh | Procédé pour prédire la récurrence du cancer du sein sous traitement endocrinien |
WO2011121028A1 (fr) * | 2010-03-30 | 2011-10-06 | Siemens Healthcare Diagnostics Inc. | Algorithme pour la prédiction du bénéfice de l'ajout de taxane à une chimiothérapie standard chez des patients atteints d'un cancer du sein |
WO2012069462A1 (fr) | 2010-11-24 | 2012-05-31 | Immatics Biotechnologies Gmbh | Biomarqueurs pour prédire l'efficacité d'une immunothérapie contre le cancer |
WO2012076846A1 (fr) * | 2010-12-10 | 2012-06-14 | The University Of Nottingham | Polymorphisme |
WO2013014296A1 (fr) | 2011-07-28 | 2013-01-31 | Sividon Diagnostics Gmbh | Méthode de prédiction de la réponse à une chimiothérapie chez un patient souffrant d'un cancer du sein récidivant ou susceptible de le développer |
WO2013050998A1 (fr) * | 2011-10-04 | 2013-04-11 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Protéine cd247 utilisée comme biomarqueur en vue de l'évaluation de l'effet de médicaments chimiothérapeutiques et biologiques |
JP2013532489A (ja) * | 2010-08-02 | 2013-08-19 | ザ ブロード インスティテュート, インコーポレイテッド | 遺伝子発現プロファイリングに基づくがん治療への応答の予測ならびにモニタリング |
WO2015024942A1 (fr) * | 2013-08-19 | 2015-02-26 | Biontech Ag | Méthodes et kits pour le sous-typage moléculaire de tumeurs |
EP2843060A1 (fr) * | 2013-08-30 | 2015-03-04 | Sysmex Corporation | Un procédé , un appareil et un programme de détermination de la sensibilité à une chimiothérapie néo-adjuvante de cancer du sein |
JP2015519043A (ja) * | 2012-04-10 | 2015-07-09 | イムノヴィア・アクチエボラーグ | 乳癌関連の疾患状態を決定する方法およびこの方法における使用のためのアレイ |
WO2015114146A1 (fr) * | 2014-02-03 | 2015-08-06 | Sividon Diagnostics Gmbh | Procédé permettant de prédire la réponse à une thérapie et/ou une chimiothérapie à base d'anti-her2 chez des patientes atteintes d'un cancer du sein |
WO2015135035A3 (fr) * | 2014-03-11 | 2016-09-15 | The Council Of The Queensland Institute Of Medical Research | Détermination de l'agressivité d'un cancer, de son pronostic et de sa sensibilité à un traitement |
US9725942B2 (en) | 2012-07-02 | 2017-08-08 | Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt | Method for controlling a closing element arrangement on a motor vehicle |
WO2018002385A1 (fr) * | 2016-07-01 | 2018-01-04 | Institut Gustave Roussy | Utilisation de l'expression de gènes spécifiques pour le pronostic de patientes atteintes d'un cancer du sein triple négatif |
JP2019032334A (ja) * | 2018-10-03 | 2019-02-28 | イムノヴィア・アクチエボラーグ | 乳癌関連の疾患状態を決定する方法およびこの方法における使用のためのアレイ |
US10301685B2 (en) | 2013-02-01 | 2019-05-28 | Sividon Diagnostics Gmbh | Method for predicting the benefit from inclusion of taxane in a chemotherapy regimen in patients with breast cancer |
US10564163B2 (en) | 2010-06-11 | 2020-02-18 | Immunovia Ab | Method, array and use thereof |
WO2021047992A1 (fr) * | 2019-09-09 | 2021-03-18 | Oaklabs Gmbh | Signature de biomarqueur supérieure pour prédire la réponse d'un patient atteint d'un cancer du sein à une chimiothérapie |
WO2021087167A1 (fr) * | 2019-10-29 | 2021-05-06 | The Board Of Trustees Of The Leland Stanford Junior University | Méthodes de traitement basées sur une réponse moléculaire au traitement |
US11505832B2 (en) | 2017-09-08 | 2022-11-22 | Myriad Genetics, Inc. | Method of using biomarkers and clinical variables for predicting chemotherapy benefit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033699A2 (fr) * | 2003-10-03 | 2005-04-14 | Ncc Technology Ventures Pte Limited | Dispositifs et methodes destines a la classification du cancer du sein |
