WO2009139375A1 - Method for manufacturing optical waveguide, and optical waveguide - Google Patents
Method for manufacturing optical waveguide, and optical waveguide Download PDFInfo
- Publication number
- WO2009139375A1 WO2009139375A1 PCT/JP2009/058827 JP2009058827W WO2009139375A1 WO 2009139375 A1 WO2009139375 A1 WO 2009139375A1 JP 2009058827 W JP2009058827 W JP 2009058827W WO 2009139375 A1 WO2009139375 A1 WO 2009139375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clad layer
- resin
- optical waveguide
- forming
- layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1221—Basic optical elements, e.g. light-guiding paths made from organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/46—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/52—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00663—Production of light guides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
Definitions
- the present invention relates to an optical waveguide manufacturing method and an optical waveguide, and more particularly to an optical waveguide manufacturing method and an optical waveguide that can manufacture an optical waveguide with high productivity and no bubbles remain between a core layer and an upper cladding layer. is there.
- optical interconnection technology that uses optical signals not only for communication fields such as trunk lines and access systems but also for information processing in routers and servers is underway.
- an opto-electric hybrid board in which an optical transmission line is combined with an optical transmission path has been developed.
- an optical transmission line it is desirable to use an optical waveguide that has a higher degree of freedom of wiring and can be densified than an optical fiber, and in particular, an optical waveguide that uses a polymer material with excellent workability and economy. Is promising.
- an optical waveguide coexists with an electric wiring board, high transparency and high heat resistance are required.
- an optical waveguide material fluorinated polyimide (for example, Non-Patent Document 1) or epoxy resin (for example, Patent Document 1). ) has been proposed.
- fluorinated polyimide has a high heat resistance of 300 ° C. or higher and a high transparency of 0.3 dB / cm at a wavelength of 850 nm
- film formation requires heating conditions of 300 ° C. or more for several tens of minutes to several hours. For this reason, it is difficult to form a film on an electric wiring board.
- fluorinated polyimide has no photosensitivity, the optical waveguide production method by photosensitivity / development cannot be applied, and the productivity and the area increase are inferior.
- an optical waveguide is produced using a method of applying a liquid material on a substrate and forming a film
- the film thickness management is complicated, and the resin applied on the substrate is liquid before curing, There was a problem caused by the material form being liquid, for example, it was difficult to maintain the uniformity of the film thickness because the resin flowed on the substrate.
- the epoxy resin for forming an optical waveguide in which a photopolymerization initiator is added to a liquid epoxy resin can form a core pattern by a photosensitive / developing method, and some of the materials have high transparency and high heat resistance. There was a similar problem caused by being liquid.
- a dry film containing a radiation-polymerizable component is laminated on the substrate, and a predetermined amount of light is irradiated to cure the radiation at a predetermined location to form a clad, and develop an unexposed portion as necessary.
- a method of forming an optical waveguide having excellent transmission characteristics by forming a core portion and the like and further forming a cladding for embedding the core portion is useful. When this method is used, it is easy to ensure the flatness of the clad after embedding the core. It is also suitable for manufacturing a large-area optical waveguide.
- a vacuum type having a vacuum chamber formed by a pair of block bodies relatively movable up and down as disclosed in FIGS.
- a so-called vacuum laminating method in which laminating is performed under a reduced pressure is known.
- the wiring density of the core portion which has been conventionally required, is about 50 ⁇ m / 200 ⁇ m between the line width / line.
- the present invention has been made to solve the above-described problems, and provides an optical waveguide manufacturing method and an optical waveguide that can manufacture an optical waveguide with high productivity and that no bubbles remain between a core layer and an upper cladding layer.
- the purpose is to do.
- the inventors of the present invention have made the clad layer forming resin have a melt viscosity of 100 to 200 Pa ⁇ s when the upper clad layer forming resin film is laminated.
- the lamination conditions are controlled, the upper clad layer is formed from a resin having a melt viscosity of 100 to 200 Pa ⁇ s at the time of lamination, or the upper clad layer forming resin is laminated on the support film on the core pattern.
- the present invention has been completed by finding that the above-mentioned object can be achieved by laminating a resin film for forming an upper clad layer to be in contact with the core pattern and then performing a heat treatment.
- the present invention (1) A step of curing a resin for forming a cladding layer formed on a substrate to form a lower cladding layer, a step of forming a core layer by laminating a resin film for forming a core layer on the lower cladding layer, A step of exposing and developing the core layer to form a core pattern, and a step of laminating a resin film for forming an upper clad layer on the core pattern and curing the resin for forming the clad layer to form an upper clad layer
- a method of manufacturing an optical waveguide comprising: controlling lamination conditions so that the melt viscosity of the clad layer forming resin is 100 to 200 Pa ⁇ s when the upper clad layer forming resin film is laminated.
- An optical waveguide manufacturing method (2)
- the step of forming a core layer includes a step of thermocompression-bonding a resin film for forming a core layer on a lower clad layer using a roll laminator having a heat roll.
- Manufacturing method of optical waveguide (3)
- the method for producing an optical waveguide according to the above (1) characterized in that it is thermocompression-bonded under a reduced pressure atmosphere using a flat plate laminator, (4)
- the upper clad layer is formed of a resin having a melt viscosity of 100 to 200 Pa ⁇ s at the time of lamination.
- An optical waveguide (7)
- the upper clad layer contains a phenoxy resin-based pace polymer and a bifunctional epoxy resin, and is 90 to 120 ° C.
- (9) a step of curing a resin for forming a cladding layer formed on a substrate to form a lower cladding layer, a step of forming a core layer by laminating a resin film for forming a core layer on the lower cladding layer, A step of exposing and developing the core layer to form a core pattern; and an upper clad layer-forming resin film obtained by laminating an upper clad layer-forming resin on a support film on the core pattern.
- a method of manufacturing an optical waveguide including a step of laminating so as to contact a pattern, a step of performing a heat treatment, and a step of curing the resin for forming a clad layer to form an upper clad layer; (10) The method for producing an optical waveguide according to (9) above, wherein the heat treatment condition is a temperature of 40 to 200 ° C. Is to provide.
- the manufacturing methods (1) to (3) may be referred to as a first manufacturing method
- the manufacturing methods (9) to (10) may be referred to as a second manufacturing method.
- the optical waveguide can be manufactured with high productivity, and no bubbles remain between the core layer and the upper cladding layer.
- An optical waveguide manufactured according to the present invention is an optical waveguide having a lower clad layer 2, a core pattern 8, and an upper clad layer 9 on a substrate 1, as shown in FIG. 1 core layer forming resin film (FIG. 3, 300) having a low refractive index and two clad layer forming resins having a low refractive index, preferably a clad layer forming resin film (FIG. 2, 200). can do.
- a film-like material it is possible to solve the problems relating to productivity and large area response unique to liquid materials.
- the type of the substrate 1 is not particularly limited.
- an FR-4 substrate, polyimide, a semiconductor substrate, a silicon substrate, a glass substrate, or the like can be used.
- a film as the substrate 1 flexibility and toughness can be imparted to the optical waveguide.
- the material of the film is not particularly limited, but from the viewpoint of having flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, aramid, polycarbonate, polyphenylene ether, Preferred examples include polyether sulfide, polyarylate, liquid crystal polymer, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, and polyimide.
- the thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 ⁇ m. If it is 5 ⁇ m or more, there is an advantage that toughness is easily obtained, and if it is 250 ⁇ m or less, sufficient flexibility can be obtained.
- a support film 10 used in the process of manufacturing a clad layer forming resin film 200 described later can be used as the substrate 1 shown in FIG. 1.
- the clad layer forming resin film 200 when the optical waveguide is manufactured and the support is provided outside the clad layer, the clad layer forming resin is formed on the support film 10 subjected to the adhesion treatment. 20 is preferably formed. Thereby, the adhesive force of the lower clad layer 2 and the base material 1 can be improved, and the peeling defect of the lower clad layer 2 and the base material 1 can be suppressed.
- the adhesion treatment is a treatment for improving the adhesion force between the support film 10 and the clad layer forming resin 20 formed thereon by easy adhesion resin coating, corona treatment, mat processing by sandblasting, or the like.
- the support film may be subjected to a release treatment as necessary.
- you may have a base material on the outer side of an upper clad layer, As a kind of this base material, the thing similar to the base material 1 mentioned above is mentioned, for example, as shown in FIG.1 (f) Examples thereof include a support film 10 used in the production process of a clad layer forming resin film 200 described later.
- a multilayer optical waveguide may be produced by laminating a plurality of polymer layers having a core pattern and a clad layer on one or both surfaces of the substrate 1 described above. Furthermore, an electrical wiring may be provided on the above-described base material 1, and in this case, a material provided with an electrical wiring in advance can be used as the base material 1. Alternatively, electrical wiring can be formed on the substrate 1 after manufacturing the optical waveguide. Thereby, both the signal transmission line of the metal wiring on the substrate 1 and the signal transmission line of the optical waveguide can be provided, both can be used properly, and signal transmission at a high speed and a long distance can be easily performed. Can do.
- the clad layer forming resin used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer and is cured by light or heat, and a thermosetting resin composition or a photosensitive resin composition is used. It can be preferably used.
- the clad layer forming resin is composed of a resin composition containing (A) a base polymer (also referred to as a binder polymer), (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
- A a base polymer
- B a photopolymerizable compound
- C a photopolymerization initiator.
- the resin composition used for the cladding layer forming resin may be the same or different in the components contained in the resin composition in the upper cladding layer 9 and the lower cladding layer 2.
- the refractive indexes may be the same or different.
- the (A) base polymer used here is for forming a clad layer and ensuring the strength of the clad layer, and is not particularly limited as long as the object can be achieved, phenoxy resin, epoxy resin (Meth) acrylic resin, polycarbonate resin, polyarylate resin, polyether amide, polyether imide, polyether sulfone, etc., or derivatives thereof. These base polymers may be used alone or in combination of two or more.
- the main chain has an aromatic skeleton from the viewpoint of high heat resistance, and a phenoxy resin is particularly preferable. From the viewpoint of three-dimensional crosslinking and improving heat resistance, an epoxy resin, particularly an epoxy resin that is solid at room temperature is preferable.
- compatibility with the photopolymerizable compound (B) described in detail later is important for ensuring the transparency of the resin for forming the cladding layer.
- the phenoxy resin and the (meth) acrylic resin are used. Is preferred.
- (meth) acrylic resin means acrylic resin and methacrylic resin.
- phenoxy resins those containing bisphenol A, bisphenol A-type epoxy compounds or derivatives thereof, and bisphenol F, bisphenol F-type epoxy compounds or derivatives thereof as constituent units of copolymer components are heat resistant, adhesive and soluble. It is preferable because of its excellent properties.
- Preferred examples of the bisphenol A or bisphenol A type epoxy compound include tetrabromobisphenol A and tetrabromobisphenol A type epoxy compounds.
- tetrabromobisphenol F, a tetrabromobisphenol F type epoxy compound, etc. are mentioned suitably.
- Specific examples of the bisphenol A / bisphenol F copolymer type phenoxy resin include “Phenotote YP-70” (trade name) manufactured by Toto Kasei Co., Ltd.
- epoxy resin that is solid at room temperature examples include, for example, “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Chemical Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resins Co., Ltd. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
- the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and the compound having an ethylenically unsaturated group in the molecule or two or more in the molecule.
- examples thereof include compounds having an epoxy group.
- examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc., among these, from the viewpoint of transparency and heat resistance, (Meth) acrylate is preferred.
- the (meth) acrylate any of monofunctional, bifunctional, trifunctional or higher polyfunctional ones can be used.
- (meth) acrylate means acrylate and methacrylate.
- the compound having two or more epoxy groups in the molecule include bifunctional or polyfunctional aromatic glycidyl ethers such as bisphenol A type epoxy resins, bifunctional or polyfunctional aliphatic glycidyl ethers such as polyethylene glycol type epoxy resins, and water.
- Bifunctional alicyclic glycidyl ether such as bisphenol A type epoxy resin, bifunctional aromatic glycidyl ester such as diglycidyl phthalate, bifunctional alicyclic glycidyl ester such as tetrahydrophthalic acid diglycidyl ester, N, N- Bifunctional or polyfunctional aromatic glycidylamine such as diglycidylaniline, bifunctional alicyclic epoxy resin such as alicyclic diepoxycarboxylate, bifunctional heterocyclic epoxy resin, polyfunctional heterocyclic epoxy resin, bifunctional Or polyfunctional silicon-containing epoxy resin Etc., and the like.
- These (B) photopolymerizable compounds can be used alone or in combination of two or more.
- the photopolymerization initiator of component (C) is not particularly limited.
- aryldiazonium salt, diaryliodonium salt, triarylsulfonium salt, triallyl examples include selenonium salts, dialkylphenazylsulfonium salts, dialkyl-4-hydroxyphenylsulfonium salts, and sulfonate esters.
- aromatic ketones such as benzophenone, quinones such as 2-ethylanthraquinone, and benzoin ethers such as benzoin methyl ether
- benzoin compounds such as benzoin, benzyl derivatives such as benzyldimethyl ketal, 2,4,5-triarylimidazole dimers such as 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- Benzimidazoles such as mercaptobenzimidazole, phosphine oxides such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, acridine derivatives such as 9-phenylacridine, N-phenylglycine, N-phenylglycine derivatives , Coumarin system Things and the like.
- thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylaminobenzoic acid.
- aromatic ketones and phosphine oxides are preferred from the viewpoint of improving the transparency of the core layer and the cladding layer.
- These (C) photopolymerization initiators can be used alone or in combination of two or more.
- the blending amount of the (A) base polymer is preferably 5 to 80% by mass with respect to the total amount of the components (A) and (B).
