+

WO2010067767A1 - M-c-n-o系蛍光体の製造方法 - Google Patents

M-c-n-o系蛍光体の製造方法 Download PDF

Info

Publication number
WO2010067767A1
WO2010067767A1 PCT/JP2009/070450 JP2009070450W WO2010067767A1 WO 2010067767 A1 WO2010067767 A1 WO 2010067767A1 JP 2009070450 W JP2009070450 W JP 2009070450W WO 2010067767 A1 WO2010067767 A1 WO 2010067767A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
mcno
producing
nitrogen
product
Prior art date
Application number
PCT/JP2009/070450
Other languages
English (en)
French (fr)
Inventor
高井 淳
岩崎 秀治
フェリー イスカンダル
奥山 喜久夫
Original Assignee
国立大学法人 広島大学
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 広島大学, 株式会社クラレ filed Critical 国立大学法人 広島大学
Priority to US13/133,795 priority Critical patent/US8562865B2/en
Priority to CN200980149606.9A priority patent/CN102245734B/zh
Priority to JP2010542094A priority patent/JP5467272B2/ja
Priority to EP09831871.0A priority patent/EP2371928B1/en
Publication of WO2010067767A1 publication Critical patent/WO2010067767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • C09K11/655Aluminates; Silicates

Definitions

  • the present invention relates to an MCNO phosphor composed of a group IIIB element (M), carbon (C), nitrogen (N) and oxygen (O) elements, which is useful as an electronic material and a fluorescent material, and its It relates to a manufacturing method.
  • M group IIIB element
  • C carbon
  • N nitrogen
  • O oxygen
  • Phosphors are used in fluorescent tubes, fluorescent display tubes, luminous display panels, and the like, and their use is expanding. Recently, a combination of phosphors and LEDs can be used for various types of display devices such as television monitors. Has been tried. In addition, research and development of white phosphors, which are expected to be used in a wide range of phosphors, are also in progress.
  • Patent Document 1 includes a general formula MmAaBbOoNn: Z (where M element is one or more elements having a valence of II, and A element is one or more elements having a valence of III.
  • the element B is one or more elements having a valence of IV including at least Si, O is oxygen, N is nitrogen, Z is one or more activators, and m> 0, a> 0, b> 0, o ⁇ 0, and n> 0).
  • the manufacturing method in the process of baking a predetermined mixture in a baking furnace and obtaining a baked product, the mixture is baked twice or more, and the baked mixture is pulverized between the baking and the baking. It is disclosed that mixing is performed, and by repeating firing, the uniformity of the fired product is improved and the luminous efficiency of the phosphor is improved.
  • the powder aggregate obtained by baking is firmly fixed, it is pulverized by a pulverizer to have an average particle size of 20 ⁇ m or less, and heat-treated at a temperature of 1000 ° C. or higher after pulverization. It is disclosed that it is possible to improve the surface state of the fired product that has been reduced during pulverization and the like, thereby improving the luminance of the phosphor.
  • Patent Document 3 discloses urea and / or urea derivatives such as Al, B, Ba, Be, Bi, Ca, Cd, Cs, Ga, Ge, Hf, In, K, Li, Mg, Mo, Nb, P, Rb, Si, Sn, Sr, Ta, Ti, V, W, Zr, and a precursor obtained by solidifying by heating the mixed melt obtained by adding a metal compound containing at least one metal selected from the group consisting of rare earth metals
  • a method is disclosed in which a phosphor is produced by producing a body, pulverizing the precursor, and then firing. Urea and the like are decomposed and changed into a resin component in the process of preparing the precursor, and the resin component facilitates the pulverization of the precursor. When the precursor is subjected to a subsequent firing step, the resin component is completely dissipated, and the component derived from urea or the like does not remain inside the phosphor as the final product.
  • Patent Document 4 discloses an MC—N—O-based phosphor comprising a group IIIB element (M), carbon (C), nitrogen (N) and oxygen (O) elements, and a method for producing the same.
  • group IIIB element boron (B) is used, and a method of firing a mixture solution of boric acid, urea, and a polymer is disclosed.
  • the phosphor disclosed in Patent Document 4 does not contain rare rare earth elements and does not contain heavy metals, it is desirable from the viewpoint of economic and environmental protection. Moreover, since the peak top wavelength of the emission spectrum of the phosphor varies depending on the carbon content, the phosphor can be used to emit light of various colors while having a simple structure. It can be expected to develop a light emitting device capable of the above. In particular, it is expected that a blue phosphor, a green phosphor and a red phosphor are separately prepared and combined to develop a white phosphor having a good color rendering property.
  • the present invention has been made in view of the above-mentioned problems and social demands of the prior art, and an object of the present invention is to provide a method for producing a MCNO phosphor having reduced color unevenness and improved color purity.
  • thermal decomposition of the raw material compound of the MCNO phosphor by heat treatment is performed.
  • the present invention was completed by intensively studying the effects of the generation of the product and the dispersion of the thermal decomposition product. According to the method of the present invention, the following is provided.
  • a method for producing a MCNO phosphor comprising a group IIIB element (M), carbon (C), nitrogen (N) and oxygen (O), Heating a mixture containing a Group IIIB element-containing compound and a nitrogen-containing organic compound to produce a thermal decomposition product;
  • the manufacturing method including the process of crushing the product containing the obtained thermal decomposition product, and the process of baking the obtained decomposition product in oxygen-containing atmosphere.
  • [6] The method for producing a MCNO phosphor according to any one of [1] to [5], further comprising a step of pulverizing the phosphor product obtained by firing.
  • the phosphor product is pulverized so that an average particle size of the phosphor product is 1 ⁇ m or less.
  • Production method. [8] The method for producing an MCNO phosphor according to any one of [1] to [7], wherein the group IIIB element (M) is boron (B).
  • an MCNO phosphor having a narrow emission spectrum width can be obtained, and a phosphor with high color purity and uniform brightness can be stably produced. It can be obtained.
  • 2 is an ultraviolet-excited emission spectrum of the phosphor obtained in Example 1.
  • 2 is an ultraviolet-excited emission spectrum of the phosphor obtained in Comparative Example 1.
  • 2 is an ultraviolet-excited emission spectrum of the phosphor obtained in Example 2.
  • 6 is an ultraviolet-excited emission spectrum of the phosphor obtained in Comparative Example 2.
  • 6 is an ultraviolet-excited emission spectrum of the phosphor obtained in Example 3.
  • 4 is an ultraviolet-excited emission spectrum of the phosphor obtained in Example 4.
  • 7 is an ultraviolet-excited emission spectrum of the phosphor obtained in Example 7.
  • 2 is an infrared absorption spectrum of the phosphor obtained in Example 1.
  • 4 is an infrared absorption spectrum of the phosphor obtained in Comparative Example 1.
  • 4 is an infrared absorption spectrum of the phosphor obtained in Comparative Example 2.
  • the method for producing a MCNO phosphor according to the present invention includes a step of heating a mixture containing a Group IIIB element-containing compound and a nitrogen-containing organic compound to generate a thermal decomposition product, and the thermal decomposition product generation step.
  • the process of crushing the product containing the thermal decomposition product obtained from 1 and the process of baking the crushed product obtained by the crushing process are included.
  • the step of heating the mixture containing the Group IIIB element-containing compound and the nitrogen-containing organic compound to produce a pyrolyzate involves burning the organic matter contained in the raw material mixture of the MCNO phosphor.
  • the heat generated in the pyrolyzate production step is performed so that the carbon composition in the MCNO phosphor obtained as a final product is uniform. Since the decomposition product is a process performed to distribute the decomposition product uniformly in the raw material of the MCNO fluorescent material, it needs to be performed following the thermal decomposition product generation process. Therefore, the crushing step employed in the phosphor manufacturing method according to the prior art, for example, “the mixture is fired twice or more, and the fired mixture is ground and mixed between the firings.
  • a crushing process such as “well, it is possible to improve the uniformity of the fired product by repeating firing” is different from the crushing process of the present invention in that it does not involve a pyrolysate production process.
  • the step of firing the MCNO phosphor material obtained through the generation and crushing of the pyrolyzate included in the production method according to the present invention can thereby achieve the target MCCN. Since it is a step of generating an O-based phosphor, a crushing step and subsequent heat treatment performed to “make the surface state reduced during grinding” good in the phosphor manufacturing method according to the prior art and Are essentially different.
  • the group IIIB oxide as a raw material may be any material having a group IIIB oxide as a basic skeleton.
  • Usable compounds include boric acid, boric anhydride and their esters, amides, ammonium salt derivatives, aluminates and their esters, amides, ammonium salt derivatives, aluminum hydroxide, alumina, gallium hydroxide, gallium oxide, water Examples thereof include indium oxide and indium oxide.
  • boric acid anhydrous boric acid or their ammonium salts
  • aluminum hydroxide gallium hydroxide, or gallium oxide
  • a hydrate or indium hydroxide may be prepared by hydrolyzing other corresponding hydrochlorides, sulfates, etc. with a basic solution.
  • boric acid, anhydrous boric acid, and aluminum hydroxide are preferred.
  • the nitrogen-containing organic compound as a raw material is not limited, and any compound that decomposes to generate ammonia may be used.
  • nitrogen-containing organic compounds include carbamates such as urea, methyl carbamate and ethyl carbamate, amides such as formamide and acetamide, lactams such as ⁇ -caprolactam, ⁇ -butyrolactam and N-methylpyrrolidone, ammonium formate, acetic acid Ammonium salts such as ammonium can be used.
  • Urea, amides, and ammonium salts are preferable in consideration of the effect of introducing nitrogen into the MCNO phosphor and availability, and urea is more preferable in consideration of economy and operability.
  • a dispersant containing carbon can be further added to and mixed with a mixture composed of a Group IIIB element-containing compound and a nitrogen-containing organic compound.
  • the dispersant not only serves as a carbon source for the MCNO phosphor, but also facilitates the reaction between the group IIIB element-containing compound and the nitrogen-containing organic compound, and also when a solvent described later is used. Is used for the purpose of improving the dispersibility of the boron-containing compound and the nitrogen-containing organic compound in the solvent and suppressing the preferential precipitation of only one when the solvent is volatilized.
  • the dispersant used is not particularly limited, and is particularly preferably a compound having a high affinity for the IIIB group element-containing compound. Further, the dispersant preferably has a boiling point higher than the temperature at which the nitrogen-containing organic compound decomposes and ammonia is generated.
