+

WO2009119087A1 - Concentration sensor device and concentration detection method - Google Patents

Concentration sensor device and concentration detection method Download PDF

Info

Publication number
WO2009119087A1
WO2009119087A1 PCT/JP2009/001334 JP2009001334W WO2009119087A1 WO 2009119087 A1 WO2009119087 A1 WO 2009119087A1 JP 2009001334 W JP2009001334 W JP 2009001334W WO 2009119087 A1 WO2009119087 A1 WO 2009119087A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
concentration
substrate
sensor
piezoelectric element
Prior art date
Application number
PCT/JP2009/001334
Other languages
French (fr)
Japanese (ja)
Inventor
福村憲司
吉岡テツヲ
藤井哲夫
河合孝明
樋口祐史
小田輝夫
奥田泰行
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009051258A external-priority patent/JP4998493B2/en
Priority claimed from JP2009054056A external-priority patent/JP5056776B2/en
Priority claimed from JP2009061105A external-priority patent/JP5233762B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to BRPI0907020-6A priority Critical patent/BRPI0907020A2/en
Priority to US12/733,694 priority patent/US8578761B2/en
Publication of WO2009119087A1 publication Critical patent/WO2009119087A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2852Alcohol in fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Definitions

  • the present invention relates to a concentration sensor device and a concentration detection method.
  • the present invention relates to a concentration detection device, a concentration sensor device, a mixture ratio calculation device, a concentration detection method, and a mixture ratio calculation method for detecting the concentration or mixture ratio of a mixed fluid.
  • concentration sensor devices that detect the concentrations of specific components contained in various liquids have been widely used.
  • concentration sensor devices that detect the concentrations of specific components contained in various liquids have been widely used.
  • the use of alcohol-mixed fuels in which biological components such as alcohol are mixed with petroleum-derived gasoline or light oil has been attempted.
  • the performance or control of the internal combustion engine varies depending on the mixing ratio of petroleum-derived components and biological components in the mixed fuel, that is, the alcohol concentration. Therefore, it is required to detect the alcohol concentration in the mixed fuel with high accuracy.
  • the sensor device disclosed in JP-T-5-507561 includes a casing that forms a passage through which fuel flows and a sensor element that is provided in the casing.
  • a sensor element exposed to the mixed fuel flowing through the passage detects alcohol concentration by directly touching the fuel.
  • the flow path formed by the casing has a complicated labyrinth shape, and a large sensor element is provided in the complicated flow path. For this reason, foreign matters contained in a liquid such as fuel, that is, solid matter or bubbles, are likely to adhere to the detection portion of the sensor element. As a result, there is a problem that the detection accuracy of the concentration of the specific component contained in the liquid is reduced as the foreign matter adheres.
  • the apparatus includes an electrode forming a part of a casing through which a mixed liquid flows, a sensor element disposed in the casing, an electronic measurement circuit for evaluating a capacitance of a capacitor constituted by the electrode and the sensor element, Have The electronic measurement circuit detects the dielectric constant of the mixed liquid from the capacitance, and calculates the mixing ratio of alcohol and gasoline based on the detected dielectric constant.
  • the electrode and the sensor element in order to detect the capacitance including the dielectric constant of the mixed liquid, the electrode and the sensor element must be arranged in the mixed liquid. As a result, foreign substances contained in the mixed liquid may adhere to the electrode or the sensor element, and the capacitance of the capacitor constituted by the electrode and the sensor element may change. Since the dielectric constant of the foreign matter contained in the mixed liquid is generally larger than the dielectric constant of the mixed liquid, a value larger than the expected value of the capacitance may be detected. When the capacitance of the capacitor changes due to foreign matter, the relative dielectric constant calculated based on the electrostatic capacitance and the mixture ratio of alcohol and gasoline calculated based on the relative dielectric constant also change. There is a possibility that the detection accuracy of the mixture ratio of gasoline is lowered.
  • a mixed fuel composed of gasoline and alcohol to be measured is introduced between a pair of electrodes arranged in a casing, It is an apparatus that measures the concentration of alcohol by measuring the capacitance (dielectric constant) of the mixed fuel.
  • the liquid property sensor disclosed in Japanese Patent Application Laid-Open No. 2008-268169 measures capacitance (dielectric constant) by immersing a comb-like electrode provided on a semiconductor substrate in a liquid fuel such as gasoline. The sensor detects the mixing ratio of alcohol contained in gasoline.
  • water is mixed in the above mixed fuel in addition to the main components of gasoline and ethanol.
  • water is mixed into ethanol in the refining stage, or water contained in the atmosphere dissolves into the mixed fuel when the mixed fuel comes into contact with the air, or water is artificially mixed when transporting the mixed fuel.
  • the electrostatic capacity (dielectric constant) of the mixed fuel changes depending on the concentrations (existence ratios) of the three components of gasoline, ethanol and water.
  • the mixed fuel is considered to be composed of gasoline and alcohol, and only the concentration of two components can be measured.
  • the present invention has been made in view of the above problems, and a first object thereof is to provide a concentration sensor device that reduces the adhesion of foreign matter to the sensor unit and has high detection accuracy of characteristic components contained in liquid. There is to do.
  • the second object is to provide a mixing ratio calculation apparatus in which a decrease in the detection accuracy of the mixing ratio of the mixed liquid is suppressed, and a mixing ratio calculation method using the mixing ratio calculation apparatus.
  • a third object is to provide a mixed fluid concentration detection method and a detection device capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
  • the concentration sensor device includes a deposition limiting unit.
  • the accumulation limiting unit prevents foreign matter from accumulating on the sensor unit.
  • the deposition limiting unit is integrated with the sensor unit or provided upstream of the sensor unit in the liquid flow direction. As a result, the foreign matter contained in the liquid is prevented from adhering to and depositing on the sensor unit by the deposition limiting unit. Accordingly, the accumulation of foreign matter on the sensor unit is hindered, and the detection accuracy of the concentration of the characteristic component contained in the liquid can be increased.
  • the deposition limiting unit has a piezoelectric element.
  • the piezoelectric element vibrates when energized. Therefore, even if foreign matter adheres to the sensor unit, the attached foreign matter is promoted to be detached from the sensor unit due to vibration of the piezoelectric element. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the piezoelectric element is provided on the surface opposite to the sensor unit with the substrate interposed therebetween. Therefore, the piezoelectric element is widely provided on the surface of the substrate opposite to the sensor unit without being obstructed by the sensor unit. Therefore, the vibration area of the piezoelectric element can be ensured without increasing the size. Further, the sensor unit and the piezoelectric element can be formed separately and independently. Therefore, the manufacturing process can be simplified.
  • the circuit unit provided on the sensor unit side and the piezoelectric element are connected by a through electrode penetrating the substrate. Therefore, the through electrode is not exposed to the outside of the substrate. Thereby, contact with a penetration electrode and mixed fuel is reduced. As a result, for example, corrosion and damage of the member forming the through electrode due to moisture contained in the mixed fuel is reduced. Therefore, the durability of the through electrode can be increased.
  • the piezoelectric element is provided on the same surface as the sensor unit on the substrate. Therefore, although it is difficult to ensure the vibration area of the piezoelectric element, it is possible to arrange the piezoelectric element close to the sensor unit. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the piezoelectric element is provided between the substrate and the sensor unit.
  • a piezoelectric element is provided in a wide area, without being disturbed by a sensor part.
  • the piezoelectric element and the sensor unit are arranged close to each other. Accordingly, the vibration area of the piezoelectric element can be ensured without increasing the size, and the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the concentration sensor device further includes a recess. That is, the substrate forms a diaphragm-shaped recess. Therefore, the vibration of the sensor unit is promoted by the piezoelectric element provided around the recess. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
  • the piezoelectric element is provided along the recess on the opposite surface where the sensor unit is provided. For this reason, the entire substrate on which the diaphragm-shaped recess is formed is vibrated by the piezoelectric element. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • the piezoelectric element is provided on the opposite side of the insulating film from the substrate. Therefore, the piezoelectric element vibrates the insulating film. The vibration of the insulating film by the piezoelectric element causes the substrate to vibrate via the recess. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • the sensor part and the piezoelectric element are provided on this insulating film. That is, the sensor unit and the piezoelectric element are provided on the same surface side of the insulating film. Therefore, when the piezoelectric element vibrates the insulating film, the sensor unit provided in the insulating film also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • An insulator is laminated on the opposite side of the insulating film from the substrate.
  • the piezoelectric element is provided on the opposite side of the recess with the insulating film interposed therebetween, and the sensor unit is provided at a position facing the piezoelectric element with the insulator interposed therebetween.
  • the piezoelectric element vibrates, the vibration is transmitted to the insulating film and the insulator. That is, the piezoelectric element vibrates not only the insulating film but also the insulator. Thereby, the sensor part provided in the insulator also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • gas is sealed in a space formed between the substrate and the insulating film by the recess.
  • the piezoelectric element and the gas sealed in the space resonate by adjusting the kind pressure of the gas sealed in the space. Thereby, the vibration of the piezoelectric element is more effectively transmitted to the sensor unit side. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the comb-shaped electrode pattern of the sensor portion constitutes a piezoelectric element portion. That is, the electrode pattern is both a sensor part and a piezoelectric element part. Therefore, the sensor unit can be self-cleaned by its own vibration.
  • an electrode part is provided on the surface opposite to the sensor part across the substrate.
  • the piezoelectric element portion has an electrode pattern laminated on the side opposite to the substrate of the sensor portion. That is, the sensor part is covered with the electrode pattern of the piezoelectric element part on the side opposite to the substrate. Therefore, the sensor unit also vibrates due to the vibration of the electrode pattern of the piezoelectric element unit. Therefore, the sensor unit can be self-cleaned by its own vibration.
  • the piezoelectric element part has an electrode pattern on the surface opposite to the sensor part across the substrate. That is, the electrode pattern of the piezoelectric element portion is formed on the surface opposite to the sensor portion of the substrate. Therefore, the vibration of the piezoelectric element part is transmitted to the sensor part via the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the piezoelectric element part has a first electrode pattern constituting the sensor part and a second electrode pattern provided on the surface opposite to the sensor part across the substrate. Therefore, the sensor unit vibrates itself due to the vibration of the first electrode pattern and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, it is possible to promote the detachment of the foreign matter adhering to the sensor unit and to self-clean the sensor unit by its own vibration.
  • the piezoelectric element portion has a first electrode pattern stacked on the opposite side of the substrate of the sensor portion and a second electrode pattern provided on the surface opposite to the sensor portion across the substrate. . Therefore, the sensor unit vibrates with the vibration of the first electrode pattern, and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted, and self-cleaning can be performed by the vibration of the sensor unit itself.
  • the deposition restricting portion accommodated in the liquid passage formed by the passage forming portion has a charging portion and a capturing portion that are separate from the sensor portion.
  • the liquid flowing through the liquid passage is charged by applying a voltage at the charging unit.
  • the foreign substance contained in the liquid is charged together with the liquid. Therefore, when the liquid passes through the capturing unit, the charged foreign matter contained in the liquid is captured by the capturing unit before reaching the sensor unit. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • a wall is provided in the liquid passage.
  • the wall part separates the flow of the liquid that has passed through the charging part into the sensor part side and the capturing part side. Foreign matter contained in the liquid charged by the charging unit is likely to move to the capturing unit side. Therefore, by separating the liquid flow into the capturing part side and the sensor part side by the wall part, it becomes difficult for foreign matter contained in the liquid to flow into the sensor part side. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are further reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the deposition limiting unit has a static elimination unit on the downstream side of the sensor unit.
  • the liquid charged by the charging unit and the capturing unit is neutralized by the neutralizing unit.
  • the static elimination unit neutralizes the charge of the liquid that has passed through the sensor unit.
  • the charged liquid does not affect the device or apparatus provided on the downstream side of the sensor unit. Therefore, the influence on the outside can be reduced.
  • the voltage applied to the charging unit and the voltage applied to the capturing unit differ in polarity (positive (+) or negative (-)).
  • polarity positive (+) or negative (-)
  • a positive voltage is applied at the charging unit
  • a negative voltage is applied at the capturing unit.
  • one polarity is maintained without being inverted from one polarity to the other polarity. That is, when a positive voltage is applied by the charging unit, the charging unit always maintains a positive voltage, and the capturing unit maintains a negative voltage.
  • the foreign material charged by the charging unit is reliably captured by the capturing unit, and movement to the sensor unit side is limited. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the voltage applied to the liquid at the charging unit and the capturing unit is an alternating voltage of 1 kHz or more.
  • the maximum value on the negative side and the minimum value on the positive side are set to the ground voltage.
  • an alternating voltage of 1 kHz or higher is applied to the charging unit and the capturing unit so that the liquid does not cause irreversible chemical changes. Therefore, the change of the liquid can be reduced and the influence on the outside can be reduced.
  • the capturing part has at least one plate-like electrode member.
  • the plate-like electrode member extends in parallel with the axis of the liquid passage, and has a plate width corresponding to a chord at an arbitrary position in a cross section perpendicular to the axis of the liquid passage. That is, the electrode member has a plate width that reaches the other end side from one end of the passage forming member that forms the liquid passage on the upstream side of the liquid passage.
  • the electrode member has a reduced plate width toward the downstream side. That is, the electrode member has a larger plate width toward the charging unit side and a smaller plate width toward the sensor unit side. Thereby, foreign matters are effectively removed from the liquid that has passed through the charging portion on the upstream side having a large plate width.
  • the electrode member extends in parallel with the liquid passage, whereby the pressure loss of the liquid flowing through the liquid passage is reduced. Accordingly, foreign matter contained in the liquid can be captured upstream of the sensor unit while reducing the pressure loss of the liquid, and the concentration detection accuracy of the sensor unit can be increased.
  • the capturing part has at least one plate-like electrode member.
  • the plate-like electrode member extends while being inclined with respect to the axis of the liquid passage.
  • the electrode member narrows at least a part of the width of the liquid passage from the upstream side to the downstream side of the liquid passage. Therefore, the liquid flowing through the liquid passage flows between the electrode members that are gradually narrowed. Thereby, the foreign material contained in the liquid is easily captured by the capturing unit. Therefore, the foreign substance contained in the liquid can be captured upstream of the sensor unit, and the concentration detection accuracy of the sensor unit can be increased.
  • the capturing part has at least one cylindrical and cone-shaped electrode member. That is, the capturing part has, for example, a conical or pyramidal electrode member.
  • the electrode member has an inner diameter that decreases from the upstream side toward the downstream side. Therefore, the liquid passes through the electrode member whose inner diameter gradually decreases. Thereby, the foreign material contained in the liquid is easily captured by the capturing unit. Therefore, the foreign substance contained in the liquid can be captured upstream of the sensor unit, and the concentration detection accuracy of the sensor unit can be increased.
  • the capturing part has at least one cylindrical and cone-shaped electrode member. That is, the capturing part has, for example, a conical or pyramidal electrode member. And this electrode member is a shape which guides the flow of the liquid in a liquid passage toward the inner wall side of a channel
  • the concentration sensor device includes vibration applying means for applying vibration to the passage forming member.
  • the charging unit and the capturing unit provided in the liquid passage may accumulate foreign matter when used for a long period of time. Therefore, by intermittently vibrating the passage forming member that forms the liquid passage by the vibration applying means, the charging unit and the capturing unit also vibrate together with the passage forming member. Therefore, it is possible to reduce the accumulation of foreign matters on the charging unit and the capturing unit.
  • the concentration sensor device includes a protective film portion that covers the sensor portion.
  • the protective film part has a deposition limiting part at the end opposite to the sensor part.
  • the sensor unit integrally has a deposition limiting unit.
  • the protective film portion has a rough surface or a convex surface on the side opposite to the sensor portion. Therefore, the adhesion of foreign matter to the protective film portion is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the protective film part has a flow path forming part.
  • the flow path forming part forms a liquid flow on the surface of the protective film part.
  • the foreign material adhering to the protective film part is removed by the flow of the liquid. Therefore, the adhesion of foreign matter to the protective film portion is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the protective film part is a porous member.
  • the pores of the porous member restrict the passage of foreign substances while allowing the flow of liquid. For this reason, the foreign matter accumulates on the porous member and does not adhere to the sensor unit. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
  • the concentration sensor device includes vibration imparting means for imparting vibration to the porous member.
  • vibration imparting means for imparting vibration to the porous member.
  • the concentration sensor device includes a piezoelectric element portion.
  • the piezoelectric element portion vibrates when energized. For this reason, even if foreign matter adheres to the sensor unit, the attached foreign matter is promoted to be detached from the sensor unit due to vibration by the piezoelectric element portion. Therefore, the adhesion of foreign matter to the sensor unit is reduced, and the alcohol concentration detection accuracy can be increased.
  • the piezoelectric element part is provided on the surface opposite to the sensor part across the substrate. Therefore, the piezoelectric element part is widely provided on the surface opposite to the sensor part on the substrate without being obstructed by the sensor part. Therefore, the vibration area of the piezoelectric element portion can be ensured without increasing the size. Further, the sensor part and the piezoelectric element part can be formed separately and independently. Therefore, the manufacturing process can be simplified.
  • the circuit part provided on the sensor part side and the piezoelectric element part are connected by a through electrode penetrating the substrate. Therefore, the through electrode is not exposed to the outside of the substrate. Thereby, the contact between the through electrode and the mixed fuel is reduced. As a result, for example, corrosion and damage of the member forming the through electrode due to moisture contained in the mixed fuel is reduced. Therefore, durability of the through electrode can be increased.
  • the piezoelectric element portion is provided on the same surface as the sensor portion on the substrate. Therefore, although it is difficult to secure the vibration area of the piezoelectric element portion, it is possible to arrange the piezoelectric element portion close to the sensor portion. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the piezoelectric element part is provided between the substrate and the sensor part.
  • a piezoelectric element part is provided in a wide area, without being disturbed by a sensor part.
  • the piezoelectric element part and the sensor part are arranged close to each other. Therefore, the vibration area of the piezoelectric element portion can be ensured without increasing the size, and the detachment of the foreign matter attached to the sensor portion can be promoted.
  • the substrate further includes a recess. That is, the substrate forms a diaphragm-shaped recess. Therefore, the vibration of the sensor unit is promoted by the piezoelectric element unit provided around the recess. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
  • the piezoelectric element portion is provided along the concave portion on the opposite surface where the sensor portion is provided. For this reason, the entire substrate on which the diaphragm-shaped recess is formed is vibrated by the piezoelectric element portion. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • the piezoelectric element portion is provided on the opposite side of the insulating film from the substrate. Therefore, the piezoelectric element unit vibrates the insulating film. The vibration of the insulating film by the piezoelectric element portion causes the substrate to vibrate via the recess. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • the sensor part and the piezoelectric element part are provided on this insulating film. That is, the sensor unit and the piezoelectric element unit are provided on the same surface side of the insulating film. Therefore, when the piezoelectric element unit vibrates the insulating film, the sensor unit provided on the insulating film also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the opening side of the substrate where the recess is formed is covered with an insulating film.
  • An insulator is laminated on the opposite side of the insulating film from the substrate.
  • the piezoelectric element portion is provided on the opposite side of the concave portion with the insulating film interposed therebetween, and the sensor portion is provided at a position facing the piezoelectric element portion with the insulator interposed therebetween.
  • the piezoelectric element portion vibrates, the vibration is transmitted to the insulating film and the insulator. That is, the piezoelectric element portion vibrates not only the insulating film but also the insulator. Thereby, the sensor part provided in the insulator also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • gas is sealed in a space formed between the substrate and the insulating film by the recess.
  • the piezoelectric element portion and the gas sealed in the space resonate by adjusting the type pressure of the gas sealed in the space. Thereby, the vibration of the piezoelectric element part is more effectively transmitted to the sensor part side. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the comb-shaped electrode pattern of the sensor portion constitutes a piezoelectric element portion. That is, the electrode pattern is both a sensor part and a piezoelectric element part. Therefore, the sensor unit can be self-cleaned by its own vibration.
  • the concentration sensor device further includes an electrode portion on a surface opposite to the sensor portion with the substrate interposed therebetween.
  • the electrode pattern that is, the sensor unit itself vibrates with the vibration of the substrate. Therefore, the sensor unit can be self-cleaned by its own vibration.
  • the piezoelectric element portion has an electrode pattern laminated on the side opposite to the substrate of the sensor portion. That is, the sensor part is covered with the electrode pattern of the piezoelectric element part on the side opposite to the substrate. Therefore, the sensor unit also vibrates due to the vibration of the electrode pattern of the piezoelectric element unit. Therefore, the sensor unit can be self-cleaned by its own vibration.
  • the piezoelectric element part has an electrode pattern on the surface opposite to the sensor part across the substrate. That is, the electrode pattern of the piezoelectric element portion is formed on the surface opposite to the sensor portion of the substrate. Therefore, the vibration of the piezoelectric element part is transmitted to the sensor part via the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
  • the piezoelectric element part has a first electrode pattern constituting the sensor part and a second electrode pattern provided on the surface opposite to the sensor part across the substrate. Therefore, the sensor unit vibrates itself due to the vibration of the first electrode pattern and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, it is possible to promote the detachment of the foreign matter adhering to the sensor unit and to self-clean the sensor unit by its own vibration.
  • the piezoelectric element portion has a first electrode pattern stacked on the opposite side of the substrate of the sensor portion and a second electrode pattern provided on the surface opposite to the sensor portion across the substrate. . Therefore, the sensor unit vibrates with the vibration of the first electrode pattern, and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted, and self-cleaning can be performed by the vibration of the sensor unit itself.
  • a mixing ratio calculation apparatus includes a sensor unit having a pair of electrodes arranged in a mixed liquid, and a detection circuit that detects a capacitance of a capacitor formed by the pair of electrodes; A calculation unit that calculates a mixing ratio of the mixed liquid based on an output signal of the sensor unit.
  • the sensor unit has at least three pairs of electrodes with different capacitances, and the calculation unit corresponds to each of at least three measured capacitances included in the output signal of the sensor unit. And calculating a regression line with respect to the calculated relative dielectric constant and the capacitance corresponding to each of the relative dielectric constants, or calculating at least three relative dielectric constants and the ratio.
  • the corrected relative dielectric constant is calculated by obtaining a regression line with respect to and the mixing ratio of the mixed liquid is calculated based on the corrected relative dielectric constant. That is, the mixing ratio is calculated based on the relative dielectric constant from which the influence of electrode contamination is removed.
  • the mixture ratio calculation apparatus is a mixture ratio calculation apparatus in which a decrease in the detection accuracy of the mixture ratio is suppressed.
  • the configuration for storing the relative dielectric constant of the mixed liquid and the parameter for calculating the mixed ratio of the mixed liquid includes the capacitance in vacuum at the paired electrodes and the relative dielectric constant of each component contained in the mixed liquid. And the structure which has a memory
  • a configuration in which the surfaces of the paired electrodes are covered and protected by a protective film is preferable. Thereby, corrosion of the electrode by the mixed liquid can be suppressed.
  • the electrode has a comb-teeth shape. Thereby, the opposing area between electrodes can be efficiently ensured compared with a flat electrode. Therefore, the size of the mixing ratio calculation device can be reduced.
  • a comparison step of comparing each of the calculated at least three relative dielectric constants is performed, and in the comparison step, when the values of at least two relative dielectric constants have the same value, the same value
  • the fifth calculation step of calculating the mixing ratio of the mixed liquid is performed based on the relative dielectric constant having the following.
  • the relative dielectric constants have different values in the comparison step, the second calculation step, the third calculation step, And it is good to perform the 4th calculation process. If at least three relative dielectric constants calculated through the first calculation step have the same value, that is, if the two relative dielectric constants are not affected by dirt, this The difference between the two relative dielectric constants is zero.
  • the concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (> 3 integer) known components, N-1) Measure the dielectric constant of the mixed fluid at different temperatures at point N, and determine the dielectric constant of each known component at each temperature at point (N-1) and each temperature at point (N-1). The concentration of each component is calculated from the measured dielectric constant of the mixed fluid.
  • the dielectric constants of the mixed fluid are measured at different temperatures at (N-1) points, and the dielectric constants ⁇ 1 and ⁇ 2 of (N-1) mixed fluids are measured. ,..., ⁇ N ⁇ 1 is obtained.
  • the measured dielectric constants ⁇ 1 , ⁇ 2 ,..., ⁇ N-1 are obtained by multiplying the product of the dielectric constant and the concentration of each single component at the same temperature that has been previously grasped. Equal to the sum of Therefore, (N-1) equations are established from this.
  • concentration detection method of the mixed fluid simultaneous equations concentration a 1, a 2, ⁇ ⁇ ⁇ , for N unknowns a N, of N equations in total as described above , And by solving the simultaneous equations, the concentrations a 1 , a 2 ,..., A N can be accurately determined.
  • the mixed fluid concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N ( ⁇ 3) kinds of known components. It can be set as the mixed fluid density
  • the N is in the case of 3, the concentrations of each component were respectively a1, a2, a3, and different temperatures of the two points and T 1, T 2, respectively the temperatures T 1, respectively the dielectric constant of each component epsilon in a1, epsilon b1, and epsilon c1, the temperature T, respectively the dielectric constant of each component in the 2 ⁇ a2, ⁇ b2, and epsilon c2, and the temperatures T 1
  • the dielectric constants of the mixed fluid at the temperature T 2 are ⁇ 1 and ⁇ 2 respectively,
  • a1 + a2 + a3 1
  • ⁇ 1 ⁇ a1 ⁇ a1 + ⁇ b1 ⁇ a2 + ⁇ c1 ⁇ a3
  • ⁇ 2 ⁇ a2 ⁇ a1 + ⁇ b2 ⁇ a2 + ⁇ c2
  • the mixed fluid concentration detection method can also be applied to the detection of the concentration of mixed fuel in an internal combustion engine in which water may be mixed.
  • the mixed fluid concentration detection method is suitable when the components are ethanol, gasoline, and water. is there.
  • gasoline is comprised by several hundred types of components, the dielectric constant of all the components is substantially the same, and it is possible to handle gasoline as one type of component.
  • the said component may be fatty acid methyl ester, light oil, and water.
  • the two capacitance detection elements connected in series are driven by a carrier wave having a predetermined voltage and the two capacitance detections are performed. It is preferable to input the output from the connection point of the element to a C / V converter to which a feedback capacity is added, and measure the dielectric constant at each temperature of the mixed fluid from the output voltage of the C / V converter.
  • the dielectric constant can be measured with higher accuracy than when one capacitance detection element is used, and the concentration of each component can be detected with higher accuracy. can do.
  • the concentration detecting device is a mixed fluid concentration detecting device for carrying out the above-described mixed fluid concentration detecting method.
  • a concentration detection device for a mixed fluid that detects the concentration of each component of a mixed fluid composed of N (> 3 integers) known components may change the temperature of the mixed fluid at different points (N ⁇ 1).
  • the concentration detection device has a heater unit for forming different temperatures of the (N-1) point of the mixed fluid.
  • the temperature detection element as a component of the temperature measurement unit and the capacitance detection element as a component of the dielectric constant measurement unit are formed on one chip. According to this, compared with the case where a temperature detection element and a capacity
  • the heater element when it is set as the structure which has an above-described heater part, it is the temperature detection element which is a component of the said temperature measurement part, the capacity
  • a groove is formed in the chip so as to thermally separate the heater element, the temperature detection element, and the capacitance detection element. According to this, since heat conduction from the heater element to the temperature detection element and the capacitance detection element through the chip can be suppressed, the temperature and dielectric constant of the mixed fluid can be more accurately compared to the case where the groove is not formed. The concentration of each component can be detected more accurately.
  • the capacitance detection element is preferably composed of a pair of comb-like electrodes. According to this, the mixed fluid can be easily guided between the pair of comb-like electrodes formed on the chip, and the detection capacitance value is increased by increasing the comb-tooth density, thereby improving the dielectric constant measurement accuracy. Can be increased.
  • the mixed fluid stirring means is provided between a temperature detection element that is a component of the unit and a capacitance detection element that is a component of the dielectric constant measurement unit.
  • the stirring means such as fins, meshes, filters, etc.
  • temperature unevenness of the mixed fluid due to heating using the heater element can be eliminated, and the temperature and dielectric constant of the mixed fluid can be measured more accurately. it can. Therefore, the concentration of each component of the mixed fluid can be detected more accurately.
  • the concentration of each component of the mixed fluid can be detected more accurately.
  • a capacitance detection element having a large electrode size since the volume of the fluid mixture between the electrodes is large, it is necessary to make the temperature of the fluid mixture between the electrodes uniform using the stirring means.
  • the capacitance detection element that is a component of the dielectric constant measurement unit includes a pair of electrodes, and one of the electrodes includes a temperature detection element that is a component of the temperature measurement unit. It can also be configured to double. According to this, further downsizing and cost reduction are possible.
  • the dielectric constant measurement unit includes two capacitance detection elements connected in series and a C / V converter to which a feedback capacitance is added.
  • the two capacitance detection elements are driven by a carrier wave having a reverse voltage, and the output from the connection point of the two capacitance detection elements is input to the C / V converter.
  • the dielectric constant at each temperature of the fluid mixture is preferably measured from the output voltage of the C / V converter.
  • the dielectric constant measurement unit since the influence of the parasitic capacitance due to the wiring can be canceled, the dielectric constant can be measured with higher accuracy than when one capacitance detection element is used. The concentration of the component can also be detected with higher accuracy.
  • the concentration calculation unit sets the concentrations of the components as a1, a2, and a3, respectively, and sets the two different temperatures.
  • T 1 and T 2 the dielectric constants of the components at the temperature T 1 are ⁇ a1 , ⁇ b1 and ⁇ c1 , respectively, and the dielectric constants of the components at the temperature T 2 are ⁇ a2 , ⁇ b2 and ⁇ c2 , respectively.
  • the mixed fluid concentration detection device is suitable for detecting the concentration of a mixed fuel of an internal combustion engine in which water may be mixed as described above.
  • water may be mixed as described above.
  • the components are ethanol, gasoline and water, or Suitable when the components are fatty acid methyl ester, light oil and water.
  • the mixed fluid concentration detection method and the detection apparatus detect the concentration of each component of the mixed fluid composed of N (> 3 integer) types of known components. And it is a detection apparatus, It is the density
  • (A) is a cross-sectional view taken along line AA in FIG. 17, and (B) is a cross-sectional view taken along line BB in FIG.
  • (A) is a schematic diagram showing a concentration sensor device according to a sixteenth embodiment of the present invention
  • (B) is a sectional view taken along line BB of (A).
  • FIG. 31 (A) is a schematic diagram which shows the cross section of the density
  • (B) is an arrow line view from the arrow A direction of (A).
  • FIG. 31 (A) which shows the density
  • FIG. 31 (A) which shows the density
  • FIG. 31 (A) which shows the density
  • FIG. 35 which shows the modification of the density
  • It is a block diagram which shows schematic structure of the mixture ratio calculation apparatus which concerns on 27th Embodiment.
  • FIG. 43A is a diagram illustrating a schematic configuration of the concentration detection device according to the twenty-eighth embodiment
  • FIG. 43B is an example of a configuration of a sensor unit in the concentration detection device of FIG.
  • FIG. 43C is a top view schematically showing the capacitance detection element as an example of the capacitance detection element of FIG. 43B.
  • FIG. 44A is a top view schematically showing a sensor chip of another configuration example of the sensor unit in the concentration detection device, and FIG. 44B shows the temperature of the sensor chip along the flow direction of the mixed fluid.
  • FIG. 44C is a graph showing the distribution
  • FIG. 44C is a schematic cross-sectional view of the sensor chip along the flow direction of the mixed fluid.
  • FIG. 47 is a top view schematically showing two capacitance detection elements shown in FIG. 46.
  • 48 (A) and 48 (B) are different configuration examples of the sensor unit in the concentration detection device, and are sectional views schematically showing sensor components. It is the top view which showed typically the sensor chip in the case of using a capacitance detection element with a large electrode dimension.
  • the concentration sensor device described below applies, for example, a mixed fuel as a liquid, and detects the concentration of a biological alcohol that is a specific component contained in the mixed fuel.
  • the concentration sensor device 10 according to the first embodiment is shown in FIG.
  • the concentration sensor device 10 according to the first embodiment includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13 as shown in FIG. 1.
  • the substrate 11 is made of a semiconductor such as silicon, for example.
  • the concentration sensor device 10 is attached to a piping member 100 through which a mixed fuel flows as shown in FIG.
  • the concentration sensor device 10 is provided inside the piping member 100 at the top as shown in FIG. 2 (A), at the bottom as shown in FIG. 2 (B), or at the side as shown in FIG. 2 (C). It is done.
  • the sensor unit 12 is provided on one surface side of the substrate 11.
  • An insulating film 14 is formed between the sensor unit 12 and the substrate 11.
  • the insulating film 14 is, for example, a silicon oxide film.
  • the sensor unit 12 has a plurality of electrodes 15.
  • the dielectric constant and relative dielectric constant between the electrodes 15 of the sensor unit 12 vary depending on the concentration of alcohol contained in the mixed fuel.
  • the sensor unit 12 detects the dielectric constant or relative dielectric constant between the electrodes 15 to detect the concentration of alcohol contained in the mixed fuel, that is, the mixing ratio of petroleum-derived fuel and biological fuel.
  • the sensor unit 12 is the same as a known configuration, and detailed description thereof is omitted.
  • the sensor unit 12 is protected by a protective film 16.
  • the protective film 16 is made of, for example, a silicon nitride film.
  • the sensor unit 12 may not only detect the concentration using the dielectric constant or the relative dielectric constant, but may also electrically detect the concentration based on, for example, the capacitance or impedance between the electrodes 15. Further, the concentration of the specific component contained in the liquid may be optically detected from, for example, the refractive index of light or the transmittance of light having a specific wavelength. In the present disclosure, a case where the sensor unit 12 detects the concentration of a specific component contained in the liquid based on the dielectric constant between the electrodes 15 will be described.
  • the piezoelectric element portion 13 is provided on the surface of the substrate 11 opposite to the sensor portion 12.
  • An insulating film 17 is formed between the piezoelectric element portion 13 and the substrate 11.
  • the insulating film 17 is, for example, a silicon oxide film.
  • the piezoelectric element section 13 has a structure in which a piezoelectric body (not shown) is sandwiched between electrodes, for example. The piezoelectric element portion 13 vibrates when energized.
  • the concentration sensor device 10 includes a circuit unit 18.
  • the circuit unit 18 is provided on the same surface side as the sensor unit 12 in the substrate 11.
  • the circuit unit 18 includes, for example, a processing circuit (not shown) and connection pads.
  • the processing circuit constitutes a circuit that processes, for example, a signal output from the sensor unit 12 or a signal input to the piezoelectric element unit 13.
  • the connection pad is connected to a bonding wire or the like that connects the concentration sensor device 10 to an external connection terminal.
  • the circuit unit 18 is provided adjacent to the sensor unit 12 on the same surface side as the sensor unit 12. Similar to the sensor unit 12, the circuit unit 18 is protected by a protective film 16 made of a silicon nitride film.
  • the piezoelectric element portion 13 is electrically connected to the circuit portion 18 by a through electrode 19 penetrating the substrate 11.
  • the piezoelectric element unit 13 vibrates based on a signal from the circuit unit 18.
  • the through electrode 19 is not exposed to the outside of the substrate 11.
  • the concentration sensor device 10 is provided inside the fuel passage 101 formed by the piping member 100. Therefore, the concentration sensor device 10 is exposed to the mixed fuel flowing through the fuel passage 101.
  • a mixed fuel containing alcohol tends to contain a component that corrodes a metal such as water.
  • the through electrode 19 becomes difficult to come into contact with the fuel. As a result, even when exposed to the mixed fuel, the corrosion and wear of the through electrode 19 are reduced, and the durability of the through electrode 19 is improved.
  • the substrate 11 and the sensor unit 12 integrated with the piezoelectric element unit 13 also vibrate.
  • the foreign matter in the mixed fuel adhering to the sensor unit 12 exposed to the mixed fuel is promoted to be detached from the sensor unit 12 by the vibration of the sensor unit 12 accompanying the vibration of the piezoelectric element unit 13. Therefore, the adhesion of foreign matter to the sensor unit 12 is reduced, and the detection accuracy of the alcohol concentration contained in the mixed fuel can be increased.
  • the frequency at which the foreign matter is dropped is preferably a wavelength equal to or smaller than the size of the foreign matter.
  • the vibration wavelength of the piezoelectric element portion 13 for detaching the foreign matter is equal to or smaller than the size of the foreign matter.
  • the piezoelectric element portion 13 is provided on the surface of the substrate 11 opposite to the sensor portion 12. Therefore, the sensor unit 12 does not hinder the arrangement of the piezoelectric element unit 13, and the piezoelectric element unit 13 does not hinder the arrangement of the sensor unit 12. As a result, a sufficient installation area of the piezoelectric element portion 13 is ensured. Therefore, the vibration area of the piezoelectric element portion 13 can be ensured without increasing the size of the physique. Furthermore, in the semiconductor device manufacturing process, the sensor unit 12 and the piezoelectric element unit 13 can be formed in separate and independent processes. Therefore, the manufacturing process can be simplified.
  • the through electrode 19 that connects the piezoelectric element portion 13 and the circuit portion 18 penetrates the substrate 11. Therefore, the through electrode 19 is not easily exposed to the mixed fuel containing moisture. Therefore, corrosion and damage of the through electrode 19 can be reduced, and durability of the through electrode 19 can be improved.
  • the concentration sensor devices according to the second and third embodiments are shown in FIG. 3 and FIG. 4, respectively.
  • the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11.
  • the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11, if the installation area of the sensor unit 12 and the piezoelectric element unit 13 is ensured, the size of the physique is increased, and if the physique is maintained, the piezoelectric element unit 13 is maintained. The vibration area may be reduced.
  • the sensor unit 12 and the piezoelectric element unit 13 are arranged close to each other. Therefore, the sensor unit 12 directly vibrates due to the vibration of the piezoelectric element unit 13, and the detachment of the foreign matter can be further promoted.
  • the concentration sensor device 10 includes an insulator layer 21 on one surface side of the substrate 11 with an insulating film 17 interposed therebetween.
  • the insulating film 17 is formed of a silicon oxide film as described above, and the insulator layer 21 is formed of a silicon nitride film.
  • the piezoelectric element portion 13 is provided on the surface of the insulating film 17 opposite to the substrate 11.
  • the insulator layer 21 covers the piezoelectric element portion 13 provided on the insulating film 17.
  • the sensor unit 12 is provided on the surface of the insulator layer 21 opposite to the substrate 11. With such a configuration, the piezoelectric element unit 13 is disposed between the substrate 11 and the sensor unit 12.
  • FIG. 5 shows a concentration sensor device according to the fourth embodiment.
  • the concentration sensor device 10 includes a recess 22 provided in the substrate 11.
  • the recess 22 is formed in a diaphragm shape that is recessed from one surface side of the substrate 11 to the other surface side.
  • the sensor unit 12 and the circuit unit 18 are provided on the flat side of the substrate 11, that is, the surface side opposite to the recess 22.
  • the piezoelectric element portion 13 is provided along the end surface on the opening side of the recess 22. As a result, the piezoelectric element portion 13 is in a state of covering the opening side surface of the substrate 11 on which the recess 22 is formed. As a result, the piezoelectric element portion 13 is provided on the surface side opposite to the sensor portion 12 and the circuit portion 18 with the substrate 11 interposed therebetween.
  • the concentration sensor device 10 includes a through electrode 19 that penetrates the substrate 11 in the thickness direction.
  • the through electrode 19 has one end connected to the circuit unit 18 and the other end connected to the piezoelectric element unit 13. As a result, the piezoelectric element portion 13 is electrically connected to the circuit portion 18 via the through electrode 19.
  • FIG. 6 shows a concentration sensor device according to the fifth embodiment.
  • the concentration sensor device 10 includes a recess 22 provided in the substrate 11.
  • the recess 22 is formed in a diaphragm shape that is recessed from one surface side of the substrate 11 to the other surface side.
  • the sensor unit 12 and the circuit unit 18 are provided on the flat side of the substrate 11, that is, the surface side opposite to the recess 22.
  • the concentration sensor device 10 includes an insulating film 23 that closes the opening side of the substrate 11 provided with the recess 22. In other words, the recess 22 is closed at the opening end by the insulating film 23.
  • the insulating film 23 is formed of, for example, a silicon oxide film.
  • the piezoelectric element portion 13 is provided on the surface of the insulating film 23 opposite to the substrate 11. Thereby, the piezoelectric element part 13 is provided on the surface side opposite to the sensor part 12 and the circuit part 18 with the substrate 11 interposed therebetween.
  • the piezoelectric element portion 13 is connected to the circuit portion 18 by a through electrode 19 that penetrates the substrate 11.
  • a space 24 is formed between the substrate 11 and the insulating film 23.
  • the space 24 is filled with a gas such as nitrogen or air.
  • a space 24 is formed between the substrate 11 and the insulating film 23 by closing the recess 22 provided in the substrate 11 with the insulating film 23.
  • This space 24 is filled with a gas such as nitrogen or air.
  • the natural frequency of the gas in the space 24 changes by adjusting the type, pressure, and amount of the gas filled in the space 24. Therefore, by approximating the natural frequency of the gas filled in the space 24 and the frequency of the piezoelectric element unit 13, the gas filled in the space 24 resonates with the piezoelectric element unit 13 and vibrates. As a result, the vibration of the piezoelectric element portion 13 is transmitted to the sensor portion 12 on the opposite side across the substrate 11 by the resonance of the gas filled in the space 24.
  • the sensor unit 12 and the piezoelectric element unit 13 are provided on the flat surface side of the substrate 11 as shown in FIG. That is, in the case of the sixth embodiment, the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11.
  • An insulating film 25 made of a silicon oxide film is provided between the substrate 11 and the sensor unit 12 and the piezoelectric element unit 13.
  • the sensor portion 12 and the piezoelectric element portion 13 are provided on the opposite side of the insulating film 26 made of a silicon oxide film that closes the recess 22 from the substrate 11. That is, also in the seventh embodiment, the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11. Thereby, when the piezoelectric element portion 13 vibrates, the vibration is transmitted to the sensor portion 12 through the vibration of the insulating film 26. Therefore, the vibration of the sensor unit 12 is promoted, and the detachment of foreign matters can be promoted.
  • FIG. 10 shows a concentration sensor device according to the ninth embodiment.
  • the concentration sensor device 10 includes a substrate 11 and a sensor unit 12 as shown in FIG. As shown in FIG. 10B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12.
  • the sensor unit 12 has a plurality of electrode patterns 41 and 42 as shown in FIG. These electrode patterns 41 and 42 are each formed in a comb tooth shape facing each other.
  • the sensor unit 12 detects the concentration of alcohol contained in the mixed fuel by detecting the dielectric constant and the relative dielectric constant between the opposing electrode pattern 41 and the electrode pattern 42.
  • the electrode pattern 41 and the electrode pattern 42 of the sensor unit 12 are protected by the protective film 16.
  • each of the two electrode patterns 41 and the electrode pattern 42 is formed in a comb shape by a piezoelectric element. That is, both the electrode pattern 41 and the electrode pattern 42 are formed in a comb-teeth shape by depositing a piezoelectric material such as PZT and sputtering AgPd.
  • the electrode pattern 41 and the electrode pattern 42 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 41 and the electrode pattern 42 from the circuit unit. By applying a voltage between the electrode pattern 41 and the electrode pattern 42, distortion occurs between the electrode pattern 41 and the electrode pattern 42.
  • the electrode pattern 41 and the electrode pattern 42 of the sensor unit 12 are the sensor unit 12 that measures the dielectric constant of the fuel and the piezoelectric element unit 13 that constitutes the deposition limiting unit.
  • the circuit unit measures the dielectric constant of the fuel and generates vibration due to energization of the sensor unit 12 in a time-sharing manner. That is, the circuit unit switches the application pattern of the voltage applied between the electrode pattern 41 and the electrode pattern 42 when measuring the dielectric constant of the fuel and when vibrating the sensor unit 12 as the piezoelectric element unit 13.
  • the comb-shaped electrode patterns 41 and 42 constituting the sensor unit 12 are not only the sensor unit 12 but also the piezoelectric element unit 13. That is, the sensor unit 12 and the piezoelectric element unit 13 are integrally formed. Therefore, the sensor unit 12 can be self-cleaned by its own vibration, and the removal of foreign matter attached to the surface of the sensor unit 12 or the protective film 16 protecting the sensor unit 12 can be promoted.
  • the surface of the protective film 16 is not only formed as a smooth surface, but may be formed as a rough surface in which the space between the electrode pattern 41 and the electrode pattern 42 is recessed. Thus, even when the surface of the protective film 16 is formed to be rough, the protective film 16 is distorted by the vibration between the electrode pattern 41 and the electrode pattern 42.
  • FIG. 11 shows a concentration sensor device according to the tenth embodiment.
  • the tenth embodiment is a modification of the embodiment of FIG. 9, and the differences will be described.
  • the concentration sensor device 10 includes an electrode portion 43 on a surface opposite to the sensor portion 12 with the substrate 11 interposed therebetween.
  • the electrode part 43 is covered with the insulating film 14 together with the end face side opposite to the sensor part 12 of the substrate 11.
  • the configurations of the electrode pattern 41 and the electrode pattern 42 constituting the sensor unit 12 are the same as those in the ninth embodiment.
  • the electrode part 43 is electrically connected to a circuit part (not shown) together with the electrode pattern 41 and the electrode pattern 42. Therefore, a predetermined voltage is applied from the circuit portion between the electrode pattern 41 and the electrode pattern 42 and the electrode portion.
  • a voltage between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43 By applying a voltage between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43, a dense wave in the thickness direction of the substrate 11 is generated between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43. .
  • a voltage that generates a predetermined vibration pattern from the circuit portion to the electrode pattern 41 and between the electrode pattern 42 and the electrode portion 43 vibration along the thickness direction of the substrate 11 is generated.
  • the circuit unit sets the polarity of the electrode unit 43 to negative ( ⁇ ) and arbitrarily switches the polarity of the electrode pattern 41 and the electrode pattern 42 to positive (+) or negative ( ⁇ ).
  • vibration in the thickness direction of the substrate 11 occurs between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43.
  • the electrode unit 43 is provided on the opposite side of the sensor unit 12 with the substrate 11 interposed therebetween.
  • the electrode patterns 41 and 42 that is, the sensor unit 12 itself vibrates including the substrate 11. Therefore, the sensor unit 12 can be self-cleaned by its own vibration.
  • the voltage application pattern to the electrode patterns 41 and 42 and the electrode portion 43 not only vibration along the sensor portion 12 between the electrode patterns 41 and 42, but also vibration in the plate thickness direction of the substrate 11. Can be generated in combination.
  • the concentration sensor device 10 includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13. As shown in FIG. 12B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12.
  • the sensor unit 12 includes a plurality of electrodes 51 and 52 as shown in FIG. These electrodes 51 and 52 are formed so as to face each other.
  • the electrode 51 and the electrode 52 are formed in, for example, a comb shape as shown in FIG.
  • the sensor unit 12 detects the concentration of alcohol contained in the mixed fuel.
  • the electrode 51 and the electrode 52 of the sensor unit 12 are protected by the protective film 16.
  • the piezoelectric element portion 13 that is a deposition limiting portion is laminated on the opposite side of the protective film 16 that protects the sensor portion 12 from the substrate 11.
  • the piezoelectric element unit 13 includes an electrode pattern 53 and an electrode pattern 54 that are formed of piezoelectric elements.
  • the electrode pattern 53 and the electrode pattern 54 are both formed on the side of the protective film 16 opposite to the substrate 11. Therefore, the electrode pattern 53 and the electrode pattern 54 constituting the piezoelectric element unit 13 are laminated on the protective film 16 that protects the sensor unit 12. Both the electrode pattern 53 and the electrode pattern 54 are protected by a protective film 55.
  • the electrode pattern 53 and the electrode pattern 54 are both formed in a comb shape by a piezoelectric element.
  • the electrode pattern 53 and the electrode pattern 54 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 53 and the electrode pattern 54 from the circuit unit.
  • a voltage between the electrode pattern 53 and the electrode pattern 54 distortion occurs between the electrode pattern 53 and the electrode pattern 54, and the sensor surface of the sensor unit 12 is perpendicular to the plate thickness direction of the substrate 11. Vibration along the line occurs.
  • the piezoelectric element unit 13 includes electrode patterns 53 and 54 stacked on the opposite side of the sensor unit 12 from the substrate 11.
  • the sensor unit 12 is covered with the electrode patterns 53 and 54 of the piezoelectric element unit 13 on the side opposite to the substrate 11. Therefore, when vibration is generated by the electrode patterns 53 and 54 of the piezoelectric element unit 13, the sensor unit 12 also vibrates. Therefore, the sensor unit 12 can be self-cleaned by its own vibration.
  • Twelfth embodiment A concentration sensor device according to the twelfth embodiment is shown in FIG.
  • the concentration sensor device 10 includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13 as shown in FIG. As shown in FIG. 13B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12.
  • the sensor unit 12 includes a plurality of electrodes 15 as shown in FIG. The electrode 15 has the same configuration as that of the first embodiment described above.
  • the piezoelectric element portion 13 is formed on the surface opposite to the sensor portion 12 with the substrate 11 interposed therebetween.
