WO2009129385A1 - Cationic lipids and uses thereof - Google Patents
Cationic lipids and uses thereof Download PDFInfo
- Publication number
- WO2009129385A1 WO2009129385A1 PCT/US2009/040798 US2009040798W WO2009129385A1 WO 2009129385 A1 WO2009129385 A1 WO 2009129385A1 US 2009040798 W US2009040798 W US 2009040798W WO 2009129385 A1 WO2009129385 A1 WO 2009129385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- octadeca
- dienyloxy
- methyl
- ethyl
- lipid
- Prior art date
Links
- 0 **OCC(CO*)*N(*)* Chemical compound **OCC(CO*)*N(*)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/28—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6911—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/16—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
Definitions
- novel delivery formulations research is now able to focus more on improving efficacy on the therapeutic and clinical efficacious of therapeutic agents such as nucleic acids, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), and small nuclear RNA (snRNA).
- therapeutic agents such as nucleic acids, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), and small nuclear RNA (snRNA).
- rRNA ribosomal RNA
- miRNA micro RNA
- tRNA transfer RNA
- siRNA small inhibitory RNA
- snRNA small nuclear RNA
- Y is a bond or C(O);
- R 1 and R 2 are heterocycloalkyl or heteroaryl;
- R 3 and R 4 together are CR 20 R 21 , wherein R 20 is H and R 21 is C 14 -C 2 o-alkyl, Ci 4 -C 20 - alkenyl or (CH 2 O)-Ci 4 -C 20 -alkenyl; or R 20 and R 21 are independently selected C 14 -C 20 -alkyl, Ci 4 -C 20 -alkenyl or (CH 2 0)-C 14 -C 2 o-alkenyl; or
- R 6 is R 7 , R 8 , R 9 , or R 10 ;
- R 7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R 11 , OR 11 , SR 11 , S(O)R 11 , SO 2 R 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , OC(O)OR 11 , NH 2 , NHR 11 , N(R ⁇ ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , NHS(O) 2 R 11 , N R 11 S(O) 2 R 11 , NHC(O)OR 11 , NR 11 C(O)OR 11 , NHC(O)NH 2 , NHC(O)NHR 11 , NHC(O)N(R 1 %, NR 11 C(O)NHR 11 , NR ⁇ C(0)N(R ⁇ ) 2 , C(O)NH 2 , C(O)NHR 11 , C(0)
- a further embodiment pertains to a method of making Lipid-Based Particles, comprising: (a) mixing the cationic lipid(s), the non-cationic lipid(s) and the PEG-lipid conjugate(s); (b) adding the mixture of step (a) to one or more therapeutic agents; and (c) separating and purifying resulting suspension of step (b). DESCRIPTION OF THE DRAWINGS
- FIGS 1-19 In vitro trans fection activity of selected cationic lipids that were formulated as disclosed herein.
- This invention pertains to in vitro and in vivo delivery of therapeutic agents.
- the invention pertains to compositions that allow for delivery of nucleic acids, including but not limited to RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA
- nucleic acids including but not limited to RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA
- Variable moieties of compounds herein are represented by identifiers (capital letters with numerical and/or alphabetical superscripts) and may be specifically embodied.
- alkenyl means monovalent, straight or branched chain hydrocarbon moieties having one or more than one carbon-carbon double bonds, such as C 2 - alkenyl, C 3 -alkenyl, C 4 -alkenyl, Cs-alkenyl, C ⁇ -alkenyl and the like.
- heteroarenes include, but are not limited to furan, imidazole, isothiazole, isoxazole, oxadiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, thiazole, thiadiazole thiophene, tetrazine, tetrazole, triazine, triazole and the like.
- Choi as used herein, means cholesterol.
- SPC soybean phosphatidylcholine
- MALDI matrix assisted laser desorption ionization
- nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides.
- a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.
- degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Cassol et al. (1992); Rossolini et al., MoI. Cell.
- Nucleotides contain a sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked together through the phosphate groups. Nucleotides include chemically modified nucleotides as described in, e.g., WO 03/74654.
- Bases include purines and pyrimidines, which further include natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs, and synthetic derivatives of purines and pyrimidines, which include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides.
- small molecule means antibiotics, antineoplastics, antiinflammatories, anitivirals, immunomodulators and agents that act upon the respiratory system, the cardiovascular system, the central nervous system or a metabolic pathway involved with dyslipidemia, diabetes or Syndrome X.
- Compounds of this invention may also contain carbon-carbon double bonds or carbon-nitrogen double bonds in the E or Z configuration, wherein the term “E” represents higher order substituents on opposite sides of the carbon-carbon or carbon-nitrogen double bond and the term “Z” represents higher order substituents on the same side of the carbon- carbon or carbon-nitrogen double bond as determined by the Cahn-Ingold-Prelog Priority Rules.
- the compounds of this invention may also exist as a mixture of "E” and "Z" isomers.
- One embodiment of this invention therefore pertains to a cationic lipid or mixtures thereof, having Formula (I)
- Y 2 is a bond, C 1 -C 8 alkylene, C(O), C(O)O(Ci-C 8 -alkylene), (C 1 -C 8 - alkylene)NHC(O)O(Ci-C 8 -alkylene), (Ci-C 8 -alkylene)O, (Ci-C 8 -alkylene)OC(O)N(Ci-C 8 - alkylene), or (Ci-C 8 -alkylene)O(Ci-C 8 -alkylene);
- Y is a bond or C(O);
- R 1 and R 2 are heterocycloalkyl or heteroaryl;
- Y 3 -R 3 and Y 4 -R 4 together are CR 20 R 21 ;
- R , 10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R 6A , 0R 6A , SR 6A , S(O)R 6A , SO 2 R 6A , C(0)R 6A , C0(0)R 6A , 0C(0)R 6A , 0C(0)0R 6A , NH 2 , NHR 6A , N(R 6A ) 2 , NHC(O)R 6A , NR 6A C(O)R 6A , NHS(O) 2 R 6A , N R 6A S(O) 2 R 6A , NHC(O)OR 6A , NR 6A C(O)OR 6A , NHC(O)NH 2 , NHC(O)NHR 6A , NHC(O)N(R 6A ) 2 , NR 6A C(O)NHR 6A , NR 6A C(O)N
- R 7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH 2 , NHC(O)NH 2 , C(O)NH 2 , C(O)NHOH, SO 2 NH 2 , C(O)H, C(O)OH,
- R 12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R 16 , OR 16 , SR 16 , S(O) 2 R 16 , C(O)OH, NH 2 , NHR 16 N(R 16 ) 2 , C(O)R 16 , C(O)NH 2 , C(O)NHR 16 , C(O)N(R 16 ) 2 , NHC(O)R 16 , NR 16 C(O)R 16 , NHC(O)OR 16 , NR 16 C(O)OR 16 , NR 16 C(O)OR 16 , OH, F, Cl, Br or I;
- R , 16 is alkyl, alkenyl, alkynyl, or R iv.
- R 17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
- R 18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl.
- R and R are heterocycloalkyl
- R and R is H, and the other is C 14 -C 2 o-alkenyl; or
- R 6 is R 7 , R , R , or R
- R is heterocycloalkyl which is unfused
- R is alkyl, which is unsubstituted or substituted with NHR ;
- R is R ;
- R is alkyl, which is substituted with NH 2 ;
- R is R or R ;
- R 14 is heterocycloalkylwhich is unfused
- R is alkyl, which is unsubstituted or substituted with R , or N(R ) 2 ;
- R is unsubstituted or substituted with R ; and R 18 is alkyl.
- Y 2 , Y 3 , and Y 4 are each a bond.
- Y 2 is Ci-Cs alkylene, and Y 3 and Y 4 are each a bond.
- Y 2 is a bond and Y 3 and Y 4 are each C(O).
- Y 2 is Ci-Cg alkylene, and Y 3 and Y 4 are each C(O).
- Y 2 is C(O)O(C i-Cs-alkylene), and Y 3 and Y 4 are each a bond. In another embodiment of Formula (I), Y 2 is C(O)O(Ci-Cg-alkylene), and Y 3 and Y 4 are each C(O).
- R 1 and R 2 are H. In another embodiment of Formula (I), one of R 1 and R 2 is H, and the other is R 5 . In another embodiment of Formula (I), R 1 and R 2 are each independently R 5 . In another embodiment of Formula (I), R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl. In another embodiment of Formula (I), R 1 and R 2 , with the nitrogen to which they are attached, are pyrrolidinyl, piperazinyl, morpholinyl, piperidinyl, azetidinyl, or aziridinyl.
- one of R 3 and R 4 is H, and the other is C 14 -C 20 - alkenyl.
- R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- R 5 is unsubstituted. In another embodiment of Formula (I), R 5 is substituted with one or more R 6 . In another embodiment of Formula (I), R 5 is substituted with NHR 6 or N(R 6 ) 2 .
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 is H; R 2 is R 5 ; R 5 is alkyl and is substituted with R 6 ; R 6 is R 9 ; R 9 is heterocycloalkyl which is unfused; and R 3 and R 4 are independently C 14 -C 20 -alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond;
- R 1 is H;
- R 2 is R 5 ;
- R 5 is alkyl and is substituted with N(R 6 ) 2 ;
- R 6 is R 10 ;
- R 10 is alkyl which is unsubstituted; and
- R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 is H; R 2 is R 5 ; R 5 is alkyl and is substituted with R 6 ; R 6 is R 9 ; R 9 is heterocycloalkyl which is unfused; and R 3 and R 4 are independently C 14 -C 20 -alkenyl; wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl; wherein the heterocycloalkyl is substituted R 15 ; R 15 is alkyl which is substituted with N(R 16 ) 2 ; and R 16 is alkyl.
- R 1 and R 2 are H; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond;
- R 1 is H;
- R 2 is R 5 ;
- R 5 is alkyl and is substituted with R 6 ;
- R 6 is R 7 ;
- R 7 is phenyl which is unfused; wherein the phenyl is substituted with R 11 ;
- R 11 is R 15 ;
- R 15 is alkyl which is substituted with R 16 ;
- R 16 is R 17 ; and R 17 is heterocycloalkyl.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 are R 5 ; R 5 is alkyl wherein one alkyl is unsubstituted and the other is substituted with R 6 ; R 6 is R 9 ; R 9 is heterocycloalkyl which is unfused; and R 3 and R 4 are independently C 14 -C 20 -alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond;
- R 1 is H;
- R 2 is R 5 ;
- R 5 is alkyl and is substituted with R 6 ;
- R 6 is R 7 ;
- R 7 is phenyl which is unfused; wherein the phenyl is substituted with R 11 ;
- R 11 is R 15 ;
- R 15 is alkyl which is substituted with R 16 ;
- R 16 is R 17 ;
- R 17 is heterocycloalkyl which is unfused; wherein the heterocycloalkyl is substituted with R 18 ;
- R 18 is alkyl and
- R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 are R 5 ; R 5 is alkyl wherein one alkyl is unsubstituted and the other is substituted with N(R 6 )2; R 6 is R 10 , R 10 is alkyl which is unsubstituted; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl; wherein the heterocycloalkyl is substituted with R 11 , R 11 is R 15 ; R 15 is alkyl which is substituted with R 16 ; R 16 is R 17 ; and R 17 is heteroaryl which is unfused.
- Y 2 , Y 3 , and Y 4 are each a bond;
- R 1 is H;
- R 2 is R 5 ;
- R 5 is alkyl and is substituted with R 6 ;
- R 6 is R 8 ;
- R 8 is heteroaryl which is unfused; wherein the heteroaryl is substituted with R 11 ;
- R 11 is R 14 ;
- R 14 is heterocycloalkyl which is unfused;
- R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 is Ci-Cs alkylene, Y 3 and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted.
- Y 2 is Ci-Cs alkylene, Y 3 and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 is Ci-Cs alkylene, Y 3 and Y 4 are each a bond; R 1 is H; R 2 is R 5 ; R 5 is alkyl and is substituted with R 6 ; R 6 is R 9 ; R 9 is heterocycloalkyl; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 is Ci-Cs alkylene, Y 3 and Y 4 are each a bond; R 1 and R 2 are R 5 ; R 5 is alkyl which is unsubstituted; and R 3 and R 4 are independently Ci 4 -C 2 o-alkenyl.
- Y 2 is C(O)O(Ci-C 8 -alkylene), Y 3 and Y 4 are each a bond; R 1 is H; R 2 is R 5 ; R 5 is alkyl and is substituted with N(R 6 ) 2 ; R 6 is R 10 ; R 10 is alkyl which is unsubstituted; and R 3 and R 4 are independently Ci4-C2o-alkenyl.
- Y 2 , Y 3 , and Y 4 are each a bond; R 1 and R 2 , with the nitrogen to which they are attached, are heterocycloalkyl; and R 3 and R 4 are independently C 14 -C 20 -alkenyl; wherein the heterocycloalkyl is substituted with R 11 , R 11 is R 15 ; R 15 is alkyl which is substituted with R 16 ; R 16 is R 17 ; and R 17 is heterocycloalkyl which is unfused.
- Still another embodiment pertains to compounds of Formula I which are l-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9 ,12- dienyloxy)methyl)ethyl)amine; 1 -methyl
- Still another embodiment pertains to compounds of Formula I which are chosen from 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine, N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-pyrrolidin-l-ylpropyl)amine, N,N-dimethyl-N'- (2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane- 1 ,2-
- a further embodiment pertains to particles comprising one or more cationic lipid(s) having Formula I.
- a further embodiment pertains to particles comprising one or more cationic lipid(s) having Formula I and one or more therapeutic agents.
- said therapeutic agent is a nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), antigens, fragments thereof, proteins, peptides, and small-molecules.
- RNA nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA
- a further embodiment pertains to nanoparticles comprising one or more cationic lipid(s) having Formula I.
- a further embodiment pertains to nanoparticles comprising one or more cationic lipid(s) having Formula I and one or more therapeutic agents.
- said therapeutic agent is a nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), antigens, fragments thereof, proteins, peptides, and small-molecules.
- RNA nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (
- a still further embodiment pertains to Cationic-Based Lipid Encapsulation Systems (CaBLES) comprising non-cationic lipid(s), polyethylene glycol (PEG)-lipid conjugate(s) and cationic lipid(s) having Formula I.
- CaBLES Cationic-Based Lipid Encapsulation Systems
- Y 2 is a bond, C 1 -C 8 alkylene, C(O), C(O)O(d-C 8 -alkylene), (C 1 -C 8 - alkylene)NHC(O)O(Ci-C 8 -alkylene), (Ci-C 8 -alkylene)O, (Ci-C 8 -alkylene)OC(O)N(Ci-C 8 - alkylene), or (Ci-C 8 -alkylene)O(Ci-C 8 -alkylene);
- Y 3 is a bond or C(O);
- Y 4 is a bond or C(O);
- R 1 and R 2 are each independently H, cycloalkyl, cycloalkenyl or R 5 ; or
- R 1 and R 2 are heterocycloalkyl or heteroaryl;
- R 3 and R 4 together are CR 20 R 21 , wherein R 20 is H and R 21 is C 14 -C 2 o-alkyl, Ci 4 -C 20 - alkenyl or (CH 2 0)-Ci 4 -C 2 o-alkenyl; or R 20 and R 21 are independently selected C 14 -C 20 -alkyl, Ci4-C 20 -alkenyl or (CH 2 0)-C 14 -C 2 o-alkenyl; or
- Y 3 -R 3 and Y 4 -R 4 together are CR 20 R 21
- R 5 is alkyl, which is unsubstituted or substituted with one or more R 6 , OR 6 , SR 6 , S(O)R 6 , SO 2 R 6 , C(O)R 6 , CO(O)R 6 , OC(O)R 6 , OC(O)OR 6 , NH 2 , NHR 6 , N(R 6 ) 2 , NHC(O)R 6 , NR 6 C(O)R 6 , NHS(O) 2 R 6 , N R 6 S(O) 2 R 6 , NHC(O)OR 6 , NR 6 C(O)OR 6 , NHC(O)NH 2 , NHC(O)NHR 6 , NHC(O)N(R 6 ) 2 , NR 6 C(O)NHR 6 , NR 6 C(O)N(R 6 ) 2 , C(O)NH 2 , C(O)NHR 6 , C(O)N(R 6 ) 2 ,
- R 6 is R 7 , R 8 , R 9 , or R 10 ;
- R 8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R 6A , 0R 6A , SR 6A , S(O)R 6A , SO 2 R 6A , C(0)R 6A , C0(0)R 6A , 0C(0)R 6A , 0C(0)0R 6A , NH 2 , NHR 6A , N(R 6A ) 2 , NHC(0)R 6A , NR 6A C(O)R 6A , NHS(O) 2 R 6A , N R 6A S(O) 2 R 6A , NHC(0)0R 6A , NR 6A C(O)OR 6A , NHC(O)NH 2 , NHC(0)NHR 6A , NHC(O)N(R 6A ) 2 , NR 6A C(O)NHR 6A , NR 6A C(O)N(R 6A ) 2
- R 6A is R 7A , R 8A , R 9A , or R 10A ;
- R 8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH 2 , NHC(O)NH 2 , C(O)NH 2 , C(O)NHOH, SO 2 NH 2 , C(O)H, C(O)OH, C(N)NH 2 , CNOH, CNOCH 3 , OH, (O), CN, N 3 , NO 2 , CF 3 , CF 2 CF 3 , OCF 3 , OCF 2 CF 3 , F, Cl, Br or I;
- each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R 11 , OR 11 , SR 11 , S(O)R 11 , SO 2 R 11 , C(O)R 11 , CO(O)R 11 , OC(O)R 11 , OC(O)OR 11 , NH 2 , NHR 11 , N(R ⁇ ) 2 , NHC(O)R 11 , NR 11 C(O)R 11 , NHS(O) 2 R 11 , N R 11 S(O) 2 R 11 , NHC(O)OR 11 , NR 11 C(O)OR 11 , NHC(O)NH 2 , NHC(O)NHR 11 , NHC(O)N(R 1 %, NR 11 C(O)NHR 11 , NR ⁇ C(0)N(R ⁇ ) 2 , C(O)NH 2 , C(O)NHR 11 , C(0)
- R 11 is R 12 , R 13 , R 14 or R 15 ;
- R 12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R 16 , OR 16 , SR 16 , S(O) 2 R 16 , C(O)OH, NH 2 , NHR 16 N(R 16 ) 2 , C(O)R 16 , C(O)NH 2 , C(O)NHR 16 , C(O)N(R 16 ) 2 , NHC(O)R 16 , NR 16 C(O)R 16 , NHC(O)OR 16 , NR 16 C(O)OR 16 , NR 16 C(O)OR 16 , OH, F, Cl, Br or I;
- R 16 is alkyl, alkenyl, alkynyl, or R 17 ;
- R . 17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
- R 12 , R 13 , R 14 , and R 17 are independently unsubstituted or substituted with one or more R 18 , OR 18 , SR 18 , S(O)R 18 , SO 2 R 18 , C(O)R 18 , CO(O)R 18 , OC(O)R 18 , OC(O)OR 18 , NH 2 , NHR 18 , N(R 18 ) 2 , NHC(O)R 18 , NR 18 C(O)R 18 , NHS(O) 2 R 18 , NR 18 S(O) 2 R 18 , NHC(O)OR 18 , NR 18 C(O)OR 18 , NHC(O)NH 2 , NHC(O)NHR 18 , NHC(O)N(R 18 ) 2 , NR 18 C(O)NHR 18 , NR 18 C(O)N(R 18 ) 2 , C(O)NH 2 , C(O)NHR 18 , C(O)N
- R 18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl;
- Lipid-Based Particles of the present invention are defined as CaBLES which further comprise one or more therapeutic agent(s).
- Therapeutic agents that can be delivered with CaBLES include RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), chimeric nucleic acids, an antigen, fragments thereof, a protein, a peptide, small-molecules, or mixtures thereof.
- the CaBLES and/or the Lipid-Based Particle formulation can have a ligand attached, such as a targeting ligand or a chelating moiety for complexing calcium.
- a ligand attached such as a targeting ligand or a chelating moiety for complexing calcium.
- the cationic lipids of Formula I maintains a positive charge.
- the ligand that is attached has a positive charge.
- Suitable ligands include, but are not limited to, a compound or device with a reactive functional group and include lipids, amphipathic lipids, carrier compounds, bioaffinity compounds, biomaterials, biopolymers, biomedical devices, analytically detectable compounds, therapeutically active compounds, enzymes, peptides, proteins, antibodies, immune stimulators, radiolabels, fluorogens, biotin, drugs, haptens, DNA, RNA, polysaccharides, liposomes, virosomes, micelles, immunoglobulins, functional groups, other targeting moieties, or toxins.
- a further embodiment pertains to CaBLES or Lipid-Base Particles wherein the PEG lipid conjugate is about 0.1-20 weight/weight % of total lipid in particle, the non-cationic lipid is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the cationic lipid is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to CaBLES or Lipid-Base Particles wherein the PEG lipid conjugate is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the cationic lipid is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to Lipid-Base Particles wherein the Lipid-Based Particle comprises, cholesterol, DSPC, N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
- a further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to Lipid-Base Particles wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, the PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
- the non-cationic lipids are cholesterol and DSPC
- the cationic lipid is N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)-
- a further embodiment pertains to Lipid-Base Particles, wherein the N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the N-(3 -( 1 H-imidazol- 1 -yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to a pharmaceutical composition wherein the Lipid- Based Particle comprises, cholesterol, DSPC, N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine, one or more PEG-lipid conjugates and one or more nucleic acids.
- the Lipid- Based Particle comprises, cholesterol, DSPC, N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine, one or more PEG-lipid conjugates and one or more nucleic acids.
- a further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to Lipid-Base Particles, wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N,N-dimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2- diamine, the PEG-lipid conjugate is N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
- the non-cationic lipids are cholesterol and DSPC
- the cationic lipid is N,N-dimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-oct
- Based Particle comprises, cholesterol, DSPC, N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
- a further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to Lipid-Base Particles, wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N-(2-(lH-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, the PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
- the non-cationic lipids are cholesterol and DSPC
- the cationic lipid is N-(2-(lH-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1
- a further embodiment pertains to Lipid-Base Particles, wherein the N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
- a further embodiment pertains to Lipid-Based Particles, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula (I), to one or more therapeutic agents is between about 50:1 to about 5:1.
- a further embodiment pertains to Lipid-Based Particles, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula (I), to one or more therapeutic agents is between about 30:1 to about 10:1.
- functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula 1 effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 50- 100%.
- functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula 1 effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 80- 100%.
- functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids chosen from 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9)
- functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids chosen from 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9)
- a further embodiment pertains to examples of non-cationic lipids that are useful for the practice of this invention which include, but are not limited to, cholesterol, cholesterol sulfate, ceramide, sphingomyelin, lecithin, sphingomyelin, egg sphingomyelin, milk sphingomyelin; egg phosphatidylcholine, hydrogenated egg phosphatidylcholine, hydrogenated soybean phosphatidylethanolamine, egg phosphatidylethanolamine, hydrogenated soybean phosphatidylcholine, soybean phosphatidylcholine, 1 ,2-dilauroyl-sn- glycerol, 1 ,2-dimyristoyl-sn-glycerol, 1 ,2-dipalmitoyl-sn-glycerol, 1 ,2-distearoyl-sn-glycerol, 1 ,2-dilauroyl-sn-glycero-3-phosphatidic acid
- a further embodiment pertains to examples of PEG-lipid conjugates that are useful for the practice of this invention which include, but are not limited to, 2-(tetradecyloxy)-l- ((tetradecyloxy)methyl)ethyl 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-(hexadecyloxy)- 1 -
- PEG-lipid conjugates are described in, e.g., US App. No. 61/095,748, which was filed on September 10, 2008 and is incorporated herein by reference.
- PEG-lipid conjugates are described in, e.g., US App. No. 61/095,769, which was filed on September 10, 2008 and is incorporated herein by reference.
- a still further embodiment pertains to combinations of polyethylene glycol (PEG)- lipid conjugates which are useful for the practice of this invention, wherein two PEG-lipid conjugates are chosen from N-(carbonyl-methoxypolyethyleneglycol-2000)-l,2-dimyristoyl- sn-glycero-3-phosphoethanolamine , N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2- dipalmitoyl-sn-glycero-3 -phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 200O)-1 ,2-distearoyl-sn-glycero-3-phosphoethanolamine, 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-
- a still further embodiment pertains to combinations of polyethylene glycol (PEG)- lipid conjugates which are useful for the practice of this invention and include 1,2- dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-2000 and N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-distearoyl-sn-glycero-3 -phosphoethanolamine, 1 ,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol-2000 and N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, N- [3 ,4-bis(hexadecyloxy)butyl]- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,
- the cationic lipids of the CaBLES and Lipid-Based Particles comprises about 2 to about 60 weight/weight percent of total lipid in the particle.
- the non-cationic lipids of the CaBLES and Lipid-Based Particles comprises about 5 to about 90 weight/weight percent of total lipid in the particle.
- Based Particles comprises from 0.1 to about 20 weight/weight percent of total lipid in the particle.
- R 8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
- R 15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R 16 , OR 16 , SR 16 , S(O) 2 R 16 , C(O)OH, NH 2 , NHR 16 N(R 16 ) 2 , C(O)R 16 , C(O)NH 2 , C(O)NHR 16 , C(O)N(R 16 ) 2 , NHC(O)R 16 , NR 16 C(O)R 16 , NHC(O)OR 16 , NR 16 C(O)OR 16 , NR 16 C(O)OR 16 , OH, F, Cl, Br or I;
- Excipients for preparation of compositions comprising a compound having formula (I) to be administered ophthalmically or orally include, but are not limited to, 1,3-butylene glycol, castor oil, corn oil, cottonseed oil, ethanol, fatty acid esters of sorbitan, germ oil, groundnut oil, glycerol, isopropanol, olive oil, polyethylene glycols, propylene glycol, sesame oil, water, mixtures thereof and the like.
- Excipients for preparation of compositions comprising a compound having formula (I) to be administered osmotically include, but are not limited to, chlorofluorohydrocarbons, ethanol, water, mixtures thereof and the like.
- compositions and the method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above-mentioned pathological conditions.
- Lipid-Based Particles are expected to be useful when used with: alkylating agents, angiogenesis inhibitors, antibodies, antimetabolites, antimitotics, antiproliferatives, aurora kinase inhibitors, apoptosis promoters (for example, Bcl-xL, Bcl-w and BfI-I) inhibitors, Bcr-Abl kinase inhibitors, BiTE (Bi-Specif ⁇ c T cell Engager) antibodies, biologic response modifiers, cyclin-dependent kinase inhibitors, cell cycle inhibitors, cyclooxygenase-2 inhibitors, DVD's, leukemia viral oncogene homolog (ErbB2) receptor inhibitors, growth factor inhibitors, heat shock protein (HSP)-90 inhibitors, histone deacetylase (HDAC) inhibitors, hormonal therapies, immunologicals, inhibitors of apoptosis proteins (IAP's) intercalating antibiotics, kinase inhibitors, mammalian target of
- a BiTE antibody is a bi-specific antibody that directs T-cells to attach cancer cells by simultaneously binding the two cells. The T-cell then attacks the target cancer cell.
- Exemplary BiTE antibodies include adecatumumab (Micromet MT201), blinatumomab (Micromet MT103) and the like.
- Alkylating agents include altretamine, AMD-473, AP-5280, apaziquone, bendamustine, brostallicin, busulfan, carboquone, carmustine (BCNU), chlorambucil, CLORETAZINE ® (laromustine, VNP 4010 IM), cyclophosphamide, decarbazine, estramustine, fotemustine, glufosfamide, ifosfamide, KW-2170, lomustine (CCNU), mafosfamide, melphalan, mitobronitol, mitolactol, nimustine, nitrogen mustard N-oxide, ranimustine, temozolomide, thiotepa, TREANDA (bendamustine), treosulfan, rofosfamide and the like.
- BCNU carmustine
- CLORETAZINE ® laromustine, VNP 4010 IM
- cyclophosphamide dec
- ALKERAN (melphalan), mercaptopurine, 6-mercaptopurine riboside, methotrexate, mycophenolic acid, nelarabine, nolatrexed, ocfosfate, pelitrexol, pentostatin, raltitrexed, Ribavirin, triapine, trimetrexate, S-I, tiazofurin, tegafur, TS-I, vidarabine, UFT and the like.
- Bcl-2 proteins inhibitors include AT-IOl ((-)gossypol), GENASENSE ® (G3139 or oblimersen (Bcl-2-targeting antisense oligonucleotide)), IPI-194, IPI-565, N-(4-(4-((4'- chloro( 1 , 1 '-biphenyl)-2-yl)methyl)piperazin- 1 -yl)benzoyl)-4-((( 1 R)-3 -(dimethylamino)- 1 - ((phenylsulfanyl)methyl)propyl)amino)-3-nitrobenzenesulfonamide) (ABT-737), N-(4-(4-((2- (4-chlorophenyl)-5 ,5 -dimethyl- 1 -cyclohex- 1 -en- 1 -yl)methyl)piperazin- 1 -yl)benzoyl)-4- ((( 1
- CDK inhibitors include AZD-5438, BMI-1040, BMS-032, BMS-387, CVT-2584, flavopyridol, GPC-286199, MCS-5A, PD0332991, PHA-690509, seliciclib (CYC-
- COX-2 inhibitors include ABT-963, ARCOXIA ® (etoricoxib), BEXTRA ® (valdecoxib), BMS347070, CELEBREX ® (celecoxib), COX- 189 (lumiracoxib), CT-3, DERAMAXX ® (deracoxib), JTE-522, 4-methyl-2-(3 ,4-dimethylphenyl)- 1 -(4- sulfamoylphenyl-lH-pyrrole), MK-663 (etoricoxib), NS-398, parecoxib, RS-57067, SC-58125, SD-8381, SVT-2016, S-2474, T-614, VIOXX ® (rofecoxib) and the like.
- EGFR inhibitors include ABX-EGF, anti-EGFR immunoliposomes, EGF-vaccine, EMD-7200, ERBITUX ® (cetuximab), HR3, IgA antibodies, IRESSA ® (gefitinib),
- TARCEVA ® (erlotinib or OSI-774), TP-38, EGFR fusion protein, TYKERB ® (lapatinib) and the like.
- Histone deacetylase inhibitors include depsipeptide, LAQ-824, MS-275, trapoxin, suberoylanilide hydroxamic acid (SAHA), TSA, valproic acid and the like.
- Inhibitors of apoptosis proteins include ApoMab (a fully human affinity-matured IgGl monoclonal antibody), antibodies that target TRAIL or death receptors (e.g., pro- apoptotic receptor agonists DR4 and DR5), conatumumab, ETR2-ST01, GDCO 145, (lexatumumab), HGS-1029, LBY-135, PRO-1762 and tratuzumab.
- MEK inhibitors include ARRY-142886, ARRY-438162 PD-325901, PD-98059 and the like.
- mTOR inhibitors include AP-23573, CCI-779, everolimus, RAD-OOl, rapamycin, temsirolimus and the like.
- FELDENE piroxicam
- ibuprofen cream ALEVE
- NAPROSYN naproxen
- VOLTAREN ® diclofenac
- INDOCIN ® indomethacin
- CLINORIL ® sinalindac
- TOLECTIN ® tolmetin
- LODINE ® etodolac
- TORADOL ® ketorolac
- DAYPRO ® oxaprozin
- Platinum chemotherapeutics include cisplatin, ELOXATIN (oxaliplatin) eptaplatin, lobaplatin, nedaplatin, PARAPLATIN (carboplatin), satraplatin and the like.
- Polo-like kinase inhibitors include BI-2536 and the like.
- Thrombospondin analogs include ABT-510, ABT-567, TSP- 1 and the like.
- MYOCET liposomal doxorubicin
- elsamitrucin epirbucin
- glarbuicin glarbuicin
- ZAVEDOS idarubicin
- mitomycin C nemorubicin
- neocarzinostatin peplomycin
- pirarubicin rebeccamycin
- stimalamer streptozocin
- VALSTAR valrubicin
- Antibodies include AVASTIN (bevacizumab), CD40-specif ⁇ c antibodies, chTNT- 1/B, denosumab, ERBITUX ® (cetuximab), HUMAX-CD4 ® (zanolimumab), IGFlR-specif ⁇ c antibodies, lintuzumab, PANOREX ® (edrecolomab), RENCAREX ® (WX G250),
- Hormonal therapies include ARIMIDEX (anastrozole), AROMASIN (exemestane), arzoxifene, CASODEX (bicalutamide), CETROTIDE (cetrorelix), degarelix, deslorelin, DESOPAN (trilostane), dexamethasone, DROGENIL , (flutamide), EVISTA ® (raloxifene), AFEMATM (fadrozole), FARESTON ® (toremifene), FASLODEX ®
- NOLVADEX ® tamoxifen citrate
- PLENAXISTM abarelix
- prednisone PROPECIA ®
- Proteasome inhibitors include VELC ADE ® (bortezomib), MG 132, NPI-0052, PR-171 and the like.
- agents include ALF AFERONE ,(IFN- ⁇ ), BAM- 002 (oxidized glutathione), BEROMUN ® (tasonermin), BEXXAR ® (tositumomab),
- Biological response modifiers are agents that modify defense mechanisms of living organisms or biological responses, such as survival, growth, or differentiation of tissue cells to direct them to have anti-tumor activity and include include krestin, lentinan, sizof ⁇ ran, picibanil PF-3512676 (CpG-8954), ubenimex and the like.
- Antimitotic agents include batabulin, epothilone D (KOS-862), N-(2-((4- hydroxyphenyl)amino)pyridin-3 -yl)-4-methoxybenzenesulfonamide, ixabepilone (BMS 247550), paclitaxel, TAXOTERE ® (docetaxel), PNU100940 (109881), patupilone, XRP-9881 (larotaxel), vinflunine, ZK-EPO (synthetic epothilone) and the like.
- compounds having Formula I may be combined with other chemptherapeutic agents such as ABRAXANETM (ABI-007), ABT- 100 (farnesyl transferase inhibitor), ADVEXIN ® (Ad5CMV-p53 vaccine), ALTOCOR ® or MEVACOR ® (lovastatin), AMPLIGEN ® (poly Lpoly C12U, a synthetic RNA), APTOS YN ® (exisulind), AREDIA ® (pamidronic acid), arglabin, L-asparaginase, atamestane (l-methyl-3,17-dione-androsta-l,4- diene), AVAGE (tazarotene), AVE-8062 (combreastatin derivative) BEC2 (mitumomab), cachectin or cachexin (tumor necrosis factor), canvaxin (vaccine), CEAVAC (cancer vaccine), CELEUK ® (celmoleukin), CEPLENE
- CR CR
- NIPENT pentostatin
- ONCONASE a ribonuclease enzyme
- ONCOPHAGE ® melanoma vaccine treatment
- ONCOVAX ® IL-2 Vaccine
- ORATHECINTM rubitecan
- OSIDEM antibody-based cell drug
- OVAREX ® MAb murine monoclonal antibody
- paditaxel PAND IMEXTM (aglycone saponins from ginseng comprising 20(S)protopanaxadiol (aPPD) and 20(S)protopanaxatriol (aPPT)), panitumumab,
- PANVAC -VF investment cancer vaccine
- pegaspargase pegaspargase
- PEG Interferon A PEG Interferon A
- CR CR
- phenoxodiol procarbazine, rebimastat, REMOVAB (catumaxomab), REVLIMID (lenalidomide), RSRl 3 (efaproxiral), SOMATULINE ® LA (lanreotide), SORIAT ANE ® (acitretin), staurosporine (Streptomyces staurospores), talabostat (PTlOO), TARGRETIN (bexarotene), TAXOPREXIN ® (DHA-paclitaxel), TELCYTA ® (canfosfamide, TLK286), temilifene, TEMOD AR ® (temozolomide), tesmilifene, thalidomide, THERATOPE ® (STn- KLH), thymitaq (2-amino-3,4-dihydro-6-methyl-4-oxo-5-(4-pyridylthio)quin
- vitaxin anti-alphavbeta3 antibody
- XCYTRIN motexafm gadolinium
- XINLAYTM atrasentan
- XYOTAXTM paclitaxel poliglumex
- CaBLES comprise one or more non-cationic lipids, one or more cationic lipids having Formula I and one or more polyethylene glycol (PEG)-lipid conjugate.