  • Such compounds include polyethers such as polyethylene glycol (PEG), polyethylene glycol dimethyl ether and polyethylene oxide, polyamides such as polyvinyl pyrrolidone, polymer compounds such as hydroxyl group-containing polymers such as polyvinyl glycerin and polyvinyl alcohol, and ethylene glycol.
  • PEG polyethylene glycol
  • polyethylene glycol dimethyl ether polyethylene oxide
  • polyamides such as polyvinyl pyrrolidone
  • polymer compounds such as hydroxyl group-containing polymers such as polyvinyl glycerin and polyvinyl alcohol
  • ethylene glycol ethylene glycol
  • a mixture comprising a Group IIIB element-containing compound and a nitrogen-containing organic compound, or a mixture further containing a dispersant can be heated to produce a thermal decomposition product, which is dissolved or suspended in a solvent.
  • a solution or suspension obtained by turbidity can be heated to produce a thermal decomposition product.
  • the solvent is not particularly limited as long as it can dissolve the Group IIIB element-containing compound and the nitrogen-containing organic compound, and can maintain dispersibility. That is, alcohols such as water, methanol, and ethanol can be used. In particular, it is preferable to use water in consideration of safety during use, explosiveness, and the like.
  • the solvent used does not contain impurities.
  • Concerning the inclusion of an alkali metal or alkaline earth metal there is a concern that it reacts with the group IIIB element-containing compound, changes the structure, and affects the light emission. There is concern that it may affect the structure formation of the O-based phosphor, and the inclusion of halogen or the like accelerates the decomposition of the nitrogen-containing organic compound and prevents nitrogen from being introduced into the MCNO phosphor. Therefore, it is not preferable. Therefore, the total content of these impurities is preferably 5000 ppm or less, more preferably 1000 ppm or less.
  • the amount of the IIIB group element-containing compound and the nitrogen-containing organic compound is influenced by the type of compound used, the firing temperature, the time, etc., and thus cannot be determined in general.
  • the nitrogen-containing organic compound is used in the range of 10 to 1500 parts by weight, more preferably in the range of 50 to 1200 parts by weight.
  • the amount of the dispersant used is not particularly limited, and since it is influenced by the type of compound used, the heating temperature, the time, etc., it cannot be determined in general. On the other hand, it is used in the range of 1 to 200 parts by weight, more preferably in the range of 5 to 190 parts by weight.
  • the amount of the solvent used is not particularly limited, and since it is affected by the type of compound used, heating temperature, time, etc., it cannot be determined in general, but usually contains group IIIB elements It is used in the range of 1 to 50000 parts by weight, more preferably in the range of 1 to 10000 parts by weight with respect to 100 parts by weight of the compound. If the amount used is too large, it takes more time to remove the solvent and the amount of heat used becomes uneconomical, so it is more preferable to carry out in the range of 1 to 5000 parts by weight.
  • a mixture comprising a Group IIIB element-containing compound and a nitrogen-containing organic compound, or a dispersant-containing mixture obtained by adding a dispersant to the mixture is prepared.
  • the mixing method is not particularly limited. When solids are mixed, a method such as a ball mill, a turbo mill, or a jet mill may be used, or a mortar may be used for mixing.
  • a dispersant-containing mixture obtained by further adding a dispersant to the mixture is dissolved or suspended in a solvent, and this solution or suspension is used as a raw material mixture.
  • a solvent can be once distilled off from the above solution or suspension by a method such as spray drying.
  • the method for producing the MCNO phosphor according to the present invention includes a pyrolysate production step of heating the above mixture, and a product containing the pyrolyzate obtained from the step. And a firing step of further firing the crushed material obtained by the crushing step.
  • the heating method in the pyrolysate production step may be any method that can cause thermal decomposition of the nitrogen-containing organic compound in the above mixture or the solution containing the mixture, and uses various heating and baking apparatuses. Can do.
  • heating and firing furnaces such as moving beds such as rotary kiln furnaces and conical kiln furnaces, continuous fixed beds such as roller hearth furnaces and pusher furnaces, and batch fixed beds such as atmosphere control furnaces
  • heating and firing furnaces such as moving beds such as rotary kiln furnaces and conical kiln furnaces, continuous fixed beds such as roller hearth furnaces and pusher furnaces, and batch fixed beds such as atmosphere control furnaces
  • the one using a pyrolysis furnace may be used.
  • a heating and kneading apparatus for example, an extruder such as a single screw extruder or a twin screw extruder, or a heating mixer such as a torus disk can be used.
  • the heating temperature is influenced by the amount of the group IIIB element-containing compound, nitrogen-containing organic compound, dispersant used, etc., and thus cannot be specified unconditionally. Set to range. If it is too low, the nitrogen-containing organic compound is not decomposed, and if it is too high, energy consumption increases, which is not preferable. Therefore, it is preferably carried out in the range of 200 ° C. to 550 ° C., more preferably in the range of 200 ° C. to 500 ° C.
  • the rate of temperature rise is not particularly limited, but if it is too fast, a special firing furnace must be used, and thus the equipment load is large.
  • the temperature is usually raised in the range of 1 ° C. to 80 ° C. per minute, more preferably in the range of 2 ° C. to 50 ° C.
  • the time for holding at the above heating temperature cannot be defined unconditionally because it is affected by the amount of the nitrogen-containing organic compound and the dispersant used, but is usually set in the range of 0 to 180 minutes.
  • An excessively short time is not preferable because heat transfer is insufficient and there is anxiety in homogeneity, and an excessively long time is not preferable because it causes a loss of carbon content. Therefore, it is carried out in the range of 1 minute to 150 minutes, more preferably in the range of 5 minutes to 120 minutes.
  • any of an inert gas atmosphere such as nitrogen or a rare gas (for example, argon) or an atmospheric atmosphere (in the presence of oxygen) may be used. it can.
  • the nitrogen-containing organic compound is heated and decomposed, so that it is preferable to block or remove oxygen from the atmosphere in consideration of the danger of explosion due to the generation of ammonia. Therefore, for example, it is preferable to carry out in an inert gas atmosphere such as nitrogen or a rare gas.
  • These operations may be performed in a gas stream or may be performed in a sealed atmosphere.
  • the rate of temperature reduction is not particularly limited, but if it is too fast, a special firing furnace must be used, so the load on the equipment is large. Therefore, the temperature is usually lowered in the range of 1 ° C. to 120 ° C. per minute, more preferably in the range of 2 ° C. to 100 ° C.
  • the atmosphere at the time of temperature reduction is not particularly limited, and any atmospheric condition in an inert gas atmosphere such as nitrogen or argon or in the presence of oxygen may be used. Considering safety and the like, it is preferable to lower the temperature in an inert gas atmosphere. Further, at 300 ° C. or lower, moisture adheres to the surface of the target phosphor. Therefore, it is preferable that the gas present in the atmosphere when the temperature falls is a dry gas.
  • the product containing the pyrolyzate obtained as described above is pulverized and mixed to avoid agglomeration and suppress uneven distribution of each component. By this operation, a decrease in the color purity of the phosphor due to excessive introduction of carbon or non-introduction of carbon is suppressed.
  • a dispersing agent may be added again during crushing and mixing.
  • the method for crushing and mixing is not particularly limited, and when crushing and mixing solids, a method such as a ball mill, a turbo mill, or a jet mill may be used, or mixing may be performed using a mortar or the like. It's okay.
  • the degree of pulverization is not particularly limited, but if pulverized too finely, it is not preferable because the gas flow at the time of calcination deteriorates and the calcination becomes uneven and spots occur. Therefore, the product containing the pyrolyzate is crushed so that the average particle diameter is usually in the range of 0.1 ⁇ m to 2 mm, more preferably in the range of 0.2 ⁇ m to 1 mm.
  • the pulverized product obtained as described above is fired to obtain an MCNO phosphor. Firing in this firing step can be performed using various heating devices in the same manner as in the thermal decomposition product generation step.
  • the firing temperature in the main firing step is affected by the amount of the group IIIB element-containing compound, nitrogen-containing organic compound, and dispersant used, and thus cannot be specified unconditionally, but is usually in the range of 500 ° C to 1000 ° C. Is set. If it is too low, unreacted carbonized residue adheres to the phosphor surface and the luminous efficiency decreases, which is not preferable. If it is too high, the carbon will burn out, resulting in carbon deficiency and a change in emission color. Therefore, it is not preferable. Therefore, it is preferably carried out in the range of 510 ° C. to 950 ° C., more preferably in the range of 520 ° C. to 900 ° C.
  • the temperature increase rate for the main firing process is not particularly limited, but if it is too fast, a special firing furnace must be used, and thus the equipment load is large. Therefore, the temperature is usually raised in the range of 1 ° C. to 80 ° C. per minute, more preferably in the range of 2 ° C. to 50 ° C.
  • the time for holding at the calcination temperature cannot be defined unconditionally because it is affected by the amount of the nitrogen-containing organic compound and the dispersant used, but is usually set in the range of 0 to 180 minutes.
  • An excessively short time is not preferable because heat transfer is insufficient and there is anxiety in homogeneity, and an excessively long time is not preferable because it causes a loss of carbon content. Therefore, it is carried out in the range of 1 minute to 150 minutes, more preferably in the range of 5 minutes to 120 minutes.
  • the firing atmosphere may be in the presence of oxygen in order to burn excess carbon.
  • oxygen concentration is not particularly limited, but is used in the range of 1% to 30%, more preferably in the range of 3% to 25%.
  • the atmosphere can be switched to an inert gas atmosphere to suppress further conversion to boric acid (or anhydrous boric acid) or alumina due to carbon deficiency and nitride oxidation. These operations may be performed in a gas stream or may be performed in a sealed atmosphere.
  • the rate of temperature reduction is not particularly limited, but if it is too fast, a special firing furnace must be used, so that the equipment load is large. Therefore, the temperature is usually lowered in the range of 1 ° C. to 80 ° C. per minute, more preferably in the range of 2 ° C. to 50 ° C.
  • the atmosphere at the time of temperature reduction is not particularly limited, and any atmospheric condition in an inert gas atmosphere such as nitrogen or argon or in the presence of oxygen may be used. Considering safety and the like, it is preferable to lower the temperature in an inert gas atmosphere. Further, at 300 ° C. or lower, moisture adheres to the target phosphor surface, and therefore, it is preferable to carry out under a dry gas.