  • the piezoelectric element unit 13 constituting the deposition limiting unit has an electrode pattern 61 and an electrode pattern 62 formed of piezoelectric elements.
  • the electrode pattern 61 and the electrode pattern 62 are both formed on the surface of the substrate 11 opposite to the sensor unit 12. Both the electrode pattern 61 and the electrode pattern 62 are protected by a protective film 63.
  • the electrode pattern 61 and the electrode pattern 62 are both formed in a comb shape by a piezoelectric element.
  • the electrode pattern 61 and the electrode pattern 62 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 61 and the electrode pattern 62 from the circuit unit.
  • a voltage between the electrode pattern 61 and the electrode pattern 62 distortion occurs between the electrode pattern 61 and the electrode pattern 62. Therefore, the generated distortion becomes a dense wave and propagates through the substrate 11 in the thickness direction, causing the sensor unit 12 to vibrate.
  • the piezoelectric element section 13 has electrode patterns 61 and 62 on the surface opposite to the sensor section 12 with the substrate 11 interposed therebetween. That is, the substrate 11 has the electrode patterns 61 and 62 of the piezoelectric element portion 13 formed on the surface opposite to the sensor portion 12. Therefore, the vibration of the piezoelectric element unit 13 is transmitted to the sensor unit 12 via the substrate 11. Therefore, the detachment of the foreign matter attached to the sensor unit 12 can be promoted.
  • the ninth embodiment and the twelfth embodiment described above may be combined. That is, in the concentration sensor device 10 according to the ninth embodiment, the sensor unit 12 having the comb-shaped electrode patterns 41 and 42 corresponding to the first electrode pattern is provided on one end face of the substrate 11, and the second end face is provided with the second end face. Comb-shaped electrode patterns 61 and 62 corresponding to the electrode patterns may be provided. Accordingly, the piezoelectric element unit 13 is configured by the electrode patterns 41 and 42 constituting the sensor unit 12 and the electrode patterns 61 and 62 provided on the opposite side of the substrate 11 from the sensor unit 12. Therefore, the sensor unit 12 vibrates itself due to the electrode patterns 41 and 42, and also vibrates due to the vibrations of the electrode patterns 61 and 62 transmitted via the substrate 11. As a result, the sensor unit 12 vibrates in a plurality of directions. Accordingly, it is possible to promote the detachment of the foreign matter attached to the sensor unit 12, and it is possible to self-clean the sensor unit 12 by its own vibration.
  • the eleventh embodiment and the twelfth embodiment may be combined. That is, in the concentration sensor device 10 according to the eleventh embodiment, comb-shaped electrode patterns 53 and 54 corresponding to the first electrode pattern are provided by being stacked with the sensor unit 12, and the end surface of the substrate 11 opposite to the sensor unit 12 is provided. Further, comb-shaped electrode patterns 61 and 62 corresponding to the second electrode pattern may be provided. As a result, the piezoelectric element unit 13 includes electrode patterns 53 and 54 that cover the sensor unit 12 and electrode patterns 61 and 62 that are provided on the opposite side of the substrate 11 from the sensor unit 12. Therefore, the sensor unit 12 vibrates itself due to the electrode patterns 53 and 54 and also vibrates due to the vibrations of the electrode patterns 61 and 62 transmitted through the substrate 11.
  • the concentration sensor device 10 may be provided in a piping member 100 that is partially cut away as shown in FIG.
  • a mounting substrate 103 for attaching the concentration sensor device 10 is provided outside the piping member 100.
  • a rib 31 and a seal member 32 are provided between the density sensor device 10 and the mounting substrate 103. Thereby, the inflow of the mixed fuel to the inside of the rib 31 and the seal member 32 is prevented.
  • the mounting substrate 103 and the concentration sensor device 10 are electrically connected by, for example, solder balls 33 or bonding wires. In the case shown in FIG.
  • the piezoelectric element portion 13 of the concentration sensor device 10 is electrically directly connected to the mounting substrate 103 by, for example, solder balls 33 without passing through the circuit portion of the substrate 11.
  • solder balls 33 without passing through the circuit portion of the substrate 11.
  • the concentration sensor device 70 includes a passage forming member 71, a sensor unit 72, and a deposition limiting unit 73.
  • the passage forming member 71 has a cylindrical shape and forms a fuel passage 74 as a liquid passage through which the mixed fuel flows.
  • the mixed fuel flows through the fuel passage 74 from the left upstream side in FIG. 15 to the right downstream side.
  • the sensor part 72 is comprised from the board
  • the accumulation limiting unit 73 includes a charging unit 75 and a capturing unit 76 on the upstream side of the sensor unit 72 in the fuel flow direction in the fuel passage 74.
  • the charging unit 75 applies a voltage to the mixed fuel flowing through the fuel passage 74.
  • the charging unit 75 is formed in a net shape with, for example, a conductive metal. As a result, the charging unit 75 charges the mixed fuel flowing through the fuel passage 74.
  • the capturing unit 76 is provided between the charging unit 75 and the sensor unit 72. That is, the capturing unit 76 is provided on the upstream side of the sensor unit 72 and on the downstream side of the charging unit 75. The capturing unit 76 captures foreign matter contained in the mixed fuel charged by the charging unit 75.
  • an AC voltage of 1 kHz or more is applied to the charging unit 75 and the capturing unit 76.
  • the charging unit 75 and the capturing unit 76 have different polarities of applied voltages. For example, when the charging unit 75 is charged positive (+), the capturing unit 76 is charged negative ( ⁇ ). Further, when the charging unit 75 is positively charged, the charging unit 75 maintains a positive voltage without being inverted to a negative voltage. Similarly, when the capturing unit 76 is negatively charged, the capturing unit 76 maintains a negative voltage without being inverted to a negative voltage. As described above, the charging unit 75 and the capturing unit 76 maintain one of the positive and negative polarities. When the charging unit 75 is positively charged, the minimum value of the voltage is 0 V, which is the ground voltage. Similarly, when the capturing unit 76 is negatively charged, the maximum value of the voltage is 0V.
  • the charging unit 75 and the capturing unit 76 having different polarities are provided on the upstream side of the sensor unit 72.
  • the mixed fuel flowing through the fuel passage 74 is charged to a positive charge because a positive voltage is applied when passing through the charging unit 75. Therefore, the foreign matter contained in the mixed fuel is also charged with a positive charge.
  • the mixed fuel containing the positively charged foreign matter passes through the charging unit 75 and then passes through the capturing unit 76. Since the capturing unit 76 is applied with a voltage having a polarity opposite to that of the charging unit, i.e., a negative voltage, foreign matter charged to a positive charge is captured by the capturing unit 76. As a result, the foreign matter contained in the mixed fuel is captured by the capturing unit 76 and the inflow to the sensor unit 72 is reduced.
  • the mixed fuel passes through the charging unit 75 and the capturing unit 76 and is charged to a positive or negative charge.
  • the mixed fuel may electrically affect various devices (not shown) provided on the downstream side of the concentration sensor device 70. Therefore, the deposition limiting unit 73 has a static elimination unit 77 on the downstream side of the sensor unit 72 in the flow direction of the mixed fuel as shown in FIG.
  • the static eliminating portion 77 is formed in a net shape with, for example, a conductive metal. For this reason, the charged mixed fuel passes through the charge removal unit 77, and thus the charge is removed and the charge is removed.
  • the deposition restricting portion 73 housed in the fuel passage 74 formed by the passage forming member 71 has the charging portion 75 and the capturing portion 76 that are separate from the sensor portion 72. .
  • the mixed fuel flowing through the fuel passage 74 is charged together with the foreign matter contained therein when a voltage is applied at the charging unit 75. Therefore, when the mixed fuel passes through the capturing unit 76, the foreign matter contained in the mixed fuel is captured before reaching the sensor unit 72. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
  • the deposition limiting unit 73 has a static elimination unit 77 on the downstream side of the sensor unit 72.
  • the mixed fuel charged by the charging unit 75 and the capturing unit 76 is neutralized by the neutralization unit 77.
  • the static elimination unit 77 neutralizes the charge of the mixed fuel that has passed through the sensor unit 72.
  • the charged mixed fuel does not affect the devices and apparatuses provided on the downstream side of the sensor unit 72. Therefore, the influence on the outside can be reduced.
  • the voltage applied to the charging unit 75 and the voltage applied to the capturing unit 76 have different polarities.
  • the charging unit 75 and the capturing unit 76 both maintain one polarity without being inverted from one polarity to the other. Thereby, the foreign material charged by the charging unit 75 is reliably captured by the capturing unit 76, and movement to the sensor unit 72 side is restricted. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
  • the voltage applied to the mixed fuel by the charging unit 75 and the capturing unit 76 is an AC voltage of 1 kHz or more.
  • the maximum value on the negative side and the minimum value on the positive side are set to the ground voltage.
  • a direct current voltage or a low frequency alternating current is applied to the mixed fuel, the mixed fuel and various components contained in the mixed fuel may cause an electrochemical reaction. Therefore, in the charging unit 75 and the capturing unit 76, an alternating voltage of 1 kHz or more is applied so that the mixed fuel does not cause irreversible chemical changes. Therefore, the change of the mixed fuel can be reduced and the influence on the outside can be reduced.
  • the charging unit 75 and the capturing unit 76 may have different polarities, and the charging unit 75 may be negatively charged and the capturing unit 76 may be positively charged.
  • a concentration sensor device according to a fifteenth embodiment is shown in FIG.
  • the capturing part 76 of the concentration sensor device 70 has an electrode member 81 extending in parallel with the axis of the fuel passage 74.
  • the electrode member 81 is formed in a plate shape, and at least one electrode member 81 is provided in the fuel passage 74.
  • the plate width of the electrode member 81 is reduced from the upstream side to the downstream side in the fuel flow direction in the fuel passage 74.
  • the plate width of the electrode member 81 is the length along the chord of the passage forming member 71 that forms the fuel passage 74.
  • the electrode member 81 has a plate width corresponding to the chord at an arbitrary position of the passage forming member 71 on the upstream side of the fuel passage 74. That is, the electrode member 81 rises perpendicularly to the fuel flow direction from the inner wall of the passage forming member 71 and extends to the opposing inner wall of the passage forming member 71. Thus, the electrode member 81 has a plate width corresponding to the string of the passage forming member 71 on the upstream side of the fuel passage 74. On the other hand, as shown in FIG. 18B, the electrode member 81 has a reduced plate width on the downstream side of the fuel passage 74.
  • the electrode member 81 rises perpendicularly to the fuel flow direction from the inner wall of the passage forming member 71, but the end does not extend to the opposing inner wall of the passage forming member 71.
  • the electrode member 81 is set such that the upstream side in the fuel passage 74 has a larger plate width and the downstream side has a smaller plate width.
  • the concentration sensor device 70 may be provided with a wall portion 82.
  • the wall portion 82 separates the flow of the mixed fuel that has passed through the charging portion 75 into the sensor portion 72 side and the capturing portion 76 side. That is, the wall portion 82 is provided between the sensor portion 72 and the capturing portion 76 in the fuel passage 74 and divides the flow of the mixed fuel.
  • Foreign matter contained in the mixed fuel charged by passing through the charging unit 75 is captured by the electrode member 81 of the capturing unit 76.
  • the electrode member 81 has a smaller plate width toward the downstream side. Therefore, when the electrode member 81 as shown in FIG. 19 is used, the foreign matter contained in the mixed fuel is likely to move downward along the electrode member 81 in FIG. Therefore, in FIG.
  • the capturing part 76 has at least one plate-like electrode member 81.
  • the plate-like electrode member 81 extends in parallel with the axis of the fuel passage 74, and the plate width is reduced from the upstream side to the downstream side.
  • the mixed fuel that has passed through the charging unit 75 is effectively removed of the contained foreign matters on the upstream side where the plate width is large.
  • the electrode member 81 extends in parallel with the fuel passage 74, the pressure loss of the mixed fuel flowing through the fuel passage 74 is reduced. Therefore, foreign matter contained in the mixed fuel can be captured upstream of the sensor unit 72 while reducing the pressure loss of the mixed fuel, and the concentration detection accuracy of the sensor unit 72 can be improved.
  • the fuel passage 74 includes a wall portion 82.
  • the wall portion 82 By separating the flow of the mixed fuel into the electrode member 81 side and the sensor unit 72 side of the capturing unit 76 by the wall portion 82, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are further reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
  • the density sensor devices according to the sixteenth, seventeenth and eighteenth embodiments are shown in FIGS. 20, 22 and 24, respectively.
  • the capturing part 76 of the concentration sensor device 70 has an electrode member 83 that extends with an inclination with respect to the axis of the fuel passage 74 as shown in FIG.
  • the electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74.
  • the electrode member 83 is set to have a constant plate width from the upstream side to the downstream side in the fuel flow direction in the fuel passage 74. By arranging the electrode member 83 in this way, at least a part of the width of the fuel passage 74 is narrowed from the upstream side to the downstream side.
  • the concentration sensor device 70 may be provided with a wall portion 84.
  • the wall portion 84 separates the flow of the mixed fuel that has passed through the charging portion 75 into the sensor portion 72 side and the capturing portion 76 side. Foreign matter contained in the mixed fuel charged by passing through the charging unit 75 is captured by the electrode member 83 of the capturing unit 76.
  • the electrode member 83 narrows a part of the fuel passage 74 from the upstream side to the downstream side.
  • the wall portion 82 separates the fuel passage 74 along the narrowed electrode member 83 from the sensor portion 72 side. Therefore, the foreign matters contained in the mixed fuel easily move downward along the electrode member 83 in FIG. 21, and the mixed fuel containing a small amount of foreign matters flows into the upper side of the wall portion 84 where the sensor portion 72 is provided. To do.
  • the capturing portion 76 of the concentration sensor device 70 has an electrode member 83 that extends with an inclination with respect to the axis of the fuel passage 74 as shown in FIG.
  • the electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74.
  • the electrode member 83 is arranged in a multistage manner such that the upstream side of the fuel passage 74 is opposed more widely and the downstream side is opposed narrower. As a result, the electrode member 83 narrows the width of the fuel passage 74 from the upstream side toward the downstream side at the center of the fuel passage 74.
  • the concentration sensor device 70 may be provided with a wall portion 84.
  • the wall portion 84 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 83 in which the fuel passage 74 is narrowed near the center.
  • the sensor portion 72 is disposed on the outer peripheral side of the wall portion 84 in the radial direction of the passage forming member 71. The mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 84 while flowing between the electrode members 83 of the capturing portion 76.
  • the foreign matter that has passed through the electrode member 83 but remains in the mixed fuel passes between the pair of wall portions 84 while being guided to the center of the fuel passage 74 together with the mixed fuel by the electrode member 83. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
  • the trapping portion 76 of the concentration sensor device 70 has an electrode member 83 that extends obliquely with respect to the axis of the fuel passage 74.
  • the electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74.
  • the electrode member 83 is arranged in multiple stages, with the interval facing the narrower the upstream side of the fuel passage 74 being narrower and the interval facing the lower being the wider downstream side.
  • the electrode member 83 narrows the width of the fuel passage from the upstream side to the downstream side on the outer peripheral side of the fuel passage 74.
  • the concentration sensor device 70 may be provided with a wall portion 84.
  • the wall portion 84 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 83 that narrows the fuel passage 74 on the outer peripheral side.
  • the sensor portion 72 is disposed on the inner peripheral side of the wall portion 84 in the radial direction of the passage forming member 71, that is, between the pair of wall portions 84.
  • the mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 84 while flowing between the electrode members 83 of the capturing portion 76.
  • the foreign matter that has passed through the electrode member 83 but remains in the mixed fuel passes through the outer peripheral side of the pair of wall portions 84 while being guided to the outer peripheral side of the fuel passage 74 together with the mixed fuel by the electrode member 83. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
  • the capturing portion 76 has at least one plate-like electrode member 83.
  • the plate-like electrode member 83 extends while being inclined with respect to the axis of the fuel passage 74.
  • the electrode member 83 narrows at least a part of the fuel passage 74 from the upstream side to the downstream side of the fuel passage 74. Therefore, the liquid flowing through the fuel passage 74 flows between the electrode members 83 that are gradually narrowed. Thereby, the foreign matter contained in the mixed fuel is easily captured by the capturing unit 76.
  • the wall part 84 guides the mixed fuel with few foreign substances contained among mixed fuels to the sensor part 72 side.
  • the foreign matter included in the mixing can be captured upstream of the sensor unit 72, and the density detection accuracy of the sensor unit 72 can be improved.
  • the concentration sensor devices according to the nineteenth and twentieth embodiments are shown in FIGS. 26 and 28, respectively.
  • the capturing unit 76 of the concentration sensor device 70 has at least one electrode member 85.
  • the electrode member 85 is formed in a cone shape such as a cylindrical cone or a pyramid having both ends opened or a truncated cone shape, and is provided in a multistage shape.
  • the electrode member 85 has a conical cylinder shape whose inner diameter decreases from the upstream side to the downstream side of the fuel passage 74.
  • the electrode member 85 may be formed in a net shape or a porous shape to reduce the pressure loss of the mixed fuel passing through the electrode member 85.
  • the concentration sensor device 70 may be provided with a wall portion 86.
  • the wall portion 86 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 85 whose inner diameter is reduced.
  • the sensor portion 72 is disposed on the outer peripheral side of the wall portion 86 in the radial direction of the passage forming member 71. The mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 86 while being guided by the electrode member 85 of the capturing portion 76 and flowing.
  • the foreign matter that has passed through the electrode member 85 but remains in the mixed fuel passes between the pair of wall portions 86 while being guided to the center of the fuel passage 74 together with the mixed fuel by the electrode member 85. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
  • the capturing unit 76 of the concentration sensor device 70 has at least one or more electrode members 85 as shown in FIG.
  • the electrode member 85 is formed in a cone shape or a truncated cone shape such as a cylindrical cone or a pyramid having both ends opened, and is provided in a multistage shape.
  • the electrode member 85 has a conical cylinder shape whose inner diameter increases from the upstream side to the downstream side of the fuel passage 74. Therefore, the electrode member 85 has a shape for guiding the flow of fuel in the fuel passage 74 from the center side of the passage forming member 71 to the inner wall side of the outer periphery.
  • the electrode member 85 may be formed in a net shape or a porous shape to reduce the pressure loss of the mixed fuel passing through the electrode member 85.
  • the concentration sensor device 70 may be provided with a wall portion 86.
  • the wall portion 86 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 85 having an enlarged inner diameter.
  • the sensor portion 72 is disposed on the inner peripheral side of the wall portion 86 in the radial direction of the passage forming member 71, that is, between the pair of wall portions 86.
  • the mixed fuel containing the charged foreign matter passing through the charging unit 75 passes through the outer peripheral side of the pair of wall portions 86 while being guided to the outer peripheral side of the fuel passage 74 together with the mixed fuel by the electrode member 85 of the capturing unit 76. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
  • the capturing unit 76 has at least one electrode member 85.
  • the electrode member 85 has an inner diameter that decreases from the upstream side toward the downstream side. Therefore, the mixed fuel passes through the electrode member 85 whose inner diameter gradually decreases. Thereby, the foreign matter contained in the mixed fuel is easily captured by the capturing unit 76.
  • the capturing unit 76 has at least one electrode member 85.
  • the electrode member 85 has a shape for guiding the flow of the mixed fuel in the fuel passage 74 toward the inner wall of the passage forming member 71 from the upstream side to the downstream side. Therefore, the mixed fuel passes through the electrode member 85 that gradually approaches the inner wall of the passage forming member 71. As a result, foreign matter contained in the mixed fuel is easily captured by the capturing unit 76, and the pressure loss of the mixed fuel is relatively small.
  • the wall portion 86 guides the mixed fuel that contains less foreign matter out of the mixed fuel that passes through the capturing portion 76 to the sensor portion 72 side. Accordingly, the foreign matter contained in the mixed fuel can be captured on the upstream side of the sensor unit 72, and the concentration detection accuracy of the sensor unit 72 can be improved.
  • the concentration sensor device 70 includes a vibration generating unit 87 as vibration applying means.
  • the vibration generator 87 is provided outside the passage forming member 71 and applies vibration to the passage forming member 71.
  • the charging unit 75, the capturing unit 76, and the like provided in the fuel passage 74 may accumulate foreign matter due to long-term use. Therefore, the vibration generator 87 intermittently vibrates the passage forming member 71 that forms the fuel passage 74. Thereby, the charging unit 75 and the capturing unit 76 vibrate together with the passage forming member 71.
  • the vibration generating unit 87 in the vicinity of the charging unit 75 and the capturing unit 76, vibration of the charging unit 75 and the capturing unit 76 is promoted.
  • the concentration sensor device 10 includes a substrate 11 and a sensor unit 12, as shown in FIG.
  • a sensor unit 12 In the substrate 11, an insulating film 14 is formed on the end surface side opposite to the sensor unit 12, and an insulating film 17 is formed between the sensor unit 12 and the substrate 11.
  • the sensor unit 12 has a plurality of electrodes 15 as in the first embodiment.
  • the electrode 15 of the sensor unit 12 is protected by a protective film 16.
  • the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11.
  • the second protective film 92 has a rough surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel.
  • the second protective film 92 is formed in a rough surface shape having a convex portion 93 on the side opposite to the sensor portion 12.
  • the second protective film 92 corresponds to the protective film portion in the claims.
  • the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11.
  • the second protective film 92 has a rough surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel.
  • the second protective film 92 is formed in a rough surface shape having a sharp protrusion 94 on the side opposite to the sensor portion 12.
  • the second protective film 92 is not limited to the sharp projection 94, and may be formed into a rough surface by, for example, forming a scratch by sandblasting or the like.
  • the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11.
  • the second protective film 92 has a convex surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel.
  • the second protective film 92 is formed in a convex shape that protrudes in the opposite direction to the sensor portion 12 with the opposite side to the sensor portion 12 inward.
  • a second protective film 92 that covers the sensor unit 12 is provided.
  • the second protective film 92 has an integral deposition limiting part at the end opposite to the sensor part 12.
  • the second protective film 92 has a deposition limiting portion on the side opposite to the sensor portion 12, and this deposition limiting portion is formed in a rough surface shape having a convex portion 93.
  • the second protective film 92 has a deposition restricting portion on the side opposite to the sensor portion 12, and this deposition restricting portion is formed in a rough surface shape having a protrusion 94.
  • the second protective film 92 has a deposition limiting portion on the side opposite to the sensor portion 12, and this deposition limiting portion is formed in a convex shape. Therefore, in the twenty-second, twenty-third, and twenty-fourth embodiments, the adhesion of foreign matter to the surface of the second protective film 92 opposite to the sensor unit 12 is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased. (25th Embodiment) A concentration sensor device 10 according to a twenty-fifth embodiment is shown in FIGS.
  • the concentration sensor device 10 has a flow path forming part 95 on the opposite side of the protective film 16 from the sensor part 12.
  • the flow path forming part 95 is formed on the end surface of the protective film 16 opposite to the sensor part 12.
  • the flow path forming part 95 is provided so as to form the flow of the mixed fuel toward the sensor part 12 as shown in FIG.
  • the mixed fuel flowing through the fuel passage is guided to the side opposite to the substrate 11 of the sensor unit 12 covered with the protective film 16 by the flow path forming unit 95. Therefore, the mixed fuel actively flows on the side opposite to the substrate 11 of the sensor unit 12.
  • the flow path forming part 96 may be curved toward the sensor part 12. Even in such a flow path forming part 96, the flow of the mixed fuel can be guided to the sensor part 12 side.
  • the protective film 16 has flow path forming portions 95 and 96.
  • the flow path forming portions 95 and 96 form a mixed fuel flow toward the sensor portion 12 on the surface of the protective film 16. Thereby, the foreign material adhering to the protective film 16 is removed by the flow of the mixed fuel. Therefore, the adhesion of foreign matter to the protective film 16 is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
  • the concentration sensor device 10 has a porous member 97 on the side of the protective film 16 opposite to the sensor unit 12.
  • the porous member 97 is also a protective film part that covers the protective film 16.
  • the porous member 97 has a plurality of holes that allow passage of the mixed fuel and restrict passage of foreign matters contained in the mixed fuel. Since the porous member 97 restricts the passage of foreign matter, the foreign matter contained in the mixed fuel does not reach the sensor unit 12 side.
  • the concentration sensor device 10 may include a vibration generation unit 98 that applies vibration to the porous member 97.
  • the vibration generating unit 98 is formed of, for example, a piezoelectric element and generates vibration when energized. The vibration generated by the vibration generating unit 98 causes the porous member 97 to vibrate. Thereby, the foreign matter adhering to or accumulating on the porous member 97 is promoted to be removed from the porous member 97 by vibration.
  • the vibration generating unit 98 may be a vibrating body 99 as shown in FIG. 38 instead of the piezoelectric element as described above.
  • the vibrating body 99 is formed in a film shape and is provided on the opposite side of the porous member 97 from the sensor unit 12.
  • the vibrating body 99 vibrates by the flow of the mixed fuel and gives vibration to the porous member 97. That is, the vibrating body 99 corresponds to the vibration applying means in the claims.
  • the porous member 97 can be vibrated by the flow of the mixed fuel without requiring electric power.
  • a protective film made of a porous member 97 is provided.
  • the holes of the porous member 97 restrict the passage of foreign matters contained in the mixed fuel while allowing the flow of the mixed fuel. Therefore, the foreign matter accumulates on the porous member 97 and does not adhere to the sensor unit 12. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
  • a vibration generating unit 98 that applies vibration to the porous member 97 is provided.
  • the porous member 97 By using the porous member 97, foreign matters contained in the mixed fuel are easily deposited on the surface of the porous member 97. Therefore, the removal of the foreign matter deposited on the porous member 97 can be promoted by vibrating the porous member 97 by the vibration generating unit 98.
  • the piezoelectric element portion 13 and the circuit portion 18 are electrically connected mainly by the through electrode 19 .
  • the piezoelectric element portion 13 and the circuit portion 18 are not limited to the through electrode 19 and may be electrically connected by, for example, bonding wires or bumps.
  • some elements of the concentration sensor device 10 such as the piezoelectric element unit 13 may be electrically connected to the external mounting substrate 103 by bonding wires, solder balls 33, or the like.
  • the liquid can be arbitrarily selected without being limited to the mixed fuel, such as lubricating oil, alcohol, or water.
  • FIG. 39 is a block diagram illustrating a schematic configuration of the mixture ratio calculation apparatus according to the twenty-seventh embodiment.
  • FIG. 40 is a cross-sectional view showing a schematic configuration of an electrode.
  • FIG. 41 is a graph of capacitance and relative dielectric constant. In FIG. 41, the horizontal axis represents the capacitance, and the vertical axis represents the relative dielectric constant.
  • the mixing ratio calculation apparatus 200 measures, as a main part, a sensor unit 210 that measures a capacitance including a dielectric constant of a mixed liquid and converts the capacitance into an electric signal, and the sensor unit. And a calculation unit 230 that calculates the mixing ratio of the mixed liquid based on the output signal output from 210. Furthermore, the mixing ratio calculation apparatus 200 according to the present embodiment configures a capacitance in vacuum and a mixed liquid of a capacitor constituted by a temperature measuring unit 250 that measures the temperature of the mixed liquid and electrodes 211 to 214 described later. And a storage unit 270 for storing and holding the relative dielectric constant of each of alcohol and gasoline, and the temperature characteristics of the relative dielectric constant.
  • the sensor unit 210 detects four capacitances 211 to 214 arranged in the mixed liquid, and the capacitance measured by the electrodes 211 to 214 including the dielectric constant of the mixed liquid and converts it into an electric signal.
  • Circuit 215. As shown in FIG. 40, each of the electrodes 211 to 214 has a rectangular cross section, is disposed on the substrate 217 via an insulating protective film 216, and the surface thereof is covered and protected by the protective film 216.
  • first electrode 211 and the second electrode 212 is opposed, the capacitor C 12 by the first electrode 211 and the second electrode 212 is formed, the second electrode 212 third electrode by 213 and is opposed, and the second electrode 212 is the capacitor C 23 is constituted by a third electrode 213, by a third electrode 213 and fourth electrode 214 is opposed to the third electrode 213 first capacitor C 34 is constituted by the fourth electrode 214.
  • the opposing areas of the capacitors C 12 , C 23 , and C 34 are equal to each other.
  • the electrode interval d 1 between the first electrode 211 and the second electrode 212 is the third electrode 213 first It is longer than the electrode distance d 3 with respect to the four electrodes 214. Since the capacitance of the capacitor is proportional to the opposing area and the reciprocal of the electrode interval, the capacitance ratio of each capacitor C 12 , C 23 , C 34 is equal to the reciprocal of the electrode interval. . In the present embodiment, since the ratio of the electrode spacings d 1 , d 2 , d 3 is 4: 2: 1, the capacitance ratio of the capacitors C 12 , C 23 , C 34 is 1: 2. : 4. In the present embodiment, protection is provided between the first electrode 211 and the second electrode 212, between the second electrode 212 and the third electrode 213, and between the third electrode 213 and the fourth electrode 214. The film 216 is considered absent.
  • the calculation unit 230 calculates the ratio of the mixed liquid based on the capacitances C 1 , C 2 , and C 3 including the dielectric constant of the mixed liquid measured in the capacitors C 12 , C 23 , and C 34 of the sensor unit 210.
  • Dielectric constants ⁇ 1r , ⁇ 2r , and ⁇ 3r are detected, and regression lines for the capacitances C 1 , C 2 , and C 3 and relative dielectric constants ⁇ 1r , ⁇ 2r , and ⁇ 3r corresponding to the capacitances, respectively. Is calculated, the corrected relative dielectric constant ⁇ r is calculated.
  • the calculation unit 230 includes a temperature measurement unit 250 that measures the temperature of the mixed liquid, vacuum capacitances C 012 , C 023 , and C 034 of capacitors C 12 , C 23 , and C 34 , and the relative dielectrics of alcohol and gasoline, respectively.
  • rate ⁇ ar, ⁇ br, and relative dielectric constant epsilon ar, a storage unit 270 for storing and holding the temperature dependence of the epsilon br, are connected.
  • the calculation unit 230 refers to the measurement result of the temperature measurement unit 250 and extracts parameters necessary for the calculation from the storage unit 270, thereby calculating the mixing ratios a and b.
  • the calculation unit 230 extracts the vacuum capacitances C 012 , C 023 , and C 034 from the storage unit 270, and measures the measured capacitance C
  • the relative dielectric constants ⁇ 1r , ⁇ 2r , and ⁇ 3r are calculated by taking the quotients of 1 , C 2 , C 3 and the vacuum capacitances C 012 , C 023 , C 034 . The above corresponds to the first calculation step described in the claims.
  • the capacitance is equal to the product of the relative permittivity and the vacuum capacitance
  • the capacitances C 1 , C 2 , C 3 the relative permittivity ⁇ 1r , ⁇ 2r , ⁇ 3r , and the vacuum electrostatic
  • the relationship between the capacitors C 012 , C 023 , and C 034 can be expressed as the following equations (1A) to (1C).
  • Equation 1 ⁇ 1r ⁇ C 012 (1A)
  • C 2 ⁇ 2r ⁇ C 023 (1B)
  • C 3 ⁇ 3r ⁇ C 034 (1C) Therefore, as shown in the following equations (2A) to (2C), the measured capacitances C 1 , C 2 , and C 3 are respectively divided by the corresponding vacuum capacitances C 012 , C 023 , and C 034 .
  • the relative dielectric constants ⁇ 1r , ⁇ 2r , and ⁇ 3r can be calculated from the capacitances C 1 , C 2 , and C 3 .
  • the calculation unit 230 obtains a regression line for the measured capacitances C 1 , C 2 , C 3 and the converted relative dielectric constants ⁇ 1r , ⁇ 2r , ⁇ 3r .
  • the above corresponds to the second calculation step described in the claims. Since the regression line can be obtained by using a known least square method, the description thereof is omitted in this embodiment.
  • the calculation unit 230 calculates a corrected relative dielectric constant by obtaining a relative dielectric constant (intercept) when the capacitance is zero in the calculated regression line. The above corresponds to the third calculation step described in the claims.
  • the relative permittivity of the mixed liquid is ⁇ r
  • the relative permittivity ⁇ r is caused by the error factors ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively, due to the foreign matter contained in the mixed liquid attached to the capacitors C 12 , C 23 , and C 34. If it fluctuates, the above expressions (1A) to (1C) are expressed as the following expressions (3A) to (3C).
  • C 2 ( ⁇ r + ⁇ 2 ) ⁇ C 023 (3B)
  • C 3 ( ⁇ r + ⁇ 3 ) ⁇ C 034 (3C) If the capacitors C 12 , C 23 , and C 34 are changed by error factors ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively, due to foreign matters contained in the mixed liquid, the above equations (1A) to (1C) It is expressed as equations (4A) to (4C).
  • C 2 ⁇ r ⁇ C 023 + ⁇ 2 (4B)
  • C 3 ⁇ r ⁇ C 034 + ⁇ 3 (4C)
  • ⁇ 1 is equal to ⁇ 1 ⁇ C 012
  • ⁇ 2 is equal to ⁇ 2 ⁇ C 023
  • ⁇ 3 Is equal to ⁇ 3 ⁇ C 034
  • can be confirmed to be proportional to ⁇ .
  • the relative permittivity of the foreign substance made of organic matter or inorganic matter contained in the mixed liquid adhering to the electrodes 211 to 214 is higher than the relative permittivity of the mixed liquid.
  • the error factor ⁇ takes a positive value.
  • both the measured capacitance and the calculated relative permittivity increase as the capacitance increases. That is, it can be confirmed that the error factors ⁇ and ⁇ increase as the capacitance increases. This is because as the electrode interval becomes narrower (capacitance increases), the proportion of foreign matter in the electrode interval increases, thereby increasing the influence of foreign matter adhering to the electrodes 211-214.
  • the regression line calculated based on these measurement points is a straight line that rises to the right with the relative permittivity proportional to the capacitance, as shown by the solid line in FIG.
  • the intersection of this regression line and the vertical axis is the relative permittivity that can be obtained when the capacitance is the smallest (when the electrode spacing is infinite), that is, the relative permittivity that has the lowest percentage of foreign matter in the electrode spacing.
  • the dielectric constant is the least affected by dirt. Therefore, the value of the intersection point with the vertical axis (dielectric constant) in the obtained regression line, that is, the value of the dielectric constant when the electrostatic capacitance in the regression line is zero, is the value of the mixed liquid from which the influence of dirt is removed. It becomes equivalent to the dielectric constant epsilon r. In FIG. 41, the plot values are drawn greatly for convenience.
  • the calculation unit 230 takes out the relative dielectric constants ⁇ ar and ⁇ br of the alcohol and gasoline corresponding to the temperature of the mixed liquid measured by the temperature measurement unit 250 from the storage unit 270. Then, the calculation unit 230 calculates the mixing ratios a and b based on the relative dielectric constants ⁇ r , ⁇ ar and ⁇ br . The above corresponds to the fourth calculation step described in the claims.
  • the mixing ratio calculation apparatus 200 obtains a regression line between the capacitance and the dielectric constant, and corrects by obtaining the value of the dielectric constant when the capacitance is zero in the regression line.
  • the relative dielectric constant ⁇ r of the mixed liquid is calculated. Therefore, by calculating the mixing ratio based on the relative dielectric constant ⁇ r from which the influence of the dirt has been removed, it is possible to suppress a decrease in the detection accuracy of the mixing ratio.
  • the mixture ratio calculation device 200 and the mixture ratio calculation method are applied to the calculation of the mixture ratio of a mixed liquid composed of alcohol and gasoline.
  • the mixture ratio calculation apparatus 200 and the mixture ratio calculation method according to the present embodiment can be applied to other than the above-described mixed liquid.
  • the value of the intersection point with the vertical axis in the obtained regression line that is, the value of the relative dielectric constant when the capacitance is zero in the regression line is the relative dielectric constant ⁇ r of the mixed liquid from which the influence of the dirt is removed. It corresponds to.
  • the value of the intersection with the vertical axis in the regression line between the relative dielectric constant and the capacitance is obtained.
  • the relative dielectric constant ⁇ r of the mixed liquid from which the influence of dirt is removed can be obtained.
  • the capacitances of the capacitors C 12 , C 23 , and C 34 are different because the facing area between the electrodes is constant and the electrode intervals are different.
  • the facing area decreases (capacitance decreases)
  • the ratio of foreign matter to the electrode spacing increases, so when the capacitance on the regression line of relative permittivity and capacitance is zero
  • the value of the relative dielectric constant corresponds to the relative dielectric constant that is most affected by dirt.
  • the value of the intersection of the calculated regression line and the vertical axis is the relative permittivity that can be obtained when the electrostatic capacity is infinite (the facing area is infinite), that is, the foreign matter occupying the facing area. It shows the relative dielectric constant with the lowest ratio, more specifically, the relative dielectric constant with the least influence of dirt. Therefore, the value of the intersection point with the vertical axis in the obtained regression line, that is, the value of the relative permittivity when the reciprocal of the electrostatic capacity in the regression line is zero (capacitance and opposing area is infinite) is soiled. This corresponds to the relative dielectric constant ⁇ r of the mixed liquid from which the influence of is removed.
  • the corrected relative dielectric constant ⁇ r can be calculated by obtaining a regression line with the reciprocal of and obtaining the relative dielectric constant when the inverse of the electrostatic capacitance in the regression line is zero.
  • the second calculation step is performed after the first calculation step.
  • a comparison step of comparing each of the calculated three relative dielectric constants may be performed after the first calculation step.
  • the difference between the two relative dielectric constants is zero. Therefore, by obtaining a relative dielectric constant that becomes zero when the difference is made, it is possible to calculate a relative dielectric constant that has no error factor, that is, that is not affected by dirt.
  • the second calculation step and the third calculation step described above can be omitted, so that the processing speed of the calculation unit 230 can be increased. .
  • the electrodes 211 to 214 are rectangular in cross section.
  • the shape of the electrodes 211 to 214 is not limited to the above example.
  • a comb shape can be adopted. Thereby, even if it is an electrode with a small physique, since the opposing area between electrodes can fully be ensured, the physique of the mixing ratio calculation apparatus 200 can be reduced in size.
  • a concentration detection method for a mixed fluid according to the present invention is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (> 3 integer) known components. -1) Measure the dielectric constant of the fluid mixture at different temperatures at the points, and measure the dielectric constant of each known component at each temperature at the (N-1) point and each temperature at the (N-1) point. The concentration of each component is calculated from the dielectric constant of the mixed fluid.
  • the dielectric constants of the mixed fluid are measured at different temperatures at (N-1) points, and the dielectric constants ⁇ 1 and ⁇ 2 of (N-1) mixed fluids are measured. ,..., ⁇ N ⁇ 1 is obtained.
  • the measured dielectric constants ⁇ 1 , ⁇ 2 ,..., ⁇ N-1 are obtained by multiplying the product of the dielectric constant and the concentration of each single component at the same temperature that has been previously grasped. Equal to the sum of Therefore, (N-1) equations are established from this.
  • concentration detection method of the mixed fluid simultaneous equations concentration a 1, a 2, ⁇ ⁇ ⁇ , for N unknowns a N, of N equations in total as described above , And by solving the simultaneous equations, the concentrations a 1 , a 2 ,..., A N can be accurately determined.
  • the mixed fluid concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N ( ⁇ 3) kinds of known components. It is a mixed fluid concentration detection method capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
  • N 3
  • component A, B, and C 3
  • component C is mixed as an impurity in a mixed fluid mainly composed of two types of components A and B.
  • Components A, B, and C do not cause a chemical reaction or the like and are mixed uniformly.
  • the concentration of each component is detected by the following procedure.
  • two different temperatures are set, and the dielectric constant of each single component A, B, and C at each temperature is grasped in advance. Next, the dielectric constant of the mixed fluid at each temperature is measured.
  • the components A, B, the concentration of C was respectively a1, a2, a3, the two points of different temperatures were as T 1, T 2 respectively, the single components at the temperature T 1 A, B,
  • the dielectric constants of C are ⁇ a1 , ⁇ b1 , and ⁇ c1 , respectively, and the dielectric constants of the single components A, B, and C at temperature T 2 are ⁇ a2 , ⁇ b2 , and ⁇ c2 , respectively, and temperatures T 1 ,
  • the dielectric constants of the mixed fluid at T 2 are ⁇ 1 and ⁇ 2 , respectively.
  • the method for detecting the concentration of the mixed fluid is suitable for detecting the concentration of the mixed fuel of the internal combustion engine in which water may be mixed.
  • the components are ethanol, gasoline and water.
  • gasoline is comprised by several hundred types of components, the dielectric constant of all the components is substantially the same, and it is possible to handle gasoline as one type of component.
  • the components are fatty acid methyl ester, light oil and water.
  • FIG. 42 is a diagram showing temperature characteristics of relative permittivity for each component of ethanol, gasoline, and water.
  • the temperature dependence of the dielectric constant of each component is grasped in advance. deep.
  • ethanol each component of the gasoline and water, for example, the dielectric constant epsilon a1 at temperatures T 1 shown in FIG, epsilon b1, and epsilon c1, the dielectric constant epsilon a2 at temperatures T 2, epsilon b2, the epsilon c2 Know in advance.
  • temperatures T 1 and T 2 set for the measurement of the dielectric constant of the mixed fluid do not necessarily coincide with the measured temperatures of the components shown in the data of FIG. Data at each measurement point in FIG. 42 is stored in a memory to be described later, and linear interpolation is performed with respect to arbitrary set temperatures T 1 and T 2 so as to be used for calculations of equations A to C.
  • FIG. 43 is a diagram showing an example of a mixed fluid concentration detection apparatus for carrying out the mixed fluid concentration detection method described above.
  • FIG. 43A is a diagram showing a schematic configuration of the concentration detection device 300
  • FIG. 43B is an example of a configuration of a sensor unit in the concentration detection device 300 of FIG. It is the top view which showed typically.
  • FIG. 43C is a top view schematically showing a capacitance detection element 321a, which is an example of the capacitance detection element 321 in FIG.
  • the concentration detection apparatus 300 includes a temperature measuring unit 310 that can measure the temperature of the mixed fluid at different (N-1) points, and a dielectric constant that can measure the dielectric constant of the mixed fluid at different temperatures of the (N-1) points.
  • a concentration calculation unit 330 that calculates the concentration of each component from the dielectric constant of each.
  • the concentration detection device 300 shown in FIG. 43A has a heater unit 340 for forming different temperatures of the (N-1) point of the mixed fluid.
  • a heater unit 340 for forming different temperatures of the (N-1) point of the mixed fluid.
  • the concentration detection apparatus 300 in FIG. 43A has a heater unit 340, and obtains a different (N-1) point temperature by heating, but conversely, by cooling it, You may make it obtain the temperature of a different (N-1) point.
  • Heating and cooling can be performed directly or indirectly as long as the measurement target does not change irreversibly.
  • a heating means a resistor heater heating, induction heating, electromagnetic wave heating, radiation heating, a Peltier element, an expansion valve or the like can be used.
  • refrigerant cooling, forced convection cooling, a Peltier element, a compression valve, or the like can be used.
  • a sensor chip 350 shown in FIG. 43B is made of a semiconductor substrate, and a temperature detection element 311 that is a component of the temperature measurement unit 310 and a capacitance that is a component of the dielectric constant measurement unit 320 shown in FIG.
  • a detection element 321 and a heater element 341 which is a component of the heater unit 340 are formed.
  • the sensor chip 350 is immersed in the mixed fluid, and the dielectric constant of the mixed fluid is measured at different temperatures at (N-1) points.
  • the temperature detection element 311, the capacitance detection element 321 and the heater element 341 are formed in one chip, so that, for example, the temperature detection element and the capacitance detection element are separately provided in a pipe through which a mixed fluid, which will be described later, flows.
  • the size and cost As compared with the case of incorporating as, it is possible to reduce the size and cost.
  • the sensor chip 350 made of a semiconductor substrate wiring on the order of micrometers can be formed, and the size can be reduced to a size of several millimeters square.
  • the sensor chip 350 in FIG. 43B is made of a semiconductor substrate, but is not limited thereto, and for example, the temperature detection element 311, the capacitance detection element 321 and the heater element 341 may be formed on a ceramic substrate. Further, not limited to the configuration of the sensor chip 350 in FIG. 43B, for example, the heater element 341 may be a separate component (separate chip), and the temperature detection element 311 and the capacitance detection element 321 may be formed in separate chips. May be.
  • the capacitance detection element When the capacitance detection element is formed on the chip, it is preferable to include a pair of comb-like electrodes 302a and 302b as in the capacitance detection element 321a shown in FIG. According to this, the mixed fluid can be easily guided between the pair of comb-shaped electrodes 302a and 302b formed on the sensor chip 350 of FIG. 43B, and the detection capacitance is increased by increasing the comb-tooth density. The value can be increased to increase the dielectric constant measurement accuracy.
  • FIG. 44 is another configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43A, and FIG. 44A is a top view schematically showing the sensor chip 351.
  • FIG. FIG. 44B is a diagram showing the temperature distribution of the sensor chip 351 along the flow direction of the mixed fluid
  • FIG. 44C is a cross-section of the sensor chip 351 along the flow direction of the mixed fluid.
  • the heater element 342 is arranged at the center in the flow direction of the mixed fluid, the temperature detection element 312a and the capacitance detection element 322a are upstream, and the temperature detection element 312b is downstream. Capacitance detection elements 322b are respectively arranged.
  • the dielectric constant measurement at different temperatures T 1 and T 2 can be simultaneously performed by heating the heater element 342.
  • the heater element 342 When the heater is provided on the sensor chip, the heater element 342, the temperature detection elements 312a and 312b, and the capacitance detection elements 322a and 322b are thermally separated as shown in the sensor chip 351 in FIG. Thus, it is preferable that the groove portions 305a and 305b are formed. According to this, heat conduction through the chip from the heater element 342 to the temperature detection elements 312a and 312b and the capacitance detection elements 322a and 322b can be suppressed. For this reason, compared with the case where groove part 305a, 305b is not formed, the temperature and dielectric constant of mixed fluid can be measured more correctly, therefore Therefore, the density
  • the groove portions 305a and 305b can be easily formed by etching or the like in the sensor chip 351 made of a semiconductor substrate.
  • FIG. 45 is a top view schematically showing another sensor chip 352.
  • the heater elements 343a, and a detecting element unit 352a at temperatures T 1 surrounded by a broken line consisting of a temperature detecting element 313a and the capacitance detection element 323a, the heater elements 343b, the temperature sensing element 313b and capacitive detection a detecting element portion 352b at temperature T 2 surrounded by the broken line consisting of elements 323b are arranged side by side in the same position in the flow direction of the mixed fluid.
  • the detection element unit 352a and the detection element unit 352b may be formed on the front side and the back side of the substrate, respectively.
  • FIG. 46 is a diagram showing a preferred configuration example of the dielectric constant measurement unit 320 in the concentration detection apparatus 300 of FIG. 43A, and is a circuit block diagram showing the configuration of each part of the dielectric constant measurement unit 324.
  • the dielectric constant measurement unit 324 shown in FIG. 46 includes two capacitance detection elements Cs1 and Cs2 connected in series and a C / V converter 324a to which a feedback capacitance Cf is added.
  • the two capacitance detection elements Cs1 and Cs2 are respectively driven by carrier waves FE1 and FE2 having a predetermined voltage V shown in the drawing, and The output from the connection point of the capacitance detection elements Cs1, Cs2 is input to the C / V converter 324a.
  • Vs V (Cs1-Cs2) / Cf
  • the difference between the two capacitance detection elements Cs1, Cs2 is C / V converted.
  • the dielectric constant at each temperature of the mixed fluid can be measured.
  • the influence of the parasitic capacitance Ce caused by the wiring can be canceled, so that the dielectric constant measurement can be performed with higher accuracy than when one capacitance detection element is used. It is possible, and the concentration of each component can be detected with higher accuracy.
  • FIG. 47 is a diagram showing a configuration example of the two capacitance detection elements Cs1 and Cs2 shown in FIG. 46, and is a top view schematically showing the capacitance detection element 324b.
  • the electrode 303a and the electrode 303c are paired, and the carrier wave FE1 is input to the pad 304a corresponding to the capacitance detection element Cs1 in FIG.
  • the electrode 303b and the electrode 303c are paired, and the carrier wave FE2 is input to the pad 304b corresponding to the capacitance detection element Cs2 of FIG.
  • the output taken out from the pad 304c or the pad 304d is input to the output C / V converter 324a in FIG.
  • the electrode 303c having the pads 304c and 304d may be formed of a resistance temperature detector, and the electrode 303c may also serve as the temperature detection element.
  • the capacitance detection element that is a component of the dielectric constant measurement unit includes a pair of electrodes
  • one of the electrodes also serves as a temperature detection element that is a component of the temperature measurement unit. Therefore, further downsizing and cost reduction are possible.
  • 48 (A) and 48 (B) are cross-sectional views schematically showing sensor components 361 and 362, respectively, in another configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43 (A). .
  • the configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43A described above is a sensor chip 350 to 352 that is used by being immersed in a mixed fluid.
  • the sensor components 361 and 362 shown in FIGS. 48A and 48B are attached to the pipe 370 for use.
  • a sensor component 361 shown in FIG. 48A includes a pair of flat electrodes 306a and 306b and a thermocouple 306c that is a temperature detection element.
  • 48B includes a pair of cylindrical electrodes 307a and 307b and a thermocouple 307c which is a temperature detection element.
  • a heater When measuring the dielectric constant of the fuel of the vehicle, a heater can be installed outside or inside the pipe 370 to change the temperature of the fuel passing through the pipe 370. Sensor parts 361 as shown in FIGS. 48 (A) and 48 (B) are provided at any two locations immediately below the heating unit by the heater, upstream of the flow from the heating unit, or downstream of the flow from the heating unit. By installing 362, the concentration of each component can be measured without changing the temperature setting of the heater as shown in FIG.
  • FIG. 49 is a diagram showing a configuration example suitable for use of a capacitance detection element having a large electrode size, such as the sensor components 361 and 362 shown in FIGS. 48 (A) and 48 (B).
  • the mixed fluid agitating means 380 is provided between the heater element 344 arranged on the upstream side of the mixed fluid and the temperature detecting element 314 and the capacity detecting element 325 arranged on the downstream side of the mixed fluid. Is provided. According to this, for example, by the stirring means 380 such as fins, meshes, filters, etc., temperature unevenness of the mixed fluid due to heating using the heater element 344 can be eliminated, and the temperature and dielectric constant of the mixed fluid can be measured more accurately. Can do. Therefore, in the configuration shown in FIG. 49, the concentration of each component of the mixed fluid can be detected more accurately.
  • the volume of the mixed fluid between the electrodes is large. It is necessary to make the temperature of the mixed fluid between electrodes uniform using 380.
  • the dielectric constant of a mixed fluid composed of three types of components A, B, and C is measured at two different temperatures, and the concentration calculation unit shown in FIG.
  • the concentrations a1, a2, and a3 of the components A, B, and C can be calculated.
  • the dielectric constant of the mixed fluid is measured at different temperatures at (N-1) points, and the equations 1 to 3 are generalized as described above.
  • a 1 , a 2 ,..., A N can be calculated for the concentrations (existence ratios) of the respective components.
  • the above-described mixed fluid concentration detection method and detection device detect the concentration of each component of the mixed fluid composed of N ( ⁇ 3) types of known components and detect the concentration of the mixed fluid.
  • This is a method and a detection apparatus, which are a mixed fluid concentration detection method and a detection apparatus capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
  • the above-described mixed fluid concentration detection method and concentration detection device are suitable for detecting the concentration of the mixed fuel of an internal combustion engine in which water may be mixed.
  • the components are ethanol, gasoline, and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Acoustics & Sound (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Provided is a concentration sensor device which reduces foreign substances stuck to a sensor, and detects alcohol concentration with a high degree of precision. A piezoelectric element (13) is provided on a substrate (11) on the side opposite a sensor (12). Thus, vibration area for the piezoelectric element (13) is secured without hampering the arrangement of the sensor (12) and the piezoelectric element (13). When electricity makes the piezoelectric element (13) vibrate, the substrate (11) and sensor (12) integrated therewith also vibrate. Thus the vibration of the sensor (12) that accompanies the vibration of the piezoelectric element (13) encourages detachment of foreign substances in a mixed fuel that are stuck to the sensor (12), which is exposed to the mixed fuel.