- PEG polyethylene glycol
- Lipid-Based Particles of the present invention are defined as CaBLES which further comprise one or more therapeutic agent(s). These particles have mean diameter sizes of 50- 300 nm, of which 50-250 nm is preferred and 50-200 nm is most preferred.
- Functional CaBLES effectively encapsulate nucleic acids, (e.g., single stranded or double stranded DNA, single stranded or double stranced RNA, RNAi, siRNA, and the like). Suitable nucleic acids include, but are not limited to, plasmids, antisense oligonucleotides, ribozymes as well as other poly- and oligonucleotides.
- the nucleic acid encodes a product, e.g., a therapeutic product, of interest.
- the CaBLES of the present invention can be used to deliver the nucleic acid to a cell (e.g., a cell in a mammal) for, e.g., expression of the nucleic acid or for silencing of a target sequence expressed by the cell.
- the siRNA can have varying lengths (10-200 bps) and structures (hairpins, single/double strands, bulges, nicks/gaps, mismatches) and processed in the cell to provide active gene silencing.
- a double- stranded siRNA can have the same number of nucleotides on each strand (blunt ends) or asymmetric ends (overhangs). The overhang of 1-2 nucleotides can be present on the sense and/or the antisense strand, as well as present on the 5'- and/ or the 3 '-ends of a given strand.
- Non-cationic lipids have a neutral charge or an anionic charge at physiological pH.
- a neutral lipid also known as a "helper lipid,” has no net charge at physiological pH.
- helper lipid has no net charge at physiological pH.
- These lipids can also be zwitterionic.
- Polyethylene glycol (PEG)-lipid conjugates are used to minimize particle aggregation in solution, provide increased in vivo serum circulation, and enhance distribution of nanoparticles to organs, tissues, cell types, and tumors of interest.
- These shielding lipids consist of a lipid portion linked to a "PEG” portion via carbamate, ester, amide, ether, amine, thioether, or dithiol linkages.
- PEG is a polyethylene glycol consisting of repeating C2H4O units with an average molecular weight between 500 to 10,000 daltons and may be substituted by alkoxy, acyl, alkyl, or aryl.
- the CaBLES and/or Lipid Based Particles may target using targeting moieties that are specific to a cell type or tissue.
- targeting moieties such as ligands, cell surface receptors, glycoproteins, vitamins, (e.g., ribolflavin) and moncoleonal antibodies, has been previously described (see, e.g., U.S. Pat. Nos. 4,957,773 and 4,603,044).
- the targeting moeities can comprise the entire entire protein or fragments thereof.
- the targeting moiety is a small protein, or peptide.
- the targeting moiety is a small-molecule.
- Cationic lipids are those having one or more moieties that are positively charged at a physiologically relevant pH, typically between 4-8. Particular cationic lipids are as shown in Formula I. Examples of cationic lipids that are useful for the practice of this invention include, but are not limited to, N,N-dioleyl-N,N-dimethylammonium chloride, DC-Choi, l,3-dioleoyloxy-2-(6-carboxyspermyl)-propyl amide, dioctadecylamidoglycyl spermine, N,N-distearyl-N,N-dimethylammonium bromide, N-(2,3-dioleyloxy)propyl)-N,N- dimethylammonium chloride, l,2-dioleoyl-3-trimethylammonium-propane chloride, l,2-dilineoyl-3-dimethylammonium-propane, N
- Lipid-Based Particles are a mixture of one or more cationic lipids of Formula (I), one or more non-cationic lipids, one or more PEG-lipid conjugates, and one or more therapeutic agents.
- Specific Lipid-Based Particles comprise the following lipid mixtures: cationic lipid(s) (about 2-60% by weight), non-cationic lipid(s) (about 5-90% by weight), and PEG-lipid conjugate(s) (about 0.1-20%).
- Non-cationic 10 0.5 lipid
- the mixing solution of cationic lipids, cholesterol, non-cationic lipids and PEG-lipids was prepared in ethanol (total concentration at 10 mg/mL).
- siSTABLE purchased from ThermoFisher
- antisense-5'-AAU CUU GCC AGC UUU CCC CUU-3' SEQ ID NO: 2
- % stock solution was prepared in 10 mg/mL of solution by dissolving 10 mg siRNA in 1 mL of RNAse-free UltraPure Water.
- the calculated amount of siRNA solution was added to 1 mL of citrate buffer (pH 4.0, 20 mM), to provide an siRNA concentration of 0.2 mg/mL, and warmed to 6OC.
- the calculated amount of lipid solution was warmed to 6OC, transferred to a 0.5 mL syringe with 28/4 gauge needle, and injected into the citrate buffer with stirring at 6OC.
- 3 mL of PBS solution at room temperature (pH 7.4) was added into the lipid mixture with stirring.
- the Lipid-Based Particle solution was cooled to room temperature.
- siRNA concentrations were measured using Quanti-iT RiboGreen RNA reagent (Molecular Probes, (Rl 1490)). Vesicle sizes were characterized by dynamic light scattering with a DynaProTM Plate Reader (Wyatt Technology) in 96-well half-area UV plate (Coring) after diluting the formulation sample (20 ⁇ L) in phosphate buffered saline (80 ⁇ L) at a pH of about 7-8. A 1% agarose gel-based assay was used for analyzing nuclease degradation and protection. Encapsulation efficiency (EE) was calculated using data obtained from a RiboGreen assay.
- EE Encapsulation efficiency
- RNA concentration and encapsulation efficiency were determined using a Quant-iT ® Ribogreen RNA reagent and kit available from Invitrogen.
- the siRNA was released from the Lipid-Based Particle using one of the following reagents: ethanol, Triton X-100, or phenol/chloroform.
- the siRNA concentration is quantified using fluorescent reading at 480 nm/520 nm.
- Particle sizes and size distributions were characterized by using dynamic light scattering (DLS).
- DLS plate reader (DynaproTM, Wyatt Technology) was used for the DLS measurement. This DLS plate reader uses an 830 nm laser and the scattering angle is 158°. It also can control temperature from 4°C to 70 0 C. A 96-well format was employed for the samples.
- Samples for DLS analysis were prepared by mixing 20 ⁇ L of each sample stock solution with 80 ⁇ L PBS directly in the 96-well plate (#3697, Corning). Sample mixing was accomplished using a microplate shaker (Orbis, Mikura Ltd.). Plates were read at 20 0 C with an acquisition time of 50 seconds for each sample, and data was analyzed with Wyatt Technology's Dynamics V6 software. To rule out potential multiple scattering artifacts, a second plate at 4-fold reduced sample concentrations was independently prepared by mixing 5 ⁇ L stock solutions with 95 ⁇ L PBS. Under our experimental conditions the results at the two concentrations were very similar, and the final reported result for each sample represents the average of values obtained from the two plates.
- MDA435-TetR-Luc cells (The positive readout reporter cell line MDA435-TetR-Luc contained a stably integrated copy of the luciferase gene expressed from a CMV promoter containing the tetR operator site. In addition, gene coding for a destabilized TetR protein was expressed in this cell line.) were plated in 96 well plate at a density of 1OK cells per well in 100 ul of DMEM (Dulbecco's Modified Eagles Medium, Invitrogen Corp.) containing 10% fetal bovine serum (Invitrogen Corp.).
- DMEM Dulbecco's Modified Eagles Medium, Invitrogen Corp.
- 10% fetal bovine serum Invitrogen Corp.
- l,3-dihydroxypropan-2-one can be reacted with a compound of Formula (7) to provide a compound of Formula (8).
- the reaction typically requires the use of coupling reagents such as but not limited to 4-(dimethylamino)pyridine and l-ethyl-3-[3- (dimethylamino)propyl]-carbodiimide hydrochloride in a solvent such as but not limited to methylene chloride.
- a compound of Formula (8) can be reacted with an amine of Formula (4), as described in Scheme 2, to provide a compound of Formula (9), which is representative of a compound of Formula I wherein Y 3 and Y 4 are carbonyl and Y 2 is a bond.
- 2-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)propane-l,3-diol which can be prepared as described in EXAMPLE 26 A, can be reacted with a compound of Formula (10) and a reducing agent in the presence of acetic acid to provide a compound of Formula (11).
- Typical reducing agents include sodium triacetoxyborohydride and sodium cyanoborohydride, and typical solvents for the reaction include 1 ,2-dichloroethane, methanol, dichloromethane, or mixtures thereof.
- the silica was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65 ⁇ 200g with 2-4% ethyl aceate/hexanes). MS (ESI) m/z 587.6 (M-OC 2 H 6 +1), 655.5 (M+23) + .
- EXAMPLE 11 l,3-bis((9Z,12Z)-octadeca-9,12-dienyloxy)propan-2-amine Prepared as described in EXAMPLE 6 by substituting ammonium acetate for 3- (pyrrolidin-l-yl)propan-l -amine.
- N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dieny loxy)methyl)ethyl)-N-(3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine Prepared as described in EXAMPLE 6 by substituting (3 -(pyrrolidin- 1- ylmethyl)phenyl)methanamine for 3 -(pyrrolidin- 1 -yl)propan- 1 -amine.
- EXAMPLE 14 N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine Prepared as described in EXAMPLE 6 by substituting N-methyl-3 -(pyrrolidin- 1- yl)propan-l -amine for 3 -(pyrrolidin- l-yl)propan-l -amine.
- EXAMPLE 18 N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dieny loxy)methyl)ethyl)-N-(3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine
- N -methyl- 1 -(3 -(pyrrolidin- 1- ylmethyl)phenyl)methanamine for 3 -(pyrrolidin- 1 -yl)propan- 1 -amine.
- EXAMPLE 2 IB (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 -yl)propane- 1 ,3-diyl dioctadeca-9, 12-dienoate Prepared as described in EXAMPLE 6D by substituting 1-methylpiperazine for 3-(pyrrolidin-l-yl)propan-l -amine and EXAMPLE 21A for l,3-bis((9Z,12Z)-octadeca-9,12- dienyloxy)propan-2-one (EXAMPLE 6C).
- EXAMPLE 24A Prepared as described in EXAMPLE 23 C by substituting pyrrolidine for
- EXAMPLE 25A tert-butyl butane- 1 ,4-diylbis(3-(2,2,2-trifluoroacetamido)propylcarbamate)
- N ⁇ N 1 -(butane- l,4-diyl)dipropane-l,3-diamine 100 ml
- dicholormethane 100 ml
- ethyl 2,2,2-trifluoroacetate 6.17 ml, 51.9 mmol
- dicholormethane 50 ml
- the reaction mixture was cooled in an ice bath, treated with sodium triacetoxyborohydride (0.087 g, 0.409 mmol),, stirred at room temperature for 2 hours, cooled to 0 0 C, quenched with saturated NaHCO 3 and extracted with dichloromethane. The extract was washed with water and brine, dried over Na 2 SO 4 , filtered and concentrated. The concentrate was purified by flash chromatography (Analogix 1 :4 methanol/ethyl acetate/5% NH 4 OH). MS (ESI) m/z 973.8 (M+l) + .
- EXAMPLE 26B 4,4'-((3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propoxy)(phenyl)methylene)bis(methoxybenzene)
- the title compound was prepared as described in EXAMPLE 6D by substituting EXAMPLE 26A 2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)propane-l,3-diol for 2, 2-dimethoxypropane-l, 3-diol (EXAMPLE 6A).
- the crude material was purified by flash silica gel chromatography (hexanes). MS (ESI) m/z 927.2 (M+Na) + , 620.4 (M-DMT+18) + .
- EXAMPLE 26E N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- ⁇ [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl ⁇ propyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine
- the title compound was prepared as described in EXAMPLE 6D by substituting EXAMPLE 26D (3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propanal) for EXAMPLE 6C.
- EXAMPLE 32B was prepared using the procedure described for EXAMPLE 3 IE, substituting EXAMPLE 32A for EXAMPLE 3 ID.
- MS (ESI) m/z 498.5 (M+H) + ; 1 U NMR (300 MHz, CDCl 3 ) ⁇ ppm 8.24 (s, 2H) 3.53-3.70 (m, IH) 3.34-3.53 (m, 6H) 3.07-3.34 (m, 2H) 1.87-2.13 (m, 2H) 1.48-1.67 (m, 4H) 1.16-1.39 (m, 44H) 0.82-0.94 (m, 6H).
- EXAMPLE 32C was prepared using the procedure described for EXAMPLE 3 IF, substituting EXAMPLE 32B for EXAMPLE 3 IE.
- MS (MALDI) m/z 2617.6; 1 H NMR (300 MHz, CDCl 3 ) ⁇ 3.95-4.02 (m, 2H) 3.83-3.92 (m, IH) 3.68-3.72 (m, IH) 3.65 (m, 180H) 3.35- 3.60 (m, 10H) 1.59-1.73 (m, 2H) 1.49-1.60 (m, 4H) 1.18-1.36 (m, 44H) 0.82-0.94 (m, 6H).
- EXAMPLE 33B was prepared using the procedure described for EXAMPLE 32B, substituting EXAMPLE 33A for EXAMPLE 32A.
- MS (ESI) m/z 554.6 (M+H) + ; 1 H NMR (300 MHz, CDCl 3 ) ⁇ ppm 8.12-8.38 (m, 2H) 3.54-3.70 (m, IH) 3.33-3.53 (m, 6H) 3.06-3.33 (m, 2H) 1.84-2.14 (m, 2H) 1.46-1.71 (m, 4H) 1.14-1.37 (m, 52H) 0.81-0.94 (m, 6H).
- EXAMPLE 33C was prepared using the procedure described for EXAMPLE 3 IF, substituting EXAMPLE 33B for EXAMPLE 3 IE.
- MS (MALDI) m/z 2866.7; 1 U NMR (300 MHz, CDCl 3 ) ⁇ ppm 3.98 (s, 2H) 3.84-3.91 (m, IH) 3.60-3.68 (m, 180H) 3.36-3.60 (m, HH) 1.50-1.72 (m, 6H) 1.26 (s, 52H) 0.84-0.92 (m, 6H).
- EXAMPLE 34A was prepared using the same procedure described for EXAMPLE 32A, substituting octadecyl methanesulfonate for tetradecyl methanesulfonate.
- LCMS APCI
- EXAMPLE 34B was prepared using the same procedure described for EXAMPLE 3 IE, substituting EXAMPLE 34A for EXAMPLE 3 ID.
- LCMS m/z 610.9; 1 H NMR (300 MHz, CDCl 3 ) ⁇ 3.08-3.70 (m, 9H) 1.85-2.15 (m, 2H) 1.55 (s, 4H) 1.15-1.37 (m, 60H) 0.84-0.92 (m, 6H).
- EXAMPLE 34C was prepared using the same procedure described for EXAMPLE 3 IF, substituting EXAMPLE 34B for EXAMPLE 3 IE.
- MS (MALDI) m/z 2773.6; 1 U NMR (300 MHz, CDCl 3 ) ⁇ ppm 3.95-4.01 (m, 2H) 3.84-3.91 (m, IH) 3.59-3.70 (m, 180H) 3.27-
- EXAMPLE 32B (100 mg) was dissolved in dichloromethane (1-2 niL) and mPEG- NPC (26.0 mg) was added. Hunig's base (26 mg) was added, and the mixture was stirred overnight at room temperature. The mixture was loaded directly onto a silica gel column (4 g Analogix) and chromatographed (Analogix 280, dichloromethane/methanol, 0-20%) to give EXAMPLE 35.
- EXAMPLE 38 was prepared using the same procedure described for EXAMPLE 3 IF, substituting RAPP 12 2000-35 (Rapp Polymere) for mPEG2000-SCM.
- MS (MALDI) m/z 2584.3; 1 H NMR (300 MHz, CDCl 3 ) ⁇ ppm 6.43-6.61 (m, 2H) 3.60-3.68 (m, 200H) 3.36-3.58 (m, 16H) 2.42-2.57 (m, 4H) 1.49-1.85 (m, 6H) 1.19-1.35 (m, 52H) 0.82-0.92 (m, 6H).
- EXAMPLE 39 was prepared using the same procedure described for EXAMPLE 3 IF, substituting mPEG-NPC (Creative PEGWorks) for mPEG2000-SCM (Laysan Bio, Inc.). MS (MALDI) m/z 2588.5; 1 U NMR (300 MHz, CDCl 3 ) ⁇ ppm 5.14 (m, IH) 4.17-4.26 (m, 3H) 4.01-4.11 (m, IH) 3.83-3.91 (m, IH) 3.60-3.71 (m, 180H) 3.48-3.60 (m, 4H) 3.35-3.44 (m, 5H) 2.23-2.37 (m, 4H) 1.62-1.86 (m, 6H) 1.21-1.37 (m, 40H) 0.83-0.93 (m, 6H).
- EXAMPLE 4OB was prepared using the same procedure described for EXAMPLE 3 IE, substituting EXAMPLE 4OA for 3 ID. MS (ESI) m/z 482.6 (M+H) + .
- EXAMPLE 4OC was prepared using the same procedure described for EXAMPLE 3 IF, substituting EXAMPLE 4OB for EXAMPLE 3 IE.
- MS (MALDI) m/z 2689.0; 1 U NMR (300 MHz, CDCl 3 ) ⁇ ppm 5.09-5.19 (m, IH) 4.17-4.26 (m, 3H) 4.01-4.11 (m, IH) 3.73-3.91 (m, IH) 3.61-3.70 (m, 180H) 3.48-3.60 (m, 4H) 3.35-3.44 (m, 5H) 2.23-2.36 (m, 4H) 1.54- 1.84 (m, 6H) 1.21-1.36 (m, 48H) 0.82-0.93 (m, 6H).
- EXAMPLE 33B (100 mg) and mPEG-COOH (278 mg, PSA-288, Creative PEGWorks) were combined in dichloromethane (2 mL). N 1 -((ethylimino)methylene)-N 3 ,N 3 - dimethylpropane- 1,3 -diamine hydrochloride (346 mg) was added followed by 4- (dimethylamino)pyridine (2 mg). The mixture was stirred overnight at room temperature then loaded directly onto a 4 g silica gel column (Analogix) and purified (Analogix 280, dichloromethane:methanol 0-20%).
- the silica was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65 ⁇ 200g, 2% ethyl acetate/hexanes for six column volumes, then 4% ethyl acetate/hexanes until major product eluted).
- MS (ESI) m/z 512 (M-CH 3 +l).
- the silica gel was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65 ⁇ 200g, 2% ethyl acetate/hexanes for six column volumes, then 4% ethyl acetate/hexanes until the product eluted.
- MS (ESI) m/z 500.4 (M+18) + .
- This EXAMPLE was prepared as described in EXAMPLE 43, substituting hexadecyl methanesulfonate for 1-bromotetradecane in EXAMPLE 43 A.
- 1 H NMR 300 MHz, CDCl 3 ) ⁇ ppm 3.54-3.66 (m, 180H), 3.32-3.49 (m, 9H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.21-1.36 (m, 48H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2614.
- This EXAMPLE was prepared as described in EXAMPLE 43 substituting octadecyl methanesulfonate for 1-bromotetradecane in EXAMPLE 43 A.
- 1 H NMR 300 MHz, CDCl 3 ) ⁇ ppm 3.52-3.66 (m, 180H), 3.32-3.49 (m, 9H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.21-1.36 (m, 52H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2557.
- N-Boc-serinol (1,1-dimethylethyl (2- hydroxy-l-(hydroxymethyl)ethyl)carbamate) (2.0 g) and sodium hydride (1.255 g) in N 5 N- dimethylformamide (50 mL).
- the mixture was cooled using an ice/water bath, and 1- bromohexadecane (7.98 g) was added to it.
- the mixture was heated at 70 0 C overnight, then cooled to room temperature.
- the mixture was cooled to 0 0 C and quenched with a few drops of cold water.
- the mixture was diluted with saturated ammonium chloride (50 mL).
- the aqueous layer was extracted with ethyl acetate, and the extract was washed with brine, dried over Na 2 SO 4 , and concentrated.
- the concentrate was added to a silica gel column and was eluted with ethyl acetate/hexane (1 :9).
- This EXAMPLE was prepared as described in EXAMPLE 49, substituting 1- bromooctadecane hexadecane for 1-bromotetradecane in EXAMPLE 49A.
- 1 H NMR 300 MHz CDCl 3 ) ⁇ ppm 4.14- 4.20 (m, IH), 4.08 (s, 2H), 3.86 -3.89 (t, 4H), 3.71-3.75 (m, 4H), 3.61-3.70 (m, 180H), 3.38 (s, 3H), 1.50-1.56 (m, 4H), 1.20-1.30 (m, 64H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2900.
- N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether EXAMPLE 56 was prepared using the known synthetic route; see: Heyes, J.; Hall, K.; Tailor, V.; Lenz, R.; MacLachlan, I. J. Controlled Release 2006, 112, 280-290.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Cationic lipids, cationic lipid based drug delivery systems, ways to make them and methods of treating diseases using them are disclosed.
Description
CATIONIC LIPIDS AND USES THEREOF
This application claims priority to United States Provisional Application Serial No. 61/045,348, filed April 16, 2008
FIELD OF THE INVENTION This invention pertains to cationic lipids, cationic lipid based drug delivery systems, ways to make them, and methods of treating diseases using them.
BACKGROUND OF THE INVENTION
Through the development of novel delivery formulations, research is now able to focus more on improving efficacy on the therapeutic and clinical efficacious of therapeutic agents such as nucleic acids, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), and small nuclear RNA (snRNA). Such novel delivery formulations will need, for example, to allow for appropriate internalization of the therapeutic agent into the cell, agents sufficient absorption from the site of administration, distribution to various tissues, sufficient residence time and concentration at the sites of action to elicit effective biologic response, in addition to also maintaining it's stability, and size. To this end, many efforts have been made to develop liposome or cationic polymer complexes with polyethylene glycol (PEG) or other neutral or targeting moieties. Ogris et al, Gene Ther. 6, 595-605 (1999).
However, many of the complexes to date have not been found to successfully deliver therapeutic agents. As such, there is a clear need in the art to develop a novel liposomal delivery system that can enhance therapeutic agent efficacy.
SUMMARY OF THE INVENTION
One embodiment of this invention, therefore pertains to a cationic lipid or mixtures thereof, having Formula (I)
wherein
Y2 is a bond, Ci-C8 alkylene, C(O), C(O)O(Ci-C8-alkylene), (C1-C8- alkylene)NHC(O)O(Ci-C8-alkylene), (Ci-C8-alkylene)O, (Ci-C8-alkylene)OC(O)N(Ci-C8 alkylene), or (Ci-C8-alkylene)O(Ci-C8-alkylene);
Y is a bond or C(O);
Y4 is a bond or C(O);
R1 and R2 are each independently H, cycloalkyl, cycloalkenyl or R5; or
R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl or heteroaryl;
one of R3 and R4 is H, and the other is Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 are independently Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 together are CR20R21, wherein R20 is H and R21 is C14-C2o-alkyl, Ci4-C20- alkenyl or (CH2O)-Ci4-C20-alkenyl; or R20 and R21 are independently selected C14-C20-alkyl, Ci4-C20-alkenyl or (CH20)-C14-C2o-alkenyl; or
Y3-R3 and Y4-R4 together are CR20R21; R5 is alkyl, which is unsubstituted or substituted with one or more R6, OR6, SR6,
S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, N R6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6,
C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6 is R7, R8, R9, or R10;
R7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R6A, 0R6A, SR6A, S(O)R6A, SO2R6A, C(0)R6A, C0(0)R6A, 0C(0)R6A, 0C(0)0R6A, NH2, NHR6A, N(R6A)2, NHC(0)R6A, NR6AC(O)R6A, NHS(O)2R6A, N R6AS(O)2R6A, NHC(0)0R6A, NR6AC(O)OR6A, NHC(O)NH2, NHC(0)NHR6A, NHC(O)N(R6A)2, NR6AC(O)NHR6A, NR6AC(O)N(R6A)2, C(O)NH2, C(0)NHR6A, C(O)N(R6A)2, C(O)NHOH, C(0)NH0R6A, C(O)NHSO2R6A, C(O)NR6ASO2R6A, SO2NH2, SO2NHR6A, SO2N(R6A)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6A, C(N)N(R6A)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6A is R7A, R8A, R9A, or R10A;
R7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused
with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH2, NHC(O)NH2, C(O)NH2, C(O)NHOH, SO2NH2, C(O)H, C(O)OH, C(N)NH2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
wherein each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R11, OR11, SR11, S(O)R11, SO2R11, C(O)R11, CO(O)R11, OC(O)R11, OC(O)OR11, NH2, NHR11, N(Rπ)2, NHC(O)R11, NR11C(O)R11, NHS(O)2R11, N R11S(O)2R11, NHC(O)OR11, NR11C(O)OR11, NHC(O)NH2, NHC(O)NHR11, NHC(O)N(R1 %, NR11C(O)NHR11, NRπC(0)N(Rπ)2, C(O)NH2, C(O)NHR11, C(0)N(Rπ)2, C(O)NHOH, C(O)NHOR11, C(O)NHSO2R11, C(O)NR11SO2R11, SO2NH2, SO2NHR11, SO2N(R1 %, C(O)H, C(O)OH, C(N)NH2, C(N)NHR11, C(N)N(R1 %, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R11 is R12, R13, R14 or R15;
R12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R16, OR16, SR16, S(O)2R16, C(O)OH, NH2, NHR16 N(R16)2, C(O)R16, C(O)NH2, C(O)NHR16, C(O)N(R16)2, NHC(O)R16, NR16C(O)R16, NHC(O)OR16, NR16C(O)OR16, OH, F, Cl, Br or I;
R16 is alkyl, alkenyl, alkynyl, or R17;
R . 17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
wherein R12, R13, R14, and R17 are independently unsubstituted or substituted with one or more R18, OR18, SR18, S(O)R18, SO2R18, C(O)R18, CO(O)R18, OC(O)R18, OC(O)OR18, NH2, NHR18, N(R18)2, NHC(O)R18, NR18C(O)R18, NHS(O)2R18, N R18S(O)2R18, NHC(O)OR18, NR18C(O)OR18, NHC(O)NH2, NHC(O)NHR18, NHC(O)N(R18)2, NR18C(O)NHR18, NR18C(O)N(R18)2, C(O)NH2, C(O)NHR18, C(O)N(R18)2, C(O)NHOH, C(O)NHOR18, C(O)NHSO2R18, C(O)NR18SO2R18, SO2NH2, SO2NHR18, SO2N(R18)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR18, C(N)N(R18)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; and
R18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl.
A further embodiment pertains to Cationic-Based Lipid Encapsulation Systems (CaBLES) comprising one or more non-cationic lipids, one or more polyethylene glycol (PEG)-lipid conjugates and one or more cationic lipids having Formula I.
Another embodiment of the present invention is cationic lipids of the present invention (i.e., cationic lipids of Formula I) which can be used in the preparation of either empty liposomes or used to deliver any product (e.g., therapeutic agents including nucleic acids, diagnostic agents, labels or other compounds) to a cell tissue, including cells and tissues in mammals.
In still a further embodiment, Lipid-Based Particles of the present invention are defined as CaBLES which further comprise one or more therapeutic agent(s). Such Lipid- Based Particles can be used to deliver any of a variety of therapeutic agent(s), preferably said therapeutic agent is a nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), antigens, fragments thereof, proteins, peptides, vaccines and small-molecules or mixtures thereof.
A further embodiment pertains to pharmaceutical compositions comprising a Lipid-
Based Particle and a pharmaceutically acceptable carrier.
A further embodiment pertains to a method of treating cancer in a mammal comprising administering thereto a therapeutically acceptable amount of a Lipid-Based Particle. Yet another embodiment pertains to a method of decreasing tumor volume in a mammal comprising administering thereto a therapeutically acceptable amount of a Lipid- Based Particle.
A further embodiment pertains to a method of making Lipid-Based Particles, comprising: (a) mixing the cationic lipid(s), the non-cationic lipid(s) and the PEG-lipid conjugate(s); (b) adding the mixture of step (a) to one or more therapeutic agents; and (c) separating and purifying resulting suspension of step (b).
DESCRIPTION OF THE DRAWINGS
Figures 1-19. In vitro trans fection activity of selected cationic lipids that were formulated as disclosed herein.
DETAILED DESCRIPTION OF THE INVENTION
This invention pertains to in vitro and in vivo delivery of therapeutic agents. In particular, the invention pertains to compositions that allow for delivery of nucleic acids, including but not limited to RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA
(siRNA), small nuclear RNA(snRNA), antigens, fragments thereof, proteins, peptides, and small molecules.
Variable moieties of compounds herein are represented by identifiers (capital letters with numerical and/or alphabetical superscripts) and may be specifically embodied.
It is also meant to be understood that a specific embodiment of a variable moiety may be the same or different as another specific embodiment having the same identifier and that asymmetric divalent moieties are drawn from left to right.
As used in the specification and the appended claims, unless specified to the contrary, the following terms have the meaning indicated:
The term "alkenyl," as used herein, means monovalent, straight or branched chain hydrocarbon moieties having one or more than one carbon-carbon double bonds, such as C2- alkenyl, C3-alkenyl, C4-alkenyl, Cs-alkenyl, Cβ-alkenyl and the like.
The term "Ci-Cβ-alkylene," as used herein, means divalent, saturated, straight or branched chain hydrocarbon moieties bonds, such as Ci-alkylene, C2-alkylene, C3-alkylene, C4-alkylene, Cs-alkylene and Cβ-alkylene.
The terms "alkyl," as used herein, means monovalent, straight or branched chain hydrocarbon moieties such as Ci-alkyl, C2-alkyl, C3-alkyl, C4-alkyl, Cs-alkyl and Cβ-alkyl.
The term "alkynyl," as used herein, means monovalent, straight or branched chain hydrocarbon moieties having one or more than one carbon-carbon triple bonds, such as C2-alkynyl, C3-alkynyl, C4-alkynyl, Cs-alkynyl, Cβ-alkynyl and the like.
The term "Ci-Cs-alkyl" as used herein, means Ci-alkyl, C2-alkyl, C3-alkyl, C4-alkyl,
Cs-alkyl, C6-alkyl, C7-alkyl and C8-alkyl.
The term "C14-C20-alkenyl," as used herein, means Ci4-alkenyl," Ci5- alkenyl," Ci6- alkenyl," Cn- alkenyl," Ci8- alkenyl," Ci9- alkenyl" and C20- alkenyl."
The term "Ci4-C2o-alkyl," as used herein, means Ci4-alkyl," Cis-alkyl," Ci6-alkyl," Cπ-alkyl," C18-alkyl," C19-alkyl" and C20-alkyl."
The term "cycloalkane," as used herein, means saturated cyclic or bicyclic hydrocarbon moieties, such as C3-cycloalkane, C4-cycloalkane, Cs-cycloalkane, Cβ-cycloalkane and the like.
The term "cycloalkyl," as used herein, means monovalent, saturated cyclic and bicyclic hydrocarbon moieties, such as C3-cycloalkyl, C4-cycloalkyl, Cs-cycloalkyl, Cβ-cycloalkyl and the like.
The term "cycloalkene," as used herein, means cyclic and bicyclic hydrocarbon moieties having one or more than one carbon-carbon double bonds, such as Cs-cycloalkene, Cβ-cycloalkene and the like.
The term "cycloalkenyl," as used herein, means monovalent, cyclic hydrocarbon moieties having one or more than one carbon-carbon double bonds, such as C4-cycloalkenyl, C5-cycloalkenyl, Cβ-cycloalkenyl and the like.
The term "heteroarene," as used herein, means a fϊve-membered or six-membered aromatic ring having at least one carbon atom and one or more than one independently selected nitrogen, oxygen or sulfur atom. The heteroarenes of this invention are connected through any adjacent atoms in the ring, provided that proper valences are maintained.
Examples of heteroarenes include, but are not limited to furan, imidazole, isothiazole, isoxazole, oxadiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, thiazole, thiadiazole thiophene, tetrazine, tetrazole, triazine, triazole and the like.
The term "heteroaryl," as used herein, means a monovalent fϊve-membered or six- membered aromatic ring having at least one carbon atom and one or more than one independently selected nitrogen, oxygen or sulfur atom. The heteroaryls of this invention are connected through any carbon atom or any nitrogen atom in the ring, provided that proper valences are maintained. Examples of heteroaryls include, but are not limited to, furanyl, imidazolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazinyl, triazolyl and the like.
The term "heterocycloalkane," as used herein, means cycloalkane having one or two or three CH2 moieties replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties unreplaced or replaced with N and also means cycloalkane having one or two or three CH2 moieties unreplaced or replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties replaced with N.
The term "heterocycloalkene," as used herein, means cycloalkene having one or two or three CH2 moieties replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties unreplaced or replaced with N and also means cycloalkene having one or two or three CH2 moieties unreplaced or replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties replaced with N.
The term "heterocycloalkyl," as used herein, means cycloalkyl having one or two or three CH2 moieties replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties unreplaced or replaced with N and also means cycloalkyl having one or two or three CH2 moieties unreplaced or replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties replaced with N.
The term "heterocycloalkenyl," as used herein, means cycloalkenyl having one or two or three CH2 moieties replaced with independently selected O, S, S(O), SO2 or NH and one or
two CH moieties unreplaced or replaced with N and also means cycloalkenyl having one or two or three CH2 moieties unreplaced or replaced with independently selected O, S, S(O), SO2 or NH and one or two CH moieties replaced with N.
The term "cyclic moiety," as used herein, means benzene, cycloalkane, cycloalkyl, cycloalkene, cycloalkenyl, heteroarene, heteroaryl, heterocycloalkane, heterocycloalkyl, heterocycloalkene, heterocycloalkenyl and phenyl.
The term "DSPC," as used herein, means l^-distearoyl-sn-glycero-S-phosphocholine.
The term, "Choi," as used herein, means cholesterol.
The term, "PEG-Chol," as used herein, means poly(oxy-l,2-ethanediyl)-2000-α-(3β)- cholest-5-en-3-yl-omega-hydroxy. The term, "Pal-PEG-Cera," as used herein, means N-palmitoyl-sphingosine-1-
[succinyl(methoxypolyethylene glycol)-2000] .
The term, "PEG-DMPE," as used herein, means N-(carbonyl- methoxypolyethyleneglycol-2000)-l,2-dimyristoyl-sn-glycero-3-phosphoethanolamine.
The term, "PEG-DPPE," as used herein, means N-(carbonyl- methoxypolyethyleneglycol-2000)-l,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine.
The term, "PEG-DSPE," as used herein, means N-(carbonyl- methoxypolyethyleneglycol-2000)-l,2-distearoyl-sn-glycero-3-phosphoethanolamine.
The term, "PEG-DMG," as used herein, means 1 ,2-dimyristoyl-sn-glycerol- methoxypolyethyleneglycol-2000.
The term, "PEG-DPG," as used herein, means 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-2000.
The term, "PEG-DSG," as used herein, means 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-2000.