  • the obtained phosphor can be pulverized into finer particles.
  • the pulverization method is not particularly limited, but phosphor particles can be pulverized until they become fine particles using a mortar or the like, and a system such as a ball mill, a turbo mill, or a jet mill can also be used. These may be performed dry or wet using a solvent such as alcohol.
  • the phosphor of the present invention can be obtained as fine particles having an average particle diameter of 0.001 to 1 ⁇ m, more preferably 0.01 to 0.9 ⁇ m. Therefore, according to the present invention, it is possible to provide a phosphor that is suitable for applications that are required to be processed into fine particles.
  • the term “average particle diameter” is a cumulative volume average median diameter (D 50) determined based on a volume-based particle size distribution measured by a commercially available laser diffraction / scattering particle size distribution measuring apparatus. ).
  • Example 1 Boric anhydride (B 2 O 3 ) 2.44 g (0.035 mol) manufactured by Kishida Chemical Co., Ltd., urea [(NH 2 ) 2 CO] 10.5 g (0.175 mol) manufactured by Wako Pure Chemical Industries, Ltd. ), 1.2 g of PEG (molecular weight 20000) was pulverized and mixed in a mortar, transferred to an alumina crucible, placed in a heating furnace, heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen stream, and 400 ° C. For 10 minutes.
  • B 2 O 3 Boric anhydride
  • the obtained powder was pulverized and mixed in a mortar, transferred again to a crucible, put into a heating furnace, heated to 800 ° C. at a heating rate of 10 ° C./min in an air atmosphere, and baked at 800 ° C. for 10 minutes.
  • the ultraviolet (350 nm) excitation emission spectrum result of the phosphor obtained in Example 1 is shown in FIG.
  • the measurement was performed using FP-6500 manufactured by JASCO Corporation.
  • the horizontal axis indicates the wavelength, and the vertical axis indicates the PL intensity.
  • the fluorescence quantum efficiency was 56%.
  • the infrared absorption spectrum of the phosphor was measured using a Fourier transform infrared spectrophotometer (JIR-5500, manufactured by JEOL) at an observation region of 250-4000 nm with 30 scans.
  • Peak intensity of the absorption having a peak top at a wavenumber of 1360 cm -1 is 5.5
  • the peak intensity of the absorption having a peak top in 1242Cm -1 is 7.8 is observed to 1200-1250Cm -1 absorption
  • the ratio of the peak intensity of the light to the peak intensity of absorption observed at 1300-1400 cm ⁇ 1 was 0.705 (see FIG. 8).
  • the average particle diameter of the obtained phosphor particles was measured using a laser diffraction / scattering particle size distribution analyzer LA-950 manufactured by Horiba, Ltd., and the average particle diameter was 3 ⁇ m.
  • the infrared absorption spectrum of the phosphor was measured using a Fourier transform infrared spectrophotometer (JIR-5500, manufactured by JEOL) in an observation region of 250-4000 nm with 30 scans. Absorption peaks observed at 1200-1250Cm -1 there is a plurality, the absorption peaks observed at 1300-1400Cm -1 were also more exist, it can not be calculated intensity ratio (see FIG. 9).
  • JIR-5500 Fourier transform infrared spectrophotometer
  • Example 2 Wako Pure Chemical Industries, Ltd. boric acid (H 3 BO 3 ) 1.53 g (0.025 mol), urea [(NH 2 ) 2 CO] 15.3 g (0.25 mol), PEG (molecular weight 20000) 1.0 g was taken in a 3000 ml beaker, 33.3 g of ultrapure water was added, and the mixture was stirred and dissolved using a hot stirrer (rotation speed: 500 rpm). The resulting solution was transferred to an alumina crucible, placed in a heating furnace, heated to 400 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream, and heat-treated at 400 ° C. for 10 minutes.
  • boric acid H 3 BO 3
  • PEG molecular weight 20000
  • the obtained powder was pulverized and mixed in a mortar, transferred again to a crucible, placed in a heating furnace, heated to 800 ° C. at a temperature rising rate of 20 ° C./min in an air atmosphere, and baked at 800 ° C. for 30 minutes.
  • the ultraviolet-excited emission spectrum of the obtained phosphor is shown in FIG.
  • the fluorescence quantum efficiency was 44%.
  • the peak intensity of absorption having a peak top at a wave number of 1360 cm ⁇ 1 is 6.5
  • the peak intensity of absorption having a peak top at 1241 cm ⁇ 1 is 7.
  • the ratio of the peak intensity of the absorption observed at peak intensity and 1300-1400Cm -1 absorption observed at 1200-1250Cm -1 was 0.833.
  • the average particle size of the obtained phosphor particles was measured using a laser diffraction / scattering type particle size distribution analyzer LA-950 manufactured by Horiba, Ltd.
  • the average particle size was 2.5 ⁇ m.
  • the infrared absorption spectrum of the phosphor was measured using a Fourier transform infrared spectrophotometer (JIR-5500, manufactured by JEOL) in an observation region of 250-4000 nm with 30 scans. Absorption peaks observed at 1200-1250Cm -1 there is a plurality, the absorption peaks observed at 1300-1400Cm -1 were also more exist, can not be calculated peak intensity ratio (see FIG. 10).
  • Example 3 Boric anhydride (B 2 O 3 ) 2.44 g (0.035 mol) manufactured by Kishida Chemical Co., Ltd., urea [(NH 2 ) 2 CO] 10.5 g (0.175 mol) manufactured by Wako Pure Chemical Industries, Ltd. ), 1.2 g of PEG (molecular weight 20000) was pulverized and mixed in a mortar, transferred to an alumina crucible, placed in a heating furnace, heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen stream, and 400 ° C. For 10 minutes.
  • B 2 O 3 Boric anhydride
  • PEG molecular weight 20000
  • the obtained powder was pulverized and mixed in a mortar, transferred again to a crucible, placed in a heating furnace, heated to 800 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere, and baked at 800 ° C. for 90 minutes.
  • the ultraviolet (350 nm) excitation emission spectrum result of the obtained phosphor is shown in FIG.
  • the fluorescence quantum efficiency was 55%.
  • the peak intensity of the absorption peak intensity of absorption having a peak top in 7.6,1220Cm -1 having a peak top at a wavenumber of 1363cm -1 is 4.3
  • the ratio of the peak intensity of the absorption observed at peak intensity and 1300-1400Cm -1 absorption observed at 1200-1250Cm -1 was 1.813.
  • Example 4 Boric anhydride (B 2 O 3 ) 2.44 g (0.035 mol) manufactured by Kishida Chemical Co., Ltd., urea [(NH 2 ) 2 CO] 10.5 g (0.175 mol) manufactured by Wako Pure Chemical Industries, Ltd. ), 2.6 g of PEG (molecular weight 20000) was pulverized and mixed in a mortar, transferred to an alumina crucible, placed in a heating furnace, heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen stream, and 400 ° C. For 10 minutes.
  • B 2 O 3 Boric anhydride
  • the obtained powder was pulverized and mixed in a mortar, transferred again to a crucible, placed in a heating furnace, heated to 800 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere, and baked at 800 ° C. for 20 minutes.
  • the ultraviolet (350 nm) excitation emission spectrum result of the obtained phosphor is shown in FIG.
  • the fluorescence quantum efficiency was 53%.
  • the absorption peak intensity having a peak top at a wave number of 1371 cm ⁇ 1 is 4.8
  • the peak intensity of absorption having a peak top at 1220 cm ⁇ 1 is 6. 4
  • the ratio of the peak intensity of the absorption observed at peak intensity and 1300-1400Cm -1 absorption observed at 1200-1250Cm -1 was 0.75.
  • Example 5 The phosphor particles having an average particle diameter of 3 ⁇ m obtained in Example 1 were placed in a ball mill of a 100 ml container, and pulverized for 30 minutes 5 times. It was confirmed that the average particle size of the phosphor particles after pulverization was 0.8 ⁇ m using LA-950 manufactured by Horiba. When an ultraviolet (350 nm) excitation emission spectrum was measured, the obtained emission spectrum showed the same shape as in Example 1, and the fluorescence quantum yield was 56% of the phosphor of Example 1, whereas It was confirmed that there was almost no change at 55%.
  • UV (350 nm) excitation emission spectrum was measured, the obtained emission spectrum showed the same shape as in Example 1, and the fluorescence quantum yield was 56% of the phosphor of Example 1, whereas It was confirmed that there was almost no change at 55%.
  • Example 6 The phosphor particles having an average particle diameter of 2.5 ⁇ m obtained in Example 2 were placed in a ball mill of a 100 ml container, and pulverized for 30 minutes 5 times. It was confirmed that the average particle size of the phosphor particles after pulverization was 0.6 ⁇ m using LA-950 manufactured by Horiba. When the ultraviolet (350 nm) excitation emission spectrum was measured, the obtained emission spectrum showed the same shape as in Example 2, and the fluorescent quantum yield was 44% for the phosphor of Example 2, whereas It was confirmed that 45% was almost unchanged.
  • Example 7 7.92 g (0.024 mol) of aluminum nitrate hexahydrate manufactured by Wako Pure Chemical Industries, Ltd., 15.0 g (0.25 mol) of urea ((NH 2 ) 2 CO) manufactured by Wako Pure Chemical Industries, Ltd. was added to a 300 ml beaker, 33.3 g of ultrapure water was added, and the mixture was stirred and dissolved using a hot stirrer (rotation speed: 500 rpm). To this mixed solution, 0.5 g of PEG (molecular weight 20,000) manufactured by Wako Pure Chemical Industries, Ltd. was added, and the mixture was again stirred at a rotation speed of 500 rpm using a hot stirrer.
  • PEG molecular weight 20,000
  • the obtained raw material solution was transferred to an alumina crucible, placed in a heating furnace, heated to 400 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream, and heat-treated at 400 ° C. for 10 minutes.
  • the obtained powder was pulverized and mixed in a mortar, transferred again to a crucible, placed in a heating furnace, heated to 800 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere, and baked at 800 ° C. for 90 minutes.
  • FIG. 7 shows the measurement results of the ultraviolet (350 nm) excitation emission spectrum of the obtained phosphor. The fluorescence quantum efficiency was 42%.
  • the peak top wavelength in the chevron-shaped UV-excited emission spectrum curve is 1 is 480 nm
  • FIG. 3 is 530 nm
  • FIG. 5 is 412 nm
  • FIG. 6 is 572 nm.
  • the shape of the tail of the peak indicated by the UV-excited emission spectrum curve is slightly different, but the upper part is almost overlapped. It has a shape that is as narrow as possible. From the results of the above comparison, when firing is performed after the generation and pulverization of the pyrolyzate, the influence of the temperature rising rate and the time maintained at the firing temperature is relatively small. It can be seen that it is easy to obtain the MCNO phosphor having the same.
  • Examples 1 to 6 and Comparative Examples 1 and 2 correspond to the production examples of the MCNO phosphor when the group IIIB element (M) is boron.
  • the obtained in the measurement of infrared absorption spectrum of the M-C-N-O based phosphor a clear absorption peak in the wave number region of 1200-1250Cm -1 and 1300-1400Cm -1 were observed one by one in
  • the characteristic absorption peak did not appear.
  • the intensity ratio of the absorption peak in the region of the absorption peak and 1300-1400Cm -1 appearing in the region of 1200-1250Cm -1 is displayed as a percentage of the former to the latter, approximately 0 It became clear that the value was 5 or more and 2 or less. Therefore, when M is boron, the presence or absence of the production of the MCNO phosphor according to the present invention can be confirmed by measuring the infrared absorption spectrum in the wave number region.
  • an MC—N—O-based phosphor with high color purity and uniform brightness can be provided, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Luminescent Compositions (AREA)