- the blending amount of the (B) photopolymerizable compound is preferably 95 to 20% by mass with respect to the total amount of the components (A) and (B).
- the component (A) when the component (A) is 80% by mass or less and the component (B) is 20% by mass or more, the (A) base polymer can be easily entangled and cured, and an optical waveguide is formed. The pattern forming property is improved and the photocuring reaction proceeds sufficiently.
- the blending amounts of the component (A) and the component (B) are more preferably 10 to 75% by mass of the component (A) and 90 to 25% by mass of the component (B), and 20 to 70 of the component (A). More preferably, the content is 80% by mass and the component (B) is 80-30% by mass.
- the blending amount of the (C) photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B).
- the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient, while when it is 10 parts by mass or less, the light absorption in the surface layer of the resin composition does not increase at the time of exposure. Photocuring is sufficient.
- the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) photopolymerization initiator is more preferably 0.2 to 5 parts by mass.
- an antioxidant in the cladding layer forming resin, an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, a filler, etc. You may add what is called an additive in the ratio which does not have a bad influence on the effect of this invention.
- the resin film for forming a cladding layer (FIGS. 2 and 200) is obtained by dissolving the resin composition containing the components (A) to (C) in a solvent and applying the solution to the support film 10 to remove the solvent. Can be manufactured more easily.
- the support film 10 used in the manufacturing process of the clad layer forming resin film 200 is not particularly limited with respect to the material thereof, and various films can be used. From the viewpoints of flexibility and toughness as the support film, those exemplified as the film material of the substrate 1 described above can be similarly mentioned.
- the thickness of the support film 10 may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 ⁇ m.
- the thickness of the support film 10 is preferably 5 to 40 ⁇ m. If it is 5 ⁇ m or more, sufficient toughness can be obtained, and if it is 40 ⁇ m or less, bubbles can be eliminated without setting the heating temperature high.
- the protective film 11 may be bonded to the clad layer forming resin film 200 as necessary from the viewpoints of protection of the clad layer forming resin film 200 and winding property when manufacturing in a roll shape.
- the protective film 11 the thing similar to what was mentioned as the example as the support body film 10 can be used, and the mold release process and the antistatic process may be performed as needed.
- the solvent used here is not particularly limited as long as it can dissolve the resin composition.
- a solvent such as glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
- the solid concentration in the resin solution is preferably about 30 to 80% by mass.
- the thickness after drying is preferably in the range of 5 to 500 ⁇ m.
- the thickness is 5 ⁇ m or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 ⁇ m or less, it is easy to control the film thickness uniformly.
- the thickness of the cladding layers 2 and 9 is more preferably in the range of 10 to 100 ⁇ m.
- the thickness of the clad layers 2 and 9 may be the same or different in the lower clad layer 2 formed first and the upper clad layer 9 for embedding the core pattern, but the core pattern is buried. Therefore, the thickness of the upper clad layer 9 is preferably thicker than the thickness of the core layer 3.
- the core layer forming resin 30 constituting the core layer forming resin film 300 is a resin that is designed such that the core layer 3 has a higher refractive index than the clad layers 2 and 9 and can form the core pattern 8 by actinic rays.
- a composition can be used, and a photosensitive resin composition is preferred.
- the same resin composition as that used in the resin for forming a cladding layer that is, the components (A), (B) and (C) are contained, and the optional components are contained as necessary. It is preferable to use a resin composition.
- the core layer-forming resin film 300 can be easily manufactured by dissolving the resin composition containing the components (A) to (C) in a solvent, applying the resin composition to the support film 4, and removing the solvent. it can.
- the solvent is not particularly limited as long as it can dissolve the resin composition, and those exemplified as the solvent used for producing the resin film for forming a clad layer can be similarly used.
- the solid content concentration in the resin solution is preferably about 30 to 80% by mass.
- the thickness of the core layer forming resin film 300 is not particularly limited, and the thickness of the dried core layer 3 is usually adjusted to be 10 to 100 ⁇ m. If the thickness of the film is 10 ⁇ m or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. There is an advantage that coupling efficiency is improved in coupling with a light emitting element or an optical fiber. From the above viewpoint, the thickness of the film is preferably in the range of 30 to 70 ⁇ m.
- the support film 4 used in the manufacturing process of the core layer forming resin film 300 is a support film that supports the core layer forming resin 30 and the material thereof is not particularly limited. From the viewpoint that it is easy to peel off and has heat resistance and solvent resistance, polyesters such as polyethylene terephthalate, polypropylene, polyethylene and the like are preferable.
- the thickness of the support film 4 is preferably 5 to 50 ⁇ m. When it is 5 ⁇ m or more, there is an advantage that the strength as the support film 4 is easily obtained, and when it is 50 ⁇ m or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed. .
- the thickness of the support film 4 is more preferably in the range of 10 to 40 ⁇ m, particularly preferably 15 to 30 ⁇ m.
- the protective film 11 may be bonded to the core layer forming resin film 300 as necessary.
- the protective film 11 the thing similar to what was mentioned as the example as the support body film 4 can be used, and the mold release process and the antistatic process may be performed as needed.
- FIG. 1 Optical waveguide manufacturing method
- a clad layer forming resin film FIG. 2 and 200
- a core layer forming resin film FIG. 3
- the clad layer forming resin 20 FIG. 2, 200
- Curing is performed to form the lower clad layer 2 (FIG. 1A).
- the support film 10 becomes the base material 1 of the lower cladding layer 2 shown in FIG.
- the curing conditions by light or heating vary depending on the type of resin for forming the cladding layer, but the solvent used in the manufacturing process of the resin film for forming the cladding layer is volatilized to ensure complete adhesion with the core layer 3. It is preferable not to cure. This is to prevent adverse effects such as erosion of the solvent by the solvent when the upper clad layer is later laminated.
- a clad layer forming resin containing a phenoxy resin as a base polymer and a bifunctional epoxy resin as a photopolymerizable compound it may be cured at a temperature of 90 to 150 ° C. for about 10 to 120 minutes.
- the lower cladding layer 2 is preferably flat without a step on the surface on the core layer lamination side, from the viewpoint of adhesion to the core layer described later. Moreover, the surface flatness of the clad layer 2 can be ensured by using the resin film for forming the clad layer.
- the clad layer forming resin 20 is irradiated with light or The clad layer 2 is formed by curing by heating. At this time, the clad layer forming resin 20 is preferably formed on the support film 10 subjected to the adhesion treatment.
- the protective film 11 is preferably not subjected to an adhesion treatment in order to facilitate peeling from the clad layer forming resin film 200, and may be subjected to a mold release treatment as necessary.
- the core layer 3 is formed on the lower clad layer 2 by a second step described in detail below.
- the core layer forming resin film 300 is laminated on the lower cladding layer 2 to form the core layer 3 having a higher refractive index than the lower cladding layer 2.
- the core layer forming resin film 300 is bonded onto the lower cladding layer 2 and the core layer 3 is laminated.
- a roll laminator or a flat plate laminator can be used for the lamination. For example, when using the roll laminator 5 (FIG.
- the laminating temperature of the bubbles is preferably in the range of room temperature (25 ° C.) to 100 ° C.
- the temperature is higher than room temperature, the adhesion between the lower clad layer and the core layer is improved, and when the temperature is 40 ° C. or higher, the adhesion can be further improved.
- the required film thickness can be obtained without the core layer flowing during roll lamination.
- the range of 40 to 100 ° C. is more preferable.
- the pressure is preferably 0.2 to 0.9 MPa.
- the laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
- the flat plate laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plates.
- a vacuum pressurizing laminator described in Patent Document 2 can be suitably used.
- the upper limit of the degree of vacuum which is a measure of pressure reduction, is preferably 10,000 Pa or less, and more preferably 1000 Pa or less.
- the degree of vacuum is preferably low from the viewpoint of adhesion and followability.
- the lower limit of the degree of vacuum is preferably about 10 Pa from the viewpoint of productivity (the time required for evacuation).
- the heating temperature is preferably 40 to 130 ° C.
- the pressure is preferably 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ), but these conditions are not particularly limited.
- a roll laminator is preferably used from the viewpoint of reducing bubbles during lamination, and a flat plate laminator is used from the viewpoint of adhesion and flatness. Moreover, you may use these laminators together as needed.
- the core layer forming resin film 300 is preferably composed of the core layer forming resin 30 and the support film 4 from the viewpoint of handleability.
- the core layer forming resin 30 is disposed on the lower clad layer 2 side. And laminate.
- the core layer forming resin film 300 may be composed of the core layer forming resin 30 alone.
- the protective film 11 is provided on the opposite side of the base material of the core layer forming resin film 300, the core layer forming resin film 300 is laminated after the protective film 11 is peeled off.
- the protective film 11 and the support film 4 have not been subjected to an adhesive treatment in order to facilitate peeling from the core layer-forming resin film 300, and may be subjected to a release treatment as necessary. Good.
- the core layer 3 is exposed and developed to form an optical waveguide core pattern 8 (FIGS. 1D and 1E).
- actinic rays are irradiated in an image form through the photomask pattern 7.
- the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps.
- those that effectively emit visible light such as a photographic flood bulb and a solar lamp, can be used.
- the support film 4 of the resin film 300 for core layer formation remains, the support film 4 is peeled off, and the unexposed portion is removed and developed by wet development or the like to form the core pattern 8.
- wet development development is performed by a known method such as spraying, rocking dipping, brushing, scraping, or the like, using an organic solvent developer suitable for the composition of the film.
- organic solvent developers examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl
- organic solvent developers include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl
- examples include ether and propylene glycol monomethyl ether acetate. Moreover, you may use together 2 or more types of image development methods as needed.
- Examples of the development method include a dip method, a paddle method, a spray method such as a high-pressure spray method, brushing, and scraping.
- the high-pressure spray method is most suitable for improving the resolution.
- heating at about 60 to 250 ° C. (preferably at about 110 to 150 ° C. for about 10 to 120 minutes) or exposure at about 0.1 to 1000 mJ / cm 2 is performed as necessary.
- the core pattern 8 may be further cured and used so that the solvent is volatilized and erosion by the solvent does not occur.
- a clad layer forming resin film 200 is laminated for embedding the core pattern 8.
- the laminating is performed with the clad layer forming resin 20 facing the core pattern 8.
- the thickness of the clad layer 9 is preferably larger than the thickness of the core layer 3 as described above.
- Lamination is preferably performed by heat-pressing the clad layer forming resin film 200 in a reduced pressure atmosphere (FIG. 1 (f)).
- the fourth step is preferably performed in a reduced-pressure atmosphere at the time of thermocompression bonding from the viewpoint of improving adhesion and followability.
- the upper limit of the degree of vacuum which is a measure of pressure reduction, is preferably 10,000 Pa or less, and more preferably 1000 Pa or less.
- the degree of vacuum is preferably low from the viewpoint of adhesion and followability.
- the lower limit of the degree of vacuum is preferably about 10 Pa from the viewpoint of productivity (the time required for evacuation).
- the heating temperature is preferably 40 to 130 ° C.
- the pressure is preferably 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ), but these conditions are not particularly limited.
- the clad layer-forming resin film 200 when the clad layer-forming resin film 200 is heat-pressed, at least one, and preferably both, are pressure-bonded using a stainless steel (SUS) plate, resulting in a uniform film thickness, compared with the case where a rubber plate is used. A flat upper cladding layer is formed.
- SUS stainless steel
- the protective film 11 is provided on the opposite side of the support film 10 of the clad layer forming resin film 200, the protective film 11 is peeled off and then the clad layer forming resin film 200 is laminated. Then, the clad layer 9 is formed by curing by light or heating. At this time, it is preferable that the clad layer forming resin 20 is formed on the support film 10 subjected to the adhesion treatment.
- the protective film 11 is preferably not subjected to an adhesive treatment in order to facilitate peeling from the clad layer forming resin film 200, and may be subjected to a release treatment as necessary.
- the lamination conditions such as temperature, pressure, and time are set such that the melt viscosity of the clad layer forming resin is 100 to 200 Pa ⁇ s when the upper clad layer forming resin film is laminated.
- the melt viscosity is preferably 120 to 180 Pa ⁇ s.
- the melt viscosity is preferably a melt viscosity at 40 to 130 ° C.
- the melt viscosity is more preferably a melt viscosity at 50 to 100 ° C., and further preferably a melt viscosity at 100 ° C.
- the optical waveguide of the present invention is an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material.
- the upper clad layer has a melt viscosity of 100 to 200 Pa ⁇ s at the time of lamination. It is an optical waveguide formed from a certain resin.
- the optical waveguide is an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material.
- the upper clad layer has a melt viscosity of 100 to 100 ° C., preferably 40 to 130 ° C.
- It may be an optical waveguide formed of a resin having a viscosity of 200 Pa ⁇ s, and the upper cladding layer includes a phenoxy resin-based pace polymer and a bifunctional epoxy resin, and has a melt viscosity of 100 to 90 ° C. at 90 to 120 ° C.
- An optical waveguide formed from a resin having a pressure of 200 Pa ⁇ s is preferable.
- the melt viscosity is preferably 120 to 180 Pa ⁇ s.
- the type of base polymer or polymerizable compound (structure, molecular weight, glass transition temperature, viscosity, etc.) used as the resin composition Alternatively, it can be obtained by appropriately adjusting the blending ratio thereof.
- the base polymer include phenoxy resin, epoxy resin solid at room temperature, (meth) acrylic polymer, acrylic rubber, polyurethane, polyimide, polyamide, polyamideimide, polysiloxane and the like.
- the molecular weight of the base polymer is preferably 5,000 or more in terms of number average molecular weight, more preferably 10,000 or more, and particularly preferably 30,000 or more in order to form a resin film.