The term, "SPC," as used herein, means soybean phosphatidylcholine. The term "MALDI," as used herein, means matrix assisted laser desorption ionization.
The term, "particle," as used herein, means a small object that behaves as a whole unit in terms of its transport and properties.
The term, "nanoparticle," as used herein, means any particle having a diameter of less than 1000 nanometers. In some embodiments, nanoparticles have a diameter of 500 or less. In some embodiments, nanoparticles have a diameter of 200 or less.
The term "nucleic acid" or "polynucleotide" refers to a polymer containing at least two deoxyribonucleotides or ribonucleotides in either single- or double-stranded form. Nucleic acids include nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).
Unless specifically limited, the terms encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Cassol et al. (1992); Rossolini et al., MoI. Cell.
Probes 8:91-98 (1994)). "Nucleotides" contain a sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked together through the phosphate groups. Nucleotides include chemically modified nucleotides as described in, e.g., WO 03/74654.
"Bases" include purines and pyrimidines, which further include natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs, and synthetic derivatives of purines and pyrimidines, which include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides. DNA may be in the form of antisense, plasmid DNA, parts of a plasmid DNA, pre-condensed DNA, product of a polymerase chain reaction (PCR), vectors (Pl, PAC, BAC, YAC, artificial chromosomes), expression cassettes, chimeric sequences, chromosomal DNA, or derivatives of these groups. The term nucleic acid is used interchangeably with gene, plasmid, cDNA, mRNA, and an interfering RNA molecule (e.g. a synthesized siRNA or an siRNA expressed from a plasmid).
The term, "siRNA," as used herein means a small inhibitory RNA, and molecules having endogenous RNA bases or chemically modified nucleotides. The modifications shall not abolish cellular activity, but rather impart increased stability and/or increased cellular potency. Examples of chemical modifications include phosphorothioate groups, T- deoxynucleotide, 2'-OCH3-containing ribonucleotides, 2'-F-ribonucleotides, 2'-methoxyethyl ribonucleotides or a combination thereof.
The term "small molecule," as used herein, means antibiotics, antineoplastics, antiinflammatories, anitivirals, immunomodulators and agents that act upon the respiratory system, the cardiovascular system, the central nervous system or a metabolic pathway involved with dyslipidemia, diabetes or Syndrome X.
Compounds Compounds of this invention may contain asymmetrically substituted carbon atoms in the R or S configuration, wherein the terms "R" and "S" are as defined in Pure Appl. Chem. (1976) 45, 13-10. Compounds having asymmetrically substituted carbon atoms with equal amounts of R and S configurations are racemic at those atoms. Atoms having excess of one configuration over the other are assigned the configuration in excess, preferably an excess of about 85%-90%, more preferably an excess of about 95%-99%, and still more preferably an excess greater than about 99%. Accordingly, this invention is meant to embrace racemic mixtures and relative and absolute diastereoisomers and the compounds thereof.
Compounds of this invention may also contain carbon-carbon double bonds or carbon-nitrogen double bonds in the E or Z configuration, wherein the term "E" represents higher order substituents on opposite sides of the carbon-carbon or carbon-nitrogen double bond and the term "Z" represents higher order substituents on the same side of the carbon- carbon or carbon-nitrogen double bond as determined by the Cahn-Ingold-Prelog Priority Rules. The compounds of this invention may also exist as a mixture of "E" and "Z" isomers.
One embodiment of this invention, therefore pertains to a cationic lipid or mixtures thereof, having Formula (I)
(I) wherein
Y2 is a bond, C1-C8 alkylene, C(O), C(O)O(Ci-C8-alkylene), (C1-C8- alkylene)NHC(O)O(Ci-C8-alkylene), (Ci-C8-alkylene)O, (Ci-C8-alkylene)OC(O)N(Ci-C8- alkylene), or (Ci-C8-alkylene)O(Ci-C8-alkylene);
Y is a bond or C(O);
Y4 is a bond or C(O);
R1 and R2 are each independently H, cycloalkyl, cycloalkenyl or R5; or
R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl or heteroaryl;
one of R3 and R4 is H, and the other is Ci4-C2o-alkenyl or C14-C20-alkyl; or
R3 and R4 are independently Ci4-C2o-alkenyl or C14-C20-alkyl; or
R3 and R4 together are CR20R21, wherein R20 is H and R21 is C14-C2o-alkyl, Ci4-C20- alkenyl or (CH2θ)-Ci4-C2o-alkenyl; or R20 and R21 are independently selected Ci4-C2o-alkyl, Ci4-C20-alkenyl or (CH20)-C14-C2o-alkenyl; or
Y3-R3 and Y4-R4 together are CR20R21;
R5 is alkyl, which is unsubstituted or substituted with one or more R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, N R6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2,
NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6 is R7, R8, R9, or R10;
R7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R , 10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R6A, 0R6A, SR6A, S(O)R6A, SO2R6A, C(0)R6A, C0(0)R6A, 0C(0)R6A, 0C(0)0R6A,
NH2, NHR6A, N(R6A)2, NHC(O)R6A, NR6AC(O)R6A, NHS(O)2R6A, N R6AS(O)2R6A, NHC(O)OR6A, NR6AC(O)OR6A, NHC(O)NH2, NHC(O)NHR6A, NHC(O)N(R6A)2, NR6AC(O)NHR6A, NR6AC(O)N(R6A)2, C(O)NH2, C(O)NHR6A, C(O)N(R6A)2, C(O)NHOH, C(0)NH0R6A, C(O)NHSO2R6A, C(O)NR6ASO2R6A, SO2NH2, SO2NHR6A, SO2N(R6A)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6A, C(N)N(R6A)2, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6A is R7A, R8A, R9A, or R10A;
R7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH2, NHC(O)NH2, C(O)NH2, C(O)NHOH, SO2NH2, C(O)H, C(O)OH,
C(N)NH2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
wherein each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R11, OR11, SR11, S(O)R11, SO2R11, C(O)R11, CO(O)R11, OC(O)R11, OC(O)OR11, NH2, NHR11, N(Rπ)2, NHC(O)R11, NR11C(O)R11, NHS(O)2R11, N R11S(O)2R11, NHC(O)OR11, NR11C(O)OR11, NHC(O)NH2, NHC(O)NHR11, NHC(O)N(R11^, NR11C(O)NHR11, NRnC(0)N(Rn)2, C(O)NH2,
C(O)NHR11, C(O)N(Rπ)2, C(O)NHOH, C(O)NHOR11, C(O)NHSO2R11, C(O)NR11SO2R11, SO2NH2, SO2NHR11, SO2N(R1 %, C(O)H, C(O)OH, C(N)NH2, C(N)NHR11, C(N)N(R1 %, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; R11 is R12, R13, R14 or R15;
R12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R16, OR16, SR16, S(O)2R16, C(O)OH, NH2, NHR16 N(R16)2, C(O)R16, C(O)NH2, C(O)NHR16, C(O)N(R16)2, NHC(O)R16, NR16C(O)R16, NHC(O)OR16, NR16C(O)OR16, OH, F, Cl, Br or I;
R , 16 is alkyl, alkenyl, alkynyl, or R iv.
R17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
wherein R12, R13, R14, and R17 are independently unsubstituted or substituted with one or more R18, OR18, SR18, S(O)R18, SO2R18, C(O)R18, CO(O)R18, OC(O)R18, OC(O)OR18, NH2, NHR18, N(R18)2, NHC(O)R18, NR18C(O)R18, NHS(O)2R18, N R18S(O)2R18, NHC(O)OR18, NR18C(O)OR18, NHC(O)NH2, NHC(O)NHR18, NHC(O)N(R18)2,
NR18C(O)NHR18, NR18C(O)N(R18)2, C(O)NH2, C(O)NHR18, C(O)N(R18)2, C(O)NHOH, C(O)NHOR18, C(O)NHSO2R18, C(O)NR18SO2R18, SO2NH2, SO2NHR18, SO2N(R18)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR18, C(N)N(R18)2, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; and
R18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl.
Another embodiment of this invention, therefore pertains to a cationic lipid or mixtures thereof, having Formula (I)
(I) wherein
Y2 is a bond, C1-C8 alkylene, or C(O)O(C i-Cg-alkylene;
Y3 is a bond or C(O);
Y4 is a bond or C(O);
1 2 5
R and R are each independently H, or R ; or
R and R , with the nitrogen to which they are attached, are heterocycloalkyl;
3 4 one of R and R is H, and the other is C14-C2o-alkenyl; or
3 4
R and R are independently C14-C2o-alkenyl;
R is alkyl, which is unsubstituted or substituted with one or more R , NHR , or
N(R°)2,
10
R6 is R7, R , R , or R
R is phenyl which is unfused;
R is heteroaryl which is unfused;
R is heterocycloalkyl which is unfused;
R is alkyl, which is unsubstituted or substituted with NHR ;
R is R ;
R is alkyl, which is substituted with NH2;
wherein each foregoing cyclic moiety is independently unsubstituted or substituted
11 with R
„ 11 • „ 14 „ 15
R is R or R ;
R 14 is heterocycloalkylwhich is unfused;
R is alkyl, which is unsubstituted or substituted with R , or N(R )2;
R is alkyl, or R ;
R is heteroaryl, or heterocycloalkyl;
1 7 1 R wherein R is unsubstituted or substituted with R ; and R18 is alkyl.
In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond. In another embodiment of Formula (I), Y2 is Ci-Cs alkylene, and Y3 and Y4 are each a bond. In another embodiment of Formula (I), Y2 is a bond and Y3 and Y4 are each C(O). In another embodiment of Formula (I), Y2 is Ci-Cg alkylene, and Y3 and Y4 are each C(O). In another embodiment of Formula (I), Y2 is C(O)O(C i-Cs-alkylene), and Y3 and Y4 are each a bond. In another embodiment of Formula (I), Y2 is C(O)O(Ci-Cg-alkylene), and Y3 and Y4 are each C(O).
In one embodiment of Formula (I), R1 and R2 are H. In another embodiment of Formula (I), one of R1 and R2 is H, and the other is R5. In another embodiment of Formula (I), R1 and R2 are each independently R5. In another embodiment of Formula (I), R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl. In another embodiment of Formula (I), R1 and R2, with the nitrogen to which they are attached, are pyrrolidinyl, piperazinyl, morpholinyl, piperidinyl, azetidinyl, or aziridinyl.
In one embodiment of Formula (I), one of R3 and R4 is H, and the other is C14-C20- alkenyl. In another embodiment of Formula (I), R3 and R4 are independently Ci4-C2o-alkenyl.
In one embodiment of Formula (I), R5 is unsubstituted. In another embodiment of Formula (I), R5 is substituted with one or more R6. In another embodiment of Formula (I), R5 is substituted with NHR6 or N(R6)2.
In one embodiment of Formula (I), R6 is R7, R8, R9, or R10. In another embodiment of Formula (I), R6 is R7. In another embodiment of Formula (I), R6 is R8. In another embodiment of Formula (I), R6 is R9. In another embodiment of Formula (I), R6 is R10. In another embodiment of Formula (I), R , 10 is alkyl which is unsubstituted. In another embodiment of Formula (I), R10 is alkyl which is substituted. In another embodiment of Formula (I), R10 is alkyl which is substituted with NHR 6A .
In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2 are R5; R5 is alkyl and is unsubstituted; and R3 and R4 are
independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R8; R8 is heteroaryl which is unfused; and R3 and R4 are independently Ci4-C2o-alkenyl. In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R9; R9 is heterocycloalkyl which is unfused; and R3 and R4 are independently C14-C20-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with N(R6)2; R6 is R10; R10 is alkyl which is unsubstituted; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R9; R9 is heterocycloalkyl which is unfused; and R3 and R4 are independently C14-C20-alkenyl; wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; R3 and R4 are independently Ci4-C2o-alkenyl; wherein the heterocycloalkyl is substituted R15; R15 is alkyl which is substituted with N(R16)2; and R16 is alkyl. In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2 are H; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R7; R7 is phenyl which is unfused; wherein the phenyl is substituted with R11; R11 is R15; R15 is alkyl which is substituted with R16; R16 is R17; and R17 is heterocycloalkyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2 are R5; R5 is alkyl wherein one alkyl is unsubstituted and the other is substituted with R6; R6 is R9; R9 is heterocycloalkyl which is unfused; and R3 and R4 are independently C14-C20-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R7; R7 is phenyl which is unfused; wherein the phenyl is substituted with R11; R11 is R15; R15 is alkyl which is substituted with R16; R16 is R17; R17 is heterocycloalkyl which is unfused; wherein the heterocycloalkyl is substituted with R18; and R18 is alkyl and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2 are R5; R5 is alkyl wherein one alkyl is unsubstituted and the other is substituted with N(R6)2; R6 is R10, R10 is alkyl which is unsubstituted; and R3 and R4 are independently Ci4-C2o-alkenyl. In
another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2 are R5; each R5 is alkyl wherein one alkyl is unsubstituted and one alkyl is substituted with R6; R6 is R7; R7 is phenyl which is unfused; wherein the phenyl is substituted with R11; R11 is R15; R15 is alkyl which is substituted with R16; R16 is R17; R17 is heterocycloalkyl which is unfused; and R3 and R4 are independently Ci4-C2o-alkenyl. In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl; wherein the heterocycloalkyl is substituted with R11, R11 is R15; R15 is alkyl which is substituted with R16; R16 is R17; and R17 is heteroaryl which is unfused. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R8; R8 is heteroaryl which is unfused; wherein the heteroaryl is substituted with R11; R11 is R14; R14 is heterocycloalkyl which is unfused; and R3 and R4 are independently Ci4-C2o-alkenyl. In one embodiment of Formula (I), Y2 is a bond; Y3 and Y4 are each C(O); R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl; wherein the heterocycloalkyl is substituted with R11, R11 is R15, and R15 is alkyl which is unsubstituted. In one embodiment of Formula (I), Y2 is a bond; Y3 and Y4 are each C(O); R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R8; R8 is heterocycloalkyl which is unfused; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2 is Ci-Cs alkylene, Y3 and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl wherein the heterocycloalkyl is substituted with alkyl which is unsubstituted. In another embodiment of Formula (I), Y2 is Ci-Cs alkylene, Y3 and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with NHR6; R6 is R10; R10 is alkyl which is substituted with NHR6A; R6A is R10A, R10A is alkyl which is substituted with NH2; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2 is Ci-Cs alkylene, Y3 and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R9; R9 is heterocycloalkyl; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2 is Ci-Cs alkylene, Y3 and Y4 are each a bond; R1 and R2 are R5; R5 is alkyl which is unsubstituted; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2 is C(O)O(Ci-C8-alkylene), Y3 and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is
substituted with N(R6)2; R6 is R10; R10 is alkyl which is unsubstituted; and R3 and R4 are independently Ci4-C2o-alkenyl. In another embodiment of Formula (I), Y2 is C(O)O(Ci-Cs- alkylene), Y3 and Y4 are each a bond; R1 is H; R2 is R5; R5 is alkyl and is substituted with R6; R6 is R9; R9 is heterocycloalkyl which is unfused; and R3 and R4 are independently C14-C20- alkenyl. In one embodiment of Formula (I), Y2, Y3, and Y4 are each a bond; R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl; and R3 and R4 are independently C14-C20-alkenyl; wherein the heterocycloalkyl is substituted with R11, R11 is R15; R15 is alkyl which is substituted with R16; R16 is R17; and R17 is heterocycloalkyl which is unfused.
Still another embodiment pertains to compounds of Formula I which are l-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9 ,12- dienyloxy)methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)piperazine; 4-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)morpholine; N-(2-((9Z, 12Z)- octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)ethane- 1 ,2-diamine; N-(2-(4- methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3-(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazin- 1 -yl)propyl)amine; 1 ,3-bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-amine; N-(( 1 -methylpiperidin-4- yl)methyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-(pyrrolidin-l-ylmethyl)benzyl)amine; N- methyl-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine; N-(3-((4-methylpiperazin- 1 - yl)methyl)benzyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-
dienyloxy)methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N,N'-trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)propane- 1 ,3 -diamine; N-methyl-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N- (3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-( 1 H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazine; N- (2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)- N-((2-pyrrolidin- 1 -ylpyridin-3-yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 - yl)propane-l,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)propyl)piperazine; 1 -(3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca- 9,12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine; N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate; 3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2- (dimethylamino)ethylcarbamate; 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)- octadeca-9, 12-dienyloxy]methyl} ethyl)-4-(2 -pyrrolidin- 1 -ylethyl)piperazine; N-(2-[(9Z)- octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3 -pyrrolidin- 1 - ylpropyl)amine, l-(2-[(9Z,12Z)-octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-9,12- dienyloxy]methyl} ethyl)azetidine, and 2-methyl- 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12-dienyloxy]methyl} ethyl)aziridine.
Still another embodiment pertains to compounds of Formula I which are chosen from
N-(3-( 1 H-imidazol- 1 -yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy)methyl)ethyl)amine, N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine,and N-
(2-( 1 H-imidazol-4-yl)ethy l)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine.
Still another embodiment pertains to compounds of Formula I which are chosen from 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine, N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-pyrrolidin-l-ylpropyl)amine, N,N-dimethyl-N'- (2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane- 1 ,2-diamine, N-(2-(4-methylpiperazin- 1 -yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine, 1,3- bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-amine, N-(( 1 -methylpiperidin-4-yl)methyl)- N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, N-methyl-N-(2-((9Z, 12Z)-octadeca-9 , 12-dienyloxy)- 1 - (((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine, N- methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)amine, N,N,N'-trimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)propane- 1,3- diamine, l-methyl-4-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine, 1 -(3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)- octadeca-9,12-dienyloxy )methyl)propyl)pyrrolidine, N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)- octadeca-9, 12-dienyloxy] - 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}ethyl)amino]propyl}butane-l,4-diamine, 3-[(9Z,12Z)-octadeca-9,12- dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-
(diethylamino)ethylcarbamate, 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate, 3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2- (dimethylamino)ethylcarbamate, 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)- octadeca-9,12-dienyloxy]methyl}ethyl)-4-(2-pyrrolidin-l-ylethyl)piperazine, and N-(2-[(9Z)- octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3-pyrrolidin- 1 - ylpropyl)amine.
Particles, Cationic-Based Lipid Encapsulation Systems, and Lipid-Based Particles
A further embodiment pertains to particles comprising one or more cationic lipid(s) having Formula I.
A further embodiment pertains to particles comprising one or more cationic lipid(s) having Formula I and one or more therapeutic agents. Preferably said therapeutic agent is a nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), antigens, fragments thereof, proteins, peptides, and small-molecules.
A further embodiment pertains to nanoparticles comprising one or more cationic lipid(s) having Formula I.
A further embodiment pertains to nanoparticles comprising one or more cationic lipid(s) having Formula I and one or more therapeutic agents. Preferably said therapeutic agent is a nucleic acid encoded with a product of interest, including but not limited to, RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), antigens, fragments thereof, proteins, peptides, and small-molecules.
A still further embodiment pertains to Cationic-Based Lipid Encapsulation Systems (CaBLES) comprising non-cationic lipid(s), polyethylene glycol (PEG)-lipid conjugate(s) and cationic lipid(s) having Formula I.
A still further embodiment pertains to Cationic-Based Lipid Encapsulation Systems (CaBLES) comprising one or more cationic lipids having Formula (I)
Y2 is a bond, C1-C8 alkylene, C(O), C(O)O(d-C8-alkylene), (C1-C8- alkylene)NHC(O)O(Ci-C8-alkylene), (Ci-C8-alkylene)O, (Ci-C8-alkylene)OC(O)N(Ci-C8- alkylene), or (Ci-C8-alkylene)O(Ci-C8-alkylene);
Y3 is a bond or C(O);
Y4 is a bond or C(O);
R1 and R2 are each independently H, cycloalkyl, cycloalkenyl or R5; or
R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl or heteroaryl;
one of R3 and R4 is H, and the other is Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 are independently Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 together are CR20R21, wherein R20 is H and R21 is C14-C2o-alkyl, Ci4-C20- alkenyl or (CH20)-Ci4-C2o-alkenyl; or R20 and R21 are independently selected C14-C20-alkyl, Ci4-C20-alkenyl or (CH20)-C14-C2o-alkenyl; or
Y3-R3 and Y4-R4 together are CR20R 21
R5 is alkyl, which is unsubstituted or substituted with one or more R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, N R6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2,
SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6 is R7, R8, R9, or R10;
R7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R6A, 0R6A, SR6A, S(O)R6A, SO2R6A, C(0)R6A, C0(0)R6A, 0C(0)R6A, 0C(0)0R6A, NH2, NHR6A, N(R6A)2, NHC(0)R6A, NR6AC(O)R6A, NHS(O)2R6A, N R6AS(O)2R6A, NHC(0)0R6A, NR6AC(O)OR6A, NHC(O)NH2, NHC(0)NHR6A, NHC(O)N(R6A)2, NR6AC(O)NHR6A, NR6AC(O)N(R6A)2, C(O)NH2, C(0)NHR6A, C(O)N(R6A)2, C(O)NHOH, C(0)NH0R6A, C(O)NHSO2R6A, C(O)NR6ASO2R6A, SO2NH2, SO2NHR6A, SO2N(R6A)2,
C(O)H, C(O)OH, C(N)NH2, C(N)NHR6A, C(N)N(R6A)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6A is R7A, R8A, R9A, or R10A;
R , 7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused
with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH2, NHC(O)NH2, C(O)NH2, C(O)NHOH, SO2NH2, C(O)H, C(O)OH, C(N)NH2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
wherein each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R11, OR11, SR11, S(O)R11, SO2R11, C(O)R11, CO(O)R11, OC(O)R11, OC(O)OR11, NH2, NHR11, N(Rπ)2, NHC(O)R11, NR11C(O)R11, NHS(O)2R11, N R11S(O)2R11, NHC(O)OR11, NR11C(O)OR11, NHC(O)NH2, NHC(O)NHR11, NHC(O)N(R1 %, NR11C(O)NHR11, NRπC(0)N(Rπ)2, C(O)NH2, C(O)NHR11, C(0)N(Rπ)2, C(O)NHOH, C(O)NHOR11, C(O)NHSO2R11, C(O)NR11SO2R11, SO2NH2, SO2NHR11, SO2N(R1 %, C(O)H, C(O)OH, C(N)NH2, C(N)NHR11, C(N)N(R1 %, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R11 is R12, R13, R14 or R15;
R12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R16, OR16, SR16, S(O)2R16, C(O)OH, NH2, NHR16 N(R16)2, C(O)R16, C(O)NH2, C(O)NHR16, C(O)N(R16)2, NHC(O)R16, NR16C(O)R16, NHC(O)OR16, NR16C(O)OR16, OH, F, Cl, Br or I;
R16 is alkyl, alkenyl, alkynyl, or R17;
R . 17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
wherein R12, R13, R14, and R17 are independently unsubstituted or substituted with one or more R18, OR18, SR18, S(O)R18, SO2R18, C(O)R18, CO(O)R18, OC(O)R18, OC(O)OR18, NH2, NHR18, N(R18)2, NHC(O)R18, NR18C(O)R18, NHS(O)2R18, NR18S(O)2R18, NHC(O)OR18, NR18C(O)OR18, NHC(O)NH2, NHC(O)NHR18, NHC(O)N(R18)2, NR18C(O)NHR18, NR18C(O)N(R18)2, C(O)NH2, C(O)NHR18, C(O)N(R18)2, C(O)NHOH, C(O)NHOR18, C(O)NHSO2R18, C(O)NR18SO2R18, SO2NH2, SO2NHR18, SO2N(R18)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR18, C(N)N(R18)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; and
R18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl;
one or more non-cationic lipids, and one or more polyethylene glycol-lipid conjugates.
In still a further embodiment, Lipid-Based Particles of the present invention are defined as CaBLES which further comprise one or more therapeutic agent(s). Therapeutic agents that can be delivered with CaBLES include RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), chimeric nucleic acids, an antigen, fragments thereof, a protein, a peptide, small-molecules, or mixtures thereof. This invention describes delivery of RNA's such as small inhibitory RNA or microRNA. The nucleic acid can have varying lengths (10-200 bps) and structures (hairpins, single/double strands, bulges, nicks/gaps, mismatches) and processed in the cell to provide active gene silencing. In certain embodiments of this invention, a double-stranded siRNA (dsRNA) can have the same number of nucleotides on each strand (blunt ends) or asymmetric ends (overhangs). The overhang of 1-2 nucleotides can be present on the sense and/or the antisense strand, as well as present on the 5'- and/ or the 3 '-ends of a given strand.
In certain embodiments, the CaBLES and/or the Lipid-Based Particle formulation can have a ligand attached, such as a targeting ligand or a chelating moiety for complexing calcium. Preferably, after the ligand is attached, the cationic lipids of Formula I maintains a positive charge. In certain instances, the ligand that is attached has a positive charge. Suitable ligands include, but are not limited to, a compound or device with a reactive functional group and include lipids, amphipathic lipids, carrier compounds, bioaffinity compounds, biomaterials, biopolymers, biomedical devices, analytically detectable compounds, therapeutically active compounds, enzymes, peptides, proteins, antibodies, immune stimulators, radiolabels, fluorogens, biotin, drugs, haptens, DNA, RNA, polysaccharides, liposomes, virosomes, micelles, immunoglobulins, functional groups, other targeting moieties, or toxins.
In another embodiment, a targeting ligand (moiety) is conjugated to the periphery of the PEG-lipid in a Lipid-Based Particle formulation. Preferably, the targeting moiety is a ligand of a receptor present on a target cell and the receptor is preferentially expressed by the target cell versus a non-target cell. In one aspect, the targeting moiety is an antibody or fragments thereof. In one aspect, the targeting moiety is a small protein, or peptide. In another aspect, the targeting moiety is a small-molecule.
In still a further embodiment, these Lipid-Based Particles are nanoparticles and have mean diameter sizes of about 50-300 nm, of which 50-250 nm is preferred and 50-200 nm is most preferred.
A further embodiment pertains to CaBLES or Lipid-Base Particles wherein the PEG lipid conjugate is about 0.1-20 weight/weight % of total lipid in particle, the non-cationic lipid is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the cationic lipid is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to CaBLES or Lipid-Base Particles wherein the PEG lipid conjugate is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the cationic lipid is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to Lipid-Base Particles wherein the Lipid-Based Particle comprises, cholesterol, DSPC, N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
A further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to Lipid-Base Particles wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, the PEG-lipid conjugate is N-(2,3-
dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
A further embodiment pertains to Lipid-Base Particles, wherein the N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the N-(3 -( 1 H-imidazol- 1 -yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to a pharmaceutical composition wherein the Lipid- Based Particle comprises, cholesterol, DSPC, N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine, one or more PEG-lipid conjugates and one or more nucleic acids.
A further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to Lipid-Base Particles, wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N,N-dimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2- diamine, the PEG-lipid conjugate is N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
A further embodiment pertains to Lipid-Base Particles, wherein the N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and
the N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)ethyl)ethane-l,2-diamine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to a pharmaceutical composition wherein the Lipid-
Based Particle comprises, cholesterol, DSPC, N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
A further embodiment pertains to a pharmaceutical composition wherein the (PEG)- lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to Lipid-Base Particles, wherein the non-cationic lipids are cholesterol and DSPC, the cationic lipid is N-(2-(lH-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, the PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and the therapeutic agent is siRNA.
A further embodiment pertains to Lipid-Base Particles, wherein the N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, the DSPC is about 1-30 weight/weight % of total lipid in particle, the cholesterol is about 5-45 weight/weight % of total lipid in particle, and the N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
A further embodiment pertains to Lipid-Based Particles, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula (I), to one or more therapeutic agents is between about 50:1 to about 5:1.
A further embodiment pertains to Lipid-Based Particles, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula (I), to one or more therapeutic agents is between about 30:1 to about 10:1.
In still a further embodiment, functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula 1 effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 50- 100%.
In still a further embodiment, functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of Formula 1 effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 80- 100%.
In still a further embodiment, functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids chosen from 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9 ,12- dienyloxy)methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)piperazine; 4-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)morpho line; N-(2-((9Z, 12Z)- octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine; N-(2-(4- methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-
dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3-(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)piperazin- 1 -yl)propyl)amine; 1 ,3-bis((9Z, 12Z)-octadeca-9, 12-dienyloxy)propan-2-amine; N-(( 1 -methylpiperidin-4- yl)methyl)-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)ethyl)amine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-(pyrrolidin-l-ylmethyl)benzyl)amine; N- methyl-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine; N-(3-((4-methylpiperazin- 1 - yl)methyl)benzyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N,N'-trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)propane- 1 ,3 -diamine; N-methyl-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N- (3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-( 1 H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazine; N- (2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)- N-((2-pyrrolidin- 1 -ylpyridin-3-yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 - yl)propane-l,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)propyl)piperazine; 1 -(3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca- 9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine; N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate; 3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2- (dimethylamino)ethylcarbamate; 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)- octadeca-9, 12-dienyloxy]methyl} ethyl)-4-(2 -pyrrolidin- 1 -ylethyl)piperazine; and N-(2-[(9Z)-
octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3-pyrrolidin- 1 - ylpropyl)amine, effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 50-100%.
In still a further embodiment, functional CaBLES comprising one or more (PEG)- lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids chosen from 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(3-( 1 H-imidazol- 1 - yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9 ,12- dienyloxy)methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)piperazine; 4-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)morpholine; N-(2-((9Z, 12Z)- octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine; N-(2-(4- methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3-(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazin- 1 -yl)propyl)amine; 1 ,3-bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-amine; N-(( 1 -methylpiperidin-4- yl)methyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-(pyrrolidin-l-ylmethyl)benzyl)amine; N- methyl-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine; N-(3-((4-methylpiperazin- 1 - yl)methyl)benzyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N,N'-trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)propane- 1 ,3 -diamine; N-methyl-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-
(3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-( 1 H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)piperazine; N- (2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)- N-((2 -pyrrolidin- 1 -ylpyridin-3-yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 - yl)propane-l,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)propyl)piperazine; 1 -(3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca- 9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine; N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate; 3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2- (dimethylamino)ethylcarbamate; 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)- octadeca-9, 12-dienyloxy]methyl} ethyl)-4-(2 -pyrrolidin- 1 -ylethyl)piperazine; and N-(2-[(9Z)- octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3 -pyrrolidin- 1 - ylpropyl)amine, effectively encapsulate nucleic acids, such as siRNA, with efficiencies from about 80-100%.
A further embodiment pertains to examples of non-cationic lipids that are useful for the practice of this invention which include, but are not limited to, cholesterol, cholesterol sulfate, ceramide, sphingomyelin, lecithin, sphingomyelin, egg sphingomyelin, milk sphingomyelin; egg phosphatidylcholine, hydrogenated egg phosphatidylcholine, hydrogenated soybean phosphatidylethanolamine, egg phosphatidylethanolamine, hydrogenated soybean phosphatidylcholine, soybean phosphatidylcholine, 1 ,2-dilauroyl-sn- glycerol, 1 ,2-dimyristoyl-sn-glycerol, 1 ,2-dipalmitoyl-sn-glycerol, 1 ,2-distearoyl-sn-glycerol, 1 ,2-dilauroyl-sn-glycero-3-phosphatidic acid, 1 ,2-dimyristoyl-sn-glycero-3-phosphatidic acid, l,2-dipalmitoyl-sn-glycero-3-phosphatidic acid, l,2-distearoyl-sn-glycero-3- phosphatidic acid, l^-diarachidoyl-sn-glycero-S-phosphocholine, l,2-dilauroyl-sn-glycero-3-
phosphocholine, 1 ^-dimyristoyl-sn-glycero-S-phosphocholine, dioleoylphosphatidylcholine, 1 ^-dierucoyl-sn-glycero-S-phosphocholine, 1 -myristoyl-l-palmitoyl-sn-glycero-S- phosphocholine, 1 -myristoyl^-stearoyl-sn-glycero-S -phosphocholine, 1 -palmitoyl-2- myristoyl-sn-glycero-3 -phosphocholine, l-palmitoyl-2-stearoyl-sn-glycero-3- phosphocholine, l-stearoyl-l-myristoyl-sn-glycero-S -phosphocholine, l-stearoyl-2- palmitoyl-sn-glycero-3-phosphocholine, l-myristoyl-l-oleoyl-sn-glycero-S-phosphocholine, 1 -palmitoyl-l-oleoyl-sn-glycero-S-phosphocholine; 1 -stearoyl-l-oleoyl-sn-glycero-S- phosphocholine, 1 -myristoyl-l-lyso-sn-glycero-S-phosphocholine, 1 -palmitoyl-2-lyso-sn- glycero-3 -phosphocholine, 1 -stearoyl-2-lyso-sn-glycero-3 -phosphocholine, 1 ,2-dipalmitoyl- sn-glycero-O-ethyl-3-phosphocholine, l,2-dipalmitoyl-sn-glycero-3-phosphocholine; 1,2- distearoyl-sn-glycero-3 -phosphocholine; l-palmitoyl-2-linoleoyl-sn-glycero-3- phosphocholine, dioleoylphosphatidylethanolamine, palmitoyloleoyl- phosphatidylethanolamine, dioleoylphosphatidylglycerol, 1 ,2-dilauroyl-sn-glycero-3- phosphoethanolamine, 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, 1 ,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine, l,2-distearoyl-sn-glycero-3-phosphoethanolamine, 1,2- dioleoyl-sn-glycero-3-phosphoethanolamine, l,2-dilauroyl-sn-glycero-3-phosphoglycerol, l^-dimyristoyl-sn-glycero-S-phosphoglycerolJ^-dimyristoyl-sn-glycero-S-phospho-sn-l- glycerol, 1 ,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1 ,2-distearoyl-sn-glycero-3- phosphoglycero, 1 ,2-distearoyl-sn-glycero-3-phospho-sn- 1 -glycerol, 1 -palmitoyl-2-oleoyl-sn- glycero-3-phosphoglycerol, l-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 1,2- dipalmitoyl-sn-glycero-3-phospho-L-serine, l,2-dimyristoyl-sn-glycero-3-phospho-L-serine, 1 ,2-dipalmitoyl-sn-glycero-3-phospho-L-serine, 1 ,2-distearoyl-sn-glycero-3-phospho-L- serine, l,2-dioleoyl-sn-glycero-3-phospho-L-serine, and l-palmitoyl-2-oleoyl-sn-glycero-3- phospho-L-serine or a mixture thereof.