Abstract

 発光ムラを低減し、色純度の向上したM-C-N-O系蛍光体を製造する方法を提供する。IIIB族元素(M)、炭素(C)、窒素(N)及び酸素(O)からなるM-C-N-O系蛍光体の製造方法であって、IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱して熱分解物を生成させる工程、得られた熱分解物を含む生成物を解砕する工程、及び、得られた解砕物を焼成する工程を含む製造方法。

Description

M-C-N-O系蛍光体の製造方法
 本発明は、電子材料、蛍光材料として有用である、IIIB族元素(M)、炭素(C)、窒素(N)及び酸素(O)元素からなるM-C-N-O系蛍光体およびその製造方法に関する。
 蛍光体は、蛍光管、蛍光表示管、夜光性表示板等々に利用され、その利用が拡大しており、最近では蛍光体とLEDとを組み合わせてテレビモニターを初め各種表示機器に使用することが試みられている。また、蛍光体の広範な応用が期待される白色蛍光体の研究・開発も進んでいる。
 蛍光体の原料となる蛍光材料は、天然のものも含めて、有機物、無機物各種あり、そのような種々の蛍光材料を原料に、蛍光体が有する所要の発光色、ピーク発光スペクトル強度、経済性などの向上を求めて様々な研究開発が行われている。
 このような研究開発の成果として、近年、幾つかの新たな蛍光体及びその製造方法が報告されている。
 例えば、特許文献1には、一般式MmAaBbOoNn:Z(但し、M元素はII価の価数をとる1種類以上の元素であり、A元素はIII価の価数をとる1種類以上の元素であり、B元素は少なくともSiを含むIV価の価数をとる1種類以上の元素であり、Oは酸素であり、Nは窒素であり、Zは1種類以上の付活剤であり、m>0、a>0、b>0、o≧0、n>0である。)で表記される蛍光体が開示されている。そして、その製造方法について、所定の混合物を焼成炉内で焼成して焼成物を得る工程において、前記混合物の焼成を2回以上行い、当該焼成と焼成との間で、焼成された混合物の粉砕混合を行うのがよく、焼成を繰り返すことにより焼成物の均一性が向上し、蛍光体の発光効率が向上することが開示されている。
 また、特許文献2には、AxSiyN(2/3x+4/3y)(0<x<2、y=2-x)(ただし、A元素は、Mg、Ca、Sr、またはBaから選ばれる1種または2種以上の元素)で示される母体結晶に、金属元素M(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選ばれる1種または2種以上の元素)が固溶してなる無機化合物を主成分とし、単斜晶系である蛍光体が開示されている。そして、その製造方法について、焼成して得られた粉体凝集体が固く固着している場合は、粉砕機により粉砕して平均粒径20μm以下にし、粉砕後1000°C以上の温度で熱処理するのがよく、これにより粉砕時などに低下した焼成物の表面状態を良好にすることができ、蛍光体の輝度が向上することが開示されている。
 特許文献3には、尿素及び/または尿素誘導体に、Al、B、Ba、Be、Bi、Ca、Cd,Cs、Ga、Ge、Hf、In、K、Li、Mg,Mo,Nb、P、Rb、Si、Sn、Sr,Ta、Ti、V、W、Zr及び希土類金属からなる群より選択される少なくとも1つの金属を含む金属化合物を加えてなる混合融液を昇温し固化して前駆体を製造し、該前駆体を粉砕した後、焼成することにより蛍光体を製造する方法が開示されている。尿素等は、前駆体調製の過程で分解されて樹脂成分に変化し、該樹脂成分は前駆体の微粉砕処理を容易にする。前駆体が後続の焼成工程にかけられると該樹脂成分は完全に消散し、尿素等に由来する成分は最終生成物である蛍光体の内部に残留しない。
 更にまた、特許文献4には、IIIB族元素(M)、炭素(C)、窒素(N)及び酸素(O)元素からなるM-C-N-O系蛍光体が開示され、その製造方法として、IIIB族元素としてホウ素(B)を用い、ホウ酸と尿素、ポリマーからなる混合物の溶液を焼成する方法が開示されている。
特開2008-88257号公報 特開2008-208238号公報 特開2005-54046号公報 国際公開WO2008/126500号公報
 特許文献1~3に開示された蛍光体は、希土類元素を含むため、製造のために希土類元素含有物を原料として使用することになるが、希土類元素含有物は一般に高価であるという問題がある。また、近年重要視されている資源保護、日本国内での資源確保、資源の脱海外依存という観点からも、希土類元素を使用しない蛍光体の開発が望まれている。
 ところで、特許文献1~3に開示されたような従来型の蛍光体では、異なる色の発光を示す蛍光体を作製する場合に材質的に異なる蛍光体原料を使用しなければならず、更にその蛍光体を用いて様々な色の発光(白色、中間色を含む)を得るためには、異なる材料系で作製したLEDや蛍光体を組み合わせて用いる必要がある。このため、材料系毎に異なる結晶の調製方法や製造装置が必要となり、多大な費用、労力、時間及び技術の蓄積を要することになる。加えて、これらの蛍光体を用いて発光素子を作製するためには、蛍光体の粒度を調整する必要もあるが、蛍光体を衝撃、研磨、破砕などの処理工程にかけると、蛍光色の変化や蛍光強度の低下が生じるため、発光素子の製造原料として好適な蛍光体の微粒子(特に、色純度が高く、輝度のそろった均一性の高い蛍光体)の入手が困難であるという問題がある。
 一方、特許文献4に開示された蛍光体は、稀少な希土類元素が含まれておらず、また、重金属も含まれていないため、経済的にも環境保護の観点からも望ましい蛍光体である。また、該蛍光体の発光スペクトルのピークトップ波長は炭素の含有量に応じて変動することから、該蛍光体を利用することにより、単純な構造でありながら、様々な色合いの光を放出することが可能な発光素子を開発することが期待できる。特に、青色蛍光体、緑色蛍光体及び赤色蛍光体を別個に調製し、それらを組み合わせて、演色性の良い白色蛍光体を開発することが期待される。
 しかしながら、異なる蛍光色のM-C-N-O系蛍光体を組み合わせた発光素子を作製するには、各蛍光体の発光スペクトルが特許文献4に示された蛍光体よりも幅の狭いピークを有することが望ましい。また、より色純度が高く、輝度のそろった均一性の高い蛍光体が望まれている。
 本発明は、前述の従来技術の問題点、社会的な要請に鑑み、発光ムラを低減し、色純度の向上したM-C-N-O系蛍光体を製造する方法を提供することを目的とする。
 本発明者は、M-C-N-O系蛍光体の蛍光発光に関して炭素が重要な役割を担っていることから、M-C-N-O系蛍光体の原料化合物の加熱処理による熱分解物の生成及び該熱分解物の分散の効果に着目して鋭意検討し、本発明を完成させた。本発明の方法によれば、以下のものが提供される。
[1] IIIB族元素(M)、炭素(C)、窒素(N)及び酸素(O)からなるM-C-N-O系蛍光体の製造方法であって、
 IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱して熱分解物を生成させる工程、
 得られた熱分解物を含む生成物を解砕する工程、及び
 得られた解砕物を酸素含有雰囲気下で焼成する工程
を含む製造方法。
[2] 該混合物がさらに分散剤を含有する、[1]記載のM-C-N-O系蛍光体の製造方法。
[3] IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱する温度が150℃~600℃の範囲内である、[1]又は[2]に記載のM-C-N-O系蛍光体の製造方法。
[4] IIIB族元素含有化合物と含窒素有機化合物を含む混合物を窒素気流下で加熱する、[1]~[3]のいずれかに記載のM-C-N-O系蛍光体の製造方法。 
[5] 焼成温度が500℃~1000℃の範囲内である、[1]~[4]のいずれかに記載のM-C-N-O系蛍光体の製造方法。
[6] 焼成により得られた蛍光体生成物を粉砕する工程を更に含む、[1]~[5]のいずれかに記載のM-C-N-O系蛍光体の製造方法。
[7]  前記粉砕工程において、蛍光体生成物の平均粒径が1μm以下になるように、該蛍光体生成物を粉砕する、[8]に記載のM-C-N-O系蛍光体の製造方法。
[8] IIIB族元素(M)がホウ素(B)である、[1]~[7]のいずれかに記載のM-C-N-O系蛍光体の製造方法。
[9] IIIB族元素(M)がアルミニウム(Al)である、[1]~[7]のいずれかに記載のM-C-N-O系蛍光体の製造方法。
[10] IRスペクトルにおいて、1200-1250cm-1に観測されるピーク強度と1300-1400cm-1に観測されるピーク強度の比が、0.5以上2以下である、[8]に記載の方法により製造されるM-C-N-O系蛍光体。
[11] [1]~[9]のいずれかに記載の方法により製造される、平均粒径1μm以下のM-C-N-O系蛍光体。
 本発明に係る製造方法によれば、発光スペクトル幅の狭いM-C-N-O系蛍光体を得ることができ、色純度の高い、輝度のそろった均一性の高い蛍光体を安定的に入手することができる。
実施例1で得られた蛍光体の紫外線励起発光スペクトルである。 比較例1で得られた蛍光体の紫外線励起発光スペクトルである。 実施例2で得られた蛍光体の紫外線励起発光スペクトルである。 比較例2で得られた蛍光体の紫外線励起発光スペクトルである。 実施例3で得られた蛍光体の紫外線励起発光スペクトルである。 実施例4で得られた蛍光体の紫外線励起発光スペクトルである。 実施例7で得られた蛍光体の紫外線励起発光スペクトルである。 実施例1で得られた蛍光体の赤外線吸収スペクトルである。 比較例1で得られた蛍光体の赤外線吸収スペクトルである。 比較例2で得られた蛍光体の赤外線吸収スペクトルである。