- the upper limit of the number average molecular weight is not particularly limited, but is preferably 1,000,000 or less, more preferably 900,000 or less, particularly 800,000 from the viewpoint of compatibility with the polymerizable compound component. The following is preferable.
- the number average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
- numerator can be used.
- Specific examples include (meth) acrylates, vinylidene halides, vinyl ethers, vinyl pyridines, vinyl phenols, etc.
- (meth) acrylates are preferable from the viewpoint of transparency and heat resistance.
- the (meth) acrylate any of monofunctional, bifunctional, and trifunctional can be used.
- (meth) acrylate means acrylate and methacrylate. It is also preferable to include a compound having two or more epoxy groups in the molecule.
- bifunctional aromatic glycidyl ethers such as bisphenol A type epoxy resin, tetrabromobisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin; phenol novolac type epoxy resin, Polyfunctional aromatic glycidyl ethers such as cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylolethane type epoxy resin; polyethylene glycol type epoxy resin, polypropylene glycol type epoxy resin, neopentyl glycol type epoxy resin, Bifunctional aliphatic glycidyl ether such as hexanediol type epoxy resin; Bifunctional alicyclic glycidyl ether such as hydrogenated bisphenol A type epoxy resin; Polyfunctional aliphatic glycidyl ethers such as roll propane type epoxy resin, sorbitol type epoxy resin, glycerin type epoxy resin; bifunctional aromatic glycid
- These polymerizable compounds usually have a molecular weight of about 100 to 2000, more preferably about 150 to 1000, and those that are liquid at room temperature are suitably used. Moreover, these compounds can be used individually or in combination of 2 or more types, Furthermore, it can also be used in combination with another polymeric compound. In addition, the molecular weight of the polymerizable compound in the present invention can be measured by GPC method or mass spectrometry.
- the blending ratio of the base polymer and the polymerizable compound is preferably 10 to 80% by mass of the base polymer with respect to the total amount of these components. It becomes easy to set it as a film form as it is 10 mass% or more.
- the range of 20 to 70% by mass is more preferable.
- the melt viscosity of the resin for forming the upper clad layer is prepared by preparing a measurement sample having a film thickness of 200 to 500 ⁇ m and sandwiching the sample in parallel with a pair of circular plates having a diameter of 2 cm.
- the measurement was carried out with an elastic measuring device (TA Instruments, ARES-2KSTD) at a heating rate of 5 ° C./min. More specifically, the measurement was performed under the conditions of a shear frequency of 1 Hz and a strain of 5% (rotation angle of 9 degrees).
- a clad layer-forming resin is applied and dried on a support film such as a polyamide film, and then a release PET film or the like is protected.
- the protective film and the support film are peeled off, the clad layer forming resin layer is taken out, and a plurality of clad forming resin layers are overlaid, and a vacuum pressure laminator Using MVLP-500 (manufactured by Meiki Seisakusho Co., Ltd.), it was evacuated to 500 Pa or less and then pressurized under the conditions of pressure 0.4 MPa, temperature 50 ° C., and time 30 seconds.
- the number of clad forming resin layers to be overlaid was adjusted so that the film thickness after pressing was in the range of 200 to 500 ⁇ m.
- the heat treatment condition is preferably a temperature of 40 ° C. to 200 ° C., more preferably 50 to 100 ° C.
- the heat treatment time is preferably 15 to 120 minutes. Within this time range, no bubbles remain and workability is not sacrificed. From these viewpoints, the heat treatment time is more preferably 20 to 60 minutes.
- Example 1 [Production of resin film for clad layer formation]
- A As base polymer (binder polymer), 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd., number average molecular weight 43000)
- B As a photopolymerizable compound, alicyclic Diepoxycarboxylate (trade name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass
- C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: 2 parts by mass of SP-170, manufactured by Asahi Denka Kogyo Co., Ltd., 0.4 parts by mass of SP-100 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.
- the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
- the resin varnish A for forming a clad layer obtained above is coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 ⁇ m) (Multicoater TM-MC, Inc.
- a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) ) was attached so that the release surface was on the resin side to obtain a resin film for forming a cladding layer.
- the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
- the cured film thickness is 25 ⁇ m for the lower cladding layer and 80 ⁇ m for the upper cladding layer. Adjusted.
- A As a base polymer (binder polymer), 26 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 ON (
- the core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
- a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained.
- the gap of the coating machine was adjusted so that the film thickness after curing was 50 ⁇ m.
- the lower clad layer 2 was formed by irradiating ultraviolet rays (wavelength 365 nm) with 1 J / cm 2 from the opposite side of the body film and then heat-treating at 80 ° C. for 10 minutes (see FIG. 1A).
- a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer 2 under the conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min.
- the layer forming resin film was laminated to form the core layer 30 (see FIG. 1B).
- a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., MVLP-500
- MVLP-500 vacuumed to 500 Pa or less, pressure 0.4 MPa, temperature 100 ° C., pressurizing time
- the resin film for forming a clad layer was laminated under a condition of 30 seconds (see FIG. 1 (f)).
- the melt viscosity of the upper clad layer forming resin film at a temperature of 100 ° C. was 170 Pa ⁇ s.
- ultraviolet light (wavelength 365 nm) is irradiated on both surfaces in total at 25 J / cm 2 , and then heat-treated at 160 ° C.
- the flexible optical waveguide was treated for 24 hours at 85 ° C./85% in a high temperature and high humidity condition to produce a flexible optical waveguide from which the support film was removed.
- the appearance of the flexible optical waveguide thus produced was examined under a microscope with a magnification of 50 times, and it was confirmed that there were no bubbles in contact with the core.
- the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using an 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as a light source, and Advantest Co., Ltd., Q82214 as a light receiving sensor.
- EXFO 850 nm surface emitting laser
- Q82214 Q82214 as a light receiving sensor.
- Example 1 a flexible optical waveguide was produced in the same manner as in Example 1 except that the lamination temperature at the time of forming the upper clad was 60 ° C., 65 ° C., 80 ° C., and 90 ° C.
- the melt viscosities of the resin films for forming the upper cladding layer at temperatures of 60 ° C., 65 ° C., 80 ° C., and 90 ° C. were 1720 Pa ⁇ s, 1180 Pa ⁇ s, 445 Pa ⁇ s, and 260 Pa ⁇ s, respectively.
- five or more bubbles having a size of 5 ⁇ m or more remaining in contact with the core remained.
- the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using an 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as a light source, and Advantest Co., Ltd., Q82214 as a light receiving sensor.
- EXFO 850 nm surface emitting laser
- Q82214 Q82214 as a light receiving sensor.
- Example 2 [Production of resin film for clad layer formation]
- A As a base polymer (binder polymer), 50 parts by mass of a phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.),
- B As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 50 parts by mass,
- C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo) Co., Ltd.) 2 parts by weight, 40 parts by weight of propylene glycol monomethyl ether acetate as an organic solvent are weighed in a wide-mouthed plastic bottle, using a mechanical stirrer, shaft and propeller, at a
- the clad layer-forming resin varnish A obtained above was coated on a non-treated surface of a PET film (trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd., thickness: 50 ⁇ m) (Multicoater TM-MC , Manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then as a protective film, a release PET film (trade name: Purex A31, Teijin DuPont Films, Inc., thickness 25 ⁇ m) was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained.
- a PET film trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd., thickness: 50 ⁇ m
- Multicoater TM-MC Manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C
- the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
- the cured film thickness is 30 ⁇ m for the lower cladding layer and 60 ⁇ m for the upper cladding layer. Adjusted.
- a resin varnish B for forming a core layer was prepared in the same manner and under the same conditions as in Example 1. Thereafter, pressure filtration and degassing under reduced pressure were carried out under the same method and conditions as in the above production example.
- the core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
- a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained.
- the gap of the coating machine was adjusted so that the film thickness after curing was 40 ⁇ m.
- a method for manufacturing the optical waveguide will be described below.
- a silane coupling agent manufactured by Toray Dow Corning Co., Ltd. [Z6040]
- Z6040 Toray Dow Corning Co., Ltd.
- the coating was carried out under conditions of 10 seconds, further 1500 rpm / 30 seconds, and then heated on a hot plate at 120 ° C. for 3 minutes.
- “1H-D2” manufactured by Mikasa Co., Ltd. was used.
- the protective film of the clad layer forming resin film produced above is peeled off, and the laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd.) is made so that the resin layer for forming the clad layer is in contact with the silicon substrate subjected to the silane coupling treatment.
- HLM-1500 was roll-laminated under the conditions of 80 ° C., 0.5 MPa, and feed rate of 0.5 m.
- ultraviolet rays (wavelength 365 nm) were irradiated from the resin side (opposite side of the support film) at 1 J / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and a PET film (support film) After peeling off Cosmo Shine A4100), the lower clad layer 2 was formed by heat treatment at 120 ° C. for 60 minutes (see FIG. 4A).
- a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer 2 under the conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min.
- the layer forming resin film was laminated to form the core layer 30 (see FIG. 4B).
- cleaning liquid isopropanol
- a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., MVLP-500
- MVLP-500 vacuum pressurizing laminator
- the resin film for forming a clad layer was laminated under the condition of 30 seconds (see FIG. 4 (e)).
- the melt viscosity of the resin film for forming the upper cladding layer at a temperature of 100 ° C. was 121 Pa ⁇ s.
- the upper cladding layer 9 was formed by heat treatment at 160 ° C.
- Example 2 a flexible optical waveguide was produced in the same manner as in Example 2 except that the lamination temperature at the time of forming the upper clad was 60 ° C., 70 ° C., 80 ° C., and 90 ° C.
- the melt viscosities of the upper clad layer forming resin films at temperatures of 60 ° C., 65 ° C., 80 ° C., and 90 ° C. were 1670 Pa ⁇ s, 842 Pa ⁇ s, 383 Pa ⁇ s, and 233 Pa ⁇ s, respectively.
- the flexible optical waveguide produced under these conditions five or more bubbles having a size of 5 ⁇ m or more remaining in contact with the core remained.
- the propagation loss of the manufactured optical waveguide was measured in the same manner as in Example 1, it was 0.1 dB / cm, and it was found that the propagation loss was degraded due to bubbles.
- Example 3 [Production of resin film for clad layer formation]
- A As a base polymer (binder polymer), 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.),
- B As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass
- C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi 2 parts by mass of Denka Kogyo Co., Ltd., 0.4 parts by mass of SP-100 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) as a sensitizer, and 40 parts by mass of propylene glycol monomethyl
- the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
- the resin varnish A for forming a clad layer obtained above is coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 ⁇ m) (Multicoater TM-MC, Inc.
- a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) ) was attached so that the release surface was on the resin side to obtain a resin film for forming a cladding layer.
- the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
- the cured film thickness is 25 ⁇ m for the lower cladding layer and 80 ⁇ m for the upper cladding layer. Adjusted.
- A As a base polymer (binder polymer), 26 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 ON (
- the core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
- a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained.
- the gap of the coating machine was adjusted so that the film thickness after curing was 70 ⁇ m.
- the lower clad layer 2 was formed by irradiating ultraviolet rays (wavelength 365 nm) with 1 J / cm 2 from the opposite side of the body film and then heat-treating at 80 ° C. for 10 minutes (see FIG. 1A).
- a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer 2 under the conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min.
- the layer forming resin film was laminated to form the core layer 30 (see FIG. 1B).
- a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., MVLP-500
- MVLP-500 vacuumed to 500 Pa or lower, pressure 0.4 MPa, temperature 60 ° C., pressurizing time
- the resin film 1 for forming a clad layer was laminated under a condition of 30 seconds (see FIG. 1 (f)).
- FIG. 1 (f) when an appearance inspection was performed under a microscope with a magnification of 100, four bubbles were in contact with the core in the upper clad (see FIG. 5).
- heating was performed in a heating furnace at 50 ° C. for 30 minutes, and the appearance was similarly examined under a microscope.
- ultraviolet light (wavelength 365 nm) is irradiated on both surfaces in total at 25 J / cm 2 , and then heat-treated at 160 ° C. for 1 hour to form a flexible optical waveguide in which the upper clad layer 9 is formed and the support film is disposed outside. It produced (refer FIG.1 (g)).
- the flexible optical waveguide was treated for 24 hours at 85 ° C./85% in a high temperature and high humidity condition to produce a flexible optical waveguide from which the support film was removed.
- Propagation loss of the manufactured optical waveguide was measured using a cut-back method (measurement) using a 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as the light source, and Advantest Q82214 as the light receiving sensor.
- the bubbles could be eliminated even when the heating temperature after the upper clad lamination was 60 ° C., 70 ° C., 80 ° C., 90 ° C., 100 ° C.
- Comparative Example 3 An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 3 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
- the propagation loss of the optical waveguide manufactured under these conditions is 0.1 dB / cm, and it has been found that the propagation loss is deteriorated due to bubbles.
- Example 4 [Production of resin film for clad layer formation]
- A As a base polymer (binder polymer), 50 parts by mass of a phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.),
- B As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 50 parts by mass,
- C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo) Co., Ltd.) 2 parts by weight, 40 parts by weight of propylene glycol monomethyl ether acetate as an organic solvent are weighed in a wide-mouthed plastic bottle, using a mechanical stirrer, shaft and propeller, at a
- the clad layer-forming resin varnish A obtained above is coated on an easy-adhesion treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) (Multicoater TM- MC, manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then released as a protective PET film (trade name: Purex A31, Teijin DuPont Film Co., Ltd.) (Thickness: 25 ⁇ m) was pasted so that the release surface was on the resin side to obtain a resin film for forming a cladding layer.