A further embodiment pertains to examples of PEG-lipid conjugates that are useful for the practice of this invention which include, but are not limited to, 2-(tetradecyloxy)-l- ((tetradecyloxy)methyl)ethyl 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-(hexadecyloxy)- 1 -
((hexadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,
96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-(octadecyloxy)- 1 - ((octadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane- 1 ,3-diyl ditetradecanoate, 2- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-1 ,3-diyl dipalmitate, 2- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-l,3-diyl distearate, N-(2-(hexadecyloxy)- 1 -((hexadecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, N-(2-(tetradecyloxy)- 1 - ((tetradecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide,N-(2-(octadecyloxy)- 1 - ((octadecyloxy)methyl)ethyl)- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, 6-oxo-2-(tetradecanoyloxy)- 8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,95,9 8,101,104,107,110,113,116,119,122,125, 128,131, 134,137,140,143-hexatetracontaoxa-5- azatetratetracontahect-1-yl myristate, N-[3,4-bis(tetradecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, N-[3,4-bis(hexadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan-139-amide, N-[3,4-bis(octadecyloxy)butyl]- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide,
3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115, 119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,182- hexatetracontaoxatrioctacontahect- 1 -yl 3 ,4-bis(tetradecyloxy)butylcarbamate, 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(hexadecyloxy)butylcarbamate, 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(octadecyloxy)butylcarbamate, N-[3 ,A- bis(hexadecyloxy)butyl]-N'-
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylsuccinamide, 6-oxo-2-(tetradecanoyloxy)- 7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,9 7,100,103,106,109,112,115,118,121, 124,127,130,133, 136,139,142,145-heptatetracontaoxa-5- azahexatetracontahect-1-yl myristate, 6-oxo-2-(palmitoyloxy)-
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,9 7,100,103,106,109,112,115,118,121, 124,127,130,133, 136,139,142,145-heptatetracontaoxa-5- azahexatetracontahect-1-yl palmitate,
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 4- { [3 ,4-bis(hexadecyloxy)butyl]amino } -A- oxobutanoate, 6-oxo-2-(palmitoyloxy)- 8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,95,9 8,101,104,107,110,113,116,119,122,125, 128,131, 134,137,140,143-hexatetracontaoxa-5- azatetratetracontahect- 1 -y 1 palmitate, 1 ^-distearoyl-sn-glycerol-methoxypolyethyleneglycol- 750, 1 ,2-dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-750, 1 ,2-dipalmitoyl-sn-
glycerol-methoxypolyethyleneglycol-VSO, poly(oxy-l,2-ethanediyl)-2000-α-(3β)-cholest-5- en-3-yl-omega-hydroxy, l^-dipalmitoyl-sn-glycerol-methoxypolyethyleneglycol-SOOO, poly(oxy-l,2-ethanediyl)-5000-α-(3β)-cholest-5-en-3-yl-omega-hydroxy, (2S,3R,E)-3- hydroxy-2-stearamidooctadec-4-enyl polyethyleneglycol-2000 methyl ether succinate, (2S,3R,E)-3-hydroxy-2-icosanamidooctadec-4-enyl polyethyleneglycol-2000 methyl ether succinate, N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, N-(carbonylmethoxypolyethyleneglycol-750)-l,2-dimyristoyl-sn-glycero- phosphatidylethanolamine, N-(carbonyl-methoxypolyethyleneglycol-750)- 1 ,2-distearoyl-sn- glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-750)-l,2- dipalmitoyl-sn-glycero-3 -phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 2000)-l,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl- methoxypolyethyleneglycol-2000)-l,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, N- (carbonyl-methoxypolyethyleneglycol-2000)-l,2-distearoyl-sn-glycero-3- phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-2000)-dioleoyl- phosphatidylethanolamine, l,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol-2000, 1,2- dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-2000, 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-2000, mPEG-2000-cholesterol, octanoyl-mPEG-2000-ceramide, palmitoyl-mPEG-2000-ceramide, N-(carbonyl-methoxypolyethyleneglycol-5000)- 1 ,2- dimyristoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 500O)-1 ,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl- methoxypolyethyleneglycol-5000)- 1 ,2-distearoyl-sn-glycero-3 -phosphoethanolamine, 1 ,2- dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-5000, 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-5000, 1,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol- 5000, mPEG-5000-cholesterol, octanoyl-mPEG-5000-ceramide, palmitoyl-mPEG-5000- ceramide and mixtures thereof.
PEG-lipid conjugates are described in, e.g., US App. No. 61/095,748, which was filed on September 10, 2008 and is incorporated herein by reference.
PEG-lipid conjugates are described in, e.g., US App. No. 61/095,769, which was filed on September 10, 2008 and is incorporated herein by reference.
A still further embodiment pertains to combinations of polyethylene glycol (PEG)- lipid conjugates which are useful for the practice of this invention, wherein two PEG-lipid conjugates are chosen from N-(carbonyl-methoxypolyethyleneglycol-2000)-l,2-dimyristoyl- sn-glycero-3-phosphoethanolamine , N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2- dipalmitoyl-sn-glycero-3 -phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 200O)-1 ,2-distearoyl-sn-glycero-3-phosphoethanolamine, 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-2000, 1,2-dimyristoyl-sn-glycerol-methoxypolyethyleneglycol- 2000, l,2-dipalmitoyl-sn-glycerol-methoxypolyethyleneglycol-2000, and N-[3,4- bis(hexadecyloxy)butyl] - 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan-139-amide.
A still further embodiment pertains to combinations of polyethylene glycol (PEG)- lipid conjugates which are useful for the practice of this invention, wherein at least one of the PEG-lipid conjugates is chosen from N-(carbonyl-methoxypolyethyleneglycol-2000)- 1,2- dimyristoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 2000)-l,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-distearoyl-sn-glycero-3 -phosphoethanolamine, 1 ,2- distearoyl-sn-glycerol-methoxypolyethyleneglycol-2000, 1 ,2-dimyristoyl-sn-glycerol- methoxypolyethyleneglycol-2000, 1,2-dipalmitoyl-sn-glycerol-methoxypolyethyleneglycol- 2000, and N-[3,4-bis(hexadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan-139-amide.
A still further embodiment pertains to combinations of polyethylene glycol (PEG)- lipid conjugates which are useful for the practice of this invention and include 1,2- dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-2000 and N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-distearoyl-sn-glycero-3 -phosphoethanolamine, 1 ,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol-2000 and N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, N- [3 ,4-bis(hexadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan-139-amide and N-(carbonyl-methoxypolyethyleneglyco 1-2000)- 1,2- distearoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol- 2000)-l,2-distearoyl-sn-glycero-3-phosphoethanolamine and N-(carbonyl- methoxypolyethyleneglycol-2000)-l ,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1 ,2- dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-2000 and 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-2000, 1,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol- 2000 and l,2-dimyristoyl-sn-glycerol-methoxypolyethyleneglycol-2000; N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine and N-(carbonyl-methoxypolyethyleneglycol-2000)-l,2-distearoyl-sn-glycero-3- phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2-dimyristoyl-sn- glycero-3-phosphoethanolamine and N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2- dipalmitoyl-sn-glycero-3-phosphoethanolamine, and N-[3,4-bis(hexadecyloxy)butyl]- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan-139-amide and l,2-distearoyl-sn-glycerol-methoxypolyethyleneglycol-2000.
In still a further embodiment, the cationic lipids of the CaBLES and Lipid-Based Particles comprises about 2 to about 60 weight/weight percent of total lipid in the particle.
In still a further embodiment, the non-cationic lipids of the CaBLES and Lipid-Based Particles comprises about 5 to about 90 weight/weight percent of total lipid in the particle.
In still a further embodiment, the PEG-lipid conjugates of the CaBLES and Lipid-
Based Particles comprises from 0.1 to about 20 weight/weight percent of total lipid in the particle.
Methods of Treatment and Methods of Making Lipid-Based Particles
Still another embodiment pertains to a method of treating cancer in a mammal comprising administering thereto a Lipid-Based Particle.
Still another embodiment comprises methods of treating cancer in a mammal comprising administering thereto a Lipid-Based Particle comprising one or more cationic lipids having Formula (I)
(I),
wherein
Y2 is a bond, Ci-C8 alkylene, C(O), C(O)O(Ci-C8-alkylene), (C1-C8- alkylene)NHC(O)O(Ci-C8-alkylene), (Ci-C8-alkylene)O, (Ci-C8-alkylene)OC(O)N(Ci-C8 alkylene), or (Ci-C8-alkylene)O(Ci-C8-alkylene);
Y is a bond or C(O);
Y4 is a bond or C(O);
R1 and R2 are each independently H, cycloalkyl, cycloalkenyl or R5; or
R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl or heteroaryl;
one of R3 and R4 is H, and the other is Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 are independently Ci4-C2o-alkenyl or C14-C20-alkyl; or
R3 and R4 together are CR20R21, wherein R20 is H and R21 is C14-C2o-alkyl, Ci4-C20- alkeny 1l oorr ((CCHH2200))--CCii44--CC22oo--aallkkeennyyll;; oorr RR2200 aarnd R21 are independently selected Ci4-C2o-alkyl, Ci4-C20-alkenyl or (CH20)-C14-C2o-alkenyl;
or
Y3-R3 and Y4-R4 together are CR20R21;
R5 is alkyl, which is unsubstituted or substituted with one or more R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, N R6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6 is R7, R8, R9, or R10;
R7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R6A, OR6A, SR6A, S(O)R6A, SO2R6A, C(O)R6A, CO(O)R6A, OC(O)R6A, OC(O)OR6A, NH2, NHR6A, N(R6A)2, NHC(O)R6A, NR6AC(O)R6A, NHS(O)2R6A, N R6AS(O)2R6A, NHC(O)OR6A, NR6AC(O)OR6A, NHC(O)NH2, NHC(O)NHR6A, NHC(O)N(R6A)2, NR6AC(O)NHR6A, NR6AC(O)N(R6A)2, C(O)NH2, C(O)NHR6A, C(O)N(R6A)2, C(O)NHOH, C(0)NH0R6A, C(O)NHSO2R6A, C(O)NR6ASO2R6A, SO2NH2, SO2NHR6A, SO2N(R6A)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6A, C(N)N(R6A)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6A is R7A, R8A, R9A, or R10A;
R7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH2, NHC(O)NH2, C(O)NH2, C(O)NHOH, SO2NH2, C(O)H, C(O)OH, C(N)NH2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
wherein each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R11, OR11, SR11, S(O)R11, SO2R11, C(O)R11, CO(O)R11, OC(O)R11, OC(O)OR11, NH2, NHR11, N(Rπ)2, NHC(O)R11, NR11C(O)R11, NHS(O)2R11, N R11S(O)2R11, NHC(O)OR11, NR11C(O)OR11, NHC(O)NH2,
NHC(O)NHR11, NHC(O)N(R1 %, NR11C(O)NHR11, NRnC(0)N(Rn)2, C(O)NH2, C(O)NHR11, C(0)N(Rπ)2, C(O)NHOH, C(O)NHOR11, C(O)NHSO2R11, C(O)NR11SO2R11, SO2NH2, SO2NHR11, SO2N(R1 %, C(O)H, C(O)OH, C(N)NH2, C(N)NHR11, C(N)N(R1 %, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R11 is R12, R13, R14 or R15;
R12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R16, OR16, SR16, S(O)2R16, C(O)OH, NH2, NHR16 N(R16)2, C(O)R16, C(O)NH2, C(O)NHR16, C(O)N(R16)2, NHC(O)R16, NR16C(O)R16, NHC(O)OR16, NR16C(O)OR16, OH, F, Cl, Br or I;
R16 is alkyl, alkenyl, alkynyl, or R17;
R17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
wherein R12, R13, R14, and R17 are independently unsubstituted or substituted with one or more R18, OR18, SR18, S(O)R18, SO2R18, C(O)R18, CO(O)R18, OC(O)R18, OC(O)OR18,
NH2, NHR18, N(R18)2, NHC(O)R18, NR18C(O)R18, NHS(O)2R18, N R18S(O)2R18, NHC(O)OR18, NR18C(O)OR18, NHC(O)NH2, NHC(O)NHR18, NHC(O)N(R18)2, NR18C(O)NHR18, NR18C(O)N(R18)2, C(O)NH2, C(O)NHR18, C(O)N(R18)2, C(O)NHOH, C(O)NHOR18, C(O)NHSO2R18, C(O)NR18SO2R18, SO2NH2, SO2NHR18, SO2N(R18)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR18, C(N)N(R18)2, CNOH, CNOCH3, OH, (0), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl; and
one or more non-cationic lipids, one or more polyethylene glycol-lipid conjugates and one or more therapeutic agents.
A further embodiment pertains to a method of making Lipid-Based Particles, comprising: (a) mixing the cationic lipid(s), the non-cationic lipid(s) and the PEG-lipid conjugate(s); (b) adding the mixture of step (a) to one or more therapeutic agents; and (c) separating and purifying resulting suspension of step (b).
A further embodiment pertains to a method of making Lipid-Based Particles wherein the therapeutic agent is warmed to about 60° C prior to the addition of the mixture of step (a) via needle injection.
Pharmaceutical Compositions and Methods of Administration
Therapeutically effective amounts of Lipid-Based Particles of this invention depend on recipient of treatment, disease treated and severity thereof, composition comprising it, time of administration, route of administration, duration of treatment, potency, rate of clearance and whether or not another drug is co-administered. The amount of Lipid-Based Particles of this invention used to make compositions to be administered daily to a patient in a single dose or in divided doses is from about 0.001 to about 200 mg/kg body weight.
Single dose compositions contain these amounts or a combination of submultiples thereof.
One embodiment pertains to a pharmaceutical composition comprising one or more (PEG)-lipid conjugates, one or more non-cationic lipids, one or more cationic lipids of Formula 1 , one or more therapeutic agents, and a pharmaceutically acceptable excipient.
Lipid-Based Particles of this invention may be administered, for example, bucally, ophthalmically, orally, osmotically, parenterally (intramuscularly, intraperintoneally intrasternally, intravenously, subcutaneously), rectally, topically, transdermally, vaginally and intraarterially as well as by intraarticular injection, infusion, and placement in the body, such as, for example, the vasculature.
Lipid-Based Particles may be administered with or without an excipient. Excipients include, but are not limited to, encapsulators and additives such as absorption accelerators, antioxidants, binders, buffers, coating agents, coloring agents, diluents, disintegrating agents, emulsifiers, extenders, fillers, flavoring agents, humectants, lubricants, perfumes, preservatives, propellants, releasing agents, sterilizing agents, sweeteners, solubilizers, wetting agents, mixtures thereof and the like.
Excipients for preparation of compositions comprising Lipid-Based Particles to be administered orally include, but are not limited to, agar, alginic acid, aluminum hydroxide, benzyl alcohol, benzyl benzoate, 1,3-butylene glycol, carbomers, castor oil, cellulose, cellulose acetate, cocoa butter, corn starch, corn oil, cottonseed oil, cross-povidone, diglycerides, ethanol, ethyl cellulose, ethyl laureate, ethyl oleate, fatty acid esters, gelatin, germ oil, glucose, glycerol, groundnut oil, hydroxypropylmethyl celluose, isopropanol, isotonic saline, lactose, magnesium hydroxide, magnesium stearate, malt, mannitol, monoglycerides, olive oil, peanut oil, potassium phosphate salts, potato starch, povidone, propylene glycol, Ringer's solution, safflower oil, sesame oil, sodium carboxymethyl cellulose, sodium phosphate salts, sodium lauryl sulfate, sodium sorbitol, soybean oil, stearic acids, stearyl fumarate, sucrose, surfactants, talc, tragacanth, tetrahydrofurfuryl alcohol, triglycerides, water, mixtures thereof and the like. Excipients for preparation of compositions comprising a compound having formula (I) to be administered ophthalmically or orally include, but are not limited to, 1,3-butylene glycol, castor oil, corn oil, cottonseed oil, ethanol, fatty acid esters of sorbitan, germ oil, groundnut oil, glycerol, isopropanol, olive oil, polyethylene glycols, propylene glycol, sesame oil, water, mixtures thereof and the like.
Excipients for preparation of compositions comprising a compound having formula (I) to be administered osmotically include, but are not limited to, chlorofluorohydrocarbons, ethanol, water, mixtures thereof and the like. Excipients for preparation of compositions comprising a compound having formula (I) to be administered parenterally include, but are not limited to, 1,3-butanediol, castor oil, corn oil, cottonseed oil, dextrose, germ oil, groundnut oil, liposomes, oleic acid, olive oil, peanut oil, Ringer's solution, safflower oil, sesame oil, soybean oil, U.S.P. or isotonic sodium chloride solution, water, mixtures thereof and the like. Excipients for preparation of compositions comprising a compound having formula (I) to be administered rectally or vaginally include, but are not limited to, cocoa butter, polyethylene glycol, wax, mixtures thereof and the like.
The pharmaceutical composition and the method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above-mentioned pathological conditions.
Combination Therapy
The present invention further provides methods of using a compound, formulation, or composition of the invention in combination with one or more additional active agents.
Lipid-Based Particles are expected to be useful when used with: alkylating agents, angiogenesis inhibitors, antibodies, antimetabolites, antimitotics, antiproliferatives, aurora kinase inhibitors, apoptosis promoters (for example, Bcl-xL, Bcl-w and BfI-I) inhibitors, Bcr-Abl kinase inhibitors, BiTE (Bi-Specifϊc T cell Engager) antibodies, biologic response modifiers, cyclin-dependent kinase inhibitors, cell cycle inhibitors, cyclooxygenase-2 inhibitors, DVD's, leukemia viral oncogene homolog (ErbB2) receptor inhibitors, growth factor inhibitors, heat shock protein (HSP)-90 inhibitors, histone deacetylase (HDAC) inhibitors, hormonal therapies, immunologicals, inhibitors of apoptosis proteins (IAP's) intercalating antibiotics, kinase inhibitors, mammalian target of rapamycin inhibitors, micro RNA' s mitogen-activated extracellular signal-regulated kinase inhibitors, multivalent binding proteins, non-steroidal anti-inflammatory drugs (NSAIDs), poly ADP (adenosine diphosphate)-ribose polymerase (PARP) inhibitors, platinum chemotherapeutics, polo-like kinase (PIk) inhibitors, proteosome inhibitors, purine analogs, pyrimidine analogs, receptor
tyrosine kinase inhibitors, retinoids/deltoids plant alkaloids, small inhibitory ribonucleic acids (siRNA's), topoisomerase inhibitors, combinations thereof and the like.
A BiTE antibody is a bi-specific antibody that directs T-cells to attach cancer cells by simultaneously binding the two cells. The T-cell then attacks the target cancer cell. Exemplary BiTE antibodies include adecatumumab (Micromet MT201), blinatumomab (Micromet MT103) and the like.
SiRNA's are molecules having endogenous RNA bases or chemically modified nucleotides. The modifications shall not abolish cellular activity, but rather impart increased stability and/or increased cellular potency. Examples of chemical modifications include phosphorothioate groups, 2'-deoxynucleotide, 2'-OCH3-containing ribonucleotides, 2'-F- ribonucleotides, 2'-methoxyethyl ribonucleotides or a combination thereof. The siRNA can have varying lengths (10-200 bps) and structures (hairpins, single/double strands, bulges, nicks/gaps, mismatches) and processed in the cell to provide active gene silencing. In certain embodiments, a double-stranded siRNA (dsRNA) can have the same number of nucleotides on each strand (blunt ends) or asymmetric ends (overhangs). The overhang of 1-2 nucleotides can be present on the sense and/or the antisense strand, as well as present on the 5'- and/ or the 3 '-ends of a given strand.
Multivalent binding proteins are binding proteins comprising two or more antigen binding sites. The multivalent binding protein is preferably engineered to have the three or more antigen binding sites and is generally not a naturally occurring antibody. The term "multispecific binding protein" means a binding protein capable of binding two or more related or unrelated targets. Dual variable domain (DVD) binding proteins are tetravalent or multivalent binding proteins binding proteins comprising two or more antigen binding sites. Such DVDs may be monospecific, i.e., capable of binding one antigen or multispecific, i.e., capable of binding two or more antigens. DVD binding proteins comprising two heavy chain DVD polypeptides and two light chain DVD polypeptides are referred to as DVD Ig. Each half of a DVD Ig comprises a heavy chain DVD polypeptide, a light chain DVD polypeptide, and two antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of 6 CDRs involved in antigen binding per antigen binding site.
Alkylating agents include altretamine, AMD-473, AP-5280, apaziquone, bendamustine, brostallicin, busulfan, carboquone, carmustine (BCNU), chlorambucil, CLORETAZINE® (laromustine, VNP 4010 IM), cyclophosphamide, decarbazine, estramustine, fotemustine, glufosfamide, ifosfamide, KW-2170, lomustine (CCNU), mafosfamide, melphalan, mitobronitol, mitolactol, nimustine, nitrogen mustard N-oxide, ranimustine, temozolomide, thiotepa, TREANDA (bendamustine), treosulfan, rofosfamide and the like.
Angiogenesis inhibitors include endothelial-specific receptor tyrosine kinase (Tie-2) inhibitors, epidermal growth factor receptor (EGFR) inhibitors, insulin growth factor-2 receptor (IGFR-2) inhibitors, matrix metalloproteinase-2 (MMP-2) inhibitors, matrix metalloproteinase-9 (MMP-9) inhibitors, platelet-derived growth factor receptor (PDGFR) inhibitors, thrombospondin analogs, vascular endothelial growth factor receptor tyrosine kinase (VEGFR) inhibitors and the like.
Antimetabolites include ALIMT A® (metrexed disodium, LY231514, MTA),
5-azacitidine, XELODA (capecitabine), carmofur, LEUSTAT (cladribine), clofarabine, cytarabine, cytarabine ocfosfate, cytosine arabinoside, decitabine, deferoxamine, doxifluridine, eflornithine, EICAR (5-ethynyl-l-β -D-ribofuranosylimidazole-4- carboxamide), enocitabine, ethnylcytidine, fludarabine, 5-fluorouracil alone or in combination with leucovorin, GEMZAR (gemcitabine), hydroxyurea,
ALKERAN (melphalan), mercaptopurine, 6-mercaptopurine riboside, methotrexate, mycophenolic acid, nelarabine, nolatrexed, ocfosfate, pelitrexol, pentostatin, raltitrexed, Ribavirin, triapine, trimetrexate, S-I, tiazofurin, tegafur, TS-I, vidarabine, UFT and the like.
Bcl-2 proteins inhibitors include AT-IOl ((-)gossypol), GENASENSE® (G3139 or oblimersen (Bcl-2-targeting antisense oligonucleotide)), IPI-194, IPI-565, N-(4-(4-((4'- chloro( 1 , 1 '-biphenyl)-2-yl)methyl)piperazin- 1 -yl)benzoyl)-4-((( 1 R)-3 -(dimethylamino)- 1 - ((phenylsulfanyl)methyl)propyl)amino)-3-nitrobenzenesulfonamide) (ABT-737), N-(4-(4-((2- (4-chlorophenyl)-5 ,5 -dimethyl- 1 -cyclohex- 1 -en- 1 -yl)methyl)piperazin- 1 -yl)benzoyl)-4- ((( 1 R)-3 -(morpholin-4-yl)- 1 -((phenylsulfanyl)methy l)propyl)amino)-3 - ((trifluoromethyl)sulfonyl)benzenesulfonamide (ABT-263), GX-070 (obatoclax) and the like.
Bcr-Abl kinase inhibitors include DASATINIB® (BMS-354825), GLEEVEC® (imatinib) and the like.
CDK inhibitors include AZD-5438, BMI-1040, BMS-032, BMS-387, CVT-2584, flavopyridol, GPC-286199, MCS-5A, PD0332991, PHA-690509, seliciclib (CYC-
202, R-roscovitine), ZK-304709 and the like.
COX-2 inhibitors include ABT-963, ARCOXIA® (etoricoxib), BEXTRA® (valdecoxib), BMS347070, CELEBREX® (celecoxib), COX- 189 (lumiracoxib), CT-3, DERAMAXX® (deracoxib), JTE-522, 4-methyl-2-(3 ,4-dimethylphenyl)- 1 -(4- sulfamoylphenyl-lH-pyrrole), MK-663 (etoricoxib), NS-398, parecoxib, RS-57067, SC-58125, SD-8381, SVT-2016, S-2474, T-614, VIOXX® (rofecoxib) and the like.
EGFR inhibitors include ABX-EGF, anti-EGFR immunoliposomes, EGF-vaccine, EMD-7200, ERBITUX® (cetuximab), HR3, IgA antibodies, IRESSA® (gefitinib),
TARCEVA® (erlotinib or OSI-774), TP-38, EGFR fusion protein, TYKERB® (lapatinib) and the like.
ErbB2 receptor inhibitors include CP-724-714, CI-1033 (canertinib), HERCEPTIN® (trastuzumab), TYKERB® (lapatinib), OMNITARG® (2C4, petuzumab), TAK- 165 , GW-572016 (ionafarnib), GW-282974, EKB-569, PI- 166, dHER2 (HER2 vaccine), APC-8024 (HER-2 vaccine), anti-HER/2neu bispecific antibody, B7.her2IgG3, AS HER2 trifunctional bispecfic antibodies, mAB AR-209, mAB 2B- 1 and the like.
Histone deacetylase inhibitors include depsipeptide, LAQ-824, MS-275, trapoxin, suberoylanilide hydroxamic acid (SAHA), TSA, valproic acid and the like.
HSP-90 inhibitors include 17-AAG-nab, 17-AAG, CNF-101, CNF-1010, CNF-2024, 17-DMAG, geldanamycin, IPI-504, KOS-953, MYCOGRAB® (human recombinant antibody to HSP-90), NCS-683664, PU24FC1, PU-3, radicicol, SNX-2112, STA-9090 VER49009 and the like.
Inhibitors of apoptosis proteins include ApoMab (a fully human affinity-matured IgGl monoclonal antibody), antibodies that target TRAIL or death receptors (e.g., pro- apoptotic receptor agonists DR4 and DR5), conatumumab, ETR2-ST01, GDCO 145, (lexatumumab), HGS-1029, LBY-135, PRO-1762 and tratuzumab. MEK inhibitors include ARRY-142886, ARRY-438162 PD-325901, PD-98059 and the like.
mTOR inhibitors include AP-23573, CCI-779, everolimus, RAD-OOl, rapamycin, temsirolimus and the like.
Non-steroidal anti-inflammatory drugs include AMIGESIC (salsalate), DOLOBID (difiunisal), MOTRIN® (ibuprofen), ORUDIS® (ketoprofen), RELAFEN® (nabumetone),
FELDENE (piroxicam), ibuprofen cream, ALEVE (naproxen) and NAPROSYN (naproxen), VOLTAREN® (diclofenac), INDOCIN® (indomethacin), CLINORIL® (sulindac), TOLECTIN® (tolmetin), LODINE® (etodolac), TORADOL® (ketorolac), DAYPRO® (oxaprozin) and the like.
PDGFR inhibitors include C-451, CP-673, CP-868596 and the like.
Platinum chemotherapeutics include cisplatin, ELOXATIN (oxaliplatin) eptaplatin, lobaplatin, nedaplatin, PARAPLATIN (carboplatin), satraplatin and the like.
Polo-like kinase inhibitors include BI-2536 and the like.
Thrombospondin analogs include ABT-510, ABT-567, TSP- 1 and the like.
VEGFR inhibitors include AVASTIN® (bevacizumab), ABT-869, AEE-788, ANGIOZYME™ (a ribozyme that inhibits angiogenesis (Ribozyme Pharmaceuticals (Boulder, CO.) and Chiron, (Emeryville, CA)) , axitinib (AG- 13736), AZD-2171, CP-547,632, IM-862, MACUGEN (pegaptamib), NEXAVAR® (sorafenib, BAY43-9006), pazopanib (GW-786034), vatalanib (PTK-787, ZK-222584), SUTENT® (sunitinib, SU- 11248), VEGF trap, ZACTIMA™ (vandetanib, ZD-6474) and the like.
Antibiotics include intercalating antibiotics aclarubicin, actinomycin D, amrubicin, annamycin, adriamycin, BLENOXANE (bleomycin), daunorubicin, CAELYX or
MYOCET (liposomal doxorubicin), elsamitrucin, epirbucin, glarbuicin, ZAVEDOS (idarubicin), mitomycin C, nemorubicin, neocarzinostatin, peplomycin, pirarubicin, rebeccamycin, stimalamer, streptozocin, VALSTAR (valrubicin), zinostatin and the like.
Topoisomerase inhibitors include aclarubicin, 9-aminocamptothecin, amonafide, amsacrine, becatecarin, belotecan, BN-80915, CAMPTOSAR (irinotecan hydrochloride), camptothecin, CARDIOXANE (dexrazoxine), diflomotecan, edotecarin, ELLENCE or PHARMORUBICIN (epirubicin), etoposide, exatecan, 10-hydroxycamptothecin, gimatecan, lurtotecan, mitoxantrone, orathecin, pirarbucin, pixantrone, rubitecan, sobuzoxane, SN-38, tafluposide, topotecan and the like.
Antibodies include AVASTIN (bevacizumab), CD40-specifϊc antibodies, chTNT- 1/B, denosumab, ERBITUX® (cetuximab), HUMAX-CD4® (zanolimumab), IGFlR-specifϊc antibodies, lintuzumab, PANOREX® (edrecolomab), RENCAREX® (WX G250),
RITUXAN (rituximab), ticilimumab, trastuzimab and and the like.
Hormonal therapies include ARIMIDEX (anastrozole), AROMASIN (exemestane), arzoxifene, CASODEX (bicalutamide), CETROTIDE (cetrorelix), degarelix, deslorelin, DESOPAN (trilostane), dexamethasone, DROGENIL , (flutamide), EVISTA® (raloxifene), AFEMA™ (fadrozole), FARESTON® (toremifene), FASLODEX®
(fulvestrant), FEMARA (letrozole), formestane, glucocorticoids, HECTOROL
(doxercalciferol), RENAGEL (sevelamer carbonate), lasofoxifene, leuprolide acetate, MEGACE® (megesterol), MIFEPREX® (mifepristone), NILANDR0N™ (nilutamide),
NOLVADEX® (tamoxifen citrate), PLENAXIS™ (abarelix), prednisone, PROPECIA®
(finasteride), rilostane, SUPREFACT (buserelin), TRELSTAR (luteinizing hormone releasing hormone (LHRH)), VANT AS® (Histrelin implant), VETORYL® (trilostane or modrastane), ZOLADEX (fosrelin, goserelin) and the like.
Deltoids and retinoids include seocalcitol (EB 1089, CB 1093), lexacalcitrol (KH 1060), fenretinide, PANRETIN® (aliretinoin), ATRAGEN® (liposomal tretinoin), TARGRETIN® (bexarotene), LGD- 1550 and the like.
PARP inhibitors include ABT-888, olaparib, KU-59436, AZD-2281, AG-014699,
BSI-201, BGP-15, INO-1001, ONO-2231 and the like.
Plant alkaloids include, but are not limited to, vincristine, vinblastine, vindesine, vinorelbine and the like.
Proteasome inhibitors include VELC ADE® (bortezomib), MG 132, NPI-0052, PR-171 and the like.
Examples of immunologicals include interferons and other immune-enhancing agents. Interferons include interferon alpha, interferon alpha-2a, interferon alpha-2b, interferon beta, interferon gamma- Ia, ACTIMMUNE (interferon gamma- Ib), or interferon gamma-nl,
(R) combinations thereof and the like. Other agents include ALF AFERONE ,(IFN-α), BAM- 002 (oxidized glutathione), BEROMUN® (tasonermin), BEXXAR® (tositumomab),
CAMPATH (alemtuzumab), CTLA4 (cytotoxic lymphocyte antigen 4), decarbazine, denileukin, epratuzumab, GRANOCYTE (lenograstim), lentinan, leukocyte alpha interferon, imiquimod, MDX-OlO (anti-CTLA-4), melanoma vaccine, mitumomab, molgramostim, MYLOTARG™ (gemtuzumab ozogamicin), NEUPOGEN (filgrastim), Onco VAC-CL, OVAREX® (oregovomab), pemtumomab (Y-muHMFGl), PROVENGE®
(sipuleucel-T), sargaramostim, sizofilan, teceleukin, THERACYS (Bacillus Calmette- Guerin), ubenimex, VIRULIZIN (immunotherapeutic, Lorus Pharmaceuticals), Z-IOO (Specific Substance of Maruyama (SSM)), WF-IO (Tetrachlorodecaoxide (TCDO)), PROLEUKIN® (aldesleukin), ZADAXIN® (thymalfasin), ZENAP AX® (daclizumab), ZEVALIN® (90Y-Ibritumomab tiuxetan) and the like.
Biological response modifiers are agents that modify defense mechanisms of living organisms or biological responses, such as survival, growth, or differentiation of tissue cells
to direct them to have anti-tumor activity and include include krestin, lentinan, sizofϊran, picibanil PF-3512676 (CpG-8954), ubenimex and the like.
Pyrimidine analogs include cytarabine (ara C or Arabinoside C), cytosine arabinoside, doxifluridine, FLUDARA® (fludarabine), 5-FU (5-fluorouracil), floxuridine, GEMZAR® (gemcitabine), TOMUDEX® (ratitrexed), TROXATYL™ (triacetyluridine troxacitabine) and the like.
Purine analogs include LANVIS® (thioguanine) and PURI-NETHOL® (mercaptopurine) .
Antimitotic agents include batabulin, epothilone D (KOS-862), N-(2-((4- hydroxyphenyl)amino)pyridin-3 -yl)-4-methoxybenzenesulfonamide, ixabepilone (BMS 247550), paclitaxel, TAXOTERE® (docetaxel), PNU100940 (109881), patupilone, XRP-9881 (larotaxel), vinflunine, ZK-EPO (synthetic epothilone) and the like.
Compounds of this invention can also be used as radiosensitizeser that enhance the efficacy of radiotherapy. Examples of radiotherapy include external beam radiotherapy, teletherapy, brachtherapy and sealed, unsealed source radiotherapy and the like.
Additionally, compounds having Formula I may be combined with other chemptherapeutic agents such as ABRAXANE™ (ABI-007), ABT- 100 (farnesyl transferase inhibitor), ADVEXIN® (Ad5CMV-p53 vaccine), ALTOCOR® or MEVACOR® (lovastatin), AMPLIGEN® (poly Lpoly C12U, a synthetic RNA), APTOS YN® (exisulind), AREDIA® (pamidronic acid), arglabin, L-asparaginase, atamestane (l-methyl-3,17-dione-androsta-l,4- diene), AVAGE (tazarotene), AVE-8062 (combreastatin derivative) BEC2 (mitumomab), cachectin or cachexin (tumor necrosis factor), canvaxin (vaccine), CEAVAC (cancer vaccine), CELEUK® (celmoleukin), CEPLENE® (histamine dihydrochloride), CERVARIX®
(human papillomavirus vaccine), CHOP (C: CYTOXAN (cyclophosphamide); H: ADRIAMYCIN® (hydroxy doxorubicin); O: Vincristine (ONCOVIN®); P: prednisone), CYP AT™ (cyproterone acetate), combrestatin A4P, DAB(389)EGF (catalytic and translocation domains of diphtheria toxin fused via a His-Ala linker to human epidermal
growth factor) or TransMID-107R™ (diphtheria toxins), dacarbazine, dactinomycin, 5,6- dimethylxanthenone-4-acetic acid (DMXAA), eniluracil, EVIZON™ (squalamine lactate), DIMERICINE® (T4N5 liposome lotion), discodermolide, DX-8951f (exatecan mesylate), enzastaurin, EPO906 (epithilone B), GARDASIL (quadrivalent human papillomavirus (Types 6, 11, 16, 18) recombinant vaccine), GASTRIMMUNE®, GENASENSE®, GMK
(ganglioside conjugate vaccine), GVAX (prostate cancer vaccine), halofuginone, histerelin, hydroxycarbamide, ibandronic acid, IGN-101, IL-13-PE38, IL-13-PE38QQR (cintredekin besudotox), IL-13-pseudomonas exotoxin, interferon-α, interferon-γ, JUNO V AN™ or MEP ACT™ (mifamurtide), lonafarnib, 5, 10-methylenetetrahydro folate, miltefosine (hexadecylphosphocholine), NEOVASTAT®(AE-941 ), NEUTREXIN® (trimetrexate
CR) (fϊ) glucuronate), NIPENT (pentostatin), ONCONASE (a ribonuclease enzyme), ONCOPHAGE® (melanoma vaccine treatment), ONCOVAX® (IL-2 Vaccine), ORATHECIN™ (rubitecan), OSIDEM® (antibody-based cell drug), OVAREX® MAb (murine monoclonal antibody), paditaxel, PAND IMEX™ (aglycone saponins from ginseng comprising 20(S)protopanaxadiol (aPPD) and 20(S)protopanaxatriol (aPPT)), panitumumab,
PANVAC -VF (investigational cancer vaccine), pegaspargase, PEG Interferon A,
CR) CR) phenoxodiol, procarbazine, rebimastat, REMOVAB (catumaxomab), REVLIMID (lenalidomide), RSRl 3 (efaproxiral), SOMATULINE® LA (lanreotide), SORIAT ANE® (acitretin), staurosporine (Streptomyces staurospores), talabostat (PTlOO), TARGRETIN (bexarotene), TAXOPREXIN® (DHA-paclitaxel), TELCYTA® (canfosfamide, TLK286), temilifene, TEMOD AR® (temozolomide), tesmilifene, thalidomide, THERATOPE® (STn- KLH), thymitaq (2-amino-3,4-dihydro-6-methyl-4-oxo-5-(4-pyridylthio)quinazoline dihydrochloride), TNFERADE™ (adenovector: DNA carrier containing the gene for tumor necrosis factor-α), TRACLEER or ZAVESCA (bosentan), tretinoin (Retin-A), tetrandrine, TRISENOX® (arsenic trioxide), VIRULIZIN®, ukrain (derivative of alkaloids from the
® greater celandine plant), vitaxin (anti-alphavbeta3 antibody), XCYTRIN (motexafm gadolinium), XINLAY™ (atrasentan), XYOTAX™ (paclitaxel poliglumex), YONDELIS®
CR) (Ϊ?)