 本発明に係るM-C-N-O系蛍光体の製造方法は、IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱して熱分解物を生成させる工程、該熱分解物生成工程から得られた熱分解物を含む生成物を解砕する工程、及び、解砕工程により得られた解砕物を焼成する工程を含む。IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱して熱分解物を生成させる工程は、本M-C-N-O系蛍光体の原料化合物の混合物中に含まれる有機物を、燃焼消失させないような条件の下で熱分解し、該有機化合物に由来する炭素及び窒素、並びに、原料化合物中に含まれる他の成分元素とを反応させて、該混合物中に熱分解物を生成させる工程である。本工程で加熱された原料化合物の混合物は黒色様の固体に変化したことから、原料化合物中で一部炭化が進み、脱酸素及び脱水素を伴う熱分解反応が生じたものと推測することができる。熱分解物を含む生成物は、熱分解物により融着された部分を含む固形物として得られることから、生成物全体に均質に熱分解物が分散されるように解砕工程に付される。該解砕工程を経て破砕・細分化された生成物(解砕物)は更に焼成工程に付される。
 本発明に係る製造方法に含まれる解砕工程は、最終生成物として得られるM-C-N-O系蛍光体中の炭素組成が均一になるように、熱分解物生成工程で生成した熱分解物をM-C-N-O系蛍光体の原料中に均等に分布させるために行われる工程であるため、熱分解物生成工程に続いて実施される必要がある。従って、先行技術に係る蛍光体製造方法において採用されている解砕工程、例えば「混合物の焼成を2回以上行い、当該焼成と焼成との間で、焼成された混合物の粉砕混合を行うのがよく、焼成を繰り返すことにより焼成物の均一性を向上させることができる」とするような解砕工程は、熱分解物生成工程を伴わない点で本発明の解砕工程とは異なる。また、本発明に係る製造方法に含まれる、熱分解物生成・解砕を経て得られたM-C-N-O系蛍光体原料を焼成する工程は、これにより目的のM-C-N-O系蛍光体を生成させる工程であるから、先行技術に係る蛍光体製造方法にみられる「粉砕時などに低下した表面状態を良好にする」ために行われる解砕工程及びその後の熱処理とは本質的に異なる。
 本発明に係るM-C-N-O系蛍光体の製造方法において、原料となるIIIB族酸化物は、IIIB族酸化物を基本骨格とするものであればよい。使用できる化合物としては、ホウ酸、無水ホウ酸およびこれらのエステル、アミド、アンモニウム塩誘導体、アルミン酸およびこれらのエステル、アミド、アンモニウム塩誘導体、水酸化アルミニウム、アルミナ、水酸化ガリウム、酸化ガリウム、水酸化インジウム、酸化インジウムを挙げることができる。M-C-N-O系蛍光体の生成効率、原料の入手容易性、原料安定性を考慮して、ホウ酸、無水ホウ酸若しくはこれらのアンモニウム塩、水酸化アルミニウム、水酸化ガリウムまたは酸化ガリウム水和物、水酸化インジウムを使用することが好ましい。これらは、他の相当する塩酸塩、硫酸塩などを塩基性溶液で加水分解して調製されたものを使用してもよい。上記化合物の中で、ホウ酸、無水ホウ酸、水酸化アルミニウムが好ましい。
 また、本発明に係るM-C-N-O系蛍光体の製造方法において、原料となる含窒素有機化合物は、限定されるものではなく、分解してアンモニアを生成させる化合物であればよい。例えば、含窒素有機化合物としては、尿素、メチルカルバメート、エチルカルバメートなどのカルバメート類、ホルムアミド、アセトアミドなどのアミド類、ε-カプロラクタム、γ-ブチロラクタム、N-メチルピロリドンなどのラクタム類、蟻酸アンモニウム、酢酸アンモニウムなどのアンモニウム塩を使用することができる。M-C-N-O系蛍光体への窒素導入効果、入手容易性などを考慮して、尿素、アミド類、アンモニウム塩が好ましく、経済性、操作性を考慮して尿素がより好ましい。
 本発明では、IIIB族元素含有化合物と含窒素有機化合物からなる混合物に、更に炭素を含む分散剤を添加し混合して使用することができる。分散剤は、M-C-N-O系蛍光体の炭素源となるだけではなく、IIIB族元素含有化合物と含窒素有機化合物の反応を容易にするため、また、後述する溶媒を使用する際には、溶媒中での含ホウ素化合物、含窒素有機化合物の分散性向上、溶媒が揮散する際に一方だけが優先的に析出することを抑制するなどの目的で使用される。使用される分散剤としては、特に制限されるものではなく、特にIIIB族元素含有化合物に親和性の高い化合物であることが好ましい。更には、該分散剤は、含窒素有機化合物が分解して、アンモニアが発生する温度より高い沸点を有することが好ましい。
 このような化合物としては、ポリエチレングリコール(PEG)、ポリエチレングリコールジメチルエーテル、ポリエチレンオキサイドなどのポリエーテル類、ポリビニルピロリドンなどのポリアミド類、ポリビニルグリセリン、ポリビニルアルコールなどの水酸基含有ポリマーなどの高分子化合物、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどの多価アルコール類、ジメトキシエタン、1,2-プロパンジオールジメチルエーテル、1,3-プロパンジオールジメチルエーテル、1,2-ブタンジオールジメチルエーテル、1,4-ブタンジオールジメチルエーテル、グリセリントリメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエトキシエタン、1,2-プロパンジオールジエチルエーテル、1,3-プロパンジオールジエチルエーテル、1,2-ブタンジオールジエチルエーテル、1,4-ブタンジオールジエチルエーテル、グリセリントリエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテルなどのエーテル類、N-メチルピロリドンなどのラクタム類を使用することができる。入手容易性、炭素の導入効果などを考慮して、ポリエチレングリコールなどの高分子化合物、エチレングリコール、グリセリンなどの多価アルコールの使用が好ましい。
 本発明では、IIIB族元素含有化合物と含窒素有機化合物とからなる混合物、又はこれに更に分散剤を含む混合物を加熱して熱分解物を生成させることができるが、これらを溶媒に溶解または懸濁させて得られる溶液または懸濁液を加熱して熱分解物を生成させることもできる。溶媒としては特に限定されるものではなく、IIIB族元素含有化合物、含窒素有機化合物を溶解できるもの、分散性を維持できるものであればよい。すなわち、水、メタノール、エタノールなどのアルコール類を使用することができる。特に、使用時の安全性、爆発性などを考慮して、水の使用が好ましい。
 使用される溶媒としては、特に、不純物を含まないことが肝要である。アルカリ金属、アルカリ土類金属の含有は、IIIB族元素含有化合物と反応し、構造を変化させ、発光に影響を及ぼすことが懸念され、また、重金属の含有も同様に、M-C-N-O系蛍光体の構造形成に影響を及ぼすことが懸念され、ハロゲンなどの含有は、含窒素有機化合物の分解を早め、窒素がM-C-N-O系蛍光体に導入されることを阻むため好ましくない。したがって、これらの不純物の含有総量として、5000ppm以下、より好ましくは1000ppm以下であることが好ましい。
 IIIB族元素含有化合物および含窒素有機化合物の使用量は、使用する化合物の種類、焼成温度、時間などに影響されるため、一概に決めることはできないが、通常、IIIB族元素含有化合物100重量部に対し、含窒素有機化合物を10~1500重量部の範囲、より好ましくは、50~1200重量部の範囲で使用される。
 分散剤の使用量も、特に限定されるものではなく、使用する化合物の種類、加熱温度、時間などに影響されるため、一概に決めることはできないが、通常IIIB族元素含有化合物100重量部に対して、1~200重量部の範囲、より好ましくは、5~190重量部の範囲で使用される。
 溶媒を使用する場合、その溶媒の使用量も特に限定されるものではなく、使用する化合物の種類、加熱温度、時間などに影響されるため、一概に決めることはできないが、通常IIIB族元素含有化合物100重量部に対して、1~50000重量部の範囲、より好ましくは、1~10000重量部の範囲で使用される。使用量が多すぎると、溶媒除去に時間、熱量の使用量が多くなり経済的でないため、1~5000重量部の範囲で実施するのがさらに好ましい。
 本発明では、上述のように、IIIB族元素含有化合物と含窒素有機化合物からなる混合物、又は該混合物に分散剤を加えた分散剤含有混合物を調製する。混合する方法としては、特に制限されるものではなく、固体同士を混合する場合には、ボールミル、ターボミル、ジェットミルなどの方式を用いてよく、あるいは、乳鉢などを用いて混合してもよい。
 原料の混合に関しては、溶液中で行うことも可能である。すなわち、IIIB族元素含有化合物と含窒素有機化合物とからなる混合物のほか、該混合物に更に分散剤を加えた分散剤含有混合物を溶媒に溶解あるいは懸濁させ、この溶液あるいは懸濁液を原料混合物として熱分解物生成工程のために使用することもできる。また、上記の溶液あるいは懸濁液から、スプレードライのような方法で一度溶媒を留去して混合することもできる。
 本発明に係るM-C-N-O系蛍光体の製造方法は、上述のように、上記の混合物を加熱する熱分解物生成工程と、該工程から得られた熱分解物を含む生成物を解砕する工程と、解砕工程により得られた解砕物をさらに焼成する焼成工程からなる。
 熱分解物生成工程における加熱方法は、上記の混合物又は該混合物を含む溶液の中の含窒素有機化合物の熱分解を生じさせることができる方法であればよく、種々の加熱焼成装置を使用することができる。例えば、ロータリーキルン炉やコニカルキルン炉のような移動床、ローラーハース炉やプッシャー炉のような連続式固定床、雰囲気調整炉のようなバッチ式固定床などの加熱焼成炉でも、スプレーや噴霧法などの熱分解炉を用いたものでも構わない。あるいは、上記の焼成装置の代わりに、加熱混練装置、例えば一軸押し出し器、二軸押出機のような押出機、トーラスディスクなどの加熱混合機を使用することもできる。