Description

濃度センサ装置、及び濃度検出方法Concentration sensor device and concentration detection method 関連出願の相互参照Cross-reference of related applications
 本出願は当該開示内容が参照によって本出願に組み込まれた、2008年3月26日に出願された日本特許出願2008-80855、2009年3月4日に出願された日本特許出願2009-51258、2009年3月6日に出願された日本特許出願2009-54056、2009年3月13日に出願された日本特許出願2009-61105、及び2009年3月13日に出願された日本特許出願2009-61106を基にしている。 This application includes Japanese Patent Application No. 2008-80855 filed on Mar. 26, 2008, Japanese Patent Application No. 2009-51258 filed on Mar. 4, 2009, the disclosure of which is incorporated herein by reference. Japanese Patent Application 2009-54056 filed on March 6, 2009, Japanese Patent Application 2009-61105 filed on March 13, 2009, and Japanese Patent Application 2009- filed on March 13, 2009 Based on 61106.
 本発明は、濃度センサ装置、及び濃度検出方法に関する。特に混合流体の濃度もしくは混合比を検出する濃度検出装置、濃度センサ装置、混合比算出装置、濃度検出方法、混合比算出方法に関する。 The present invention relates to a concentration sensor device and a concentration detection method. In particular, the present invention relates to a concentration detection device, a concentration sensor device, a mixture ratio calculation device, a concentration detection method, and a mixture ratio calculation method for detecting the concentration or mixture ratio of a mixed fluid.
 従来、各種の液体に含まれる特定成分の濃度を検出する濃度センサ装置が広く用いられている。例えば、近年では、石油を由来とするガソリンや軽油にアルコールなどの生物由来の成分を混合したアルコール混合燃料の利用が図られている。内燃機関の性能あるいは制御は、混合燃料における石油由来の成分と生物由来の成分との混合比すなわちアルコール濃度によって変化する。そのため、混合燃料におけるアルコール濃度を高精度に検出することが要求される。 Conventionally, concentration sensor devices that detect the concentrations of specific components contained in various liquids have been widely used. For example, in recent years, the use of alcohol-mixed fuels in which biological components such as alcohol are mixed with petroleum-derived gasoline or light oil has been attempted. The performance or control of the internal combustion engine varies depending on the mixing ratio of petroleum-derived components and biological components in the mixed fuel, that is, the alcohol concentration. Therefore, it is required to detect the alcohol concentration in the mixed fuel with high accuracy.
 このように、アルコール混合燃料に限らず、各種の分野において液体中の特定成分の濃度を高精度に検出することが要求されている。このような濃度センサ装置の例として、例えば混合燃料のアルコール濃度を検出する特表平5-507561号公報が公知である。 As described above, it is required to detect the concentration of a specific component in a liquid with high accuracy in various fields, not limited to alcohol-mixed fuel. As an example of such a concentration sensor device, for example, Japanese Laid-Open Patent Publication No. 5-507561 which detects the alcohol concentration of a mixed fuel is known.
 特表平5-507561号公報に開示されているセンサ装置は、燃料が流れる通路を形成するケーシングおよびケーシング内に設けられているセンサ素子を備えている。通路を流れる混合燃料に晒されているセンサ素子は、燃料に直接触れることによりアルコール濃度を検出する。しかしながら、特表平5-507561号公報の場合、ケーシングが形成している流路は複雑な迷路形状を構成しているとともに、この複雑な流路に大型のセンサ素子が設けられている。そのため、燃料などの液体に含まれる異物、すなわち固形物や気泡は、センサ素子の検出部に付着しやすい。その結果、異物の付着にともなって、液体に含まれる特定成分の濃度の検出精度が低下するという問題がある。 The sensor device disclosed in JP-T-5-507561 includes a casing that forms a passage through which fuel flows and a sensor element that is provided in the casing. A sensor element exposed to the mixed fuel flowing through the passage detects alcohol concentration by directly touching the fuel. However, in Japanese Patent Laid-Open No. 5-507561, the flow path formed by the casing has a complicated labyrinth shape, and a large sensor element is provided in the complicated flow path. For this reason, foreign matters contained in a liquid such as fuel, that is, solid matter or bubbles, are likely to adhere to the detection portion of the sensor element. As a result, there is a problem that the detection accuracy of the concentration of the specific component contained in the liquid is reduced as the foreign matter adheres.
 従来、例えば特開平5―87764号公報に示されるように、アルコールとガソリンとを含む混合液体のアルコール含有量(アルコールとガソリンの混合比)を測定する装置が提案されている。この装置は、混合液体が貫流するケーシングの一部分をなす電極と、ケーシング内に配置されたセンサ素子と、これら電極とセンサ素子とによって構成されるコンデンサの静電容量を評価する電子測定回路と、を有する。該電子測定回路は、静電容量から混合液体の誘電率を検出し、検出された誘電率に基づいてアルコールとガソリンの混合比を算出している。 Conventionally, as shown in, for example, Japanese Patent Application Laid-Open No. 5-87764, an apparatus for measuring the alcohol content (mixing ratio of alcohol and gasoline) of a mixed liquid containing alcohol and gasoline has been proposed. The apparatus includes an electrode forming a part of a casing through which a mixed liquid flows, a sensor element disposed in the casing, an electronic measurement circuit for evaluating a capacitance of a capacitor constituted by the electrode and the sensor element, Have The electronic measurement circuit detects the dielectric constant of the mixed liquid from the capacitance, and calculates the mixing ratio of alcohol and gasoline based on the detected dielectric constant.
 ところで、混合液体の誘電率を含む静電容量を検出するためには、混合液体中に電極とセンサ素子とを配置しなくてはならない。これにより、混合液体に含まれる異物が電極若しくはセンサ素子に付着し、電極とセンサ素子とによって構成されるコンデンサの静電容量が変化する虞がある。混合液体に含まれる異物の誘電率は、概して混合液体の誘電率よりも大きいので、静電容量の期待値よりも大きい値が検出される虞がある。コンデンサの静電容量が異物によって変化すると、該静電容量に基づいて算出される比誘電率、及び該比誘電率に基づいて算出されるアルコールとガソリンの混合比も変化し、これによってアルコールとガソリンの混合比の検出精度が低下する虞がある。 By the way, in order to detect the capacitance including the dielectric constant of the mixed liquid, the electrode and the sensor element must be arranged in the mixed liquid. As a result, foreign substances contained in the mixed liquid may adhere to the electrode or the sensor element, and the capacitance of the capacitor constituted by the electrode and the sensor element may change. Since the dielectric constant of the foreign matter contained in the mixed liquid is generally larger than the dielectric constant of the mixed liquid, a value larger than the expected value of the capacitance may be detected. When the capacitance of the capacitor changes due to foreign matter, the relative dielectric constant calculated based on the electrostatic capacitance and the mixture ratio of alcohol and gasoline calculated based on the relative dielectric constant also change. There is a possibility that the detection accuracy of the mixture ratio of gasoline is lowered.
 近年、ガソリンの代替燃料としてアルコール類が注目され、例えばガソリンとエタノールを主成分とするバイオ混合ガソリンや、軽油と脂肪酸メチルエステルを主成分とするバイオ混合軽油のような混合燃料が普及し始めてきている。この種の混合燃料を用いて内燃機関の作動状態に適合した燃料量を燃焼室へ噴射できるようにするためには、ガソリンとアルコールの濃度を適宜検出して、アルコール含有量を絶えず把握する必要がある。このためのガソリンとアルコールの濃度検出装置が、例えば、特開平5-87764号公報と特開2008-268169号公報に開示されている。 In recent years, alcohol has attracted attention as an alternative fuel to gasoline, and mixed fuels such as bio-mixed gasoline mainly composed of gasoline and ethanol and bio-mixed light oil mainly composed of light oil and fatty acid methyl ester have started to spread. ing. In order to be able to inject into the combustion chamber a fuel amount suitable for the operating state of the internal combustion engine using this kind of mixed fuel, it is necessary to detect the concentration of gasoline and alcohol as needed and constantly grasp the alcohol content. There is. Gasoline and alcohol concentration detection devices for this purpose are disclosed in, for example, Japanese Patent Laid-Open Nos. 5-87764 and 2008-268169.
 例えば、特開平5-87764号公報に開示されたアルコール含有量の検出装置は、ケーシング内に配置された一対の電極間に測定対象のガソリンとアルコールからなる混合燃料(混合流体)を導入し、混合燃料の静電容量(誘電率)を測定して、アルコールの濃度を測定する装置である。また、特開2008-268169号公報に開示された液体性状センサは、半導体基板に設けられた櫛歯状電極をガソリン等の液体燃料の中に浸漬させて静電容量(誘電率)を測定し、ガソリンに含まれるアルコールの混合比率を検出するセンサである。 For example, in the alcohol content detection device disclosed in Japanese Patent Laid-Open No. 5-87764, a mixed fuel (mixed fluid) composed of gasoline and alcohol to be measured is introduced between a pair of electrodes arranged in a casing, It is an apparatus that measures the concentration of alcohol by measuring the capacitance (dielectric constant) of the mixed fuel. In addition, the liquid property sensor disclosed in Japanese Patent Application Laid-Open No. 2008-268169 measures capacitance (dielectric constant) by immersing a comb-like electrode provided on a semiconductor substrate in a liquid fuel such as gasoline. The sensor detects the mixing ratio of alcohol contained in gasoline.
 ところで、上記混合燃料にあっては、主成分であるガソリンとエタノール以外に、例えば水が混入することが知られている。詳しくは、精製段階においてエタノールに水が混入したり、混合燃料が大気に触れることで大気に含まれる水が混合燃料に溶け込んだり、混合燃料を運搬する際に人為的に水が混入したりすることが知られている。このように混合燃料に水が混入すると、混合燃料の静電容量(誘電率)は、ガソリン、エタノールおよび水の3成分の濃度(存在割合)に依存して変化することになる。しかしながら、上記従来技術においては、混合燃料がガソリンとアルコールで構成されているとみなされており、2成分の濃度しか測定できないため、水の混入により測定誤差が生じてしまう。 Incidentally, it is known that, for example, water is mixed in the above mixed fuel in addition to the main components of gasoline and ethanol. Specifically, water is mixed into ethanol in the refining stage, or water contained in the atmosphere dissolves into the mixed fuel when the mixed fuel comes into contact with the air, or water is artificially mixed when transporting the mixed fuel. It is known. When water is mixed in the mixed fuel in this way, the electrostatic capacity (dielectric constant) of the mixed fuel changes depending on the concentrations (existence ratios) of the three components of gasoline, ethanol and water. However, in the above-described prior art, the mixed fuel is considered to be composed of gasoline and alcohol, and only the concentration of two components can be measured.
 本発明は、上記の課題に鑑みてなされたものであり、その第一の目的は、センサ部への異物の付着を低減し、液体に含まれる特性成分の検出精度が高い濃度センサ装置を提供することにある。第二の目的は、混合液体の混合比の検出精度の低下が抑制された混合比算出装置、及び該混合比算出装置を用いた混合比算出方法を提供することにある。第三の目的は、3種以上の成分で構成される混合流体の濃度を正確に検出することのできる、混合流体の濃度検出方法および検出装置を提供することにある。 The present invention has been made in view of the above problems, and a first object thereof is to provide a concentration sensor device that reduces the adhesion of foreign matter to the sensor unit and has high detection accuracy of characteristic components contained in liquid. There is to do. The second object is to provide a mixing ratio calculation apparatus in which a decrease in the detection accuracy of the mixing ratio of the mixed liquid is suppressed, and a mixing ratio calculation method using the mixing ratio calculation apparatus. A third object is to provide a mixed fluid concentration detection method and a detection device capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
 本発明の一つの特徴として、濃度センサ装置は堆積制限部を備えている。堆積制限部は、センサ部への異物の堆積を妨げる。この堆積制限部は、センサ部と一体、または液体の流れ方向においてセンサ部の上流側に設けられている。これにより、液体に含まれる異物は、堆積制限部によってセンサ部への付着および堆積が妨げられる。したがって、センサ部への異物の堆積が妨げられ、液体に含まれる特性成分の濃度の検出精度を高めることができる。 As one feature of the present invention, the concentration sensor device includes a deposition limiting unit. The accumulation limiting unit prevents foreign matter from accumulating on the sensor unit. The deposition limiting unit is integrated with the sensor unit or provided upstream of the sensor unit in the liquid flow direction. As a result, the foreign matter contained in the liquid is prevented from adhering to and depositing on the sensor unit by the deposition limiting unit. Accordingly, the accumulation of foreign matter on the sensor unit is hindered, and the detection accuracy of the concentration of the characteristic component contained in the liquid can be increased.
 例えば、堆積制限部は圧電素子を有している。圧電素子は、通電することにより振動する。そのため、センサ部に異物が付着しても、付着した異物は圧電素子の振動によってセンサ部からの脱離が促進される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the deposition limiting unit has a piezoelectric element. The piezoelectric element vibrates when energized. Therefore, even if foreign matter adheres to the sensor unit, the attached foreign matter is promoted to be detached from the sensor unit due to vibration of the piezoelectric element. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、圧電素子は基板を挟んでセンサ部と反対側の面に設けられている。そのため、圧電素子は、センサ部に妨げられることなく、基板においてセンサ部の反対側の面に広く設けられる。したがって、大型化を招くことなく圧電素子の振動面積を確保することができる。また、センサ部と圧電素子とを別個独立して形成可能である。したがって、製造工程を簡略化することができる。 For example, the piezoelectric element is provided on the surface opposite to the sensor unit with the substrate interposed therebetween. Therefore, the piezoelectric element is widely provided on the surface of the substrate opposite to the sensor unit without being obstructed by the sensor unit. Therefore, the vibration area of the piezoelectric element can be ensured without increasing the size. Further, the sensor unit and the piezoelectric element can be formed separately and independently. Therefore, the manufacturing process can be simplified.
 例えば、センサ部側に設けられている回路部と圧電素子との間は基板を貫く貫通電極で接続されている。そのため、貫通電極は、基板の外側に露出しない。これにより、貫通電極と混合燃料との接触は低減される。その結果、例えば混合燃料に含まれる水分などによる貫通電極を形成する部材の腐食や損傷は低減される。したがって、貫通電極の耐久性を高めることができる。 For example, the circuit unit provided on the sensor unit side and the piezoelectric element are connected by a through electrode penetrating the substrate. Therefore, the through electrode is not exposed to the outside of the substrate. Thereby, contact with a penetration electrode and mixed fuel is reduced. As a result, for example, corrosion and damage of the member forming the through electrode due to moisture contained in the mixed fuel is reduced. Therefore, the durability of the through electrode can be increased.
 例えば、圧電素子は基板においてセンサ部と同一の面に設けられている。そのため、圧電素子の振動面積の確保は困難なものの、センサ部に近接した圧電素子の配置が可能である。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element is provided on the same surface as the sensor unit on the substrate. Therefore, although it is difficult to ensure the vibration area of the piezoelectric element, it is possible to arrange the piezoelectric element close to the sensor unit. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、圧電素子は基板とセンサ部との間に設けられている。これにより、圧電素子は、センサ部に妨げられることなく、広い面積に設けられる。また、圧電素子とセンサ部とは近接して配置される。したがって、大型化を招くことなく圧電素子の振動面積を確保することができるとともに、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element is provided between the substrate and the sensor unit. Thereby, a piezoelectric element is provided in a wide area, without being disturbed by a sensor part. Further, the piezoelectric element and the sensor unit are arranged close to each other. Accordingly, the vibration area of the piezoelectric element can be ensured without increasing the size, and the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、濃度センサ装置は凹部をさらに備えている。すなわち、基板は、ダイアフラム形状の凹部を形成している。そのため、凹部の周囲に設けた圧電素子によって、センサ部の振動は促進される。したがって、センサ部に付着した異物の脱離をより促進することができる。 For example, the concentration sensor device further includes a recess. That is, the substrate forms a diaphragm-shaped recess. Therefore, the vibration of the sensor unit is promoted by the piezoelectric element provided around the recess. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
 例えば、圧電素子はセンサ部が設けられている反対側の面において凹部に沿って設けられている。そのため、ダイアフラム形状の凹部を形成する基板は、圧電素子によって全体が振動する。したがって、センサ部に付着した異物の脱離をより促進することができる。 For example, the piezoelectric element is provided along the recess on the opposite surface where the sensor unit is provided. For this reason, the entire substrate on which the diaphragm-shaped recess is formed is vibrated by the piezoelectric element. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。圧電素子は、この絶縁膜の基板とは反対側に設けられている。そのため、圧電素子は、絶縁膜を振動させる。圧電素子による絶縁膜の振動は、凹部を経由して基板を振動させる。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. The piezoelectric element is provided on the opposite side of the insulating film from the substrate. Therefore, the piezoelectric element vibrates the insulating film. The vibration of the insulating film by the piezoelectric element causes the substrate to vibrate via the recess. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。センサ部および圧電素子は、この絶縁膜に設けられている。すなわち、センサ部および圧電素子は、絶縁膜の同一の面側に設けられている。そのため、圧電素子が絶縁膜を振動させると、絶縁膜に設けられているセンサ部も振動する。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. The sensor part and the piezoelectric element are provided on this insulating film. That is, the sensor unit and the piezoelectric element are provided on the same surface side of the insulating film. Therefore, when the piezoelectric element vibrates the insulating film, the sensor unit provided in the insulating film also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。そして、この絶縁膜の基板と反対側には絶縁体が積層されている。圧電素子は、絶縁膜を挟んで凹部の反対側に設けられ、センサ部は絶縁体を挟んで圧電素子と対向する位置に設けられている。圧電素子が振動すると、その振動は絶縁膜および絶縁体へ伝わる。すなわち、圧電素子は、絶縁膜だけでなく絶縁体も振動させる。これにより、絶縁体に設けられているセンサ部も振動する。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. An insulator is laminated on the opposite side of the insulating film from the substrate. The piezoelectric element is provided on the opposite side of the recess with the insulating film interposed therebetween, and the sensor unit is provided at a position facing the piezoelectric element with the insulator interposed therebetween. When the piezoelectric element vibrates, the vibration is transmitted to the insulating film and the insulator. That is, the piezoelectric element vibrates not only the insulating film but also the insulator. Thereby, the sensor part provided in the insulator also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部によって基板と絶縁膜との間に形成される空間には気体が封入されている。例えば、この空間に封入する気体の種類圧力などを調整することにより、圧電素子と空間に封入された気体とが共振する。これにより、圧電素子の振動は、より効果的にセンサ部側へ伝達される。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, gas is sealed in a space formed between the substrate and the insulating film by the recess. For example, the piezoelectric element and the gas sealed in the space resonate by adjusting the kind pressure of the gas sealed in the space. Thereby, the vibration of the piezoelectric element is more effectively transmitted to the sensor unit side. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、センサ部が有する櫛歯形状の電極パターンは圧電素子部を構成している。すなわち、電極パターンは、センサ部でもあり、圧電素子部でもある。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, the comb-shaped electrode pattern of the sensor portion constitutes a piezoelectric element portion. That is, the electrode pattern is both a sensor part and a piezoelectric element part. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、基板を挟んでセンサ部と反対側の面に電極部を備える。これにより、センサ部を構成する圧電素子の電極パターンと電極部との間に電位差を加えることにより、基板の振動にともなって電極パターンすなわちセンサ部自身が振動する。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, an electrode part is provided on the surface opposite to the sensor part across the substrate. Thereby, by applying a potential difference between the electrode pattern of the piezoelectric element constituting the sensor unit and the electrode unit, the electrode pattern, that is, the sensor unit itself vibrates with the vibration of the substrate. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、圧電素子部はセンサ部の基板と反対側に積層された電極パターンを有している。すなわち、センサ部は、基板と反対側に圧電素子部の電極パターンが被せられている。そのため、圧電素子部の電極パターンの振動によって、センサ部も振動する。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, the piezoelectric element portion has an electrode pattern laminated on the side opposite to the substrate of the sensor portion. That is, the sensor part is covered with the electrode pattern of the piezoelectric element part on the side opposite to the substrate. Therefore, the sensor unit also vibrates due to the vibration of the electrode pattern of the piezoelectric element unit. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、圧電素子部は基板を挟んでセンサ部と反対側の面に電極パターンを有している。すなわち、基板は、センサ部と反対側の面に圧電素子部の電極パターンが形成されている。そのため、圧電素子部の振動は、基板を経由してセンサ部へ伝達される。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element part has an electrode pattern on the surface opposite to the sensor part across the substrate. That is, the electrode pattern of the piezoelectric element portion is formed on the surface opposite to the sensor portion of the substrate. Therefore, the vibration of the piezoelectric element part is transmitted to the sensor part via the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、圧電素子部は、センサ部を構成する第一電極パターンと、基板を挟んでセンサ部と反対側の面に設けられている第二電極パターンとを有している。そのため、センサ部は、第一電極パターンの振動によって自身が振動するとともに、基板を経由して伝達される第二電極パターンの振動によっても振動する。したがって、センサ部に付着した異物の脱離を促進することができるとともに、センサ部を自身の振動によって自己洗浄することができる。 For example, the piezoelectric element part has a first electrode pattern constituting the sensor part and a second electrode pattern provided on the surface opposite to the sensor part across the substrate. Therefore, the sensor unit vibrates itself due to the vibration of the first electrode pattern and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, it is possible to promote the detachment of the foreign matter adhering to the sensor unit and to self-clean the sensor unit by its own vibration.
 例えば、圧電素子部は、センサ部の基板と反対側に積層された第一電極パターンと、基板を挟んでセンサ部と反対側の面に設けられている第二電極パターンとを有している。そのため、センサ部は、第一電極パターンの振動とともに自身が振動するとともに、基板を経由して伝達される第二電極パターンの振動によっても振動する。したがって、センサ部に付着した異物の脱離を促進することができるとともに、センサ部の自身の振動によって自己洗浄することができる。 For example, the piezoelectric element portion has a first electrode pattern stacked on the opposite side of the substrate of the sensor portion and a second electrode pattern provided on the surface opposite to the sensor portion across the substrate. . Therefore, the sensor unit vibrates with the vibration of the first electrode pattern, and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted, and self-cleaning can be performed by the vibration of the sensor unit itself.
 例えば、通路形成部が形成する液体通路に収容されている堆積制限部は、センサ部とは別体の帯電部および捕捉部を有している。液体通路を流れる液体は、帯電部において電圧が印加されることにより帯電する。液体に含まれる異物は、液体とともに帯電する。そのため、液体が捕捉部を通過することにより、液体に含まれる帯電した異物はセンサ部に至る前に捕捉部で捕捉される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the deposition restricting portion accommodated in the liquid passage formed by the passage forming portion has a charging portion and a capturing portion that are separate from the sensor portion. The liquid flowing through the liquid passage is charged by applying a voltage at the charging unit. The foreign substance contained in the liquid is charged together with the liquid. Therefore, when the liquid passes through the capturing unit, the charged foreign matter contained in the liquid is captured by the capturing unit before reaching the sensor unit. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、液体通路に壁部を備えている。壁部は、帯電部を通過した液体の流れをセンサ部側と捕捉部側とに分離する。帯電部で帯電した液体に含まれる異物は、捕捉部側へ移動しやすい。そのため、液体の流れを壁部により捕捉部側とセンサ部側とに分離することにより、液体に含まれる異物はセンサ部側へ流入しにくくなる。したがって、センサ部への異物の付着および堆積がより低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, a wall is provided in the liquid passage. The wall part separates the flow of the liquid that has passed through the charging part into the sensor part side and the capturing part side. Foreign matter contained in the liquid charged by the charging unit is likely to move to the capturing unit side. Therefore, by separating the liquid flow into the capturing part side and the sensor part side by the wall part, it becomes difficult for foreign matter contained in the liquid to flow into the sensor part side. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are further reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、堆積制限部はセンサ部の下流側に除電部を有している。これにより、帯電部および捕捉部で帯電した液体は、除電部によって除電される。帯電部および捕捉部において液体に電荷を帯電させることにより、センサ部よりも下流側に設けられている機器や装置に影響を与えるおそれもある。そこで、除電部は、センサ部を通過した液体の電荷を除電する。これにより、帯電した液体がセンサ部よりも下流側に設けられている機器や装置に影響を与えることはない。したがって、外部への影響を低減することができる。 For example, the deposition limiting unit has a static elimination unit on the downstream side of the sensor unit. Thereby, the liquid charged by the charging unit and the capturing unit is neutralized by the neutralizing unit. By charging the liquid with charge in the charging unit and the capturing unit, there is a possibility that the device or apparatus provided on the downstream side of the sensor unit may be affected. Therefore, the static elimination unit neutralizes the charge of the liquid that has passed through the sensor unit. As a result, the charged liquid does not affect the device or apparatus provided on the downstream side of the sensor unit. Therefore, the influence on the outside can be reduced.
 例えば、帯電部に印加される電圧と捕捉部に印加される電圧とは、それぞれ極性が正(+)または負(-)で異なっている。例えば帯電部で正の電圧を印加するとき、捕捉部では負の電圧が印加される。そして、帯電部および捕捉部では、いずれも一方の極性から他方の極性へ反転することなく一方の極性を維持する。すなわち、帯電部で正の電圧を印加する場合、帯電部は常に正の電圧を維持し、捕捉部は負の電圧を維持する。これにより、帯電部で帯電した異物は、捕捉部によって確実に捕捉され、センサ部側への移動が制限される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the voltage applied to the charging unit and the voltage applied to the capturing unit differ in polarity (positive (+) or negative (-)). For example, when a positive voltage is applied at the charging unit, a negative voltage is applied at the capturing unit. In both the charging unit and the capturing unit, one polarity is maintained without being inverted from one polarity to the other polarity. That is, when a positive voltage is applied by the charging unit, the charging unit always maintains a positive voltage, and the capturing unit maintains a negative voltage. Thereby, the foreign material charged by the charging unit is reliably captured by the capturing unit, and movement to the sensor unit side is limited. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、帯電部および捕捉部で液体に印加される電圧は1kHz以上の交流電圧である。そして、この電圧は、負側の最大値および正側の最小値が接地電圧に設定されている。液体に直流電圧や低周波の交流を印加すると、液体および液体に含まれる種々の成分が電気化学的な反応を生じるおそれがある。そのため、帯電部および捕捉部では、液体が不可逆的な化学変化を生じないために、1kHz以上の交流電圧を印加している。したがって、液体の変化を低減し、外部への影響を低減することができる。 For example, the voltage applied to the liquid at the charging unit and the capturing unit is an alternating voltage of 1 kHz or more. In this voltage, the maximum value on the negative side and the minimum value on the positive side are set to the ground voltage. When a direct current voltage or a low frequency alternating current is applied to the liquid, the liquid and various components contained in the liquid may cause an electrochemical reaction. Therefore, an alternating voltage of 1 kHz or higher is applied to the charging unit and the capturing unit so that the liquid does not cause irreversible chemical changes. Therefore, the change of the liquid can be reduced and the influence on the outside can be reduced.
 例えば、捕捉部は少なくとも一枚以上の板状の電極部材を有している。この板状の電極部材は、液体通路の軸と平行に延び、上流側が液体通路の軸に垂直な断面において任意の位置における弦に対応する板幅を有している。すなわち、電極部材は、液体通路の上流側において、液体通路を形成する通路形成部材の一端から他端側に達する板幅を有している。そして、この電極部材は、下流側ほど板幅が縮小している。すなわち、電極部材は、帯電部側ほど板幅が大きく、センサ部側ほど板幅が小さい。これにより、帯電部を通過した液体は、板幅の大きな上流側で異物が効果的に除去される。また、電極部材は、液体通路と平行に延びることにより、液体通路を流れる液体の圧力損失が低減される。したがって、液体の圧力損失を低減しつつ、液体に含まれる異物をセンサ部の上流側で捕捉することができ、センサ部の濃度検出精度を高めることができる。 For example, the capturing part has at least one plate-like electrode member. The plate-like electrode member extends in parallel with the axis of the liquid passage, and has a plate width corresponding to a chord at an arbitrary position in a cross section perpendicular to the axis of the liquid passage. That is, the electrode member has a plate width that reaches the other end side from one end of the passage forming member that forms the liquid passage on the upstream side of the liquid passage. The electrode member has a reduced plate width toward the downstream side. That is, the electrode member has a larger plate width toward the charging unit side and a smaller plate width toward the sensor unit side. Thereby, foreign matters are effectively removed from the liquid that has passed through the charging portion on the upstream side having a large plate width. Further, the electrode member extends in parallel with the liquid passage, whereby the pressure loss of the liquid flowing through the liquid passage is reduced. Accordingly, foreign matter contained in the liquid can be captured upstream of the sensor unit while reducing the pressure loss of the liquid, and the concentration detection accuracy of the sensor unit can be increased.
 例えば、捕捉部は少なくとも一枚以上の板状の電極部材を有している。この板状の電極部材は、液体通路の軸に対して傾斜して延びている。そして、この電極部材は、液体通路の上流側から下流側へ向けて液体通路の少なくとも一部の幅を狭めている。そのため、液体通路を流れる液体は、徐々に狭まる電極部材の間を流れる。これにより、液体に含まれる異物は、捕捉部に捕捉されやすくなる。したがって、液体に含まれる異物をセンサ部の上流側で捕捉することができ、センサ部の濃度検出精度を高めることができる。 For example, the capturing part has at least one plate-like electrode member. The plate-like electrode member extends while being inclined with respect to the axis of the liquid passage. The electrode member narrows at least a part of the width of the liquid passage from the upstream side to the downstream side of the liquid passage. Therefore, the liquid flowing through the liquid passage flows between the electrode members that are gradually narrowed. Thereby, the foreign material contained in the liquid is easily captured by the capturing unit. Therefore, the foreign substance contained in the liquid can be captured upstream of the sensor unit, and the concentration detection accuracy of the sensor unit can be increased.
 例えば、捕捉部は少なくとも一枚以上の筒状で錐形状の電極部材を有している。すなわち、捕捉部は、例えば円錐や角錐形状の電極部材を有している。そして、この電極部材は、上流側から下流側へ向けて内径が縮小している。そのため、液体は、徐々に内径が縮小する電極部材を通過する。これにより、液体に含まれる異物は、捕捉部に捕捉されやすくなる。したがって、液体に含まれる異物をセンサ部の上流側で捕捉することができ、センサ部の濃度検出精度を高めることができる。 For example, the capturing part has at least one cylindrical and cone-shaped electrode member. That is, the capturing part has, for example, a conical or pyramidal electrode member. The electrode member has an inner diameter that decreases from the upstream side toward the downstream side. Therefore, the liquid passes through the electrode member whose inner diameter gradually decreases. Thereby, the foreign material contained in the liquid is easily captured by the capturing unit. Therefore, the foreign substance contained in the liquid can be captured upstream of the sensor unit, and the concentration detection accuracy of the sensor unit can be increased.
 例えば、捕捉部は少なくとも一枚以上の筒状で錐形状の電極部材を有している。すなわち、捕捉部は、例えば円錐や角錐形状の電極部材を有している。そして、この電極部材は、上流側から下流側へ向けて液体通路における液体の流れを通路形成部材の内壁側へ案内する形状である。そのため、液体は、徐々に通路形成部材の内壁に近づく電極部材を通過する。これにより、液体に含まれる異物は捕捉部に捕捉されやすくなるとともに、液体の圧力損失が比較的小さくなる。したがって、液体に含まれる異物をセンサ部の上流側で捕捉することができ、センサ部の濃度検出精度を高めることができる。 For example, the capturing part has at least one cylindrical and cone-shaped electrode member. That is, the capturing part has, for example, a conical or pyramidal electrode member. And this electrode member is a shape which guides the flow of the liquid in a liquid passage toward the inner wall side of a channel | path formation member toward the downstream from the upstream. Therefore, the liquid passes through the electrode member that gradually approaches the inner wall of the passage forming member. Thereby, the foreign matter contained in the liquid is easily captured by the capturing unit, and the pressure loss of the liquid is relatively small. Therefore, the foreign substance contained in the liquid can be captured upstream of the sensor unit, and the concentration detection accuracy of the sensor unit can be increased.
 例えば、濃度センサ装置は通路形成部材に振動を与える振動付与手段を備えている。液体通路に設けられる帯電部および捕捉部などは、長期間の使用によって異物が堆積するおそれがある。そこで、間欠的に振動付与手段で液体通路を形成する通路形成部材を振動させることにより、通路形成部材とともに帯電部および捕捉部も振動する。したがって、帯電部および捕捉部への異物の堆積を低減することができる。 For example, the concentration sensor device includes vibration applying means for applying vibration to the passage forming member. The charging unit and the capturing unit provided in the liquid passage may accumulate foreign matter when used for a long period of time. Therefore, by intermittently vibrating the passage forming member that forms the liquid passage by the vibration applying means, the charging unit and the capturing unit also vibrate together with the passage forming member. Therefore, it is possible to reduce the accumulation of foreign matters on the charging unit and the capturing unit.
 例えば、濃度センサ装置はセンサ部を覆う保護膜部を備えている。保護膜部は、センサ部と反対側の端部に堆積制限部を有している。すなわち、センサ部は、一体に堆積制限部を有している。これにより、センサ部、およびこれを覆う保護膜部への異物の堆積が低減される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the concentration sensor device includes a protective film portion that covers the sensor portion. The protective film part has a deposition limiting part at the end opposite to the sensor part. In other words, the sensor unit integrally has a deposition limiting unit. Thereby, the accumulation of foreign matter on the sensor unit and the protective film unit covering the sensor unit is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、保護膜部はセンサ部と反対側が粗面状または凸面状に形成されている。そのため、保護膜部への異物の付着が低減される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the protective film portion has a rough surface or a convex surface on the side opposite to the sensor portion. Therefore, the adhesion of foreign matter to the protective film portion is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、保護膜部は流路形成部を有する。流路形成部は、保護膜部の表面に液体の流れを形成する。これにより、保護膜部に付着する異物は、液体の流れによって除去される。そのため、保護膜部への異物の付着が低減される。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the protective film part has a flow path forming part. The flow path forming part forms a liquid flow on the surface of the protective film part. Thereby, the foreign material adhering to the protective film part is removed by the flow of the liquid. Therefore, the adhesion of foreign matter to the protective film portion is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、保護膜部は多孔質部材である。多孔質部材の孔は、液体の流れを許容しつつ、異物の通過を制限する。そのため、異物は多孔質部材に堆積し、センサ部には付着しない。したがって、センサ部への異物の付着および堆積が低減され、液体に含まれる特定成分の検出精度を高めることができる。 For example, the protective film part is a porous member. The pores of the porous member restrict the passage of foreign substances while allowing the flow of liquid. For this reason, the foreign matter accumulates on the porous member and does not adhere to the sensor unit. Therefore, the adhesion and accumulation of foreign matter on the sensor unit are reduced, and the detection accuracy of the specific component contained in the liquid can be increased.
 例えば、濃度センサ装置は多孔質部材に振動を与える振動付与手段を備える。多孔質部材を用いることにより、液体に含まれる異物は多孔質部材の表面に堆積する。そのため、多孔質部材を振動付与手段で振動させることにより、多孔質部材に堆積した異物の除去を促進することができる。 For example, the concentration sensor device includes vibration imparting means for imparting vibration to the porous member. By using the porous member, foreign substances contained in the liquid are deposited on the surface of the porous member. Therefore, the removal of the foreign matter deposited on the porous member can be promoted by vibrating the porous member with the vibration applying means.
 本発明の一つの特徴として、濃度センサ装置は圧電素子部を備えている。圧電素子部は、通電することにより振動する。そのため、センサ部に異物が付着しても、付着した異物は圧電素子部による振動によってセンサ部からの脱離が促進される。したがって、センサ部への異物の付着が低減され、アルコール濃度の検出精度を高めることができる。 As one feature of the present invention, the concentration sensor device includes a piezoelectric element portion. The piezoelectric element portion vibrates when energized. For this reason, even if foreign matter adheres to the sensor unit, the attached foreign matter is promoted to be detached from the sensor unit due to vibration by the piezoelectric element portion. Therefore, the adhesion of foreign matter to the sensor unit is reduced, and the alcohol concentration detection accuracy can be increased.
 例えば、圧電素子部は基板を挟んでセンサ部と反対側の面に設けられている。そのため、圧電素子部は、センサ部に妨げられることなく、基板においてセンサ部の反対側の面に広く設けられる。したがって、大型化を招くことなく圧電素子部の振動面積を確保することができる。また、センサ部と圧電素子部とを別個独立して形成可能である。したがって、製造工程を簡略化することができる。 For example, the piezoelectric element part is provided on the surface opposite to the sensor part across the substrate. Therefore, the piezoelectric element part is widely provided on the surface opposite to the sensor part on the substrate without being obstructed by the sensor part. Therefore, the vibration area of the piezoelectric element portion can be ensured without increasing the size. Further, the sensor part and the piezoelectric element part can be formed separately and independently. Therefore, the manufacturing process can be simplified.
 例えば、センサ部側に設けられている回路部と圧電素子部との間は基板を貫く貫通電極で接続されている。そのため、貫通電極は、基板の外側に露出しない。これにより、貫通電極と混合燃料との接触は低減される。その結果、例えば混合燃料に含まれる水分などによる貫通電極を形成する部材の腐食や損傷は低減される。したがって、貫通電極の耐久性を高めることができる。 For example, the circuit part provided on the sensor part side and the piezoelectric element part are connected by a through electrode penetrating the substrate. Therefore, the through electrode is not exposed to the outside of the substrate. Thereby, the contact between the through electrode and the mixed fuel is reduced. As a result, for example, corrosion and damage of the member forming the through electrode due to moisture contained in the mixed fuel is reduced. Therefore, durability of the through electrode can be increased.
 例えば、圧電素子部は基板においてセンサ部と同一の面に設けられている。そのため、圧電素子部の振動面積の確保は困難なものの、センサ部に近接した圧電素子部の配置が可能である。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element portion is provided on the same surface as the sensor portion on the substrate. Therefore, although it is difficult to secure the vibration area of the piezoelectric element portion, it is possible to arrange the piezoelectric element portion close to the sensor portion. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、圧電素子部は基板とセンサ部との間に設けられている。これにより、圧電素子部は、センサ部に妨げられることなく、広い面積に設けられる。また、圧電素子部とセンサ部とは近接して配置される。したがって、大型化を招くことなく圧電素子部の振動面積を確保することができるとともに、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element part is provided between the substrate and the sensor part. Thereby, a piezoelectric element part is provided in a wide area, without being disturbed by a sensor part. Further, the piezoelectric element part and the sensor part are arranged close to each other. Therefore, the vibration area of the piezoelectric element portion can be ensured without increasing the size, and the detachment of the foreign matter attached to the sensor portion can be promoted.
 例えば、基板は凹部をさらに備えている。すなわち、基板は、ダイアフラム形状の凹部を形成している。そのため、凹部の周囲に設けた圧電素子部によって、センサ部の振動は促進される。したがって、センサ部に付着した異物の脱離をより促進することができる。 For example, the substrate further includes a recess. That is, the substrate forms a diaphragm-shaped recess. Therefore, the vibration of the sensor unit is promoted by the piezoelectric element unit provided around the recess. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
 例えば、圧電素子部はセンサ部が設けられている反対側の面において凹部に沿って設けられている。そのため、ダイアフラム形状の凹部を形成する基板は、圧電素子部によって全体が振動する。したがって、センサ部に付着した異物の脱離をより促進することができる。 For example, the piezoelectric element portion is provided along the concave portion on the opposite surface where the sensor portion is provided. For this reason, the entire substrate on which the diaphragm-shaped recess is formed is vibrated by the piezoelectric element portion. Accordingly, it is possible to further promote the detachment of the foreign matter attached to the sensor unit.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。圧電素子部は、この絶縁膜の基板とは反対側に設けられている。そのため、圧電素子部は、絶縁膜を振動させる。圧電素子部による絶縁膜の振動は、凹部を経由して基板を振動させる。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. The piezoelectric element portion is provided on the opposite side of the insulating film from the substrate. Therefore, the piezoelectric element unit vibrates the insulating film. The vibration of the insulating film by the piezoelectric element portion causes the substrate to vibrate via the recess. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。センサ部および圧電素子部は、この絶縁膜に設けられている。すなわち、センサ部および圧電素子部は、絶縁膜の同一の面側に設けられている。そのため、圧電素子部が絶縁膜を振動させると、絶縁膜に設けられているセンサ部も振動する。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. The sensor part and the piezoelectric element part are provided on this insulating film. That is, the sensor unit and the piezoelectric element unit are provided on the same surface side of the insulating film. Therefore, when the piezoelectric element unit vibrates the insulating film, the sensor unit provided on the insulating film also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部を形成する基板の開口側は絶縁膜で覆われている。そして、この絶縁膜の基板と反対側には絶縁体が積層されている。圧電素子部は、絶縁膜を挟んで凹部の反対側に設けられ、センサ部は絶縁体を挟んで圧電素子部と対向する位置に設けられている。圧電素子部が振動すると、その振動は絶縁膜および絶縁体へ伝わる。すなわち、圧電素子部は、絶縁膜だけでなく絶縁体も振動させる。これにより、絶縁体に設けられているセンサ部も振動する。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the opening side of the substrate where the recess is formed is covered with an insulating film. An insulator is laminated on the opposite side of the insulating film from the substrate. The piezoelectric element portion is provided on the opposite side of the concave portion with the insulating film interposed therebetween, and the sensor portion is provided at a position facing the piezoelectric element portion with the insulator interposed therebetween. When the piezoelectric element portion vibrates, the vibration is transmitted to the insulating film and the insulator. That is, the piezoelectric element portion vibrates not only the insulating film but also the insulator. Thereby, the sensor part provided in the insulator also vibrates. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、凹部によって基板と絶縁膜との間に形成される空間には気体が封入されている。例えば、この空間に封入する気体の種類圧力などを調整することにより、圧電素子部と空間に封入された気体とが共振する。これにより、圧電素子部の振動は、より効果的にセンサ部側へ伝達される。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, gas is sealed in a space formed between the substrate and the insulating film by the recess. For example, the piezoelectric element portion and the gas sealed in the space resonate by adjusting the type pressure of the gas sealed in the space. Thereby, the vibration of the piezoelectric element part is more effectively transmitted to the sensor part side. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、センサ部が有する櫛歯形状の電極パターンは圧電素子部を構成している。すなわち、電極パターンは、センサ部でもあり、圧電素子部でもある。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, the comb-shaped electrode pattern of the sensor portion constitutes a piezoelectric element portion. That is, the electrode pattern is both a sensor part and a piezoelectric element part. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、濃度センサ装置はさらに、基板を挟んでセンサ部と反対側の面に電極部を備える。これにより、センサ部を構成する圧電素子の電極パターンと電極部との間に電位差を加えることにより、基板の振動にともなって電極パターンすなわちセンサ部自身が振動する。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, the concentration sensor device further includes an electrode portion on a surface opposite to the sensor portion with the substrate interposed therebetween. Thereby, by applying a potential difference between the electrode pattern of the piezoelectric element constituting the sensor unit and the electrode unit, the electrode pattern, that is, the sensor unit itself vibrates with the vibration of the substrate. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、圧電素子部はセンサ部の基板と反対側に積層された電極パターンを有している。すなわち、センサ部は、基板と反対側に圧電素子部の電極パターンが被せられている。そのため、圧電素子部の電極パターンの振動によって、センサ部も振動する。したがって、センサ部を自身の振動によって自己洗浄することができる。 For example, the piezoelectric element portion has an electrode pattern laminated on the side opposite to the substrate of the sensor portion. That is, the sensor part is covered with the electrode pattern of the piezoelectric element part on the side opposite to the substrate. Therefore, the sensor unit also vibrates due to the vibration of the electrode pattern of the piezoelectric element unit. Therefore, the sensor unit can be self-cleaned by its own vibration.
 例えば、圧電素子部は基板を挟んでセンサ部と反対側の面に電極パターンを有している。すなわち、基板は、センサ部と反対側の面に圧電素子部の電極パターンが形成されている。そのため、圧電素子部の振動は、基板を経由してセンサ部へ伝達される。したがって、センサ部に付着した異物の脱離を促進することができる。 For example, the piezoelectric element part has an electrode pattern on the surface opposite to the sensor part across the substrate. That is, the electrode pattern of the piezoelectric element portion is formed on the surface opposite to the sensor portion of the substrate. Therefore, the vibration of the piezoelectric element part is transmitted to the sensor part via the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted.
 例えば、圧電素子部は、センサ部を構成する第一電極パターンと、基板を挟んでセンサ部と反対側の面に設けられている第二電極パターンとを有している。そのため、センサ部は、第一電極パターンの振動によって自身が振動するとともに、基板を経由して伝達される第二電極パターンの振動によっても振動する。したがって、センサ部に付着した異物の脱離を促進することができるとともに、センサ部を自身の振動によって自己洗浄することができる。 For example, the piezoelectric element part has a first electrode pattern constituting the sensor part and a second electrode pattern provided on the surface opposite to the sensor part across the substrate. Therefore, the sensor unit vibrates itself due to the vibration of the first electrode pattern and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, it is possible to promote the detachment of the foreign matter adhering to the sensor unit and to self-clean the sensor unit by its own vibration.
 例えば、圧電素子部は、センサ部の基板と反対側に積層された第一電極パターンと、基板を挟んでセンサ部と反対側の面に設けられている第二電極パターンとを有している。そのため、センサ部は、第一電極パターンの振動とともに自身が振動するとともに、基板を経由して伝達される第二電極パターンの振動によっても振動する。したがって、センサ部に付着した異物の脱離を促進することができるとともに、センサ部の自身の振動によって自己洗浄することができる。 For example, the piezoelectric element portion has a first electrode pattern stacked on the opposite side of the substrate of the sensor portion and a second electrode pattern provided on the surface opposite to the sensor portion across the substrate. . Therefore, the sensor unit vibrates with the vibration of the first electrode pattern, and also vibrates due to the vibration of the second electrode pattern transmitted through the substrate. Accordingly, the detachment of the foreign matter attached to the sensor unit can be promoted, and self-cleaning can be performed by the vibration of the sensor unit itself.
 本発明の一つの特徴として混合比算出装置は、混合液体中に配置される対をなす電極、及び対をなす電極によって構成されるコンデンサの静電容量を検出する検出回路を有するセンサ部と、該センサ部の出力信号に基づいて、混合液体の混合比を算出する算出部と、を備える。センサ部は、それぞれの静電容量が異なる、対をなす電極を少なくとも3つ有しており、算出部は、センサ部の出力信号に含まれる、測定された少なくとも3つの静電容量それぞれに対応する比誘電率を算出し、算出された少なくとも3つの比誘電率と、該比誘電率それぞれに対応する静電容量とに対する回帰直線、若しくは、算出された少なくとも3つの比誘電率と、該比誘電率それぞれに対応する静電容量の逆数とに対する回帰直線を算出し、該回帰直線に基づいて、補正された比誘電率を算出し、補正された比誘電率に基づいて、混合液体の混合比を算出することを特徴する。 As one feature of the present invention, a mixing ratio calculation apparatus includes a sensor unit having a pair of electrodes arranged in a mixed liquid, and a detection circuit that detects a capacitance of a capacitor formed by the pair of electrodes; A calculation unit that calculates a mixing ratio of the mixed liquid based on an output signal of the sensor unit. The sensor unit has at least three pairs of electrodes with different capacitances, and the calculation unit corresponds to each of at least three measured capacitances included in the output signal of the sensor unit. And calculating a regression line with respect to the calculated relative dielectric constant and the capacitance corresponding to each of the relative dielectric constants, or calculating at least three relative dielectric constants and the ratio. Calculate a regression line with respect to the reciprocal of the capacitance corresponding to each dielectric constant, calculate a corrected relative dielectric constant based on the regression line, and mix the mixed liquid based on the corrected relative dielectric constant It is characterized by calculating a ratio.
 検出対象である混合液体の誘電率を含む少なくとも3つの静電容量と、該静電容量それぞれに対応する少なくとも3つの比誘電率とに対する回帰直線、若しくは上記した静電容量の逆数と比誘電率とに対する回帰直線を求めることで、補正された比誘電率を算出し、補正された比誘電率に基づいて混合液体の混合比を算出する。すなわち、電極の汚れの影響が取り除かれた比誘電率に基づいて混合比を算出する。これにより、本発明に係る混合比算出装置は、混合比の検出精度の低下が抑制された混合比算出装置となっている。 A regression line for at least three capacitances including the dielectric constant of the liquid mixture to be detected and at least three relative dielectric constants corresponding to the respective capacitances, or the reciprocal of the capacitance and the relative dielectric constant described above. The corrected relative dielectric constant is calculated by obtaining a regression line with respect to and the mixing ratio of the mixed liquid is calculated based on the corrected relative dielectric constant. That is, the mixing ratio is calculated based on the relative dielectric constant from which the influence of electrode contamination is removed. Thereby, the mixture ratio calculation apparatus according to the present invention is a mixture ratio calculation apparatus in which a decrease in the detection accuracy of the mixture ratio is suppressed.
 混合液体の比誘電率、及び混合液体の混合比を算出するためのパラメータを記憶する構成としては、対をなす電極における真空中の静電容量と、混合液体に含まれる成分それぞれの比誘電率と、を記憶保持する記憶部を有する構成を採用することができる。なお、このような構成の場合、混合液体の温度を測定する温度測定部を有し、記憶部に、混合液体に含まれる成分それぞれの比誘電率の温度特性が記憶された構成が良い。これにより、混合液体の温度変化に応じて、混合液体の混合比を算出することができる。 The configuration for storing the relative dielectric constant of the mixed liquid and the parameter for calculating the mixed ratio of the mixed liquid includes the capacitance in vacuum at the paired electrodes and the relative dielectric constant of each component contained in the mixed liquid. And the structure which has a memory | storage part which memorize | stores and can be employ | adopted. In such a configuration, it is preferable to have a temperature measurement unit that measures the temperature of the mixed liquid, and the storage unit stores the temperature characteristics of the relative dielectric constant of each component contained in the mixed liquid. Thereby, the mixing ratio of the mixed liquid can be calculated according to the temperature change of the mixed liquid.
 例えば、対をなす電極の表面が、保護膜によって被覆・保護された構成が好ましい。これにより、混合液体による電極の腐食を抑制することができる。 For example, a configuration in which the surfaces of the paired electrodes are covered and protected by a protective film is preferable. Thereby, corrosion of the electrode by the mixed liquid can be suppressed.
 例えば、電極が櫛歯形状である構成が良い。これにより、平板形状の電極と比べて、電極間の対向面積を効率良く確保することができる。したがって、混合比算出装置の体格を小型化することができる。 For example, it is preferable that the electrode has a comb-teeth shape. Thereby, the opposing area between electrodes can be efficiently ensured compared with a flat electrode. Therefore, the size of the mixing ratio calculation device can be reduced.
 例えば、第1算出工程終了後、算出された少なくとも3つの比誘電率それぞれを比較する比較工程を行い、該比較工程において、少なくとも2つの比誘電率の値が同じ値を有する場合に、同じ値を有する比誘電率に基づいて、混合液体の混合比を算出する第5算出工程を行い、比較工程において、比誘電率それぞれが異なる値を有する場合に、第2算出工程、第3算出工程、及び第4算出工程を行うのが良い。第1算出工程を経ることで算出された少なくとも3つの比誘電率のうち、2つの比誘電率が同じ値を持つ場合、すなわち、2つの比誘電率が汚れの影響を受けていない場合、この2つの比誘電率の差分は、ゼロとなる。したがって、上記した比較工程を行うことで、差分がゼロとなる比誘電率、すなわち汚れの影響がない比誘電率を求めることができる。このように、汚れの影響を受けていない比誘電率が少なくとも2つ算出された場合、上記した第2算出工程と第3算出工程とを省くことができるので、算出部の処理速度を速めることができる。 For example, after completion of the first calculation step, a comparison step of comparing each of the calculated at least three relative dielectric constants is performed, and in the comparison step, when the values of at least two relative dielectric constants have the same value, the same value The fifth calculation step of calculating the mixing ratio of the mixed liquid is performed based on the relative dielectric constant having the following. When the relative dielectric constants have different values in the comparison step, the second calculation step, the third calculation step, And it is good to perform the 4th calculation process. If at least three relative dielectric constants calculated through the first calculation step have the same value, that is, if the two relative dielectric constants are not affected by dirt, this The difference between the two relative dielectric constants is zero. Therefore, by performing the above-described comparison step, it is possible to obtain a relative dielectric constant with which the difference becomes zero, that is, a relative dielectric constant without the influence of dirt. Thus, when at least two relative dielectric constants not affected by dirt are calculated, the second calculation step and the third calculation step described above can be omitted, so that the processing speed of the calculation unit can be increased. Can do.
 本発明の一つの特徴として、濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法であって、(N-1)点の異なる温度で前記混合流体の誘電率を測定し、前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の各温度で測定された前記混合流体の誘電率とから、前記各成分の濃度を算出することを特徴としている。 As one feature of the present invention, the concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (> 3 integer) known components, N-1) Measure the dielectric constant of the mixed fluid at different temperatures at point N, and determine the dielectric constant of each known component at each temperature at point (N-1) and each temperature at point (N-1). The concentration of each component is calculated from the measured dielectric constant of the mixed fluid.
 上記混合流体の濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を、それぞれの誘電率と温度特性が異なることを利用して検出するものである。各成分の濃度(存在割合)をa,a,・・・,aとすると、一つの等式a+a+・・・+a=1が成り立つ。また、上記混合流体の濃度検出方法においては、(N-1)点の異なる温度で混合流体の誘電率を測定しており、(N-1)個の混合流体の誘電率ε,ε,・・・,εN-1が得られる。測定した各温度での誘電率ε,ε,・・・,εN-1は、それぞれ、予め把握しておいた同温度における単一の各成分の誘電率と濃度の積を各成分について足し合わせたものに等しい。従って、これより(N-1)個の等式が成り立つ。このように、上記混合流体の濃度検出方法によれば、濃度a,a,・・・,aのN個の未知数に対して、上記した全部でN個の等式からなる連立方程式を立てることができ、該連立方程式を解くことで、濃度a,a,・・・,aを正確に決定することができる。 In the mixed fluid concentration detection method, the concentration of each component of the mixed fluid composed of N (> 3 integers) known components is detected by utilizing the different dielectric constants and temperature characteristics. Is. If the concentration (abundance ratio) of each component is a 1 , a 2 ,..., A N , one equation a 1 + a 2 +... + A N = 1 holds. In the above mixed fluid concentration detection method, the dielectric constants of the mixed fluid are measured at different temperatures at (N-1) points, and the dielectric constants ε 1 and ε 2 of (N-1) mixed fluids are measured. ,..., Ε N−1 is obtained. The measured dielectric constants ε 1 , ε 2 ,..., Ε N-1 are obtained by multiplying the product of the dielectric constant and the concentration of each single component at the same temperature that has been previously grasped. Equal to the sum of Therefore, (N-1) equations are established from this. Thus, according to the concentration detection method of the mixed fluid, simultaneous equations concentration a 1, a 2, · · ·, for N unknowns a N, of N equations in total as described above , And by solving the simultaneous equations, the concentrations a 1 , a 2 ,..., A N can be accurately determined.
 以上のようにして、上記混合流体の濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法であって、3種以上の成分で構成される混合流体の濃度を正確に検出することのできる混合流体の濃度検出方法とすることができる。 As described above, the mixed fluid concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (≧ 3) kinds of known components. It can be set as the mixed fluid density | concentration detection method which can detect correctly the density | concentration of the mixed fluid comprised by 3 or more types of components.
 上記混合流体の濃度検出方法において、例えば、前記Nが、3である場合には、前記各成分の濃度をそれぞれa1,a2,a3とし、前記2点の異なる温度をそれぞれT,Tとし、前記温度Tにおける各成分の誘電率をそれぞれεa1,εb1,εc1とし、前記温度Tにおける各成分の誘電率をそれぞれεa2,εb2,εc2とし、前記温度Tと温度Tにおける混合流体の誘電率をそれぞれε,εとしたとき、
(数式A) a1+a2+a3=1
(数式B) ε=εa1・a1+εb1・a2+εc1・a3
(数式C) ε=εa2・a1+εb2・a2+εc2・a3
から、前記各成分の濃度を算出することができる。
In concentration detection method of the mixed fluids, for example, the N is in the case of 3, the concentrations of each component were respectively a1, a2, a3, and different temperatures of the two points and T 1, T 2, respectively the temperatures T 1, respectively the dielectric constant of each component epsilon in a1, epsilon b1, and epsilon c1, the temperature T, respectively the dielectric constant of each component in the 2 ε a2, ε b2, and epsilon c2, and the temperatures T 1 When the dielectric constants of the mixed fluid at the temperature T 2 are ε 1 and ε 2 respectively,
(Formula A) a1 + a2 + a3 = 1
(Formula B) ε 1 = ε a1 · a1 + ε b1 · a2 + ε c1 · a3
(Formula C) ε 2 = ε a2 · a1 + ε b2 · a2 + ε c2 · a3
From the above, the concentration of each component can be calculated.
 上記混合流体の濃度検出方法は、水が混入する可能性がある内燃機関の混合燃料の濃度検出にも適用することができ、例えば、前記成分が、エタノール、ガソリンおよび水である場合に好適である。尚、ガソリンは数百種類の成分で構成されるが、いずれの成分も誘電率は略同一であり、ガソリンを1種類の成分として取り扱うことが可能である。また、前記成分が、脂肪酸メチルエステル、軽油および水であってもよい。 The mixed fluid concentration detection method can also be applied to the detection of the concentration of mixed fuel in an internal combustion engine in which water may be mixed. For example, the mixed fluid concentration detection method is suitable when the components are ethanol, gasoline, and water. is there. In addition, although gasoline is comprised by several hundred types of components, the dielectric constant of all the components is substantially the same, and it is possible to handle gasoline as one type of component. Moreover, the said component may be fatty acid methyl ester, light oil, and water.