- a PET film trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m
- Multicoater TM- MC manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes
- the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
- the thickness after curing is 30 ⁇ m for the lower cladding layer and 80 ⁇ m for the upper cladding layer. Adjusted.
- a resin film for forming a core layer was obtained by the same method and conditions as in Example 3. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 50 ⁇ m.
- the lower clad layer 2 was formed by irradiating ultraviolet rays (wavelength 365 nm) with 1 J / cm 2 from the opposite side of the support film, followed by heat treatment at 80 ° C. for 10 minutes (see FIG. 1A).
- a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer 2 under the conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min.
- the layer forming resin film was laminated to form the core layer 30 (see FIG. 1B).
- a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., MVLP-500
- the resin film 1 for forming a clad layer was laminated under a condition of 30 seconds (see FIG. 1 (f)).
- an appearance inspection was performed under a microscope with a magnification of 100, there were three bubbles in the upper clad in contact with the core. Then, in order to lose
- ultraviolet rays (wavelength 365 nm) are irradiated on both surfaces in total 6 J / cm 2 , and then heat-treated at 120 ° C. for 1 hour to form an upper clad layer 9 and a flexible optical waveguide having a support film disposed on the outside. It produced (refer FIG.1 (g)).
- Propagation loss of the manufactured optical waveguide was measured using a cut-back method (measurement) using a 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as the light source, and Advantest Q82214 as the light receiving sensor.
- EXFO 850 nm surface emitting laser
- Comparative Example 4 An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 4 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
- the propagation loss of the optical waveguide manufactured under these conditions is 0.1 dB / cm, and it has been found that the propagation loss is deteriorated due to bubbles.
- Example 5 (second manufacturing method) In Example 4, except that the support film of the resin film for forming the clad was changed to a PET film having a thickness of 25 ⁇ m (trade name: Purex A31, Teijin DuPont Film Co., Ltd., non-treated surface used) An optical waveguide was prepared in the same manner as in 2. At this time, after the upper clad lamination, when an appearance inspection was performed under a microscope with a magnification of 100 times, there were four bubbles in the upper clad in contact with the core. Even in this case, bubbles could be eliminated by setting the heating temperature after the upper clad lamination to 50 ° C., 60 ° C., 70 ° C., 80 ° C., 90 ° C., and 100 ° C.
- Comparative Example 5 An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 5 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
- Example 6 (second manufacturing method)
- the support film of the resin film for forming a clad was changed to an aramid film having a thickness of 9 ⁇ m (trade name: Mikutron, Toray Industries, Inc., using a corona-treated surface), as in Example 3.
- An optical waveguide was produced.
- an appearance inspection was performed under a microscope with a magnification of 100.
- bubbles could be eliminated by setting the heating temperature after the upper clad lamination to 40 ° C. and the heating time to 60 minutes.
- Comparative Example 6 An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 6 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
- the optical waveguide can be manufactured with high productivity, and no bubbles remain between the core layer and the upper cladding layer.
- the optical waveguide can be manufactured with high productivity, and no bubbles remain between the core layer and the upper cladding layer, and the upper cladding layer is flat. For this reason, it is extremely useful as a manufacturing method of a highly practical optical waveguide.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Optical Integrated Circuits (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
Abstract
Description
しかしながら、コア部分を埋め込む際に入った気泡がコア層と上部クラッド層との間に残るという問題があり、この気泡により、光信号を通した際、損失が大きくなるという問題があった。特に、従来要求されていたコア部分の配線密度は、線幅/線間が50μm/200μm程度であったが、例えば、線幅/線間が50μm/50μmといった狭いピッチの光導波路を作製する場合には、気泡による影響が大きかった。また、コア部分を埋め込んだ際に、上部クラッド層の平坦性の向上が求められていた。
However, there is a problem that bubbles that enter when the core portion is embedded remain between the core layer and the upper clad layer, and there is a problem that loss increases when an optical signal passes through the bubbles. In particular, the wiring density of the core portion, which has been conventionally required, is about 50 μm / 200 μm between the line width / line. For example, when producing an optical waveguide with a narrow pitch such as 50 μm / 50 μm between the line width / line. The effect of air bubbles was significant. In addition, when the core portion is embedded, improvement in the flatness of the upper cladding layer has been demanded.
すなわち、本発明は、
(1)基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に上部クラッド層形成用樹脂フィルムを積層し、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法であって、該上部クラッド層形成用樹脂フィルムの積層時に、該クラッド層形成用樹脂の溶融粘度が100~200Pa・sとなるように積層条件を制御することを特徴とする光導波路の製造方法、
(2)コア層を形成する工程が、ヒートロールを有するロールラミネータを用いて、下部クラッド層上にコア層形成用樹脂フィルムを加熱圧着する工程を含むことを特徴とする前記(1)に記載の光導波路の製造方法、
(3)コアパターン上に上部クラッド層形成用樹脂フィルムを積層する際、平板型ラミネータを用いて減圧雰囲気下で加熱圧着することを特徴とする前記(1)に記載の光導波路の製造方法、
(4)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、積層時における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路、
(5)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40~130℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路、
(6)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、100℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路、
(7)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90~120℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路、
(8)上記溶融粘度が120~180Pa・sである請求項4~7のいずれかに記載の光導波路、
(9)基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層する工程、その後加熱処理を行う工程、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法、
(10)加熱処理の条件が温度40~200℃であることを特徴とする前記(9)に記載の光導波路の製造方法、
を提供するものである。
なお、以下、(1)~(3)の製造方法を第1の製造方法、(9)~(10)の製造方法を第2の製造方法ということがある。 As a result of intensive studies to achieve the above object, the inventors of the present invention have made the clad layer forming resin have a melt viscosity of 100 to 200 Pa · s when the upper clad layer forming resin film is laminated. The lamination conditions are controlled, the upper clad layer is formed from a resin having a melt viscosity of 100 to 200 Pa · s at the time of lamination, or the upper clad layer forming resin is laminated on the support film on the core pattern. The present invention has been completed by finding that the above-mentioned object can be achieved by laminating a resin film for forming an upper clad layer to be in contact with the core pattern and then performing a heat treatment.
That is, the present invention
(1) A step of curing a resin for forming a cladding layer formed on a substrate to form a lower cladding layer, a step of forming a core layer by laminating a resin film for forming a core layer on the lower cladding layer, A step of exposing and developing the core layer to form a core pattern, and a step of laminating a resin film for forming an upper clad layer on the core pattern and curing the resin for forming the clad layer to form an upper clad layer A method of manufacturing an optical waveguide comprising: controlling lamination conditions so that the melt viscosity of the clad layer forming resin is 100 to 200 Pa · s when the upper clad layer forming resin film is laminated. An optical waveguide manufacturing method,
(2) The step of forming a core layer includes a step of thermocompression-bonding a resin film for forming a core layer on a lower clad layer using a roll laminator having a heat roll. Manufacturing method of optical waveguide,
(3) When laminating a resin film for forming an upper clad layer on a core pattern, the method for producing an optical waveguide according to the above (1), characterized in that it is thermocompression-bonded under a reduced pressure atmosphere using a flat plate laminator,
(4) In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a substrate, the upper clad layer is formed of a resin having a melt viscosity of 100 to 200 Pa · s at the time of lamination. An optical waveguide,
(5) In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a substrate, the upper clad layer is formed from a resin having a melt viscosity of 100 to 200 Pa · s at 40 to 130 ° C. An optical waveguide,
(6) In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a substrate, the upper clad layer is formed of a resin having a melt viscosity at 100 ° C. of 100 to 200 Pa · s. An optical waveguide,
(7) In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a substrate, the upper clad layer contains a phenoxy resin-based pace polymer and a bifunctional epoxy resin, and is 90 to 120 ° C. An optical waveguide formed of a resin having a melt viscosity of 100 to 200 Pa · s in
(8) The optical waveguide according to any one of
(9) a step of curing a resin for forming a cladding layer formed on a substrate to form a lower cladding layer, a step of forming a core layer by laminating a resin film for forming a core layer on the lower cladding layer, A step of exposing and developing the core layer to form a core pattern; and an upper clad layer-forming resin film obtained by laminating an upper clad layer-forming resin on a support film on the core pattern. A method of manufacturing an optical waveguide, including a step of laminating so as to contact a pattern, a step of performing a heat treatment, and a step of curing the resin for forming a clad layer to form an upper clad layer;
(10) The method for producing an optical waveguide according to (9) above, wherein the heat treatment condition is a temperature of 40 to 200 ° C.
Is to provide.
Hereinafter, the manufacturing methods (1) to (3) may be referred to as a first manufacturing method, and the manufacturing methods (9) to (10) may be referred to as a second manufacturing method.
2;下部クラッド層
3;コア層
4;支持体フィルム(コア層形成用)
5;ロールラミネータ
6;真空加圧ラミネータ
7;フォトマスク
8;コアパターン
9;上部クラッド層
10;支持体フィルム(クラッド層形成用)
11;保護フィルム(保護層)
20;クラッド層形成用樹脂
30;コア層形成用樹脂
40;シリコン基板
200;クラッド層形成用樹脂フィルム
300;コア層形成用樹脂フィルム DESCRIPTION OF
5; roll
11; Protective film (protective layer)
20; resin for
基材1の種類としては、特に制限されるものではないが、例えば、FR-4基板、ポリイミド、半導体基板、シリコン基板やガラス基板等を用いることができる。
また、基材1としてフィルムを用いることで、光導波路に柔軟性および強靭性を付与させることができる。フィルムの材料としては、特に限定されないが、柔軟性、強靭性を有するとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、アラミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどが好適に挙げられる。
フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると十分な柔軟性が得られる。 (Base material)
The type of the
Moreover, by using a film as the
The thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 μm. If it is 5 μm or more, there is an advantage that toughness is easily obtained, and if it is 250 μm or less, sufficient flexibility can be obtained.
また、上部クラッド層の外側に基材を有していてもよく、該基材の種類としては、前述した基材1と同様のものが挙げられ、例えば、図1(f)に示すように後述するクラッド層形成用樹脂フィルム200の製造過程で用いる支持体フィルム10等が挙げられる。 As the
Moreover, you may have a base material on the outer side of an upper clad layer, As a kind of this base material, the thing similar to the
さらに、上述の基材1上には電気配線を設けてもよく、この場合、予め電気配線を設けたものを基材1として用いることができる。あるいは、光導波路製造後に、基材1上に電気配線を形成することが可能である。これにより、基板1上の金属配線の信号伝送線と光導波路の信号伝送線との両方を備えられ、両者を使い分けることが可能になり、高速でかつ早い長い距離の信号伝送を容易に行うことができる。 A multilayer optical waveguide may be produced by laminating a plurality of polymer layers having a core pattern and a clad layer on one or both surfaces of the
Furthermore, an electrical wiring may be provided on the above-described
以下、本発明で使用されるクラッド層形成用樹脂およびクラッド層形成用樹脂フィルム(図2、200)について詳述する。
本発明で用いるクラッド層形成用樹脂としては、コア層より低屈折率で、光または熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を好適に使用することができる。より好適にはクラッド層形成用樹脂が、(A)ベースポリマー(バインダポリマともいう)、(B)光重合性化合物および(C)光重合開始剤を含有する樹脂組成物により構成されることが好ましい。なお、クラッド層形成用樹脂に用いる樹脂組成物は、上部クラッド層9と下部クラッド層2において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。 (Clad layer forming resin and clad layer forming resin film)
Hereinafter, the clad layer forming resin and the clad layer forming resin film (FIG. 2, 200) used in the present invention will be described in detail.
The clad layer forming resin used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer and is cured by light or heat, and a thermosetting resin composition or a photosensitive resin composition is used. It can be preferably used. More preferably, the clad layer forming resin is composed of a resin composition containing (A) a base polymer (also referred to as a binder polymer), (B) a photopolymerizable compound, and (C) a photopolymerization initiator. preferable. The resin composition used for the cladding layer forming resin may be the same or different in the components contained in the resin composition in the
分子内にエチレン性不飽和基を有する化合物としては、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらの中で、透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。
(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性以上の多官能性のもののいずれをも用いることができる。なお、ここで(メタ)アクリレートとは、アクリレートおよびメタクリレートを意味するものである。
分子内に2つ以上のエポキシ基を有する化合物としては、ビスフェノールA型エポキシ樹脂等の2官能または多官能芳香族グリシジルエーテル、ポリエチレングリコール型エポキシ樹脂等の2官能または多官能脂肪族グリシジルエーテル、水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル、フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル、N,N-ジグリシジルアニリン等の2官能または多官能芳香族グリシジルアミン、アリサイクリックジエポキシカルボキシレート等の2官能脂環式エポキシ樹脂、2官能複素環式エポキシ樹脂、多官能複素環式エポキシ樹脂、2官能または多官能ケイ素含有エポキシ樹脂などが挙げられる。これらの(B)光重合性化合物は、単独でまたは2種類以上組み合わせて用いることができる。 Next, (B) the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and the compound having an ethylenically unsaturated group in the molecule or two or more in the molecule. Examples thereof include compounds having an epoxy group.
Examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc., among these, from the viewpoint of transparency and heat resistance, (Meth) acrylate is preferred.
As the (meth) acrylate, any of monofunctional, bifunctional, trifunctional or higher polyfunctional ones can be used. Here, (meth) acrylate means acrylate and methacrylate.