 熱分解物生成工程において、加熱温度は使用したIIIB族元素含有化合物、含窒素有機化合物、分散剤の量などに影響されるため一概に規定することはできないが、通常、150℃~600℃の範囲に設定される。低すぎると含窒素有機化合物が分解せず、高すぎるとエネルギー消費が増加するため好ましくない。よって、好ましくは200℃~550℃の範囲、より好ましくは、200℃~500℃の範囲で実施する。
 熱分解物生成工程において、昇温速度は、特に制限されるものではないが、速すぎると特殊な焼成炉を使用しなければならないため、設備的な負荷が大きい。また、含窒素有機化合物の分解が一気に進むため、IIIB族元素含有化合物との反応が十分に進まない、更に、含窒素有機化合物の分解縮合による炭化が十分に進行せず、燃焼焼失まで進む可能性が高く、炭素導入が出来ないなどの問題が生じる。そのため、通常、毎分1℃~80℃の範囲、より好ましくは、2℃~50℃の範囲で昇温する。
 上記加熱温度に保持する時間は、使用した含窒素有機化合物、分散剤の量などに影響されるため一概に規定することはできないが、通常、0分~180分の範囲に設定される。短すぎる時間では、熱伝達が十分でなく、均質性に不安があるため好ましくなく、長すぎる時間では、炭素分の欠損を引き起こすため好ましくない。よって、1分~150分の範囲、より好ましくは、5分~120分の範囲で実施する。
 熱分解物生成工程を実施するため雰囲気としては、窒素、希ガス(例えばアルゴン)などの不活性ガス雰囲気(酸素不存在下)、大気雰囲気(酸素存在下)のいずれの雰囲気も使用することができる。しかしながら、熱分解物生成工程では、含窒素有機化合物が加熱されて分解することから、アンモニアの発生による爆発の危険を考慮して、雰囲気から酸素を遮断ないし除去することが好ましい。したがって、例えば、窒素、希ガスなどの不活性ガス雰囲気下で実施することが好ましい。これらの操作は、ガス気流下で実施してよく、あるいは、密閉雰囲気下で実施してもよい。
 降温の速度としては、特に制限されるものではないが、速すぎると特殊な焼成炉を使用しなければならないため、設備面での負荷が大きい。そのため、通常、毎分1℃~120℃の範囲、より好ましくは、2℃~100℃の範囲で降温する。
 降温時の雰囲気としては、特に限定されるものではなく、窒素、アルゴンなどの不活性ガス雰囲気下、酸素存在下のいずれの雰囲気条件を使用してもよい。安全性等を考慮して、不活性ガス雰囲気下で降温することが好ましい。更に、300℃以下では、目的とする蛍光体の表面に水分が付着するため、降温時の雰囲気中に存在する気体は乾燥ガスであることが好ましい。
 上記のようにして得られた熱分解物を含む生成物は、解砕混合して凝集を回避し、各成分の偏在を抑制する。この操作により、過剰な炭素の導入、又は、炭素の未導入による蛍光体の色純度の低下が抑制される。解砕混合の際に再度分散剤を加えてもかまわない。解砕混合する方法としては、特に制限されるものではなく、固体同士を解砕混合する場合には、ボールミル、ターボミル、ジェットミルなどの方式を用いてよく、あるいは、乳鉢などを用いて混合してよい。解砕の程度としては、特に制限されるものではないが、あまりに細かく解砕すると、焼成時に気体の流通が悪くなり、焼成が不均一になり斑が生じるため、好ましくない。そのため、熱分解物を含む生成物は、平均粒径が通常0.1μm~2mmの範囲、より好ましくは、0.2μm~1mmの範囲内となるように解砕される。
 上記のようにして得られた解砕物を、焼成し、M-C-N-O系蛍光体を得る。この焼成工程における焼成は、熱分解物生成工程と同様に、種々の加熱装置を使用して行うことができる。
 本焼成工程の焼成温度は、使用したIIIB族元素含有化合物、含窒素有機化合物、分散剤の量などに影響されるため一概に規定することはできないが、通常、500℃~1000℃の範囲に設定される。低すぎると未反応の炭化残留分が、蛍光体表面に付着し、発光効率が低下するために好ましくなく、高すぎると炭素分が燃焼し尽くしてしまい、炭素の欠損が生じ、発光色が変化するため好ましくない。よって、好ましくは510℃~950℃の範囲、より好ましくは、520℃~900℃の範囲で実施する。
 本焼成工程のための昇温速度は、特に制限されるものではないが、速すぎると特殊な焼成炉を使用しなければならないため、設備的な負荷が大きい。そのため、通常、毎分1℃~80℃の範囲、より好ましくは、2℃~50℃の範囲で昇温する。
 焼成温度に保持する時間としては、使用した含窒素有機化合物、分散剤の量などに影響されるため一概に規定することはできないが、通常、0分~180分の範囲に設定される。短すぎる時間では、熱伝達が十分でなく、均質性に不安があるため好ましくなく、長すぎる時間では、炭素分の欠損を引き起こすため好ましくない。よって、1分~150分の範囲、より好ましくは、5分~120分の範囲で実施する。
 焼成の雰囲気としては、余分な炭素分を燃焼させるため、酸素存在下であればよい。通常、酸素濃度としては、特に制限されないが、1%~30%の範囲、より好ましくは、3%~25%の範囲で使用される。また、目的温度で保持する間に、不活性ガス雰囲気下に切り替え、更なる炭素の欠損および窒化物の酸化によるホウ酸(または無水ホウ酸)又はアルミナへの変化を抑制することもできる。これらの操作は、ガス気流下で実施してよく、あるいは、密閉雰囲気下で実施してもよい。
 降温の速度としては、特に制限されるものではないが、速すぎると特殊な焼成炉を使用しなければならないため、設備的な負荷が大きい。そのため、通常、毎分1℃~80℃の範囲、より好ましくは、2℃~50℃の範囲で降温する。
 降温時の雰囲気としては、特に限定されるものではなく、窒素、アルゴンなどの不活性ガス雰囲気下、酸素存在下のいずれの雰囲気条件を使用してもよい。安全性等を考慮して、不活性ガス雰囲気下で降温することが好ましい。更に、300℃以下では、目的とする蛍光体表面に水分が付着するため、乾燥ガスの下で実施することが好ましい。
 本発明では、得られた蛍光体を粉砕して、更に微細な粒子とすることも可能である。粉砕の方法としては特に限定されるものではないが、乳鉢などを用いて蛍光体粒子を微細粒子になるまで粉砕することもできるし、ボールミル、ターボミル、ジェットミルなどの方式を用いることもできる。これらは、乾式で行っても、アルコールなどの溶媒を用いて湿式で行ってもよい。これらの方法で粉砕を行うことにより、本発明の蛍光体は、平均粒径が0.001~1μm、より好ましくは0.01~0.9μmの微粒子として入手することができる。したがって、本発明によれば、特に微細な粒子に加工して使用することが要求される用途に適した蛍光体を提供することができる。なお、本明細書中、「平均粒径」の用語は、市販のレーザー回折/散乱式粒度分布測定装置により測定された体積基準の粒度分布に基づいて決定される累積体積平均メジアン径(D50)を表わすものとする。
 以下に実施例を挙げて本発明を詳細に説明するが、本発明の技術的範囲がこれらの実施例に示された具体的な態様に限定して解釈されるべきではない。
 <実施例1>
 キシダ化学株式会社製の無水ホウ酸(B)2.44g(0.035モル)、和光純薬工業株式会社製の尿素〔(NHCO〕10.5g(0.175モル)、PEG(分子量20000)1.2gを乳鉢で粉砕混合し、アルミナ製のるつぼに移して加熱炉に入れ、窒素気流下、昇温速度10℃/分で400℃まで昇温し、400℃で10分間加熱処理を行った。得られた粉末を乳鉢で解砕混合し、再度るつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度10℃/分で800℃まで昇温し、800℃で10分間焼成した。
 実施例1で得られた蛍光体の紫外線(350nm)励起発光スペクトル結果を図1に示す。測定は日本分光株式会社製のFP-6500を用いて行った。図1において横軸は波長を示し、縦軸はPL強度を示す。以下の図面について同じである。蛍光量子効率は56%であった。蛍光体の赤外線吸収スペクトルの測定は、フーリエ変換赤外分光光度計(JEOL社製 JIR-5500)を使用して観測領域250-4000nmにおいてスキャン数30回で行った。1360cm-1の波数にピークトップを有する吸収のピーク強度は5.5であり、1242cm-1にピークトップを有する吸収のピーク強度は7.8であり、1200-1250cm-1に観測される吸収のピーク強度と1300-1400cm-1に観測される吸収のピーク強度の比は0.705であった(図8参照)。得られた蛍光体粒子の平均粒径を、堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA-950を使用して測定したところ、平均粒径は3μmであった。
 <比較例1>
 キシダ化学株式会社製の無水ホウ酸(B)2.44g(0.035モル)、和光純薬工業株式会社製の尿素〔(NHCO〕10.5g(0.175モル)、PEG(分子量20000)1.2gを乳鉢で粉砕混合し、アルミナ製のるつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度10℃/分で800℃まで昇温し、800℃で10分間焼成した。得られた蛍光体の紫外線励起発光スペクトル結果を図2に示す。蛍光量子効率は51%であった。
 蛍光体の赤外線吸収スペクトルの測定は、フーリエ変換赤外分光光度計(JEOL社製JIR-5500)を使用して観測領域250-4000nmにおいてスキャン数30回で行った。1200-1250cm-1に観測される吸収ピークが複数存在し、1300-1400cm-1に観測される吸収ピークも複数存在したため、強度比を算出することができなかった(図9参照)。