WO2007107254A1 (fr) * | 2006-03-22 | 2007-09-27 | Siemens Medical Solutions Diagnostics Gmbh | Prévision de la réponse d'un cancer du sein à une chimiothérapie |
WO2009068423A2 (fr) * | 2007-11-30 | 2009-06-04 | Siemens Healthcare Diagnostics Gmbh | Procédé de prédiction d'une sensibilité à une thérapie dans des tumeurs de type basales |
-
2009
- 2009-12-29 WO PCT/EP2009/067990 patent/WO2010076322A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005033699A2 (fr) * | 2003-10-03 | 2005-04-14 | Ncc Technology Ventures Pte Limited | Dispositifs et methodes destines a la classification du cancer du sein |
WO2007107254A1 (fr) * | 2006-03-22 | 2007-09-27 | Siemens Medical Solutions Diagnostics Gmbh | Prévision de la réponse d'un cancer du sein à une chimiothérapie |
WO2009068423A2 (fr) * | 2007-11-30 | 2009-06-04 | Siemens Healthcare Diagnostics Gmbh | Procédé de prédiction d'une sensibilité à une thérapie dans des tumeurs de type basales |
Non-Patent Citations (34)
Title |
---|
AALTOMAA S; LIPPONEN P; ESKELINEN M; KOSMA VM; MARIN S; ALHAVA E; SYRJANEN K: "Lymphocyte infiltrates as a prognostic variable in female breast cancer", EUR J CANCER, vol. 28A, no. 4-5, 1992, pages 859 - 64, XP026207645, DOI: doi:10.1016/0959-8049(92)90134-N |
APETOH L; GHIRINGHELLI F; TESNIERE A; CRIOLLO A; ORTIZ C; LIDEREAU R; MARIETTE C; CHAPUT N; MIRA JP; DELALOGE S: "The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy", IMMUNOL REV., vol. 220, December 2007 (2007-12-01), pages 47 - 59, XP002753466, DOI: doi:10.1111/j.1600-065X.2007.00573.x |
APETOH L; GHIRINGHELLI F; TESNIERE A; OBEID M; ORTIZ C; CRIOLLO A; MIGNOT G; MAIURI MC; ULLRICH E; SAULNIER P: "Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy", NAT MED., vol. 13, no. 9, September 2007 (2007-09-01), pages 1050 - 9 |
APETOH L; TESNIERE A; GHIRINGHELLI F; KROEMER G; ZITVOGEL L: "Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies", CANCER RES., vol. 68, no. 11, 1 June 2008 (2008-06-01), pages 4026 - 30 |
BATES GJ; FOX SB; HAN C; LEEK RD; GARCIA JF; HARRIS AL; BANHAM AH: "Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse", J CLIN ONCOL., vol. 24, no. 34, 1 December 2006 (2006-12-01), pages 5373 - 80 |
BREAST CANCER RES., vol. 9, no. 4, 2007, pages 212 |
CURIEL JT, NAT MED, 2004 |
DENKERT C; LOIBL S; NOSKE A; ROLLER M; MULLER BM; KOMOR M; BUDCZIES J; DARB-ESFAHANI S; KRONENWETT R; HANUSCH C: "Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer", J CLIN ONCOL., 16 November 2009 (2009-11-16) |
DIAZ LESLIE K ET AL: "Triple negative breast carcinoma and the basal phenotype: from expression profiling to clinical practice", ADVANCES IN ANATOMIC PATHOLOGY, RAVEN PRESS, NEW YORK, NY, US, vol. 14, no. 6, 1 November 2007 (2007-11-01), pages 419 - 430, XP009112644, ISSN: 1072-4109 * |
DRESSMAN HOLLY K ET AL: "Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy", CLINICAL CANCER RESEARCH, THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, US LNKD- DOI:10.1158/1078-0432.CCR-05-1447, vol. 12, no. 3 Pt 1, 1 February 2006 (2006-02-01), pages 819 - 826, XP002472390, ISSN: 1078-0432 * |
FISHER B; BRYANT J; WOLMARK N; MAMOUNAS E; BROWN A; FISHER ER; WICKERHAM DL; BEGOVIC M; DECILLIS A; ROBIDOUX A: "Effect of preoperative chemotherapy on the outcome of women with operable breast cancer", J CLIN ONCOL., vol. 16, no. 8, August 1998 (1998-08-01), pages 2672 - 85 |
GIANNI L; ZAMBETTI M; CLARK K; BAKER J; CRONIN M; WU J; MARIANI G; RODRIGUEZJ; CARCANGIU M; WATSON D: "Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer", J CLIN ONCOL., vol. 23, no. 29, 10 October 2005 (2005-10-10), pages 7265 - 77, XP008061561, DOI: doi:10.1200/JCO.2005.02.0818 |