 上記混合流体の濃度検出方法においては、前記混合流体の各温度における誘電率の測定において、直列接続された2個の容量検出素子を所定電圧の逆の搬送波で駆動し、前記2個の容量検出素子の接続点からの出力を帰還容量が付加されたC/V変換器に入力し、該C/V変換器の出力電圧から前記混合流体の各温度における誘電率を測定することが好ましい。 In the mixed fluid concentration detection method, in measuring the dielectric constant at each temperature of the mixed fluid, the two capacitance detection elements connected in series are driven by a carrier wave having a predetermined voltage and the two capacitance detections are performed. It is preferable to input the output from the connection point of the element to a C / V converter to which a feedback capacity is added, and measure the dielectric constant at each temperature of the mixed fluid from the output voltage of the C / V converter.
 これによれば、配線による寄生容量の影響をキャンセルできるため、1個の容量検出素子を用いる場合に較べてより高精度な誘電率測定が可能であり、各成分の濃度もより高精度に検出することができる。 According to this, since the influence of the parasitic capacitance due to the wiring can be canceled, the dielectric constant can be measured with higher accuracy than when one capacitance detection element is used, and the concentration of each component can be detected with higher accuracy. can do.
 本発明の一つの特徴として、濃度検出装置は、上記した記混合流体の濃度検出方法を実施するための、混合流体の濃度検出装置である。 As one feature of the present invention, the concentration detecting device is a mixed fluid concentration detecting device for carrying out the above-described mixed fluid concentration detecting method.
 例えば、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出装置は、前記混合流体の温度を異なる(N-1)点で測定可能な温度測定部と、前記(N-1)点の異なる温度で前記混合流体の誘電率を測定可能な誘電率測定部と、メモリに保存された前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の異なる温度で測定された前記混合流体の誘電率とから、前記各成分の濃度を算出する濃度演算部とを有してなることを特徴している。 For example, a concentration detection device for a mixed fluid that detects the concentration of each component of a mixed fluid composed of N (> 3 integers) known components may change the temperature of the mixed fluid at different points (N−1). A measurable temperature measuring unit; a dielectric constant measuring unit capable of measuring a dielectric constant of the mixed fluid at different temperatures of the (N-1) points; and each temperature of the (N-1) points stored in a memory. And a concentration calculation unit for calculating the concentration of each component from the dielectric constant of each of the components measured at different temperatures at the (N-1) point. It is characterized by that.
 これによって、混合流体の濃度検出方法を実施することができる。 This makes it possible to implement a method for detecting the concentration of the mixed fluid.
 上記混合流体の濃度検出装置においては、前記濃度検出装置が、前記混合流体の前記(N-1)点の異なる温度を形成するためのヒータ部を有してなることが好ましい。 In the mixed fluid concentration detection device, it is preferable that the concentration detection device has a heater unit for forming different temperatures of the (N-1) point of the mixed fluid.
 (N-1)点の異なる温度で混合流体の誘電率を測定する場合、混合流体の温度が時間的に変化するのを待って測定することも可能である。しかしながら、上記ヒータ部を有する構成とすることで、混合流体の温度を、適宜、異なる(N-1)点の温度に変化させることができる。従って、これによれば、混合流体の各成分の濃度を適宜検出することが可能である。 When measuring the dielectric constant of a fluid mixture at different temperatures at (N-1) points, it is possible to wait for the temperature of the fluid mixture to change over time. However, with the configuration having the heater section, the temperature of the mixed fluid can be appropriately changed to a different (N-1) point temperature. Therefore, according to this, it is possible to appropriately detect the concentration of each component of the mixed fluid.
 上記混合流体の濃度検出装置においては、前記温度測定部の構成要素である温度検出素子および前記誘電率測定部の構成要素である容量検出素子が、一つのチップに形成されてなることが好ましい。これによれば、例えば混合流体を流す配管に温度検出素子と容量検出素子をそれぞれ別部品として組み込む場合に較べて、小型化とコストダウンを図ることができる。 In the mixed fluid concentration detection device, it is preferable that the temperature detection element as a component of the temperature measurement unit and the capacitance detection element as a component of the dielectric constant measurement unit are formed on one chip. According to this, compared with the case where a temperature detection element and a capacity | capacitance detection element are each incorporated as a separate component in piping which flows mixed fluid, for example, size reduction and a cost reduction can be achieved.
 さらに、上記したヒータ部を有する構成とする場合には、前記温度測定部の構成要素である温度検出素子、前記誘電率測定部の構成要素である容量検出素子および前記ヒータ部の構成要素であるヒータ素子が、一つのチップに形成されてなることが、小型化とコストダウンのために好ましい。 Furthermore, when it is set as the structure which has an above-described heater part, it is the temperature detection element which is a component of the said temperature measurement part, the capacity | capacitance detection element which is a component of the said dielectric constant measurement part, and the component of the said heater part It is preferable for the heater element to be formed on one chip for miniaturization and cost reduction.
 尚、この場合には、前記チップにおいて、前記ヒータ素子と前記温度検出素子および前記容量検出素子を熱的に分離するように、溝部が形成されてなることが好ましい。これによれば、ヒータ素子から温度検出素子および容量検出素子へのチップを介した熱伝導を抑制できるため、上記溝部が形成されていない場合に較べて、混合流体の温度と誘電率をより正確に測定することができ、各成分の濃度をより正確に検出することができる。 In this case, it is preferable that a groove is formed in the chip so as to thermally separate the heater element, the temperature detection element, and the capacitance detection element. According to this, since heat conduction from the heater element to the temperature detection element and the capacitance detection element through the chip can be suppressed, the temperature and dielectric constant of the mixed fluid can be more accurately compared to the case where the groove is not formed. The concentration of each component can be detected more accurately.
 チップに容量検出素子を形成する場合には、前記容量検出素子が、一対の櫛歯状電極からなることが好ましい。これによれば、チップ上に形成された該一対の櫛歯状電極間に混合流体を容易に導くことができると共に、櫛歯密度を高めて検出容量値を増大し、誘電率の測定精度を高めることができる。 When the capacitance detection element is formed on the chip, the capacitance detection element is preferably composed of a pair of comb-like electrodes. According to this, the mixed fluid can be easily guided between the pair of comb-like electrodes formed on the chip, and the detection capacitance value is increased by increasing the comb-tooth density, thereby improving the dielectric constant measurement accuracy. Can be increased.
 また、上記したヒータ部を有する構成とする場合には、前記混合流体の上流側に配置された前記ヒータ部の構成要素であるヒータ素子と、前記混合流体の下流側に配置された前記温度測定部の構成要素である温度検出素子および前記誘電率測定部の構成要素である容量検出素子との間に、前記混合流体の攪拌手段が設けられてなる構成とすることが好ましい。 Moreover, when it is set as the structure which has the above-mentioned heater part, the temperature measurement arrange | positioned in the downstream of the said heater element which is a component of the said heater part arrange | positioned in the upstream of the said mixed fluid, and the said mixed fluid Preferably, the mixed fluid stirring means is provided between a temperature detection element that is a component of the unit and a capacitance detection element that is a component of the dielectric constant measurement unit.
 これによれば、例えばフィン、メッシュ、フィルタ等の前記攪拌手段により、ヒータ素子を用いた加熱による混合流体の温度ムラを解消して、混合流体の温度と誘電率をより正確に測定することができる。従って、混合流体の各成分の濃度を、より正確に検出することができる。特に、電極寸法の大きな容量検出素子の場合には、電極間の混合流体の体積が大きいことから、前記攪拌手段を用いて電極間の混合流体の温度を均一にする必要がある。 According to this, for example, by using the stirring means such as fins, meshes, filters, etc., temperature unevenness of the mixed fluid due to heating using the heater element can be eliminated, and the temperature and dielectric constant of the mixed fluid can be measured more accurately. it can. Therefore, the concentration of each component of the mixed fluid can be detected more accurately. In particular, in the case of a capacitance detection element having a large electrode size, since the volume of the fluid mixture between the electrodes is large, it is necessary to make the temperature of the fluid mixture between the electrodes uniform using the stirring means.
 上記混合流体の濃度検出装置においては、前記誘電率測定部の構成要素である容量検出素子が、一対の電極からなり、該電極の一方が、前記温度測定部の構成要素である温度検出素子を兼ねる構成とすることもできる。これによれば、さらなる小型化とコストダウンが可能である。 In the mixed fluid concentration detection device, the capacitance detection element that is a component of the dielectric constant measurement unit includes a pair of electrodes, and one of the electrodes includes a temperature detection element that is a component of the temperature measurement unit. It can also be configured to double. According to this, further downsizing and cost reduction are possible.
 上記混合流体の濃度検出装置においては、前記誘電率測定部が、直列接続された2個の容量検出素子と帰還容量が付加されたC/V変換器とを有してなり、前記混合流体の各温度における誘電率の測定において、前記2個の容量検出素子を所定電圧の逆の搬送波で駆動し、前記2個の容量検出素子の接続点からの出力を前記C/V変換器に入力し、該C/V変換器の出力電圧から前記混合流体の各温度における誘電率を測定することが好ましい。 In the mixed fluid concentration detection device, the dielectric constant measurement unit includes two capacitance detection elements connected in series and a C / V converter to which a feedback capacitance is added. In measuring the dielectric constant at each temperature, the two capacitance detection elements are driven by a carrier wave having a reverse voltage, and the output from the connection point of the two capacitance detection elements is input to the C / V converter. The dielectric constant at each temperature of the fluid mixture is preferably measured from the output voltage of the C / V converter.
 該誘電率測定部によれば、前述したように、配線による寄生容量の影響をキャンセルできるため、1個の容量検出素子を用いる場合に較べてより高精度な誘電率測定が可能であり、各成分の濃度もより高精度に検出することができる。 According to the dielectric constant measurement unit, as described above, since the influence of the parasitic capacitance due to the wiring can be canceled, the dielectric constant can be measured with higher accuracy than when one capacitance detection element is used. The concentration of the component can also be detected with higher accuracy.
 上記混合流体の濃度検出装置において、例えば、前記Nが、3である場合には、前記濃度演算部が、前記各成分の濃度をそれぞれa1,a2,a3とし、前記2点の異なる温度をそれぞれT,Tとし、前記温度Tにおける各成分の誘電率をそれぞれεa1,εb1,εc1とし、前記温度Tにおける各成分の誘電率をそれぞれεa2,εb2,εc2とし、前記温度Tと温度Tにおける混合流体の誘電率をそれぞれε,εとしたとき、
(数式A) a1+a2+a3=1
(数式B) ε=εa1・a1+εb1・a2+εc1・a3
(数式C) ε=εa2・a1+εb2・a2+εc2・a3
から、前記各成分の濃度を算出する。
In the mixed fluid concentration detection device, for example, when N is 3, the concentration calculation unit sets the concentrations of the components as a1, a2, and a3, respectively, and sets the two different temperatures. T 1 and T 2 , the dielectric constants of the components at the temperature T 1 are ε a1 , ε b1 and ε c1 , respectively, and the dielectric constants of the components at the temperature T 2 are ε a2 , ε b2 and ε c2 , respectively. When the dielectric constants of the mixed fluid at the temperature T 1 and the temperature T 2 are ε 1 and ε 2 , respectively,
(Formula A) a1 + a2 + a3 = 1
(Formula B) ε 1 = ε a1 · a1 + ε b1 · a2 + ε c1 · a3
(Formula C) ε 2 = ε a2 · a1 + ε b2 · a2 + ε c2 · a3
From the above, the concentration of each component is calculated.
 上記混合流体の濃度検出装置は、前述したように水が混入する可能性がある内燃機関の混合燃料の濃度検出に好適であり、例えば、前記成分が、エタノール、ガソリンおよび水である場合、あるいは、前記成分が、脂肪酸メチルエステル、軽油および水である場合に好適である。 The mixed fluid concentration detection device is suitable for detecting the concentration of a mixed fuel of an internal combustion engine in which water may be mixed as described above. For example, when the components are ethanol, gasoline and water, or Suitable when the components are fatty acid methyl ester, light oil and water.
 以上のようにして、上記混合流体の濃度検出方法および検出装置は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法および検出装置であって、3種以上の成分で構成される混合流体の濃度を正確に検出することのできる混合流体の濃度検出方法および検出装置となっている。 As described above, the mixed fluid concentration detection method and the detection apparatus detect the concentration of each component of the mixed fluid composed of N (> 3 integer) types of known components. And it is a detection apparatus, It is the density | concentration detection method and detection apparatus of the mixed fluid which can detect correctly the density | concentration of the mixed fluid comprised by 3 or more types of components.
本発明の第1実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 1st Embodiment of this invention. 濃度センサ装置の配管部材への取り付け状態を示す模式図である。It is a schematic diagram which shows the attachment state to the piping member of a concentration sensor apparatus. 本発明の第2実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 2nd Embodiment of this invention. 本発明の第3実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 3rd Embodiment of this invention. 本発明の第4実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 4th Embodiment of this invention. 本発明の第5実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 5th Embodiment of this invention. 本発明の第6実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 6th Embodiment of this invention. 本発明の第7実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 7th Embodiment of this invention. 本発明の第8実施形態による濃度センサ装置の概略を示す断面図である。It is sectional drawing which shows the outline of the density | concentration sensor apparatus by 8th Embodiment of this invention. 本発明の第9実施形態による濃度センサ装置を示す概略図であり、(A)は平面図であり、(B)は(A)のA-A線における断面図である。It is the schematic which shows the density | concentration sensor apparatus by 9th Embodiment of this invention, (A) is a top view, (B) is sectional drawing in the AA of (A). 本発明の第10実施形態による濃度センサ装置を示す図10(B)に相当する図である。It is a figure equivalent to FIG.10 (B) which shows the density | concentration sensor apparatus by 10th Embodiment of this invention. 本発明の第11実施形態による濃度センサ装置を示す概略図であり、(A)は平面図であり、(B)は(A)のA-A線における断面図である。It is the schematic which shows the density | concentration sensor apparatus by 11th Embodiment of this invention, (A) is a top view, (B) is sectional drawing in the AA of (A). 本発明の第12実施形態による濃度センサ装置を示す概略図であり、(A)は図10(B)に相当する図、(B)は(A)の矢印B方向からの矢視図である。It is the schematic which shows the density | concentration sensor apparatus by 12th Embodiment of this invention, (A) is a figure equivalent to FIG.10 (B), (B) is an arrow line view from the arrow B direction of (A). . 本発明の第13実施形態による濃度センサ装置の配管部材への取り付け状態を示す模式図である。It is a schematic diagram which shows the attachment state to the piping member of the density | concentration sensor apparatus by 13th Embodiment of this invention. 本発明の第14実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 14th Embodiment of this invention. 第14実施形態において帯電部および捕捉部へ印加する電圧の変化を示す模式図である。It is a schematic diagram which shows the change of the voltage applied to the charging part and the capture | acquisition part in 14th Embodiment. 本発明の第15実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 15th Embodiment of this invention. (A)は図17のA-A線における断面図、(B)は図17のB-B線における断面図である。(A) is a cross-sectional view taken along line AA in FIG. 17, and (B) is a cross-sectional view taken along line BB in FIG. 本発明の第15実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 15th Embodiment of this invention. (A)は本発明の第16実施形態による濃度センサ装置を示す模式図、(B)は(A)のB-B線における断面図である。(A) is a schematic diagram showing a concentration sensor device according to a sixteenth embodiment of the present invention, and (B) is a sectional view taken along line BB of (A). 本発明の第16実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 16th Embodiment of this invention. 本発明の第17実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 17th Embodiment of this invention. 本発明の第17実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 17th Embodiment of this invention. 本発明の第18実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 18th Embodiment of this invention. 本発明の第18実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 18th Embodiment of this invention. 本発明の第19実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram showing a concentration sensor device according to a nineteenth embodiment of the present invention. 本発明の第19実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram showing a concentration sensor device according to a nineteenth embodiment of the present invention. 本発明の第20実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 20th Embodiment of this invention. 本発明の第20実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 20th Embodiment of this invention. 本発明の第21実施形態による濃度センサ装置を示す模式図である。It is a schematic diagram which shows the density | concentration sensor apparatus by 21st Embodiment of this invention. (A)は本発明の第22実施形態による濃度センサ装置の断面を示す模式図、(B)は(A)の矢印A方向からの矢視図である。(A) is a schematic diagram which shows the cross section of the density | concentration sensor apparatus by 22nd Embodiment of this invention, (B) is an arrow line view from the arrow A direction of (A). 本発明の第23実施形態による濃度センサ装置を示す図31(A)に相当する図である。It is a figure equivalent to FIG. 31 (A) which shows the density | concentration sensor apparatus by 23rd Embodiment of this invention. 本発明の第24実施形態による濃度センサ装置を示す図31(A)に相当する図である。It is a figure equivalent to FIG. 31 (A) which shows the density | concentration sensor apparatus by 24th Embodiment of this invention. 本発明の第25実施形態による濃度センサ装置を示す図31(A)に相当する図である。It is a figure equivalent to FIG. 31 (A) which shows the density | concentration sensor apparatus by 25th Embodiment of this invention. 図34の矢印A方向からの矢視図である。It is an arrow view from the arrow A direction of FIG. 本発明の第25実施形態による濃度センサ装置の変形例を示す図35に相当する図である。It is a figure equivalent to FIG. 35 which shows the modification of the density | concentration sensor apparatus by 25th Embodiment of this invention. 本発明の第26実施形態による濃度センサ装置の図31(A)に相当する図である。It is a figure equivalent to FIG. 31 (A) of the density | concentration sensor apparatus by 26th Embodiment of this invention. 本発明の第26実施形態による濃度センサ装置の変形例を示す図35に相当する図である。It is a figure equivalent to FIG. 35 which shows the modification of the density | concentration sensor apparatus by 26th Embodiment of this invention. 第27実施形態に係る混合比算出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the mixture ratio calculation apparatus which concerns on 27th Embodiment. 混合比算出装置の電極の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the electrode of a mixing ratio calculation apparatus. 静電容量と比誘電率の関係を示すグラフである。It is a graph which shows the relationship between an electrostatic capacitance and a dielectric constant. エタノール、ガソリンおよび水の各成分について、比誘電率の温度特性を示したグラフである。It is the graph which showed the temperature characteristic of the dielectric constant about each component of ethanol, gasoline, and water. 図43(A)は、第28実施形態に係る濃度検出装置の概略構成を示した図で、図43(B)は、図43(A)の濃度検出装置におけるセンサ部の構成の一例で、センサチップを模式的に示した上面図で、図43(C)は、図43(B)の容量検出素子の一例である、容量検出素子を模式的に示した上面図である。FIG. 43A is a diagram illustrating a schematic configuration of the concentration detection device according to the twenty-eighth embodiment, and FIG. 43B is an example of a configuration of a sensor unit in the concentration detection device of FIG. FIG. 43C is a top view schematically showing the capacitance detection element as an example of the capacitance detection element of FIG. 43B. 図44(A)は、濃度検出装置におけるセンサ部の別の構成例のセンサチップを模式的に示した上面図で、図44(B)は、混合流体の流れ方向に沿ってセンサチップの温度分布を示したグラフで、図44(C)は、混合流体の流れ方向に沿ったセンサチップの断面模式図である。FIG. 44A is a top view schematically showing a sensor chip of another configuration example of the sensor unit in the concentration detection device, and FIG. 44B shows the temperature of the sensor chip along the flow direction of the mixed fluid. FIG. 44C is a graph showing the distribution, and FIG. 44C is a schematic cross-sectional view of the sensor chip along the flow direction of the mixed fluid. 濃度検出装置の別の構成例のセンサチップを模式的に示した上面図である。It is the top view which showed typically the sensor chip of another structural example of a density | concentration detection apparatus. 濃度検出装置における誘電率測定部の構成例を示す回路ブロック図である。It is a circuit block diagram which shows the structural example of the dielectric constant measurement part in a density | concentration detection apparatus. 図46に示す2個の容量検出素子を模式的に示した上面図である。FIG. 47 is a top view schematically showing two capacitance detection elements shown in FIG. 46. 図48(A),図48(B)は、濃度検出装置におけるセンサ部の別の構成例で、それぞれ、センサ部品を模式的に示した断面図である。48 (A) and 48 (B) are different configuration examples of the sensor unit in the concentration detection device, and are sectional views schematically showing sensor components. 電極寸法の大きな容量検出素子を用いる場合のセンサチップを模式的に示した上面図である。It is the top view which showed typically the sensor chip in the case of using a capacitance detection element with a large electrode dimension.
 以下、濃度センサ装置の複数の実施形態を図面に基づいて説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。以下に説明する濃度センサ装置は、例えば液体としての混合燃料を適用し、この混合燃料に含まれる特定成分である生物由来のアルコールの濃度を検出する。
(第1実施形態)
 第1実施形態による濃度センサ装置を図1に示す。第1実施形態の濃度センサ装置10は、図1に示すように基板11、センサ部12および圧電素子部13を備えている。基板11は、例えばシリコンなどの半導体で形成されている。濃度センサ装置10は、図2に示すように混合燃料が流れる配管部材100に取り付けられる。濃度センサ装置10は、配管部材100の内側において図2(A)に示すように天部、図2(B)に示すように底部、あるいは図2(C)に示すように側部などに設けられる。
Hereinafter, a plurality of embodiments of a concentration sensor device will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted. The concentration sensor device described below applies, for example, a mixed fuel as a liquid, and detects the concentration of a biological alcohol that is a specific component contained in the mixed fuel.
(First embodiment)
The concentration sensor device according to the first embodiment is shown in FIG. The concentration sensor device 10 according to the first embodiment includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13 as shown in FIG. 1. The substrate 11 is made of a semiconductor such as silicon, for example. The concentration sensor device 10 is attached to a piping member 100 through which a mixed fuel flows as shown in FIG. The concentration sensor device 10 is provided inside the piping member 100 at the top as shown in FIG. 2 (A), at the bottom as shown in FIG. 2 (B), or at the side as shown in FIG. 2 (C). It is done.
 図1に示すようにセンサ部12は、基板11の一方の面側に設けられている。センサ部12と基板11との間には、絶縁膜14が形成されている。絶縁膜14は、例えばシリコン酸化膜である。センサ部12は、複数の電極15を有している。例えばセンサ部12の各電極15間における誘電率や比誘電率は、混合燃料に含まれるアルコールの濃度によって変化する。センサ部12は、各電極15間における誘電率や比誘電率を検出することにより、混合燃料に含まれるアルコールの濃度すなわち石油由来の燃料と生物由来の燃料との混合比を検出する。センサ部12は、公知の構成と同様であり、詳細な説明を省略する。センサ部12は、保護膜16によって保護されている。保護膜16は、例えばシリコン窒化膜などによって形成されている。なお、センサ部12は、誘電率や比誘電率を用いて濃度を検出するだけでなく、例えば電極15間の静電容量やインピーダンスに基づいて電気的に濃度を検出してもよい。また、液体に含まれる特定成分の濃度は、例えば光の屈折率や特定波長の光の透過性などから光学的に検出する構成としてもよい。本開示では、センサ部12は電極15間の誘電率に基づいて液体に含まれる特定成分の濃度を検出する場合について説明する。 As shown in FIG. 1, the sensor unit 12 is provided on one surface side of the substrate 11. An insulating film 14 is formed between the sensor unit 12 and the substrate 11. The insulating film 14 is, for example, a silicon oxide film. The sensor unit 12 has a plurality of electrodes 15. For example, the dielectric constant and relative dielectric constant between the electrodes 15 of the sensor unit 12 vary depending on the concentration of alcohol contained in the mixed fuel. The sensor unit 12 detects the dielectric constant or relative dielectric constant between the electrodes 15 to detect the concentration of alcohol contained in the mixed fuel, that is, the mixing ratio of petroleum-derived fuel and biological fuel. The sensor unit 12 is the same as a known configuration, and detailed description thereof is omitted. The sensor unit 12 is protected by a protective film 16. The protective film 16 is made of, for example, a silicon nitride film. The sensor unit 12 may not only detect the concentration using the dielectric constant or the relative dielectric constant, but may also electrically detect the concentration based on, for example, the capacitance or impedance between the electrodes 15. Further, the concentration of the specific component contained in the liquid may be optically detected from, for example, the refractive index of light or the transmittance of light having a specific wavelength. In the present disclosure, a case where the sensor unit 12 detects the concentration of a specific component contained in the liquid based on the dielectric constant between the electrodes 15 will be described.
 圧電素子部13は、基板11のセンサ部12とは反対の面側に設けられている。圧電素子部13と基板11との間には、絶縁膜17が形成されている。絶縁膜17は、例えばシリコン酸化膜である。圧電素子部13は、例えば図示しない圧電体を電極で挟み込んだ構造を有している。圧電素子部13は、通電することにより振動する。 The piezoelectric element portion 13 is provided on the surface of the substrate 11 opposite to the sensor portion 12. An insulating film 17 is formed between the piezoelectric element portion 13 and the substrate 11. The insulating film 17 is, for example, a silicon oxide film. The piezoelectric element section 13 has a structure in which a piezoelectric body (not shown) is sandwiched between electrodes, for example. The piezoelectric element portion 13 vibrates when energized.
 濃度センサ装置10は、回路部18を備えている。回路部18は、基板11においてセンサ部12と同一の面側に設けられている。回路部18は、例えば図示しない処理回路および接続パッドなどを有している。処理回路は、例えばセンサ部12から出力される信号や圧電素子部13へ入力される信号を処理する回路を構成している。接続パッドは、濃度センサ装置10と外部の接続端子とを接続するボンディングワイヤなどが接続される。回路部18は、センサ部12と同一の面側にセンサ部12と隣接して設けられている。回路部18は、センサ部12と同様にシリコン窒化膜からなる保護膜16で保護されている。 The concentration sensor device 10 includes a circuit unit 18. The circuit unit 18 is provided on the same surface side as the sensor unit 12 in the substrate 11. The circuit unit 18 includes, for example, a processing circuit (not shown) and connection pads. The processing circuit constitutes a circuit that processes, for example, a signal output from the sensor unit 12 or a signal input to the piezoelectric element unit 13. The connection pad is connected to a bonding wire or the like that connects the concentration sensor device 10 to an external connection terminal. The circuit unit 18 is provided adjacent to the sensor unit 12 on the same surface side as the sensor unit 12. Similar to the sensor unit 12, the circuit unit 18 is protected by a protective film 16 made of a silicon nitride film.
 圧電素子部13は、基板11を貫く貫通電極19によって回路部18と電気的に接続している。圧電素子部13は、回路部18からの信号に基づいて振動する。圧電素子部13と回路部18とを貫通電極19で接続することにより、貫通電極19は基板11の外側に露出しない。上述の図2で示したように、濃度センサ装置10は、配管部材100が形成する燃料通路101の内側に設けられる。そのため、濃度センサ装置10は、燃料通路101を流れる混合燃料に晒される。アルコールを含む混合燃料は、水などの金属を腐食させる成分を含みやすい。図1に示すように貫通電極19を基板11の内側に設けることにより、貫通電極19は燃料と接触しにくくなる。その結果、混合燃料に晒される場合でも、貫通電極19の腐食や摩耗が低減され、貫通電極19の耐久性が向上する。 The piezoelectric element portion 13 is electrically connected to the circuit portion 18 by a through electrode 19 penetrating the substrate 11. The piezoelectric element unit 13 vibrates based on a signal from the circuit unit 18. By connecting the piezoelectric element portion 13 and the circuit portion 18 with the through electrode 19, the through electrode 19 is not exposed to the outside of the substrate 11. As shown in FIG. 2 described above, the concentration sensor device 10 is provided inside the fuel passage 101 formed by the piping member 100. Therefore, the concentration sensor device 10 is exposed to the mixed fuel flowing through the fuel passage 101. A mixed fuel containing alcohol tends to contain a component that corrodes a metal such as water. As shown in FIG. 1, by providing the through electrode 19 inside the substrate 11, the through electrode 19 becomes difficult to come into contact with the fuel. As a result, even when exposed to the mixed fuel, the corrosion and wear of the through electrode 19 are reduced, and the durability of the through electrode 19 is improved.
 第1実施形態では、通電によって圧電素子部13が振動すると、圧電素子部13と一体の基板11およびセンサ部12も振動する。これにより、混合燃料に晒されるセンサ部12に付着した混合燃料中の異物は、圧電素子部13の振動にともなうセンサ部12の振動によってセンサ部12からの脱離が促進される。したがって、センサ部12への異物の付着が低減され、混合燃料に含まれるアルコール濃度の検出精度を高めることができる。また、異物を落とす周波数は異物の大きさと同等以下の波長が望ましい。例えば、異物を脱離させるための圧電素子部13の振動の波長は、異物の寸法以下である。 In the first embodiment, when the piezoelectric element unit 13 vibrates by energization, the substrate 11 and the sensor unit 12 integrated with the piezoelectric element unit 13 also vibrate. Thereby, the foreign matter in the mixed fuel adhering to the sensor unit 12 exposed to the mixed fuel is promoted to be detached from the sensor unit 12 by the vibration of the sensor unit 12 accompanying the vibration of the piezoelectric element unit 13. Therefore, the adhesion of foreign matter to the sensor unit 12 is reduced, and the detection accuracy of the alcohol concentration contained in the mixed fuel can be increased. Further, the frequency at which the foreign matter is dropped is preferably a wavelength equal to or smaller than the size of the foreign matter. For example, the vibration wavelength of the piezoelectric element portion 13 for detaching the foreign matter is equal to or smaller than the size of the foreign matter.
 また、第1実施形態では、基板11においてセンサ部12と反対の面側に圧電素子部13を設けている。そのため、センサ部12が圧電素子部13の配置を妨げたり、圧電素子部13によってセンサ部12の配置が妨げられることはない。その結果、圧電素子部13の設置面積が十分に確保される。したがって、体格の大型化を招くことなく、圧電素子部13の振動面積を確保することができる。さらに、半導体装置の製造プロセスにおいて、センサ部12と圧電素子部13とを別個独立した工程で形成可能である。したがって、製造工程を簡略化することができる。 In the first embodiment, the piezoelectric element portion 13 is provided on the surface of the substrate 11 opposite to the sensor portion 12. Therefore, the sensor unit 12 does not hinder the arrangement of the piezoelectric element unit 13, and the piezoelectric element unit 13 does not hinder the arrangement of the sensor unit 12. As a result, a sufficient installation area of the piezoelectric element portion 13 is ensured. Therefore, the vibration area of the piezoelectric element portion 13 can be ensured without increasing the size of the physique. Furthermore, in the semiconductor device manufacturing process, the sensor unit 12 and the piezoelectric element unit 13 can be formed in separate and independent processes. Therefore, the manufacturing process can be simplified.
 さらに、第1実施形態では、圧電素子部13と回路部18とを接続する貫通電極19は基板11を貫いている。そのため、貫通電極19は、水分などを含む混合燃料に晒されにくい。したがって、貫通電極19の腐食や損傷を低減することができ、貫通電極19の耐久性を高めることができる。
(第2、第3実施形態)
 第2、第3実施形態による濃度センサ装置をそれぞれ図3または図4に示す。
Furthermore, in the first embodiment, the through electrode 19 that connects the piezoelectric element portion 13 and the circuit portion 18 penetrates the substrate 11. Therefore, the through electrode 19 is not easily exposed to the mixed fuel containing moisture. Therefore, corrosion and damage of the through electrode 19 can be reduced, and durability of the through electrode 19 can be improved.
(Second and third embodiments)
The concentration sensor devices according to the second and third embodiments are shown in FIG. 3 and FIG. 4, respectively.
 第2実施形態では、図3に示すようにセンサ部12および圧電素子部13は基板11の同一の面側に設けられている。センサ部12および圧電素子部13を基板11の同一の面側に設けると、センサ部12および圧電素子部13の設置面積を確保すると体格の大型化を招いたり、体格を維持すると圧電素子部13の振動面積の減少を招いたりする。一方、センサ部12および圧電素子部13を基板11の同一の面側に設けることにより、センサ部12と圧電素子部13とが近接して配置される。したがって、圧電素子部13の振動によってセンサ部12が直接振動し、異物の脱離をより促進することができる。 In the second embodiment, as shown in FIG. 3, the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11. When the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11, if the installation area of the sensor unit 12 and the piezoelectric element unit 13 is ensured, the size of the physique is increased, and if the physique is maintained, the piezoelectric element unit 13 is maintained. The vibration area may be reduced. On the other hand, by providing the sensor unit 12 and the piezoelectric element unit 13 on the same surface side of the substrate 11, the sensor unit 12 and the piezoelectric element unit 13 are arranged close to each other. Therefore, the sensor unit 12 directly vibrates due to the vibration of the piezoelectric element unit 13, and the detachment of the foreign matter can be further promoted.
 第3実施形態では、図4に示すように濃度センサ装置10は、基板11の一方の面側に絶縁膜17を挟んで絶縁体層21を備えている。絶縁膜17は上述のようにシリコン酸化膜で形成され、絶縁体層21はシリコン窒化膜で形成されている。圧電素子部13は、絶縁膜17の基板11とは反対側の面に設けられている。絶縁体層21は、絶縁膜17に設けられた圧電素子部13を覆っている。この絶縁体層21の基板11とは反対の面側にセンサ部12が設けられている。このような構成により、圧電素子部13は、基板11とセンサ部12との間に配置される。 In the third embodiment, as shown in FIG. 4, the concentration sensor device 10 includes an insulator layer 21 on one surface side of the substrate 11 with an insulating film 17 interposed therebetween. The insulating film 17 is formed of a silicon oxide film as described above, and the insulator layer 21 is formed of a silicon nitride film. The piezoelectric element portion 13 is provided on the surface of the insulating film 17 opposite to the substrate 11. The insulator layer 21 covers the piezoelectric element portion 13 provided on the insulating film 17. The sensor unit 12 is provided on the surface of the insulator layer 21 opposite to the substrate 11. With such a configuration, the piezoelectric element unit 13 is disposed between the substrate 11 and the sensor unit 12.
 第3実施形態では、圧電素子部13を基板11とセンサ部12との間に設けることにより、圧電素子部13およびセンサ部12の配置が互いに妨げられない。また、圧電素子部13を基板11とセンサ部12との間に設けることにより、センサ部12と圧電素子部13とは近接して配置される。したがって、センサ部12および圧電素子部13の形成工程は複雑になるものの、圧電素子部13による振動面積の確保とセンサ部12および圧電素子部13の近接した配置とを両立して達成することができる。
(第4実施形態)
 第4実施形態による濃度センサ装置を図5に示す。
In 3rd Embodiment, by providing the piezoelectric element part 13 between the board | substrate 11 and the sensor part 12, arrangement | positioning of the piezoelectric element part 13 and the sensor part 12 is not prevented mutually. Further, by providing the piezoelectric element portion 13 between the substrate 11 and the sensor portion 12, the sensor portion 12 and the piezoelectric element portion 13 are disposed close to each other. Therefore, although the formation process of the sensor unit 12 and the piezoelectric element unit 13 is complicated, it is possible to achieve both the securing of the vibration area by the piezoelectric element unit 13 and the close arrangement of the sensor unit 12 and the piezoelectric element unit 13. it can.
(Fourth embodiment)
FIG. 5 shows a concentration sensor device according to the fourth embodiment.
 図5に示すように第4実施形態による濃度センサ装置10は、基板11に設けられている凹部22を備えている。凹部22は、基板11の一方の面側から他方の面側へ窪んだダイアフラム状に形成されている。センサ部12および回路部18は、基板11の平坦な側すなわち凹部22とは反対の面側に設けられている。圧電素子部13は、凹部22の開口側の端面に沿って設けられている。これにより、圧電素子部13は、凹部22を形成する基板11の開口側の面を覆った状態となっている。その結果、圧電素子部13は、基板11を挟んでセンサ部12および回路部18と反対の面側に設けられている。 As shown in FIG. 5, the concentration sensor device 10 according to the fourth embodiment includes a recess 22 provided in the substrate 11. The recess 22 is formed in a diaphragm shape that is recessed from one surface side of the substrate 11 to the other surface side. The sensor unit 12 and the circuit unit 18 are provided on the flat side of the substrate 11, that is, the surface side opposite to the recess 22. The piezoelectric element portion 13 is provided along the end surface on the opening side of the recess 22. As a result, the piezoelectric element portion 13 is in a state of covering the opening side surface of the substrate 11 on which the recess 22 is formed. As a result, the piezoelectric element portion 13 is provided on the surface side opposite to the sensor portion 12 and the circuit portion 18 with the substrate 11 interposed therebetween.
 濃度センサ装置10は、基板11を板厚方向へ貫く貫通電極19を備えている。貫通電極19は、一方の端部が回路部18に接続され、他方の端部が圧電素子部13に接続している。これにより、圧電素子部13は、貫通電極19を経由して回路部18と電気的に接続している。 The concentration sensor device 10 includes a through electrode 19 that penetrates the substrate 11 in the thickness direction. The through electrode 19 has one end connected to the circuit unit 18 and the other end connected to the piezoelectric element unit 13. As a result, the piezoelectric element portion 13 is electrically connected to the circuit portion 18 via the through electrode 19.
 第4実施形態では、凹部22に沿って圧電素子部13を設けることにより、圧電素子部13とセンサ部12との距離が低減される。これに加え、基板11を凹部22によりダイアフラム形状に形成し、この基板11を圧電素子部13によって振動させることにより、基板11に設けられたセンサ部12の振動がより促進される。したがって、センサ部12に付着した異物の脱離をより促進することができる。
(第5実施形態)
 第5実施形態による濃度センサ装置を図6に示す。
In the fourth embodiment, by providing the piezoelectric element portion 13 along the recess 22, the distance between the piezoelectric element portion 13 and the sensor portion 12 is reduced. In addition to this, the substrate 11 is formed into a diaphragm shape by the concave portion 22, and the substrate 11 is vibrated by the piezoelectric element portion 13, whereby the vibration of the sensor portion 12 provided on the substrate 11 is further promoted. Therefore, the detachment of the foreign matter attached to the sensor unit 12 can be further promoted.
(Fifth embodiment)
FIG. 6 shows a concentration sensor device according to the fifth embodiment.
 図6に示すように第5実施形態による濃度センサ装置10は、基板11に設けられている凹部22を備えている。凹部22は、基板11の一方の面側から他方の面側へ窪んだダイアフラム状に形成されている。センサ部12および回路部18は、基板11の平坦な側すなわち凹部22とは反対の面側に設けられている。また、濃度センサ装置10は、凹部22が設けられている基板11の開口側を塞ぐ絶縁膜23を備えている。すなわち、凹部22は、開口側の端部が絶縁膜23で塞がれている。絶縁膜23は、例えばシリコン酸化膜などにより形成されている。 As shown in FIG. 6, the concentration sensor device 10 according to the fifth embodiment includes a recess 22 provided in the substrate 11. The recess 22 is formed in a diaphragm shape that is recessed from one surface side of the substrate 11 to the other surface side. The sensor unit 12 and the circuit unit 18 are provided on the flat side of the substrate 11, that is, the surface side opposite to the recess 22. In addition, the concentration sensor device 10 includes an insulating film 23 that closes the opening side of the substrate 11 provided with the recess 22. In other words, the recess 22 is closed at the opening end by the insulating film 23. The insulating film 23 is formed of, for example, a silicon oxide film.
 圧電素子部13は、この絶縁膜23の基板11とは反対の面側に設けられている。これにより、圧電素子部13は、基板11を挟んでセンサ部12および回路部18とは反対の面側に設けられている。圧電素子部13は基板11を貫く貫通電極19によって回路部18と接続している。凹部22の開口側を絶縁膜23で塞ぐことにより、基板11と絶縁膜23との間には空間24が形成される。この空間24には、例えば窒素や空気などの気体が充填されている。 The piezoelectric element portion 13 is provided on the surface of the insulating film 23 opposite to the substrate 11. Thereby, the piezoelectric element part 13 is provided on the surface side opposite to the sensor part 12 and the circuit part 18 with the substrate 11 interposed therebetween. The piezoelectric element portion 13 is connected to the circuit portion 18 by a through electrode 19 that penetrates the substrate 11. By closing the opening side of the recess 22 with the insulating film 23, a space 24 is formed between the substrate 11 and the insulating film 23. The space 24 is filled with a gas such as nitrogen or air.
 第5実施形態では、基板11に設けられている凹部22を絶縁膜23で塞ぐことにより、基板11と絶縁膜23との間には空間24が形成される。この空間24には、窒素や空気などの気体が充填されている。空間24に充填される気体の種類、圧力および量などを調整することにより、空間24における気体の固有振動数が変化する。そのため、空間24に充填された気体の固有振動数と圧電素子部13の振動数とを近似させることにより、空間24に充填された気体は圧電素子部13と共振して振動する。その結果、圧電素子部13の振動は、空間24に充填された気体の共振によって基板11を挟んで反対側のセンサ部12へ伝達される。したがって、圧電素子部13とセンサ部12との間に基板11が介在する場合でも、センサ部12の振動を促進し、センサ部12からの異物の脱離を促進することができる。
(第6、第7、第8実施形態)
 第6、第7、第8実施形態による濃度センサ装置をそれぞれ図7、図8または図9に示す。
In the fifth embodiment, a space 24 is formed between the substrate 11 and the insulating film 23 by closing the recess 22 provided in the substrate 11 with the insulating film 23. This space 24 is filled with a gas such as nitrogen or air. The natural frequency of the gas in the space 24 changes by adjusting the type, pressure, and amount of the gas filled in the space 24. Therefore, by approximating the natural frequency of the gas filled in the space 24 and the frequency of the piezoelectric element unit 13, the gas filled in the space 24 resonates with the piezoelectric element unit 13 and vibrates. As a result, the vibration of the piezoelectric element portion 13 is transmitted to the sensor portion 12 on the opposite side across the substrate 11 by the resonance of the gas filled in the space 24. Therefore, even when the substrate 11 is interposed between the piezoelectric element unit 13 and the sensor unit 12, the vibration of the sensor unit 12 can be promoted and the detachment of foreign matters from the sensor unit 12 can be promoted.
(6th, 7th, 8th embodiment)
The density sensor devices according to the sixth, seventh, and eighth embodiments are shown in FIGS. 7, 8, and 9, respectively.
 第6実施形態では、図7に示すように基板11の平坦な面側にセンサ部12および圧電素子部13が設けられている。すなわち、第6実施形態の場合、センサ部12と圧電素子部13とは、基板11の同一の面側に設けられている。基板11とセンサ部12および圧電素子部13との間には、シリコン酸化膜からなる絶縁膜25が設けられている。圧電素子部13が振動すると、その振動は凹部22によって板圧が減少した基板11を通してセンサ部12に伝達される。したがって、センサ部12の振動が促進され、異物の脱離を促進することができる。 In the sixth embodiment, the sensor unit 12 and the piezoelectric element unit 13 are provided on the flat surface side of the substrate 11 as shown in FIG. That is, in the case of the sixth embodiment, the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11. An insulating film 25 made of a silicon oxide film is provided between the substrate 11 and the sensor unit 12 and the piezoelectric element unit 13. When the piezoelectric element portion 13 vibrates, the vibration is transmitted to the sensor portion 12 through the substrate 11 whose plate pressure is reduced by the concave portion 22. Therefore, the vibration of the sensor unit 12 is promoted, and the detachment of foreign matters can be promoted.
 第7実施形態では、図8に示すように凹部22を塞ぐシリコン酸化膜からなる絶縁膜26の基板11とは反対側にセンサ部12および圧電素子部13が設けられている。すなわち、第7実施形態でも、センサ部12と圧電素子部13とは基板11の同一の面側に設けられている。これにより、圧電素子部13が振動すると、その振動は絶縁膜26の振動を通してセンサ部12に伝達される。したがって、センサ部12の振動が促進され、異物の脱離を促進することができる。 In the seventh embodiment, as shown in FIG. 8, the sensor portion 12 and the piezoelectric element portion 13 are provided on the opposite side of the insulating film 26 made of a silicon oxide film that closes the recess 22 from the substrate 11. That is, also in the seventh embodiment, the sensor unit 12 and the piezoelectric element unit 13 are provided on the same surface side of the substrate 11. Thereby, when the piezoelectric element portion 13 vibrates, the vibration is transmitted to the sensor portion 12 through the vibration of the insulating film 26. Therefore, the vibration of the sensor unit 12 is promoted, and the detachment of foreign matters can be promoted.
 第8実施形態では、図9に示すように絶縁膜26の基板11とは反対側にシリコン窒化膜からなる絶縁体層27が設けられている。センサ部12は、絶縁体層27の基板11とは反対の面側に設けられている。圧電素子部13は、絶縁膜26の基板11とは反対側に設けられている。すなわち、圧電素子部13は、基板11とセンサ部12との間に設けられている。これにより、圧電素子部13が振動すると、その振動は絶縁膜26に積層された絶縁体層27を通してセンサ部12に伝達される。したがって、センサ部12の振動が促進され、異物の脱離を促進することができる。
(第9実施形態)
 第9実施形態による濃度センサ装置を図10に示す。
In the eighth embodiment, as shown in FIG. 9, an insulating layer 27 made of a silicon nitride film is provided on the opposite side of the insulating film 26 from the substrate 11. The sensor unit 12 is provided on the surface of the insulator layer 27 opposite to the substrate 11. The piezoelectric element portion 13 is provided on the opposite side of the insulating film 26 from the substrate 11. That is, the piezoelectric element unit 13 is provided between the substrate 11 and the sensor unit 12. Accordingly, when the piezoelectric element portion 13 vibrates, the vibration is transmitted to the sensor portion 12 through the insulating layer 27 laminated on the insulating film 26. Therefore, the vibration of the sensor unit 12 is promoted, and the detachment of foreign matters can be promoted.
(Ninth embodiment)
FIG. 10 shows a concentration sensor device according to the ninth embodiment.
 第9実施形態では、図10に示すように濃度センサ装置10は、基板11およびセンサ部12を備えている。基板11は、図10(B)に示すようにセンサ部12と反対の端面側に絶縁膜14、およびセンサ部12との間に絶縁膜17が形成されている。センサ部12は、図10(A)に示すように複数の電極パターン41、42を有している。これらの電極パターン41、42は、いずれも互いに対向する櫛歯形状に形成されている。対向する電極パターン41と電極パターン42との間の誘電率や比誘電率を検出することにより、センサ部12は混合燃料に含まれるアルコールの濃度を検出する。センサ部12の電極パターン41および電極パターン42は、保護膜16によって保護されている。 In the ninth embodiment, the concentration sensor device 10 includes a substrate 11 and a sensor unit 12 as shown in FIG. As shown in FIG. 10B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12. The sensor unit 12 has a plurality of electrode patterns 41 and 42 as shown in FIG. These electrode patterns 41 and 42 are each formed in a comb tooth shape facing each other. The sensor unit 12 detects the concentration of alcohol contained in the mixed fuel by detecting the dielectric constant and the relative dielectric constant between the opposing electrode pattern 41 and the electrode pattern 42. The electrode pattern 41 and the electrode pattern 42 of the sensor unit 12 are protected by the protective film 16.
 第9実施形態の場合、二つの電極パターン41および電極パターン42は、いずれも圧電素子で櫛歯形状に形成されている。すなわち、電極パターン41および電極パターン42は、いずれも例えばPZTなどの圧電材料を蒸着し、AgPdをスパッタリングすることにより櫛歯形状に形成される。電極パターン41および電極パターン42は、図示しない回路部と電気的に接続している。これにより、電極パターン41および電極パターン42には、回路部から所定の電圧が印加される。電極パターン41と電極パターン42との間に電圧を印加することにより、電極パターン41と電極パターン42との間には歪みが生じる。回路部から電極パターン41と電極パターン42との間へ所定の振動パターンを発生する電圧を印加することにより、基板11の板厚方向に対し垂直なセンサ部12のセンサ面に沿った振動が発生する。すなわち、第9実施形態の場合、センサ部12の電極パターン41および電極パターン42は、燃料の誘電率を測定するセンサ部12であるとともに、堆積制限部を構成する圧電素子部13でもある。 In the case of the ninth embodiment, each of the two electrode patterns 41 and the electrode pattern 42 is formed in a comb shape by a piezoelectric element. That is, both the electrode pattern 41 and the electrode pattern 42 are formed in a comb-teeth shape by depositing a piezoelectric material such as PZT and sputtering AgPd. The electrode pattern 41 and the electrode pattern 42 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 41 and the electrode pattern 42 from the circuit unit. By applying a voltage between the electrode pattern 41 and the electrode pattern 42, distortion occurs between the electrode pattern 41 and the electrode pattern 42. By applying a voltage that generates a predetermined vibration pattern between the electrode pattern 41 and the electrode pattern 42 from the circuit unit, vibration along the sensor surface of the sensor unit 12 perpendicular to the plate thickness direction of the substrate 11 is generated. To do. That is, in the case of the ninth embodiment, the electrode pattern 41 and the electrode pattern 42 of the sensor unit 12 are the sensor unit 12 that measures the dielectric constant of the fuel and the piezoelectric element unit 13 that constitutes the deposition limiting unit.
 回路部は、燃料の誘電率を測定と、センサ部12への通電による振動の発生とを時分割して実施する。すなわち、回路部は、燃料の誘電率を測定するときと、センサ部12を圧電素子部13として振動させるときとで電極パターン41と電極パターン42との間に印加する電圧の印加パターンを切り換える。 The circuit unit measures the dielectric constant of the fuel and generates vibration due to energization of the sensor unit 12 in a time-sharing manner. That is, the circuit unit switches the application pattern of the voltage applied between the electrode pattern 41 and the electrode pattern 42 when measuring the dielectric constant of the fuel and when vibrating the sensor unit 12 as the piezoelectric element unit 13.
 第9実施形態では、センサ部12を構成する櫛歯形状の電極パターン41、42は、センサ部12であるとともに圧電素子部13でもある。すなわち、センサ部12および圧電素子部13は、一体となって構成されている。したがって、センサ部12を自身の振動によって自己洗浄することができ、センサ部12、またはこれを保護する保護膜16の表面に付着した異物の除去を促進することができる。保護膜16の表面は、平滑な面として形成されるだけでなく、電極パターン41と電極パターン42との間が窪んだ粗い面として形成される場合がある。このように保護膜16の表面が粗く形成される場合でも、電極パターン41と電極パターン42との間の振動によって、保護膜16に歪みが生じる。その結果、粗い表面の凹部に付着した異物も、保護膜16の歪みによって除去することができる。
(第10実施形態)
 第10実施形態による濃度センサ装置を図11に示す。第10実施形態は、図9実施形態の変形であり、相違点を説明する。
In the ninth embodiment, the comb-shaped electrode patterns 41 and 42 constituting the sensor unit 12 are not only the sensor unit 12 but also the piezoelectric element unit 13. That is, the sensor unit 12 and the piezoelectric element unit 13 are integrally formed. Therefore, the sensor unit 12 can be self-cleaned by its own vibration, and the removal of foreign matter attached to the surface of the sensor unit 12 or the protective film 16 protecting the sensor unit 12 can be promoted. The surface of the protective film 16 is not only formed as a smooth surface, but may be formed as a rough surface in which the space between the electrode pattern 41 and the electrode pattern 42 is recessed. Thus, even when the surface of the protective film 16 is formed to be rough, the protective film 16 is distorted by the vibration between the electrode pattern 41 and the electrode pattern 42. As a result, foreign matter adhering to the concave portion of the rough surface can also be removed by the distortion of the protective film 16.
(10th Embodiment)
FIG. 11 shows a concentration sensor device according to the tenth embodiment. The tenth embodiment is a modification of the embodiment of FIG. 9, and the differences will be described.
 第10実施形態では、図11に示すように濃度センサ装置10は、基板11を挟んでセンサ部12と反対側の面に電極部43を備えている。電極部43は、基板11のセンサ部12と反対の端面側とともに絶縁膜14で覆われている。センサ部12を構成する電極パターン41および電極パターン42の構成は、第9実施形態と同様である。 In the tenth embodiment, as shown in FIG. 11, the concentration sensor device 10 includes an electrode portion 43 on a surface opposite to the sensor portion 12 with the substrate 11 interposed therebetween. The electrode part 43 is covered with the insulating film 14 together with the end face side opposite to the sensor part 12 of the substrate 11. The configurations of the electrode pattern 41 and the electrode pattern 42 constituting the sensor unit 12 are the same as those in the ninth embodiment.
 電極部43は、電極パターン41および電極パターン42とともに図示しない回路部と電気的に接続している。そのため、電極パターン41および電極パターン42と電極部との間には、回路部から所定の電圧が印加される。電極パターン41および電極パターン42と電極部43との間に電圧を印加することにより、電極パターン41および電極パターン42と電極部43との間には基板11の板厚方向の粗密波が発生する。回路部から電極パターン41および電極パターン42と電極部43との間へ所定の振動パターンを発生する電圧を印加することにより、基板11の板厚方向に沿った振動が発生する。回路部は、例えば電極部43を極性を負(-)に設定するとともに、電極パターン41および電極パターン42の極性を正(+)または負(-)へ任意に切り換える。これにより、電極パターン41および電極パターン42と電極部43との間には、基板11の板厚方向の振動が発生する。 The electrode part 43 is electrically connected to a circuit part (not shown) together with the electrode pattern 41 and the electrode pattern 42. Therefore, a predetermined voltage is applied from the circuit portion between the electrode pattern 41 and the electrode pattern 42 and the electrode portion. By applying a voltage between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43, a dense wave in the thickness direction of the substrate 11 is generated between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43. . By applying a voltage that generates a predetermined vibration pattern from the circuit portion to the electrode pattern 41 and between the electrode pattern 42 and the electrode portion 43, vibration along the thickness direction of the substrate 11 is generated. For example, the circuit unit sets the polarity of the electrode unit 43 to negative (−) and arbitrarily switches the polarity of the electrode pattern 41 and the electrode pattern 42 to positive (+) or negative (−). As a result, vibration in the thickness direction of the substrate 11 occurs between the electrode pattern 41 and the electrode pattern 42 and the electrode portion 43.
 第10実施形態では、基板11を挟んでセンサ部12と反対側に電極部43を備える。これにより、センサ部12を構成する圧電素子の電極パターン41、42と電極部43との間に電位差を加えることにより、電極パターン41、42すなわちセンサ部12自身が基板11を含めて振動する。したがって、センサ部12を自身の振動によって自己洗浄することができる。また、電極パターン41、42および電極部43への電圧の印加パターンを変更することにより、電極パターン41、42間におけるセンサ部12に沿った振動だけでなく、基板11の板厚方向の振動を組み合わせて発生させることができる。
(第11実施形態)
 第11実施形態による濃度センサ装置を図12に示す。
In the tenth embodiment, the electrode unit 43 is provided on the opposite side of the sensor unit 12 with the substrate 11 interposed therebetween. Thus, by applying a potential difference between the electrode patterns 41 and 42 of the piezoelectric elements constituting the sensor unit 12 and the electrode unit 43, the electrode patterns 41 and 42, that is, the sensor unit 12 itself vibrates including the substrate 11. Therefore, the sensor unit 12 can be self-cleaned by its own vibration. In addition, by changing the voltage application pattern to the electrode patterns 41 and 42 and the electrode portion 43, not only vibration along the sensor portion 12 between the electrode patterns 41 and 42, but also vibration in the plate thickness direction of the substrate 11. Can be generated in combination.
(Eleventh embodiment)
A concentration sensor device according to an eleventh embodiment is shown in FIG.
 第10実施形態では、図12に示すように濃度センサ装置10は、基板11、センサ部12および圧電素子部13を備えている。基板11は、図12(B)に示すようにセンサ部12と反対の端面側に絶縁膜14、およびセンサ部12との間に絶縁膜17が形成されている。センサ部12は、図12(A)に示すように複数の電極51、52を有している。これらの電極51、52は、いずれも互いに対向して形成されている。電極51および電極52は、例えば図12(A)に示すように櫛歯形状に形成されている。電極51と電極52との間の誘電率や比誘電率を検出することにより、センサ部12は混合燃料に含まれるアルコールの濃度を検出する。センサ部12の電極51および電極52は、保護膜16によって保護されている。 In the tenth embodiment, as shown in FIG. 12, the concentration sensor device 10 includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13. As shown in FIG. 12B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12. The sensor unit 12 includes a plurality of electrodes 51 and 52 as shown in FIG. These electrodes 51 and 52 are formed so as to face each other. The electrode 51 and the electrode 52 are formed in, for example, a comb shape as shown in FIG. By detecting the dielectric constant and relative dielectric constant between the electrode 51 and the electrode 52, the sensor unit 12 detects the concentration of alcohol contained in the mixed fuel. The electrode 51 and the electrode 52 of the sensor unit 12 are protected by the protective film 16.
 第11実施形態の場合、堆積制限部である圧電素子部13は、センサ部12を保護する保護膜16の基板11と反対側に積層されている。具体的には、圧電素子部13は、圧電素子で形成されている電極パターン53および電極パターン54を有している。これらの電極パターン53および電極パターン54は、いずれも保護膜16の基板11と反対側に形成されている。そのため、圧電素子部13を構成する電極パターン53および電極パターン54は、センサ部12を保護する保護膜16に積層されている。電極パターン53および電極パターン54は、いずれも保護膜55によって保護されている。 In the case of the eleventh embodiment, the piezoelectric element portion 13 that is a deposition limiting portion is laminated on the opposite side of the protective film 16 that protects the sensor portion 12 from the substrate 11. Specifically, the piezoelectric element unit 13 includes an electrode pattern 53 and an electrode pattern 54 that are formed of piezoelectric elements. The electrode pattern 53 and the electrode pattern 54 are both formed on the side of the protective film 16 opposite to the substrate 11. Therefore, the electrode pattern 53 and the electrode pattern 54 constituting the piezoelectric element unit 13 are laminated on the protective film 16 that protects the sensor unit 12. Both the electrode pattern 53 and the electrode pattern 54 are protected by a protective film 55.
 電極パターン53および電極パターン54は、いずれも圧電素子で櫛歯形状に形成されている。電極パターン53および電極パターン54は、図示しない回路部と電気的に接続している。これにより、電極パターン53および電極パターン54には、回路部から所定の電圧が印加される。電極パターン53と電極パターン54との間に電圧を印加することにより、電極パターン53と電極パターン54との間には歪みが生じ、基板11の板厚方向に対し垂直なセンサ部12のセンサ面に沿った振動が発生する。 The electrode pattern 53 and the electrode pattern 54 are both formed in a comb shape by a piezoelectric element. The electrode pattern 53 and the electrode pattern 54 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 53 and the electrode pattern 54 from the circuit unit. By applying a voltage between the electrode pattern 53 and the electrode pattern 54, distortion occurs between the electrode pattern 53 and the electrode pattern 54, and the sensor surface of the sensor unit 12 is perpendicular to the plate thickness direction of the substrate 11. Vibration along the line occurs.
 第11実施形態では、圧電素子部13は、センサ部12の基板11と反対側に積層された電極パターン53、54を有している。すなわち、センサ部12は、基板11と反対側に圧電素子部13の電極パターン53、54が被せられている。そのため、圧電素子部13の電極パターン53、54によって振動が発生すると、センサ部12も振動する。したがって、センサ部12を自身の振動によって自己洗浄することができる。
(第12実施形態)
 第12実施形態による濃度センサ装置を図13に示す。
In the eleventh embodiment, the piezoelectric element unit 13 includes electrode patterns 53 and 54 stacked on the opposite side of the sensor unit 12 from the substrate 11. In other words, the sensor unit 12 is covered with the electrode patterns 53 and 54 of the piezoelectric element unit 13 on the side opposite to the substrate 11. Therefore, when vibration is generated by the electrode patterns 53 and 54 of the piezoelectric element unit 13, the sensor unit 12 also vibrates. Therefore, the sensor unit 12 can be self-cleaned by its own vibration.
(Twelfth embodiment)