 <実施例2>
 和光純薬工業株式会社製のホウ酸(HBO)1.53g(0.025モル)、尿素〔(NHCO〕15.3g(0.25モル)、PEG(分子量20000)1.0gを3000mlビーカーに取り、超純水33.3gを加え、ホットスターラー(回転数500rpm)を用いて攪拌、溶解した。得られた溶液をアルミナ製のるつぼに移して加熱炉に入れ、窒素気流下、昇温速度10℃/分で400℃まで昇温し、400℃で10分間加熱処理を行った。得られた粉末を乳鉢で解砕混合し、再度るつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度20℃/分で800℃まで昇温し、800℃で30分間焼成した。得られた蛍光体の紫外線励起発光スペクトルを図3に示す。蛍光量子効率は44%であった。
 また、蛍光体の赤外線吸収スペクトルの測定結果によれば、1360cm-1の波数にピークトップを有する吸収のピーク強度は、6.5、1241cm-1にピークトップを有する吸収のピーク強度は7.8であり、1200-1250cm-1に観測される吸収のピーク強度と1300-1400cm-1に観測される吸収のピーク強度の比が0.833であった。
 得られた蛍光体粒子の平均粒径を、堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA-950を使用して測定したところ、平均粒径は2.5μmであった。
 <比較例2>
 和光純薬工業株式会社製のホウ酸(HBO)1.53g(0.025モル)、尿素〔(NHCO〕15.3g(0.25モル)、PEG(分子量20000)1.0gを3000mlビーカーに取り、超純水33.3gを加え、ホットスターラー(回転数500rpm)を用いて攪拌、溶解した。得られた溶液をアルミナ製のるつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度20℃/分で800℃まで昇温し、800℃で30分間焼成した。得られた蛍光体の紫外線励起発光スペクトルを図4に示す。蛍光量子効率は39%であった。
 蛍光体の赤外線吸収スペクトルの測定は、フーリエ変換赤外分光光度計(JEOL社製JIR-5500)を使用して観測領域250-4000nmにおいてスキャン数30回で行った。1200-1250cm-1に観測される吸収ピークが複数存在し、1300-1400cm-1に観測される吸収ピークも複数存在したため、ピーク強度比を算出することができなかった(図10参照)。
 <実施例3>
 キシダ化学株式会社製の無水ホウ酸(B)2.44g(0.035モル)、和光純薬工業株式会社製の尿素〔(NHCO〕10.5g(0.175モル)、PEG(分子量20000)1.2gを乳鉢で粉砕混合し、アルミナ製のるつぼに移して加熱炉に入れ、窒素気流下、昇温速度10℃/分で400℃まで昇温し、400℃で10分間加熱処理を行った。得られた粉末を乳鉢で粉砕混合し、再度るつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度10℃/分で800℃まで昇温し、800℃で90分間焼成した。得られた蛍光体の紫外線(350nm)励起発光スペクトル結果を図5に示す。蛍光量子効率は55%であった。
 また、蛍光体の赤外線吸収スペクトルの測定結果によれば、1363cm-1の波数にピークトップを有する吸収のピーク強度は7.6、1220cm-1にピークトップを有する吸収のピーク強度は4.3であり、1200-1250cm-1に観測される吸収のピーク強度と1300-1400cm-1に観測される吸収のピーク強度の比は1.813であった。
 <実施例4>
 キシダ化学株式会社製の無水ホウ酸(B)2.44g(0.035モル)、和光純薬工業株式会社製の尿素〔(NHCO〕10.5g(0.175モル)、PEG(分子量20000)2.6gを乳鉢で粉砕混合し、アルミナ製のるつぼに移して加熱炉に入れ、窒素気流下、昇温速度10℃/分で400℃まで昇温し、400℃で10分間加熱処理を行った。得られた粉末を乳鉢で解砕混合し、再度るつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度10℃/分で800℃まで昇温し、800℃で20分間焼成した。得られた蛍光体の紫外線(350nm)励起発光スペクトル結果を図6に示す。蛍光量子効率は53%であった。
 また、蛍光体の赤外線吸収スペクトルの測定結果によれば、1371cm-1の波数にピークトップを有する吸収ピーク強度は4.8であり、1220cm-1にピークトップを有する吸収のピーク強度は6.4であり、1200-1250cm-1に観測される吸収のピーク強度と1300-1400cm-1に観測される吸収のピーク強度との比は0.75であった。
 <実施例5>
 実施例1で得られた平均粒径3μmの蛍光体粒子を100ml容器のボールミルに入れ、30分を5回繰り返し粉砕した。堀場製作所製LA-950を用いて粉砕後の蛍光体粒子の平均粒径が0.8μmであることを確認した。紫外線(350nm)励起発光スペクトルを測定したところ、得られた発光スペクトルは、実施例1と同様の形状を示し、蛍光量子収率も実施例1の蛍光体が56%であったのに対し、55%と殆ど変化していないことを確認した。
 <実施例6>
 実施例2で得られた平均粒径2.5μmの蛍光体粒子を100ml容器のボールミルに入れ、30分を5回繰り返し粉砕した。堀場製作所製LA-950を用いて粉砕後の蛍光体粒子の平均粒径が0.6μmであることを確認した。紫外線(350nm)励起発光スペクトルを測定したところ、得られた発光スペクトルは、実施例2と同様の形状を示し、蛍光量子収率も実施例2の蛍光体が44%であったのに対し、45%と殆ど変化していないことを確認した。
 <実施例7>
和光純薬工業株式会社製の硝酸アルミニウム六水和物7.92g(0.024モル)、和光純薬工業株式会社製の尿素((NHCO)15.0g(0.25モル)を300mlビーカーに取り、超純水33.3gを加え、ホットスターラー(回転数500rpm)を用いて攪拌、溶解させた。この混合溶液に和光純薬工業株式会社製のPEG(分子量2万)0.5gを添加して、再度ホットスターラーを用いて回転数500rpmで攪拌した。得られた原料溶液をアルミナ製のるつぼに移して加熱炉に入れ、窒素気流下、昇温速度10℃/分で400℃まで昇温し、400℃で10分間加熱処理を行った。得られた粉末を乳鉢で解砕混合し、再度るつぼに移して加熱炉に入れ、大気雰囲気下、昇温速度10℃/分で800℃まで昇温し、800℃で90分間焼成した。得られた蛍光体の紫外線(350nm)励起発光スペクトルの測定結果を図7に示す。蛍光量子効率は42%であった。
Figure JPOXMLDOC01-appb-T000001
 図1と図2(ぞれぞれ本発明実施例1及び比較例1に対応する)の紫外線励起発光スペクトルを比較すると、山形の紫外線励起発光スペクトル曲線のピークトップの波長はほぼ同じ値になるが、実施例1の紫外線励起発光スペクトル曲線の形状は、比較例1のものより幅の狭いピークを有することが分かる。同様に、図3と図4(ぞれぞれ本発明実施例2及び比較例2に対応する)の紫外線励起発光スペクトルを比較した場合も、実施例2の紫外線励起発光スペクトル曲線の形状が比較例2のものより幅の狭いピークを有することが分かる(ただし、比較例2のピークトップの波長は、対応する実施例2のピークトップの波長よりも若干短波長側にシフトしている。)以上の比較の結果から、実施例1及び2で得られた蛍光体は、対応する比較例の蛍光体に比べて色純度の高い蛍光発光を示すことが明らかになった。
 次に、図1、図3、図5及び図6(それぞれ本発明の実施例1、2、3及び4に対応する)を比較すると、山形の紫外線励起発光スペクトル曲線において、ピークトップの波長は、図1では480nm、図3では530nm、図5の場合が412nm、図6では572nmであり、紫外線励起発光スペクトル曲線が示すピークの裾部分の形状は少々異なるが、上部分はほぼ重ね合わせることができる程度に幅の狭い形状をしている。以上の比較の結果から、熱分解物の生成・解砕後に焼成を行った場合、昇温速度及び焼成温度に保たれる時間による影響は比較的少なく、したがって、均一性が高く安定した特性を有するM-C-N-O系蛍光体が得られやすいことが分かる。
 さらに、実施例5及び6の結果から、本発明の方法により製造されたM-C-N-O系蛍光体をボールミルで粉砕した場合でも、その紫外線(350nm)励起発光スペクトル及び蛍光量子効率にほとんど変化は生じないことが明らかになった。これにより、本発明の方法により製造されたM-C-N-O系蛍光体では、粉砕による蛍光色の変化や蛍光強度の低下の問題が生じていないことが分かる。
 ところで、実施例1~6及び比較例1、2は、IIIB族元素(M)がホウ素である場合のM-C-N-O系蛍光体の製造例に相当するが、実施例1~6で得られたM-C-N-O系蛍光体の赤外吸収スペクトル測定では、1200-1250cm-1及び1300-1400cm-1の各波数領域に明瞭な吸収ピークが1本ずつ観測されたのに対し、本発明の製造方法に従わない比較例では、前記の特徴的な吸収ピークが現れなかった。また、本発明の蛍光体の場合、1200-1250cm-1の領域に現れた吸収ピークと1300-1400cm-1の領域の吸収ピークの強度比が、前者の後者に対する割合で表示した場合、およそ0.5以上2以下の値をとることが明らかになった。したがって、Mがホウ素である場合には、上記波数領域の赤外吸収スペクトルを測定することによって、本発明に係るM-C-N-O系蛍光体の生成の有無を確認することができる。
 本発明の製造方法によれば、色純度の高く、輝度の揃った均一性の高いM-C-N-O系蛍光体を提供することができるため、産業上有用である。