HASMULLER S ET AL: "Response of basal-like tumors defined by ESR Her-2/neu, MLPH and MMP7 to neoadjuvant chemotherapy", EUROPEAN JOURNAL OF CANCER. SUPPLEMENT, PERGAMON, OXFORD, GB LNKD- DOI:10.1016/S1359-6349(08)70789-4, vol. 6, no. 7, 1 April 2008 (2008-04-01), pages 190, XP022672487, ISSN: 1359-6349, [retrieved on 20080401] * |
KAKLAMANI VIRGINIA: "A genetic signature can predict prognosis and response to therapy in breast cancer: Oncotype DX", EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, FUTURE DRUGS, LONDON, GB LNKD- DOI:10.1586/14737159.6.6.803, vol. 6, no. 6, 1 November 2006 (2006-11-01), pages 803 - 809, XP009096988, ISSN: 1473-7159 * |
LADOIRE S; ARNOULD L; APETOH L; COUDERT B; MARTIN F; CHAUFFERT B; FUMOLEAU P; GHIRINGHELLI F: "Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells", CLIN CANCER RES., vol. 14, no. 8, 15 April 2008 (2008-04-15), pages 2413 - 20 |
MODLICH 0; PRISACK HB; MUNNES M; AUDRETSCH W; BOJAR H: "Predictors of primary breast cancers responsiveness to preoperative epirubicin/cyclophosphamide-based chemotherapy: translation of microarray data into clinically useful predictive signatures", J TRANSL MED., vol. 3, 2005, pages 32, XP021009880, DOI: doi:10.1186/1479-5876-3-32 |
PEREZ SA; KARAMOUZIS MV; SKARLOS DV; ARDAVANIS A; SOTIRIADOU NN; ILIOPOULOU EG; SALAGIANNI ML; ORPHANOS G; BAXEVANIS CN; RIGATOS G: "CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients", CLIN CANCER RES., vol. 13, no. 9, 1 May 2007 (2007-05-01), pages 2714 - 21 |
RAKHA EA; EL-SAYED ME; LEE AH; ELSTON CW; GRAINGE MJ; HODI Z; BLAMEY RW: "Ellis 10. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma", J CLIN ONCOL., vol. 26, no. 19, 1 July 2008 (2008-07-01), pages 3153 - 8 |
RAKHA EMAD A ET AL: "Prognostic markers in triple-negative breast cancer", CANCER, AMERICAN CANCER SOCIETY, PHILADELPHIA, PA, US LNKD- DOI:10.1002/CNCR.22381, vol. 109, no. 1, 1 January 2007 (2007-01-01), pages 25 - 32, XP008099489, ISSN: 0008-543X, [retrieved on 20061204] * |
RODY A; KARN T; GATJE R; AHR A; SOLBACH C; KOURTIS K; MUNNES M; LOIBL S; KISSLER S; RUCKHABERLE E: "Gene expression profiling of breast cancer patients treated with docetaxel, doxorubicin, and cyclophosphamide within the GEPARTRIO trial: HER-2, but not topoisomerase II alpha and microtubule-associated protein tau, is highly predictive of tumor response", BREAST., vol. 16, 2007, pages 86 - 93, XP005860521, DOI: doi:10.1016/j.breast.2006.06.008 |
RODY A; KARN T; GATJE R; KOURTIS K; MINCKWITZ G; LOIBL S; MUNNES M; RUCKHABERLE E; HOLTRICH U; KAUFMANN M: "Gene expression profiles of breast cancer obtained from core cut biopsies before neoadjuvant docetaxel, adriamycin, and cyclophoshamide chemotherapy correlate with routine prognostic markers and could be used to identify predictive signatures", ZENTRALBL GYNAKOL, vol. 128, 2006, pages 76 - 81, XP009091417, DOI: doi:10.1055/s-2006-921508 |
RODY A; KARN T; SOLBACH C; GAETJE R; MUNNES M; KISSLER S; RUCKHABERLE E; MINCKWITZ GV; LOIBL S; HOLTRICH U: "The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial", BREAST, vol. 6, 2007, pages 235 - 240, XP025322287, DOI: doi:10.1016/j.breast.2007.02.006 |
ROUZIER ROMAN ET AL: "Breast cancer molecular subtypes respond differently to preoperative chemotherapy", CLINICAL CANCER RESEARCH, THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, US LNKD- DOI:10.1158/1078-0432.CCR-04-2421, vol. 11, no. 16, 15 August 2005 (2005-08-15), pages 5678 - 5685, XP002472391, ISSN: 1078-0432 * |