A concentration sensor device according to the twelfth embodiment is shown in FIG.
 第12実施形態では、図13に示すように濃度センサ装置10は、基板11、センサ部12および圧電素子部13を備えている。基板11は、図13(B)に示すようにセンサ部12と反対の端面側に絶縁膜14、およびセンサ部12との間に絶縁膜17が形成されている。センサ部12は、図13(A)に示すように複数の電極15を有している。電極15は、上述の第1実施形態と同様の構成である。 In the twelfth embodiment, the concentration sensor device 10 includes a substrate 11, a sensor unit 12, and a piezoelectric element unit 13 as shown in FIG. As shown in FIG. 13B, the substrate 11 has an insulating film 14 on the end surface opposite to the sensor unit 12 and an insulating film 17 between the sensor unit 12. The sensor unit 12 includes a plurality of electrodes 15 as shown in FIG. The electrode 15 has the same configuration as that of the first embodiment described above.
 第12実施形態の場合、圧電素子部13は、基板11を挟んでセンサ部12と反対側の面に形成されている。具体的には、堆積制限部を構成する圧電素子部13は、圧電素子で形成されている電極パターン61および電極パターン62を有している。これらの電極パターン61および電極パターン62は、いずれも基板11においてセンサ部12と反対側の面に形成されている。電極パターン61および電極パターン62は、いずれも保護膜63によって保護されている。 In the case of the twelfth embodiment, the piezoelectric element portion 13 is formed on the surface opposite to the sensor portion 12 with the substrate 11 interposed therebetween. Specifically, the piezoelectric element unit 13 constituting the deposition limiting unit has an electrode pattern 61 and an electrode pattern 62 formed of piezoelectric elements. The electrode pattern 61 and the electrode pattern 62 are both formed on the surface of the substrate 11 opposite to the sensor unit 12. Both the electrode pattern 61 and the electrode pattern 62 are protected by a protective film 63.
 電極パターン61および電極パターン62は、いずれも圧電素子で櫛歯形状に形成されている。電極パターン61および電極パターン62は、図示しない回路部と電気的に接続している。これにより、電極パターン61および電極パターン62には、回路部から所定の電圧が印加される。電極パターン61と電極パターン62との間に電圧を印加することにより、電極パターン61と電極パターン62との間には歪みが生じる。そのため、生じた歪みは、粗密波となって基板11を板厚方向へ伝わり、センサ部12を振動させる。 The electrode pattern 61 and the electrode pattern 62 are both formed in a comb shape by a piezoelectric element. The electrode pattern 61 and the electrode pattern 62 are electrically connected to a circuit unit (not shown). Thereby, a predetermined voltage is applied to the electrode pattern 61 and the electrode pattern 62 from the circuit unit. By applying a voltage between the electrode pattern 61 and the electrode pattern 62, distortion occurs between the electrode pattern 61 and the electrode pattern 62. Therefore, the generated distortion becomes a dense wave and propagates through the substrate 11 in the thickness direction, causing the sensor unit 12 to vibrate.
 第12実施形態では、圧電素子部13は基板11を挟んでセンサ部12と反対側の面に電極パターン61、62を有している。すなわち、基板11は、センサ部12と反対側の面に圧電素子部13の電極パターン61、62が形成されている。そのため、圧電素子部13の振動は、基板11を経由してセンサ部12へ伝達される。したがって、センサ部12に付着した異物の脱離を促進することができる。 In the twelfth embodiment, the piezoelectric element section 13 has electrode patterns 61 and 62 on the surface opposite to the sensor section 12 with the substrate 11 interposed therebetween. That is, the substrate 11 has the electrode patterns 61 and 62 of the piezoelectric element portion 13 formed on the surface opposite to the sensor portion 12. Therefore, the vibration of the piezoelectric element unit 13 is transmitted to the sensor unit 12 via the substrate 11. Therefore, the detachment of the foreign matter attached to the sensor unit 12 can be promoted.
 以上説明した、上述の第9実施形態と第12実施形態とを組み合わせてもよい。すなわち、第9実施形態による濃度センサ装置10において、基板11の一方の端面に第一電極パターンに相当する櫛歯形状の電極パターン41、42を有するセンサ部12を設け、他方の端面に第二電極パターンに相当する櫛歯形状の電極パターン61、62を設けてもよい。これにより、圧電素子部13は、センサ部12を構成する電極パターン41、42と、基板11のセンサ部12と反対側に設けられた電極パターン61、62とによって構成される。そのため、センサ部12は、電極パターン41、42によって自身が振動するとともに、基板11を経由して伝達された電極パターン61、62の振動によっても振動する。その結果、センサ部12は、複数の方向へ振動する。したがって、センサ部12に付着した異物の脱離を促進することができるとともに、センサ部12を自身の振動によって自己洗浄することができる。 The ninth embodiment and the twelfth embodiment described above may be combined. That is, in the concentration sensor device 10 according to the ninth embodiment, the sensor unit 12 having the comb-shaped electrode patterns 41 and 42 corresponding to the first electrode pattern is provided on one end face of the substrate 11, and the second end face is provided with the second end face. Comb-shaped electrode patterns 61 and 62 corresponding to the electrode patterns may be provided. Accordingly, the piezoelectric element unit 13 is configured by the electrode patterns 41 and 42 constituting the sensor unit 12 and the electrode patterns 61 and 62 provided on the opposite side of the substrate 11 from the sensor unit 12. Therefore, the sensor unit 12 vibrates itself due to the electrode patterns 41 and 42, and also vibrates due to the vibrations of the electrode patterns 61 and 62 transmitted via the substrate 11. As a result, the sensor unit 12 vibrates in a plurality of directions. Accordingly, it is possible to promote the detachment of the foreign matter attached to the sensor unit 12, and it is possible to self-clean the sensor unit 12 by its own vibration.
 さらに、上述の第11実施形態と第12実施形態とを組み合わせてもよい。すなわち、第11実施形態による濃度センサ装置10において、センサ部12と積層して第一電極パターンに相当する櫛歯形状の電極パターン53、54を設け、基板11のセンサ部12と反対側の端面に第二電極パターンに相当する櫛歯形状の電極パターン61、62を設けてもよい。これにより、圧電素子部13は、センサ部12を覆う電極パターン53、54と、基板11のセンサ部12と反対側に設けられた電極パターン61、62とによって構成される。そのため、センサ部12は、電極パターン53、54によって自身が振動するとともに、基板11を経由して伝達された電極パターン61、62の振動によっても振動する。その結果、センサ部12は、複数の方向へ振動する。したがって、センサ部12に付着した異物の脱離を促進することができるとともに、センサ部12を自身の振動によって自己洗浄することができる。
(第13実施形態)
 第13実施形態による濃度センサ装置を図14に示す。
Further, the eleventh embodiment and the twelfth embodiment may be combined. That is, in the concentration sensor device 10 according to the eleventh embodiment, comb-shaped electrode patterns 53 and 54 corresponding to the first electrode pattern are provided by being stacked with the sensor unit 12, and the end surface of the substrate 11 opposite to the sensor unit 12 is provided. Further, comb-shaped electrode patterns 61 and 62 corresponding to the second electrode pattern may be provided. As a result, the piezoelectric element unit 13 includes electrode patterns 53 and 54 that cover the sensor unit 12 and electrode patterns 61 and 62 that are provided on the opposite side of the substrate 11 from the sensor unit 12. Therefore, the sensor unit 12 vibrates itself due to the electrode patterns 53 and 54 and also vibrates due to the vibrations of the electrode patterns 61 and 62 transmitted through the substrate 11. As a result, the sensor unit 12 vibrates in a plurality of directions. Accordingly, it is possible to promote the detachment of the foreign matter attached to the sensor unit 12, and it is possible to self-clean the sensor unit 12 by its own vibration.
(13th Embodiment)
A concentration sensor device according to a thirteenth embodiment is shown in FIG.
 第13実施形態の場合、濃度センサ装置10は、図14に示すように一部が切り欠かれた配管部材100に設けてもよい。この場合、配管部材100の外側には、濃度センサ装置10を取り付けるための実装基板103が設けられる。濃度センサ装置10と実装基板103との間には、リブ31やシール部材32が設けられる。これにより、リブ31やシール部材32の内側への混合燃料の流入が防止される。実装基板103と濃度センサ装置10とは、例えばはんだボール33やボンディングワイヤによって電気的に接続される。また、図14に示す場合、濃度センサ装置10の圧電素子部13は、基板11の回路部を経由することなく例えばはんだボール33により実装基板103と電気的に直接接続される。濃度センサ装置10と実装基板103との間にリブ31やシール部材32を設けることにより、これらはんだボール33やボンディングワイヤが設けられている内側への混合燃料の流入は防止される。したがって、はんだボール33やボンディングワイヤなどの腐食や損傷を防止することができる。
(第14実施形態)
 第14実施形態による濃度センサ装置を図15に示す。
In the case of the thirteenth embodiment, the concentration sensor device 10 may be provided in a piping member 100 that is partially cut away as shown in FIG. In this case, a mounting substrate 103 for attaching the concentration sensor device 10 is provided outside the piping member 100. A rib 31 and a seal member 32 are provided between the density sensor device 10 and the mounting substrate 103. Thereby, the inflow of the mixed fuel to the inside of the rib 31 and the seal member 32 is prevented. The mounting substrate 103 and the concentration sensor device 10 are electrically connected by, for example, solder balls 33 or bonding wires. In the case shown in FIG. 14, the piezoelectric element portion 13 of the concentration sensor device 10 is electrically directly connected to the mounting substrate 103 by, for example, solder balls 33 without passing through the circuit portion of the substrate 11. By providing the rib 31 and the seal member 32 between the concentration sensor device 10 and the mounting substrate 103, the inflow of the mixed fuel to the inside where the solder balls 33 and the bonding wires are provided is prevented. Therefore, corrosion and damage to the solder balls 33 and the bonding wires can be prevented.
(14th Embodiment)
A concentration sensor device according to a fourteenth embodiment is shown in FIG.
 第14実施形態では、図15に示すように濃度センサ装置70は、通路形成部材71、センサ部72および堆積制限部73を備えている。通路形成部材71は、筒状であり、内部に混合燃料が流れる液体通路としての燃料通路74を形成している。混合燃料は、燃料通路74を図15における左方の上流側から右方の下流側へ流れる。センサ部72は、上述した複数の実施形態と同様に図示しない基板、およびこの基板に設けられた図示しない電極などから構成されている。 In the fourteenth embodiment, as shown in FIG. 15, the concentration sensor device 70 includes a passage forming member 71, a sensor unit 72, and a deposition limiting unit 73. The passage forming member 71 has a cylindrical shape and forms a fuel passage 74 as a liquid passage through which the mixed fuel flows. The mixed fuel flows through the fuel passage 74 from the left upstream side in FIG. 15 to the right downstream side. The sensor part 72 is comprised from the board | substrate which is not shown in figure like the some embodiment mentioned above, the electrode which is not shown in figure provided in this board | substrate, etc.
 堆積制限部73は、燃料通路74における燃料の流れ方向においてセンサ部72の上流側に帯電部75および捕捉部76を有している。帯電部75は、燃料通路74を流れる混合燃料に電圧を印加する。帯電部75は、例えば導電性の金属によって網状に形成されている。これにより、帯電部75は、燃料通路74を流れる混合燃料を帯電させる。捕捉部76は、帯電部75とセンサ部72との間に設けられている。すなわち、捕捉部76は、センサ部72の上流側であって、帯電部75の下流側に設けられている。捕捉部76は、帯電部75で帯電した混合燃料に含まれる異物を捕捉する。 The accumulation limiting unit 73 includes a charging unit 75 and a capturing unit 76 on the upstream side of the sensor unit 72 in the fuel flow direction in the fuel passage 74. The charging unit 75 applies a voltage to the mixed fuel flowing through the fuel passage 74. The charging unit 75 is formed in a net shape with, for example, a conductive metal. As a result, the charging unit 75 charges the mixed fuel flowing through the fuel passage 74. The capturing unit 76 is provided between the charging unit 75 and the sensor unit 72. That is, the capturing unit 76 is provided on the upstream side of the sensor unit 72 and on the downstream side of the charging unit 75. The capturing unit 76 captures foreign matter contained in the mixed fuel charged by the charging unit 75.
 帯電部75および捕捉部76には、図16に示すように1kHz以上の交流電圧が印加されている。そして、帯電部75と捕捉部76とでは、印加される電圧の極性が互いに異なっている。例えば、帯電部75が正(+)に帯電しているとき、捕捉部76は負(-)に帯電している。さらに、帯電部75が正に帯電している場合、帯電部75は負の電圧に反転することなく正の電圧を維持する。同様に、捕捉部76が負に帯電している場合、捕捉部76は負の電圧に反転することなく負の電圧を維持する。このように、帯電部75および捕捉部76は、正または負の一方の極性を維持する。帯電部75が正に帯電している場合、その電圧の最小値は接地電圧である0Vである。同様に、捕捉部76が負に帯電している場合、その電圧の最大値は0Vである。 As shown in FIG. 16, an AC voltage of 1 kHz or more is applied to the charging unit 75 and the capturing unit 76. The charging unit 75 and the capturing unit 76 have different polarities of applied voltages. For example, when the charging unit 75 is charged positive (+), the capturing unit 76 is charged negative (−). Further, when the charging unit 75 is positively charged, the charging unit 75 maintains a positive voltage without being inverted to a negative voltage. Similarly, when the capturing unit 76 is negatively charged, the capturing unit 76 maintains a negative voltage without being inverted to a negative voltage. As described above, the charging unit 75 and the capturing unit 76 maintain one of the positive and negative polarities. When the charging unit 75 is positively charged, the minimum value of the voltage is 0 V, which is the ground voltage. Similarly, when the capturing unit 76 is negatively charged, the maximum value of the voltage is 0V.
 このように、第14実施形態では、センサ部72の上流側において互いに極性の異なる帯電部75および捕捉部76を設けている。これにより、燃料通路74を流れる混合燃料は、帯電部75を通過するとき、正の電圧が印加されるため、正の電荷に帯電する。そのため、混合燃料に含まれる異物も正の電荷に帯電する。この正の電荷に帯電した異物を含む混合燃料は、帯電部75を通過した後、捕捉部76を通過する。捕捉部76は帯電部と逆の極性の電圧すなわち負の電圧が印加されているため、正の電荷に帯電した異物は捕捉部76に捕捉される。その結果、混合燃料に含まれている異物は、捕捉部76によって捕捉され、センサ部72への流入が低減される。 As described above, in the fourteenth embodiment, the charging unit 75 and the capturing unit 76 having different polarities are provided on the upstream side of the sensor unit 72. As a result, the mixed fuel flowing through the fuel passage 74 is charged to a positive charge because a positive voltage is applied when passing through the charging unit 75. Therefore, the foreign matter contained in the mixed fuel is also charged with a positive charge. The mixed fuel containing the positively charged foreign matter passes through the charging unit 75 and then passes through the capturing unit 76. Since the capturing unit 76 is applied with a voltage having a polarity opposite to that of the charging unit, i.e., a negative voltage, foreign matter charged to a positive charge is captured by the capturing unit 76. As a result, the foreign matter contained in the mixed fuel is captured by the capturing unit 76 and the inflow to the sensor unit 72 is reduced.
 一方、混合燃料は、帯電部75および捕捉部76を通過することにより、正または負の電荷に帯電する。そのため、混合燃料は、濃度センサ装置70よりも下流側に設けられている図示しない各種の機器などに電気的な影響を与えるおそれがある。そこで、堆積制限部73は、図15に示すように混合燃料の流れ方向においてセンサ部72の下流側に除電部77を有している。除電部77は、例えば導電性の金属によって網状に形成されている。そのため、帯電した混合燃料は、除電部77を通過することにより、電荷が除去され、除電される。 On the other hand, the mixed fuel passes through the charging unit 75 and the capturing unit 76 and is charged to a positive or negative charge. For this reason, the mixed fuel may electrically affect various devices (not shown) provided on the downstream side of the concentration sensor device 70. Therefore, the deposition limiting unit 73 has a static elimination unit 77 on the downstream side of the sensor unit 72 in the flow direction of the mixed fuel as shown in FIG. The static eliminating portion 77 is formed in a net shape with, for example, a conductive metal. For this reason, the charged mixed fuel passes through the charge removal unit 77, and thus the charge is removed and the charge is removed.
 以上説明した第14実施形態では、通路形成部材71が形成する燃料通路74に収容されている堆積制限部73は、センサ部72とは別体の帯電部75および捕捉部76を有している。燃料通路74を流れる混合燃料は、帯電部75において電圧が印加されることによりこれに含まれる異物とともに帯電する。そのため、混合燃料が捕捉部76を通過することにより、混合燃料に含まれる異物はセンサ部72に至る前に捕捉される。したがって、センサ部72への異物の付着および堆積が低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。 In the fourteenth embodiment described above, the deposition restricting portion 73 housed in the fuel passage 74 formed by the passage forming member 71 has the charging portion 75 and the capturing portion 76 that are separate from the sensor portion 72. . The mixed fuel flowing through the fuel passage 74 is charged together with the foreign matter contained therein when a voltage is applied at the charging unit 75. Therefore, when the mixed fuel passes through the capturing unit 76, the foreign matter contained in the mixed fuel is captured before reaching the sensor unit 72. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
 また、第14実施形態では、堆積制限部73はセンサ部72の下流側に除電部77を有している。これにより、帯電部75および捕捉部76で帯電した混合燃料は、除電部77によって除電される。帯電部75および捕捉部76において混合燃料に電荷を帯電させることにより、センサ部72よりも下流側に設けられている機器や装置に影響を与えるおそれもある。そこで、除電部77は、センサ部72を通過した混合燃料の電荷を除電する。これにより、帯電した混合燃料がセンサ部72よりも下流側に設けられている機器や装置に影響を与えることはない。したがって、外部への影響を低減することができる。 Further, in the fourteenth embodiment, the deposition limiting unit 73 has a static elimination unit 77 on the downstream side of the sensor unit 72. As a result, the mixed fuel charged by the charging unit 75 and the capturing unit 76 is neutralized by the neutralization unit 77. By charging the mixed fuel with electric charge in the charging unit 75 and the capturing unit 76, there is a possibility of affecting devices and apparatuses provided on the downstream side of the sensor unit 72. Therefore, the static elimination unit 77 neutralizes the charge of the mixed fuel that has passed through the sensor unit 72. As a result, the charged mixed fuel does not affect the devices and apparatuses provided on the downstream side of the sensor unit 72. Therefore, the influence on the outside can be reduced.
 第14実施形態では、帯電部75に印加される電圧と捕捉部76に印加される電圧とは、それぞれ極性が異なっている。そして、帯電部75および捕捉部76では、いずれも一方の極性から他方の極性へ反転することなく一方の極性を維持する。これにより、帯電部75で帯電した異物は、捕捉部76によって確実に捕捉され、センサ部72側への移動が制限される。したがって、センサ部72への異物の付着および堆積が低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。 In the fourteenth embodiment, the voltage applied to the charging unit 75 and the voltage applied to the capturing unit 76 have different polarities. The charging unit 75 and the capturing unit 76 both maintain one polarity without being inverted from one polarity to the other. Thereby, the foreign material charged by the charging unit 75 is reliably captured by the capturing unit 76, and movement to the sensor unit 72 side is restricted. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
 第14実施形態では、帯電部75および捕捉部76で混合燃料に印加される電圧は1kHz以上の交流電圧である。そして、この電圧は、負側の最大値および正側の最小値が接地電圧に設定されている。混合燃料に直流電圧や低周波の交流を印加すると、混合燃料および混合燃料に含まれる種々の成分が電気化学的な反応を生じるおそれがある。そのため、帯電部75および捕捉部76では、混合燃料が不可逆的な化学変化を生じないために、1kHz以上の交流電圧を印加している。したがって、混合燃料の変化を低減し、外部への影響を低減することができる。 In the fourteenth embodiment, the voltage applied to the mixed fuel by the charging unit 75 and the capturing unit 76 is an AC voltage of 1 kHz or more. In this voltage, the maximum value on the negative side and the minimum value on the positive side are set to the ground voltage. When a direct current voltage or a low frequency alternating current is applied to the mixed fuel, the mixed fuel and various components contained in the mixed fuel may cause an electrochemical reaction. Therefore, in the charging unit 75 and the capturing unit 76, an alternating voltage of 1 kHz or more is applied so that the mixed fuel does not cause irreversible chemical changes. Therefore, the change of the mixed fuel can be reduced and the influence on the outside can be reduced.
 なお、帯電部75と捕捉部76とは極性が異なっていればよく、帯電部75を負に帯電させ、捕捉部76を正に帯電させてもよい。
(第15実施形態)
 第15実施形態による濃度センサ装置を図17に示す。
The charging unit 75 and the capturing unit 76 may have different polarities, and the charging unit 75 may be negatively charged and the capturing unit 76 may be positively charged.
(Fifteenth embodiment)
A concentration sensor device according to a fifteenth embodiment is shown in FIG.
 第15実施形態では、図17に示すように濃度センサ装置70の捕捉部76は、燃料通路74の軸と平行に延びる電極部材81を有している。電極部材81は、板状に形成され、燃料通路74に少なくとも一枚以上設けられている。電極部材81は、燃料通路74における燃料の流れ方向において上流側から下流側へかけて板幅が縮小している。ここで、電極部材81の板幅とは、燃料通路74を形成する通路形成部材71の弦に沿った長さである。 In the fifteenth embodiment, as shown in FIG. 17, the capturing part 76 of the concentration sensor device 70 has an electrode member 81 extending in parallel with the axis of the fuel passage 74. The electrode member 81 is formed in a plate shape, and at least one electrode member 81 is provided in the fuel passage 74. The plate width of the electrode member 81 is reduced from the upstream side to the downstream side in the fuel flow direction in the fuel passage 74. Here, the plate width of the electrode member 81 is the length along the chord of the passage forming member 71 that forms the fuel passage 74.
 図18(A)に示すように、電極部材81は、燃料通路74の上流側において通路形成部材71の任意の位置における弦に対応する板幅を有している。すなわち、電極部材81は、通路形成部材71の内壁から燃料の流れ方向に対し垂直に立ち上がり、対向する通路形成部材71の内壁まで延びている。これにより、電極部材81は、燃料通路74の上流側において通路形成部材71の弦に対応する板幅を有している。これに対し、図18(B)に示すように、電極部材81は、燃料通路74の下流側において板幅が縮小している。すなわち、電極部材81は、通路形成部材71の内壁から燃料の流れ方向に対し垂直に立ち上がっているものの、端部が通路形成部材71の対向する内壁までに延びていない。このように、電極部材81は、燃料通路74において上流側ほど板幅が大きく、下流側ほど板幅が小さく設定されている。 As shown in FIG. 18A, the electrode member 81 has a plate width corresponding to the chord at an arbitrary position of the passage forming member 71 on the upstream side of the fuel passage 74. That is, the electrode member 81 rises perpendicularly to the fuel flow direction from the inner wall of the passage forming member 71 and extends to the opposing inner wall of the passage forming member 71. Thus, the electrode member 81 has a plate width corresponding to the string of the passage forming member 71 on the upstream side of the fuel passage 74. On the other hand, as shown in FIG. 18B, the electrode member 81 has a reduced plate width on the downstream side of the fuel passage 74. That is, the electrode member 81 rises perpendicularly to the fuel flow direction from the inner wall of the passage forming member 71, but the end does not extend to the opposing inner wall of the passage forming member 71. As described above, the electrode member 81 is set such that the upstream side in the fuel passage 74 has a larger plate width and the downstream side has a smaller plate width.
 図19に示すように、濃度センサ装置70は、壁部82を設けてもよい。壁部82は、帯電部75を通過した混合燃料の流れをセンサ部72側と捕捉部76側とに分離する。すなわち、壁部82は、燃料通路74においてセンサ部72と捕捉部76との間に設けられており、混合燃料の流れを分流する。帯電部75を通過することにより帯電した混合燃料に含まれる異物は、捕捉部76の電極部材81に捕捉される。電極部材81は、上述の通り下流側ほど板幅が小さく設定されている。そのため、図19に示すような電極部材81を用いる場合、混合燃料に含まれる異物は電極部材81に沿って図19の下側へ移動しやすい。そこで、図19において電極部材81の下流側の端部の上側に壁部82を配置することにより、異物をより多く含む混合燃料は壁部82の下側を流れる。その結果、センサ部72が設けられている壁部82の上側には、含まれる異物が少ない混合燃料が流入する。これにより、センサ部72側への異物の流入が低減される。 As shown in FIG. 19, the concentration sensor device 70 may be provided with a wall portion 82. The wall portion 82 separates the flow of the mixed fuel that has passed through the charging portion 75 into the sensor portion 72 side and the capturing portion 76 side. That is, the wall portion 82 is provided between the sensor portion 72 and the capturing portion 76 in the fuel passage 74 and divides the flow of the mixed fuel. Foreign matter contained in the mixed fuel charged by passing through the charging unit 75 is captured by the electrode member 81 of the capturing unit 76. As described above, the electrode member 81 has a smaller plate width toward the downstream side. Therefore, when the electrode member 81 as shown in FIG. 19 is used, the foreign matter contained in the mixed fuel is likely to move downward along the electrode member 81 in FIG. Therefore, in FIG. 19, by arranging the wall portion 82 above the downstream end portion of the electrode member 81, the mixed fuel containing more foreign matters flows below the wall portion 82. As a result, the mixed fuel containing a small amount of foreign matter flows into the upper side of the wall portion 82 where the sensor unit 72 is provided. Thereby, the inflow of the foreign material to the sensor part 72 side is reduced.
 第15実施形態では、捕捉部76は少なくとも一枚以上の板状の電極部材81を有している。この板状の電極部材81は、燃料通路74の軸と平行に延び、上流側から下流側にかけて板幅が縮小している。これにより、帯電部75を通過した混合燃料は、含まれる異物が板幅の大きな上流側で効果的に除去される。また、電極部材81は燃料通路74と平行に延びているため、燃料通路74を流れる混合燃料の圧力損失は低減される。したがって、混合燃料の圧力損失を低減しつつ、混合燃料に含まれる異物をセンサ部72の上流側で捕捉することができ、センサ部72の濃度検出精度を高めることができる。 In the fifteenth embodiment, the capturing part 76 has at least one plate-like electrode member 81. The plate-like electrode member 81 extends in parallel with the axis of the fuel passage 74, and the plate width is reduced from the upstream side to the downstream side. As a result, the mixed fuel that has passed through the charging unit 75 is effectively removed of the contained foreign matters on the upstream side where the plate width is large. Further, since the electrode member 81 extends in parallel with the fuel passage 74, the pressure loss of the mixed fuel flowing through the fuel passage 74 is reduced. Therefore, foreign matter contained in the mixed fuel can be captured upstream of the sensor unit 72 while reducing the pressure loss of the mixed fuel, and the concentration detection accuracy of the sensor unit 72 can be improved.
 また、第15実施形態では、燃料通路74に壁部82を備えている。混合燃料の流れを壁部82により捕捉部76の電極部材81側とセンサ部72側とに分離することにより、混合燃料に含まれる異物はセンサ部72側へ流入しにくくなる。したがって、センサ部72への異物の付着および堆積がより低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。
(第16、第17、第18実施形態)
 第16、17、18実施形態による濃度センサ装置をそれぞれ図20、図22または図24に示す。
In the fifteenth embodiment, the fuel passage 74 includes a wall portion 82. By separating the flow of the mixed fuel into the electrode member 81 side and the sensor unit 72 side of the capturing unit 76 by the wall portion 82, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 72 are further reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
(16th, 17th and 18th embodiments)
The density sensor devices according to the sixteenth, seventeenth and eighteenth embodiments are shown in FIGS. 20, 22 and 24, respectively.
 第16実施形態の場合、図20に示すように濃度センサ装置70の捕捉部76は、燃料通路74の軸に対し傾斜して延びる電極部材83を有している。電極部材83は、板状に形成され、燃料通路74に少なくとも一枚以上設けられている。電極部材83は、燃料通路74における燃料の流れ方向において上流側から下流側へかけて一定の板幅に設定されている。このように電極部材83を配置することにより、燃料通路74は少なくとも一部の幅が上流側から下流側へかけて狭められる。 In the case of the sixteenth embodiment, the capturing part 76 of the concentration sensor device 70 has an electrode member 83 that extends with an inclination with respect to the axis of the fuel passage 74 as shown in FIG. The electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74. The electrode member 83 is set to have a constant plate width from the upstream side to the downstream side in the fuel flow direction in the fuel passage 74. By arranging the electrode member 83 in this way, at least a part of the width of the fuel passage 74 is narrowed from the upstream side to the downstream side.
 図21に示すように、濃度センサ装置70は、壁部84を設けてもよい。壁部84は、帯電部75を通過した混合燃料の流れをセンサ部72側と捕捉部76側とに分離する。帯電部75を通過することにより帯電した混合燃料に含まれる異物は、捕捉部76の電極部材83に捕捉される。電極部材83は、燃料通路74の一部を上流側から下流側へかけて狭めている。壁部82は、この狭められた電極部材83に沿った燃料通路74とセンサ部72側とを分離している。そのため、混合燃料に含まれる異物は電極部材83に沿って図21の下側へ移動しやすくなり、センサ部72が設けられている壁部84の上側には含まれる異物が少ない混合燃料が流入する。 As shown in FIG. 21, the concentration sensor device 70 may be provided with a wall portion 84. The wall portion 84 separates the flow of the mixed fuel that has passed through the charging portion 75 into the sensor portion 72 side and the capturing portion 76 side. Foreign matter contained in the mixed fuel charged by passing through the charging unit 75 is captured by the electrode member 83 of the capturing unit 76. The electrode member 83 narrows a part of the fuel passage 74 from the upstream side to the downstream side. The wall portion 82 separates the fuel passage 74 along the narrowed electrode member 83 from the sensor portion 72 side. Therefore, the foreign matters contained in the mixed fuel easily move downward along the electrode member 83 in FIG. 21, and the mixed fuel containing a small amount of foreign matters flows into the upper side of the wall portion 84 where the sensor portion 72 is provided. To do.
 第17実施形態の場合、図22に示すように濃度センサ装置70の捕捉部76は、燃料通路74の軸に対して傾斜して延びる電極部材83を有している。電極部材83は、板状に形成され、燃料通路74に少なくとも一枚以上設けられている。電極部材83は、燃料通路74の上流側ほど対向する間隔が広く、下流側ほど対向する間隔が狭く設定され、かつ多段に配置されている。これにより、電極部材83は、燃料通路74の中心部において上流側から下流側へ向けて燃料通路74の幅を狭めている。 In the case of the seventeenth embodiment, the capturing portion 76 of the concentration sensor device 70 has an electrode member 83 that extends with an inclination with respect to the axis of the fuel passage 74 as shown in FIG. The electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74. The electrode member 83 is arranged in a multistage manner such that the upstream side of the fuel passage 74 is opposed more widely and the downstream side is opposed narrower. As a result, the electrode member 83 narrows the width of the fuel passage 74 from the upstream side toward the downstream side at the center of the fuel passage 74.
 図23に示すように、濃度センサ装置70は、壁部84を設けてもよい。第17実施形態の場合、壁部84は、中心付近において燃料通路74を狭めた最下流側の電極部材83の下流側において、燃料通路74の軸方向に延びている。センサ部72は、通路形成部材71の径方向において壁部84の外周側に配置される。帯電部75を通過し帯電した異物を含む混合燃料は、捕捉部76の電極部材83の間を流れつつ壁部84へ到達する。このとき、電極部材83を通過したものの混合燃料に残留する異物は、電極部材83によって混合燃料とともに燃料通路74の中心側へ案内されながら、一対の壁部84の間を通過する。そのため、混合燃料に含まれる異物は、センサ部72側へ流入しにくくなる。 23, the concentration sensor device 70 may be provided with a wall portion 84. In the case of the seventeenth embodiment, the wall portion 84 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 83 in which the fuel passage 74 is narrowed near the center. The sensor portion 72 is disposed on the outer peripheral side of the wall portion 84 in the radial direction of the passage forming member 71. The mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 84 while flowing between the electrode members 83 of the capturing portion 76. At this time, the foreign matter that has passed through the electrode member 83 but remains in the mixed fuel passes between the pair of wall portions 84 while being guided to the center of the fuel passage 74 together with the mixed fuel by the electrode member 83. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
 第18実施形態の場合、図24に示すように濃度センサ装置70の捕捉部76は、燃料通路74の軸に対して傾斜して延びる電極部材83を有している。電極部材83は、板状に形成され、燃料通路74に少なくとも一枚以上設けられている。電極部材83は、燃料通路74の上流側ほど対向する間隔が狭く、下流側ほど対向する間隔が広く設定され、かつ多段に配置されている。これにより、電極部材83は、燃料通路74の外周側において上流側から下流側へ向けて燃料通路の幅を狭めている。 In the case of the eighteenth embodiment, as shown in FIG. 24, the trapping portion 76 of the concentration sensor device 70 has an electrode member 83 that extends obliquely with respect to the axis of the fuel passage 74. The electrode member 83 is formed in a plate shape, and at least one electrode member 83 is provided in the fuel passage 74. The electrode member 83 is arranged in multiple stages, with the interval facing the narrower the upstream side of the fuel passage 74 being narrower and the interval facing the lower being the wider downstream side. Thus, the electrode member 83 narrows the width of the fuel passage from the upstream side to the downstream side on the outer peripheral side of the fuel passage 74.
 図25に示すように、濃度センサ装置70は、壁部84を設けてもよい。第18実施形態の場合、壁部84は、外周側において燃料通路74を狭めた最下流側の電極部材83の下流側において、燃料通路74の軸方向に延びている。センサ部72は、通路形成部材71の径方向において壁部84の内周側、すなわち一対の壁部84の間に配置される。帯電部75を通過し帯電した異物を含む混合燃料は、捕捉部76の電極部材83の間を流れつつ壁部84へ到達する。このとき、電極部材83を通過したものの混合燃料に残留する異物は、電極部材83によって混合燃料とともに燃料通路74の外周側へ案内されながら、一対の壁部84の外周側を通過する。そのため、混合燃料に含まれる異物は、センサ部72側へ流入しにくくなる。 As shown in FIG. 25, the concentration sensor device 70 may be provided with a wall portion 84. In the case of the eighteenth embodiment, the wall portion 84 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 83 that narrows the fuel passage 74 on the outer peripheral side. The sensor portion 72 is disposed on the inner peripheral side of the wall portion 84 in the radial direction of the passage forming member 71, that is, between the pair of wall portions 84. The mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 84 while flowing between the electrode members 83 of the capturing portion 76. At this time, the foreign matter that has passed through the electrode member 83 but remains in the mixed fuel passes through the outer peripheral side of the pair of wall portions 84 while being guided to the outer peripheral side of the fuel passage 74 together with the mixed fuel by the electrode member 83. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
 第16、第17、第18実施形態では、捕捉部76は少なくとも一枚以上の板状の電極部材83を有している。この板状の電極部材83は、燃料通路74の軸に対して傾斜して延びている。そして、この電極部材83は、燃料通路74の上流側から下流側へ向けて燃料通路74の少なくとも一部の幅を狭めている。そのため、燃料通路74を流れる液体は、徐々に狭まる電極部材83の間を流れる。これにより、混合燃料に含まれる異物は、捕捉部76に捕捉されやすくなる。また、壁部84は、混合燃料のうち、より含まれる異物が少ない混合燃料を、センサ部72側へ案内する。したがって、混合に含まれる異物をセンサ部72の上流側で捕捉することができ、センサ部72の濃度検出精度を高めることができる。
(第19、第20実施形態)
 第19、第20実施形態による濃度センサ装置をそれぞれ図26または図28に示す。
In the sixteenth, seventeenth and eighteenth embodiments, the capturing portion 76 has at least one plate-like electrode member 83. The plate-like electrode member 83 extends while being inclined with respect to the axis of the fuel passage 74. The electrode member 83 narrows at least a part of the fuel passage 74 from the upstream side to the downstream side of the fuel passage 74. Therefore, the liquid flowing through the fuel passage 74 flows between the electrode members 83 that are gradually narrowed. Thereby, the foreign matter contained in the mixed fuel is easily captured by the capturing unit 76. Moreover, the wall part 84 guides the mixed fuel with few foreign substances contained among mixed fuels to the sensor part 72 side. Accordingly, the foreign matter included in the mixing can be captured upstream of the sensor unit 72, and the density detection accuracy of the sensor unit 72 can be improved.
(19th and 20th embodiments)
The concentration sensor devices according to the nineteenth and twentieth embodiments are shown in FIGS. 26 and 28, respectively.
 第19実施形態の場合、図26に示すように濃度センサ装置70の捕捉部76は、少なくとも一枚以上の電極部材85を有している。電極部材85は、両端が開口した筒状の円錐もしくは角錐などの錐形状または錐台形状に形成され、多段状に設けられている。第19実施形態の場合、電極部材85は、燃料通路74の上流側から下流側へ向けて内径が縮小する円錐筒形状である。電極部材85を例えば網状または多孔状に形成し、電極部材85を通過する混合燃料の圧力損失を低減する構造でもよい。 In the case of the nineteenth embodiment, as shown in FIG. 26, the capturing unit 76 of the concentration sensor device 70 has at least one electrode member 85. The electrode member 85 is formed in a cone shape such as a cylindrical cone or a pyramid having both ends opened or a truncated cone shape, and is provided in a multistage shape. In the nineteenth embodiment, the electrode member 85 has a conical cylinder shape whose inner diameter decreases from the upstream side to the downstream side of the fuel passage 74. For example, the electrode member 85 may be formed in a net shape or a porous shape to reduce the pressure loss of the mixed fuel passing through the electrode member 85.
 また、図27に示すように、濃度センサ装置70は、壁部86を設けてもよい。第19実施形態の場合、壁部86は、内径が縮小した最下流側の電極部材85の下流側において、燃料通路74の軸方向に延びている。センサ部72は、通路形成部材71の径方向において壁部86の外周側に配置される。帯電部75を通過し帯電した異物を含む混合燃料は、捕捉部76の電極部材85に案内されて流れつつ壁部86へ到達する。このとき、電極部材85を通過したものの混合燃料に残留する異物は、電極部材85によって混合燃料とともに燃料通路74の中心側へ案内されながら、一対の壁部86の間を通過する。そのため、混合燃料に含まれる異物は、センサ部72側へ流入しにくくなる。 Further, as shown in FIG. 27, the concentration sensor device 70 may be provided with a wall portion 86. In the case of the nineteenth embodiment, the wall portion 86 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 85 whose inner diameter is reduced. The sensor portion 72 is disposed on the outer peripheral side of the wall portion 86 in the radial direction of the passage forming member 71. The mixed fuel containing the charged foreign matter that has passed through the charging portion 75 reaches the wall portion 86 while being guided by the electrode member 85 of the capturing portion 76 and flowing. At this time, the foreign matter that has passed through the electrode member 85 but remains in the mixed fuel passes between the pair of wall portions 86 while being guided to the center of the fuel passage 74 together with the mixed fuel by the electrode member 85. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
 第20実施形態の場合、図28に示すように濃度センサ装置70の捕捉部76は、少なくとも一枚以上の電極部材85を有している。電極部材85は、両端が開口した筒状の円錐または角錐などの錐形状または錐台形状に形成され、多段状に設けられている。第20実施形態の場合、電極部材85は、燃料通路74の上流側から下流側へ向けて内径が拡大する円錐筒形状である。そのため、電極部材85は、燃料通路74における燃料の流れを通路形成部材71の中心側から外周の内壁側へ案内する形状である。電極部材85を例えば網状または多孔状に形成し、電極部材85を通過する混合燃料の圧力損失を低減する構造でもよい。 In the case of the twentieth embodiment, the capturing unit 76 of the concentration sensor device 70 has at least one or more electrode members 85 as shown in FIG. The electrode member 85 is formed in a cone shape or a truncated cone shape such as a cylindrical cone or a pyramid having both ends opened, and is provided in a multistage shape. In the case of the twentieth embodiment, the electrode member 85 has a conical cylinder shape whose inner diameter increases from the upstream side to the downstream side of the fuel passage 74. Therefore, the electrode member 85 has a shape for guiding the flow of fuel in the fuel passage 74 from the center side of the passage forming member 71 to the inner wall side of the outer periphery. For example, the electrode member 85 may be formed in a net shape or a porous shape to reduce the pressure loss of the mixed fuel passing through the electrode member 85.
 また、図29に示すように、濃度センサ装置70は、壁部86を設けてもよい。第20実施形態の場合、壁部86は、内径が拡大した最下流側の電極部材85の下流側において、燃料通路74の軸方向へ延びている。センサ部72は、通路形成部材71の径方向において壁部86の内周側、すなわち一対の壁部86の間に配置される。帯電部75を通過し帯電した異物を含む混合燃料は、捕捉部76の電極部材85によって混合燃料とともに燃料通路74の外周側へ案内されながら、一対の壁部86の外周側を通過する。そのため、混合燃料に含まれる異物は、センサ部72側へ流入しにくくなる。 Further, as shown in FIG. 29, the concentration sensor device 70 may be provided with a wall portion 86. In the case of the twentieth embodiment, the wall portion 86 extends in the axial direction of the fuel passage 74 on the downstream side of the most downstream electrode member 85 having an enlarged inner diameter. The sensor portion 72 is disposed on the inner peripheral side of the wall portion 86 in the radial direction of the passage forming member 71, that is, between the pair of wall portions 86. The mixed fuel containing the charged foreign matter passing through the charging unit 75 passes through the outer peripheral side of the pair of wall portions 86 while being guided to the outer peripheral side of the fuel passage 74 together with the mixed fuel by the electrode member 85 of the capturing unit 76. Therefore, the foreign matter contained in the mixed fuel is less likely to flow into the sensor unit 72 side.
 第19実施形態では、捕捉部76は少なくとも一枚以上の電極部材85を有している。この電極部材85は、上流側から下流側へ向けて内径が縮小している。そのため、混合燃料は、徐々に内径が縮小する電極部材85を通過する。これにより、混合燃料に含まれる異物は、捕捉部76に捕捉されやすくなる。 In the nineteenth embodiment, the capturing unit 76 has at least one electrode member 85. The electrode member 85 has an inner diameter that decreases from the upstream side toward the downstream side. Therefore, the mixed fuel passes through the electrode member 85 whose inner diameter gradually decreases. Thereby, the foreign matter contained in the mixed fuel is easily captured by the capturing unit 76.
 また、第20実施形態では、捕捉部76は少なくとも一枚以上の電極部材85を有している。この電極部材85は、上流側から下流側へ向けて燃料通路74における混合燃料の流れを通路形成部材71の内壁側へ案内する形状である。そのため、混合燃料は、徐々に通路形成部材71の内壁に近づく電極部材85を通過する。これにより、混合燃料に含まれる異物は捕捉部76に捕捉されやすくなるとともに、混合燃料の圧力損失が比較的小さくなる。 In the twentieth embodiment, the capturing unit 76 has at least one electrode member 85. The electrode member 85 has a shape for guiding the flow of the mixed fuel in the fuel passage 74 toward the inner wall of the passage forming member 71 from the upstream side to the downstream side. Therefore, the mixed fuel passes through the electrode member 85 that gradually approaches the inner wall of the passage forming member 71. As a result, foreign matter contained in the mixed fuel is easily captured by the capturing unit 76, and the pressure loss of the mixed fuel is relatively small.
 さらに、第19、第20実施形態では、壁部86は、捕捉部76を通過する混合燃料のうち、より含まれる異物が少ない混合燃料をセンサ部72側へ案内する。したがって、混合燃料に含まれる異物をセンサ部72の上流側で捕捉することができ、センサ部72の濃度検出精度を高めることができる。
(第21実施形態)
 第21実施形態による濃度センサ装置を図30に示す。
Furthermore, in the nineteenth and twentieth embodiments, the wall portion 86 guides the mixed fuel that contains less foreign matter out of the mixed fuel that passes through the capturing portion 76 to the sensor portion 72 side. Accordingly, the foreign matter contained in the mixed fuel can be captured on the upstream side of the sensor unit 72, and the concentration detection accuracy of the sensor unit 72 can be improved.
(21st Embodiment)
A concentration sensor device according to a twenty-first embodiment is shown in FIG.
 第21実施形態の場合、図30に示すように濃度センサ装置70は、振動付与手段としての振動発生部87を備えている。振動発生部87は、通路形成部材71の外側に設けられており、通路形成部材71に振動を与える。燃料通路74に設けられる帯電部75および捕捉部76などは、長期間の使用によって異物が堆積するおそれがある。そこで、振動発生部87は、燃料通路74を形成する通路形成部材71を間欠的に振動させる。これにより、帯電部75および捕捉部76は、通路形成部材71とともに振動する。特に、振動発生部87を帯電部75および捕捉部76の近傍に配置することにより、帯電部75および捕捉部76の振動が促進される。したがって、帯電部75および捕捉部76への異物の堆積を低減することができ、帯電部75および捕捉部76の機能を長期間維持することができる。
(第22、第23、第24実施形態)
 第22、第23、第24実施形態による濃度センサ装置をそれぞれ図31、図32または図33に示す。
In the case of the twenty-first embodiment, as shown in FIG. 30, the concentration sensor device 70 includes a vibration generating unit 87 as vibration applying means. The vibration generator 87 is provided outside the passage forming member 71 and applies vibration to the passage forming member 71. The charging unit 75, the capturing unit 76, and the like provided in the fuel passage 74 may accumulate foreign matter due to long-term use. Therefore, the vibration generator 87 intermittently vibrates the passage forming member 71 that forms the fuel passage 74. Thereby, the charging unit 75 and the capturing unit 76 vibrate together with the passage forming member 71. In particular, by arranging the vibration generating unit 87 in the vicinity of the charging unit 75 and the capturing unit 76, vibration of the charging unit 75 and the capturing unit 76 is promoted. Accordingly, foreign matter accumulation on the charging unit 75 and the capturing unit 76 can be reduced, and the functions of the charging unit 75 and the capturing unit 76 can be maintained for a long period of time.
(Twenty-second, twenty-third, and twenty-fourth embodiments)
The concentration sensor devices according to the twenty-second, twenty-third, and twenty-fourth embodiments are shown in FIGS. 31, 32, and 33, respectively.
 第22実施形態では、図31に示すように濃度センサ装置10は、基板11およびセンサ部12を備えている。基板11は、センサ部12と反対の端面側に絶縁膜14、およびセンサ部12との間に絶縁膜17が形成されている。センサ部12は、第1実施形態などと同様に複数の電極15を有している。センサ部12の電極15は、保護膜16によって保護されている。 In the twenty-second embodiment, the concentration sensor device 10 includes a substrate 11 and a sensor unit 12, as shown in FIG. In the substrate 11, an insulating film 14 is formed on the end surface side opposite to the sensor unit 12, and an insulating film 17 is formed between the sensor unit 12 and the substrate 11. The sensor unit 12 has a plurality of electrodes 15 as in the first embodiment. The electrode 15 of the sensor unit 12 is protected by a protective film 16.
 第22実施形態の場合、濃度センサ装置10は、保護膜16の基板11と反対側に第二保護膜92を有している。第二保護膜92は、センサ部12と反対側すなわち混合燃料に晒される面側が粗面状に形成されている。具体的には、図31に示す濃度センサ装置10の場合、第二保護膜92は、センサ部12と反対側に凸部93を有する粗面状に形成されている。第保護膜92は、特許請求の範囲の保護膜部に相当する。 In the case of the twenty-second embodiment, the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11. The second protective film 92 has a rough surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel. Specifically, in the case of the concentration sensor device 10 shown in FIG. 31, the second protective film 92 is formed in a rough surface shape having a convex portion 93 on the side opposite to the sensor portion 12. The second protective film 92 corresponds to the protective film portion in the claims.
 第23実施形態の場合、図32に示すように濃度センサ装置10は、保護膜16の基板11と反対側に第二保護膜92を有している。第二保護膜92は、センサ部12と反対側すなわち混合燃料に晒される面側が粗面状に形成されている。具体的には、図32に示す濃度センサ装置10の場合、第二保護膜92は、センサ部12と反対側に先鋭な突起94を有する粗面状に形成されている。なお、第二保護膜92は、先鋭な突起94に限らず、例えばサンドブラストなどによる傷を形成することにより、粗面状としてもよい。 In the case of the twenty-third embodiment, as shown in FIG. 32, the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11. The second protective film 92 has a rough surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel. Specifically, in the case of the concentration sensor device 10 shown in FIG. 32, the second protective film 92 is formed in a rough surface shape having a sharp protrusion 94 on the side opposite to the sensor portion 12. Note that the second protective film 92 is not limited to the sharp projection 94, and may be formed into a rough surface by, for example, forming a scratch by sandblasting or the like.
 第24実施形態の場合、図33に示すように濃度センサ装置10は、保護膜16の基板11と反対側に第二保護膜92を有している。第二保護膜92は、センサ部12と反対側すなわち混合燃料に晒される面側が凸面状に形成されている。具体的には、図33に示す濃度センサ装置10の場合、第二保護膜92は、センサ部12と反対側が内側へかけてセンサ部12と反対側へ突出する凸面状に形成されている。 In the case of the twenty-fourth embodiment, as shown in FIG. 33, the concentration sensor device 10 has a second protective film 92 on the opposite side of the protective film 16 from the substrate 11. The second protective film 92 has a convex surface on the side opposite to the sensor unit 12, that is, the surface exposed to the mixed fuel. Specifically, in the case of the concentration sensor device 10 shown in FIG. 33, the second protective film 92 is formed in a convex shape that protrudes in the opposite direction to the sensor portion 12 with the opposite side to the sensor portion 12 inward.
 第22、第23、第24実施形態では、センサ部12を覆う第二保護膜92を備えている。第二保護膜92は、センサ部12と反対側の端部に一体の堆積制限部を有している。第22実施形態の場合、第二保護膜92はセンサ部12と反対側に堆積制限部を有しており、この堆積制限部は凸部93を有する粗面状に形成されている。また、第23実施形態の場合、第二保護膜92はセンサ部12と反対側に堆積制限部を有しており、この堆積制限部は突起94を有する粗面状に形成されている。さらに、第24実施形態の場合、第二保護膜92はセンサ部12と反対側に堆積制限部を有しており、この堆積制限部は凸面状に形成されている。そのため、第22、第23、第24実施形態では、第二保護膜92のセンサ部12と反対側の面への異物の付着が低減される。したがって、センサ部12への異物の付着および堆積が低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。
(第25実施形態)
 第25実施形態による濃度センサ装置10を図34および図35に示す。
In the twenty-second, twenty-third, and twenty-fourth embodiments, a second protective film 92 that covers the sensor unit 12 is provided. The second protective film 92 has an integral deposition limiting part at the end opposite to the sensor part 12. In the case of the twenty-second embodiment, the second protective film 92 has a deposition limiting portion on the side opposite to the sensor portion 12, and this deposition limiting portion is formed in a rough surface shape having a convex portion 93. In the case of the twenty-third embodiment, the second protective film 92 has a deposition restricting portion on the side opposite to the sensor portion 12, and this deposition restricting portion is formed in a rough surface shape having a protrusion 94. Further, in the case of the twenty-fourth embodiment, the second protective film 92 has a deposition limiting portion on the side opposite to the sensor portion 12, and this deposition limiting portion is formed in a convex shape. Therefore, in the twenty-second, twenty-third, and twenty-fourth embodiments, the adhesion of foreign matter to the surface of the second protective film 92 opposite to the sensor unit 12 is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
(25th Embodiment)
A concentration sensor device 10 according to a twenty-fifth embodiment is shown in FIGS.
 第25実施形態では、濃度センサ装置10は、保護膜16のセンサ部12と反対側に流路形成部95を有している。流路形成部95は、保護膜16のセンサ部12と反対側の端面に形成されている。流路形成部95は、図35に示すようにセンサ部12に向けて混合燃料の流れを形成するように設けられている。燃料通路を流れる混合燃料は、流路形成部95によって保護膜16によって覆われているセンサ部12の基板11と反対側へ案内される。そのため、混合燃料は、センサ部12の基板11と反対側を積極的に流れる。その結果、保護膜16に異物が付着しても、付着した異物は流路形成部95によって形成された混合燃料の流れによって除去される。なお、図36に示すように、流路形成部96は、センサ部12へ向けて湾曲する形状であってもよい。このような流路形成部96であっても、センサ部12側へ混合燃料の流れを案内することができる。 In the twenty-fifth embodiment, the concentration sensor device 10 has a flow path forming part 95 on the opposite side of the protective film 16 from the sensor part 12. The flow path forming part 95 is formed on the end surface of the protective film 16 opposite to the sensor part 12. The flow path forming part 95 is provided so as to form the flow of the mixed fuel toward the sensor part 12 as shown in FIG. The mixed fuel flowing through the fuel passage is guided to the side opposite to the substrate 11 of the sensor unit 12 covered with the protective film 16 by the flow path forming unit 95. Therefore, the mixed fuel actively flows on the side opposite to the substrate 11 of the sensor unit 12. As a result, even if foreign matter adheres to the protective film 16, the attached foreign matter is removed by the flow of the mixed fuel formed by the flow path forming unit 95. As shown in FIG. 36, the flow path forming part 96 may be curved toward the sensor part 12. Even in such a flow path forming part 96, the flow of the mixed fuel can be guided to the sensor part 12 side.
 第25実施形態では、保護膜16は流路形成部95、96を有する。流路形成部95、96は、保護膜16の表面にセンサ部12へ向けた混合燃料の流れを形成する。これにより、保護膜16に付着する異物は、混合燃料の流れによって除去される。そのため、保護膜16への異物の付着が低減される。したがって、センサ部12への異物の付着および堆積が低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。
(第26実施形態)
 第26実施形態による濃度センサ装置10を図37に示す。
In the twenty-fifth embodiment, the protective film 16 has flow path forming portions 95 and 96. The flow path forming portions 95 and 96 form a mixed fuel flow toward the sensor portion 12 on the surface of the protective film 16. Thereby, the foreign material adhering to the protective film 16 is removed by the flow of the mixed fuel. Therefore, the adhesion of foreign matter to the protective film 16 is reduced. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
(26th Embodiment)
A concentration sensor device 10 according to a twenty-sixth embodiment is shown in FIG.
 第26実施形態では、濃度センサ装置10は、保護膜16のセンサ部12と反対側に多孔質部材97を有している。多孔質部材97は、保護膜16を覆う保護膜部でもある。多孔質部材97は、混合燃料の通過を許容しつつ、混合燃料に含まれる異物の通過を制限する複数の孔を有している。多孔質部材97は異物の通過を制限するため、混合燃料に含まれる異物はセンサ部12側へ到達しない。 In the twenty-sixth embodiment, the concentration sensor device 10 has a porous member 97 on the side of the protective film 16 opposite to the sensor unit 12. The porous member 97 is also a protective film part that covers the protective film 16. The porous member 97 has a plurality of holes that allow passage of the mixed fuel and restrict passage of foreign matters contained in the mixed fuel. Since the porous member 97 restricts the passage of foreign matter, the foreign matter contained in the mixed fuel does not reach the sensor unit 12 side.
 このようにセンサ部12を多孔質部材97で覆うことにより、混合燃料に含まれる異物は多孔質部材97のセンサ部12と反対側の端面に付着および堆積しやすくなる。そこで、濃度センサ装置10は、多孔質部材97に振動を与える振動発生部98を設けてもよい。振動発生部98は、例えば圧電素子などで形成されており、通電することにより振動を発生する。振動発生部98で発生した振動は、多孔質部材97を振動させる。これにより、多孔質部材97に付着あるいは堆積した異物は、振動によって多孔質部材97からの除去が促進される。 By covering the sensor unit 12 with the porous member 97 in this way, foreign matters contained in the mixed fuel are easily attached and deposited on the end surface of the porous member 97 opposite to the sensor unit 12. Therefore, the concentration sensor device 10 may include a vibration generation unit 98 that applies vibration to the porous member 97. The vibration generating unit 98 is formed of, for example, a piezoelectric element and generates vibration when energized. The vibration generated by the vibration generating unit 98 causes the porous member 97 to vibrate. Thereby, the foreign matter adhering to or accumulating on the porous member 97 is promoted to be removed from the porous member 97 by vibration.
 また、振動発生部98は、上記のような圧電素子に代えて図38に示すように振動体99であってもよい。振動体99は、膜状に形成されており、多孔質部材97のセンサ部12と反対側に設けられている。振動体99は、多孔質部材97のセンサ部12と反対側を混合燃料が流れると、その混合燃料の流れによって振動し、多孔質部材97に振動を与える。すなわち、振動体99は、特許請求の範囲の振動付与手段に相当する。この振動体99を利用することにより、電力などを必要とすることなく、混合燃料の流れによって多孔質部材97に振動を与えることができる。 Further, the vibration generating unit 98 may be a vibrating body 99 as shown in FIG. 38 instead of the piezoelectric element as described above. The vibrating body 99 is formed in a film shape and is provided on the opposite side of the porous member 97 from the sensor unit 12. When the mixed fuel flows on the opposite side of the porous member 97 to the sensor unit 12, the vibrating body 99 vibrates by the flow of the mixed fuel and gives vibration to the porous member 97. That is, the vibrating body 99 corresponds to the vibration applying means in the claims. By using the vibrating body 99, the porous member 97 can be vibrated by the flow of the mixed fuel without requiring electric power.
 第26実施形態では、多孔質部材97からなる保護膜を備えている。多孔質部材97の孔は、混合燃料の流れを許容しつつ、混合燃料に含まれる異物の通過を制限する。そのため、異物は多孔質部材97に堆積し、センサ部12には付着しない。したがって、センサ部12への異物の付着および堆積が低減され、混合燃料に含まれる特定成分の検出精度を高めることができる。 In the twenty-sixth embodiment, a protective film made of a porous member 97 is provided. The holes of the porous member 97 restrict the passage of foreign matters contained in the mixed fuel while allowing the flow of the mixed fuel. Therefore, the foreign matter accumulates on the porous member 97 and does not adhere to the sensor unit 12. Therefore, the adhesion and accumulation of foreign matter on the sensor unit 12 are reduced, and the detection accuracy of the specific component contained in the mixed fuel can be increased.
 また、第26実施形態では、多孔質部材97に振動を与える振動発生部98を備える。多孔質部材97を用いることにより、混合燃料に含まれる異物は多孔質部材97の表面に堆積しやすくなる。そのため、多孔質部材97を振動発生部98で振動させることにより、多孔質部材97に堆積した異物の除去を促進することができる。 In the twenty-sixth embodiment, a vibration generating unit 98 that applies vibration to the porous member 97 is provided. By using the porous member 97, foreign matters contained in the mixed fuel are easily deposited on the surface of the porous member 97. Therefore, the removal of the foreign matter deposited on the porous member 97 can be promoted by vibrating the porous member 97 by the vibration generating unit 98.
 以上説明した複数の実施形態では、圧電素子部13と回路部18とを主に貫通電極19で電気的に接続する例について説明した。しかし、圧電素子部13と回路部18とは貫通電極19に限らず、例えばボンディングワイヤやバンプなどで電気的に接続してもよい。また、図14で説明したように、例えば圧電素子部13などの濃度センサ装置10の一部の素子を外部の実装基板103とボンディングワイヤやはんだボール33などによって電気的に接続してもよい。 In the embodiments described above, the example in which the piezoelectric element portion 13 and the circuit portion 18 are electrically connected mainly by the through electrode 19 has been described. However, the piezoelectric element portion 13 and the circuit portion 18 are not limited to the through electrode 19 and may be electrically connected by, for example, bonding wires or bumps. As described with reference to FIG. 14, for example, some elements of the concentration sensor device 10 such as the piezoelectric element unit 13 may be electrically connected to the external mounting substrate 103 by bonding wires, solder balls 33, or the like.
 また、上述の複数の実施形態では、特定成分として生物由来のアルコールを含む混合燃料を液体として適用する例について説明した。しかし、液体は、例えば潤滑油、アルコール、あるいは水など、混合燃料に限らず任意に選択することができる。 Further, in the above-described plurality of embodiments, the example in which the mixed fuel containing the biological alcohol as the specific component is applied as the liquid has been described. However, the liquid can be arbitrarily selected without being limited to the mixed fuel, such as lubricating oil, alcohol, or water.
 以下、本発明を、アルコールとガソリンとからなる混合液体の混合比の算出に適用した場合の実施形態を図に基づいて説明する。なお、ガソリンは数百種類もの成分からなる液体であるが、ガソリンを構成する成分の誘電率は互いに等しいため、本実施形態では、ガソリンを混合液体に含まれる1種類の成分とみなし、混合液体を、アルコールとガソリンの2種類の成分からなるものとみなす。
(第27実施形態)
 図39は、第27実施形態に係る混合比算出装置の概略構成を示すブロック図である。図40は、電極の概略構成を示す断面図である。図41は、静電容量と比誘電率のグラフである。なお、図41においては、横軸が静電容量を示し、縦軸が比誘電率を示している。
Hereinafter, an embodiment in a case where the present invention is applied to calculation of a mixing ratio of a mixed liquid composed of alcohol and gasoline will be described with reference to the drawings. Gasoline is a liquid composed of several hundred kinds of components, but since the dielectric constants of the components constituting gasoline are equal to each other, in this embodiment, gasoline is regarded as one type of component contained in the mixed liquid, and the mixed liquid Is considered to consist of two components, alcohol and gasoline.
(27th Embodiment)
FIG. 39 is a block diagram illustrating a schematic configuration of the mixture ratio calculation apparatus according to the twenty-seventh embodiment. FIG. 40 is a cross-sectional view showing a schematic configuration of an electrode. FIG. 41 is a graph of capacitance and relative dielectric constant. In FIG. 41, the horizontal axis represents the capacitance, and the vertical axis represents the relative dielectric constant.
 図39に示すように、混合比算出装置200は、要部として、混合液体の誘電率を含む静電容量を測定し、該静電容量を電気信号に変換するセンサ部210と、該センサ部210から出力された出力信号に基づいて混合液体の混合比を算出する算出部230と、を有する。さらに、本実施形態に係る混合比算出装置200は、混合液体の温度を測定する温度測定部250と、後述する電極211~214によって構成されるコンデンサの真空中の静電容量、混合液体を構成するアルコール、ガソリンそれぞれの比誘電率、及び該比誘電率の温度特性を記憶保持する記憶部270と、を有している。 As shown in FIG. 39, the mixing ratio calculation apparatus 200 measures, as a main part, a sensor unit 210 that measures a capacitance including a dielectric constant of a mixed liquid and converts the capacitance into an electric signal, and the sensor unit. And a calculation unit 230 that calculates the mixing ratio of the mixed liquid based on the output signal output from 210. Furthermore, the mixing ratio calculation apparatus 200 according to the present embodiment configures a capacitance in vacuum and a mixed liquid of a capacitor constituted by a temperature measuring unit 250 that measures the temperature of the mixed liquid and electrodes 211 to 214 described later. And a storage unit 270 for storing and holding the relative dielectric constant of each of alcohol and gasoline, and the temperature characteristics of the relative dielectric constant.