Claims (11)

  1. IIIB族元素(M)、炭素(C)、窒素(N)及び酸素(O)からなるM-C-N-O系蛍光体の製造方法であって、
     IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱して熱分解物を生成させる工程、
     得られた熱分解物を含む生成物を解砕する工程、及び
     得られた解砕物を酸素含有雰囲気下で焼成する工程
    を含む製造方法。
  2. 該混合物がさらに分散剤を含有する、請求項1に記載のM-C-N-O系蛍光体の製造方法。
  3. IIIB族元素含有化合物と含窒素有機化合物を含む混合物を加熱する温度が150℃~600℃の範囲内である、[1]又は[2]に記載のM-C-N-O系蛍光体の製造方法。
  4. IIIB族元素含有化合物と含窒素有機化合物を含む混合物を不活性ガス雰囲気下で加熱する、請求項1~3のいずれか1項に記載のM-C-N-O系蛍光体の製造方法。 
  5. 焼成温度が500℃~1000℃の範囲内である、請求項1~4のいずれか1項に記載のM-C-N-O系蛍光体の製造方法。
  6. 焼成により得られた蛍光体生成物を粉砕する工程を更に含む、請求項1~5のいずれか1項に記載のM-C-N-O系蛍光体の製造方法。
  7. 前記粉砕工程において、蛍光体生成物の平均粒径が1μm以下になるように、該蛍光体生成物を粉砕する、請求項6に記載のM-C-N-O系蛍光体の製造方法。
  8. IIIB族元素(M)がホウ素(B)である請求項1~7のいずれか1項に記載のM-C-N-O系蛍光体の製造方法。
  9. IIIB族元素(M)がアルミニウム(Al)である請求項1~7のいずれか1項に記載のM-C-N-O系蛍光体の製造方法。
  10. IRスペクトルにおいて、1200-1250cm-1に観測されるピーク強度と1300-1400cm-1に観測されるピーク強度の比が、0.5以上2以下である、請求項8に記載の方法により製造されるM-C-N-O系蛍光体。
  11. 請求項1~9のいずれか1項に記載の方法により製造される、平均粒径1μm以下のM-C-N-O系蛍光体。
PCT/JP2009/070450 2008-12-09 2009-12-07 M-c-n-o系蛍光体の製造方法 WO2010067767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/133,795 US8562865B2 (en) 2008-12-09 2009-12-07 Method of producing M-C-N-O based phosphor
CN200980149606.9A CN102245734B (zh) 2008-12-09 2009-12-07 M-c-n-o系荧光体的制造方法
JP2010542094A JP5467272B2 (ja) 2008-12-09 2009-12-07 M−c−n−o系蛍光体の製造方法
EP09831871.0A EP2371928B1 (en) 2008-12-09 2009-12-07 Process for producing m-c-n-o-based phosphor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-313454 2008-12-09
JP2008313454 2008-12-09
JP2009-241626 2009-10-20
JP2009241626 2009-10-20

Publications (1)

Publication Number Publication Date
WO2010067767A1 true WO2010067767A1 (ja) 2010-06-17

Family

ID=42242754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070450 WO2010067767A1 (ja) 2008-12-09 2009-12-07 M-c-n-o系蛍光体の製造方法

Country Status (7)

Country Link
US (1) US8562865B2 (ja)
EP (1) EP2371928B1 (ja)
JP (1) JP5467272B2 (ja)
KR (1) KR101584393B1 (ja)
CN (1) CN102245734B (ja)
TW (1) TWI496873B (ja)
WO (1) WO2010067767A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211278A (ja) * 2011-03-31 2012-11-01 Hiroshima Univ B−c−n−o蛍光体の製造方法
JP2012211271A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd B−c−n−o蛍光体の製造方法
JP2013010878A (ja) * 2011-06-29 2013-01-17 Kuraray Co Ltd B−c−n−o蛍光体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101608558B1 (ko) * 2009-04-01 2016-04-01 고쿠리츠다이가쿠호진 히로시마다이가쿠 알루미늄 산화물 형광체 및 그의 제조 방법
CN103333687B (zh) * 2013-07-22 2015-04-08 中国人民解放军国防科学技术大学 一种无机光致发光材料及其制备方法
CN104449695B (zh) * 2014-12-02 2016-06-22 河北工业大学 一种红光发射bcno荧光粉的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027036A (ja) * 2002-06-26 2004-01-29 Konica Minolta Holdings Inc 真空紫外線励起発光素子用蛍光体及びそれを用いた真空紫外線励起発光素子
JP2005054046A (ja) 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd 蛍光体の製造方法
JP2008088257A (ja) 2006-09-29 2008-04-17 Dowa Electronics Materials Co Ltd 蛍光体、蛍光体シート及び蛍光体の製造方法、並びに当該蛍光体を用いた発光装置
JP2008208238A (ja) 2007-02-27 2008-09-11 Showa Denko Kk 蛍光体及びその製造方法、並びにそれを備えた照明器具と画像表示装置
WO2008126500A1 (ja) 2007-03-28 2008-10-23 Hiroshima University M-c-n-o系蛍光体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027036A (ja) * 2002-06-26 2004-01-29 Konica Minolta Holdings Inc 真空紫外線励起発光素子用蛍光体及びそれを用いた真空紫外線励起発光素子
JP2005054046A (ja) 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd 蛍光体の製造方法
JP2008088257A (ja) 2006-09-29 2008-04-17 Dowa Electronics Materials Co Ltd 蛍光体、蛍光体シート及び蛍光体の製造方法、並びに当該蛍光体を用いた発光装置
JP2008208238A (ja) 2007-02-27 2008-09-11 Showa Denko Kk 蛍光体及びその製造方法、並びにそれを備えた照明器具と画像表示装置
WO2008126500A1 (ja) 2007-03-28 2008-10-23 Hiroshima University M-c-n-o系蛍光体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371928A4
TAKASHI OGI: "Facile Synthesis of New Full-Color- Emitting BCNO Phosphors with High Quantum Efficiency", ADVANCED MATERIALS, vol. 20, 14 July 2008 (2008-07-14), pages 3235 - 3238 *
YUTAKA KAIHATSU: "Ekiso Gosei Process ni yoru Shinki San Chikkabutsu Keikotai BCNO Ryushi no Gosei", ABSTRACTS OF AUTUMN MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 40, - 24 August 2008 (2008-08-24), pages K122 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211278A (ja) * 2011-03-31 2012-11-01 Hiroshima Univ B−c−n−o蛍光体の製造方法
JP2012211271A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd B−c−n−o蛍光体の製造方法
JP2013010878A (ja) * 2011-06-29 2013-01-17 Kuraray Co Ltd B−c−n−o蛍光体の製造方法

Also Published As

Publication number Publication date
CN102245734B (zh) 2014-01-22
CN102245734A (zh) 2011-11-16
JP5467272B2 (ja) 2014-04-09
KR20110102883A (ko) 2011-09-19
EP2371928A4 (en) 2012-09-12
TW201033335A (en) 2010-09-16
JPWO2010067767A1 (ja) 2012-05-17
TWI496873B (zh) 2015-08-21
US8562865B2 (en) 2013-10-22
KR101584393B1 (ko) 2016-01-11
EP2371928A1 (en) 2011-10-05
US20110260108A1 (en) 2011-10-27
EP2371928B1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5413858B2 (ja) アルミニウム酸化物蛍光体及びその製造方法
Biswas et al. Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs
JP5467272B2 (ja) M−c−n−o系蛍光体の製造方法
Fu Preparation of Y3Al5O12: Ce powders by microwave-induced combustion process and their luminescent properties
Taxak et al. Synthesis, structural and optical properties of Eu3+–doped Ca2V2O7 nanophosphors
EP2497812A1 (en) Process for producing -sialon fluorescent material
CN106281317A (zh) 一种高亮度、大颗粒尺寸β‑SiAlON:Eu2+绿色荧光粉及其制备方法
Nuryadin et al. A red emitting of manganese-doped boron carbon oxynitride (BCNO) phosphor materials: facile approach and photoluminescence properties
JP5502010B2 (ja) B−c−n−o蛍光体の製造方法
KR20180003442A (ko) 질화물 형광체의 제조 방법
JP5704707B2 (ja) B−c−n−o蛍光体の製造方法
Zhang et al. Red photoluminescence and morphology of Eu3+ doped Ca3La3 (BO3) 5 phosphors
JP5733721B2 (ja) B−c−n−o蛍光体の製造方法
JP5867924B2 (ja) 蛍光体およびその製造方法
Park et al. VUV photoluminescence of (Y0. 5Gd0. 5) 0.94 VO4: Eu3+ red-emitting phosphors prepared by the solution combustion method
Nersisyan et al. Solid combustion wave with two successive reactions to produce phosphor powders
Liu et al. Flux-assisted preparation and photoluminescence of emission-tunable (Sr, Eu) Al2Si2O8 phosphors
Park et al. VUV photoluminescence characteristics of (Y, Gd) VO4: Eu, Zn phosphors produced by ultrasonic spray pyrolysis
Manohara et al. Synthesis and Photoluminescence Properties of CdSiO3: Ho3+ Nanophosphor
JP2011032332A (ja) 蛍光体及びその製造方法
Lee Synthesis and characterization of nanophosphors by flame spray pyrolysis
JP2008063574A (ja) ユーロピウム賦活酸化イットリウム及びその製造方法
Rodríguez-García12 et al. A New Red-Emitting La
WO2008018582A1 (fr) Oxyde d'yttrium activé à l'europium et son procédé de fabrication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149606.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542094

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117013180

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13133795

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009831871

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载