Examples of the compound having two or more epoxy groups in the molecule include bifunctional or polyfunctional aromatic glycidyl ethers such as bisphenol A type epoxy resins, bifunctional or polyfunctional aliphatic glycidyl ethers such as polyethylene glycol type epoxy resins, and water. Bifunctional alicyclic glycidyl ether such as bisphenol A type epoxy resin, bifunctional aromatic glycidyl ester such as diglycidyl phthalate, bifunctional alicyclic glycidyl ester such as tetrahydrophthalic acid diglycidyl ester, N, N- Bifunctional or polyfunctional aromatic glycidylamine such as diglycidylaniline, bifunctional alicyclic epoxy resin such as alicyclic diepoxycarboxylate, bifunctional heterocyclic epoxy resin, polyfunctional heterocyclic epoxy resin, bifunctional Or polyfunctional silicon-containing epoxy resin Etc., and the like. These (B) photopolymerizable compounds can be used alone or in combination of two or more.
この(A)成分および(B)成分の配合量として、(A)成分が5質量%以上であり、(B)成分が95質量%以下であると、樹脂組成物を容易にフィルム化することができる。一方、(A)成分が80質量%以下あり、(B)成分が20質量%以上であると、(A)ベースポリマーを絡み込んで硬化させることが容易にでき、光導波路を形成する際に、パターン形成性が向上し、かつ光硬化反応が十分に進行する。以上の観点から、この(A)成分および(B)成分の配合量として、(A)成分10~75質量%、(B)成分90~25質量%がより好ましく、(A)成分20~70質量%、(B)成分80~30質量%がさらに好ましい。
(C)光重合開始剤の配合量は、(A)成分および(B)成分の総量100質量部に対して、0.1~10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であると、露光時に樹脂組成物の表層での光吸収が増大することがなく、内部の光硬化が十分となる。さらに、光導波路として使用する際には、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)光重合開始剤の配合量は、0.2~5質量部とすることがより好ましい。 The blending amount of the (A) base polymer is preferably 5 to 80% by mass with respect to the total amount of the components (A) and (B). The blending amount of the (B) photopolymerizable compound is preferably 95 to 20% by mass with respect to the total amount of the components (A) and (B).
When the blending amount of the component (A) and the component (B) is such that the component (A) is 5% by mass or more and the component (B) is 95% by mass or less, the resin composition is easily formed into a film. Can do. On the other hand, when the component (A) is 80% by mass or less and the component (B) is 20% by mass or more, the (A) base polymer can be easily entangled and cured, and an optical waveguide is formed. The pattern forming property is improved and the photocuring reaction proceeds sufficiently. From the above viewpoint, the blending amounts of the component (A) and the component (B) are more preferably 10 to 75% by mass of the component (A) and 90 to 25% by mass of the component (B), and 20 to 70 of the component (A). More preferably, the content is 80% by mass and the component (B) is 80-30% by mass.
The blending amount of the (C) photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). When the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient, while when it is 10 parts by mass or less, the light absorption in the surface layer of the resin composition does not increase at the time of exposure. Photocuring is sufficient. Furthermore, when used as an optical waveguide, it is preferable that the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) photopolymerization initiator is more preferably 0.2 to 5 parts by mass.
クラッド層形成用樹脂フィルム200の製造過程で用いられる支持体フィルム10は、その材料については特に限定されず、種々のものを用いることができる。支持体フィルムとしての柔軟性および強靭性の観点から、上記した基材1のフィルム材料として例示したものが同様に挙げられる。
支持体フィルム10の厚さは、目的とする柔軟性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得られ、250μm以下であると十分な柔軟性が得られる。また、加熱処理を行う場合には、支持体フィルム10の厚さは、5~40μmであることが好ましい。5μm以上であれば十分な強靭性が得られ、40μm以下であれば、加熱温度を高く設定することなく気泡をなくすことができる。
このとき、クラッド層形成用樹脂フィルム200の保護やロール状に製造するときの巻き取り性などの観点から、必要に応じクラッド層形成用樹脂フィルム200に保護フィルム11を貼り合わせてもよい。保護フィルム11としては、支持体フィルム10として例に挙げたものと同様なものを用いることができ、必要に応じて離型処理や帯電防止処理がされていてもよい。
ここで用いる溶媒としては、該樹脂組成物溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N-メチル-2-ピロリドン等の溶媒またはこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は30~80質量%程度であることが好ましい。 The resin film for forming a cladding layer (FIGS. 2 and 200) is obtained by dissolving the resin composition containing the components (A) to (C) in a solvent and applying the solution to the
The
The thickness of the
At this time, the protective film 11 may be bonded to the clad layer forming resin film 200 as necessary from the viewpoints of protection of the clad layer forming resin film 200 and winding property when manufacturing in a roll shape. As the protective film 11, the thing similar to what was mentioned as the example as the
The solvent used here is not particularly limited as long as it can dissolve the resin composition. For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene A solvent such as glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used. The solid concentration in the resin solution is preferably about 30 to 80% by mass.
次に、本発明で使用するコア層形成用樹脂フィルム(図3、300)について詳述する。
コア層形成用樹脂フィルム300を構成するコア層形成用樹脂30としては、コア層3がクラッド層2,9より高屈折率であるように設計され、活性光線によりコアパターン8を形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。具体的には、前記クラッド層形成用樹脂で用いたのと同様の樹脂組成物、すなわち、前記(A)、(B)および(C)成分を含有し、必要に応じて前記任意成分を含有する樹脂組成物を用いることが好ましい。 (Core layer forming resin film)
Next, the core layer forming resin film (FIGS. 3 and 300) used in the present invention will be described in detail.
The core
支持体フィルム4の厚さは、5~50μmであることが好ましい。5μm以上であると、支持体フィルム4としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、支持体フィルム4の厚さは10~40μmの範囲であることがより好ましく、15~30μmであることが特に好ましい。
コア層形成用樹脂フィルム300の保護やロール状に製造するときの巻き取り性などの観点から、必要に応じコア層形成用樹脂フィルム300に保護フィルム11を貼り合わせてもよい。保護フィルム11としては、支持体フィルム4として例に挙げたものと同様なものが使用でき、必要に応じ離型処理や帯電防止処理がされていてもよい。 The
The thickness of the
From the viewpoints of protection of the core layer forming resin film 300 and rollability when manufacturing in a roll shape, the protective film 11 may be bonded to the core layer forming resin film 300 as necessary. As the protective film 11, the thing similar to what was mentioned as the example as the
以下、本発明の光導波路の製造方法について詳述する(図1参照)。なお、以下の製造例では、クラッド層形成用樹脂フィルム(図2、200)およびコア層形成用樹脂フィルム(図3、300)を用いた場合の実施形態の一例を具体的に説明する。
まず、第1の工程として、クラッド層形成用樹脂20と支持体フィルム10から構成されたクラッド層形成用樹脂フィルム(図2、200)を用いて、クラッド層形成用樹脂20を光または加熱により硬化し、下部クラッド層2を形成する(図1(a))。このとき、上記支持体フィルム10が、図1(a)に示す下部クラッド層2の基材1となる。
光または加熱による硬化条件は、クラッド層形成用樹脂の種類によって変わるが、クラッド層形成用樹脂フィルムの製造過程で用いた溶剤を揮散させ、コア層3との密着性が確保されるように完全硬化させないことが好ましい。これは、溶剤が後の上部クラッド層積層時に、溶剤によって浸食されるなどの悪影響を防止するためである。
例えば、ベースポリマーとしてフェノキシ樹脂系、光重合性化合物として2官能エポキシ樹脂を含むクラッド層形成用樹脂の場合には、温度90~150℃で10~120分程度で硬化させれば良い。
この下部クラッド層2は、後述するコア層との密着性の観点から、コア層積層側の表面において段差がなく平坦であることが好ましい。また、クラッド層形成用樹脂フィルムを用いることにより、クラッド層2の表面平坦性を確保することができる。
図2に示すように、クラッド層形成用樹脂フィルム200の支持体フィルム10の反対側に保護フィルム11を設けている場合には、該保護フィルムを剥離後、クラッド層形成用樹脂20を光または加熱により硬化し、クラッド層2を形成する。このとき、クラッド層形成用樹脂20は、接着処理を施した支持体フィルム10上に製膜されていることが好ましい。一方、保護フィルム11は、クラッド層形成用樹脂フィルム200からの剥離を容易にするため接着処理が施されていないことが好ましく、必要に応じ離型処理が施されていてもよい。 (Optical waveguide manufacturing method)
Hereafter, the manufacturing method of the optical waveguide of this invention is explained in full detail (refer FIG. 1). In the following production examples, an example of an embodiment in which a clad layer forming resin film (FIGS. 2 and 200) and a core layer forming resin film (FIGS. 3 and 300) are used will be specifically described.
First, as a first step, the clad layer forming resin 20 (FIG. 2, 200) composed of the clad
The curing conditions by light or heating vary depending on the type of resin for forming the cladding layer, but the solvent used in the manufacturing process of the resin film for forming the cladding layer is volatilized to ensure complete adhesion with the
For example, in the case of a clad layer forming resin containing a phenoxy resin as a base polymer and a bifunctional epoxy resin as a photopolymerizable compound, it may be cured at a temperature of 90 to 150 ° C. for about 10 to 120 minutes.
The
As shown in FIG. 2, when the protective film 11 is provided on the opposite side of the
具体的には、第2の工程として、下部クラッド層2上にコア層形成用樹脂フィルム300を貼り合わせ、コア層3を積層する。積層には、ロールラミネータや平板型ラミネータを用いることができる。
例えば、ロールラミネータ5(図1(b))を用いる場合、密着性および追従性向上の観点から、圧着しながらラミネートすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行なうことが好ましい。ロールラミネータを用いると、気泡巻き込みラミネート温度は、室温(25℃)~100℃の範囲が好ましい。室温より高い温度であると、下部クラッド層とコア層との密着性が向上し、40℃以上であると、更に密着力を向上させることができる。一方、100℃以下であると、コア層がロールラミネート時に流動することなく、必要とする膜厚が得られる。以上の観点から、40~100℃の範囲がより好ましい。圧力は0.2~0.9MPaが好ましい。ラミネート速度は0.1~3m/minが好ましいが、これらの条件には特に制限はない。
一方、平板型ラミネータ6(図1(c))を用いる場合、密着性および追従性向上の観点から、加熱圧着の際、減圧雰囲気下で行なうと好ましい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことをいう。平板型ラミネータとして、例えば、特許文献2に記載されているような真空加圧式ラミネータを好適に用いることができる。減圧の尺度である真空度の上限は、10000Pa以下が好ましく、さらには1000Pa以下が好ましい。真空度は、密着性および追従性の見地から低い方が望ましい。一方、真空度の下限は、生産性の観点(真空引きにかかる時間)から、10Pa程度であることが好ましい。加熱温度は、40~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
ラミネート時の気泡低減の観点からはロールラミネータを、密着性や平坦性の観点からは平板型ラミネータを用いるのがよい。また、必要に応じこれらラミネータを併用してもよい。 Next, the
Specifically, as a second step, the core layer forming resin film 300 is bonded onto the
For example, when using the roll laminator 5 (FIG. 1 (b)), it is preferable to laminate while crimping from the viewpoint of improving adhesion and followability, and when laminating, a laminator having a heat roll is used for heating. It is preferable to do so. When a roll laminator is used, the laminating temperature of the bubbles is preferably in the range of room temperature (25 ° C.) to 100 ° C. When the temperature is higher than room temperature, the adhesion between the lower clad layer and the core layer is improved, and when the temperature is 40 ° C. or higher, the adhesion can be further improved. On the other hand, if it is 100 ° C. or lower, the required film thickness can be obtained without the core layer flowing during roll lamination. From the above viewpoint, the range of 40 to 100 ° C. is more preferable. The pressure is preferably 0.2 to 0.9 MPa. The laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
On the other hand, in the case of using the flat plate laminator 6 (FIG. 1C), it is preferable to perform in a reduced pressure atmosphere at the time of thermocompression bonding from the viewpoint of improving adhesion and followability. In the present invention, the flat plate laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plates. As the flat plate laminator, for example, a vacuum pressurizing laminator described in
A roll laminator is preferably used from the viewpoint of reducing bubbles during lamination, and a flat plate laminator is used from the viewpoint of adhesion and flatness. Moreover, you may use these laminators together as needed.
図3に示すようにコア層形成用樹脂フィルム300の基材の反対側に保護フィルム11を設けている場合には、保護フィルム11を剥離後、コア層形成用樹脂フィルム300をラミネートする。このとき、保護フィルム11および支持体フィルム4は、コア層形成用樹脂フィルム300からの剥離を容易にするため接着処理は行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。 The core layer forming resin film 300 is preferably composed of the core
As shown in FIG. 3, when the protective film 11 is provided on the opposite side of the base material of the core layer forming resin film 300, the core layer forming resin film 300 is laminated after the protective film 11 is peeled off. At this time, it is preferable that the protective film 11 and the
現像後の処理として、必要に応じて60~250℃程度の加熱(好ましくは、110~150℃で、10~120分程度)または0.1~1000mJ/cm2程度の露光を行うことにより、溶剤を揮散させ溶剤による浸食が起きないように、コアパターン8をさらに硬化して用いてもよい。 Examples of the development method include a dip method, a paddle method, a spray method such as a high-pressure spray method, brushing, and scraping. The high-pressure spray method is most suitable for improving the resolution.