SCHMIDT M; BOHM D; VON TORNE C; STEINER E; PUHL A; PILCH H; LEHR HA; HENGSTLER JG; KOLBL H; GEHRMANN M: "The humoral immune system has a key prognostic impact in node-negative breast cance", CANCER RES., vol. 68, no. 13, 1 July 2008 (2008-07-01), pages 5405 - 13, XP055082825, DOI: doi:10.1158/0008-5472.CAN-07-5206 |
SMITH IC; HEYS SD; HUTCHEON AW; MILLER ID; PAYNE S; GILBERT FJ; AH-SEE AK; EREMIN 0; WALKER LG; SARKAR TK: "Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel", J CLIN ONCOL., vol. 20, no. 6, 15 March 2002 (2002-03-15), pages 1456 - 66 |
VON MINCKWITZ G ET AL: "Validated 3 Gene Signature Predicts Response to Neo-Adjuvant Chemotherapy in Luminal Breast Cancer - Results from GeparTrio and GeparQuattro", CANCER RESEARCH, vol. 69, no. 24, Suppl. 3, December 2009 (2009-12-01), & 32ND ANNUAL SAN ANTONIO BREAST CANCER SYMPOSIUM; SAN ANTONIO, TX, USA; DECEMBER 09 -13, 2009, pages 635S, XP009131681, ISSN: 0008-5472 * |
VON MINCKWITZ G; BLOHMER JU; RAAB G; LOHR A; GERBER B; HEINRICH G; EIDTMANN H; KAUFMANN M; HILFRICH J; JACKISCH C: "German Breast Group. In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRIO pilot study", ANN ONCOL., vol. 16, no. 1, January 2005 (2005-01-01), pages 56 - 63 |
VON MINCKWITZ G; KUMMEL S; VOGEL P; HANUSCH C; EIDTMANN H; HILFRICH J; GERBER B; HUOBER J; COSTA SD; JACKISCH C: "German Breast Group. Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study", J NATL CANCER INST., vol. 100, no. 8, 16 April 2008 (2008-04-16), pages 552 - 62 |
VON MINCKWITZ G; KUMMEL S; VOGEL P; HANUSCH C; EIDTMANN H; HILFRICH J; GERBER B; HUOBER J; COSTA SD; JACKISCH C: "German Breast Group. Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin- cyclophosphamide in early nonresponsive breast cancer: phase III randomized GeparTrio trial", J NATL CANCER INST., vol. 100, no. 8, 16 April 2008 (2008-04-16), pages 542 - 51 |
VON MINCKWITZ G; RAAB G; CAPUTO A; SCHUTTE M; HILFRICH J; BLOHMER JU; GERBER B; COSTA SD; MERKLE E; EIDTMANN H: "Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group", J CLIN ONCOL., vol. 23, no. 12, 20 April 2005 (2005-04-20), pages 2676 - 85 |
WALSER TC; MA X; KUNDU N; DORSEY R; GOLOUBEVA 0; FULTON AM: "Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model", J IMMUNOTHER, vol. 30, no. 5, July 2007 (2007-07-01), pages 490 - 8 |
WOLF AM; WOLF D; STEURER M; GASTL G; GUNSILIUS E; GRUBECK-LOEBENSTEIN B: "Increase of regulatory T cells in the peripheral blood of cancer patients", CLIN CANCER RES., vol. 9, no. 2, 2003, pages 606 - 12 |
ZITVOGEL L; APETOH L; GHIRINGHELLI F; KROEMER G: "Immunological aspects of cancer chemotherapy", NAT REV IMMUNOL, vol. 8, no. 1, January 2008 (2008-01-01), pages 59 - 73, XP055008389, DOI: doi:10.1038/nri2216 |
ZITVOGEL L; KROEMER G: "The immune response against dying tumor cells: avoid disaster, achieve cure", CELL DEATH DIFFER, vol. 15, no. 1, January 2008 (2008-01-01), pages 1 - 2 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011121028A1 (fr) * | 2010-03-30 | 2011-10-06 | Siemens Healthcare Diagnostics Inc. | Algorithme pour la prédiction du bénéfice de l'ajout de taxane à une chimiothérapie standard chez des patients atteints d'un cancer du sein |
AU2011234573B2 (en) * | 2010-03-31 | 2015-10-01 | Sividon Diagnostics Gmbh | Method for breast cancer recurrence prediction under endocrine treatment |
US11913078B2 (en) | 2010-03-31 | 2024-02-27 | Myriad International Gmbh | Method for breast cancer recurrence prediction under endocrine treatment |