 センサ部210は、混合液体中に配置される4つの電極211~214と、これら電極211~214によって測定された、混合液体の誘電率を含む静電容量を検出し、電気信号に変換する検出回路215と、を有している。図40に示すように、電極211~214それぞれは、断面矩形状とされ、絶縁性の保護膜216を介して基板217上に配置され、その表面が保護膜216によって被覆・保護されている。 The sensor unit 210 detects four capacitances 211 to 214 arranged in the mixed liquid, and the capacitance measured by the electrodes 211 to 214 including the dielectric constant of the mixed liquid and converts it into an electric signal. Circuit 215. As shown in FIG. 40, each of the electrodes 211 to 214 has a rectangular cross section, is disposed on the substrate 217 via an insulating protective film 216, and the surface thereof is covered and protected by the protective film 216.
 図40に示すように、第1電極211と第2電極212とが対向されることで、第1電極211と第2電極212とによってコンデンサC12が構成され、第2電極212と第3電極213とが対向されることで、第2電極212と第3電極213とによってコンデンサC23が構成され、第3電極213と第4電極214とが対向されることで、第3電極213と第4電極214とによってコンデンサC34が構成されている。ここで、各コンデンサC12,C23,C34の対向面積は互いに等しくなっている。一方、第1電極211と第2電極212との電極間隔dが、第2電極212と第3電極213との電極間隔dよりも長く、電極間隔dが、第3電極213と第4電極214との電極間隔dよりも長くなっている。コンデンサの静電容量は、対向面積と、電極間隔の逆数とに比例するので、各コンデンサC12,C23,C34の静電容量の比は、電極間隔の逆数の比と等しくなっている。本実施形態では、電極間隔d,d,dの比が、4:2:1となっているので、コンデンサC12,C23,C34の静電容量の比は、1:2:4となっている。なお、本実施形態では、第1電極211と第2電極212との間、第2電極212と第3電極213との間、及び第3電極213と第4電極214との間に介在する保護膜216は、存在しないものとみなしている。 As shown in FIG. 40, that the first electrode 211 and the second electrode 212 is opposed, the capacitor C 12 by the first electrode 211 and the second electrode 212 is formed, the second electrode 212 third electrode by 213 and is opposed, and the second electrode 212 is the capacitor C 23 is constituted by a third electrode 213, by a third electrode 213 and fourth electrode 214 is opposed to the third electrode 213 first capacitor C 34 is constituted by the fourth electrode 214. Here, the opposing areas of the capacitors C 12 , C 23 , and C 34 are equal to each other. On the other hand, the electrode interval d 1 between the first electrode 211 and the second electrode 212, as long as the second electrode 212 than the electrode spacing d 2 between the third electrode 213, the electrode spacing d 2 is the third electrode 213 first It is longer than the electrode distance d 3 with respect to the four electrodes 214. Since the capacitance of the capacitor is proportional to the opposing area and the reciprocal of the electrode interval, the capacitance ratio of each capacitor C 12 , C 23 , C 34 is equal to the reciprocal of the electrode interval. . In the present embodiment, since the ratio of the electrode spacings d 1 , d 2 , d 3 is 4: 2: 1, the capacitance ratio of the capacitors C 12 , C 23 , C 34 is 1: 2. : 4. In the present embodiment, protection is provided between the first electrode 211 and the second electrode 212, between the second electrode 212 and the third electrode 213, and between the third electrode 213 and the fourth electrode 214. The film 216 is considered absent.
 算出部230は、センサ部210の各コンデンサC12,C23,C34において測定された、混合液体の誘電率を含む静電容量C,C,Cに基づいて、混合液体の比誘電率ε1r,ε2r,ε3rを検出し、静電容量C,C,Cと、該静電容量それぞれに対応する比誘電率ε1r,ε2r,ε3rとに対する回帰直線を求めることで、補正された比誘電率εを算出する。そして、補正された比誘電率εに基づいて、混合液体の混合比a,bを算出する。算出部230には、混合液体の温度を測定する温度測定部250と、コンデンサC12,C23,C34の真空の静電容量C012,C023,C034、アルコールとガソリンそれぞれの比誘電率εar,εbr、及び該比誘電率εar,εbrの温度依存性を記憶保持する記憶部270と、が接続されている。算出部230は、温度測定部250の測定結果を参照し、計算に必要なパラメータを記憶部270から取り出すことで、混合比a,bを算出する。 The calculation unit 230 calculates the ratio of the mixed liquid based on the capacitances C 1 , C 2 , and C 3 including the dielectric constant of the mixed liquid measured in the capacitors C 12 , C 23 , and C 34 of the sensor unit 210. Dielectric constants ε 1r , ε 2r , and ε 3r are detected, and regression lines for the capacitances C 1 , C 2 , and C 3 and relative dielectric constants ε 1r , ε 2r , and ε 3r corresponding to the capacitances, respectively. Is calculated, the corrected relative dielectric constant ε r is calculated. Then, based on the corrected relative dielectric constant ε r , the mixing ratios a and b of the mixed liquid are calculated. The calculation unit 230 includes a temperature measurement unit 250 that measures the temperature of the mixed liquid, vacuum capacitances C 012 , C 023 , and C 034 of capacitors C 12 , C 23 , and C 34 , and the relative dielectrics of alcohol and gasoline, respectively. rate ε ar, ε br, and relative dielectric constant epsilon ar, a storage unit 270 for storing and holding the temperature dependence of the epsilon br, are connected. The calculation unit 230 refers to the measurement result of the temperature measurement unit 250 and extracts parameters necessary for the calculation from the storage unit 270, thereby calculating the mixing ratios a and b.
 次に、本実施形態に係る混合比算出方法を説明する。先ず、センサ部210の検出回路215によって、コンデンサC12,C23,C34の静電容量C,C,Cを測定し、測定された静電容量C,C,Cを電気信号に変換する。該電気信号がセンサ部210から算出部230に入力されると、算出部230は、記憶部270から真空の静電容量C012,C023,C034を取り出して、測定された静電容量C,C,Cと真空の静電容量C012,C023,C034との商をとることで、比誘電率ε1r,ε2r,ε3rを算出する。以上が、特許請求の範囲に記載の第1算出工程に相当する。 Next, the mixing ratio calculation method according to this embodiment will be described. First, the detection circuit 215 of the sensor section 210, a capacitor C 12, C 23, C the capacitance C 1 of 34, measured C 2, C 3, were measured capacitance C 1, C 2, C 3 Is converted into an electrical signal. When the electric signal is input from the sensor unit 210 to the calculation unit 230, the calculation unit 230 extracts the vacuum capacitances C 012 , C 023 , and C 034 from the storage unit 270, and measures the measured capacitance C The relative dielectric constants ε 1r , ε 2r , and ε 3r are calculated by taking the quotients of 1 , C 2 , C 3 and the vacuum capacitances C 012 , C 023 , C 034 . The above corresponds to the first calculation step described in the claims.
 以下、第1算出工程で行われる計算を説明する。静電容量は、比誘電率と真空の静電容量との積に等しいので、静電容量C,C,C、比誘電率ε1r,ε2r,ε3r、及び真空の静電容量C012,C023,C034それぞれの関係は、下式(1A)~(1C)のように示すことができる。
(数1)
=ε1r×C012・・・(1A)
=ε2r×C023・・・(1B)
=ε3r×C034・・・(1C)
 したがって、下式(2A)~(2C)に示すように、測定された静電容量C,C,Cそれぞれを、対応する真空の静電容量C012,C023,C034で割ることにより、静電容量C,C,Cから比誘電率ε1r,ε2r,ε3rを算出することができる。
(数2)
ε1r=C/C012・・・(2A)
ε2r=C/C023・・・(2B)
ε3r=C/C034・・・(2C)
 第1算出工程終了後、算出部230は、測定された静電容量C,C,Cと、変換された比誘電率ε1r,ε2r,ε3rとに対する回帰直線を求める。以上が、特許請求の範囲に記載の第2算出工程に相当する。回帰直線は、公知の最小二乗法を用いることで求めることができるので、本実施形態では、その説明を割愛する。
Hereinafter, the calculation performed in the first calculation step will be described. Since the capacitance is equal to the product of the relative permittivity and the vacuum capacitance, the capacitances C 1 , C 2 , C 3 , the relative permittivity ε 1r , ε 2r , ε 3r , and the vacuum electrostatic The relationship between the capacitors C 012 , C 023 , and C 034 can be expressed as the following equations (1A) to (1C).
(Equation 1)
C 1 = ε 1r × C 012 (1A)
C 2 = ε 2r × C 023 (1B)
C 3 = ε 3r × C 034 (1C)
Therefore, as shown in the following equations (2A) to (2C), the measured capacitances C 1 , C 2 , and C 3 are respectively divided by the corresponding vacuum capacitances C 012 , C 023 , and C 034 . Thus, the relative dielectric constants ε 1r , ε 2r , and ε 3r can be calculated from the capacitances C 1 , C 2 , and C 3 .
(Equation 2)
ε 1r = C 1 / C 012 (2A)
ε 2r = C 2 / C 023 (2B)
ε 3r = C 3 / C 034 (2C)
After the first calculation step, the calculation unit 230 obtains a regression line for the measured capacitances C 1 , C 2 , C 3 and the converted relative dielectric constants ε 1r , ε 2r , ε 3r . The above corresponds to the second calculation step described in the claims. Since the regression line can be obtained by using a known least square method, the description thereof is omitted in this embodiment.
 第2算出工程終了後、算出部230は、算出された回帰直線における、静電容量がゼロの時の比誘電率(切片)を求めることで、補正された比誘電率を算出する。以上が、特許請求の範囲に記載の第3算出工程に相当する。 After completion of the second calculation step, the calculation unit 230 calculates a corrected relative dielectric constant by obtaining a relative dielectric constant (intercept) when the capacitance is zero in the calculated regression line. The above corresponds to the third calculation step described in the claims.
 以下、算出された回帰直線における、静電容量がゼロの時の比誘電率が、補正された比誘電率、すなわち、汚れの影響が取り除かれた比誘電率に相当する理由について説明する。混合液体の比誘電率をεとし、各コンデンサC12,C23,C34に付着した混合液体に含まれる異物によって、比誘電率εがそれぞれ誤差因子α,α,αだけ変動したとすると、上式(1A)~(1C)は、下式(3A)~(3C)のように表される。
(数3)
=(ε+α)×C012・・・(3A)
=(ε+α)×C023・・・(3B)
=(ε+α)×C034・・・(3C)
 また、混合液体に含まれる異物によって、各コンデンサC12,C23,C34がそれぞれ誤差因子β,β,βだけ変動したとすると、上式(1A)~(1C)は、下式(4A)~(4C)のように表される。
(数4)
=ε×C012+β・・・(4A)
=ε×C023+β・・・(4B)
=ε×C034+β・・・(4C)
 ここで、上式(3A)~(3C)と、上式(4A)~(4C)とから、βはα×C012に等しく、βはα×C023に等しく、βはα×C034に等しく、βはαに比例する関係となっていることが確認できる。
Hereinafter, the reason why the relative permittivity when the capacitance is zero in the calculated regression line corresponds to the corrected relative permittivity, that is, the relative permittivity from which the influence of dirt is removed will be described. The relative permittivity of the mixed liquid is ε r, and the relative permittivity ε r is caused by the error factors α 1 , α 2 , and α 3 , respectively, due to the foreign matter contained in the mixed liquid attached to the capacitors C 12 , C 23 , and C 34. If it fluctuates, the above expressions (1A) to (1C) are expressed as the following expressions (3A) to (3C).
(Equation 3)
C 1 = (ε r + α 1 ) × C 012 (3A)
C 2 = (ε r + α 2 ) × C 023 (3B)
C 3 = (ε r + α 3 ) × C 034 (3C)
If the capacitors C 12 , C 23 , and C 34 are changed by error factors β 1 , β 2 , and β 3 , respectively, due to foreign matters contained in the mixed liquid, the above equations (1A) to (1C) It is expressed as equations (4A) to (4C).
(Equation 4)
C 1 = ε r × C 012 + β 1 (4A)
C 2 = ε r × C 023 + β 2 (4B)
C 3 = ε r × C 034 + β 3 (4C)
Here, from the above equations (3A) to (3C) and the above equations (4A) to (4C), β 1 is equal to α 1 × C 012 , β 2 is equal to α 2 × C 023 , β 3 Is equal to α 3 × C 034 , and β can be confirmed to be proportional to α.
 比誘電率εと真空の静電容量C012,C023,C034は一定なので、誘電率と真空の静電容量との積であるε×C012,ε×C023,ε×C034は一定となる。したがって、誤差因子α,βがない場合、図41の破線で示すように、静電容量及び比誘電率の期待値(黒点)を結んでなる直線は、横軸(静電容量)に対して平行となる。しかしながら、図41に示すように、実際の測定点(白点)は、期待値よりも、静電容量、比誘電率ともに大きくなっている。これは、電極211~214に付着した、混合液体中に含まれる有機物や、無機物からなる異物の比誘電率が混合液体の比誘電率よりも高いためである。換言すれば、誤差因子αが正の値をとるためである。また、図41に示すように、静電容量が高まるにつれて、測定された静電容量、及び算出された比誘電率がともに大きくなっているのが確認できる。すなわち、静電容量が高まるにつれて、誤差因子α,βが大きくなっていることが確認できる。これは、電極間隔が狭くなる(静電容量が大きくなる)につれて、電極間隔に占める異物の割合が高まり、これによって電極211~214に付着した異物の影響が大きくなるためである。したがって、これら測定点に基づいて算出された回帰直線は、図41に実線で示すように、静電容量に対して比誘電率が比例する、右肩上がりの直線となっている。この回帰直線と縦軸との交点は、静電容量が最も小さい時(電極間隔が無限の時)に得ることができる比誘電率、すなわち、電極間隔に占める異物の割合が最も低い比誘電率、更にいえば、汚れの影響が最も小さい比誘電率を示している。したがって、求めた回帰直線における縦軸(比誘電率)との交点の値、すなわち、回帰直線における静電容量がゼロの時の比誘電率の値が、汚れの影響が取り除かれた混合液体の比誘電率εに相当することとなる。なお、図41においては、便宜上、プロットの値を大仰に描いている。 Since the relative permittivity ε r and the vacuum capacitances C 012 , C 023 , and C 034 are constant, ε r × C 012 , ε r × C 023 , ε r that is the product of the dielectric constant and the vacuum capacitance. XC 034 is constant. Therefore, when there are no error factors α and β, as shown by the broken line in FIG. 41, the straight line connecting the expected value (black dot) of the capacitance and the relative dielectric constant is relative to the horizontal axis (capacitance). Parallel. However, as shown in FIG. 41, the actual measurement point (white point) is larger in both capacitance and relative permittivity than expected. This is because the relative permittivity of the foreign substance made of organic matter or inorganic matter contained in the mixed liquid adhering to the electrodes 211 to 214 is higher than the relative permittivity of the mixed liquid. In other words, the error factor α takes a positive value. Moreover, as shown in FIG. 41, it can be confirmed that both the measured capacitance and the calculated relative permittivity increase as the capacitance increases. That is, it can be confirmed that the error factors α and β increase as the capacitance increases. This is because as the electrode interval becomes narrower (capacitance increases), the proportion of foreign matter in the electrode interval increases, thereby increasing the influence of foreign matter adhering to the electrodes 211-214. Therefore, the regression line calculated based on these measurement points is a straight line that rises to the right with the relative permittivity proportional to the capacitance, as shown by the solid line in FIG. The intersection of this regression line and the vertical axis is the relative permittivity that can be obtained when the capacitance is the smallest (when the electrode spacing is infinite), that is, the relative permittivity that has the lowest percentage of foreign matter in the electrode spacing. Furthermore, the dielectric constant is the least affected by dirt. Therefore, the value of the intersection point with the vertical axis (dielectric constant) in the obtained regression line, that is, the value of the dielectric constant when the electrostatic capacitance in the regression line is zero, is the value of the mixed liquid from which the influence of dirt is removed. It becomes equivalent to the dielectric constant epsilon r. In FIG. 41, the plot values are drawn greatly for convenience.
 第3算出工程終了後、算出部230は、温度測定部250によって測定された混合液体の温度に対応するアルコールとガソリンそれぞれの比誘電率εar,εbrを記憶部270から取り出す。そして、算出部230は、比誘電率ε,εar,εbrに基づいて、混合比a、bを算出する。以上が、特許請求の範囲に記載の第4算出工程に相当する。 After the third calculation step, the calculation unit 230 takes out the relative dielectric constants ε ar and ε br of the alcohol and gasoline corresponding to the temperature of the mixed liquid measured by the temperature measurement unit 250 from the storage unit 270. Then, the calculation unit 230 calculates the mixing ratios a and b based on the relative dielectric constants ε r , ε ar and ε br . The above corresponds to the fourth calculation step described in the claims.
 以下、第4算出工程で行われる計算を説明する。混合液体の比誘電率は、各成分の比誘電率とその混合比との線形和に等しいことが一般的に知られているので、混合液体の比誘電率εは、下式(5)によって表すことができる。
(数5)
ε=εar×a+εbr×b・・・(5)
 上記したように、混合液体はアルコールとガソリンの2種類からなるので、混合比aとbの和は1に等しく、関係式a+b=1が成り立つ。この関係式を用いて、上式(5)を混合比aとbそれぞれについて整理すると、下式(6A),(6B)が成立する。
(数6)
a=(ε-εbr)/(εar-εbr)・・・(6A)
b=(εar-ε)/(εar-εbr)・・・(6B)
 したがって、補正された比誘電率εと、記憶部270から取り出したεar,εbrとを上式(6A),(6B)に代入することで、混合比a,bを算出することができる。
Hereinafter, the calculation performed in the fourth calculation step will be described. Since it is generally known that the relative dielectric constant of the mixed liquid is equal to the linear sum of the relative dielectric constant of each component and the mixing ratio thereof, the relative dielectric constant ε r of the mixed liquid is expressed by the following equation (5). Can be represented by
(Equation 5)
ε r = ε ar × a + ε br × b (5)
As described above, since the mixed liquid is composed of two types of alcohol and gasoline, the sum of the mixing ratios a and b is equal to 1, and the relational expression a + b = 1 holds. Using this relational expression, when the above equation (5) is arranged for each of the mixing ratios a and b, the following equations (6A) and (6B) are established.
(Equation 6)
a = (ε r −ε br ) / (ε ar −ε br ) (6A)
b = (ε ar −ε r ) / (ε ar −ε br ) (6B)
Therefore, the mixing ratios a and b can be calculated by substituting the corrected relative permittivity ε r and ε ar and ε br extracted from the storage unit 270 into the above equations (6A) and (6B). it can.
 次に、本実施形態に係る混合比算出装置200、及び混合比算出方法の作用効果を説明する。上記したように、混合比算出装置200は、静電容量と誘電率との回帰直線を求め、該回帰直線における、静電容量がゼロの時の比誘電率の値を求めることで、補正された混合液体の比誘電率εを算出している。したがって、この汚れの影響が取り除かれた比誘電率εに基づいて混合比を算出することで、混合比の検出精度の低下を抑制することができる。 Next, operational effects of the mixture ratio calculation apparatus 200 and the mixture ratio calculation method according to the present embodiment will be described. As described above, the mixing ratio calculation apparatus 200 obtains a regression line between the capacitance and the dielectric constant, and corrects by obtaining the value of the dielectric constant when the capacitance is zero in the regression line. The relative dielectric constant ε r of the mixed liquid is calculated. Therefore, by calculating the mixing ratio based on the relative dielectric constant ε r from which the influence of the dirt has been removed, it is possible to suppress a decrease in the detection accuracy of the mixing ratio.
 本実施形態では、混合比算出装置200、及び混合比算出方法を、アルコールとガソリンとからなる混合液体の混合比の算出に適用した例を示した。しかしながら、本実施形態に係る混合比算出装置200、及び混合比算出方法は、上記した混合液体以外にも適用することができる。 In the present embodiment, an example is shown in which the mixture ratio calculation device 200 and the mixture ratio calculation method are applied to the calculation of the mixture ratio of a mixed liquid composed of alcohol and gasoline. However, the mixture ratio calculation apparatus 200 and the mixture ratio calculation method according to the present embodiment can be applied to other than the above-described mixed liquid.
 本実施形態では、混合液体に含まれる異物の誘電率が、混合液体の誘電率よりも高い場合において、汚れの影響が取り除かれた混合液体の比誘電率εを求める例を示した。しかしながら、混合液体に含まれる異物の誘電率が、混合液体の誘電率よりも低い場合においても、汚れの影響が取り除かれた混合液体の比誘電率εを求めることができる。この場合、比誘電率の誤差因子αは負の値をとるので、誤差因子αに比例する、静電容量の誤差因子βも負の値をとる。また、誤差因子α,βが負の場合においても、静電容量が高まるにつれて(電極間隔が狭くなるにつれて)、電極間隔に占める異物の割合が高まるので、誤差因子α,βの値は大きくなる。これにより、異物の誘電率が混合液体の誘電率よりも低い場合には、比誘電率と静電容量とに対する回帰直線が右肩下がりとなる。この右肩下がりの回帰直線と縦軸(比誘電率)との交点は、電極間隔に占める異物の割合が最も低い比誘電率、すなわち、汚れの影響が最も小さい比誘電率を示している。したがって、求めた回帰直線における縦軸との交点の値、すなわち、回帰直線における静電容量がゼロの時の比誘電率の値が、汚れの影響が取り除かれた混合液体の比誘電率εに相当する。このように、混合液体に含まれる異物の誘電率が、混合液体の誘電率よりも低い場合においても、比誘電率と静電容量との回帰直線における、縦軸との交点の値を求めることで、汚れの影響が取り除かれた混合液体の比誘電率εを求めることができる。 In the present embodiment, an example in which the relative permittivity ε r of the mixed liquid from which the influence of dirt is removed is obtained when the dielectric constant of the foreign matter contained in the mixed liquid is higher than the dielectric constant of the mixed liquid. However, even when the dielectric constant of the foreign matter contained in the mixed liquid is lower than the dielectric constant of the mixed liquid, the relative dielectric constant ε r of the mixed liquid from which the influence of dirt has been removed can be obtained. In this case, since the relative permittivity error factor α takes a negative value, the electrostatic capacity error factor β proportional to the error factor α also takes a negative value. Even when the error factors α and β are negative, as the capacitance increases (as the electrode interval becomes narrower), the ratio of foreign matter to the electrode interval increases, so the values of the error factors α and β increase. . As a result, when the dielectric constant of the foreign matter is lower than the dielectric constant of the mixed liquid, the regression line for the relative dielectric constant and the capacitance decreases. The intersection of this downward-sloping regression line and the vertical axis (relative permittivity) indicates the relative permittivity with the lowest ratio of foreign matter in the electrode interval, that is, the relative permittivity with the least influence of dirt. Therefore, the value of the intersection point with the vertical axis in the obtained regression line, that is, the value of the relative dielectric constant when the capacitance is zero in the regression line is the relative dielectric constant ε r of the mixed liquid from which the influence of the dirt is removed. It corresponds to. Thus, even when the dielectric constant of the foreign substance contained in the mixed liquid is lower than the dielectric constant of the mixed liquid, the value of the intersection with the vertical axis in the regression line between the relative dielectric constant and the capacitance is obtained. Thus, the relative dielectric constant ε r of the mixed liquid from which the influence of dirt is removed can be obtained.
 本実施形態では、電極間の対向面積が一定とされ、電極間隔がそれぞれ異なることで、各コンデンサC12,C23,C34の静電容量が異なる例を示した。しかしながら、電極間隔が一定とされ、電極間の対向面積がそれぞれ異なることで、各コンデンサC12,C23,C34の静電容量が異なる構成を採用することもできる。この場合、対向面積が小さくなる(静電容量が小さくなる)にしたがって、電極間隔に占める異物の割合が高くなるので、比誘電率と静電容量との回帰直線における静電容量がゼロの時の比誘電率の値は、汚れの影響が最も大きい比誘電率に相当する。したがって、この回帰直線からは、汚れの影響が取り除かれた混合液体の比誘電率εを求めることはできない。しかしながら、このような、対向面積がそれぞれ異なることで、各コンデンサC12,C23,C34の静電容量が異なる構成の場合、比誘電率と静電容量の逆数とに対する回帰直線を求めることで、汚れの影響が取り除かれた混合液体の比誘電率εを求めることができる。この回帰直線の場合、対向面積が大きくなる(静電容量が大きくなる)にしたがって、静電容量の逆数が小さくなり、且つ、電極間隔に占める異物の割合も低くなる。したがって、求めた回帰直線と縦軸(比誘電率)との交点の値は、静電容量が無限(対向面積が無限)の時に得ることができる比誘電率、すなわち、対向面積に占める異物の割合が最も低い比誘電率、更にいえば、汚れの影響が最も小さい比誘電率を示している。したがって、求めた回帰直線における縦軸との交点の値、すなわち、回帰直線における静電容量の逆数がゼロ(静電容量、及び対向面積が無限大)の時の比誘電率の値が、汚れの影響が取り除かれた混合液体の比誘電率εに相当する。このように、電極間隔が一定とされ、電極間の対向面積がそれぞれ異なることで、各コンデンサC12,C23,C34の静電容量が異なる構成においても、比誘電率と、静電容量の逆数との回帰直線を求め、該回帰直線における静電容量の逆数がゼロの時の比誘電率を求めることで、補正された比誘電率εを算出することができる。 In the present embodiment, an example is shown in which the capacitances of the capacitors C 12 , C 23 , and C 34 are different because the facing area between the electrodes is constant and the electrode intervals are different. However, it is also possible to adopt a configuration in which the capacitances of the capacitors C 12 , C 23 , and C 34 are different because the electrode spacing is constant and the opposing areas between the electrodes are different. In this case, as the facing area decreases (capacitance decreases), the ratio of foreign matter to the electrode spacing increases, so when the capacitance on the regression line of relative permittivity and capacitance is zero The value of the relative dielectric constant corresponds to the relative dielectric constant that is most affected by dirt. Therefore, from this regression line, the relative dielectric constant ε r of the mixed liquid from which the influence of dirt has been removed cannot be obtained. However, when the capacitances of the capacitors C 12 , C 23 , and C 34 are different due to the different facing areas, a regression line for the relative permittivity and the reciprocal of the capacitance is obtained. Thus, the relative dielectric constant ε r of the mixed liquid from which the influence of dirt is removed can be obtained. In the case of this regression line, as the facing area increases (capacitance increases), the reciprocal of the capacitance decreases and the proportion of foreign matter in the electrode spacing also decreases. Therefore, the value of the intersection of the calculated regression line and the vertical axis (relative permittivity) is the relative permittivity that can be obtained when the electrostatic capacity is infinite (the facing area is infinite), that is, the foreign matter occupying the facing area. It shows the relative dielectric constant with the lowest ratio, more specifically, the relative dielectric constant with the least influence of dirt. Therefore, the value of the intersection point with the vertical axis in the obtained regression line, that is, the value of the relative permittivity when the reciprocal of the electrostatic capacity in the regression line is zero (capacitance and opposing area is infinite) is soiled. This corresponds to the relative dielectric constant ε r of the mixed liquid from which the influence of is removed. Thus, even when the capacitances of the capacitors C 12 , C 23 , and C 34 are different because the electrode spacing is constant and the opposing areas between the electrodes are different, the relative dielectric constant and the capacitance The corrected relative dielectric constant ε r can be calculated by obtaining a regression line with the reciprocal of and obtaining the relative dielectric constant when the inverse of the electrostatic capacitance in the regression line is zero.
 本実施形態では、第1算出工程終了後に、第2算出工程を行う例を示した。しかしながら、第2算出工程を行う前に、第1算出工程終了後、算出された3つの比誘電率それぞれを比較する比較工程を行っても良い。算出された比誘電率の内、2つの比誘電率に誤差因子が含まれていない場合、それら2つの比誘電率の差分はゼロとなる。したがって、差分した際に、ゼロとなる比誘電率を求めることで、誤差因子がない、すなわち、汚れの影響がない比誘電率を算出することができる。このように、汚れの影響がない比誘電率が2つ検出された場合、上記した第2算出工程と第3算出工程とを省くことができるので、算出部230の処理速度を速めることができる。 In the present embodiment, an example in which the second calculation step is performed after the first calculation step is illustrated. However, before the second calculation step, a comparison step of comparing each of the calculated three relative dielectric constants may be performed after the first calculation step. Of the calculated relative dielectric constants, when an error factor is not included in two relative dielectric constants, the difference between the two relative dielectric constants is zero. Therefore, by obtaining a relative dielectric constant that becomes zero when the difference is made, it is possible to calculate a relative dielectric constant that has no error factor, that is, that is not affected by dirt. As described above, when two relative dielectric constants that are not affected by dirt are detected, the second calculation step and the third calculation step described above can be omitted, so that the processing speed of the calculation unit 230 can be increased. .
 本実施形態では、電極211~214が断面矩形状である例を示した。しかしながら、電極211~214の形状は、上記例に限定されない。電極211~214の形状としては、例えば櫛歯形状を採用することができる。これにより、体格が小さな電極であっても、電極間の対向面積を十分に確保することができるので、混合比算出装置200の体格を小型化することができる。 In the present embodiment, an example in which the electrodes 211 to 214 are rectangular in cross section is shown. However, the shape of the electrodes 211 to 214 is not limited to the above example. As the shapes of the electrodes 211 to 214, for example, a comb shape can be adopted. Thereby, even if it is an electrode with a small physique, since the opposing area between electrodes can fully be ensured, the physique of the mixing ratio calculation apparatus 200 can be reduced in size.
 本実施形態では、4つの電極211~214をセンサ部210が有する例を示した。しかしながら、電極の数は少なくとも4つ以上であれば良く、上記例に限定されない。例えば、センサ部210が電極を5つ有する構成を採用することもできる。この場合、コンデンサが4つ構成される。
(第28実施形態)
 本発明に係る混合流体の濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法であって、(N-1)点の異なる温度で混合流体の誘電率を測定し、前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の各温度で測定された混合流体の誘電率とから、各成分の濃度を算出する。
In the present embodiment, an example in which the sensor unit 210 includes four electrodes 211 to 214 is shown. However, the number of electrodes may be at least four, and is not limited to the above example. For example, the sensor unit 210 may have a configuration having five electrodes. In this case, four capacitors are configured.
(Twenty-eighth embodiment)
A concentration detection method for a mixed fluid according to the present invention is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (> 3 integer) known components. -1) Measure the dielectric constant of the fluid mixture at different temperatures at the points, and measure the dielectric constant of each known component at each temperature at the (N-1) point and each temperature at the (N-1) point. The concentration of each component is calculated from the dielectric constant of the mixed fluid.
 上記混合流体の濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を、それぞれの誘電率と温度特性が異なることを利用して検出するものである。各成分の濃度(存在割合)をa,a,・・・,aとすると、一つの等式a+a+・・・+a=1が成り立つ。また、上記混合流体の濃度検出方法においては、(N-1)点の異なる温度で混合流体の誘電率を測定しており、(N-1)個の混合流体の誘電率ε,ε,・・・,εN-1が得られる。測定した各温度での誘電率ε,ε,・・・,εN-1は、それぞれ、予め把握しておいた同温度における単一の各成分の誘電率と濃度の積を各成分について足し合わせたものに等しい。従って、これより(N-1)個の等式が成り立つ。このように、上記混合流体の濃度検出方法によれば、濃度a,a,・・・,aのN個の未知数に対して、上記した全部でN個の等式からなる連立方程式を立てることができ、該連立方程式を解くことで、濃度a,a,・・・,aを正確に決定することができる。 In the mixed fluid concentration detection method, the concentration of each component of the mixed fluid composed of N (> 3 integers) known components is detected by utilizing the different dielectric constants and temperature characteristics. Is. If the concentration (abundance ratio) of each component is a 1 , a 2 ,..., A N , one equation a 1 + a 2 +... + A N = 1 holds. In the above mixed fluid concentration detection method, the dielectric constants of the mixed fluid are measured at different temperatures at (N-1) points, and the dielectric constants ε 1 and ε 2 of (N-1) mixed fluids are measured. ,..., Ε N−1 is obtained. The measured dielectric constants ε 1 , ε 2 ,..., Ε N-1 are obtained by multiplying the product of the dielectric constant and the concentration of each single component at the same temperature that has been previously grasped. Equal to the sum of Therefore, (N-1) equations are established from this. Thus, according to the concentration detection method of the mixed fluid, simultaneous equations concentration a 1, a 2, · · ·, for N unknowns a N, of N equations in total as described above , And by solving the simultaneous equations, the concentrations a 1 , a 2 ,..., A N can be accurately determined.
 以上のようにして、上記混合流体の濃度検出方法は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法であって、3種以上の成分で構成される混合流体の濃度を正確に検出することのできる混合流体の濃度検出方法となっている。 As described above, the mixed fluid concentration detection method is a mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (≧ 3) kinds of known components. It is a mixed fluid concentration detection method capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
 例えば、上記混合流体の濃度検出方法において、Nが3である場合、すなわち3種類の成分A,B,Cがある場合を想定する。例えば、主に2種類の成分A,Bから構成される混合流体に、不純物として成分Cが混入している場合である。成分A,B,Cは化学反応などを起こさず、均一に混ざり合っているものとする。 For example, in the concentration detection method of the mixed fluid, it is assumed that N is 3, that is, there are three types of components A, B, and C. For example, this is a case where component C is mixed as an impurity in a mixed fluid mainly composed of two types of components A and B. Components A, B, and C do not cause a chemical reaction or the like and are mixed uniformly.
 上記混合流体の濃度検出方法では、以下に示す手順で、各成分の濃度を検出する。3種類の成分A,B,Cがある場合には、2点の異なる温度を設定し、各温度における単一の各成分A,B,Cの誘電率を、予め把握しておく。次に、各温度における混合流体の誘電率を測定する。 In the above mixed fluid concentration detection method, the concentration of each component is detected by the following procedure. When there are three types of components A, B, and C, two different temperatures are set, and the dielectric constant of each single component A, B, and C at each temperature is grasped in advance. Next, the dielectric constant of the mixed fluid at each temperature is measured.
 ここで、各成分A,B,Cの濃度をそれぞれa1,a2,a3とし、上記2点の異なる温度をそれぞれT,Tとし、温度Tにおける上記単一の各成分A,B,Cの誘電率をそれぞれεa1,εb1,εc1とし、温度Tにおける上記単一の各成分A,B,Cの誘電率をそれぞれεa2,εb2,εc2とし、温度T,Tにおける上記混合流体の誘電率をそれぞれε,εとしたとき、
(数式A) a1+a2+a3=1
(数式B) ε=εa1・a1+εb1・a2+εc1・a3
(数式C) ε=εa2・a1+εb2・a2+εc2・a3
が成立する。該数式1~3の連立方程式を解くことにより、各成分A,B,Cの濃度a1,a2,a3を算出することができる。
Here, the components A, B, the concentration of C was respectively a1, a2, a3, the two points of different temperatures were as T 1, T 2 respectively, the single components at the temperature T 1 A, B, The dielectric constants of C are ε a1 , ε b1 , and ε c1 , respectively, and the dielectric constants of the single components A, B, and C at temperature T 2 are ε a2 , ε b2 , and ε c2 , respectively, and temperatures T 1 , When the dielectric constants of the mixed fluid at T 2 are ε 1 and ε 2 , respectively.
(Formula A) a1 + a2 + a3 = 1
(Formula B) ε 1 = ε a1 · a1 + ε b1 · a2 + ε c1 · a3
(Formula C) ε 2 = ε a2 · a1 + ε b2 · a2 + ε c2 · a3
Is established. By solving the simultaneous equations of Equations 1 to 3, the concentrations a1, a2, and a3 of the components A, B, and C can be calculated.
 上記混合流体の濃度検出方法は、水が混入する可能性がある内燃機関の混合燃料の濃度検出に好適である。例えば、ガソリンとエタノールを主成分とするバイオ混合ガソリンの場合には、前記成分が、エタノール、ガソリンおよび水である。尚、ガソリンは数百種類の成分で構成されるが、いずれの成分も誘電率は略同一であり、ガソリンを1種類の成分として取り扱うことが可能である。また、軽油と脂肪酸メチルエステルを主成分とするバイオ混合軽油の場合には、前記成分が、脂肪酸メチルエステル、軽油および水である。 The method for detecting the concentration of the mixed fluid is suitable for detecting the concentration of the mixed fuel of the internal combustion engine in which water may be mixed. For example, in the case of bio-mixed gasoline mainly composed of gasoline and ethanol, the components are ethanol, gasoline and water. In addition, although gasoline is comprised by several hundred types of components, the dielectric constant of all the components is substantially the same, and it is possible to handle gasoline as one type of component. In the case of bio-mixed light oil mainly composed of light oil and fatty acid methyl ester, the components are fatty acid methyl ester, light oil and water.
 次に、上記混合流体の濃度検出方法について、図に基づいて具体的に説明する。 Next, the method for detecting the concentration of the mixed fluid will be specifically described with reference to the drawings.
 図42は、エタノール、ガソリンおよび水の各成分について、比誘電率の温度特性を示した図である。 FIG. 42 is a diagram showing temperature characteristics of relative permittivity for each component of ethanol, gasoline, and water.
 バイオ混合ガソリンのように主成分(ガソリン、エタノール)と混入する不純物(水)が既知の成分である場合において、図42に示すように、各成分の誘電率の温度依存性を予め把握しておく。これによって、エタノール、ガソリンおよび水の各成分について、例えば図中に示した温度Tにおける誘電率εa1,εb1,εc1と、温度Tにおける誘電率εa2,εb2,εc2を予め把握しておく。尚、混合流体の誘電率測定に設定する温度T,Tについては、図42のデータに示す各成分の測定温度と必ずしも一致させる必要はない。図42の各測定点のデータを後述するメモリに保管しておき、任意の設定温度T,Tにについて線形補間することにより、数式A~Cの演算に用いればよい。 When the main component (gasoline, ethanol) and mixed impurities (water) are known components as in bio-mixed gasoline, as shown in FIG. 42, the temperature dependence of the dielectric constant of each component is grasped in advance. deep. Thereby, ethanol, each component of the gasoline and water, for example, the dielectric constant epsilon a1 at temperatures T 1 shown in FIG, epsilon b1, and epsilon c1, the dielectric constant epsilon a2 at temperatures T 2, epsilon b2, the epsilon c2 Know in advance. Note that the temperatures T 1 and T 2 set for the measurement of the dielectric constant of the mixed fluid do not necessarily coincide with the measured temperatures of the components shown in the data of FIG. Data at each measurement point in FIG. 42 is stored in a memory to be described later, and linear interpolation is performed with respect to arbitrary set temperatures T 1 and T 2 so as to be used for calculations of equations A to C.
 図43は、上記した混合流体の濃度検出方法を実施するための、混合流体の濃度検出装置の一例を示した図である。図43(A)は、濃度検出装置300の概略構成を示した図であり、図43(B)は、図43(A)の濃度検出装置300におけるセンサ部の構成の一例で、センサチップ350を模式的に示した上面図である。また、図43(C)は、図43(B)の容量検出素子321の一例である、容量検出素子321aを模式的に示した上面図である。 FIG. 43 is a diagram showing an example of a mixed fluid concentration detection apparatus for carrying out the mixed fluid concentration detection method described above. FIG. 43A is a diagram showing a schematic configuration of the concentration detection device 300, and FIG. 43B is an example of a configuration of a sensor unit in the concentration detection device 300 of FIG. It is the top view which showed typically. FIG. 43C is a top view schematically showing a capacitance detection element 321a, which is an example of the capacitance detection element 321 in FIG.
 図43(A)に示す濃度検出装置300は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する、混合流体の濃度検出装置である。濃度検出装置300は、混合流体の温度を異なる(N-1)点で測定可能な温度測定部310と、前記(N-1)点の異なる温度で混合流体の誘電率を測定可能な誘電率測定部320と、メモリ(図示省略)に保存された前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の異なる温度で測定された混合流体の誘電率とから、各成分の濃度を算出する濃度演算部330とを有している。 43A is a mixed fluid concentration detection device that detects the concentration of each component of a mixed fluid composed of N (≧ 3) types of known components. The concentration detection apparatus 300 includes a temperature measuring unit 310 that can measure the temperature of the mixed fluid at different (N-1) points, and a dielectric constant that can measure the dielectric constant of the mixed fluid at different temperatures of the (N-1) points. Measurement unit 320 and a mixed fluid measured at a different temperature at the (N-1) point and a dielectric constant of each known component at each temperature at the (N-1) point stored in a memory (not shown) And a concentration calculation unit 330 that calculates the concentration of each component from the dielectric constant of each.
 また、図43(A)に示す濃度検出装置300は、混合流体の前記(N-1)点の異なる温度を形成するためのヒータ部340を有している。(N-1)点の異なる温度で混合流体の誘電率を測定する場合、混合流体の温度が時間的に変化するのを待って測定することも可能である。しかしながら、濃度検出装置300のようにヒータ部を有する構成とすることで、混合流体の温度を、短時間で、適宜、異なる(N-1)点の温度に変化させることができる。従って、濃度検出装置300においては、混合流体の各成分の濃度を適宜検出することが可能である。 Further, the concentration detection device 300 shown in FIG. 43A has a heater unit 340 for forming different temperatures of the (N-1) point of the mixed fluid. When measuring the dielectric constant of the fluid mixture at different temperatures at (N-1) points, it is possible to wait for the temperature of the fluid mixture to change over time. However, with the configuration having the heater portion as in the concentration detection device 300, the temperature of the mixed fluid can be changed to a different (N-1) point temperature as appropriate in a short time. Therefore, the concentration detector 300 can appropriately detect the concentration of each component of the mixed fluid.
 尚、図43(A)の濃度検出装置300はヒータ部340を有しており、加熱することによって異なる(N-1)点の温度を得るようにしているが、逆に、冷却することによって異なる(N-1)点の温度を得るようにしてもよい。加熱、冷却は、測定対象が不可逆的に変化しない範囲で、直接的もしくは間接的に実施できる。その際、加熱の手段として、抵抗体ヒータ加熱、誘導加熱、電磁波加熱、輻射加熱、ペルチェ素子のほか、膨張弁なども利用できる。冷却には冷媒冷却、強制対流冷却、ペルチェ素子、圧縮弁などが利用できる。 Note that the concentration detection apparatus 300 in FIG. 43A has a heater unit 340, and obtains a different (N-1) point temperature by heating, but conversely, by cooling it, You may make it obtain the temperature of a different (N-1) point. Heating and cooling can be performed directly or indirectly as long as the measurement target does not change irreversibly. In this case, as a heating means, a resistor heater heating, induction heating, electromagnetic wave heating, radiation heating, a Peltier element, an expansion valve or the like can be used. For cooling, refrigerant cooling, forced convection cooling, a Peltier element, a compression valve, or the like can be used.
 図43(B)に示すセンサチップ350は、半導体基板からなり、図43(A)に示した温度測定部310の構成要素である温度検出素子311、誘電率測定部320の構成要素である容量検出素子321、およびヒータ部340の構成要素であるヒータ素子341が形成されている。該センサチップ350を混合流体中に浸漬し、混合流体の誘電率を(N-1)点の異なる温度で測定する。センサチップ350のように、温度検出素子311、容量検出素子321およびヒータ素子341を一つのチップに形成することで、例えば後述する混合流体を流す配管に温度検出素子と容量検出素子をそれぞれ別部品として組み込む場合に較べて、小型化とコストダウンを図ることができる。半導体基板からなるセンサチップ350の場合には、マイクロメートルオーダの配線を形成することができ、数ミリメートル角の大きさに小型化することができる。 A sensor chip 350 shown in FIG. 43B is made of a semiconductor substrate, and a temperature detection element 311 that is a component of the temperature measurement unit 310 and a capacitance that is a component of the dielectric constant measurement unit 320 shown in FIG. A detection element 321 and a heater element 341 which is a component of the heater unit 340 are formed. The sensor chip 350 is immersed in the mixed fluid, and the dielectric constant of the mixed fluid is measured at different temperatures at (N-1) points. Like the sensor chip 350, the temperature detection element 311, the capacitance detection element 321 and the heater element 341 are formed in one chip, so that, for example, the temperature detection element and the capacitance detection element are separately provided in a pipe through which a mixed fluid, which will be described later, flows. As compared with the case of incorporating as, it is possible to reduce the size and cost. In the case of the sensor chip 350 made of a semiconductor substrate, wiring on the order of micrometers can be formed, and the size can be reduced to a size of several millimeters square.
 尚、図43(B)のセンサチップ350は半導体基板からなるが、これに限らず、例えばセラミック基板に温度検出素子311、容量検出素子321およびヒータ素子341を形成するようにしてもよい。また、図43(B)のセンサチップ350の構成に限らず、例えばヒータ素子341を別部品(別チップ)としてもよいし、温度検出素子311と容量検出素子321を別チップに形成するようにしてもよい。 Note that the sensor chip 350 in FIG. 43B is made of a semiconductor substrate, but is not limited thereto, and for example, the temperature detection element 311, the capacitance detection element 321 and the heater element 341 may be formed on a ceramic substrate. Further, not limited to the configuration of the sensor chip 350 in FIG. 43B, for example, the heater element 341 may be a separate component (separate chip), and the temperature detection element 311 and the capacitance detection element 321 may be formed in separate chips. May be.
 チップに容量検出素子を形成する場合には、図43(C)に示す容量検出素子321aのように、一対の櫛歯状電極302a,302bからなることが好ましい。これによれば、図43(B)のセンサチップ350上に形成された該一対の櫛歯状電極302a,302b間に混合流体を容易に導くことができると共に、櫛歯密度を高めて検出容量値を増大し、誘電率の測定精度を高めることができる。 When the capacitance detection element is formed on the chip, it is preferable to include a pair of comb- like electrodes 302a and 302b as in the capacitance detection element 321a shown in FIG. According to this, the mixed fluid can be easily guided between the pair of comb-shaped electrodes 302a and 302b formed on the sensor chip 350 of FIG. 43B, and the detection capacitance is increased by increasing the comb-tooth density. The value can be increased to increase the dielectric constant measurement accuracy.
 図44は、図43(A)の濃度検出装置300におけるセンサ部の別の構成例で、図44(A)は、センサチップ351を模式的に示した上面図である。また、図44(B)は、混合流体の流れ方向に沿ってセンサチップ351の温度分布を示した図であり、図44(C)は、混合流体の流れ方向に沿ってセンサチップ351の断面を模式的に示した図である。 44 is another configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43A, and FIG. 44A is a top view schematically showing the sensor chip 351. FIG. FIG. 44B is a diagram showing the temperature distribution of the sensor chip 351 along the flow direction of the mixed fluid, and FIG. 44C is a cross-section of the sensor chip 351 along the flow direction of the mixed fluid. FIG.
 図44(A)に示すセンサチップ351では、混合流体の流れ方向において、中央にヒータ素子342が配置され、上流側に温度検出素子312aと容量検出素子322aが、下流側に温度検出素子312bと容量検出素子322bが、それぞれ配置されている。センサチップ351の場合には、図44(B)の温度分布図に示すように、ヒータ素子342の加熱によって、異なる温度T,Tでの誘電率測定を同時に実施することができる。 In the sensor chip 351 shown in FIG. 44A, the heater element 342 is arranged at the center in the flow direction of the mixed fluid, the temperature detection element 312a and the capacitance detection element 322a are upstream, and the temperature detection element 312b is downstream. Capacitance detection elements 322b are respectively arranged. In the case of the sensor chip 351, as shown in the temperature distribution diagram of FIG. 44B, the dielectric constant measurement at different temperatures T 1 and T 2 can be simultaneously performed by heating the heater element 342.
 尚、センサチップ上にヒータを設ける場合には、図44(C)のセンサチップ351に示すように、ヒータ素子342と温度検出素子312a,312bおよび容量検出素子322a,322bを熱的に分離するように、溝部305a,305bが形成されていることが好ましい。これによれば、ヒータ素子342から温度検出素子312a,312bおよび容量検出素子322a,322bへの、チップを介した熱伝導を抑制できる。このため、溝部305a,305bが形成されていない場合に較べて、混合流体の温度と誘電率をより正確に測定することができ、従って各成分の濃度をより正確に検出することができる。溝部305a,305bは、半導体基板からなるセンサチップ351においては、エッチング等により容易に形成可能である。 When the heater is provided on the sensor chip, the heater element 342, the temperature detection elements 312a and 312b, and the capacitance detection elements 322a and 322b are thermally separated as shown in the sensor chip 351 in FIG. Thus, it is preferable that the groove portions 305a and 305b are formed. According to this, heat conduction through the chip from the heater element 342 to the temperature detection elements 312a and 312b and the capacitance detection elements 322a and 322b can be suppressed. For this reason, compared with the case where groove part 305a, 305b is not formed, the temperature and dielectric constant of mixed fluid can be measured more correctly, Therefore Therefore, the density | concentration of each component can be detected more correctly. The groove portions 305a and 305b can be easily formed by etching or the like in the sensor chip 351 made of a semiconductor substrate.
 図45は、別のセンサチップ352を模式的に示した上面図である。 FIG. 45 is a top view schematically showing another sensor chip 352.
 図45に示すセンサチップ352では、ヒータ素子343a、温度検出素子313aおよび容量検出素子323aからなる破線で囲った温度Tでの検出素子部352aと、ヒータ素子343b、温度検出素子313bおよび容量検出素子323bからなる破線で囲った温度Tでの検出素子部352bとが、混合流体の流れ方向における同じ位置に並んで配置されている。尚、図45のセンサチップ352において、ヒータ素子343aとヒータ素子343bのいずれか一方だけを形成するようにしてもよい。また、センサチップ352において、検出素子部352aと検出素子部352bは、それぞれ、基板の表側と裏側に形成するようにしてもよい。 In the sensor chip 352 shown in FIG. 45, the heater elements 343a, and a detecting element unit 352a at temperatures T 1 surrounded by a broken line consisting of a temperature detecting element 313a and the capacitance detection element 323a, the heater elements 343b, the temperature sensing element 313b and capacitive detection a detecting element portion 352b at temperature T 2 surrounded by the broken line consisting of elements 323b are arranged side by side in the same position in the flow direction of the mixed fluid. Incidentally, in the sensor chip 352 of FIG. 45, only one of the heater element 343a and the heater element 343b may be formed. In the sensor chip 352, the detection element unit 352a and the detection element unit 352b may be formed on the front side and the back side of the substrate, respectively.
 図46は、図43(A)の濃度検出装置300における誘電率測定部320の好ましい構成例を示す図で、誘電率測定部324の各部構成を示した回路ブロック図である。 FIG. 46 is a diagram showing a preferred configuration example of the dielectric constant measurement unit 320 in the concentration detection apparatus 300 of FIG. 43A, and is a circuit block diagram showing the configuration of each part of the dielectric constant measurement unit 324.
 図46に示す誘電率測定部324は、直列接続された2個の容量検出素子Cs1,Cs2と帰還容量Cfが付加されたC/V変換器324aとを有している。そして、上記した混合流体の各温度における誘電率の測定においては、2個の容量検出素子Cs1,Cs2をそれぞれ図中に示した所定電圧Vの逆の搬送波FE1,FE2で駆動し、2個の容量検出素子Cs1,Cs2の接続点からの出力をC/V変換器324aに入力する。この時、C/V変換器324aの出力電圧Vsは、
(数式D) Vs=V(Cs1-Cs2)/Cf
となり、2個の容量検出素子Cs1,Cs2の差分が、C/V変換される。この数式Dの出力電圧Vsから、混合流体の各温度における誘電率を測定することができる。図46の誘電率測定部324を用いた誘電率測定によれば、配線による寄生容量Ceの影響をキャンセルできるため、1個の容量検出素子を用いる場合に較べてより高精度な誘電率測定が可能であり、各成分の濃度もより高精度に検出することができる。
The dielectric constant measurement unit 324 shown in FIG. 46 includes two capacitance detection elements Cs1 and Cs2 connected in series and a C / V converter 324a to which a feedback capacitance Cf is added. In the measurement of the dielectric constant at each temperature of the mixed fluid described above, the two capacitance detection elements Cs1 and Cs2 are respectively driven by carrier waves FE1 and FE2 having a predetermined voltage V shown in the drawing, and The output from the connection point of the capacitance detection elements Cs1, Cs2 is input to the C / V converter 324a. At this time, the output voltage Vs of the C / V converter 324a is
(Formula D) Vs = V (Cs1-Cs2) / Cf
Thus, the difference between the two capacitance detection elements Cs1, Cs2 is C / V converted. From the output voltage Vs of Formula D, the dielectric constant at each temperature of the mixed fluid can be measured. According to the dielectric constant measurement using the dielectric constant measurement unit 324 in FIG. 46, the influence of the parasitic capacitance Ce caused by the wiring can be canceled, so that the dielectric constant measurement can be performed with higher accuracy than when one capacitance detection element is used. It is possible, and the concentration of each component can be detected with higher accuracy.
 図47は、図46に示す2個の容量検出素子Cs1,Cs2の構成例を示した図で、容量検出素子324bを模式的に示した上面図である。 47 is a diagram showing a configuration example of the two capacitance detection elements Cs1 and Cs2 shown in FIG. 46, and is a top view schematically showing the capacitance detection element 324b.
 図47に示す容量検出素子324bは、パッド304aを有する櫛歯状の電極303a、パッド304bを有する櫛歯状の電極303b、およびパッド304c,304dを有する櫛歯状の電極303cで構成されている。図47の容量検出素子324bでは、電極303aと電極303cが対をなしており、図46の容量検出素子Cs1に相当して、パッド304aに搬送波FE1が入力される。また、電極303bと電極303cが対をなしており、図46の容量検出素子Cs2に相当して、パッド304bに搬送波FE2が入力される。図47の容量検出素子324bでは、パッド304cまたはパッド304dから取り出される出力が、図46の出力C/V変換器324aに入力される。 47 includes a comb-like electrode 303a having a pad 304a, a comb-like electrode 303b having a pad 304b, and a comb-like electrode 303c having pads 304c and 304d. . In the capacitance detection element 324b in FIG. 47, the electrode 303a and the electrode 303c are paired, and the carrier wave FE1 is input to the pad 304a corresponding to the capacitance detection element Cs1 in FIG. The electrode 303b and the electrode 303c are paired, and the carrier wave FE2 is input to the pad 304b corresponding to the capacitance detection element Cs2 of FIG. In the capacitance detection element 324b in FIG. 47, the output taken out from the pad 304c or the pad 304d is input to the output C / V converter 324a in FIG.
 尚、図47の容量検出素子324bにおいては、パッド304c,304dを有する電極303cを測温抵抗体で構成し、電極303cが温度検出素子を兼ねるようにしてもよい。このように、誘電率測定部の構成要素である容量検出素子が、一対の電極からなる場合には、該電極の一方が、温度測定部の構成要素である温度検出素子を兼ねる構成とすることで、さらなる小型化とコストダウンが可能である。 In the capacitance detection element 324b of FIG. 47, the electrode 303c having the pads 304c and 304d may be formed of a resistance temperature detector, and the electrode 303c may also serve as the temperature detection element. As described above, when the capacitance detection element that is a component of the dielectric constant measurement unit includes a pair of electrodes, one of the electrodes also serves as a temperature detection element that is a component of the temperature measurement unit. Therefore, further downsizing and cost reduction are possible.
 図48(A),図48(B)は、図43(A)の濃度検出装置300におけるセンサ部の別の構成例で、それぞれ、センサ部品361,362を模式的に示した断面図である。 48 (A) and 48 (B) are cross-sectional views schematically showing sensor components 361 and 362, respectively, in another configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43 (A). .
 前述した図43(A)の濃度検出装置300におけるセンサ部の構成例は、センサチップ350~352で、混合流体に浸漬して使用するものであった。一方、図48(A),図48(B)に示すセンサ部品361,362は、配管370に取り付けて使用する。図48(A)に示すセンサ部品361は、対をなす平板状の電極306a,306bと、温度検出素子である熱電対306cを備えている。また、図48(B)に示すセンサ部品362は、対をなす円筒状の電極307a,307bと、温度検出素子である熱電対307cを備えている。 The configuration example of the sensor unit in the concentration detection apparatus 300 of FIG. 43A described above is a sensor chip 350 to 352 that is used by being immersed in a mixed fluid. On the other hand, the sensor components 361 and 362 shown in FIGS. 48A and 48B are attached to the pipe 370 for use. A sensor component 361 shown in FIG. 48A includes a pair of flat electrodes 306a and 306b and a thermocouple 306c that is a temperature detection element. 48B includes a pair of cylindrical electrodes 307a and 307b and a thermocouple 307c which is a temperature detection element.
 尚、車両の燃料の誘電率測定を行う場合、配管370の外側もしくは内側にヒータを設置して、配管370内を通る燃料の温度を変えることができる。ヒータによる加熱部の直下、加熱部より流れの上流側、もしくは加熱部より流れの下流側のうちいずれか2箇所に、図48(A),図48(B)に示すようなセンサ部品361,362を設置することで、図44に示したようにヒータの温度設定を変化させることなく、各成分の濃度測定が可能となる。 When measuring the dielectric constant of the fuel of the vehicle, a heater can be installed outside or inside the pipe 370 to change the temperature of the fuel passing through the pipe 370. Sensor parts 361 as shown in FIGS. 48 (A) and 48 (B) are provided at any two locations immediately below the heating unit by the heater, upstream of the flow from the heating unit, or downstream of the flow from the heating unit. By installing 362, the concentration of each component can be measured without changing the temperature setting of the heater as shown in FIG.
 図49は、図48(A),図48(B)に示すセンサ部品361,362のように、電極寸法の大きな容量検出素子を用いる場合に好適な構成例を示す図である。 FIG. 49 is a diagram showing a configuration example suitable for use of a capacitance detection element having a large electrode size, such as the sensor components 361 and 362 shown in FIGS. 48 (A) and 48 (B).
 図49に示す構成では、混合流体の上流側に配置されたヒータ素子344と、混合流体の下流側に配置された温度検出素子314および容量検出素子325との間に、混合流体の攪拌手段380が設けられている。これによれば、例えばフィン、メッシュ、フィルタ等の攪拌手段380により、ヒータ素子344を用いた加熱による混合流体の温度ムラを解消して、混合流体の温度と誘電率をより正確に測定することができる。従って、図49に示す構成では、混合流体の各成分の濃度を、より正確に検出することができる。特に、図48(A),図48(B)に示すセンサ部品361,362のように、電極寸法の大きな容量検出素子の場合には、電極間の混合流体の体積が大きいことから、攪拌手段380を用いて電極間の混合流体の温度を均一にする必要がある。 In the configuration shown in FIG. 49, the mixed fluid agitating means 380 is provided between the heater element 344 arranged on the upstream side of the mixed fluid and the temperature detecting element 314 and the capacity detecting element 325 arranged on the downstream side of the mixed fluid. Is provided. According to this, for example, by the stirring means 380 such as fins, meshes, filters, etc., temperature unevenness of the mixed fluid due to heating using the heater element 344 can be eliminated, and the temperature and dielectric constant of the mixed fluid can be measured more accurately. Can do. Therefore, in the configuration shown in FIG. 49, the concentration of each component of the mixed fluid can be detected more accurately. In particular, in the case of a capacitance detecting element having a large electrode size, such as the sensor parts 361 and 362 shown in FIGS. 48A and 48B, the volume of the mixed fluid between the electrodes is large. It is necessary to make the temperature of the mixed fluid between electrodes uniform using 380.
 以上に示したようなセンサ部を用いて、例えば3種類の成分A,B,Cからなる混合流体の誘電率を2点の異なる温度で測定し、図43(A)に示した濃度演算部330で数式1~3に示した連立方程式を解くことにより、各成分A,B,Cの濃度a1,a2,a3を算出することができる。尚、N(≧3の整数)種の成分からなる混合流体の場合も、(N-1)点の異なる温度で混合流体の誘電率を測定し、数式1~3を前述したように一般化して、各成分の濃度(存在割合)をa,a,・・・,aを算出することができる。 Using the sensor unit as described above, for example, the dielectric constant of a mixed fluid composed of three types of components A, B, and C is measured at two different temperatures, and the concentration calculation unit shown in FIG. By solving the simultaneous equations shown in Equations 1 to 3 at 330, the concentrations a1, a2, and a3 of the components A, B, and C can be calculated. In the case of a mixed fluid composed of N (integer of 3) kinds of components, the dielectric constant of the mixed fluid is measured at different temperatures at (N-1) points, and the equations 1 to 3 are generalized as described above. Thus, a 1 , a 2 ,..., A N can be calculated for the concentrations (existence ratios) of the respective components.
 以上のようにして、上記した混合流体の濃度検出方法および検出装置は、N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法および検出装置であって、3種以上の成分で構成される混合流体の濃度を正確に検出することのできる混合流体の濃度検出方法および検出装置となっている。 As described above, the above-described mixed fluid concentration detection method and detection device detect the concentration of each component of the mixed fluid composed of N (≧ 3) types of known components and detect the concentration of the mixed fluid. This is a method and a detection apparatus, which are a mixed fluid concentration detection method and a detection apparatus capable of accurately detecting the concentration of a mixed fluid composed of three or more components.
 従って、上記した混合流体の濃度検出方法および濃度検出装置は、水が混入する可能性がある内燃機関の混合燃料の濃度検出に好適であり、例えば前記成分が、エタノール、ガソリンおよび水である場合、あるいは前記成分が、脂肪酸メチルエステル、軽油および水である場合に好適である。 Therefore, the above-described mixed fluid concentration detection method and concentration detection device are suitable for detecting the concentration of the mixed fuel of an internal combustion engine in which water may be mixed. For example, the components are ethanol, gasoline, and water. Alternatively, it is suitable when the components are fatty acid methyl ester, light oil and water.
 以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。 The present invention described above is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