(trabectedin), ZD-6126, ZINECARD (dexrazoxane), ZOMETA (zolendronic acid), zorubicin and the like.
Cationic-Based Lipid Encapsulation Systems (CaBLES) and Lipid-Based Particles
CaBLES comprise one or more non-cationic lipids, one or more cationic lipids having Formula I and one or more polyethylene glycol (PEG)-lipid conjugate.
Lipid-Based Particles of the present invention are defined as CaBLES which further comprise one or more therapeutic agent(s). These particles have mean diameter sizes of 50- 300 nm, of which 50-250 nm is preferred and 50-200 nm is most preferred. Functional CaBLES effectively encapsulate nucleic acids, (e.g., single stranded or double stranded DNA, single stranded or double stranced RNA, RNAi, siRNA, and the like). Suitable nucleic acids include, but are not limited to, plasmids, antisense oligonucleotides, ribozymes as well as other poly- and oligonucleotides. In preferred embodiments, the nucleic acid encodes a product, e.g., a therapeutic product, of interest. The CaBLES of the present invention can be used to deliver the nucleic acid to a cell (e.g., a cell in a mammal) for, e.g., expression of the nucleic acid or for silencing of a target sequence expressed by the cell.
In some embodiments, the nucleic acid is a siRNA molecule that silences the gene of interest, with efficiencies from about 50-100%, and more preferably between about 80-100%.
In other embodiments, the therapeutic agents that can be delivered with CaBLES include RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), chimeric nucleic acids, an antigen, fragments thereof, a protein, a peptide, small-molecules, or mixtures thereof. This invention describes delivery of RNA' s such as small inhibitory RNA or microRNA. The siRNA can have varying lengths (10-200 bps) and structures (hairpins, single/double strands, bulges, nicks/gaps, mismatches) and processed in the cell to provide active gene silencing. In certain embodiments of this invention, a double- stranded siRNA (dsRNA) can have the same number of nucleotides on each strand (blunt ends) or asymmetric ends (overhangs). The overhang of 1-2 nucleotides can be present on the sense and/or the antisense strand, as well as present on the 5'- and/ or the 3 '-ends of a given strand.
Suitable siRNA sequences can be identified using means known in the art (e.g., methods described in Elbashir, et al, Nature 411 :494-498 (2001) and Elbashir, et al, EMBO J. 20: 6877-6888 (2001) are combined with rational design rules set forth in Reynolds et al., Nature Biotech. 22(3):326-330 (2004)). Further enhancing, isolating, synthesizing and generating of the siRNA can be done by various methods known in the art, (see, e.g.,
Elbashir, et al., EMBO J. 20: 6877-6888 (2001); Elbashir, et al., Genes Dev. 15:188 (2001); Nykanen, et al., Cell 107:309 (2001)) or may lack overhangs (i.e., to have blunt ends): and Gubler & Hoffman, Gene 25:263-269 (1983); Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Current Protocols in Molecular Biology (Ausubel et al., eds., 1994), as are PCR methods (see U.S. Pat. Nos. 4,683,195 and 4,683,202; PCR Protocols: A Guide to Methods and Applications (Innis et al., eds, 1990)).
Non-cationic lipids have a neutral charge or an anionic charge at physiological pH. A neutral lipid, also known as a "helper lipid," has no net charge at physiological pH. These lipids can also be zwitterionic.
Polyethylene glycol (PEG)-lipid conjugates are used to minimize particle aggregation in solution, provide increased in vivo serum circulation, and enhance distribution of nanoparticles to organs, tissues, cell types, and tumors of interest. These shielding lipids consist of a lipid portion linked to a "PEG" portion via carbamate, ester, amide, ether, amine, thioether, or dithiol linkages. "PEG" is a polyethylene glycol consisting of repeating C2H4O units with an average molecular weight between 500 to 10,000 daltons and may be substituted by alkoxy, acyl, alkyl, or aryl. Additionally, the PEG can be substituted at its terminus with one or more of the following functional groups: hydroxy, methoxy, primary, secondary, or tertiary amine, thiol, thioether, thiopyridyl, dithiol, maleimide, or ester.
In some instances it may be desirable for the CaBLES and/or Lipid Based Particles to target using targeting moieties that are specific to a cell type or tissue. Targeting of liposomes using a variety of targeting moieties, such as ligands, cell surface receptors, glycoproteins, vitamins, (e.g., ribolflavin) and moncoleonal antibodies, has been previously described (see, e.g., U.S. Pat. Nos. 4,957,773 and 4,603,044). The targeting moeities can comprise the entire entire protein or fragments thereof. In one aspect, the targeting moiety is a small protein, or peptide. In another aspect, the targeting moiety is a small-molecule.
Cationic lipids are those having one or more moieties that are positively charged at a physiologically relevant pH, typically between 4-8. Particular cationic lipids are as shown in Formula I. Examples of cationic lipids that are useful for the practice of this invention include, but are not limited to, N,N-dioleyl-N,N-dimethylammonium chloride, DC-Choi, l,3-dioleoyloxy-2-(6-carboxyspermyl)-propyl amide, dioctadecylamidoglycyl spermine, N,N-distearyl-N,N-dimethylammonium bromide, N-(2,3-dioleyloxy)propyl)-N,N- dimethylammonium chloride, l,2-dioleoyl-3-trimethylammonium-propane chloride, l,2-dilineoyl-3-dimethylammonium-propane, N-(l-(2,3-dioleyloxy)propyl)-N,N,N- trimethylammonium chloride, l,2-dioleoyl-3-dimethylammonium propane, 1 ,2-distearyloxy- N,N-dimethyl-3-aminopropane; didodecyldimethylammonium bromide, dioleoyloxy-N-(2- sperminecarboxamido)ethyl)-N,N-dimethyl- 1 -propanaminiumtrifluoroacetate, 1 ,2- dimyristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide, l,2-dioleoylcarbamyl-3- dimethylammoniumpropane, tetramethyltetrapalmitoyl spermine, tetramethyltetraoleyl spermine, tetramethyldioleyl spermine, tetramethyltetramyristyl spermine, tetramethyltetralauryl spermine, 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9 , 12-dieny loxy)methyl)ethyl)amine; N-(3 -( 1 H- imidazol- 1 -yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)piperazine; 4-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)morpho line; N-(2-((9Z, 12Z)- octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine; N-(2-(4- methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3-(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazin- 1 -yl)propyl)amine; l,3-bis((9Z,12Z)-octadeca-9,12-dienyloxy)propan-2-amine; N-((l-methylpiperidin-4- yl)methyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9,12-dienyloxy)methyl)ethyl)-N-(3-(pyrrolidin-l-ylmethyl)benzyl)amine; N-
methyl-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine; N-(3-((4-methylpiperazin- 1 - yl)methyl)benzyl)-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N,N,N'-trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)propane- 1 ,3 -diamine; N-methyl-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N- (3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-( 1 H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazine; N- (2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy)methyl)ethyl)- N-((2 -pyrrolidin- 1 -ylpyridin-3-yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 - yl)propane-l,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)propyl)piperazine; 1 -(3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca- 9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine; N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate; 3-[(9Z,12Z)- octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-
(dimethylamino)ethylcarbamate; 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)- octadeca-9, 12-dienyloxy]methyl} ethyl)-4-(2 -pyrrolidin- 1 -ylethyl)piperazine; and N-(2-[(9Z)- octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3 -pyrrolidin- 1 - ylpropyl)amine, l-(2-[(9Z,12Z)-octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-9,12- dienyloxy]methyl}ethyl)azetidine, and 2-methyl-l-(2-[(9Z,12Z)-octadeca-9,12-dienyloxy]-l- {[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}ethyl)aziridine, and mixtures thereof.
Lipid-Based Particles are a mixture of one or more cationic lipids of Formula (I), one or more non-cationic lipids, one or more PEG-lipid conjugates, and one or more therapeutic agents. Specific Lipid-Based Particles comprise the following lipid mixtures: cationic lipid(s) (about 2-60% by weight), non-cationic lipid(s) (about 5-90% by weight), and PEG-lipid conjugate(s) (about 0.1-20%).
Tables 1 and 2
Representative In- vitro Formulation of Lipid-Based Particles
Table 1
Therapeutic Mass (mg) VoI (μL in water 10 mg/mL)
Agent siSTABLE 0. 20 20
Mass (mg) VoI (μL in ethanol 10 mg/mL)
Total Lipids 5 .0 500
Table 2
Wt% Mass (mg) VoI (μL in ethanol, 10 mg/mL)
Non-cationic 10 0.5 lipid
PEG-lipid 15 0.75
Cholesterol 30 1.5
Total Volume 275
Cationic lipid 45 2.25 225
Preparation of Lipid Mixture Solution
The mixing solution of cationic lipids, cholesterol, non-cationic lipids and PEG-lipids was prepared in ethanol (total concentration at 10 mg/mL). siSTABLE (purchased from ThermoFisher) (sense-5' GGG GAA AGC UGG CAA GAU UUU-3' SEQ ID NO: 1) antisense-5'-AAU CUU GCC AGC UUU CCC CUU-3' SEQ ID NO: 2) % stock solution was prepared in 10 mg/mL of solution by dissolving 10 mg siRNA in 1 mL of RNAse-free UltraPure Water. The calculated amount of siRNA solution was added to 1 mL of citrate buffer (pH 4.0, 20 mM), to provide an siRNA concentration of 0.2 mg/mL, and warmed to 6OC. The calculated amount of lipid solution was warmed to 6OC, transferred to a 0.5 mL
syringe with 28/4 gauge needle, and injected into the citrate buffer with stirring at 6OC. After 3 minutes, 3 mL of PBS solution at room temperature (pH 7.4) was added into the lipid mixture with stirring. The Lipid-Based Particle solution was cooled to room temperature.
Analysis of Lipid-Based Particles
The siRNA concentrations were measured using Quanti-iT RiboGreen RNA reagent (Molecular Probes, (Rl 1490)). Vesicle sizes were characterized by dynamic light scattering with a DynaPro™ Plate Reader (Wyatt Technology) in 96-well half-area UV plate (Coring) after diluting the formulation sample (20 μL) in phosphate buffered saline (80 μL) at a pH of about 7-8. A 1% agarose gel-based assay was used for analyzing nuclease degradation and protection. Encapsulation efficiency (EE) was calculated using data obtained from a RiboGreen assay.
Ribogreen Assay for Measuring SiRNA Concentration and Encapsulation Efficiency ofLipid- Based Particles
RNA concentration and encapsulation efficiency were determined using a Quant-iT® Ribogreen RNA reagent and kit available from Invitrogen. The siRNA was released from the Lipid-Based Particle using one of the following reagents: ethanol, Triton X-100, or phenol/chloroform. The siRNA concentration is quantified using fluorescent reading at 480 nm/520 nm.
Particle Sizing Assay
Particle sizes and size distributions (PDI) were characterized by using dynamic light scattering (DLS). A DLS plate reader (Dynapro™, Wyatt Technology) was used for the DLS measurement. This DLS plate reader uses an 830 nm laser and the scattering angle is 158°. It also can control temperature from 4°C to 700C. A 96-well format was employed for the samples.
Samples for DLS analysis were prepared by mixing 20 μL of each sample stock solution with 80 μL PBS directly in the 96-well plate (#3697, Corning). Sample mixing was accomplished using a microplate shaker (Orbis, Mikura Ltd.). Plates were read at 200C with an acquisition time of 50 seconds for each sample, and data was analyzed with Wyatt Technology's Dynamics V6 software. To rule out potential multiple scattering artifacts, a
second plate at 4-fold reduced sample concentrations was independently prepared by mixing 5 μL stock solutions with 95 μL PBS. Under our experimental conditions the results at the two concentrations were very similar, and the final reported result for each sample represents the average of values obtained from the two plates.
Table 3
In vitro Formulation Data Table of Particle Size, Encapsulation Efficiency, and Size
Distributions
Encapsulation Size (PDI)
Example Formulation Efficiency (nm)
1 a Nd 170 (0.20)
2 a Nd 134
4 b 96.7 125.6
5 a Nd 143 (0.14)
6 b 84.2 132.6
7 b 91.8 130
8 b 81.8 107.6
9 b 95.8 116.8
10 b 72.6 112
11 a 96.0 132
%
Encapsulation Size (PDI)
Example Formulation Efficiency (nm)
12 b 84.9 119.8
13 a 97.1 146
14 b 88.3 128.4
15 a 96.2 116
16 b 93.1 130
17 b 87.1 121.8
18 a 96.7 122
19 a 97.0 118
20 a 55.9 134
21 a 96.6 117.2
22 a 88.4 120.8
23 b 98.1 nd
24 b 91.7 nd
25 b 92.3 nd
26 b 99.9 nd
27 b 71.9 nd
28 b 93.0 nd
29 b 95.0 nd
30 b 95.0 nd
52 a 77.9 111.6
53 b 99.0 nd
56 nd nd nd
57 nd nd nd nd = not determined
Table 4 In vitro and In vivo Formulations
Preparation of Lipid Mixture Solution
The lipid solution was prepared (10 mg/ml) by dissolving the lipid in 200 proof ethanol. The lipid mixture solution is prepared according to the above composition in Table
5.
Preparation ofsiRNA Solution
An siRNA (TetR_ODC_12, G.G.G.G.A.A.A.G.C.U.G.G.C.A.A.G.A.U.U.U.U SEQ ID NO: 1) (ThermoFisher) solution is prepared in a concentration of 10 mg/ml by dissolving 10 mg siRNA in 1 ml of DNAse/RNAse-free distilled water.
Preparation of Lipid-Based Particles
A round bottom flask was submerged into a 65°C water bath. Citrate buffer (37.5 ml) of pH 4.0 was pipetted into the flask. The solution was stirred by a magnetic stirring bar at a speed of 900 rpm. Both the pH 4.0 citrate buffer and the lipid solution were pre-warmed in the 65°C water bath for about 3 minutes. A siRNA solution (0.5 ml) was pipetted into the pH 4.0 citrate buffer. The 12.5 ml lipid mixture solution was injected through a 27 gauge needle into the citrate buffer in about 30 seconds. The needle tip was inserted into the solution during the injection. The resulting solution was stirred for 5 minutes at a speed of 900 rpm. The flask was pulled up from the water bath and a 50 ml pH 7.4 PBS buffer was added into the flask. The final solution was further mixed at a speed of 900 rpm for 5 minutes. For the diafiltration process, a dialysis filter (Millipore, 10OK, Cat# PXB100C50) was used to
remove ethanol in the above solution. When the volume was reduced to 20 ml during the initial diafiltration, 20 ml of pH 7.4 PBS was added to the sample solution. The diafϊltration was continued until the volume was reduced to 20 ml. The diafiltration process was repeated 4 times. The volume of the sample solution was reduced to about 12 ml and pH 7.4 PBS was added to make the final volume of 15 ml. The 15 ml solution was filtered sequentially through the 0.45 and 0.22 μm sterile PVDF membrane filters (Millipore) and immediately transferred into a sterile vial.
Particle Sizing Assay For measurements of particle sizes and size distributions (PDI), lipid-based particles were prepared as described above. The particle solution (60 μL) was pipetted into a disposable cuvette (UVette, Eppendorf, cat# 952010051) and measured in the "General Purpose" mode. Attenuator and position were optimized by the device. Measurements were performed using a Zetasizer Nano ZS (Malvern Instruments) equipped with a 4 mW He-Ne laser at a wavelength of 633 nm at 25 0C. Scattered light was detected at a 173° backward scattering angle. The viscosity and refractive index of water at 25 0C was used for data analysis with the Dispersion Technology Software 5.00 (Malvern Instruments).
Table 6 In vivo Formulation Data Table of Particle Size, Encapsulation Efficiency, and Size
Distributions
%
Encapsulation Size (PDI)
Example Formulation Efficiency (nm)
3 A 87.6 185
4 A 72.6 149 (0.2)
6 A 75.5 ' 121 (0.145)
7 A nd 123 (0.15)
7 C 91.8 ' 119 (0.128)
9 A nd 138 (0.13)
9 C 98.9 87 (0.104)
23 A 93.2 ' 116 (0.054)
121.2
53 D 99.0 (0.089) nd = not determined
Determination of Transfection Efficiency of MDA435-TetR-Luc cells with Lipid-Based
Particles To determine the knockdown efficacy of Lipid-Based Particles in an in vitro assay,
MDA435-TetR-Luc cells (The positive readout reporter cell line MDA435-TetR-Luc contained a stably integrated copy of the luciferase gene expressed from a CMV promoter containing the tetR operator site. In addition, gene coding for a destabilized TetR protein was expressed in this cell line.) were plated in 96 well plate at a density of 1OK cells per well in 100 ul of DMEM (Dulbecco's Modified Eagles Medium, Invitrogen Corp.) containing 10% fetal bovine serum (Invitrogen Corp.). Appropriate dilutions of Lipid-Based Particles were made in DMEM+10% fetal bovine serum medium, 10 ul of the diluted material was transferred into each well in triplicate. Transfected cells were further incubated at 37°C for a period of 72 hours. Supernatent from each well was removed and cells were assayed for luciferase activity (Steady GIo kit , ProMega Corp.) as per the manufacturers recommendation. Positive controls included cells treated with 100 ul of doxycycline at 0.5 mg/ml, 20 nM tetR siRNA transfected with lipofectamine (Invitrogen Corp.) or untreated cells. The graphs represent average of triplicate readings of the Lipid-Based Particles treated sample divided by the average of readings from 9 wells treated with doxycycline.
Tumor Models
The animal studies were carried out in accordance with internal Institutional Animal Care and Use Committee (IACUC) guidelines at Abbott Laboratories. Scid female mice at 6 to 8 weeks of age were obtained from Charles River Laboratory and used for intraliver tumor models. Mouse livers were exposed by vertical incision on mouse abdomens and the tumor cells were directly injected into the livers. The incision was closed by suture and wound clips. All cell lines used for creating xenograft tumors were subjected to the IMPACT profile I test (18 agents) at the University of Missouri Research Animal Diagnostic and Investigative Laboratory, and all cell lines were found negative for the 18 infectious agents tested. Tumor cells were suspended in a 1 : 1 mixture of S-MEM (Invitrogen, Carlsbad, CA) and matrigel (BD Bioscience, San Jose, CA) and inoculated at 1x10E6 cells per animal.
Animal Dosing and Sample Harvesting
Treatments were started 3~ 4 weeks after tumor inoculation. Formulated or unformulated siRNAs were administrated via tail vein (i.v) injection.
IHC analysis
IHC was carried out as previously described [Li, L., et al., Evaluating hypoxia- inducible factor- 1 alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res, 2005. 65(16): p. 7249-58]. Briefly, tumors were excised, cut into pieces of less than 3 mm in thickness and immediately fixed in buffered formalin solution with neutral pH (Sigma, St. Louis, MO). The formalin-fixed and paraffin-embedded tumor sections were then used for staining. The mouse anti-β-galactosidase mAb (Promega, Madison, WI) was used to detect β-galactosidase in tumor sections. DAB (3,3'-diaminobenzidine) was used as the chromogen. IHC images were acquired using the Nikon TE2000 inverted microscope. The β-galactosidase staining was evaluated by 2 people independently based on the scoring system listed below. The average of the score was calculated for each tumor.
IHC scoring system
- , there was no staining, a small area of weak staining, or disperse strong single cell staining +/-, there was 5% of the section with weak staining or one patch of strong staining +, there was 15% of the section with strong staining
++, there was ~ 50% of the section with strong straining +++, there was 80% of the section with strong straining ++++, the whole section had strong staining
Table 7
In vivo Response of a Lipid-Based Particles (3 -A, 4-A) versus a Positive Control
(Doxycycline).
In vivo bioluminescence imaging and analysis were conducted on the IVIS 200 system using the Living Image acquisition and analysis software (Caliper Life Science, Hopkinton, MA). After intra-peritoneal injection of luciferin (Promege, Madison, WI) at 150 mg/kg, mice were anesthetized with isofluorane. Four minutes after the injection of luciferin, a series of time-lapse images were acquired at 2 minutes intervals in a total of 10 minutes. Regions of interest (ROI) were drawn around the tumors and signal intensity was quantified as the sum of photon counts per second within the ROI after the subtraction of background luminescence. The peak reading during the 10-minute imaging period was used for calculating the signal ratio before and after siRNA delivery.
The ability of novel cationic lipids to transfect siRNA in vitro was evaluated in the TetRLuc assay. By utilizing a releasable PEG lipid as for examples in formulations "a" or "b", the transfection efficiency of the unshielded or partially shielded particle may be determined.
Without intending on being held to any particular theory, the in vitro transfection efficiency of a given formulation, including the cationic lipids of the present invention, may or may not predict for in vivo delivery. The in vivo delivery may depend upon the properties of other co-lipid components in the formulation. Properties of the co-lipids that may modulate in vivo delivery, include for example, PEG lipid alkyl length, PEG polymer length, concentration of the PEG lipid conjugate, presence and concentration of neutral helper lipid, as well as the manner of which the co-lipid components are formulated (Sadzuka, et.al., J.
Liposome Research, 13,2, (2003) 157-172; Sadzuka, et. al, Int. J. Pharm.,312, (2006) 83-89; Li, et. al, Biochimica et Biophysica Acta 1513 (2001) 193-206; Chiu, et al., Biochimica et Biophysica Acta 1560 (2002) 37-50; and Mukherjee, et al., FEBS Letters 579 (2005) 1291- 1300.)
The aggregate effect of these co-lipids and their formulation impacts a set of parameters that includes for example particle stabilization, serum stability, circulation half- life, particle internalization, intracellular release of the therapeutic agent. These factors in total are likely to mitigate effective in vivo delivery. Synthesis
The following abbreviations have the meanings indicated: ADDP means 1,1'- (azodicarbonyl)dipiperidine; AD-mix-β means a mixture of (DHQD)2PHAL, K3Fe(CN)6, K2CO3 and K2SO4); AIBN means 2,2'-azobis(2-methylpropionitrile); 9-BBN means 9- borabicyclo(3.3.1)nonane; Cp means cyclopentadiene; (DHQD)2PHAL means hydroquinidine 1 ,4-phthalazinediyl diethyl ether; DBU means l,8-diazabicyclo(5.4.0)undec- 7-ene; DCC means dicyclohexylcarbodiimide; DIBAL means diisobutylaluminum hydride; DIEA means diisopropylethylamine; DMAP means N,N-dimethylaminopyridine; DME means 1,2-dimethoxyethane; DMF means N,N-dimethylformamide; dmpe means 1,2- bis(dimethylphosphino)ethane; DMSO means dimethylsulfoxide; dppa means diphenylphosphoryl azide; dppb means l,4-bis(diphenylphosphino)butane; dppe means 1,2- bis(diphenylphosphino)ethane; dppf means l,l'-bis(diphenylphosphino)ferrocene; dppm means l,l-bis(diphenylphosphino)methane; EDAC means l-(3-dimethylaminopropyl)-3- ethylcarbodiimide; Fmoc means fluorenylmethoxycarbonyl; HATU means O-(7- azabenzotriazol-l-yl)-N,N'N'N'-tetramethyluronium hexafluorophosphate; HMPA means hexamethylphosphoramide; IPA means isopropyl alcohol; LDA means lithium diisopropylamide; LHMDS means lithium bis(hexamethyldisilylamide); MP-BH3 means macroporus triethylammonium methylpolystyrene cyanoborohydride; LAH means lithium aluminum hydride; NCS means N-chlorosuccinimide; PyBOP means benzotriazol-1- yloxytripyrrolidinophosphonium hexafluorophosphate; TDA-I means tris(2-(2- methoxyethoxy)ethyl)amine; TEA means triethylamine; TFA means trifluoroacetic acid; THF means tetrahydrofuran; NCS means N-chlorosuccinimide; NMM means N- methylmorpholine; NMP means N-methylpyrrolidine; PPh3 means triphenylphosphine.
The following schemes and examples are presented to provide what is believed to be the most useful and readily understood description of procedures and conceptual aspects of this invention.
Scheme 1
(2)
As shown in Scheme 1, 2,2-dimethoxypropane-l,3-diol, which can be prepared from 1, 3-dihydroxypropan-2-one as described in Example 6 A, can be reacted with a compound of Formula (1) wherein R3 is as described herein, to obtain a compound of Formula (2). The diol is typically cooled in a solvent such as but not limited to toluene prior to the addition of a base such as but not limited to sodium hydride. After stirring at room temperature, the reaction is typically cooled again before adding a compound of Formula (1).
If it is desired for R3 and R4 to be the same, two equivalents of (1) can be used. IfR3 and R4 are to be different, one equivalent of (1) can be used to obtain a compound wherein R4 is H after purification. This intermediate can then be reacted with CH3(SOs)R4 to obtain a compound of Formula (I).
Scheme 2
As shown in Scheme 2, a compound of Formula (2) can be converted to a compound of Formula (3) by reacting the former with an acid such as but not limited to hydrochloric acid. The reaction is typically performed at ambient temperature in a solvent such as but not limited to tetrahydrofuran.
Compounds of Formula (4A), which are representative of compounds of Formula (I) wherein Y2, Y3, and Y4 are a bond, can be prepared by reacting a compound of Formula (3) with a compound of Formula (4) wherein R1 and R2 are as described herein. A reducing agent such as but not limited to sodium triacetoxyborohydride or sodium cyanoborohydride is typically employed along with several equivalents of acetic acid and a solvent such as but not limited to 1 ,2-dichloroethane, 2,2-dimethoxyethane, methanol or mixtures thereof. The reaction may be cooled prior to the addition of the reducing agent but is otherwise typically performed at room temperature.
Scheme 3
As shown in Scheme 3, (2,2-dimethyl-l,3-dioxan-5-yl)methyl 4- methylbenzenesulfonate, which can be prepared as described in Example 23B, can be reacted with an amine of Formula (4) to provide a compound of Formula (5). The reaction is typically performed using a single mode microwave. A solvent such as but not limited to dioxane may be employed.
A compound of Formula (6), which is representative of a compound of Formula I wherein Y2 is Cl-alkyl and Y3 and Y4 are a bond, can be prepared by reacting a compound of Formula (5) with a compound of Formula (1) as described in Scheme 1.
Scheme 4
As shown in Scheme 4, l,3-dihydroxypropan-2-one can be reacted with a compound of Formula (7) to provide a compound of Formula (8). The reaction typically requires the use of coupling reagents such as but not limited to 4-(dimethylamino)pyridine and l-ethyl-3-[3- (dimethylamino)propyl]-carbodiimide hydrochloride in a solvent such as but not limited to methylene chloride.
A compound of Formula (8) can be reacted with an amine of Formula (4), as described in Scheme 2, to provide a compound of Formula (9), which is representative of a compound of Formula I wherein Y3 and Y4 are carbonyl and Y2 is a bond.
Scheme 5
2-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)propane-l,3-diol, which can be prepared as described in EXAMPLE 26 A, can be reacted with a compound of Formula (10) and a reducing agent in the presence of acetic acid to provide a compound of Formula (11). Typical reducing agents include sodium triacetoxyborohydride and sodium cyanoborohydride, and typical solvents for the reaction include 1 ,2-dichloroethane, methanol, dichloromethane, or mixtures thereof. Compounds of Formula (12) can be prepared from compounds of Formula (11) by reacting the former with an acid such as but not limited to trifluoroacetic acid in a solvent such as but not limited to dichloromethane. Compounds of Formula (12), when reacted with oxalyl chloride and dimethylsulfoxide, in a solvent such as but not limited to dichloromethane, will provide a compound of Formula (13). Compounds of Formula (13) when reacted with an amine of Formula (4), will provide a compound of Formula (15), which are representative of the compounds of this invention wherein R2 is H, Y3 and Y4 are each a bond, and wherein R3 is equal to R4.
Scheme 6
As shown in Scheme 6, a compound of Formula (16), when reacted with 4- nitrophenyl carbonochloridate and a base such as triethylamine, will provide a compound of Formula (17). The reaction is typically performed in a solvent such as but not limited to dichloromethane. Compounds of Formula (18), which are representative of compounds of this invention wherein Y3 and Y4 are a bond and Y2 is (Ci-C8-alkylene)N(H)C(O)O(Ci-C8- alkylene), can be prepared by reacting a compound of Formula (17) with an amine of Formula (18A). The reaction is typically performed in a solvent such as but not limited to dichloromethane .
Scheme 7
Tert-butyl butane- l,4-diylbis(3-aminopropylcarbamate), which can be prepared as described in EXAMPLE 25B, can be reacted with a compound of Formula (19) and a reducing agent in the presence of acetic acid to provide a compound of Formula (20). Typical reducing agents include sodium triacetoxyborohydride and sodium cyanoborohydride, and typical solvents for the reaction include 1 ,2-dichloroethane, methanol, dichloromethane, or mixtures thereof. Compounds of Formula (21), which are representative of the compounds of this invention wherein Y2, Y3, and Y4 are each a bond, can be prepared by reacting compounds of Formula (20) with an acid such as but not limited to trifluoroacetic acid in a solvent such as but not limited to dichloromethane.
EXAMPLE 1 1 -(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)pyrrolidine
Prepared as described in EXAMPLE 6 by substituting pyrrolidine for 3-(pyrrolidin-l- yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.55 (d, J=5.16Hz, 4H) 3.41 (t, J=6.74Hz, 4H) 2.77 (t, J=5.95Hz, 4H) 2.66 (t, J=5.75Hz, 4H) 2.46 (m, IH) 2.05 (q, J=6.74Hz, 8H) 1.73 (m, 4H) 1.52 (m, 4H) 1.24 (m, 32H) 0.89 (t, 6H); MS (ESI) m/z 642.6 (M+ 1)+.
EXAMPLE 2 N,N-dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting dimethylamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.43 (m, 4H) 3.40 (t, J=6.74Hz, 4H) 2.77 (t, J=5.95Hz, 4H) 2.67 (m, IH) 2.37 (s, 6H) 2.05 (q, J=6.48Hz, 4H) 1.51 (m, 4H) 1.23 (m, 32H) 0.87 (m, 6H); MS (ESI) m/z 616.7 (M+l)+.
EXAMPLE 3 N-(3-( 1 H-imidazol- 1 -yl)propyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting 3 -(I H-imidazol- l-yl)propan-l- amine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 7.48 (s, IH) 7.05 (s, IH) 6.92 (s, IH) 5.28 (m, 8H) 4.04 (t, J=6.95Hz, 2H) 3.32 (m, 8H) 2.81 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.63 (t, J=6.61Hz, 2H) 2.05 (q, J=6.44Hz, 8H) 1.92 (dt, J=13.56, 6.78Hz, 2H) 1.51 (m, 4H) 1.25 (m, 32H) 0.870.91 (m, 6H); MS (ESI) m/z 696.6 (M+l)+.
EXAMPLE 4
1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine
Prepared as described in EXAMPLE 6 by substituting 1-methylpiperazine for 3- (pyrrolidin-l-yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.48 (m, 4H) 3.39 (t, J=6.61Hz, 4H) 2.7 (m, 9H) 2.40 (m, 4H) 2.27 (s, 3H) 2.05 (q, J=6.56Hz, 8H) 1.50 (m, 4H) 1.25 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 671.6 (M+l)+.
EXAMPLE 5
4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)morpholine
Prepared as described in EXAMPLE 6 by substituting morpholine for 3-(pyrrolidin-l- yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.66 (m, 4H) 3.48 (m, 4H) 3.40 (t, J=6.54Hz, 4H) 2.77 (t, J=5.95Hz, 4H) 2.67 (m, 5H) 2.05 (q, J=6.48Hz, 8H) 1.51 (m, 4H) 1.25 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 658.6 (M+l)+.
EXAMPLE 6
N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine
EXAMPLE 6A
2,2-dimethoxypropane- 1 ,3-diol
A mixture of 1, 3-dihydroxypropan-2-one (24.45 g), trimethyl orthoformate (30 mL), and para-toluenesulfonic acid monohydrate (100 mg) in methanol (300 mL) was stirred overnight at room temperature. Sodium carbonate (300 mg) was added, and the mixture was concentrated. The concentrate was purified by flash chromatography (Analogix, SF65-330, 7% methanol/dichloromethane). MS (ESI) m/z 90.0 (M-OC2H6).
EXAMPLE 6B (6Z,9Z)-18-(2,2-dimethoxy-3-((9Z,12Z)-octadeca-9,12-dienyloxy)propoxy)octadeca-6,9- diene
To a solution of 2, 2-dimethoxypropane-l, 3-diol (EXAMPLE 6A, 1 g) in toluene (30 mL) at 00C was added 95% oily NaH (1.484 g). The mixture was stirred at room temperature for 1 hour, cooled to 00C and treated with (9Z,12Z)-octadeca-9,12-dienyl methanesulfonate (6.33 g), heated at reflux for 2 hours, cooled to 00C, treated with ethanol until it cleared and concentrated. The concentrate was taken up in dichloromethane and dried onto silica gel. The silica was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65χ200g with 2-4% ethyl aceate/hexanes). MS (ESI) m/z 587.6 (M-OC2H6+1), 655.5 (M+23)+.
EXAMPLE 6C 1 ,3-bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-one
To a solution of (6Z,9Z)-18-(2,2-dimethoxy-3-((9Z, 12Z)-octadeca-9, 12- dienyloxy)propoxy)octadeca-6, 9-diene (4 g) in tetrahydrofuran (72 niL) was added 6N HCl (8.42 mL). The mixture was stirred at room temperature overnight then concentrated. The organic layer was dried over Na2SO4, filtered and concentrated. The concentrate was dissolved in dichloromethane and concentrated onto silica gel. The silica was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65x200g, 2-4% with ethyl acetate/hexanes). MS (ESI) m/z 604.6 (M+18)+.