US10851427B2 (en) | 2010-03-31 | 2020-12-01 | Myriad International Gmbh | Method for breast cancer recurrence prediction under endocrine treatment |
AU2011234573A1 (en) * | 2010-03-31 | 2012-09-20 | Sividon Diagnostics Gmbh | Method for breast cancer recurrence prediction under endocrine treatment |
US10577661B2 (en) | 2010-03-31 | 2020-03-03 | Myriad International Gmbh | Method for breast cancer recurrence prediction under endocrine treatment |
WO2011120984A1 (fr) * | 2010-03-31 | 2011-10-06 | Sividon Diagnostics Gmbh | Procédé pour prédire la récurrence du cancer du sein sous traitement endocrinien |
US10564163B2 (en) | 2010-06-11 | 2020-02-18 | Immunovia Ab | Method, array and use thereof |
JP2013532489A (ja) * | 2010-08-02 | 2013-08-19 | ザ ブロード インスティテュート, インコーポレイテッド | 遺伝子発現プロファイリングに基づくがん治療への応答の予測ならびにモニタリング |
US8669063B2 (en) | 2010-11-24 | 2014-03-11 | Immatics Biotechnologies Gmbh | Methods of using biomarkers for predicting the outcome of an immunotherapy against cancer |
US9389235B2 (en) | 2010-11-24 | 2016-07-12 | Immatics Biotechnologies Gmbh | Methods of using biomarkers for predicting the outcome of an immunotherapy against cancer |
WO2012069462A1 (fr) | 2010-11-24 | 2012-05-31 | Immatics Biotechnologies Gmbh | Biomarqueurs pour prédire l'efficacité d'une immunothérapie contre le cancer |
WO2012076846A1 (fr) * | 2010-12-10 | 2012-06-14 | The University Of Nottingham | Polymorphisme |
WO2013014296A1 (fr) | 2011-07-28 | 2013-01-31 | Sividon Diagnostics Gmbh | Méthode de prédiction de la réponse à une chimiothérapie chez un patient souffrant d'un cancer du sein récidivant ou susceptible de le développer |
EP3150720A1 (fr) | 2011-07-28 | 2017-04-05 | Sividon Diagnostics GmbH | Procédé de prédiction de la réponse à une chimiothérapie chez une patiente souffrant ou risquant de développer un cancer du sein récurrent |
WO2013050998A1 (fr) * | 2011-10-04 | 2013-04-11 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Protéine cd247 utilisée comme biomarqueur en vue de l'évaluation de l'effet de médicaments chimiothérapeutiques et biologiques |
JP2015519043A (ja) * | 2012-04-10 | 2015-07-09 | イムノヴィア・アクチエボラーグ | 乳癌関連の疾患状態を決定する方法およびこの方法における使用のためのアレイ |
EP2836838A4 (fr) * | 2012-04-10 | 2016-03-30 | Immunovia Ab | Procédés de détermination d'un état pathologique associé au cancer du sein et matrices destinées à être utilisées dans ces procédés |
US9725942B2 (en) | 2012-07-02 | 2017-08-08 | Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt | Method for controlling a closing element arrangement on a motor vehicle |
US10301685B2 (en) | 2013-02-01 | 2019-05-28 | Sividon Diagnostics Gmbh | Method for predicting the benefit from inclusion of taxane in a chemotherapy regimen in patients with breast cancer |
WO2015024942A1 (fr) * | 2013-08-19 | 2015-02-26 | Biontech Ag | Méthodes et kits pour le sous-typage moléculaire de tumeurs |
RU2690241C2 (ru) * | 2013-08-19 | 2019-05-31 | Бионтех Диагностикс Гмбх | Способы и наборы для молекулярного субтипирования опухолей |
US10808283B2 (en) | 2013-08-19 | 2020-10-20 | Biontech Diagnostics Gmbh | Methods and kits for the molecular subtyping of tumors |
EP2843060A1 (fr) * | 2013-08-30 | 2015-03-04 | Sysmex Corporation | Un procédé , un appareil et un programme de détermination de la sensibilité à une chimiothérapie néo-adjuvante de cancer du sein |
WO2015114146A1 (fr) * | 2014-02-03 | 2015-08-06 | Sividon Diagnostics Gmbh | Procédé permettant de prédire la réponse à une thérapie et/ou une chimiothérapie à base d'anti-her2 chez des patientes atteintes d'un cancer du sein |