Claims (78)

  1.  液体に含まれる特定成分の濃度を検出するセンサ部と、
     前記センサ部と一体、または前記液体の流れ方向において前記センサ部の上流側に設けられ、前記センサ部への異物の堆積を妨げる堆積制限部と、
     を備えることを特徴とする濃度センサ装置。
    A sensor unit for detecting the concentration of a specific component contained in the liquid;
    A deposition limiting unit that is integral with the sensor unit or provided upstream of the sensor unit in the liquid flow direction, and prevents accumulation of foreign matter on the sensor unit;
    A concentration sensor device comprising:
  2.  一方の面側に前記センサ部が設けられている基板を備え、
     前記堆積制限部は、通電することにより振動して前記センサ部に付着した異物の脱離を促す圧電素子を有することを特徴とする請求項1記載の濃度センサ装置。
    Comprising a substrate provided with the sensor part on one surface side;
    The concentration sensor device according to claim 1, wherein the deposition limiting unit includes a piezoelectric element that oscillates when energized and promotes detachment of foreign matters attached to the sensor unit.
  3.  前記圧電素子は、前記基板を挟んで前記センサ部と反対の面側に設けられていることを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, wherein the piezoelectric element is provided on a surface opposite to the sensor portion with the substrate interposed therebetween.
  4.  前記基板の前記センサ部と同一の面側に設けられている回路部と、
     前記基板を貫いて前記圧電素子と前記回路部とを接続する貫通電極と、
     をさらに備えることを特徴とする請求項3記載の濃度センサ装置。
    A circuit part provided on the same surface side as the sensor part of the substrate;
    A through electrode that connects the piezoelectric element and the circuit portion through the substrate;
    The concentration sensor device according to claim 3, further comprising:
  5.  前記圧電素子は、前記基板において前記センサ部と同一の面側に設けられていることを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, wherein the piezoelectric element is provided on the same side of the substrate as the sensor unit.
  6.  前記圧電素子は、前記基板と前記センサ部との間に設けられていることを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, wherein the piezoelectric element is provided between the substrate and the sensor unit.
  7.  前記基板に設けられ、板厚方向に窪んでいる凹部をさらに備えることを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, further comprising a recess provided on the substrate and recessed in the thickness direction.
  8.  前記センサ部は、前記凹部を形成する前記基板の平坦な面側に設けられ、
     前記圧電素子は、前記凹部を形成する前記基板の開口側に沿って設けられていることを特徴とする請求項7記載の濃度センサ装置。
    The sensor unit is provided on a flat surface side of the substrate that forms the recess,
    8. The concentration sensor device according to claim 7, wherein the piezoelectric element is provided along an opening side of the substrate that forms the recess.
  9.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜をさらに備え、
     前記センサ部は、前記凹部を形成する前記基板の平坦な面側に設けられ、
     前記圧電素子は、前記絶縁膜の前記基板とは反対の面側に設けられていることを特徴とする請求項7記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate that forms the recess;
    The sensor unit is provided on a flat surface side of the substrate that forms the recess,
    The concentration sensor device according to claim 7, wherein the piezoelectric element is provided on a surface of the insulating film opposite to the substrate.
  10.  前記基板の前記センサ部と同一の面側に設けられている回路部と、
     前記基板を貫いて前記圧電素子と前記回路部とを接続する貫通電極と、
     をさらに備えることを特徴とする請求項9記載の濃度センサ装置。
    A circuit part provided on the same surface side as the sensor part of the substrate;
    A through electrode that connects the piezoelectric element and the circuit portion through the substrate;
    The concentration sensor device according to claim 9, further comprising:
  11.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜をさらに備え、
     前記センサ部および前記圧電素子は、前記絶縁膜の前記凹部とは反対側に設けられていることを特徴とする請求項7記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate that forms the recess;
    The concentration sensor device according to claim 7, wherein the sensor unit and the piezoelectric element are provided on a side opposite to the concave portion of the insulating film.
  12.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜と、
     前記絶縁膜の前記基板とは反対側に設けられている絶縁体と、をさらに備え、
     前記圧電素子は、前記絶縁膜を挟んで前記凹部の反対側に設けられ、
     前記センサ部は、前記絶縁体を挟んで前記圧電素子と対向する位置に設けられていることを特徴とする請求項7記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate forming the recess;
    An insulator provided on the opposite side of the insulating film from the substrate, and
    The piezoelectric element is provided on the opposite side of the concave portion across the insulating film,
    The concentration sensor device according to claim 7, wherein the sensor unit is provided at a position facing the piezoelectric element with the insulator interposed therebetween.
  13.  前記基板と前記絶縁膜とに囲まれた前記凹部には、気体が封入されていることを特徴とする請求項9から12のいずれか一項記載の濃度センサ装置。 13. The concentration sensor device according to claim 9, wherein a gas is sealed in the concave portion surrounded by the substrate and the insulating film.
  14.  前記センサ部は、圧電素子で形成されている櫛歯形状の電極パターンを有し、
     前記電極パターンは、前記堆積制限部を構成する前記圧電素子であることを特徴とする請求項2記載の濃度センサ装置。
    The sensor unit has a comb-shaped electrode pattern formed of a piezoelectric element,
    The concentration sensor device according to claim 2, wherein the electrode pattern is the piezoelectric element constituting the deposition limiting unit.
  15.  前記基板を挟んで前記センサ部と反対側の面に、前記電極パターンとの間に電位差を形成する電極部をさらに備える請求項14記載の濃度センサ装置。 The concentration sensor device according to claim 14, further comprising an electrode portion that forms a potential difference with the electrode pattern on a surface opposite to the sensor portion with the substrate interposed therebetween.
  16.  前記堆積制限部は、前記センサ部の前記基板と反対側に積層され、圧電素子で形成されている櫛歯形状の電極パターンを有することを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, wherein the deposition limiting part has a comb-like electrode pattern which is laminated on the opposite side of the sensor part from the substrate and is formed of a piezoelectric element.
  17.  前記堆積制限部は、前記基板を挟んで前記センサ部と反対側の面に、圧電素子で形成されている櫛歯形状の電極パターンを有することを特徴とする請求項2記載の濃度センサ装置。 3. The concentration sensor device according to claim 2, wherein the deposition limiting unit has a comb-shaped electrode pattern formed of a piezoelectric element on a surface opposite to the sensor unit with the substrate interposed therebetween.
  18.  前記センサ部は、圧電素子で形成されている櫛歯形状の第一電極パターンを有し、
     前記堆積制限部は、前記第一電極パターンと、前記基板を挟んで前記センサ部と反対側の面に圧電素子で形成されている櫛歯形状の第二電極パターンと、を有することを特徴とする請求項2記載の濃度センサ装置。
    The sensor unit has a comb-shaped first electrode pattern formed of a piezoelectric element,
    The deposition limiting portion includes the first electrode pattern, and a comb-shaped second electrode pattern formed of a piezoelectric element on a surface opposite to the sensor portion across the substrate. The concentration sensor device according to claim 2.
  19.  前記堆積制限部は、前記センサ部の前記基板と反対側に積層され圧電素子で形成されている櫛歯形状の第一電極パターンと、前記基板を挟んで前記センサ部と反対側の面に圧電素子で形成されている櫛歯形状の第二電極パターンと、を有することを特徴とする請求項2記載の濃度センサ装置。 The deposition limiting portion includes a comb-shaped first electrode pattern that is stacked on the opposite side of the sensor portion from the substrate and formed of piezoelectric elements, and a piezoelectric layer on a surface opposite to the sensor portion with the substrate interposed therebetween. The density sensor device according to claim 2, further comprising: a comb-shaped second electrode pattern formed of an element.
  20.  前記センサ部および前記堆積制限部を収容し、前記液体が流れる液体通路を形成する通路形成部材をさらに備え、
     前記堆積制限部は、
     前記液体通路における前記液体の流れ方向において前記センサ部の上流側に設けられ、前記液体通路を流れる前記液体に電圧を印加して前記液体を帯電させる帯電部と、
     前記液体通路の前記帯電部と前記センサ部との間に設けられ、前記帯電部で帯電した異物を捕捉する捕捉部と、
     を有することを特徴とする請求項1記載の濃度センサ装置。
    A passage forming member that houses the sensor portion and the deposition limiting portion and forms a liquid passage through which the liquid flows;
    The deposition limiting unit is
    A charging unit provided on the upstream side of the sensor unit in the liquid flow direction in the liquid passage, and charging the liquid by applying a voltage to the liquid flowing in the liquid passage;
    A capturing unit that is provided between the charging unit and the sensor unit of the liquid passage and captures a foreign substance charged by the charging unit;
    The concentration sensor device according to claim 1, comprising:
  21.  前記液体通路に設けられ、前記帯電部を通過した前記液体の流れを前記センサ部側と前記捕捉部側とに分離する壁部をさらに備えることを特徴とする請求項20記載の濃度センサ装置。 21. The concentration sensor device according to claim 20, further comprising a wall portion that is provided in the liquid passage and separates the flow of the liquid that has passed through the charging portion into the sensor portion side and the capturing portion side.
  22.  前記堆積制限部は、前記液体通路の前記センサ部より下流側に設けられ、前記液体通路を流れる前記液体に電圧を印加して、前記帯電部で帯電した前記液体の電荷を除去する除電部を有することを特徴とする請求項20または21記載の濃度センサ装置。 The accumulation limiting unit is provided on the downstream side of the sensor part of the liquid passage, and applies a voltage to the liquid flowing in the liquid passage to remove a charge of the liquid charged by the charging unit. The concentration sensor device according to claim 20, wherein the concentration sensor device has a concentration sensor device.
  23.  前記帯電部に印加される電圧と前記捕捉部に印加される電圧とは、それぞれ極性が正または負で異なり、かつ一方の極性から他方の極性へ反転することなく一方の極性を維持することを特徴とする請求項20から22のいずれか一項記載の濃度センサ装置。 The voltage applied to the charging unit and the voltage applied to the capturing unit are positive or negative, and maintain one polarity without reversing from one polarity to the other. The concentration sensor device according to any one of claims 20 to 22, wherein the concentration sensor device is characterized in that:
  24.  前記帯電部および前記捕捉部で前記液体に印加される電圧は、1kHz以上の交流電圧であり、一方の極性の最大値および他方の極性の最小値は接地電圧であることを特徴とする請求項23記載の濃度センサ装置。 The voltage applied to the liquid in the charging unit and the capturing unit is an AC voltage of 1 kHz or more, and the maximum value of one polarity and the minimum value of the other polarity are ground voltages. 24. The concentration sensor device according to 23.
  25.  前記捕捉部は、前記液体通路の軸と平行に延びる少なくとも一枚以上の板状の電極部材を有し、
     前記電極部材は、上流側の端部が前記液体通路の軸に垂直な断面において任意の位置における弦に対応する板幅を有し、下流側の端部に向けて前記板幅が縮小することを特徴とする請求項20から24のいずれか一項記載の濃度センサ装置。
    The capturing part has at least one plate-like electrode member extending parallel to the axis of the liquid passage,
    The electrode member has a plate width corresponding to a chord at an arbitrary position in a cross section perpendicular to the axis of the liquid passage, and the plate width decreases toward the downstream end. 25. The concentration sensor device according to any one of claims 20 to 24, wherein:
  26.  前記捕捉部は、前記液体通路の軸に対し傾斜して延びる少なくとも一枚以上の板状の電極部材を有し、
     前記電極部材は、前記液体通路の上流側から下流側へ向けて前記液体通路の少なくとも一部の幅を狭めていることを特徴とする請求項20から24のいずれか一項記載の濃度センサ装置。
    The capturing part has at least one plate-like electrode member extending obliquely with respect to the axis of the liquid passage,
    25. The concentration sensor device according to claim 20, wherein the electrode member has a width of at least a part of the liquid passage narrowed from the upstream side to the downstream side of the liquid passage. .
  27.  前記捕捉部は、少なくとも一枚以上の筒状の錐形状の電極部材を有し、
     前記電極部材は、前記液体通路の上流側から下流側へ向けて内径が縮小していることを特徴とする請求項20から24のいずれか一項記載の濃度センサ装置。
    The capturing part has at least one cylindrical cone-shaped electrode member,
    25. The concentration sensor device according to claim 20, wherein an inner diameter of the electrode member decreases from an upstream side to a downstream side of the liquid passage.
  28.  前記捕捉部は、少なくとも一枚以上の筒状の錐形状の電極部材を有し、
     前記電極部材は、前記液体通路の上流側から下流側へ向けて前記液体通路における前記液体の流れを前記通路形成部材の内壁へ案内する形状であることを特徴とする請求項20から24のいずれか一項記載の濃度センサ装置。
    The capturing part has at least one cylindrical cone-shaped electrode member,
    25. The electrode member according to claim 20, wherein the electrode member has a shape that guides the flow of the liquid in the liquid passage toward the inner wall of the passage formation member from the upstream side to the downstream side of the liquid passage. The concentration sensor device according to claim 1.
  29.  前記通路形成部材に振動を与える振動付与手段をさらに備えることを特徴とする請求項20から28のいずれか一項記載の濃度センサ装置。 29. The concentration sensor device according to claim 20, further comprising vibration applying means for applying vibration to the passage forming member.
  30.  前記センサ部を覆い、前記センサ部と反対側の端部に前記堆積制限部を有する保護膜部をさらに備えることを特徴とする請求項1記載の濃度センサ装置。 The concentration sensor device according to claim 1, further comprising a protective film portion that covers the sensor portion and has the deposition limiting portion at an end opposite to the sensor portion.
  31.  前記保護膜部は、前記センサ部と反対側が粗面状に形成されていることを特徴とする請求項30記載の濃度センサ装置。 31. The concentration sensor device according to claim 30, wherein the protective film portion has a rough surface on the side opposite to the sensor portion.
  32.  前記保護膜部は、前記センサ部と反対側が凸面状に形成されていることを特徴とする請求項30記載の濃度センサ装置。 31. The concentration sensor device according to claim 30, wherein the protective film portion is formed in a convex shape on the opposite side to the sensor portion.
  33.  前記保護膜部は、前記センサ部と反対側の端部に前記液体の流れを形成する流路形成部を有することを特徴とする請求項30記載の濃度センサ装置。 31. The concentration sensor device according to claim 30, wherein the protective film part has a flow path forming part that forms the flow of the liquid at an end opposite to the sensor part.
  34.  前記保護膜部は、前記液体の通過を許容しつつ前記異物の通過を制限する複数の孔を有する多孔質部材であることを特徴とする請求項30記載の濃度センサ装置。 31. The concentration sensor device according to claim 30, wherein the protective film portion is a porous member having a plurality of holes that allow passage of the liquid and restrict passage of the foreign matter.
  35.  前記多孔質部材に振動を与える振動付与手段をさらに備えることを特徴とする請求項34記載の濃度センサ装置。 35. The concentration sensor device according to claim 34, further comprising vibration applying means for applying vibration to the porous member.
  36.  基板と、
     前記基板の一方の面側に設けられているセンサ部と、
     通電することにより振動して前記センサ部に付着した異物の脱離を促す圧電素子部と、
     を備えることを特徴とする濃度センサ装置。
    A substrate,
    A sensor unit provided on one side of the substrate;
    A piezoelectric element portion that vibrates when energized and promotes the detachment of foreign matters attached to the sensor portion;
    A concentration sensor device comprising:
  37.  前記圧電素子部は、前記基板を挟んで前記センサ部と反対の面側に設けられていることを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, wherein the piezoelectric element portion is provided on a surface opposite to the sensor portion with the substrate interposed therebetween.
  38.  前記基板の前記センサ部と同一の面側に設けられている回路部と、
     前記基板を貫いて前記圧電素子部と前記回路部とを接続する貫通電極と、
     をさらに備えることを特徴とする請求項37記載の濃度センサ装置。
    A circuit part provided on the same surface side as the sensor part of the substrate;
    A through electrode that connects the piezoelectric element portion and the circuit portion through the substrate;
    38. The concentration sensor device according to claim 37, further comprising:
  39.  前記圧電素子部は、前記基板において前記センサ部と同一の面側に設けられていることを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, wherein the piezoelectric element portion is provided on the same side of the substrate as the sensor portion.
  40.  前記圧電素子部は、前記基板と前記センサ部との間に設けられていることを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, wherein the piezoelectric element portion is provided between the substrate and the sensor portion.
  41.  前記基板に設けられ、板厚方向に窪んでいる凹部をさらに備えることを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, further comprising a recess provided on the substrate and recessed in the thickness direction.
  42.  前記センサ部は、前記凹部を形成する前記基板の平坦な面側に設けられ、
     前記圧電素子部は、前記凹部を形成する前記基板の開口側に沿って設けられていることを特徴とする請求項41記載の濃度センサ装置。
    The sensor unit is provided on a flat surface side of the substrate that forms the recess,
    42. The concentration sensor device according to claim 41, wherein the piezoelectric element portion is provided along an opening side of the substrate forming the concave portion.
  43.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜をさらに備え、
     前記センサ部は、前記凹部を形成する前記基板の平坦な面側に設けられ、
     前記圧電素子部は、前記絶縁膜の前記基板とは反対の面側に設けられていることを特徴とする請求項41記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate that forms the recess;
    The sensor unit is provided on a flat surface side of the substrate that forms the recess,
    42. The concentration sensor device according to claim 41, wherein the piezoelectric element portion is provided on a surface side of the insulating film opposite to the substrate.
  44.  前記基板の前記センサ部と同一の面側に設けられている回路部と、
     前記基板を貫いて前記圧電素子部と前記回路部とを接続する貫通電極と、
     をさらに備えることを特徴とする請求項43記載の濃度センサ装置。
    A circuit part provided on the same surface side as the sensor part of the substrate;
    A through electrode that connects the piezoelectric element portion and the circuit portion through the substrate;
    44. The concentration sensor device according to claim 43, further comprising:
  45.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜をさらに備え、
     前記センサ部および前記圧電素子部は、前記絶縁膜の前記凹部とは反対側に設けられていることを特徴とする請求項41記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate that forms the recess;
    42. The concentration sensor device according to claim 41, wherein the sensor section and the piezoelectric element section are provided on a side opposite to the concave portion of the insulating film.
  46.  前記凹部を形成する前記基板の開口側を塞ぐ絶縁膜と、
     前記絶縁膜の前記基板とは反対側に設けられている絶縁体と、をさらに備え、
     前記圧電素子部は、前記絶縁膜を挟んで前記凹部の反対側に設けられ、
     前記センサ部は、前記絶縁体を挟んで前記圧電素子部と対向する位置に設けられていることを特徴とする請求項41記載の濃度センサ装置。
    An insulating film that closes the opening side of the substrate forming the recess;
    An insulator provided on the opposite side of the insulating film from the substrate, and
    The piezoelectric element portion is provided on the opposite side of the concave portion across the insulating film,
    42. The concentration sensor device according to claim 41, wherein the sensor unit is provided at a position facing the piezoelectric element unit with the insulator interposed therebetween.
  47.  前記基板と前記絶縁膜とに囲まれた前記凹部には、気体が封入されていることを特徴とする請求項43から46のいずれか一項記載の濃度センサ装置。 The concentration sensor device according to any one of claims 43 to 46, wherein a gas is sealed in the recess surrounded by the substrate and the insulating film.
  48.  混合燃料の混合比を検出するために用いることを特徴とする請求項36から47のいずれか一項記載の濃度センサ装置。 48. The concentration sensor device according to any one of claims 36 to 47, wherein the concentration sensor device is used for detecting a mixture ratio of a mixed fuel.
  49.  前記センサ部は、圧電素子で形成されている櫛歯形状の電極パターンを有し、
     前記電極パターンは、前記圧電素子部を構成していることを特徴とする請求項36記載の濃度センサ装置。
    The sensor unit has a comb-shaped electrode pattern formed of a piezoelectric element,
    37. The concentration sensor device according to claim 36, wherein the electrode pattern constitutes the piezoelectric element portion.
  50.  前記基板を挟んで前記センサ部と反対側の面に、前記電極パターンとの間に電位差を形成する電極部をさらに備える請求項49記載の濃度センサ装置。 50. The concentration sensor device according to claim 49, further comprising an electrode part that forms a potential difference with the electrode pattern on a surface opposite to the sensor part across the substrate.
  51.  前記圧電素子部は、前記センサ部の前記基板と反対側に積層され、圧電素子で形成されている櫛歯形状の電極パターンを有することを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, wherein the piezoelectric element portion has a comb-shaped electrode pattern which is laminated on the opposite side of the sensor portion from the substrate and is formed of a piezoelectric element.
  52.  前記圧電素子部は、前記基板を挟んで前記センサ部と反対側の面に、圧電素子で形成されている櫛歯形状の電極パターンを有することを特徴とする請求項36記載の濃度センサ装置。 37. The concentration sensor device according to claim 36, wherein the piezoelectric element portion has a comb-shaped electrode pattern formed of a piezoelectric element on a surface opposite to the sensor portion across the substrate.
  53.  前記センサ部は、圧電素子で形成されている櫛歯形状の第一電極パターンを有し、
     前記圧電素子部は、前記第一電極パターンと、前記基板を挟んで前記センサ部と反対側の面に圧電素子で形成されている櫛歯形状の第二電極パターンと、を有することを特徴とする請求項36記載の濃度センサ装置。
    The sensor unit has a comb-shaped first electrode pattern formed of a piezoelectric element,
    The piezoelectric element section includes the first electrode pattern and a comb-shaped second electrode pattern formed of a piezoelectric element on a surface opposite to the sensor section across the substrate. The concentration sensor device according to claim 36.
  54.  前記圧電素子部は、前記センサ部の前記基板と反対側に積層され圧電素子で形成されている櫛歯形状の第一電極パターンと、前記基板を挟んで前記センサ部と反対側の面に圧電素子で形成されている櫛歯形状の第二電極パターンと、を有することを特徴とする請求項36記載の濃度センサ装置。 The piezoelectric element portion includes a comb-shaped first electrode pattern formed on the opposite side to the substrate of the sensor portion and formed of a piezoelectric element, and a piezoelectric element on a surface opposite to the sensor portion across the substrate. 37. The density sensor device according to claim 36, further comprising a comb-shaped second electrode pattern formed of elements.
  55.  混合液体中に配置される対をなす電極、及び対をなす前記電極によって構成されるコンデンサの静電容量を検出する検出回路を有するセンサ部と、
     該センサ部の出力信号に基づいて、前記混合液体の混合比を算出する算出部と、を備える混合比算出装置であって、
     前記センサ部は、それぞれの静電容量が異なる、対をなす前記電極を少なくとも3つ有しており、
     前記算出部は、前記センサ部の出力信号に含まれる、測定された少なくとも3つの静電容量それぞれに対応する比誘電率を算出し、算出された少なくとも3つの前記比誘電率と、該比誘電率それぞれに対応する静電容量とに対する回帰直線、若しくは、算出された少なくとも3つの前記比誘電率と、該比誘電率それぞれに対応する静電容量の逆数とに対する回帰直線を算出し、該回帰直線に基づいて、補正された比誘電率を算出し、補正された前記比誘電率に基づいて、前記混合液体の混合比を算出することを特徴とする混合比算出装置。
    A sensor unit having a pair of electrodes disposed in the mixed liquid and a detection circuit for detecting a capacitance of a capacitor constituted by the pair of electrodes;
    A mixing unit that calculates a mixing ratio of the mixed liquid based on an output signal of the sensor unit,
    The sensor unit has at least three electrodes that form a pair, each having a different capacitance.
    The calculation unit calculates a relative dielectric constant corresponding to each of the measured at least three capacitances included in the output signal of the sensor unit, and calculates at least three of the calculated relative dielectric constants and the relative dielectric constant. A regression line with respect to the capacitance corresponding to each of the rates, or a regression line with respect to at least three calculated relative dielectric constants and the reciprocal of the capacitance corresponding to each of the relative dielectric constants, and the regression A mixing ratio calculation apparatus that calculates a corrected relative dielectric constant based on a straight line, and calculates a mixing ratio of the mixed liquid based on the corrected relative dielectric constant.
  56.  対をなす前記電極における真空中の静電容量と、前記混合液体に含まれる成分それぞれの比誘電率と、を記憶保持する記憶部を有することを特徴とする請求項55に記載の混合比算出装置。 56. The mixing ratio calculation according to claim 55, further comprising a storage unit that stores and holds a capacitance in vacuum in the paired electrodes and a relative dielectric constant of each component included in the mixed liquid. apparatus.
  57.  前記混合液体の温度を測定する温度測定部を有し、
     前記記憶部には、前記混合液体に含まれる成分それぞれの比誘電率の温度特性が記憶されていることを特徴とする請求項56に記載の混合比算出装置。
    A temperature measuring unit for measuring the temperature of the mixed liquid;
    57. The mixing ratio calculation apparatus according to claim 56, wherein the storage unit stores temperature characteristics of relative permittivity of each component included in the mixed liquid.
  58.  対をなす前記電極の表面が、保護膜によって被覆・保護されていることを特徴とする請求項55~57いずれか1項に記載の混合比算出装置。 The mixing ratio calculation apparatus according to any one of claims 55 to 57, wherein the surfaces of the paired electrodes are covered and protected by a protective film.
  59.  前記対をなす電極は、櫛歯形状であることを特徴とする請求項55~58いずれか1項に記載の混合比算出装置。 The mixing ratio calculation apparatus according to any one of claims 55 to 58, wherein the paired electrodes have a comb-teeth shape.
  60.  請求項55~59いずれかに記載の混合比算出装置を用いて、前記混合液体の混合比を算出する混合比算出方法であって、
     前記センサ部の出力信号に含まれる、少なくとも3つの静電容量それぞれに対応する比誘電率を算出する第1算出工程と、
     算出された少なくとも3つの比誘電率と、該比誘電率それぞれに対応する静電容量とに対する回帰直線、若しくは、算出された少なくとも3つの前記比誘電率と、該比誘電率それぞれに対応する静電容量の逆数とに対する回帰直線を算出する第2算出工程と、
     算出された回帰直線に基づいて、補正された比誘電率を算出する第3算出工程と、
     補正された比誘電率に基づいて、前記混合液体の混合比を算出する第4算出工程と、を有することを特徴とする混合比算出方法。
    A mixing ratio calculating method for calculating a mixing ratio of the mixed liquid using the mixing ratio calculating device according to any one of claims 55 to 59,
    A first calculation step of calculating a relative dielectric constant corresponding to each of at least three capacitances included in the output signal of the sensor unit;
    A regression line with respect to the calculated at least three relative dielectric constants and the capacitance corresponding to each of the relative dielectric constants, or at least three calculated relative dielectric constants and static corresponding to the relative dielectric constants. A second calculation step of calculating a regression line with respect to the reciprocal of the capacity;
    A third calculation step of calculating a corrected relative dielectric constant based on the calculated regression line;
    And a fourth calculation step of calculating a mixing ratio of the mixed liquid based on the corrected relative dielectric constant.
  61.  前記第1算出工程終了後、算出された少なくとも3つの前記比誘電率それぞれを比較する比較工程を行い、
     該比較工程において、少なくとも2つの前記比誘電率の値が同じ値を有する場合に、同じ値を有する前記比誘電率に基づいて、前記混合液体の混合比を算出する第5算出工程を行い、
     前記比較工程において、前記比誘電率それぞれが異なる値を有する場合に、前記第2算出工程、前記第3算出工程、及び前記第4算出工程を行うことを特徴とする請求項60に記載の混合比算出方法。
    After the first calculation step, a comparison step of comparing each of the calculated at least three relative dielectric constants is performed.
    In the comparison step, when at least two values of the relative dielectric constant have the same value, a fifth calculation step of calculating a mixing ratio of the mixed liquid based on the relative dielectric constant having the same value is performed.
    61. The mixing according to claim 60, wherein in the comparison step, the second calculation step, the third calculation step, and the fourth calculation step are performed when the relative dielectric constants have different values. Ratio calculation method.
  62.  N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出方法であって、
     (N-1)点の異なる温度で前記混合流体の誘電率を測定し、
     前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の各温度で測定された前記混合流体の誘電率とから、前記各成分の濃度を算出することを特徴とする混合流体の濃度検出方法。
    A mixed fluid concentration detection method for detecting the concentration of each component of a mixed fluid composed of N (> 3 integer) known components,
    (N-1) Measure the dielectric constant of the mixed fluid at different temperatures
    The concentration of each component is calculated from the dielectric constant of each known component at each temperature at the (N-1) point and the dielectric constant of the mixed fluid measured at each temperature at the (N-1) point. A method for detecting the concentration of a mixed fluid, comprising:
  63.  前記Nが、3であり、
     前記各成分の濃度をそれぞれa1,a2,a3とし、前記2点の異なる温度をそれぞれT,Tとし、前記温度Tにおける各成分の誘電率をそれぞれεa1,εb1,εc1とし、前記温度Tにおける各成分の誘電率をそれぞれεa2,εb2,εc2とし、前記温度Tと温度Tにおける混合流体の誘電率をそれぞれε,εとしたとき、
    (数式A) a1+a2+a3=1
    (数式B) ε=εa1・a1+εb1・a2+εc1・a3
    (数式C) ε=εa2・a1+εb2・a2+εc2・a3
    から、前記各成分の濃度を算出することを特徴とする請求項62に記載の混合流体の濃度検出方法。
    N is 3,
    Wherein the concentration of each component, respectively a1, a2, a3, the two points of different temperatures were as T 1, T 2 respectively, and the temperatures T 1, respectively the dielectric constant of each component epsilon in a1, ε b1, ε c1 , When the dielectric constants of the components at the temperature T 2 are ε a2 , ε b2 , and ε c2 , respectively, and the dielectric constants of the mixed fluid at the temperature T 1 and the temperature T 2 are ε 1 and ε 2 , respectively.
    (Formula A) a1 + a2 + a3 = 1
    (Formula B) ε 1 = ε a1 · a1 + ε b1 · a2 + ε c1 · a3
    (Formula C) ε 2 = ε a2 · a1 + ε b2 · a2 + ε c2 · a3
    63. The method for detecting the concentration of a mixed fluid according to claim 62, wherein the concentration of each component is calculated from the calculation.
  64.  前記成分が、エタノール、ガソリンおよび水であることを特徴とする請求項63に記載の混合流体の濃度検出方法。 64. The mixed fluid concentration detection method according to claim 63, wherein the components are ethanol, gasoline, and water.
  65.  前記成分が、脂肪酸メチルエステル、軽油および水であることを特徴とする請求項63に記載の混合流体の濃度検出方法。 The mixed fluid concentration detection method according to claim 63, wherein the components are fatty acid methyl ester, light oil and water.
  66.  前記混合流体の各温度における誘電率の測定において、
     直列接続された2個の容量検出素子を所定電圧の逆の搬送波で駆動し、前記2個の容量検出素子の接続点からの出力を帰還容量が付加されたC/V変換器に入力し、該C/V変換器の出力電圧から前記混合流体の各温度における誘電率を測定することを特徴とする請求項62乃至65のいずれか一項に記載の混合流体の濃度検出方法。
    In measuring the dielectric constant at each temperature of the mixed fluid,
    Two capacitance detection elements connected in series are driven by a carrier wave having a reverse voltage, and an output from a connection point of the two capacitance detection elements is input to a C / V converter to which a feedback capacitance is added. 66. The mixed fluid concentration detection method according to any one of claims 62 to 65, wherein a dielectric constant at each temperature of the mixed fluid is measured from an output voltage of the C / V converter.
  67.  N(≧3の整数)種の既知の成分で構成される混合流体の各成分の濃度を検出する混合流体の濃度検出装置であって、
     前記混合流体の温度を異なる(N-1)点で測定可能な温度測定部と、
     前記(N-1)点の異なる温度で前記混合流体の誘電率を測定可能な誘電率測定部と、
     メモリに保存された前記(N-1)点の各温度における既知の各成分の誘電率と、前記(N-1)点の異なる温度で測定された前記混合流体の誘電率とから、前記各成分の濃度を算出する濃度演算部とを有してなることを特徴とする混合流体の濃度検出装置。
    A mixed fluid concentration detection device that detects the concentration of each component of a mixed fluid composed of N (> 3 integer) known components,
    A temperature measuring unit capable of measuring the temperature of the mixed fluid at different (N-1) points;
    A dielectric constant measuring unit capable of measuring the dielectric constant of the mixed fluid at different temperatures of the (N-1) points;
    From the dielectric constant of each known component at each temperature at the (N-1) point stored in the memory and the dielectric constant of the mixed fluid measured at a different temperature at the (N-1) point, A mixed fluid concentration detection device comprising a concentration calculation unit for calculating a concentration of a component.
  68.  前記濃度検出装置が、
     前記混合流体の前記(N-1)点の異なる温度を形成するためのヒータ部を有してなることを特徴とする請求項67に記載の混合流体の濃度検出装置。
    The concentration detector is
    68. The mixed fluid concentration detection device according to claim 67, further comprising a heater unit for forming different temperatures of the (N-1) point of the mixed fluid.
  69.  前記温度測定部の構成要素である温度検出素子および前記誘電率測定部の構成要素である容量検出素子が、一つのチップに形成されてなることを特徴とする請求項67または68に記載の混合流体の濃度検出装置。 69. The mixing according to claim 67 or 68, wherein the temperature detection element that is a component of the temperature measurement unit and the capacitance detection element that is a component of the dielectric constant measurement unit are formed on one chip. Fluid concentration detection device.
  70.  前記温度測定部の構成要素である温度検出素子、前記誘電率測定部の構成要素である容量検出素子および前記ヒータ部の構成要素であるヒータ素子が、一つのチップに形成されてなることを特徴とする請求項68に記載の混合流体の濃度検出装置。 A temperature detection element that is a component of the temperature measurement unit, a capacitance detection element that is a component of the dielectric constant measurement unit, and a heater element that is a component of the heater unit are formed on one chip. 69. The mixed fluid concentration detection device according to claim 68.
  71.  前記チップにおいて、
     前記ヒータ素子と前記温度検出素子および前記容量検出素子を熱的に分離するように、溝部が形成されてなることを特徴とする請求項70に記載の混合流体の濃度検出装置。
    In the chip,
    71. The mixed fluid concentration detection device according to claim 70, wherein a groove is formed so as to thermally separate the heater element, the temperature detection element, and the capacitance detection element.
  72.  前記容量検出素子が、一対の櫛歯状電極からなることを特徴とする請求項69乃至71のいずれか一項に記載の混合流体の濃度検出装置。 72. The mixed fluid concentration detection device according to claim 69, wherein the capacitance detection element includes a pair of comb-like electrodes.
  73.  前記混合流体の上流側に配置された前記ヒータ部の構成要素であるヒータ素子と、前記混合流体の下流側に配置された前記温度測定部の構成要素である温度検出素子および前記誘電率測定部の構成要素である容量検出素子との間に、
     前記混合流体の攪拌手段が設けられてなることを特徴とする請求項68に記載の混合流体の濃度検出装置。
    A heater element that is a component of the heater unit arranged on the upstream side of the mixed fluid, a temperature detection element that is a component of the temperature measuring unit arranged on the downstream side of the mixed fluid, and the dielectric constant measurement unit Between the capacitance detection element that is a component of
    69. The mixed fluid concentration detection device according to claim 68, further comprising stirring means for the mixed fluid.
  74.  前記誘電率測定部の構成要素である容量検出素子が、一対の電極からなり、
     該電極の一方が、前記温度測定部の構成要素である温度検出素子を兼ねることを特徴とする請求項67乃至73のいずれか一項に記載の混合流体の濃度検出装置。
    The capacitance detection element that is a component of the dielectric constant measurement unit is composed of a pair of electrodes,
    The mixed fluid concentration detection device according to any one of claims 67 to 73, wherein one of the electrodes also serves as a temperature detection element which is a component of the temperature measurement unit.
  75.  前記誘電率測定部が、
     直列接続された2個の容量検出素子と帰還容量が付加されたC/V変換器とを有してなり、
     前記混合流体の各温度における誘電率の測定において、
     前記2個の容量検出素子を所定電圧の逆の搬送波で駆動し、前記2個の容量検出素子の接続点からの出力を前記C/V変換器に入力し、該C/V変換器の出力電圧から前記混合流体の各温度における誘電率を測定することを特徴とする請求項67乃至74のいずれか一項に記載の混合流体の濃度検出装置。
    The dielectric constant measuring unit is
    Comprising two capacitance detection elements connected in series and a C / V converter to which a feedback capacitance is added;
    In measuring the dielectric constant at each temperature of the mixed fluid,
    The two capacitance detection elements are driven by a carrier wave having a predetermined voltage and the output from the connection point of the two capacitance detection elements is input to the C / V converter. The output of the C / V converter 75. The mixed fluid concentration detection device according to any one of claims 67 to 74, wherein a dielectric constant at each temperature of the mixed fluid is measured from a voltage.
  76.  前記Nが、3であり、
     前記濃度演算部が、
     前記各成分の濃度をそれぞれa1,a2,a3とし、前記2点の異なる温度をそれぞれT,Tとし、前記温度Tにおける各成分の誘電率をそれぞれεa1,εb1,εc1とし、前記温度Tにおける各成分の誘電率をそれぞれεa2,εb2,εc2とし、前記温度Tと温度Tにおける混合流体の誘電率をそれぞれε,εとしたとき、
    (数式A) a1+a2+a3=1
    (数式B) ε=εa1・a1+εb1・a2+εc1・a3
    (数式C) ε=εa2・a1+εb2・a2+εc2・a3
    から、前記各成分の濃度を算出することを特徴とする請求項67乃至75のいずれか一項に記載の混合流体の濃度検出装置。
    N is 3,
    The concentration calculator is
    Wherein the concentration of each component, respectively a1, a2, a3, the two points of different temperatures were as T 1, T 2 respectively, and the temperatures T 1, respectively the dielectric constant of each component epsilon in a1, ε b1, ε c1 , When the dielectric constants of the components at the temperature T 2 are ε a2 , ε b2 , and ε c2 , respectively, and the dielectric constants of the mixed fluid at the temperature T 1 and the temperature T 2 are ε 1 and ε 2 , respectively.
    (Formula A) a1 + a2 + a3 = 1
    (Formula B) ε 1 = ε a1 · a1 + ε b1 · a2 + ε c1 · a3
    (Formula C) ε 2 = ε a2 · a1 + ε b2 · a2 + ε c2 · a3
    The concentration detection apparatus for mixed fluid according to any one of claims 67 to 75, wherein the concentration of each component is calculated from the calculation.
  77.  前記成分が、エタノール、ガソリンおよび水であることを特徴とする請求項76に記載の混合流体の濃度検出装置。 77. The mixed fluid concentration detection device according to claim 76, wherein the components are ethanol, gasoline, and water.
  78.  前記成分が、脂肪酸メチルエステル、軽油および水であることを特徴とする請求項76に記載の混合流体の濃度検出装置。 77. The mixed fluid concentration detection device according to claim 76, wherein the components are fatty acid methyl ester, light oil and water.
PCT/JP2009/001334 2008-03-26 2009-03-25 Concentration sensor device and concentration detection method WO2009119087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0907020-6A BRPI0907020A2 (en) 2008-03-26 2009-03-25 Concentration sensing device, mixing ratio calculation device, methods for calculating mixing ratio of the mixing liquid and for detecting fluid concentrations, and concentration detection device
US12/733,694 US8578761B2 (en) 2008-03-26 2009-03-25 Concentration sensor device and concentration detecting method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008080855 2008-03-26
JP2008-080855 2008-03-26
JP2009-051258 2009-03-04
JP2009051258A JP4998493B2 (en) 2009-03-04 2009-03-04 Mixing ratio calculation device and mixing ratio calculation method using the mixing ratio calculation device
JP2009054056A JP5056776B2 (en) 2009-03-06 2009-03-06 Concentration detection method and detection apparatus for mixed fluid
JP2009-054056 2009-03-06
JP2009061105A JP5233762B2 (en) 2008-03-26 2009-03-13 Concentration sensor device
JP2009-061106 2009-03-13
JP2009-061105 2009-03-13
JP2009061106A JP5201026B2 (en) 2008-03-26 2009-03-13 Concentration sensor device