As processing after development, heating at about 60 to 250 ° C. (preferably at about 110 to 150 ° C. for about 10 to 120 minutes) or exposure at about 0.1 to 1000 mJ / cm 2 is performed as necessary. The
ラミネートは、クラッド層形成用樹脂フィルム200を減圧雰囲気下において加熱圧着すると好ましい(図1(f))。ここで、第4の工程は、密着性および追従性向上の観点から、加熱圧着の際、減圧雰囲気下で行なうと好ましい。さらに好ましくは平板型ラミネータ6を用いて減圧雰囲気下で加熱圧着することである。減圧の尺度である真空度の上限は、10000Pa以下が好ましく、さらには1000Pa以下が好ましい。真空度は、密着性および追従性の見地から低い方が望ましい。一方、真空度の下限は、生産性の観点(真空引きにかかる時間)から、10Pa程度であることが好ましい。加熱温度は、40~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
また、クラッド層形成用樹脂フィルム200を加熱圧着する際、少なくとも一方、好ましくは両方をステンレス鋼(SUS)板を用いて圧着することにより、膜厚が均一となり、ゴム板を用いた場合に比べ平坦な上部クラッド層が形成される。 Next, as a fourth step, a clad layer forming resin film 200 is laminated for embedding the
Lamination is preferably performed by heat-pressing the clad layer forming resin film 200 in a reduced pressure atmosphere (FIG. 1 (f)). Here, the fourth step is preferably performed in a reduced-pressure atmosphere at the time of thermocompression bonding from the viewpoint of improving adhesion and followability. More preferably, it is thermocompression bonding using a
Also, when the clad layer-forming resin film 200 is heat-pressed, at least one, and preferably both, are pressure-bonded using a stainless steel (SUS) plate, resulting in a uniform film thickness, compared with the case where a rubber plate is used. A flat upper cladding layer is formed.
また、この光導波路は、基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40~130℃、好ましくは100℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路であっても良く、前記上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90~120℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路であると好ましい。
また、上記溶融粘度が120~180Pa・sであると好ましい。 The optical waveguide of the present invention is an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material. The upper clad layer has a melt viscosity of 100 to 200 Pa · s at the time of lamination. It is an optical waveguide formed from a certain resin.
The optical waveguide is an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material. The upper clad layer has a melt viscosity of 100 to 100 ° C., preferably 40 to 130 ° C. It may be an optical waveguide formed of a resin having a viscosity of 200 Pa · s, and the upper cladding layer includes a phenoxy resin-based pace polymer and a bifunctional epoxy resin, and has a melt viscosity of 100 to 90 ° C. at 90 to 120 ° C. An optical waveguide formed from a resin having a pressure of 200 Pa · s is preferable.
The melt viscosity is preferably 120 to 180 Pa · s.
例えば、ベースポリマーとしては、フェノキシ樹脂系、室温で固形のエポキシ樹脂、(メタ)アクリルポリマー、アクリルゴム、ポリウレタン、ポリイミド、ポリアミド、ポリアミドイミド、ポリシロキサン等が挙げられる。ここで、ベースポリマーの分子量については、樹脂フィルムの形態とするため、数平均分子量で5,000以上であることが好ましく、さらに10,000以上が好ましく、特に30,000以上であることが好ましい。数平均分子量の上限については、特に制限はないが、重合性化合物成分との相溶性の観点から、1,000,000以下であることが好ましく、さらには900,000以下、特には800,000以下であることが好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。 For resins having a melt viscosity of 100 to 200 Pa · s, preferably 120 to 180 Pa · s, selection of the type of base polymer or polymerizable compound (structure, molecular weight, glass transition temperature, viscosity, etc.) used as the resin composition Alternatively, it can be obtained by appropriately adjusting the blending ratio thereof.
Examples of the base polymer include phenoxy resin, epoxy resin solid at room temperature, (meth) acrylic polymer, acrylic rubber, polyurethane, polyimide, polyamide, polyamideimide, polysiloxane and the like. Here, the molecular weight of the base polymer is preferably 5,000 or more in terms of number average molecular weight, more preferably 10,000 or more, and particularly preferably 30,000 or more in order to form a resin film. . The upper limit of the number average molecular weight is not particularly limited, but is preferably 1,000,000 or less, more preferably 900,000 or less, particularly 800,000 from the viewpoint of compatibility with the polymerizable compound component. The following is preferable. The number average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
また、分子内に2つ以上のエポキシ基を有する化合物を含むことも好適である。具体的には、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂等の2官能芳香族グリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン-フェノール型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能芳香族グリシジルエーテル;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ネオペンチルグリコール型エポキシ樹脂、ヘキサンジオール型エポキシ樹脂等の2官能脂肪族グリシジルエーテル;水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル;トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ樹脂、グリセリン型エポキシ樹脂等の多官能脂肪族グリシジルエーテル;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル;N,N-ジグリシジルアニリン、N,N-ジグリシジルトリフルオロメチルアニリン等の2官能芳香族グリシジルアミン;N,N,N’,N’-テトラグリシジル-4,4-ジアミノジフェニルメタン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン、N,N,O-トリグリシジル-p-アミノフェノール等の多官能芳香族グリシジルアミン;アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシド等の2官能脂環式エポキシ樹脂;ジグリシジルヒダントイン等の2官能複素環式エポキシ樹脂;トリグリシジルイソシアヌレート等の多官能複素環式エポキシ樹脂;オルガノポリシロキサン型エポキシ樹脂等の2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。 Although there is no restriction | limiting in particular as a polymeric compound, For example, the compound which has an ethylenically unsaturated group in a molecule | numerator can be used. Specific examples include (meth) acrylates, vinylidene halides, vinyl ethers, vinyl pyridines, vinyl phenols, etc. Among these, (meth) acrylates are preferable from the viewpoint of transparency and heat resistance. As the (meth) acrylate, any of monofunctional, bifunctional, and trifunctional can be used. Here, (meth) acrylate means acrylate and methacrylate.
It is also preferable to include a compound having two or more epoxy groups in the molecule. Specifically, bifunctional aromatic glycidyl ethers such as bisphenol A type epoxy resin, tetrabromobisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin; phenol novolac type epoxy resin, Polyfunctional aromatic glycidyl ethers such as cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylolethane type epoxy resin; polyethylene glycol type epoxy resin, polypropylene glycol type epoxy resin, neopentyl glycol type epoxy resin, Bifunctional aliphatic glycidyl ether such as hexanediol type epoxy resin; Bifunctional alicyclic glycidyl ether such as hydrogenated bisphenol A type epoxy resin; Polyfunctional aliphatic glycidyl ethers such as roll propane type epoxy resin, sorbitol type epoxy resin, glycerin type epoxy resin; bifunctional aromatic glycidyl esters such as diglycidyl phthalate; tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid di Bifunctional alicyclic glycidyl esters such as glycidyl ester; bifunctional aromatic glycidyl amines such as N, N-diglycidylaniline and N, N-diglycidyltrifluoromethylaniline; N, N, N ′, N′-tetra Polyfunctional aromatic glycidylamines such as glycidyl-4,4-diaminodiphenylmethane, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, N, N, O-triglycidyl-p-aminophenol; Diepoxy acetal, ants Bifunctional alicyclic epoxy resins such as cyclic diepoxy adipate, alicyclic diepoxycarboxylate, vinylcyclohexene dioxide; Bifunctional heterocyclic epoxy resins such as diglycidylhydantoin; Multifunctional heterogeneous such as triglycidyl isocyanurate Cyclic epoxy resins; bifunctional or polyfunctional silicon-containing epoxy resins such as organopolysiloxane type epoxy resins.
ベースポリマーと重合性化合物の配合比率は、これら成分の総量に対してベースポリマーを10~80質量%とすることが好ましい。10質量%以上であるとフィルム形態とすることが容易となる。一方、80質量%以下であると、ラミネート時の溶融粘度を100~200Pa・sの範囲に調整することが容易であり、また重合性化合物の反応が十分に進行する。これらの観点から20~70質量%の範囲とすることがさらに好ましい。 These polymerizable compounds usually have a molecular weight of about 100 to 2000, more preferably about 150 to 1000, and those that are liquid at room temperature are suitably used. Moreover, these compounds can be used individually or in combination of 2 or more types, Furthermore, it can also be used in combination with another polymeric compound. In addition, the molecular weight of the polymerizable compound in the present invention can be measured by GPC method or mass spectrometry.
The blending ratio of the base polymer and the polymerizable compound is preferably 10 to 80% by mass of the base polymer with respect to the total amount of these components. It becomes easy to set it as a film form as it is 10 mass% or more. On the other hand, when it is 80% by mass or less, it is easy to adjust the melt viscosity at the time of lamination to the range of 100 to 200 Pa · s, and the reaction of the polymerizable compound proceeds sufficiently. From these viewpoints, the range of 20 to 70% by mass is more preferable.
ここで、測定用サンプルは、例えば、後述の実施例1と同様の方法で、ポリアミドフィルム等の支持体フィルム上に、クラッド層形成用樹脂を塗布・乾燥し、次いで離型PETフィルム等の保護フィルムを貼り付けて、クラッド層形成用樹脂フィルムを作製した後、保護フィルム及び支持体フィルムを剥がしてクラッド層形成用樹脂層を取り出し、複数のクラッド形成用樹脂層を重ね合わせ、真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用いて、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、時間30秒の条件にて加圧することによって得た。加圧後の膜厚が200~500μmの範囲内となるように、重ね合わせるクラッド形成用樹脂層の層数を調整した。 In the present invention, the melt viscosity of the resin for forming the upper clad layer is prepared by preparing a measurement sample having a film thickness of 200 to 500 μm and sandwiching the sample in parallel with a pair of circular plates having a diameter of 2 cm. The measurement was carried out with an elastic measuring device (TA Instruments, ARES-2KSTD) at a heating rate of 5 ° C./min. More specifically, the measurement was performed under the conditions of a shear frequency of 1 Hz and a strain of 5% (rotation angle of 9 degrees).
Here, for the measurement sample, for example, in the same manner as in Example 1 described later, a clad layer-forming resin is applied and dried on a support film such as a polyamide film, and then a release PET film or the like is protected. After affixing the film to produce a clad layer forming resin film, the protective film and the support film are peeled off, the clad layer forming resin layer is taken out, and a plurality of clad forming resin layers are overlaid, and a vacuum pressure laminator Using MVLP-500 (manufactured by Meiki Seisakusho Co., Ltd.), it was evacuated to 500 Pa or less and then pressurized under the conditions of pressure 0.4 MPa, temperature 50 ° C., and
実施例1(第1の製造方法)
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製、数平均分子量43000)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、増感剤として、SP-100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層80μmとなるように調節した。 Next, the present invention will be described in more detail using examples.
Example 1 (first manufacturing method)
[Production of resin film for clad layer formation]
(A) As base polymer (binder polymer), 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd., number average molecular weight 43000), (B) As a photopolymerizable compound, alicyclic Diepoxycarboxylate (trade name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass, (C) As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: 2 parts by mass of SP-170, manufactured by Asahi Denka Kogyo Co., Ltd., 0.4 parts by mass of SP-100 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) as a sensitizer, and 40 parts by mass of propylene glycol monomethyl ether acetate as an organic solvent Weigh the part in a wide-mouth plastic bottle and use a mechanical stirrer, shaft and propeller, In the rolling speed 400rpm conditions, was stirred for 6 hours to prepare a resin varnish A for forming a cladding layer. After that, using a polyflon filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore diameter of 2 μm, the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
The resin varnish A for forming a clad layer obtained above is coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 μm) (Multicoater TM-MC, Inc. It is applied using Hirano Tech Seed, dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then as a protective film, a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) ) Was attached so that the release surface was on the resin side to obtain a resin film for forming a cladding layer. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the cured film thickness is 25 μm for the lower cladding layer and 80 μm for the upper cladding layer. Adjusted.
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A-BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA-1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。 [Production of resin film for core layer formation]
(A) As a base polymer (binder polymer), 26 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 ON (trade name: Irgacure 2959, manufactured by Ciba Specialty Chemicals) 1 part by mass, core layer formation by the same method and conditions as in the above production example except that 40 parts by mass of propylene glycol monomethyl ether acetate was used as the organic solvent Resin varnish B was prepared. Thereafter, pressure filtration and degassing under reduced pressure were carried out under the same method and conditions as in the above production example.
The core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) in the same manner as in the above production example. After coating and drying, a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 50 μm.
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。 [Fabrication of optical waveguide]
A method for manufacturing the optical waveguide will be described below with reference to FIG.
The release PET film (Purex A31), which is a protective film for the resin film for forming the lower clad layer obtained above, is peeled off, and the resin side (supported) is exposed by an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). The lower
このようにして作製したフレキシブル光導波路について、倍率50倍の顕微鏡下で外観検査を行い、コアに接する気泡が0個であることを確認した。
なお、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.05dB/cmであった。 Next, a vacuum pressurizing laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) is used as the upper clad layer, vacuumed to 500 Pa or less, pressure 0.4 MPa, temperature 100 ° C., pressurizing time The resin film for forming a clad layer was laminated under a condition of 30 seconds (see FIG. 1 (f)). The melt viscosity of the upper clad layer forming resin film at a temperature of 100 ° C. was 170 Pa · s. Thereafter, ultraviolet light (wavelength 365 nm) is irradiated on both surfaces in total at 25 J / cm 2 , and then heat-treated at 160 ° C. for 1 hour to form a flexible optical waveguide in which the upper clad
The appearance of the flexible optical waveguide thus produced was examined under a microscope with a magnification of 50 times, and it was confirmed that there were no bubbles in contact with the core.
The propagation loss of the manufactured optical waveguide was determined by using a cut-back method using an 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as a light source, and Advantest Co., Ltd., Q82214 as a light receiving sensor. (
実施例1において、上部クラッド形成時のラミネート温度を60℃、65℃、80℃、90℃で行ったこと以外は、実施例1と同様にしてフレキシブル光導波路を作製した。温度60℃、65℃、80℃、90℃における上部クラッド層形成用樹脂フィルムの溶融粘度はそれぞれ1720Pa・s、1180Pa・s、445Pa・s、260Pa・sであった。これらの条件で作製したフレキシブル光導波路には、コアに接する大きさ5μm以上の気泡が5個以上残った。
なお、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。 Comparative Example 1
In Example 1, a flexible optical waveguide was produced in the same manner as in Example 1 except that the lamination temperature at the time of forming the upper clad was 60 ° C., 65 ° C., 80 ° C., and 90 ° C. The melt viscosities of the resin films for forming the upper cladding layer at temperatures of 60 ° C., 65 ° C., 80 ° C., and 90 ° C. were 1720 Pa · s, 1180 Pa · s, 445 Pa · s, and 260 Pa · s, respectively. In the flexible optical waveguide produced under these conditions, five or more bubbles having a size of 5 μm or more remaining in contact with the core remained.