EXAMPLE 6D N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine
General Procedure Followed For All Examples To a solution of EXAMPLE 6C in 1 ,2-dichloroethane or 1 :1 2,2- dimethoxyethane/methanol were added 3 -(pyrrolidin- l-yl)propan-l -amine (2-4 equivalents) and acetic acid (2-10 equivalents). The reaction mixture was cooled in an ice bath, treated with sodium triacetoxyborohydride or sodium cyanoborohydride (2-4 equivalents), stirred at room temperature for 2 hours, cooled to 00C, quenched with saturated NaHCOs and extracted with dichloromethane. The extract was washed with water and brine, dried over Na2SO4, filtered and concentrated. The concentrate was purified by flash chromatography (Analogix 1 :1 ethyl acetate/hexanes/5% TEA). 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.35 (m, 8H) 2.86 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.70 (t, J=7.12Hz, 2H) 2.45 (m, 6H) 2.05 (q, J=6.78Hz, 8H) 1.66 (m, 6H) 1.51 (m, 4H) 1.26 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 699.7 (M+ 1)+.
EXAMPLE 7
N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane- 1 ,2-diamine
Prepared as described in EXAMPLE 6 by substituting N^N^dimethylethane-l^- diamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.36 (m, 8H) 2.8 (m, IH) 2.76 (q, J=6.33Hz, 6H) 2.41 (t, J=6.27Hz, 2H) 2.21 (s, 6H) 2.05 (q, J=6.56Hz, 8H) 1.51 (m, 4H) 1.25 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 659.6 (M+l)+.
EXAMPLE 8 N-(2-(4-methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting 2-(4-methylpiperazin-l- yl)ethanamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.35 (m, 8H) 2.84 (m, IH) 2.76 (s, 6H) 2.42 (m, 8H) 2.27 (s, 3H) 2.05 (q, J=6.67Hz, 8H) 1.51 (m, 6H) 1.26 (m, 32H) 0.87 (m, 6H); MS (ESI) m/z 714.5 (M+l)+.
EXAMPLE 9
N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting 2-(lH-imidazol-4- yl)ethanamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 7.47 (s, IH) 6.79 (s, IH) 5.28 (m, 8H) 3.38 (m, 8H) 2.94 (m, 3H) 2.71 (m, 6H) 2.05 (q, J=6.48Hz, 8H) 1.53 (m, 4H) 1.24 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 682.6 (M+l)+.
EXAMPLE 10
N,N-dimethyl-N-(3-(4-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazin- 1 -yl)propyl)amine
Prepared as described in EXAMPLE 6 by substituting N,N-dimethyl-3-(piperazin-l- yl)propan-l -amine for 3-(pyrrolidin-l-yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.48 (m, 4H) 3.39 (t, J=6.61Hz, 4H) 2.69 (m, 9H) 2.40 (m, 4H) 2.31 (m, 2H) 2.31 (m, 2H) 2.21 (s, 6H) 2.05 (q, J=6.44Hz, 8H) 1.61 (m, 2H) 1.50 (m, 4H) 1.25 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 742.6 (M+l)+.
EXAMPLE 11 l,3-bis((9Z,12Z)-octadeca-9,12-dienyloxy)propan-2-amine Prepared as described in EXAMPLE 6 by substituting ammonium acetate for 3- (pyrrolidin-l-yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.39 (m, 6H) 3.27 (m, 2H) 3.11 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.05 (q, J=6.56Hz, 8H) 1.51 (m, 4H) 1.25 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 588.6 (M+l)+.
EXAMPLE 12 N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting (l-methylpiperidin-4- yl)methanamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.34 (m, 8H) 2.75 (m, 7H) 2.52 (d, J=6.44Hz, 2H) 2.25 (s, 3H) 2.05 (q, J=6.44Hz, 8H) 1.89 (td, J=11.61, 2.20Hz, 2H) 1.73 (dd, J=12.04, 1.19Hz, 2H) 1.50 (m, 7H) 1.24 (m, 32H) 0.860.92 (m, 6H); MS (ESI) m/z 699.5 (M+l)+.
EXAMPLE 13
N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dieny loxy)methyl)ethyl)-N-(3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine Prepared as described in EXAMPLE 6 by substituting (3 -(pyrrolidin- 1- ylmethyl)phenyl)methanamine for 3 -(pyrrolidin- 1 -yl)propan- 1 -amine. 1H NMR (300 MHz, CDCl3) δ 7.18 (m, 4H) 5.28 (m, 8H) 3.84 (s, 2H) 3.59 (s, 2H) 3.36 (m, 8H) 2.93 (m, IH) 2.77 (t, J=6.15Hz, 4H) 2.47 (m, 4H) 2.05 (q, J=6.35Hz, 8H) 1.75 (m, 4H) 1.49 (m, 4H) 1.24 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 761.5 (M+l)+.
EXAMPLE 14 N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine Prepared as described in EXAMPLE 6 by substituting N-methyl-3 -(pyrrolidin- 1- yl)propan-l -amine for 3 -(pyrrolidin- l-yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.49 (ddd, J=23.57, 9.83, 5.93Hz, 4H) 3.39 (t, J=6.61Hz, 4H) 2.86 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.59 (t, J=7.46Hz, 2H) 2.41 (m, 6H) 2.34 (s, 3H) 2.05 (q, J=6.78Hz, 8H) 1.74 (m, 4H) 1.62 (m, 2H) 1.50 (m, 4H) 1.26 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 713.6 (M+ 1)+.
EXAMPLE 15 N-(3-((4-methylpiperazin-l-yl)methyl)benzyl)-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-
(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine
Prepared as described in EXAMPLE 6 by substituting (3-((4-methylpiperazin-l- yl)methyl)phenyl)methanamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz,
CDCl3) δ 7.17 (m, 4H) 5.28 (m, 8H) 3.84 (s, 2H) 3.49 (s, 2H) 3.37 (m, 8H) 2.94 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.41 (m, 8H) 2.28 (s, 3H) 2.05 (q, J=6.56Hz, 8H) 1.50 (m, 4H) 1.25 (m, 32H) 0.87 (m, 6H); MS (ESI) m/z 790.5 (M+l)+.
EXAMPLE 16
N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -
(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine Prepared as described in EXAMPLE 6 by substituting N-methyl-l-(l- methylpiperidin-4-yl)methanamine for 3-(pyrrolidin- 1 -yl)propan- 1 -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.39 (m, 4H) 3.38 (t, J=6.54Hz, 4H) 2.75 (m, 7H) 2.38 (d,
J=7.14Hz, 2H) 2.32 (s, 3H) 2.26 (s, 3H) 2.05 (q, J=6.48Hz, 8H) 1.89 (t, J=I LlOHz, 2H) 1.75 (d, J=12.69Hz, 2H) 1.49 (m, 7H) 1.241.39 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 713.6 (M+ 1)+.
EXAMPLE 17
N,N,N>-trimethyl-N'-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)propane- 1 ,3 -diamine
Prepared as described in EXAMPLE 6 by substituting N1,N1,N3-trimethylpropane- 1,3-diamine for 3-(pyrrolidin-l-yl)propan-l -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H) 3.42 (m, 4H) 3.39 (t, J=6.61Hz, 4H) 2.87 (m, IH) 2.77 (t, J=5.93Hz, 4H) 2.57 (t,
J=7.46Hz, 2H) 2.34 (s, 3H) 2.23 (m, 2H) 2.21 (s, 6H) 2.05 (q, J=6.56Hz, 8H) 1.50 (m, 6H) 1.25 (m, 32H) 0.87 (m, 6H); MS (ESI) m/z 687.6 (M+l)+.
EXAMPLE 18 N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dieny loxy)methyl)ethyl)-N-(3 -(pyrrolidin- 1 -ylmethyl)benzyl)amine Prepared as described in EXAMPLE 6 by substituting N -methyl- 1 -(3 -(pyrrolidin- 1- ylmethyl)phenyl)methanamine for 3 -(pyrrolidin- 1 -yl)propan- 1 -amine. 1H NMR (300 MHz, CDCl3) δ 7.16 (m, 4H) 5.28 (m, 8H) 3.73 (s, 2H) 3.60 (s, 2H) 3.49 (m, 4H) 3.40 (t, J=6.61Hz, 4H) 2.97 (m, IH) 2.77 (t, J=6.10Hz, 4H) 2.50 (t, J=5.93Hz, 4H) 2.30 (s, 3H) 2.05 (q,
J=6.56Hz, 8H) 1.75 (m, 4H) 1.51 (m, 2H) 1.26 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 115.6 (M+ 1)+.
EXAMPLE 19 1 -(2-( 1 H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)- octadeca-9, 12-dienyloxy )methyl)ethyl)piperazine
Prepared as described in EXAMPLE 6 by substituting 1 -(2-(I H-imidazol- 1- yl)ethyl)piperazine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 7.53 (s, IH) 7.04 (t, J=I.02Hz, IH) 6.97 (t, J=I.36Hz, IH) 5.28 (m, 8H) 4.02 (t, J=6.61Hz, 2H) 3.47-3.57 (m, 4H) 3.39 (t, J=6.78Hz, 4H) 2.65 (m, 1 IH) 2.46 (m, 4H) 2.05 (q, J=6.56Hz, 8H) 1.51 (m, 4H) 1.251.39 (m, 32H) 0.87 (m, 6H); MS (ESI) m/z 751.5 (M+l)+.
EXAMPLE 20
N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-((2-pyrrolidin- 1 -ylpyridin-3 -yl)methyl)amine Prepared as described in EXAMPLE 6 by substituting (2-(pyrrolidin-l-yl)pyridin-3- yl)methanamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 8.08 (dd, J=4.76, 1.98Hz, IH) 7.50 (dd, J=7.34, 1.78Hz, IH) 6.63 (dd, J=7.14, 4.76Hz, IH) 5.28 (m, 8H) 3.85 (s, 2H) 3.52 (m, 4H) 3.36 (m, 8H) 2.90 (m, IH) 2.77 (t, J=5.95Hz, 4H) 2.05 (q, J=6.61Hz, 8H) 1.90 (m, 4H) 1.50 (m, 4H) 1.24 (m, 32H) 0.86 (m, 6H); MS (ESI) m/z 748.5 (M+ 1)+.
EXAMPLE 21
(9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 -yl)propane- 1 ,3-diyl dioctadeca-9, 12-dienoate
EXAMPLE 21A
To a solution of (9Z,12Z)-octadeca-9,12-dienoic acid (1.107 rnL) in dichloromethane (20 rnL) were added 1 ,3-dihydroxypropan-2-one (0.161 g), DMAP (0.436 g), and EDCI -HCl (0.718 g). The mixture was stirred overnight, quenched with water and extracted with dichloromethane. The extract was washed with water and brine, dried over Na2SO4, filtered and concentrated. The concentrate was purified by flash chromatography (Analogix SF25x40g with 10:lhexanes/ethyl acetate). MS (ESI) m/z 612A (M+18)+.
EXAMPLE 2 IB (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 -yl)propane- 1 ,3-diyl dioctadeca-9, 12-dienoate
Prepared as described in EXAMPLE 6D by substituting 1-methylpiperazine for 3-(pyrrolidin-l-yl)propan-l -amine and EXAMPLE 21A for l,3-bis((9Z,12Z)-octadeca-9,12- dienyloxy)propan-2-one (EXAMPLE 6C). 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H), 4.27 (dd, J=6.10Hz, 2H), 4.09 (dd, J=I 1.53, 5.76Hz, IH), 2.95 (m, IH), 2.77 (t, J=5.76Hz, 4H), 2.70 (t, J=4.75Hz, 4H), 2.39 (s, 4H), 2.27 (m, 4H), 2.26 (s, 3H), 2.05 (q, J=6.56Hz, 8H), 1.58 (m, 4H), 1.25 (m, 28H), 0.86 (m, 6H); MS (ESI) m/z 699.5 (M+l)+.
EXAMPLE 22
(9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l-yl)propylamino)propane-l,3-diyl dioctadeca-9,12- dienoate
Prepared as described in EXAMPLE 6D by substituting EXAMPLE 21 A for 1,3- bis((9Z,12Z)-octadeca-9,12-dienyloxy)propan-2-one (EXAMPLE 6C). 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H), 4.10 (d, J=5.43Hz, 4H), 3.01 (dt, J=10.85, 5.43Hz, IH), 2.70 (m, 7H), 2.45 (m, 6H), 2.31 (t, J=7.46Hz, 4H), 2.05 (q, J=6.78Hz, 8H), 1.73 (m, 4H), 1.65 (m, 4H), 1.59 (m, 4H), 1.25 (m, 28H), 0.86 (m, 6H); MS (ESI) m/z 727.5 (M+l)+.
EXAMPLE 23 l-methyl-4-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine
EXAMPLE 23A
To a solution of 2-(hydroxymethyl)propane-l,3-diol (1 g) in THF (20 mL) were added 2,2-dimethoxypropane (1.344 mL) and para-toluenesulfonic acid monohydrate (0.054 g). The reaction mixture was stirred at room temperature for 4 hours, treated with TEA and concentrated. The concentrate was purified by flash chromatography (Analogix SF25χ40g with 20-30% ethyl acetate/hexanes). MS (ESI) m/z 147.0 (M+l)+.
EXAMPLE 23B To a solution of (2,2-dimethyl-l,3-dioxan-5-yl)methanol (1.078 g) in dichloromethane (20 mL) were added TEA (2.056 mL) and para-toluenesulfonyl chloride (1.687 g). The reaction mixture was stirred at room temperature for 4 hours and concentrated. The concentrate was partitioned between water and ethyl acetate. The organic
layer was washed with brine, dried over Na2SO4, filtered and concentrated. The cruconcentrate was purified by flash chromatography (Analogix SF25χ40g with 10% ethyl acetate/hexanes). MS (ESI) m/z 301.1 (M+l)+, 318.2 (M+18)+.
EXAMPLE 23C
A solution of (2,2-dimethyl-l,3-dioxan-5-yl)methyl 4-methylbenzenesulfonate (0.5 g) and 1-methylpiperazine (0.926 mL) in dioxane (2 mL) was heated in a microwave for 20 minutes at 1300C, treated with HCl, (2.77 mL), stirred for 1 hour at room temperature and concentrated. The concentrate was partitioned between saturated NaHCO3 and chloroform. The extract was dried over Na2SO4, filtered and concentrated. The concentrate was purified by flash chromatography (Analogix SF25χ40 g with l :lhexanes/ethyl acetate, 5% TEA). MS (ESI) m/z 189.1 (M+l)+.
EXAMPLE 23D l-methyl-4-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine
Prepared as described in EXAMPLE 6B by substituting EXAMPLE 23 C for 2,2-dimethoxypropane-l, 3-diol (EXAMPLE 6A). 1H NMR (300 MHz, CDCl3) δ 5.285.43 (m, 8H), 3.353.47 (m, 8H), 2.77 (t, J=5.75Hz, 4H), 2.43 (s, 8H), 2.33 (d, J=7.14Hz, 2H), 2.27 (s, 3H), 2.012.08 (m, 9H), 1.491.58 (m, 4H), 1.241.40 (m, 32H), 0.850.92 (m, 6H); MS (ESI) m/z 685.6 (M+ 1)+.
EXAMPLE 24 l-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)pyrrolidine
EXAMPLE 24A Prepared as described in EXAMPLE 23 C by substituting pyrrolidine for
1-methylpiperazine. MS (ESI) m/z 160.0 (M+l)+.
EXAMPLE 24B l-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)pyrrolidine
Prepared as described in EXAMPLE 6B by substituting EXAMPLE 24A for EXAMPLE 6A. 1H NMR (300 MHz, CDCl3) δ 5.28 (m, 8H), 3.37 (m, 8H), 2.77 (t,
J=5.95Hz, 4H), 2.43 (m, 6H), 2.05 (q, J=6.61Hz, 9H), 1.75 (dt, J=6.64, 3.22Hz, 4H), 1.50 (m, 4H), 1.24 (m, 32H), 0.86 (m, 6H); MS (ESI) m/z 656.6 (M+l)+.
EXAMPLE 25 N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca- 9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine
EXAMPLE 25A tert-butyl butane- 1 ,4-diylbis(3-(2,2,2-trifluoroacetamido)propylcarbamate) To a solution of N^N1 -(butane- l,4-diyl)dipropane-l,3-diamine (5 g, 24.71 mmol) in dicholormethane (100 ml) at 0 0C was added a solution of ethyl 2,2,2-trifluoroacetate (6.17 ml, 51.9 mmol) in dicholormethane (50 ml) over 30 minutes. The reaction mixture was stirred at 0 0C for 30 minutes then at room temperature for 1 hour. To the reaction mixture were added a solution of di-tert-butyldicarbonate (14.92 ml, 64.2 mmol) in dicholormethane (50 ml) and triethylamine (8.95 ml, 64.2 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was washed with aqueous NaHCO3 and water, dried over Na2SO4, filtered, and concentrated. The crude material was purified by silica gel chromatography (hexanes/ethyl acetate) to give the title compound. MS (ESI) m/z 593 (M-I)"
EXAMPLE 25B tert-butyl butane- 1 ,4-diylbis(3-aminopropylcarbamate) A suspension of tert-butyl butane-l,4-diylbis(3-(2,2,2- trifluoroacetamido)propylcarbamate) (2 g, 3.36 mmol) and ammonium hydroxide (33.5 ml, 861 mmol) in methanol (35 ml) was heated at reflux for 5 hours. The solids dissolved after 1 hour. The reaction mixture was concentrated by rotary evaporation. The crude material was purified by silica gel chromatography (10% MeOH/CH2Cl2, 2% NH4OH). MS (ESI) m/z 403 (M+ 1)+.
EXAMPLE 25C N-(3-aminopropyl)-N'-{3-[(2-[(9Z,12Z)-octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-
9, 12-dienyloxy]methyl} ethyl)amino]propyl}butane- 1 ,4-diamine To a solution of EXAMPLE 6C (0.2 g, 0.341 mmol) in 1 ,2-dichloroethane (3 ml) were added EXAMPLE 25B (tert-butyl butane- 1 ,4-diylbis(3-aminopropylcarbamate)) (0.274 g, 0.681 mmol) and acetic acid (0.039 ml, 0.681 mmol). The reaction mixture was cooled in an ice bath, treated with sodium triacetoxyborohydride (0.087 g, 0.409 mmol),, stirred at room temperature for 2 hours, cooled to 00C, quenched with saturated NaHCO3 and extracted with dichloromethane. The extract was washed with water and brine, dried over Na2SO4, filtered and concentrated. The concentrate was purified by flash chromatography (Analogix 1 :4 methanol/ethyl acetate/5% NH4OH). MS (ESI) m/z 973.8 (M+l)+. To a solution of the purified material (.12 g, 0.123 mmol) in dicholormethane (2 ml) was added trifluoroacetic acid (1.899 ml, 24.65 mmol). The reaction mixture was stirred at room temperature for 1 hour and was concentrated by rotary evaporation. The residue was partitioned between dicholormethane and saturated NaHCO3. The organic layer was dried over Na2SO4, filtered, and concentrated. The crude material was purified by flash silica gel chromatography (10% NH4OH, 40% methanol, 50% dicholormethane). 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.44 (m, 8 H), 3.35 - 3.45 (m, 8 H), 2.85 - 2.92 (m, 1 H), 2.60 - 2.79 (m, 16 H), 2.05 (q, J=6.48 Hz, 8 H), 1.51 - 1.72 (m, 12 H), 1.22 - 1.41 (m, 32 H), 0.86 - 0.92 (m, 6 H); MS (ESI) m/z 773.5 (M+l)+.
EXAMPLE 26
N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine
EXAMPLE 26A
2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)propane- 1 ,3 -diol To a solution of 2-(hydroxymethyl)propane- 1,3 -diol (1 g, 9.42 mmol) in pyridine (10 ml) was added 4,4'-(chloro(phenyl)methylene)bis(methoxybenzene) (1.596 g, 4.71 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3x). The combined organics were washed with water and brine, dried over Na2SO4,
filtered, and concentrated. The crude material was purified by flash silica gel chromatography (hexanes/ethyl acetate). MS (ESI) m/z 431 (M+Na)+.
EXAMPLE 26B 4,4'-((3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propoxy)(phenyl)methylene)bis(methoxybenzene) The title compound was prepared as described in EXAMPLE 6D by substituting EXAMPLE 26A 2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)propane-l,3-diol for 2, 2-dimethoxypropane-l, 3-diol (EXAMPLE 6A). The crude material was purified by flash silica gel chromatography (hexanes). MS (ESI) m/z 927.2 (M+Na)+, 620.4 (M-DMT+18)+.
EXAMPLE 26C
3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propan- 1 -ol To a solution of 4,4'-((3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-
9,12-dienyloxy)methyl)propoxy)(phenyl)methylene)bis(methoxybenzene) (3.43 g, 3.79 mmol) in dicholormethane (10 ml) was added trifluoroacetic acid (0.292 ml, 3.79 mmol). The reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated by rotary evaporation. The crude material was purifed by flash silica gel chromatography (hexanes/ethyl acetate). MS (ESI) m/z 603.6 (M+ 1)+.
EXAMPLE 26D
3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propanal To a solution of oxalyl chloride (0.035 ml, 0.398 mmol) in dicholormethane (1.6 ml) at 0 0C was added DMSO (0.028 ml, 0.398 mmol). After stirring for 10 minutes at 0 0C the reaction mixture was cooled to -78 0C. A solution of 3-((9Z,12Z)-octadeca-9,12-dienyloxy)- 2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propan-l-ol (0.2 g, 0.332 mmol) in dicholormethane (1.6 ml) was added dropwise via cannula followed by triethylamine (0.139 ml, 0.995 mmol). The reaction mixture was warmed to room temperature. The reaction mixture was cooled to 0 0C, quenched with saturated NaHCOs, and extracted with ethyl acetate (3x). The combined organics were washed with water and brine, dried over Na2SO4,
filtered, and concentrated. The crude material was purified by flash chromatography (10:1 hexanes/ethyl acetate). MS (ESI) m/z 618.7 (M+18)+.
EXAMPLE 26E N-(3-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]-2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine The title compound was prepared as described in EXAMPLE 6D by substituting EXAMPLE 26D (3-((9Z, 12Z)-octadeca-9, 12-dienyloxy)-2-(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)propanal) for EXAMPLE 6C. 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 3.36 - 3.47 (m, 9 H), 2.77 (t, J=5.95 Hz, 4 H), 2.63 (t, J=6.94 Hz, 4 H), 2.44 - 2.51 (m, 6 H), 2.05 (q, J=6.61 Hz, 8 H), 1.65 - 1.79 (m, 6 H), 1.49 - 1.60 (m, 4 H), 1.25 - 1.41 (m, 32 H), 0.86 - 0.91 (m, 6 H); MS (ESI) m/z 713.8 (M+l)+.
EXAMPLE 27 N,N-dimethyl-N-(3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12- dienyloxy]methyl}propyl)amine
The title compound was prepared as described in EXAMPLE 26 by substituting dimethylamine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 3.37 - 3.47 (m, 9 H), 2.77 (t, J=5.93 Hz, 4 H), 2.26 (d, J=7.12 Hz, 2 H), 2.21 (s, 6 H), 2.05 (q, J=6.56 Hz, 8 H), 1.50 - 1.59 (m, 4 H), 1.24 - 1.40 (m, 32 H), 0.87 - 0.91 (m, 6 H); MS (ESI) m/z 630.7 (M+l)+.
EXAMPLE 28
3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-(diethylamino)ethylcarbamate
EXAMPLE 28A
4-nitrophenyl 3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl carbonate
To a solution of EXAMPLE 26C (3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2- (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propan-l-ol) (.408 g, 0.677 mmol) in dicholormethane (4 ml) at 0 0C were added triethylamine (0.141 ml, 1.015 mmol) and A-
nitrophenyl carbonate. The reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was partitioned between water and ethyl acetate. The organic layer was washed with water and brined and dried over Na2SO4, filtered, and concentrated. The crude material was purified by flash silica gel chromatography (hexanes/ethyl acetate). MS (ESI) m/z 790.6 (M+Na)+.
EXAMPLE 28B
3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl
2-(diethylamino)ethylcarbamate To a solution of 4-nitrophenyl 3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2-(((9Z,12Z)- octadeca-9,12-dienyloxy)methyl)propyl carbonate (0.1 g, 0.130 mmol) in dicholormethane (1.3 ml) was added N^N^diethylethane-l^-diamine (0.074 ml, 0.521 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was partitioned between water and dicholormethane. The aqueous layer was extracted with dicholormethane (3x). The combined organics were washed with water and brine, dried over Na2SO4, filtered, and concentrated. The crude material was purified by flash silica gel chromatography (methanol/dicholormethane). 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 5.14 (s, 1 H), 4.12 (d, J=5.76 Hz, 2 H), 3.44 (d, J=6.10 Hz, 4 H), 3.38 (t, J=6.61 Hz, 4 H), 3.21 (q, J=5.65 Hz, 2 H), 2.77 (t, J=5.93 Hz, 4 H), 2.48 - 2.55 (m, 6 H), 2.15 - 2.23 (m, 1 H), 2.05 (q, J=6.56 Hz, 8 H), 1.50 - 1.58 (m, 4 H), 1.26 - 1.38 (m, 32 H), 1.00 (t, J=I.12 Hz, 6 H), 0.86 - 0.91 (m, 6 H); MS (ESI) m/z 745.7 (M+l)+.
EXAMPLE 29
3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin- 1 -ylethylcarbamate
The title compound was prepared as described in EXAMPLE 28 by substituting 2- (pyrrolidin-l-yl)ethanamine for N^N^diethylethane-l^-diamine. 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 4.12 (d, J=5.95 Hz, 2 H), 3.43 (d, J=5.95 Hz, 4 H), 3.38 (t, J=6.74 Hz, 4 H), 3.28 (q, J=5.55 Hz, 2 H), 2.77 (t, J=5.95 Hz, 4 H), 2.58 (t, J=5.95 Hz, 2 H), 2.48 - 2.52 (m, 4 H), 2.15 - 2.23 (m, 1 H), 2.05 (q, J=6.74 Hz, 8 H), 1.75 - 1.79 (m, 4 H), 1.49 - 1.58 (m, 4 H), 1.24 - 1.40 (m, 32 H), 0.86 - 0.92 (m, 6 H); MS (ESI) m/z 743..7 (M+l)+.
EXAMPLE 30
3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl
2-(dimethylamino)ethylcarbamate
The title compound was prepared as described in EXAMPLE 28 by substituting N1,N1-dimethylethane-l,2-diamine for N1,N1-diethylethane-l,2-diamine. 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 4.12 (d, J=5.55 Hz, 2 H), 3.43 (d, J=5.95 Hz, 4 H), 3.38 (t, J=6.54 Hz, 4 H), 3.25 (q, J=5.16 Hz, 2 H), 2.77 (t, J=5.95 Hz, 4 H), 2.39 (t, J=5.95 Hz, 2 H), 2.22 (s, 6 H), 2.15 - 2.20 (m, 1 H), 2.05 (q, J=6.87 Hz, 8 H), 1.50 - 1.58 (m, 4 H), 1.26 - 1.39 (m, 32 H), 0.86 - 0.92 (m, 6 H); MS (ESI) m/z 111 ' .1 (M+l)+.
EXAMPLE 31
6-oxo-2-(tetradecanoyloxy)-
8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,95,9 8,101,104,107,110,113,116,119,122,125, 128,131, 134,137,140,143-hexatetracontaoxa-5-a zatetratetracontahect- 1 -yl myristate
EXAMPLE 31 A
2-(2,2-dimethyl- 1 ,3 -dioxolan-4-yl)ethyl 4-methylbenzenesulfonate 2-(2,2-Dimethyl-l,3-dioxolan-4-yl)ethanol (5 g) was added to dichloromethane (86 ml) and the mixture was cooled to O0C. To this solution was added triethylamine (6.9 g, 9.6 ml), tosyl chloride (6.5 g) and 4-(dimethylamino)pyridine (0.42 g). The mixture stirred at room temperature overnight. The mixture was quenched with saturated NH4Cl and diluted with ethyl acetate. The aqueous layer was extracted twice with ethyl acetate and the extract was dried (Na2SO4), filtered, and concentrated. The concentrate was purified by flash column chromatography (Analogix hexanes: ethyl acetate, 0-75%) to afford the title compound. MS (ESI) m/z 300.9 (M+H)+; 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J=8.29 Hz, 2H) 7.35 (d, J=7.98 Hz, 2H) 4.06-4.23 (m, 3H) 4.01 (dd, J=7.98, 6.14 Hz, IH) 3.51 (dd, j=8.13, 6.90 Hz, IH) 2.45 (s, 3H) 1.82-1.98 (m, 2H) 1.31 (d, J=18.72 Hz, 6H).
EXAMPLE 3 IB
N,N-dibenzyl-2-(2,2-dimethyl-l,3-dioxolan-4-yl)ethanamine EXAMPLE 31A (1.0 g) and dibenzylamine (0.657 mg) were placed in a microwave vial (Biotage) and dioxane (2.5 rnL) was added. The vial was capped and placed in a microwave reactor (Biotage Initiator), and the mixture was heated at 15O0C for 30 minutes. The mixture was diluted with ethyl acetate and poured into water. The aqueous layer was extracted twice with ethyl acetate, and the extract was washed with brine, dried (Na2SO4), filtered and concentrated. The concentrate was used in the next step without further purification.
EXAMPLE 31C
4-(dibenzylamino)butane- 1 ,2-diol
EXAMPLE 3 IB was added to tetrahydrofuran (20 rnL) and 2N HCl (20 mL), and the mixture was stirred at room temperature for 30 minutes. 5N NaOH was added until the solution was basic, and the aqueous layer was extracted with chloroform. The extract was dried (MgSO4), filtered and concentrated by rotary evaporation and the concentrate was used in the next step without further purification. MS (ESI) m/z 285.9 (M+H)+.
EXAMPLE 3 ID
4-(dibenzylamino)butane- 1 ,2-diyl ditetradecanoate
A mixture of EXAMPLE 31C (700 mg), tetradecanoic acid (1.68 g), N1- ((ethylimino)methylene)-N3,N3-dimethylpropane-l,3-diamine hydrochloride (1.41 g) and 4- (dimethylamino)pyridine (45 mg) in dichloromethane (5 mL) was heated at 4O0C until the mixture was homogenous and then was stirred overnight at room temperature. Water was added along with some brine and the aqueous layer was extracted with dichloromethane (3x). The extract was dried (Na2SO4), filtered and the filtrate was concentrated. The concentrate was purified by flash column chromatography (Analogix 280, 0-50% ethyl acetate/hexanes) to provide the title compound. MS (ESI) m/z 706.5 (M+H)+; 1U NMR (300 MHz, CDCl3) δ 7.16-7.39 (m, 10H) 5.06-5.21 (m, IH) 4.12 (dd, J=I 1.70, 3.37 Hz, IH) 3.91 (dd, J=I 1.90, 5.95 Hz, IH) 3.41-3.62 (m, 4H) 2.35-2.57 (m, 2H) 2.25 (t, J=7.54 Hz, 2H) 2.02-2.19 (m, 2H) 1.77 (q, J=7.40 Hz, 2H) 1.45-1.63 (m, 4H) 1.17-1.36 (m, 40H) 0.82-0.94 (m, 6H).
EXAMPLE 3 IE
4-aminobutane- 1 ,2-diyl ditetradecanoate EXAMPLE 3 ID (500 mg) was added to methanol/dichloromethane/ethyl acetate
(1/1/1, 10 mL) and combined with catalytic Pd/C (10%). Hydrogen was introduced via a balloon, and the mixture was stirred overnight then filtered through Celite®. The filtrate was concentrated and the concentrate was used in the next step without further purification. MS (ESI) m/z 526.6 (M+H)+; 1H NMR (300 MHz, CDCl3) δ ppm 5.13-5.25 (m, IH) 4.02-4.35 (m, 2H) 2.91-3.23 (m, 2H) 2.24-2.42 (m, 4H) 1.97-2.23 (m, 2H) 1.44-1.73 (m, 6H) 1.26 (s, 40H) 0.81-0.96 (m, 6H).
EXAMPLE 3 IF
6-oxo-2-(tetradecanoyloxy)- 8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,95,9 8,101,104,107,110,113,116,119,122,125, 128,131, 134,137,140,143-hexatetracontaoxa-5-a zatetratetracontahect- 1 -yl myristate
mPEG2000-SCM (139 mg, Laysan Bio, Inc) and EXAMPLE 3 IE (100 mg) were combined in a 4 rnL vial with dichloromethane (1 mL) and triethylamine (26.5 μL). The mixture was stirred at room temperature overnight. The mixture mixture was loaded directly onto a silica gel column (Analogix) and eluted with dichlormethane/methanol (0-20 %). MS (MALDI) m/z 2690.5; 1H NMR (300 MHz, CDCl3) δ ppm 5.07-5.20 (m, IH) 4.24 (dd, J=I 1.90, 3.17 Hz, IH) 4.06 (dd, J=I 1.90, 6.35 Hz, IH) 3.98 (s, 2H) 3.85-3.91 (m, IH) 3.61- 3.70 (m, 29H) 3.39-3.59 (m, 6H) 3.38 (s, 3H) 3.14-3.30 (m, IH) 2.25-2.36 (m, 4H) 1.53-1.87 (m, 6H) 1.26 (s, 40H) 0.83-0.93 (m, 6H).
EXAMPLE 32
N- [3 ,4-bis(tetradecyloxy)butyl] -
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanon atriacontahectan- 139-amide
EXAMPLE 32A
N,N-dibenzyl-3 ,4-bis(tetradecyloxy)butan- 1 -amine
EXAMPLE 31C (1 g) in toluene (6 mL) and added to NaH (0.336 g, dry, 95%) in toluene (6 mL). The mixture was stirred at room temperature for 1 hour. Tetradecyl methanesulfonate (2.15 g) was added. The mixture was heated to 9O0C overnight. The mixture was cooled to room temperature and ethanol was added followed by water until the excess NaH was destroyed. The mixture was poured into water and brine and extreaced with ethyl acetate. The water was extracted with ethyl acetate, and the extract was dried (Na2SO4), filtered and concentrated. The concentrate was purified by an Analogix system (hexane: ethyl acetate, 0-50%)). MS (ESI) m/z 678.6 (M+H)+; 1H NMR (300 MHz, CDCl3) δ ppm 7.16- 7.40 (m, 10H) 3.14-3.63 (m, HH) 2.44-2.59 (m, 2H) 1.59-1.82 (m, 2H) 1.35-1.53 (m, 4H) 1.14-1.34 (m, 44H) 0.82-0.94 (m, 6H).
EXAMPLE 32B
3 ,4-bis(tetradecyloxy)butan- 1 -amine
EXAMPLE 32B was prepared using the procedure described for EXAMPLE 3 IE, substituting EXAMPLE 32A for EXAMPLE 3 ID. MS (ESI) m/z 498.5 (M+H)+; 1U NMR (300 MHz, CDCl3) δ ppm 8.24 (s, 2H) 3.53-3.70 (m, IH) 3.34-3.53 (m, 6H) 3.07-3.34 (m, 2H) 1.87-2.13 (m, 2H) 1.48-1.67 (m, 4H) 1.16-1.39 (m, 44H) 0.82-0.94 (m, 6H).
EXAMPLE 32C N- [3 ,4-bis(tetradecyloxy)butyl] -
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanon atriacontahectan- 139-amide
EXAMPLE 32C was prepared using the procedure described for EXAMPLE 3 IF, substituting EXAMPLE 32B for EXAMPLE 3 IE. MS (MALDI) m/z 2617.6; 1H NMR (300 MHz, CDCl3) δ 3.95-4.02 (m, 2H) 3.83-3.92 (m, IH) 3.68-3.72 (m, IH) 3.65 (m, 180H) 3.35- 3.60 (m, 10H) 1.59-1.73 (m, 2H) 1.49-1.60 (m, 4H) 1.18-1.36 (m, 44H) 0.82-0.94 (m, 6H).