Publications (1)

Publication Number Publication Date
WO2009119087A1 true WO2009119087A1 (en) 2009-10-01

Family

ID=41113298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001334 WO2009119087A1 (en) 2008-03-26 2009-03-25 Concentration sensor device and concentration detection method

Country Status (1)

Country Link
WO (1) WO2009119087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101962A1 (en) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 Fuel property determination device for internal combustion engine

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148047A (en) * 1980-04-18 1981-11-17 Koumiyou Rikagaku Kogyo Kk Thermal conductivity type gas detector
JPS59131154A (en) * 1983-01-14 1984-07-27 Komatsu Ltd Dielectric constant measuring sensor
JPS61164144A (en) * 1985-01-17 1986-07-24 Nissan Motor Co Ltd Device for recognizing deterioration of oil
JPS62167541A (en) * 1985-12-16 1987-07-23 株式会社島津製作所 Ultrasonic probe and its production
JPH03269560A (en) * 1990-03-20 1991-12-02 Ricoh Co Ltd Liquid concentration detection device
JPH08201326A (en) * 1995-01-30 1996-08-09 Gastar Corp Exhaust co concentration detecting device for combustion apparatus
JP2571465B2 (en) * 1990-10-17 1997-01-16 株式会社ユニシアジェックス Gasoline property identification device
JP2610294B2 (en) * 1988-03-31 1997-05-14 株式会社東芝 Chemical sensor
JPH09138196A (en) * 1995-11-15 1997-05-27 Denso Corp Concentration detector for particle in liquid
JP2000009728A (en) * 1998-06-19 2000-01-14 Daikin Ind Ltd Saliva collection analyzer
JP2004125464A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Alcohol concentration detection device, alcohol concentration detection method using the same, and manufacturing method for alcohol concentration detection sensor
JP2004125465A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Gasoline type identification device, and gasoline type identification method
JP2004514138A (en) * 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド Determination of the effective composition of mixtures of hydrocarbon gases.
JP2005201670A (en) * 2004-01-13 2005-07-28 Mitsui Mining & Smelting Co Ltd Alcohol concentration sensor and alcohol concentration measuring instrument
JP2005523749A (en) * 2002-04-26 2005-08-11 グラクソ グループ リミテッド Drug distributor
JP2006527855A (en) * 2003-06-16 2006-12-07 シーメンス ヴィディーオー オートモティヴ コーポレイション Method and apparatus for determining the concentration of a component in a fluid

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148047A (en) * 1980-04-18 1981-11-17 Koumiyou Rikagaku Kogyo Kk Thermal conductivity type gas detector
JPS59131154A (en) * 1983-01-14 1984-07-27 Komatsu Ltd Dielectric constant measuring sensor
JPS61164144A (en) * 1985-01-17 1986-07-24 Nissan Motor Co Ltd Device for recognizing deterioration of oil
JPS62167541A (en) * 1985-12-16 1987-07-23 株式会社島津製作所 Ultrasonic probe and its production
JP2610294B2 (en) * 1988-03-31 1997-05-14 株式会社東芝 Chemical sensor
JPH03269560A (en) * 1990-03-20 1991-12-02 Ricoh Co Ltd Liquid concentration detection device
JP2571465B2 (en) * 1990-10-17 1997-01-16 株式会社ユニシアジェックス Gasoline property identification device
JPH08201326A (en) * 1995-01-30 1996-08-09 Gastar Corp Exhaust co concentration detecting device for combustion apparatus
JPH09138196A (en) * 1995-11-15 1997-05-27 Denso Corp Concentration detector for particle in liquid
JP2000009728A (en) * 1998-06-19 2000-01-14 Daikin Ind Ltd Saliva collection analyzer
JP2004514138A (en) * 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド Determination of the effective composition of mixtures of hydrocarbon gases.
JP2005523749A (en) * 2002-04-26 2005-08-11 グラクソ グループ リミテッド Drug distributor
JP2004125464A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Alcohol concentration detection device, alcohol concentration detection method using the same, and manufacturing method for alcohol concentration detection sensor
JP2004125465A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Gasoline type identification device, and gasoline type identification method
JP2006527855A (en) * 2003-06-16 2006-12-07 シーメンス ヴィディーオー オートモティヴ コーポレイション Method and apparatus for determining the concentration of a component in a fluid
JP2005201670A (en) * 2004-01-13 2005-07-28 Mitsui Mining & Smelting Co Ltd Alcohol concentration sensor and alcohol concentration measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101962A1 (en) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 Fuel property determination device for internal combustion engine

Similar Documents

Publication Publication Date Title
US8578761B2 (en) Concentration sensor device and concentration detecting method
CN1325912C (en) Device and method for determining the quality of a medium, particularly of a lubricant and/or coolant
US5457396A (en) Electrode structure of metallic particle detecting sensor
US7692432B2 (en) Liquid property sensor
US20090095073A1 (en) Impedance sensor
US20040177685A1 (en) Capacitance type humidity sensor
US8393209B2 (en) Capacitive detector, method for manufacturing same, and device for measuring the integral
JP4458135B2 (en) Liquid property sensor
US7148611B1 (en) Multiple function bulk acoustic wave liquid property sensor
WO2009119087A1 (en) Concentration sensor device and concentration detection method
JP5056776B2 (en) Concentration detection method and detection apparatus for mixed fluid
KR102418081B1 (en) Sensor element for determining particles in a fluid medium
US6515491B1 (en) Structural body having a stochastic surface patterning as well as a capacitive sensor having such a structural body
JP5233762B2 (en) Concentration sensor device
JP7662433B2 (en) Flow channel chip and dielectrophoresis device
CN104344917B (en) Resonant transducer, manufacturing method therefor, and multi-layer structure for resonant transducer
CN1164933C (en) Capacitive Humidity Measuring Device
KR20190075934A (en) A sensor element for determining particles in a fluid medium
JP4782506B2 (en) Capacitive sensor
KR100591959B1 (en) 3-terminal type capacitive sensor for the degradation diagnosis of electrical insulating oil for transformer
US11747186B2 (en) Device for capacitive measurements in a multi-phase medium
KR101484822B1 (en) Device for cell counting and method for manufacturing the same
KR101671204B1 (en) A method and apparatus for signal measurement of cantilever sensor
KR20160124384A (en) Sensor element for sensing particle concentration
Toyama et al. A multichannel chemical sensing method using single quartz resonator and micro flow channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12733694

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0907020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100617

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载