WO2015135035A3 (fr) * | 2014-03-11 | 2016-09-15 | The Council Of The Queensland Institute Of Medical Research | Détermination de l'agressivité d'un cancer, de son pronostic et de sa sensibilité à un traitement |
US11466327B2 (en) | 2016-07-01 | 2022-10-11 | Istituto Europeo Di Oncologia (Ieo) | Use of the expression of specific genes for the prognosis of patients with triple negative breast cancer |
WO2018002385A1 (fr) * | 2016-07-01 | 2018-01-04 | Institut Gustave Roussy | Utilisation de l'expression de gènes spécifiques pour le pronostic de patientes atteintes d'un cancer du sein triple négatif |
US11505832B2 (en) | 2017-09-08 | 2022-11-22 | Myriad Genetics, Inc. | Method of using biomarkers and clinical variables for predicting chemotherapy benefit |
US12180551B2 (en) | 2017-09-08 | 2024-12-31 | Myriad International Gmbh | Method of using biomarkers and clinical variables for predicting chemotherapy benefit |
JP2019032334A (ja) * | 2018-10-03 | 2019-02-28 | イムノヴィア・アクチエボラーグ | 乳癌関連の疾患状態を決定する方法およびこの方法における使用のためのアレイ |
WO2021047992A1 (fr) * | 2019-09-09 | 2021-03-18 | Oaklabs Gmbh | Signature de biomarqueur supérieure pour prédire la réponse d'un patient atteint d'un cancer du sein à une chimiothérapie |
WO2021087167A1 (fr) * | 2019-10-29 | 2021-05-06 | The Board Of Trustees Of The Leland Stanford Junior University | Méthodes de traitement basées sur une réponse moléculaire au traitement |
CN114787374A (zh) * | 2019-10-29 | 2022-07-22 | 斯坦福大学托管董事会 | 基于对治疗的分子反应的治疗方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010076322A1 (fr) | Prédiction de la réponse à une chimiothérapie à base de taxane/d'anthracycline lors d'un cancer du sein | |
JP5940517B2 (ja) | 内分泌治療下における乳癌再発を予測するための方法 | |
US20220307090A1 (en) | Method for predicting the response to chemotherapy in a patient suffering from or at risk of developing recurrent breast cancer | |
US20230366034A1 (en) | Compositions and methods for diagnosing lung cancers using gene expression profiles | |
US20190085407A1 (en) | Methods and compositions for diagnosis of glioblastoma or a subtype thereof | |
US8642279B2 (en) | Method for predicting risk of metastasis | |
JP2016041071A (ja) | 化学療法剤に対する応答を予測するための遺伝子発現マーカー | |
Latha et al. | Gene expression signatures: a tool for analysis of breast cancer prognosis and therapy | |
US20140154681A1 (en) | Methods to Predict Breast Cancer Outcome | |
US20110143946A1 (en) | Method for predicting the response of a tumor in a patient suffering from or at risk of developing recurrent gynecologic cancer towards a chemotherapeutic agent | |
JP2011509689A (ja) | Ii及びiii期結腸癌の分子病期分類並びに予後診断 | |
US20250137066A1 (en) | Compostions and methods for diagnosing lung cancers using gene expression profiles | |
US9195796B2 (en) | Malignancy-risk signature from histologically normal breast tissue | |
EP2553119A1 (fr) | Algorithme pour la prédiction du bénéfice de l'ajout de taxane à une chimiothérapie standard chez des patients atteints d'un cancer du sein | |
WO2010003772A1 (fr) | Procédé permettant de prévoir une réaction indésirable à l'érythropoïétine dans le cadre du traitement d'un cancer du sein | |
EP3426797A1 (fr) | Procédé de détermination du risque de récurrence d'un carcinome mammaire primaire positif au récepteur des strogènes et négatif her2 sous thérapie endocrinienne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09799363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09799363 Country of ref document: EP Kind code of ref document: A1 |