EXAMPLE 33
N- [3 ,4-bis(hexadecyloxy)butyl] -
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan- 139-amide
N,N-dibenzyl-3 ,4-bis(hexadecyloxy)butan- 1 -amine
EXAMPLE 33A was prepared using the procedure described for EXAMPLE 32A, substituting hexadecyl methanesulfonate for tetradecyl methanesulfonate. MS (ESI) m/z 734.6 (M+H)+; 1H NMR (300 MHz, CDCl3) δ ppm 7.15-7.41 (m, 10H) 3.12-3.64 (m, HH) 2.41-2.64 (m, 2H) 1.35-1.80 (m, 6H) 1.15-1.34 (m, 52H) 0.81-0.94 (m, 6H).
EXAMPLE 33B
3 ,4-bis(hexadecyloxy)butan- 1 -amine
EXAMPLE 33B was prepared using the procedure described for EXAMPLE 32B, substituting EXAMPLE 33A for EXAMPLE 32A. MS (ESI) m/z 554.6 (M+H)+; 1H NMR (300 MHz, CDCl3) δ ppm 8.12-8.38 (m, 2H) 3.54-3.70 (m, IH) 3.33-3.53 (m, 6H) 3.06-3.33 (m, 2H) 1.84-2.14 (m, 2H) 1.46-1.71 (m, 4H) 1.14-1.37 (m, 52H) 0.81-0.94 (m, 6H).
EXAMPLE 33C
N- [3 ,4-bis(hexadecyloxy)butyl] -
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan- 139-amide
EXAMPLE 33C was prepared using the procedure described for EXAMPLE 3 IF, substituting EXAMPLE 33B for EXAMPLE 3 IE. MS (MALDI) m/z 2866.7; 1U NMR (300 MHz, CDCl3) δ ppm 3.98 (s, 2H) 3.84-3.91 (m, IH) 3.60-3.68 (m, 180H) 3.36-3.60 (m, HH) 1.50-1.72 (m, 6H) 1.26 (s, 52H) 0.84-0.92 (m, 6H).
EXAMPLE 34
N-[3,4-bis(octadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona
triacontahectan- 139-amide
EXAMPLE 34A
N,N-dibenzyl-3 ,4-bis(octadecyloxy)butan- 1 -amine
EXAMPLE 34A was prepared using the same procedure described for EXAMPLE 32A, substituting octadecyl methanesulfonate for tetradecyl methanesulfonate. LCMS (APCI) m/z 790.6; 1H NMR (300 MHz, CDCl3) δ ppm 7.15-7.41 (m, 10H) 3.10-3.68 (m, HH) 2.39-2.68 (m, 2H) 1.35-1.80 (m, 6H) 1.14-1.34 (m, 60H) 0.81-0.94 (m, 6H).
EXAMPLE 34B
3 ,4-bis(octadecyloxy)butan- 1 -amine
EXAMPLE 34B was prepared using the same procedure described for EXAMPLE 3 IE, substituting EXAMPLE 34A for EXAMPLE 3 ID. LCMS (APCI) m/z 610.9; 1H NMR (300 MHz, CDCl3) δ 3.08-3.70 (m, 9H) 1.85-2.15 (m, 2H) 1.55 (s, 4H) 1.15-1.37 (m, 60H) 0.84-0.92 (m, 6H).
EXAMPLE 34C N-[3,4-bis(octadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-hexatetracontaoxanona triacontahectan- 139-amide
EXAMPLE 34C was prepared using the same procedure described for EXAMPLE 3 IF, substituting EXAMPLE 34B for EXAMPLE 3 IE. MS (MALDI) m/z 2773.6; 1U NMR (300 MHz, CDCl3) δ ppm 3.95-4.01 (m, 2H) 3.84-3.91 (m, IH) 3.59-3.70 (m, 180H) 3.27-
EXAMPLE 35
3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115,
119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,182- hexatetracontaoxatrioctacontahect- 1-yl 3,4- bis(tetradecyloxy)butylcarbamate
EXAMPLE 32B (100 mg) was dissolved in dichloromethane (1-2 niL) and mPEG- NPC (26.0 mg) was added. Hunig's base (26 mg) was added, and the mixture was stirred overnight at room temperature. The mixture was loaded directly onto a silica gel column (4 g Analogix) and chromatographed (Analogix 280, dichloromethane/methanol, 0-20%) to give EXAMPLE 35. MS (MALDI) m/z 2472.2; 1H NMR (300 MHz, CDCl3) δ ppm 4.16-4.24 (m, 2H) 3.78-3.92 (m, IH) 3.59-3.70 (m, 180H) 3.52-3.61 (m, 4H) 3.19-3.49 (m, 9H) 1.48- 1.82 (m, 6H) 1.21-1.35 (m, 44H) 0.82-0.93 (m, 6H).
EXAMPLE 36
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,
96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(hexadecyloxy)butylcarbamate EXAMPLE 36 was prepared using the same procedure described for EXAMPLE 35, substituting EXAMPLE 33B for EXAMPLE 32B. MS (MALDI) m/z 2395.0; 1U NMR (300 MHz, CDCl3) δ ppm 4.15-4.23 (m, 2H) 3.81-3.92 (m, IH) 3.60-3.71 (m, 180H) 3.47-3.59 (m, 4H) 3.33-3.48 (m, 9H) 1.48-1.81 (m, 6H) 1.19-1.34 (m, 52H) 0.83-0.92 (m, 6H).
EXAMPLE 37 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,
96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(octadecyloxy)butylcarbamate EXAMPLE 37 was prepared using the same procedure described for EXAMPLE 35, substituting EXAMPLE 34B for EXAMPLE 32B. MS (MALDI) m/z 2495.8; 1H NMR (300 MHz, CDCl3) δ ppm 4.16-4.24 (m, 2H) 3.82-3.92 (m, IH) 3.60-3.71 (m, 180H) 3.49- 3.59 (m, 4H) 3.17-3.49 (m, 9H) 1.48-1.80 (m, 6H) 1.18-1.37 (m, 60H) 0.82-0.93 (m, 6H).
EXAMPLE 38
N-[3,4-bis(hexadecyloxy)butyl]-N'- 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123, 126,129,132,135, 138-hexatetracontaoxan onatriacontahect- 1 -ylsuccinamide
EXAMPLE 38 was prepared using the same procedure described for EXAMPLE 3 IF, substituting RAPP 12 2000-35 (Rapp Polymere) for mPEG2000-SCM. MS (MALDI) m/z 2584.3; 1H NMR (300 MHz, CDCl3) δ ppm 6.43-6.61 (m, 2H) 3.60-3.68 (m, 200H) 3.36-3.58 (m, 16H) 2.42-2.57 (m, 4H) 1.49-1.85 (m, 6H) 1.19-1.35 (m, 52H) 0.82-0.92 (m, 6H).
EXAMPLE 39 6-oxo-2-(tetradecanoyloxy)-
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,9 7,100,103,106,109,112,115,118,121, 124,127,130,133, 136,139,142,145-heptatetracontaox a-5-azahexatetracontahect- 1 -yl myristate
EXAMPLE 39 was prepared using the same procedure described for EXAMPLE 3 IF, substituting mPEG-NPC (Creative PEGWorks) for mPEG2000-SCM (Laysan Bio, Inc.). MS (MALDI) m/z 2588.5; 1U NMR (300 MHz, CDCl3) δ ppm 5.14 (m, IH) 4.17-4.26 (m, 3H) 4.01-4.11 (m, IH) 3.83-3.91 (m, IH) 3.60-3.71 (m, 180H) 3.48-3.60 (m, 4H) 3.35-3.44 (m, 5H) 2.23-2.37 (m, 4H) 1.62-1.86 (m, 6H) 1.21-1.37 (m, 40H) 0.83-0.93 (m, 6H).
EXAMPLE 40 6-oxo-2-(palmitoyloxy)-
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,9 7,100,103,106,109,112,115,118,121, 124,127,130,133, 136,139,142,145-heptatetracontaoxa-5- azahexatetracontahect- 1 -yl palmitate
EXAMPLE 4OA
4-(dibenzylamino)butane-l ,2-diyl dipalmitate EXAMPLE 4OA was prepared using the same procedure described for EXAMPLE
3 ID, substituting hexadecanoic acid for tetradecanoic acid. MS (ESI) m/z 762.4 (M+H)+; 1H NMR (300 MHz, CDCl3) δ ppm 7.15-7.42 (m, 10H) 5.06-5.21 (m, IH) 4.12 (dd, J=I 1.90, 3.57 Hz, IH) 3.91 (dd, J=I 1.90, 5.95 Hz, IH) 3.43-3.62 (m, 4H) 2.34-2.58 (m, 2H) 2.25 (t, J=7.34 Hz, 2H) 2.01-2.16 (m, 2H) 1.77 (q, J=7.14 Hz, 2H) 1.40-1.64 (m, 4H) 1.14-1.37 (m, 48H) 0.82-0.95 (m, 6H).
EXAMPLE 4OB
4-aminobutane-l ,2-diyl dipalmitate
EXAMPLE 4OB was prepared using the same procedure described for EXAMPLE 3 IE, substituting EXAMPLE 4OA for 3 ID. MS (ESI) m/z 482.6 (M+H)+.
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,9 7,100,103,106,109,112,115,118,121, 124,127,130,133, 136,139,142,145-heptatetracontaoxa-5- azahexatetracontahect- 1 -yl palmitate
EXAMPLE 4OC was prepared using the same procedure described for EXAMPLE 3 IF, substituting EXAMPLE 4OB for EXAMPLE 3 IE. MS (MALDI) m/z 2689.0; 1U NMR (300 MHz, CDCl3) δ ppm 5.09-5.19 (m, IH) 4.17-4.26 (m, 3H) 4.01-4.11 (m, IH) 3.73-3.91 (m, IH) 3.61-3.70 (m, 180H) 3.48-3.60 (m, 4H) 3.35-3.44 (m, 5H) 2.23-2.36 (m, 4H) 1.54- 1.84 (m, 6H) 1.21-1.36 (m, 48H) 0.82-0.93 (m, 6H).
EXAMPLE 41
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,
96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 4- { [3 ,4-bis(hexadecyloxy)butyl]amino } -A- oxobutanoate
EXAMPLE 33B (100 mg) and mPEG-COOH (278 mg, PSA-288, Creative PEGWorks) were combined in dichloromethane (2 mL). N1-((ethylimino)methylene)-N3,N3- dimethylpropane- 1,3 -diamine hydrochloride (346 mg) was added followed by 4- (dimethylamino)pyridine (2 mg). The mixture was stirred overnight at room temperature then loaded directly onto a 4 g silica gel column (Analogix) and purified (Analogix 280, dichloromethane:methanol 0-20%). (MALDI) m/z 2628.4; 1U NMR (300 MHz, CDCl3) δ ppm 4.19-4.28 (m, 2H) 3.83-3.92 (m, IH) 3.65 (none, 180H) 3.36-3.59 (m, 16H) 2.69 (t, J=6.78 Hz, 2H) 2.43 (t, J=6.95 Hz, 2H) 1.47-1.71 (m, 6H) 1.22-1.32 (m, 52H) 0.84-0.92 (m, 6H).
8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,95,9 8,101,104,107,110,113,116,119,122,125, 128,131, 134,137,140,143-hexatetracontaoxa-5-azate tratetracontahect-1-yl palmitate
This example was prepared using the same procedure described for EXAMPLE 3 IF, substituting EXAMPLE 4OB for EXAMPLE 3 IE. MS (MALDI) m/z 2835.3; 1U NMR (300 MHz, CDCl3) δ ppm 5.07-5.20 (m, IH) 4.24 (dd, J=I 1.90, 3.57 Hz, IH) 4.06 (dd, J=I 1.90, 6.35 Hz, IH) 3.98 (s, 2H) 3.61-3.68 (m, 180H) 3.49-3.60 (m, 4H) 3.36-3.48 (m, 5H) 2.25- 2.36 (m, 4H) 1.77-1.87 (m, 2H) 1.26 (m, 48H) 0.83-0.93 (m, 6H).
EXAMPLE 43
2-(tetradecyloxy)- 1 -((tetradecyloxy)methyl)ethyl 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123, 126,129,132,135, 138-hex atetracontaoxanonatriacontahect- 1 -ylcarbamate
EXAMPLE 43A 1 -(2,2-dimethoxy-3-(tetradecyloxy)propoxy)tetradecane
To a solution of 2,2-dimethoxypropane-l,3-diol (1 g) in toluene (30 mL) at 00C was added NaH (1.484 g). The mixture was stirred at room temperature for 1 hour. The mixture was cooled to 00C, and 1-bromotetradecane (4.99 mL) was added. The mixture was heated at reflux for 2 hours. The mixture was cooled to 00C, and ethanol was added until it became clear. The mixture was concentrated. The concentrate was taken up in dichloromethane and dried onto silica gel. The silica was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65χ200g, 2% ethyl acetate/hexanes for six column volumes, then 4% ethyl acetate/hexanes until major product eluted). MS (ESI) m/z 512 (M-CH3+l).
EXAMPLE 43B l,3-bis(tetradecyloxy)propan-2-one
To a solution of l-(2,2-dimethoxy-3-(tetradecyloxy)propoxy)tetradecane (2.2 g) in tetrahydrofuran (60 mL) was added 6N hydrogen chloride (5.55 mL). The mixture was stirred at room temperature overnight then concentrated. The concentrate was taken up in ethyl acetate, washed with saturated NaHCOs, dried over Na2SO4, filtered, and concentrated. The concentrate was dissolved in dichloromethane and concentrated onto silica gel. The silica gel was loaded into an Analogix DASI module, and the product was isolated by flash chromatography (Analogix, SF65χ200g, 2% ethyl acetate/hexanes for six column volumes, then 4% ethyl acetate/hexanes until the product eluted. MS (ESI) m/z 500.4 (M+18)+.
EXAMPLE 43C l,3-bis(tetradecyloxy)propan-2-ol To a solution of l,3-bis(tetradecyloxy)propan-2-one (0.68 g) in tetrahydrofuran (13 mL) at 00C was added sodium borohydride (0.085 g) and water (0.867 mL). The mixture was stirred at room temperature for 1 hour, cooled to 00C, and quenched with IN HCl. The mixture was extracted with ethyl acetate. The extract was dried over Na2SO4, filtered and concentrated. The concentrate was purified by flash chromatography (1 :5 ethyl acetate/hexanes). MS (ESI) m/z 484 (M+l)+, 502 (M+18)+.
EXAMPLE 43D l,3-bis(tetradecyloxy)propan-2-yl 4-nitrophenyl carbonate
To a solution of l,3-bis(tetradecyloxy)propan-2-ol (0.3 g) in dichloromethane (3 mL) at 00C were added triethlyamine (0.129 mL) and 4-nitrophenyl carbonochloridate (0.137 g). The mixture was stirred at room temperature overnight and concentrated. The concentrate was purified by flash chromatography (1 :10 ethyl acetate/hexanes). 1H NMR (300 MHz,
CDCl3) δ ppm 8.24-8.30 (m, 2H), 7.37-7 '.42 (m, 2H), 5.06-5.13 (m, IH), 3.67 (d, J=5.16 Hz, 4H), 3.41-3.55 (m, 4H), 1.55-1.60 (m, 4H), 1.19-1.38 (m, 44H), 0.85-0.90 (m, 6H).
EXAMPLE 43E
2-(tetradecyloxy)- 1 -((tetradecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123, 126,129,132,135, 138-hex atetracontaoxanonatriacontahect- 1 -ylcarbamate
To a solution of CH3O-PEG2000-NH2 (12 2000-2 Rapp Polymere, 0.2 g) in dichloromethane (1 mL) were added l,3-bis(tetradecyloxy)propan-2-yl 4-nitrophenyl carbonate (0.195 g) and triethylamine (0.015 g). The mixture was stirred at room temperature overnight. The mixture was directly purified by flash chromatography (5-20% methanol/dichloromethane). 1H NMR (300 MHz, CDCl3) δ ppm 3.53-3.66 (m, 180H), 3.32- 3.49 (m, 9H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.21-1.35 (m, 44H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2549.
EXAMPLE 44
2-(hexadecyloxy)- 1 -((hexadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123, 126,129,132,135, 138-hexat etracontaoxanonatriacontahect- 1 -ylcarbamate
This EXAMPLE was prepared as described in EXAMPLE 43, substituting hexadecyl methanesulfonate for 1-bromotetradecane in EXAMPLE 43 A. 1H NMR (300 MHz, CDCl3) δ ppm 3.54-3.66 (m, 180H), 3.32-3.49 (m, 9H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.21-1.36 (m, 48H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2614.
2-(octadecyloxy)- 1 -((octadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93, 96,99,102,105,108,111,114,117,120,123, 126,129,132,135, 138-hexat etracontaoxanonatriacontahect- 1 -ylcarbamate
This EXAMPLE was prepared as described in EXAMPLE 43 substituting octadecyl methanesulfonate for 1-bromotetradecane in EXAMPLE 43 A. 1H NMR (300 MHz, CDCl3) δ ppm 3.52-3.66 (m, 180H), 3.32-3.49 (m, 9H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.21-1.36 (m, 52H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2557.
EXAMPLE 46
2- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-l,3-diyl ditetradecanoate
EXAMPLE 46A
2-(tert-butoxycarbonylamino)propane-l ,3-diyl ditetradecanoate To a solution of tetradecanoic acid (1.051 g) in dichloromethane (10 mL) at 00C were added tert-butyl l,3-dihydroxypropan-2-ylcarbamate (0.40 g), 4-(dimethylamino)pyridine (0.562 g), N-methylmorpholine (1.150 mL), and l-ethyl-3-(3-
(dimethylamino)propyl)carbodiimide hydrochloride (0.882 g). The mixture was stirred at room temperature overnight. The mixture was partitioned between water and dichloromethane. The aqueous layer was extracted with dichloromethane. The extract were dried over Na2SO4, filtered, and concentrated. The concentrate was purified by flash chromatography (1 :10 ethyl acetate/hexanes). MS (ESI) m/z 512.4 (M-CO2-tert-butyl+l)+.
EXAMPLE 46B
2-aminopropane- 1 ,3-diyl ditetradecanoate
To a solution of 2-(tert-butoxycarbonylamino)propane-l,3-diyl ditetradecanoate in dichloromethane (10 mL) was added trifluoroacetic acid. The mixture was stirred at room temperature for 2 hours then concentrated. The concentrate was purified by flash chromatography. MS (ESI) m/z 512.4 (M+l)+.
EXAMPLE 46C
2- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-l,3-diyl ditetradecanoate To a flask was charged with mPEG2000-SCM (Laysan, 0.2 g) and 2-aminopropane- 1,3-diyl ditetradecanoate (0.077 g) was added dichloromethane (2 mL). The mixture was stirred at room temperature overnight and concentrated. The concentrate was purified by flash chromatography (5-20% methanol/dichloromethane). 1H NMR (300 MHz, CDCl3) δ ppm 4.11-4.21 (m, 4H), 4.01 (s, 2H), 3.53-3.68 (m, 180H), 3.39-3.42 (m, IH), 3.38 (s, 3H), 2.31 (t, J=7.46 Hz, 4H), 1.57-1.64 (m, 4H), 1.20-1.37 (m, 40H), 0.85-0.90 (m, 6H); MS (MALDI) m/z 2632.
EXAMPLE 47
2-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane- 1 ,3-diyl dipalmitate This EXAMPLE was prepared as described in EXAMPLE 46, substituting hexadecanoic acid for tetradecanoic acid in EXAMPLE 46 A. 1H NMR (300 MHz, CDCl3) δ ppm 4.10-4.21 (m, 4H), 4.01 (s, 2H), 3.53-3.69 (m, 180H), 3.39-3.42 (m, IH), 3.38 (s, 3H), 2.31 (t, J=7.63 Hz, 4H), 1.56-1.63 (m, 4H), 1.20-1.33 (m, 44H), 0.85-0.91 (m, 6H); MS (MALDI) m/z 2732.
EXAMPLE 48
2- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-l,3-diyl distearate This EXAMPLE was prepared as in EXAMPLE 46, substituting octadecanoic acid for tetradecanoic acid in EXAMPLE 46A. 1U NMR (300 MHz, CDCl3) δ ppm 4.10-4.21 (m, 4H), 4.01 (s, 2H), 3.53-3.69 (m, 180H), 3.39-3.42 (m, IH), 3.38 (s, 3H), 2.31 (t, J=7.63 Hz, 4H), 1.57-1.63 (m, 4H), 1.21-1.33 (m, 48H), 0.85-0.90 (m, 6H); MS (MALDI) m/z 2832.
EXAMPLE 49
N-(2-(hexadecyloxy)- 1 -((hexadecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-h exatetracontaoxanonatriacontahectan- 139-amide
EXAMPLE 49 A l,3-bis(hexadecyloxy)propan-2-amine
In a 100 mL round-bottomed flask was added N-Boc-serinol (1,1-dimethylethyl (2- hydroxy-l-(hydroxymethyl)ethyl)carbamate) (2.0 g) and sodium hydride (1.255 g) in N5N- dimethylformamide (50 mL). The mixture was cooled using an ice/water bath, and 1- bromohexadecane (7.98 g) was added to it. The mixture was heated at 700C overnight, then cooled to room temperature. The mixture was cooled to 00C and quenched with a few drops of cold water. The mixture was diluted with saturated ammonium chloride (50 mL). The aqueous layer was extracted with ethyl acetate, and the extract was washed with brine, dried over Na2SO4, and concentrated. The concentrate was added to a silica gel column and was eluted with ethyl acetate/hexane (1 :9). The product, tert-butyl l,3-bis(hexadecyloxy) propan-2-ylcarbamate, was directly used for the next step.
In a 100 mL round-bottomed flask was added tert-butyl l,3-bis(hexadecyloxy)propan- 2-ylcarbamate (5.0 g) and CH2Cl2 (40 mL). Trifluoroacetic acid (20 mL) was then added dropwise. The mixture was stirred under nitrogen for 3 hours and concentrated. The concentrate was added to a silica gel column and eluted with CH2Cl2/methanol (9:1). The product was dried under vacuum. 1H NMR (300 MHz, CDCl3) δ ppm 3.53-3.63 (m, 4H), 3.42-3.46 (t, 4H), 3.23 (m, IH), 2.92-2.97 (m, 2H), 1.53-1.64 (m, 4H), 1.18-1.40 (m, 52H), 0.86-0.90 (t, 6H). MS (ESI) m/z 540.6 (M+l)+.
EXAMPLE 49B
N-(2-(hexadecyloxy)- 1 -((hexadecyloxy)methyl)ethyl)- 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92,
95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-h exatetracontaoxanonatriacontahectan- 139-amide
Into a 40 mL glass vial was added l,3-bis(hexadecyloxy)propan-2-amine (1.75 g) and mPEG2000-SCM (Laysan, 0.25 g, 1.081 mmol) in CH2Cl2 (10 mL). Triethylamine (0.50 mL) was added dropwise. The reaction solution was stirred under nitrogen for one day. The crude product was added to a silica gel column and was eluted with CH2Cl2 / methanol (9:1). The product was dried under vacuum. 1H NMR (300 MHz, CDCl3) δ ppm 4.17- 4.18 (m,
IH), 4.14 (s, 2H), 3.86 -3.88 (m, 4H), 3.74-3.76 (t, 4H), 3.61-3.71 (m, 180H), 3.38 (s, 3H), 1.51-1.59 (m, 4H), 1.23-1.32 (m, 56H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2700.
EXAMPLE 50
N-(2-(tetradecyloxy)- 1 -((tetradecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125,128,131,134,137
-hexatetracontaoxanonatriacontahectan- 139-amide
This EXAMPLE was prepared as described in EXAMPLE 49, substituting 1- bromotetradecane for 1-bromohexadecane in EXAMPLE 49A. 1H NMR (300 MHz, CDCl3) δ ppm 4.18 (m, IH), 4.10 (s, 2H), 3.86-3.89 (m, 4H), 3.72-3.75 (t, 4H), 3.61-3.71 (m, 180H), 3.38 (s, 3H), 1.50-1.60 (m, 4H), 1.24-1.30 (m, 48H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2400.
EXAMPLE 51
N-(2-(octadecyloxy)- 1 -((octadecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,92, 95,98,101,104,107,110,113,116,119,122,125, 128,131, 134,137-h exatetracontaoxanonatriacontahectan- 139-amide
This EXAMPLE was prepared as described in EXAMPLE 49, substituting 1- bromooctadecane hexadecane for 1-bromotetradecane in EXAMPLE 49A. 1H NMR (300 MHz CDCl3) δ ppm 4.14- 4.20 (m, IH), 4.08 (s, 2H), 3.86 -3.89 (t, 4H), 3.71-3.75 (m, 4H), 3.61-3.70 (m, 180H), 3.38 (s, 3H), 1.50-1.56 (m, 4H), 1.20-1.30 (m, 64H), 0.86-0.90 (m, 6H); MS (MALDI) m/z 2900.
EXAMPLE 52
1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl} ethyl)-4-(2-pyrrolidin- 1 -ylethyl)piperazine The title compound was prepared as described in EXAMPLE 6 by substituting l-(2- (pyrrolidin- 1 -yl)ethyl)piperazine for 3-(pyrrolidin- 1 -yl)propan- 1 -amine. 1H NMR (300 MHz, CDCl3) δ 5.28 - 5.43 (m, 8 H), 3.48 - 3.57 (m, 4 H), 3.38 (t, J=6.54 Hz, 4 H), 2.69 - 2.79 (m, 9 H), 2.59 - 2.65 (m, 2 H), 2.48 - 2.55 (m, 10 H), 2.05 (q, J=6.48 Hz, 8 H), 1.74 - 1.79 (m, 4 H), 1.50 - 1.57 (m, 4 H), 1.24 - 1.38 (m, 32 H), 0.86 - 0.91 (m, 6 H); MS (ESI) m/z 754.6 (M+l)+.
EXAMPLE 53
N-(2-[(9Z)-octadec-9-enyloxy]- 1 - {[(9Z)-octadec-9-enyloxy]methyl} ethyl)-N-(3-pyrrolidin- 1 - ylpropyl)amine
The title compound was prepared as described in EXAMPLE 6 by substituting (Z)- octadec-9-enyl methanesulfonate for (9Z,12Z)-octadeca-9,12-dienyl methanesulfonate. 1H NMR (300 MHz, CDCl3) δ 5.29 - 5.40 (m, 4 H), 3.35 - 3.46 (m, 8 H), 2.87 - 2.94 (m, 1 H), 2.70 (t, J=7.14 Hz, 2 H), 2.45 - 2.51 (m, 6 H), 1.98 - 2.04 (m, 8 H), 1.66 - 1.82 (m, 6 H), 1.50 - 1.60 (m, 4 H), 1.21 - 1.38 (m, 44 H), 0.86 - 0.90 (m, 6 H); MS (ESI) m/z 703.7 (M+l)+.
EXAMPLE 541 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}ethyl)azetidine
The title compound was prepared as described in EXAMPLE 6 by substituting azetidine for 3-(pyrrolidin-l-yl)propan-l -amine. MS (ESI(+)) m/e 628 (M+H)+ 1U NMR (400 MHz, CHLOROFORM-D) δ 5.25-5.45 (m, 8 H) 3.20-3.46 (m, 13 H) 2.69-2.85 (m, 4 H) 2.39-2.52 (m, 1 H) 1.96-2.10 (m, 9 H) 1.47-1.60 (m, 4 H) 1.20-1.41 (m, 29 H) 0.80 - 0.92 (m,5H).
EXAMPLE 552-methyl- 1 -(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca- 9,12-dienyloxy]methyl}ethyl)aziridine
The title compound was prepared as described in EXAMPLE 6 by substituting 2- methylaziridine for 3-(pyrrolidin-l-yl)propan-l-amine. 1H NMR (400 MHz,
CHLOROFORM-D) δ 5.25-5.45 (m, 8 H) 3.88-3.97 (m, 1 H) 3.38-3.53 (m, 8 H) 2.72-2.80 (m, 4 H) 1.98-2.10 (m, 9 H) 1.52-1.63 (m, 6 H) 1.24-1.40 (m, 34 H) 0.84-0.94 (m, 6 H).
EXAMPLE 56
N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether EXAMPLE 56 was prepared using the known synthetic route; see: Heyes, J.; Hall, K.; Tailor, V.; Lenz, R.; MacLachlan, I. J. Controlled Release 2006, 112, 280-290.
I l l
Claims
1. A cationic lipid having Formula (I)
(I)
wherein
Y2 is a bond, Ci-C8 alkylene, C(O), C(O)O(Ci-C8-alkylene), (C1-C8- alkylene)NHC(O)O(Ci-C8-alkylene), (Ci-C8-alkylene)O, (C1-C8- alkylene)OC(O)N(Ci-C8-alkylene), or (Ci-C8-alkylene)O(Ci-C8-alkylene);
Y3 is a bond or C(O);
Y4 is a bond or C(O);
R1 and R2 are each independently H, cycloalkyl, cycloalkenyl or R5; or
R1 and R2, with the nitrogen to which they are attached, are heterocycloalkyl or heteroaryl;
one of R3 and R4 is H, and the other is Ci4-C2o-alkenyl or Ci4-C2o-alkyl; or
R3 and R4 are independently Ci4-C2o-alkenyl or C14-C20-alkyl; or R3 and R4 together are CR20R21, wherein R20 is H and R21 is C14-C2o-alkyl, Ci4-C2o-alkenyl or (CH2θ)-Ci4-C2o-alkenyl; or R20 and R21 are independently selected Ci4-C20-alkyl, Ci4-C2o-alkenyl or (CH20)-Ci4-C2o-alkenyl; or
Y3-R3 and Y4-R4 together are CR20R21;
R5 is alkyl, which is unsubstituted or substituted with one or more R6, OR6, SR6, S(O)R6, SO2R6, C(O)R6, CO(O)R6, OC(O)R6, OC(O)OR6, NH2, NHR6, N(R6)2, NHC(O)R6, NR6C(O)R6, NHS(O)2R6, N R6S(O)2R6, NHC(O)OR6, NR6C(O)OR6, NHC(O)NH2, NHC(O)NHR6, NHC(O)N(R6)2, NR6C(O)NHR6, NR6C(O)N(R6)2, C(O)NH2, C(O)NHR6, C(O)N(R6)2, C(O)NHOH, C(O)NHOR6, C(O)NHSO2R6, C(O)NR6SO2R6, SO2NH2, SO2NHR6, SO2N(R6)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6, C(N)N(R6)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6 is R7, R8, R9, or R10;
R7 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene; R10 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more R6A, OR6A, SR6A, S(O)R6A, SO2R6A, C(O)R6A, CO(O)R6A, OC(O)R6A, OC(O)OR6A, NH2, NHR6A, N(R6A)2, NHC(O)R6A, NR6AC(O)R6A, NHS(O)2R6A, N R6AS(O)2R6A, NHC(O)OR6A, NR6AC(O)OR6A, NHC(O)NH2, NHC(0)NHR6A, NHC(O)N(R6A)2, NR6AC(O)NHR6A, NR6AC(O)N(R6A)2, C(O)NH2, C(0)NHR6A, C(O)N(R6A)2, C(O)NHOH, C(0)NH0R6A, C(O)NHSO2R6A, C(O)NR6ASO2R6A, SO2NH2, SO2NHR6A, SO2N(R6A)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR6A, C(N)N(R6A)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R6A is R7A, R8A, R9A, or R10A;
R7A is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R8A is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R9A is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R10A is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or more NH2, NHC(O)NH2, C(O)NH2, C(O)NHOH, SO2NH2, C(O)H, C(O)OH, C(N)NH2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; wherein each foregoing cyclic moiety is independently unsubstituted or substituted with one or two or three or four or five of independently selected R11, OR11, SR11, S(O)R11, SO2R11, C(O)R11, CO(O)R11, OC(O)R11, OC(O)OR11, NH2, NHR11, N(Rπ)2, NHC(O)R11, NR11C(O)R11, NHS(O)2R11, N R11S(O)2R11, NHC(O)OR11, NR11C(O)OR11, NHC(O)NH2, NHC(O)NHR11, NHC(O)N(R1 % NR11C(O)NHR11, NR11C(O)N(R1^2, C(O)NH2, C(O)NHR11, C(0)N(Rπ)2, C(O)NHOH, C(O)NHOR11, C(O)NHSO2R11, C(O)NR11SO2R11, SO2NH2, SO2NHR11, SO2N(Rπ)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR11, C(N)N(Rπ)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I;
R11 is R12, R13, R14 or R15;
R12 is phenyl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R13 is heteroaryl which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R14 is cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene, each of which is unfused or fused with benzene, heteroarene, cycloalkane, cycloalkene, heterocycloalkane, or heterocycloalkene;
R15 is alkyl, alkenyl or alkynyl, each of which is unsubstituted or substituted with one or two of independently selected R16, OR16, SR16, S(O)2R16, C(O)OH, NH2, NHR16 N(R16)2, C(O)R16, C(O)NH2, C(O)NHR16, C(O)N(R16)2, NHC(O)R16, NR16C(O)R16, NHC(O)OR16, NR16C(O)OR16, OH, F, Cl, Br or I;
R16 is alkyl, alkenyl, alkynyl, or R17; R17 is phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;
wherein R12, R13, R14, and R17 are independently unsubstituted or substituted with one or more R18, OR18, SR18, S(O)R18, SO2R18, C(O)R18, CO(O)R18, OC(O)R18, OC(O)OR18, NH2, NHR18, N(R18)2, NHC(O)R18, NR18C(O)R18, NHS(O)2R18, N R18S(O)2R18, NHC(O)OR18, NR18C(O)OR18, NHC(O)NH2, NHC(O)NHR18, NHC(O)N(R18)2, NR18C(O)NHR18, NR18C(O)N(R18)2, C(O)NH2, C(O)NHR18, C(O)N(R18)2, C(O)NHOH, C(O)NHOR18, C(O)NHSO2R18, C(O)NR18SO2R18, SO2NH2, SO2NHR18, SO2N(R18)2, C(O)H, C(O)OH, C(N)NH2, C(N)NHR18, C(N)N(R18)2, CNOH, CNOCH3, OH, (O), CN, N3, NO2, CF3, CF2CF3, OCF3, OCF2CF3, F, Cl, Br or I; and
R18 is alkyl, alkenyl, alkynyl, phenyl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl.
2. A Cationic-Based Lipid Encapsulation System (CaBLES) comprising: one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of claim 1.
3. A Lipid-Based Particle, comprising: one or more (PEG)-lipid conjugates, one or more non-cationic lipids, one or more cationic lipids of claim 1, and one or more therapeutic agents.
4. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein the cationic lipids comprise about 2 to about 60 weight/weight percent of total lipid in the particle.
5. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein one or more cationic lipids are chosen from l-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)pyrrolidine; N ,N- dimethyl-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine; 4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)morpholine; N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine; N-(2-(4-methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)amine; N-(2-(lH-imidazol-4- yl)ethyl)-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3 -(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazin- 1 - yl)propyl)amine; 1 ,3 -bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-amine; N-(( 1 - methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)amine; N-(2-((9Z,12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- (pyrrolidin- 1 -ylmethyl)benzyl)amine; N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)-N-(3-pyrrolidin- 1 - ylpropyl)amine; N-(3-((4-methylpiperazin-l-yl)methyl)benzyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N5N5N'- trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)propane- 1,3 -diamine; N-methyl-N-(2-((9Z,12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- (pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-(I H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)-N-((2-pyrrolidin- 1 -ylpyridin-3- yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 -yl)propane- 1 ,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine; l-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2- (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)- N'- {3 -[(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}ethyl)amino]propyl}butane-l,4-diamine; N-(3-[(9Z,12Z)-octadeca- 9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)-N-(3- pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)-octadeca-9,12- dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z, 12Z)-octadeca-9, 12-dienyloxy] -2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl} propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z, 12Z)-octadeca- 9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin- l-ylethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca- 9,12-dienyloxy]methyl}propyl 2-(dimethylamino)ethylcarbamate; l-(2-[(9Z,12Z)- octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}ethyl)-4-(2- pyrrolidin- 1 -ylethyl)piperazine; and N-(2-[(9Z)-octadec-9-enyloxy]- 1 - {[(9Z)-octadec- 9-enyloxy]methyl} ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine.
6. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein one or more non-cationic lipids are chosen from cholesterol, cholesterol sulfate, ceramide, sphingomyelin, lecithin, sphingomyelin, egg sphingomyelin, milk sphingomyelin; egg phosphatidylcholine, hydrogenated egg phosphatidylcholine, hydrogenated soybean phosphatidylethanolamine, egg phosphatidylethanolamine, hydrogenated soybean phosphatidylcholine, soybean phosphatidylcholine, 1 ,2- dilauroyl-sn-glycerol, 1 ,2-dimyristoyl-sn-glycerol, 1 ,2-dipalmitoyl-sn-glycerol, 1 ,2- distearoyl-sn-glycerol, l,2-dilauroyl-sn-glycero-3-phosphatidic acid, 1 ,2-dimyristoyl- sn-glycero-3-phosphatidic acid, l,2-dipalmitoyl-sn-glycero-3-phosphatidic acid, 1,2- distearoyl-sn-glycero-3-phosphatidic acid, 1 ,2-diarachidoyl-sn-glycero-3- phosphocholine, 1 ,2-dilauroyl-sn-glycero-3-phosphocholine, 1 ,2-dimyristoyl-sn- glycero-3-phosphocholine, dioleoylphosphatidylcholine, 1 ,2-dierucoyl-sn-glycero-3- phosphocholine, 1 -myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine, 1 -myristoyl- 2-stearoyl-sn-glycero-3-phosphocholine, l-palmitoyl-2-myristoyl-sn-glycero-3- phosphocholine, 1 -palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine, 1 -stearoyl-2- myristoyl-sn-glycero-3-phosphocholine, l-stearoyl-2-palmitoyl-sn-glycero-3- phosphocholine, 1 -myristoyl^-oleoyl-sn-glycero-S -phosphocholine, 1 -palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine, 1 -myristoyl^-lyso-sn-glycero-S -phosphocholine, 1 -palmitoyl-2- lyso-sn-glycero-3-phosphocholine, l-stearoyl^-lyso-sn-glycero-S-phosphocholine, 1 ,2-dipalmitoyl-sn-glycero-O-ethyl-3 -phosphocholine, 1 ,2-dipalmitoyl-sn-glycero-3- phosphocholine; 1 ,2-distearoyl-sn-glycero-3-phosphocholine; 1 -palmitoyl-2- linoleoyl-sn-glycero-3-phosphocholine, dioleoylphosphatidylethanolamine, palmitoyloleoyl-phosphatidylethanolamine, dioleoylphosphatidylglycerol, 1 ,2- dilauroyl-sn-glycero-3-phosphoethanolamine, l,2-dimyristoyl-sn-glycero-3- phosphoethanolamine, 1 ,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1 ,2- distearoyl-sn-glycero-3-phosphoethanolamine, l,2-dioleoyl-sn-glycero-3- phosphoethanolamine, 1 ,2-dilauroyl-sn-glycero-3-phosphoglycerol, 1 ,2-dimyristoyl- sn-glycero-3-phosphoglycerol,l,2-dimyristoyl-sn-glycero-3-phospho-sn-l-glycerol, 1 ,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1 ,2-distearoyl-sn-glycero-3- phosphoglycero, 1 ,2-distearoyl-sn-glycero-3-phospho-sn- 1 -glycerol, 1 -palmitoyl-2- oleoyl-sn-glycero-3-phosphoglycerol, l-palmitoyl-2-oleoyl-sn-glycero-3- phosphoglycerol, 1 ,2-dipalmitoyl-sn-glycero-3-phospho-L-serine, 1 ,2-dimyristoyl-sn- glycero-3-phospho-L-serine, l,2-dipalmitoyl-sn-glycero-3-phospho-L-serine, 1 ,2-distearoyl-sn-glycero-3-phospho-L-serine, 1 ,2-dioleoyl-sn-glycero-3-phospho-L- serine, or l-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine.
7. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein the non-cationic lipids comprise about 5 to about 90 weight/weight percent of total lipid in the particle.
8. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein one or more PEG-lipid conjugates are chosen from 2-(tetradecyloxy)-l- ((tetradecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87 ,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-(hexadecyloxy)- 1 - ((hexadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87 ,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-(octadecyloxy)- 1 -
((octadecyloxy)methyl)ethyl
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87
,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylcarbamate, 2-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane- 1 ,3-diyl ditetradecanoate, 2-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane-1 ,3-diyl dipalmitate, 2-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,94,97,100,103,106,109,112,115,118,121,124,127,130,133,136- hexatetracontaoxaoctatriacontahectanamidopropane- 1 ,3-diyl distearate, N-(2-
(hexadecyloxy)- 1 -((hexadecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, N-(2-(tetradecyloxy)- 1 -
((tetradecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, N-(2-(octadecyloxy)-l-
((octadecyloxy)methyl)ethyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide, 6-oxo-2-(tetradecanoyloxy)-
8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,
92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137,140,143- hexatetracontaoxa-5-azatetratetracontahect-l-yl myristate, N-[3,4- bis(tetradecy loxy)buty 1] -
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanon atriacontahectan-139-amide, N-[3,4-bis(hexadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan-139-amide, N-[3,4-bis(octadecyloxy)butyl]-
2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86
,89,92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137- hexatetracontaoxanonatriacontahectan- 139-amide,
3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,1
11,115,119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,182- hexatetracontaoxatrioctacontahect- 1 -yl 3 ,4-bis(tetradecyloxy)butylcarbamate,
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87
,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(hexadecyloxy)butylcarbamate,
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87
,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 3 ,4-bis(octadecyloxy)butylcarbamate, N-
[3,4-bis(hexadecyloxy)butyl]-N'-
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87
,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -ylsuccinamide, 6-oxo-2-(tetradecanoyloxy)-
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,
91,94,97,100,103,106,109,112,115,118,121,124,127,130,133,136,139,142,145- heptatetracontaoxa-5 -azahexatetracontahect- 1 -yl myristate, 6-oxo-2-(palmitoyloxy)-
7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,
91,94,97,100,103,106,109,112,115,118,121,124,127,130,133,136,139,142,145- heptatetracontaoxa-5 -azahexatetracontahect- 1 -yl palmitate,
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87
,90,93,96,99,102,105,108,111,114,117,120,123,126,129,132,135,138- hexatetracontaoxanonatriacontahect- 1 -yl 4- { [3 ,4-bis(hexadecyloxy)butyl]amino } -A- oxobutanoate, 6-oxo-2-(palmitoyloxy)-
8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,86,89,
92,95,98,101,104,107,110,113,116,119,122,125,128,131,134,137,140,143- hexatetracontaoxa-5-azatetratetracontahect-l-yl palmitate, 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-750, 1 ,2-dimyristoyl-sn-glycerol- methoxypolyethyleneglycol-750, 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-750, poly(oxy-l,2-ethanediyl)-2000-α-(3β)-cholest-5-en- 3-yl-omega-hydroxy, l^-dipalmitoyl-sn-glycerol-methoxypolyethyleneglycol-SOOO, poly(oxy-l,2-ethanediyl)-5000-α-(3β)-cholest-5-en-3-yl-omega-hydroxy, (2S,3R,E)- 3-hydroxy-2-stearamidooctadec-4-enyl polyethyleneglycol-2000 methyl ether succinate, (2S,3R,E)-3-hydroxy-2-icosanamidooctadec-4-enyl polyethyleneglycol- 2000 methyl ether succinate, N-(2,3-dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, N-(carbonylmethoxypolyethyleneglycol-750)- 1,2-dimyristoyl-sn-glycero-phosphatidylethanolamine, N-(carbonyl- methoxypolyethyleneglycol-750)-l,2-distearoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-750)-l,2-dipalmitoyl-sn-glycero-3- phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2- dimyristoyl-sn-glycero-3 -phosphoethanolamine, N-(carbonyl- methoxypolyethyleneglycol-2000)- 1 ,2-dipalmitoyl-sn-glycero-3- phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-2000)- 1 ,2-distearoyl- sn-glycero-3-phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-2000)- dioleoyl-phosphatidylethanolamine, 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-2000, 1 ,2-dimyristoyl-sn-glycerol- methoxypolyethyleneglycol-2000, 1 ,2-dipalmitoyl-sn-glycerol- methoxypolyethyleneglycol-2000, mPEG-2000-cholesterol, octanoyl-mPEG-2000- ceramide, palmitoyl-mPEG-2000-ceramide, N-(carbonyl-methoxypolyethyleneglycol- 5000)-l,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, N-(carbonyl- methoxypolyethyleneglycol-5000)- 1 ,2-dipalmitoyl-sn-glycero-3- phosphoethanolamine, N-(carbonyl-methoxypolyethyleneglycol-5000)- 1 ,2-distearoyl- sn-glycero-3 -phosphoethanolamine, 1 ,2-dimyristoyl-sn-glycerol- methoxypolyethyleneglycol-5000, 1 ,2-distearoyl-sn-glycerol- methoxypolyethyleneglycol-5000, mPEG-5000-cholesterol, octanoyl-mPEG-5000- ceramide, or palmitoyl-mPEG-5000-ceramide.
9. The CaBLES of claim 2, or the Lipid-Based Particle of claim 3, wherein the PEG-lipid conjugates comprise 0.1 to about 20 weight/weight percent of total lipid in the particle.
10. The Lipid-Based Particle of claim 3, wherein the therapeutic agent is RNA, antisense oligonucleotide, a DNA, a plasmid, a ribosomal RNA (rRNA), a micro RNA (miRNA), transfer RNA (tRNA), a small inhibitory RNA (siRNA), small nuclear RNA (snRNA), an antigen, fragments thereof, a protein, a peptide, small- molecules, or mixtures thereof.
11. The Lipid-Based Particle of claim 3, wherein said PEG lipid conjugate is about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and said cationic lipid is about 5-60 weight/weight % of total lipid in particle.
12. A pharmaceutical composition comprising a Lipid-Based Particle of claim 3 and a pharmaceutically acceptable carrier.
13. A pharmaceutical composition of claim 12, wherein said Lipid-Based Particle comprises, cholesterol, DSPC, N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
14. A pharmaceutical composition of claim 13, wherein said (PEG)-lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
15. The Lipid-Based Particle of claim 3 , wherein said non-cationic lipids are cholesterol and DSPC, said cationic lipid is N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, said PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and said therapeutic agent is siRNA.
16. The Lipid-Based Particle of claim 15, wherein said N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and said N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
17. A pharmaceutical composition of claim 12, wherein said Lipid-Based Particle comprises, cholesterol, DSPC, N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine, one or more PEG-lipid conjugates and one or more nucleic acids.
18. A pharmaceutical composition of claim 17, wherein said (PEG)-lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and N,N-dimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane-l,2-diamine is about 5-60 weight/weight % of total lipid in particle.
19. The Lipid-Based Particle of claim 3, wherein said non-cationic lipids are cholesterol and DSPC, said cationic lipid is N,N-dimethyl-N'-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane-l,2-diamine, said PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and said therapeutic agent is siRNA.
20. The Lipid-Based Particle of claim 19, wherein said N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and said N,N-dimethyl-N'-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)ethane-l,2-diamine is about 5-60 weight/weight % of total lipid in particle.
21. A pharmaceutical composition of claim 12, wherein said Lipid-Based Particle comprises, cholesterol, DSPC, N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-
((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, one or more PEG-lipid conjugates and one or more nucleic acids.
22. A pharmaceutical composition of claim 21 , wherein said (PEG)-lipid conjugates are about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and N-(2-(lH-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
23. The Lipid-Based Particle of claim 3, wherein said non-cationic lipids are cholesterol and DSPC, said cationic lipid is N-(2-(lH-imidazol-4-yl)ethyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, said PEG-lipid conjugate is N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether, and said therapeutic agent is siRNA.
24. The Lipid-Based Particle of claim 23, wherein said N-(2,3- dimyristyloxypropyl)carbamate polyethyleneglycol-2000 methyl ether is about 0.1-20 weight/weight % of total lipid in particle, said DSPC is about 1-30 weight/weight % of total lipid in particle, said cholesterol is about 5-45 weight/weight % of total lipid in particle, and said N-(2-(lH-imidazol-4-yl)ethyl)-N-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)-l -(((9Z, 12Z)-octadeca-9,l 2-dienyloxy )methyl)ethyl)amine is about 5-60 weight/weight % of total lipid in particle.
25. A method of making the Lipid-Based Particle of claim 3, comprising:
(a) mixing the cationic lipid(s), the non-cationic lipid(s) and the PEG-lipid conjugate(s);
(b) adding the mixture of step (a) to one or more therapeutic agents; and
(c) separating and purifying resulting suspension of step (b).
26. The method of claim 25, wherein said therapeutic agent is warmed to about 60° C prior to the addition of said mixture of step (a) via needle injection.
27. The CaBLES of claim 2 which effectively encapsulate therapeutic agents, with efficiencies from about 50-100%.
28. The CaBLES of claim 2 which effectively encapsulate therapeutic agents, with efficiencies from about 80-100%.
29. The CaBLES of claim 2 used to deliver a therapeutic agent wherein one or more cationic lipids are chosen from l-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)pyrrolidine; N,N-dimethyl-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine; N-(3-(lH-imidazol-l-yl)propyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine; 1 -methyl-4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine; 4-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)morpholine; N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- pyrrolidin- 1 -ylpropyl)amine; N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2-diamine; N-(2-(4-methylpiperazin- 1 -yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)amine; N-(2-(lH-imidazol-4- yl)ethyl)-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)-l-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)ethyl)amine; N,N-dimethyl-N-(3 -(4-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazin- 1 - yl)propyl)amine; 1 ,3 -bis((9Z, 12Z)-octadeca-9, 12-dienyloxy )propan-2-amine; N-(( 1 - methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)ethyl)amine; N-(2-((9Z,12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- (pyrrolidin- 1 -ylmethyl)benzyl)amine; N-methyl-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)-N-(3-pyrrolidin- 1 - ylpropyl)amine; N-(3-((4-methylpiperazin-l-yl)methyl)benzyl)-N-(2-((9Z,12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine; N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine; N5N5N'- trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)propane-l,3-diamine; N-methyl-N-(2-((9Z,12Z)-octadeca- 9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3- (pyrrolidin- 1 -ylmethyl)benzyl)amine; 1 -(2-(I H-imidazol- 1 -yl)ethyl)-4-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)piperazine; N-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 - (((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-((2-pyrrolidin- 1 -ylpyridin-3- yl)methyl)amine; (9Z,9'Z, 12Z, 12'Z)-2-(4-methylpiperazin- 1 -yl)propane- 1 ,3-diyl dioctadeca-9,12-dienoate; (9Z,9'Z,12Z,12'Z)-2-(3-(pyrrolidin-l- yl)propylamino)propane-l,3-diyl dioctadeca-9,12-dienoate; l-methyl-4-(3-((9Z,12Z)- octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine; l-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2- (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl)pyrrolidine; N-(3-aminopropyl)- N'- {3 -[(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}ethyl)amino]propyl}butane-l,4-diamine; N-(3-[(9Z,12Z)-octadeca- 9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)-N-(3- pyrrolidin-l-ylpropyl)amine; N,N-dimethyl-N-(3-[(9Z,12Z)-octadeca-9,12- dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl)amine; 3- [(9Z, 12Z)-octadeca-9, 12-dienyloxy] -2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl} propyl 2-(diethylamino)ethylcarbamate; 3-[(9Z, 12Z)-octadeca- 9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin- 1-ylethylcarbamate; 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca- 9,12-dienyloxy]methyl}propyl 2-(dimethylamino)ethylcarbamate; l-(2-[(9Z,12Z)- octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}ethyl)-4-(2- pyrrolidin- 1 -ylethyl)piperazine; and N-(2-[(9Z)-octadec-9-enyloxy]- 1 - {[(9Z)-octadec- 9-enyloxy]methyl} ethyl)-N-(3-pyrrolidin- 1 -ylpropyl)amine.
30. The CaBLES of claim 2 used to deliver a therapeutic agent wherein one or more cationic lipids are chosen from N-(3-(lH-imidazol-l-yl)propyl)-N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, N,N-dimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)ethane- 1 ,2- diamine,and N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)-octadeca-9, 12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine.
31. The CaBLES of claim 2 used to deliver a therapeutic agent wherein one or more cationic lipids are chosen from l-methyl-4-(2-((9Z,12Z)-octadeca-9,12- dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)piperazine, N-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine, N,N-dimethyl-N'-(2- ((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)ethane- 1 ,2-diamine, N-(2-(4-methylpiperazin- 1 -yl)ethyl)-N- (2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, N-(2-( 1 H-imidazol-4-yl)ethyl)-N-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)amine, l,3-bis((9Z,12Z)-octadeca-9,12-dienyloxy)propan-2-amine, N-((l-methylpiperidin-4- yl)methyl)-N-(2-((9Z,12Z)-octadeca-9,l 2-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12- dienyloxy)methyl)ethyl)amine, N-methyl-N-(2-((9Z,12Z)-octadeca-9,12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy)methyl)ethyl)-N-(3 -pyrrolidin- 1 - ylpropyl)amine, N-methyl-N-(( 1 -methylpiperidin-4-yl)methyl)-N-(2-((9Z, 12Z)- octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca-9, 12-dienyloxy )methyl)ethyl)amine, N,N,N'-trimethyl-N'-(2-((9Z, 12Z)-octadeca-9, 12-dienyloxy)- 1 -(((9Z, 12Z)-octadeca- 9,12-dienyloxy)methyl)ethyl)propane-l,3-diamine, l-methyl-4-(3-((9Z,12Z)- octadeca-9,12-dienyloxy)-2-(((9Z,12Z)-octadeca-9,12- dienyloxy)methyl)propyl)piperazine, l-(3-((9Z,12Z)-octadeca-9,12-dienyloxy)-2- (((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl)pyrrolidine, N-(3-aminopropyl)- N'- {3 -[(2-[(9Z, 12Z)-octadeca-9, 12-dienyloxy]- 1 - { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}ethyl)amino]propyl}butane-l,4-diamine, 3-[(9Z,12Z)-octadeca- 9,12-dienyloxy]-2-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}propyl 2- (diethylamino)ethylcarbamate, 3-[(9Z,12Z)-octadeca-9,12-dienyloxy]-2-{[(9Z,12Z)- octadeca-9,12-dienyloxy]methyl}propyl 2-pyrrolidin-l-ylethylcarbamate, 3- [(9Z, 12Z)-octadeca-9, 12-dienyloxy] -2- { [(9Z, 12Z)-octadeca-9, 12- dienyloxy]methyl}propyl 2-(dimethylamino)ethylcarbamate, 1 -(2-[(9Z, 12Z)- octadeca-9,12-dienyloxy]-l-{[(9Z,12Z)-octadeca-9,12-dienyloxy]methyl}ethyl)-4-(2- pyrrolidin-l-ylethyl)piperazine, and N-(2-[(9Z)-octadec-9-enyloxy]-l-{[(9Z)-octadec- 9-enyloxy]methyl} ethyl)-N-(3 -pyrrolidin- 1 -ylpropyl)amine.
32. The Lipid-Based Particle of claim 3, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of claim 1, to one or more therapeutic agents is between about 50:1 to about 5:1.
33. The Lipid-Based Particle of claim 3, wherein the ratio of one or more (PEG)-lipid conjugates, one or more non-cationic lipids, and one or more cationic lipids of claim 1, to one or more therapeutic agents is between about 30:1 to about 10:1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4534808P | 2008-04-16 | 2008-04-16 | |
US61/045,348 | 2008-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009129385A1 true WO2009129385A1 (en) | 2009-10-22 |
Family
ID=40800467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/040798 WO2009129385A1 (en) | 2008-04-16 | 2009-04-16 | Cationic lipids and uses thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009129385A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010030730A1 (en) * | 2008-09-10 | 2010-03-18 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
WO2010030739A1 (en) * | 2008-09-10 | 2010-03-18 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
WO2012027727A2 (en) | 2010-08-26 | 2012-03-01 | Kunyuan Cui | Lipomacrocycles and uses thereof |
CN102933658A (en) * | 2009-12-18 | 2013-02-13 | 界面生物公司 | Local delivery of drugs from self assembled coatings |
US20130090372A1 (en) * | 2010-06-04 | 2013-04-11 | Brian W. Budzik | Novel Low Molecular Weight Cationic Lipids for Oligonucleotide Delivery |
WO2014111639A1 (en) * | 2013-01-21 | 2014-07-24 | Biocellchallenge | Amphiphilic derivatives of triazamacrocyclic compounds, products and composition including same, and synthesis methods and uses thereof |
JP2015501309A (en) * | 2011-10-18 | 2015-01-15 | ダイセルナ ファーマシューティカルズ, インコーポレイテッドDicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
WO2017049245A3 (en) * | 2015-09-17 | 2017-05-18 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2018177383A1 (en) * | 2017-03-29 | 2018-10-04 | 中国医学科学院基础医学研究所 | Application of compound or traditional chinese medicine extract in preparation of nucleic acid delivery agent and related products thereof |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2019027055A1 (en) | 2017-08-04 | 2019-02-07 | 協和発酵キリン株式会社 | Nucleic-acid-containing lipid nanoparticles |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2019184991A1 (en) * | 2018-03-29 | 2019-10-03 | 中国医学科学院基础医学研究所 | Application of compound or traditional chinese medicine extract in preparation of nucleic acid delivery agent, and related products |
EP3521270A4 (en) * | 2016-09-27 | 2020-06-24 | Kyowa Kirin Co., Ltd. | Cationic lipid compound |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
CN113527081A (en) * | 2021-08-30 | 2021-10-22 | 上海日异生物科技有限公司 | Preparation method of 3-oxocyclobutanecarboxylic acid |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US11246933B1 (en) | 2011-12-07 | 2022-02-15 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
CN114230521A (en) * | 2022-02-22 | 2022-03-25 | 中国科学院基础医学与肿瘤研究所(筹) | Ionizable cationic compound and application of compound thereof |
US11318232B2 (en) | 2018-05-22 | 2022-05-03 | Interface Biologics, Inc. | Compositions and methods for delivering drugs to a vessel wall |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP4056552A4 (en) * | 2019-11-08 | 2023-11-29 | Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences | Use of lipid in preparation of nucleic acid delivery reagent and related product thereof |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US12263248B2 (en) | 2018-09-19 | 2025-04-01 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166132A (en) * | 1977-08-18 | 1979-08-28 | Pfizer Inc. | Antiviral amine derivatives of glycerol and propanediols |
US4640913A (en) * | 1983-01-10 | 1987-02-03 | American Cyanamid Company | Phosphocholine derivatives having antihypertensive action |
US4650791A (en) * | 1984-01-11 | 1987-03-17 | Takedo Chemical Industries, Ltd. | Certain 3-alkoxy-2-cyclic-imido-propyl-phosphate-ethyl-cyclic ammonium hydroxide inner salts which inhibit activities of platelet activating factor |
US4737518A (en) * | 1984-04-03 | 1988-04-12 | Takeda Chemical Industries, Ltd. | Lipid derivatives, their production and use |
US5075445A (en) * | 1983-08-18 | 1991-12-24 | Beecham Group P.L.C. | Guanine derivatives |
US5705188A (en) * | 1993-02-19 | 1998-01-06 | Nippon Shinyaku Company, Ltd. | Drug composition containing nucleic acid copolymer |
US6242188B1 (en) * | 1999-07-30 | 2001-06-05 | Applied Gene Technologies, Inc. | Sample processing to release nucleic acids for direct detection |
WO2005121348A1 (en) * | 2004-06-07 | 2005-12-22 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering rna |
WO2006060182A2 (en) * | 2004-11-17 | 2006-06-08 | University Of Maryland, Baltimore | HIGHLY BRANCHED HK PEPTIDES AS EFFECTIVE CARRIERS OF siRNA |
-
2009
- 2009-04-16 WO PCT/US2009/040798 patent/WO2009129385A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166132A (en) * | 1977-08-18 | 1979-08-28 | Pfizer Inc. | Antiviral amine derivatives of glycerol and propanediols |
US4640913A (en) * | 1983-01-10 | 1987-02-03 | American Cyanamid Company | Phosphocholine derivatives having antihypertensive action |
US5075445A (en) * | 1983-08-18 | 1991-12-24 | Beecham Group P.L.C. | Guanine derivatives |
US4650791A (en) * | 1984-01-11 | 1987-03-17 | Takedo Chemical Industries, Ltd. | Certain 3-alkoxy-2-cyclic-imido-propyl-phosphate-ethyl-cyclic ammonium hydroxide inner salts which inhibit activities of platelet activating factor |
US4737518A (en) * | 1984-04-03 | 1988-04-12 | Takeda Chemical Industries, Ltd. | Lipid derivatives, their production and use |
US5705188A (en) * | 1993-02-19 | 1998-01-06 | Nippon Shinyaku Company, Ltd. | Drug composition containing nucleic acid copolymer |
US6242188B1 (en) * | 1999-07-30 | 2001-06-05 | Applied Gene Technologies, Inc. | Sample processing to release nucleic acids for direct detection |
WO2005121348A1 (en) * | 2004-06-07 | 2005-12-22 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering rna |
WO2006060182A2 (en) * | 2004-11-17 | 2006-06-08 | University Of Maryland, Baltimore | HIGHLY BRANCHED HK PEPTIDES AS EFFECTIVE CARRIERS OF siRNA |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010030739A1 (en) * | 2008-09-10 | 2010-03-18 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
WO2010030730A1 (en) * | 2008-09-10 | 2010-03-18 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
JP2013514278A (en) * | 2009-12-18 | 2013-04-25 | インターフェース バイオロジクス,インコーポレーテッド | Local delivery of drugs from self-assembled coatings |
US10195311B2 (en) | 2009-12-18 | 2019-02-05 | Interface Biologics, Inc. | Local delivery of drugs from self assembled coatings |
CN102933658A (en) * | 2009-12-18 | 2013-02-13 | 界面生物公司 | Local delivery of drugs from self assembled coatings |
EP2513225A4 (en) * | 2009-12-18 | 2015-08-12 | Interface Biologics Inc | Local delivery of drugs from self assembled coatings |
US9643916B2 (en) | 2010-06-04 | 2017-05-09 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
US9315437B2 (en) | 2010-06-04 | 2016-04-19 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
US8748667B2 (en) * | 2010-06-04 | 2014-06-10 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
US9062021B2 (en) | 2010-06-04 | 2015-06-23 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
US20130090372A1 (en) * | 2010-06-04 | 2013-04-11 | Brian W. Budzik | Novel Low Molecular Weight Cationic Lipids for Oligonucleotide Delivery |
WO2012027727A2 (en) | 2010-08-26 | 2012-03-01 | Kunyuan Cui | Lipomacrocycles and uses thereof |
CN103189057A (en) * | 2010-08-26 | 2013-07-03 | 崔坤元 | Lipomacrocycles and uses thereof |
WO2012027727A3 (en) * | 2010-08-26 | 2012-04-19 | Kunyuan Cui | Lipomacrocycles and uses thereof |
US9233971B2 (en) | 2010-08-26 | 2016-01-12 | Kunyuan Cui | Lipomacrocycles and uses thereof |
AU2012325997B2 (en) * | 2011-10-18 | 2018-01-04 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
US10144725B2 (en) | 2011-10-18 | 2018-12-04 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
US11059807B2 (en) | 2011-10-18 | 2021-07-13 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
JP2015501309A (en) * | 2011-10-18 | 2015-01-15 | ダイセルナ ファーマシューティカルズ, インコーポレイテッドDicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
AU2012325997C1 (en) * | 2011-10-18 | 2018-07-05 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
AU2012325997B9 (en) * | 2011-10-18 | 2018-06-28 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
US11633479B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11612657B2 (en) | 2011-12-07 | 2023-03-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11633480B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11590229B2 (en) | 2011-12-07 | 2023-02-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11382979B2 (en) | 2011-12-07 | 2022-07-12 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11246933B1 (en) | 2011-12-07 | 2022-02-15 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11400158B2 (en) | 2011-12-07 | 2022-08-02 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US12239709B2 (en) | 2011-12-07 | 2025-03-04 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11679158B2 (en) | 2011-12-07 | 2023-06-20 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
FR3001217A1 (en) * | 2013-01-21 | 2014-07-25 | Biocellchallenge | AMPHIPHILIC DERIVATIVES OF TRIAZAMACROCYCLE COMPOUNDS, PRODUCTS AND COMPOSITIONS COMPRISING SAME, PROCESSES FOR THEIR SYNTHESIS AND USES THEREOF |
US9822083B2 (en) | 2013-01-21 | 2017-11-21 | Biocellchallenge | Amphiphilic derivatives of triazamacrocyclic compounds, products and compositions including same, and synthesis methods and uses thereof |
WO2014111639A1 (en) * | 2013-01-21 | 2014-07-24 | Biocellchallenge | Amphiphilic derivatives of triazamacrocyclic compounds, products and composition including same, and synthesis methods and uses thereof |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
JP7654724B2 (en) | 2015-09-17 | 2025-04-01 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents - Patents.com |
WO2017049245A3 (en) * | 2015-09-17 | 2017-05-18 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10442756B2 (en) | 2015-09-17 | 2019-10-15 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP4286012A3 (en) * | 2015-09-17 | 2024-05-29 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10392341B2 (en) | 2015-09-17 | 2019-08-27 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US12151995B2 (en) | 2015-09-17 | 2024-11-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
JP7326395B2 (en) | 2015-09-17 | 2023-08-15 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents |
EP3736261A1 (en) * | 2015-09-17 | 2020-11-11 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US9867888B2 (en) | 2015-09-17 | 2018-01-16 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
JP2018532721A (en) * | 2015-09-17 | 2018-11-08 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US9868693B2 (en) | 2015-09-17 | 2018-01-16 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US9868692B2 (en) | 2015-09-17 | 2018-01-16 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11220476B2 (en) | 2015-09-17 | 2022-01-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
JP2022008431A (en) * | 2015-09-17 | 2022-01-13 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents |
JP6948313B6 (en) | 2015-09-17 | 2022-01-14 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents |
US9868691B2 (en) | 2015-09-17 | 2018-01-16 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
EP3521270A4 (en) * | 2016-09-27 | 2020-06-24 | Kyowa Kirin Co., Ltd. | Cationic lipid compound |
US11471533B2 (en) | 2016-09-27 | 2022-10-18 | Kyowa Kirin Co., Ltd. | Compound usable as cationic lipid |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
US12144895B2 (en) | 2016-11-08 | 2024-11-19 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
CN110520408A (en) * | 2017-03-29 | 2019-11-29 | 中国医学科学院基础医学研究所 | Compound or Chinese medical extract are preparing application and its Related product in delivery of nucleic acids reagent |
CN110520408B (en) * | 2017-03-29 | 2022-11-25 | 中国医学科学院基础医学研究所 | Application of compound or traditional Chinese medicine extract in preparation of nucleic acid delivery reagent and related product thereof |
WO2018177383A1 (en) * | 2017-03-29 | 2018-10-04 | 中国医学科学院基础医学研究所 | Application of compound or traditional chinese medicine extract in preparation of nucleic acid delivery agent and related products thereof |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2019027055A1 (en) | 2017-08-04 | 2019-02-07 | 協和発酵キリン株式会社 | Nucleic-acid-containing lipid nanoparticles |
CN111918858B (en) * | 2018-03-29 | 2023-03-21 | 中国医学科学院基础医学研究所 | Application of compound or traditional Chinese medicine extract in preparation of nucleic acid delivery reagent and related product thereof |
WO2019184991A1 (en) * | 2018-03-29 | 2019-10-03 | 中国医学科学院基础医学研究所 | Application of compound or traditional chinese medicine extract in preparation of nucleic acid delivery agent, and related products |
CN111918858A (en) * | 2018-03-29 | 2020-11-10 | 中国医学科学院基础医学研究所 | Application of compound or traditional Chinese medicine extract in preparation of nucleic acid delivery reagent and related product thereof |
US11318232B2 (en) | 2018-05-22 | 2022-05-03 | Interface Biologics, Inc. | Compositions and methods for delivering drugs to a vessel wall |
US12263248B2 (en) | 2018-09-19 | 2025-04-01 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11597698B2 (en) | 2019-09-19 | 2023-03-07 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
EP4056552A4 (en) * | 2019-11-08 | 2023-11-29 | Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences | Use of lipid in preparation of nucleic acid delivery reagent and related product thereof |
CN113527081B (en) * | 2021-08-30 | 2022-11-08 | 上海日异生物科技有限公司 | Preparation method of 3-oxocyclobutanecarboxylic acid |
CN113527081A (en) * | 2021-08-30 | 2021-10-22 | 上海日异生物科技有限公司 | Preparation method of 3-oxocyclobutanecarboxylic acid |
CN114230521B (en) * | 2022-02-22 | 2022-05-31 | 中国科学院基础医学与肿瘤研究所(筹) | Ionizable cationic compound and application of compound thereof |
CN114230521A (en) * | 2022-02-22 | 2022-03-25 | 中国科学院基础医学与肿瘤研究所(筹) | Ionizable cationic compound and application of compound thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090285881A1 (en) | Cationic lipids and uses thereof | |
US20090263407A1 (en) | Cationic Lipids and Uses Thereof | |
WO2009129385A1 (en) | Cationic lipids and uses thereof | |
US20100063135A1 (en) | Polyethylene glycol lipid conjugates and uses thereof | |
US20100104629A1 (en) | Cationic lipids and uses thereof | |
US20100055168A1 (en) | Cationic lipids and uses thereof | |
US20100055169A1 (en) | Cationic lipids and uses thereof | |
WO2009129395A1 (en) | Cationic lipids and uses thereof | |
US20100099738A1 (en) | Polyethylene glycol lipid conjugates and uses thereof | |
US20100076055A1 (en) | Cationic Lipids and Uses Thereof | |
WO2009129387A2 (en) | Cationic lipids and uses thereof | |
KR102544033B1 (en) | therapeutic dendrimer | |
ES2636939T3 (en) | Crystal bromodomain inhibitors | |
ES2638320T3 (en) | Desmoglein 2 binding proteins (DSG2) and their uses | |
CN103328474A (en) | Salts and crystalline forms of an apoptosis-inducing agent | |
US20240318174A1 (en) | Multi-Valent Oligonucleotide Agent and Methods of Use Thereof | |
WO2018202910A1 (en) | Combination of antibiotic and bcl-2 inhibitor and uses thereof | |
ES2537708T3 (en) | Crystal forms of kinase inhibitors | |
US8940759B2 (en) | Crystalline forms of kinase inhibitors | |
US20170197980A1 (en) | N-(4-phenyl)-n'-(3-fluorophenyl)urea docusate | |
US20150126545A1 (en) | Compositions containing kinase inhibitors | |
EA041072B1 (en) | THERAPEUTIC DENDRIMERS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09731731 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09731731 Country of ref document: EP Kind code of ref document: A1 |