The propagation loss of the manufactured optical waveguide was determined by using a cut-back method using an 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as a light source, and Advantest Co., Ltd., Q82214 as a light receiving sensor. (
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)50質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)50質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスCを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、PETフィルム(商品名:コスモシャインA4100、東洋紡績株式会社製、厚さ:50μm)の非処理面上に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層30μm、上部クラッド層60μmとなるように調節した。 Example 2 (first manufacturing method)
[Production of resin film for clad layer formation]
(A) As a base polymer (binder polymer), 50 parts by mass of a phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 50 parts by mass, (C) As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo) Co., Ltd.) 2 parts by weight, 40 parts by weight of propylene glycol monomethyl ether acetate as an organic solvent are weighed in a wide-mouthed plastic bottle, using a mechanical stirrer, shaft and propeller, at a temperature of 25 ° C. and a rotational speed of 400 rpm, The mixture was stirred for a time to prepare a clad layer forming resin varnish C. After that, using a polyflon filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore diameter of 2 μm, the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
The clad layer-forming resin varnish A obtained above was coated on a non-treated surface of a PET film (trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd., thickness: 50 μm) (Multicoater TM-MC , Manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then as a protective film, a release PET film (trade name: Purex A31, Teijin DuPont Films, Inc., thickness 25 μm) was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the cured film thickness is 30 μm for the lower cladding layer and 60 μm for the upper cladding layer. Adjusted.
実施例1と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が40μmとなるよう、塗工機のギャップを調整した。 [Production of resin film for core layer formation]
A resin varnish B for forming a core layer was prepared in the same manner and under the same conditions as in Example 1. Thereafter, pressure filtration and degassing under reduced pressure were carried out under the same method and conditions as in the above production example.
The core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) in the same manner as in the above production example. After coating and drying, a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 40 μm.
光導波路の作製方法について、以下説明する。
シリコン基板40(厚さ0.625mm、酸化膜1μm付き、三菱マテリアル(株)製)上にスピンコート法によって、シランカップリング剤(東レ・ダウコーニング(株)製[Z6040])を、500rpm/10秒、さらには1500rpm/30秒の条件で塗工し、その後ホットプレート上で120℃/3分加熱した。なお、スピンコートには、ミカサ(株)製「1H-D2」を用いた。次いで、上記で作製したクラッド層形成用樹脂フィルムの保護フィルムを剥がし、クラッド層形成用樹脂層がシランカップリング処理したシリコン基板に接するようにして、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い、80℃、0.5MPa、送り速度0.5mの条件でロールラミネートした。その後、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、支持体フィルムであるPETフィルム(コスモシャインA4100)を剥がした後、120℃で60分間加熱処理することにより、下部クラッド層2を形成した(図4(a)参照)。 [Fabrication of optical waveguide]
A method for manufacturing the optical waveguide will be described below.
A silane coupling agent (manufactured by Toray Dow Corning Co., Ltd. [Z6040]) is applied at 500 rpm / min by spin coating on a silicon substrate 40 (thickness 0.625 mm, with
このようにして作製した光導波路について、倍率50倍の顕微鏡下で外観検査を行い、コアに接する気泡が0個であることを確認した。
なお、作製した光導波路の伝搬損失を、実施例1と同様にして測定したところ、0.05dB/cmであった。 Next, a vacuum pressurizing laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) is used as the upper clad layer, and after vacuuming to 500 Pa or less, pressure 0.4 MPa, temperature 100 ° C., pressurizing time The resin film for forming a clad layer was laminated under the condition of 30 seconds (see FIG. 4 (e)). The melt viscosity of the resin film for forming the upper cladding layer at a temperature of 100 ° C. was 121 Pa · s. Thereafter, after irradiation with ultraviolet rays (wavelength 365 nm) at 1 J / cm 2 , the
The appearance of the thus produced optical waveguide was examined under a microscope with a magnification of 50 times, and it was confirmed that there were no bubbles in contact with the core.
The propagation loss of the manufactured optical waveguide was measured in the same manner as in Example 1 and found to be 0.05 dB / cm.
実施例2において、上部クラッド形成時のラミネート温度を60℃、70℃、80℃、90℃で行ったこと以外は、実施例2と同様にしてフレキシブル光導波路を作製した。温度60℃、65℃、80℃、90℃における上部クラッド層形成用樹脂フィルムの溶融粘度はそれぞれ1670Pa・s、842Pa・s、383Pa・s、233Pa・sであった。これらの条件で作製したフレキシブル光導波路には、コアに接する大きさ5μm以上の気泡が5個以上残った。
なお、作製した光導波路の伝搬損失を、実施例1と同様にして測定したところ、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。 Comparative Example 2
In Example 2, a flexible optical waveguide was produced in the same manner as in Example 2 except that the lamination temperature at the time of forming the upper clad was 60 ° C., 70 ° C., 80 ° C., and 90 ° C. The melt viscosities of the upper clad layer forming resin films at temperatures of 60 ° C., 65 ° C., 80 ° C., and 90 ° C. were 1670 Pa · s, 842 Pa · s, 383 Pa · s, and 233 Pa · s, respectively. In the flexible optical waveguide produced under these conditions, five or more bubbles having a size of 5 μm or more remaining in contact with the core remained.
When the propagation loss of the manufactured optical waveguide was measured in the same manner as in Example 1, it was 0.1 dB / cm, and it was found that the propagation loss was degraded due to bubbles.
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、増感剤として、SP-100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層80μmとなるように調節した。 Example 3 (second manufacturing method)
[Production of resin film for clad layer formation]
(A) As a base polymer (binder polymer), 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass, (C) As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170,
The resin varnish A for forming a clad layer obtained above is coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 μm) (Multicoater TM-MC, Inc. It is applied using Hirano Tech Seed, dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then as a protective film, a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) ) Was attached so that the release surface was on the resin side to obtain a resin film for forming a cladding layer. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the cured film thickness is 25 μm for the lower cladding layer and 80 μm for the upper cladding layer. Adjusted.
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A-BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA-1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が70μmとなるよう、塗工機のギャップを調整した。 [Production of resin film for core layer formation]
(A) As a base polymer (binder polymer), 26 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 ON (trade name: Irgacure 2959, manufactured by Ciba Specialty Chemicals) 1 part by mass, core layer formation by the same method and conditions as in the above production example except that 40 parts by mass of propylene glycol monomethyl ether acetate was used as the organic solvent Resin varnish B was prepared. Thereafter, pressure filtration and degassing under reduced pressure were carried out under the same method and conditions as in the above production example.
The core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) in the same manner as in the above production example. After coating and drying, a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 70 μm.
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。 [Fabrication of optical waveguide]
A method for manufacturing the optical waveguide will be described below with reference to FIG.
The release PET film (Purex A31), which is a protective film for the resin film for forming the lower clad layer obtained above, is peeled off, and the resin side (supported) is exposed by an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). The lower
続いて、この気泡を消失するため50℃、30分加熱炉中で加熱し、同様に顕微鏡下で外観検査を行ったところ、気泡を消失した(図6参照)。
その後、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層9を形成し支持体フィルムが外側に配置されたフレキシブル光導波路を作製した(図1(g)参照)。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、支持体フィルムを除去したフレキシブル光導波路を作製した。
作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
また、上部クラッドラミネート後の加熱温度を60℃、70℃、80℃、90℃、100℃とした場合においても、気泡を消失できることを確認した。 Next, a vacuum pressurizing laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) is used as the upper clad layer, vacuumed to 500 Pa or lower, pressure 0.4 MPa, temperature 60 ° C., pressurizing time The
Subsequently, in order to eliminate the bubbles, heating was performed in a heating furnace at 50 ° C. for 30 minutes, and the appearance was similarly examined under a microscope. As a result, the bubbles disappeared (see FIG. 6).
Thereafter, ultraviolet light (wavelength 365 nm) is irradiated on both surfaces in total at 25 J / cm 2 , and then heat-treated at 160 ° C. for 1 hour to form a flexible optical waveguide in which the upper clad
Propagation loss of the manufactured optical waveguide was measured using a cut-back method (measurement) using a 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as the light source, and Advantest Q82214 as the light receiving sensor.
Further, it was confirmed that the bubbles could be eliminated even when the heating temperature after the upper clad lamination was 60 ° C., 70 ° C., 80 ° C., 90 ° C., 100 ° C.
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例3と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。この条件で作製した光導波路の伝搬損失は、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。 Comparative Example 3
An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 3 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was. The propagation loss of the optical waveguide manufactured under these conditions is 0.1 dB / cm, and it has been found that the propagation loss is deteriorated due to bubbles.
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)50質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)50質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスCを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の易接着処理面上に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層30μm、上部クラッド層80μmとなるように調節した。 Example 4 (second manufacturing method)
[Production of resin film for clad layer formation]
(A) As a base polymer (binder polymer), 50 parts by mass of a phenoxy resin (trade name: Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.), (B) As a photopolymerizable compound, an alicyclic diepoxycarboxylate ( Product name: KRM-2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 50 parts by mass, (C) As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo) Co., Ltd.) 2 parts by weight, 40 parts by weight of propylene glycol monomethyl ether acetate as an organic solvent are weighed in a wide-mouthed plastic bottle, using a mechanical stirrer, shaft and propeller, at a temperature of 25 ° C. and a rotational speed of 400 rpm, The mixture was stirred for a time to prepare a clad layer forming resin varnish C. After that, using a polyflon filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore diameter of 2 μm, the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
The clad layer-forming resin varnish A obtained above is coated on an easy-adhesion treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) (Multicoater TM- MC, manufactured by Hirano Tech Seed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then released as a protective PET film (trade name: Purex A31, Teijin DuPont Film Co., Ltd.) (Thickness: 25 μm) was pasted so that the release surface was on the resin side to obtain a resin film for forming a cladding layer. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the thickness after curing is 30 μm for the lower cladding layer and 80 μm for the upper cladding layer. Adjusted.
実施例3と同様の方法および条件でコア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。 [Production of resin film for core layer formation]
A resin film for forming a core layer was obtained by the same method and conditions as in Example 3. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 50 μm.
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルム2の保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。 [Fabrication of optical waveguide]
A method for manufacturing the optical waveguide will be described below with reference to FIG.
The release PET film (Purex A31), which is a protective film of the
続いて、この気泡を消失するため50℃、30分加熱炉中で加熱し、気泡を消失した。
その後、紫外線(波長365nm)を両面に合計で6J/cm2照射後、120℃で1時間加熱処理することによって、上部クラッド層9を形成し支持体フィルムが外側に配置されたフレキシブル光導波路を作製した(図1(g)参照)。
作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
また、上部クラッドラミネート後の加熱温度を60℃、70℃、80℃、90℃、100℃とした場合においても、気泡を消失できることを確認した。 Next, a vacuum pressurizing laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) is used as the upper clad layer, vacuumed to 500 Pa or lower, pressure 0.4 MPa, temperature 60 ° C., pressurizing time The
Then, in order to lose | disappear this bubble, it heated in 50 degreeC and the heating furnace for 30 minutes, and the bubble was lose | disappeared.
Thereafter, ultraviolet rays (wavelength 365 nm) are irradiated on both surfaces in total 6 J / cm 2 , and then heat-treated at 120 ° C. for 1 hour to form an upper
Propagation loss of the manufactured optical waveguide was measured using a cut-back method (measurement) using a 850 nm surface emitting laser (EXFO, FLS-300-01-VCL) as the light source, and Advantest Q82214 as the light receiving sensor.
Further, it was confirmed that the bubbles could be eliminated even when the heating temperature after the upper clad lamination was 60 ° C., 70 ° C., 80 ° C., 90 ° C., 100 ° C.
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例4と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。この条件で作製した光導波路の伝搬損失は、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。 Comparative Example 4
An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 4 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was. The propagation loss of the optical waveguide manufactured under these conditions is 0.1 dB / cm, and it has been found that the propagation loss is deteriorated due to bubbles.
実施例4において、クラッド形成用樹脂フィルムの支持体フィルムを、厚さ25μmのPETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、非処理面使用)に替えたこと以外は、実施例2と同様に光導波路を作製した。このとき、上部クラッドラミネート後に、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に4個あった。この場合においても、上部クラッドラミネート後の加熱温度を50℃、60℃、70℃、80℃、90℃、100℃とすることで気泡を消失できた。 Example 5 (second manufacturing method)
In Example 4, except that the support film of the resin film for forming the clad was changed to a PET film having a thickness of 25 μm (trade name: Purex A31, Teijin DuPont Film Co., Ltd., non-treated surface used) An optical waveguide was prepared in the same manner as in 2. At this time, after the upper clad lamination, when an appearance inspection was performed under a microscope with a magnification of 100 times, there were four bubbles in the upper clad in contact with the core. Even in this case, bubbles could be eliminated by setting the heating temperature after the upper clad lamination to 50 ° C., 60 ° C., 70 ° C., 80 ° C., 90 ° C., and 100 ° C.
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例5と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。 Comparative Example 5
An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 5 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
実施例3において、クラッド形成用樹脂フィルムの支持体フィルムを、厚さ9μmのアラミドフィルム(商品名:ミクトロン、東レ株式会社、コロナ処理面使用)に替えたこと以外は、実施例3と同様に光導波路を作製した。このとき、上部クラッドラミネート後に、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に1個あった。この場合においては、上部クラッドラミネート後の加熱温度を40℃、加熱時間を60分とすることで気泡を消失できた。 Example 6 (second manufacturing method)
In Example 3, the support film of the resin film for forming a clad was changed to an aramid film having a thickness of 9 μm (trade name: Mikutron, Toray Industries, Inc., using a corona-treated surface), as in Example 3. An optical waveguide was produced. At this time, after the upper clad laminate, an appearance inspection was performed under a microscope with a magnification of 100. As a result, there was one bubble in contact with the core in the upper clad. In this case, bubbles could be eliminated by setting the heating temperature after the upper clad lamination to 40 ° C. and the heating time to 60 minutes.
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例6と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。 Comparative Example 6
An optical waveguide was produced by the same optical waveguide forming resin film and process as in Example 6 except that the heat treatment after the upper clad lamination was not performed. As a result, bubbles remained after the upper clad lamination remained as it was.
このため、実用性の高い光導波路の製造方法として極めて有用である。 As described above in detail, according to the manufacturing method of the present invention, the optical waveguide can be manufactured with high productivity, and no bubbles remain between the core layer and the upper cladding layer. In particular, according to the second manufacturing method, the optical waveguide can be manufactured with high productivity, and no bubbles remain between the core layer and the upper cladding layer, and the upper cladding layer is flat.
For this reason, it is extremely useful as a manufacturing method of a highly practical optical waveguide.
Claims (10)
- 基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に上部クラッド層形成用樹脂フィルムを積層し、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法であって、
該上部クラッド層形成用樹脂フィルムの積層時に、該クラッド層形成用樹脂の溶融粘度が100~200Pa・sとなるように積層条件を制御することを特徴とする光導波路の製造方法。 Curing the clad layer forming resin formed on the substrate to form a lower clad layer, laminating a core layer forming resin film on the lower clad layer to form a core layer, the core layer A step of forming a core pattern by exposing and developing the substrate, and laminating a resin film for forming an upper cladding layer on the core pattern, and curing the resin for forming the cladding layer to form an upper cladding layer. A method of manufacturing a waveguide,
A method for producing an optical waveguide, wherein the lamination conditions are controlled so that the melt viscosity of the clad layer forming resin is 100 to 200 Pa · s when the upper clad layer forming resin film is laminated. - コア層を形成する工程が、ヒートロールを有するロールラミネータを用いて、下部クラッド層上にコア層形成用樹脂フィルムを加熱圧着する工程を含むことを特徴とする、請求項1に記載の光導波路の製造方法。 2. The optical waveguide according to claim 1, wherein the step of forming the core layer includes a step of heat-pressing the resin film for forming the core layer on the lower clad layer using a roll laminator having a heat roll. Manufacturing method.
- コアパターン上に上部クラッド層形成用樹脂フィルムを積層する際、平板型ラミネータを用いて減圧雰囲気下で加熱圧着することを特徴とする、請求項1又は2に記載の光導波路の製造方法。 3. The method of manufacturing an optical waveguide according to claim 1, wherein, when the upper clad layer-forming resin film is laminated on the core pattern, thermocompression bonding is performed in a reduced pressure atmosphere using a flat plate laminator.
- 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、積層時における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路。 An optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material, wherein the upper clad layer is formed of a resin having a melt viscosity of 100 to 200 Pa · s when laminated. .
- 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40~130℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路。 In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material, the upper clad layer is formed from a resin having a melt viscosity at 40 to 130 ° C. of 100 to 200 Pa · s. Optical waveguide.
- 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、100℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路。 An optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material, wherein the upper clad layer is formed of a resin having a melt viscosity at 100 ° C. of 100 to 200 Pa · s. .
- 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90~120℃における溶融粘度が100~200Pa・sである樹脂より形成されてなる光導波路。 In an optical waveguide in which a lower clad layer, a core pattern, and an upper clad layer are sequentially laminated on a base material, the upper clad layer contains a phenoxy resin-based pace polymer and a bifunctional epoxy resin, and has a melt viscosity at 90 to 120 ° C. An optical waveguide formed of a resin having a current density of 100 to 200 Pa · s.
- 上記溶融粘度が120~180Pa・sである請求項4~7のいずれかに記載の光導波路。 The optical waveguide according to any one of claims 4 to 7, wherein the melt viscosity is 120 to 180 Pa · s.
- 基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層する工程、その後加熱処理を行う工程、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法。 Curing the clad layer forming resin formed on the substrate to form a lower clad layer, laminating a core layer forming resin film on the lower clad layer to form a core layer, the core layer A step of forming a core pattern by exposing and developing, and an upper clad layer forming resin film formed by laminating a resin for forming an upper clad layer on a support film on the core pattern, the resin contacting the core pattern A method of manufacturing an optical waveguide, comprising: a step of laminating the layers, a step of performing a heat treatment thereafter, and a step of curing the resin for forming the cladding layer to form an upper cladding layer.
- 加熱処理の条件が温度40~200℃であることを特徴とする、請求項9に記載の光導波路の製造方法。 10. The method of manufacturing an optical waveguide according to claim 9, wherein the heat treatment is performed at a temperature of 40 to 200 ° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980117381.9A CN102027400B (en) | 2008-05-13 | 2009-05-12 | The manufacture method of optical waveguide and optical waveguide |
JP2010511979A JP5360055B2 (en) | 2008-05-13 | 2009-05-12 | Optical waveguide manufacturing method and optical waveguide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-126317 | 2008-05-13 | ||
JP2008126317 | 2008-05-13 | ||
JP2008126325 | 2008-05-13 | ||
JP2008-126325 | 2008-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009139375A1 true WO2009139375A1 (en) | 2009-11-19 |
Family
ID=41318742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058827 WO2009139375A1 (en) | 2008-05-13 | 2009-05-12 | Method for manufacturing optical waveguide, and optical waveguide |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5360055B2 (en) |
KR (1) | KR20110014150A (en) |
CN (1) | CN102027400B (en) |
TW (1) | TWI452363B (en) |
WO (1) | WO2009139375A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015736A (en) * | 2011-07-05 | 2013-01-24 | Hitachi Chem Co Ltd | Flexible optical waveguide and flexible optoelectrical composite substrate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5308398B2 (en) * | 2010-05-11 | 2013-10-09 | 日東電工株式会社 | Optical waveguide forming resin composition and optical waveguide using the same |
JP5351096B2 (en) * | 2010-06-02 | 2013-11-27 | 日東電工株式会社 | Optical waveguide manufacturing method |
WO2017209137A1 (en) * | 2016-06-02 | 2017-12-07 | 旭硝子株式会社 | Resin optical waveguide |
JP6859136B2 (en) * | 2017-03-03 | 2021-04-14 | 日東電工株式会社 | A method for manufacturing a photosensitive epoxy resin composition for forming an optical waveguide core, a photosensitive film for forming an optical waveguide core, an optical waveguide, a photoelectric mixed substrate, and an optical waveguide. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002001739A (en) * | 2000-06-26 | 2002-01-08 | Mitsubishi Chemicals Corp | Method of manufacturing optical memory device and optical memory device |
WO2005080458A1 (en) * | 2004-02-25 | 2005-09-01 | Kansai Paint Co., Ltd. | Curable resin composition for light guide, curable dry film for light guide, light guide and method of forming core portion for light guide |
JP2006003622A (en) * | 2004-06-17 | 2006-01-05 | Bridgestone Corp | Manufacturing method of optical device |
JP2006022317A (en) * | 2004-06-07 | 2006-01-26 | Matsushita Electric Works Ltd | Epoxy resin film, optical waveguide, optoelectric composite substrate, and optical communications module |
WO2008035658A1 (en) * | 2006-09-22 | 2008-03-27 | Hitachi Chemical Company, Ltd. | Process for manufacturing light guide |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1280674C (en) * | 2001-03-29 | 2006-10-18 | 日立化成工业株式会社 | Photosensitive film for circuit formation and process for producing printed wiring board |
JP4280677B2 (en) * | 2004-05-20 | 2009-06-17 | 日本特殊陶業株式会社 | Manufacturing method of device with optical waveguide structure |
JP5284586B2 (en) * | 2004-06-25 | 2013-09-11 | 日本化薬株式会社 | Epoxy resin, epoxy resin composition and cured product thereof |
JP2006023376A (en) * | 2004-07-06 | 2006-01-26 | Bridgestone Corp | Manufacturing method of optical device |
CN101035855B (en) * | 2004-10-07 | 2011-06-15 | 日立化成工业株式会社 | Resin composition for optical material, resin film for optical material and optical waveguide using same |
JP2006331759A (en) * | 2005-05-25 | 2006-12-07 | Tomoegawa Paper Co Ltd | Separator for electronic parts and method for manufacturing the same |
TW200728330A (en) * | 2005-09-29 | 2007-08-01 | Jsr Corp | Radiation sensitive resin composition for optical waveguides, optical waveguide and method for manufacturing optical waveguide |
US7660503B2 (en) * | 2006-02-08 | 2010-02-09 | Hitachi Chemical Company, Ltd. | Flexible optical waveguide and optical module |
US7811640B2 (en) * | 2006-05-02 | 2010-10-12 | Rpo Pty Limited | Methods for fabricating polymer optical waveguides on large area panels |
WO2008032724A1 (en) * | 2006-09-14 | 2008-03-20 | Toray Industries, Inc. | Optical waveguide film |
-
2009
- 2009-05-12 KR KR1020107025417A patent/KR20110014150A/en not_active Ceased
- 2009-05-12 CN CN200980117381.9A patent/CN102027400B/en not_active Expired - Fee Related
- 2009-05-12 WO PCT/JP2009/058827 patent/WO2009139375A1/en active Application Filing
- 2009-05-12 JP JP2010511979A patent/JP5360055B2/en not_active Expired - Fee Related
- 2009-05-13 TW TW098115842A patent/TWI452363B/en not_active IP Right Cessation
-
2013
- 2013-07-19 JP JP2013150542A patent/JP5610046B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002001739A (en) * | 2000-06-26 | 2002-01-08 | Mitsubishi Chemicals Corp | Method of manufacturing optical memory device and optical memory device |
WO2005080458A1 (en) * | 2004-02-25 | 2005-09-01 | Kansai Paint Co., Ltd. | Curable resin composition for light guide, curable dry film for light guide, light guide and method of forming core portion for light guide |
JP2006022317A (en) * | 2004-06-07 | 2006-01-26 | Matsushita Electric Works Ltd | Epoxy resin film, optical waveguide, optoelectric composite substrate, and optical communications module |
JP2006003622A (en) * | 2004-06-17 | 2006-01-05 | Bridgestone Corp | Manufacturing method of optical device |
WO2008035658A1 (en) * | 2006-09-22 | 2008-03-27 | Hitachi Chemical Company, Ltd. | Process for manufacturing light guide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015736A (en) * | 2011-07-05 | 2013-01-24 | Hitachi Chem Co Ltd | Flexible optical waveguide and flexible optoelectrical composite substrate |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009139375A1 (en) | 2011-09-22 |
JP5610046B2 (en) | 2014-10-22 |
CN102027400B (en) | 2016-03-30 |
JP5360055B2 (en) | 2013-12-04 |
JP2013214111A (en) | 2013-10-17 |
CN102027400A (en) | 2011-04-20 |
KR20110014150A (en) | 2011-02-10 |
TW200951520A (en) | 2009-12-16 |
TWI452363B (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2008035658A1 (en) | Manufacturing method of optical waveguide | |
JP4265695B2 (en) | Flexible optical waveguide, manufacturing method thereof, and optical module | |
JP4894348B2 (en) | Flexible optical waveguide and manufacturing method thereof | |
EP1818366A1 (en) | Resin composition for optical material, resin film for optical material and optical waveguide using same | |
JP5610046B2 (en) | Optical waveguide manufacturing method and optical waveguide | |
JPWO2012070585A1 (en) | Optical waveguide | |
JP5211940B2 (en) | Optical waveguide, opto-electric hybrid board and optical module | |
JP5218562B2 (en) | Optical waveguide | |
JP5754127B2 (en) | Resin composition for optical material, resin film for optical material, varnish for optical material, and optical waveguide using the same | |
JP5614018B2 (en) | Optical waveguide and optoelectric composite substrate manufacturing method, and optical waveguide and optoelectric composite substrate obtained thereby | |
JP2007293244A (en) | Multilayer optical waveguide | |
WO2010087378A1 (en) | Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board | |
JP5685926B2 (en) | Photoelectric composite substrate and manufacturing method thereof | |
JP5309950B2 (en) | Manufacturing method of optical waveguide | |
WO2009116421A1 (en) | Method for manufacturing optical waveguide | |
JP5066926B2 (en) | Method for manufacturing flexible optical waveguide | |
JP2010175742A (en) | Flexible optical waveguide and method of manufacturing the same | |
JP2009093140A (en) | Method of manufacturing optical waveguide and optical waveguide manufactured by using the method | |
JP4929667B2 (en) | Resin composition for optical material, resin film for optical material, and optical waveguide using the same | |
JP2010079058A (en) | Method of manufacturing opto-electro circuit board | |
JP5754130B2 (en) | Photoelectric composite substrate and manufacturing method thereof | |
JP2011221288A (en) | Method for manufacturing light waveguide and photo-electrical composite substrate, and light waveguide and photo-electrical composite substrate obtained by the same | |
JPWO2009041439A1 (en) | Optical waveguide and method for manufacturing the same | |
JP2014197225A (en) | Method for manufacturing optical waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980117381.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09746581 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107025417 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010511979 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09746581 Country of ref document: EP Kind code of ref document: A1 |