+

WO2009116335A1 - 親水性シートおよび基材表面の超親水化方法 - Google Patents

親水性シートおよび基材表面の超親水化方法 Download PDF

Info

Publication number
WO2009116335A1
WO2009116335A1 PCT/JP2009/052483 JP2009052483W WO2009116335A1 WO 2009116335 A1 WO2009116335 A1 WO 2009116335A1 JP 2009052483 W JP2009052483 W JP 2009052483W WO 2009116335 A1 WO2009116335 A1 WO 2009116335A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
oblique
layer
aggregate layer
degrees
Prior art date
Application number
PCT/JP2009/052483
Other languages
English (en)
French (fr)
Inventor
好夫 寺田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008071397A external-priority patent/JP5508686B2/ja
Priority claimed from JP2008071396A external-priority patent/JP5269448B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN2009801098428A priority Critical patent/CN102026802A/zh
Priority to US12/933,329 priority patent/US20110014432A1/en
Publication of WO2009116335A1 publication Critical patent/WO2009116335A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • C23C14/226Oblique incidence of vaporised material on substrate in order to form films with columnar structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to a hydrophilic sheet having high wettability with water.
  • the present invention relates to a hydrophilic sheet such as a dirt prevention sheet that can easily remove attached dirt and foreign matters by washing with water, and a fog prevention sheet that can prevent fogging due to water droplet adhesion.
  • the present invention also relates to a method for superhydrophilicizing a substrate surface. In detail, it is related with the method of providing the high wettability with respect to the surface of arbitrary base materials. According to the method of the present invention, dirt and foreign matter adhering to the substrate surface can be easily removed by washing with water, and clouding of the substrate surface due to water droplet adhesion can be prevented.
  • the hydrophilic sheet of the present invention can be preferably obtained using the superhydrophilization method for the substrate surface of the present invention.
  • An object of the present invention is to provide a hydrophilic sheet that has high wettability with water, can easily remove attached dirt and foreign matter by washing with water, and can prevent clouding due to water droplet adhesion. is there.
  • Another object of the present invention is to provide a method for superhydrophilicizing a substrate surface suitable for obtaining the hydrophilic sheet, that is, a method for imparting high wettability to water on the surface of an arbitrary substrate. It is in.
  • the hydrophilic sheet of the present invention comprises an aggregate layer of oblique columnar structures protruding on the surface of the support at an elevation angle from the surface of less than 90 degrees, and the water contact angle on the surface of the aggregate layer is 10 degrees or less. .
  • the support is provided with an aggregate layer of oblique columnar structures projecting at an elevation angle of less than 90 degrees from one surface of the support, and the water contact angle of the surface of the aggregate layer is 10 degrees or less,
  • An adhesive layer is formed on the other side of the support.
  • the aggregate layer is a stain prevention layer.
  • the aggregate layer is a fog prevention layer.
  • the method for superhydrophilicizing the surface of a substrate according to the present invention is a method for making the surface of a substrate superhydrophilic, and the angle of elevation from the surface projects below 90 degrees on the surface of the substrate by an oblique deposition method.
  • An aggregate layer of oblique columnar structures is formed.
  • the oblique deposition method uses a vacuum deposition apparatus.
  • the ultimate vacuum in the vacuum deposition apparatus is 1 ⁇ 10 ⁇ 3 torr or less.
  • vapor deposition of the vapor deposition material in the vacuum vapor deposition apparatus is performed by heating and vaporization with an electron beam.
  • the oblique vapor deposition method is performed by vapor-depositing a vapor deposition material on the base material fed out by a roll.
  • the vapor deposition material is obliquely vapor-deposited on the base material by providing a partial shielding plate between the vapor deposition source and the base material.
  • the aggregate layer has a thickness of 10 nm or more.
  • the number of the oblique columnar structures per unit area on the surface of the substrate is 1 ⁇ 10 8 / cm 2 or more.
  • the water contact angle on the surface of the aggregate layer is 10 degrees or less.
  • a hydrophilic sheet that has high wettability with respect to water, can easily remove adhered dirt and foreign matters by washing with water, and can prevent clouding due to water droplet adhesion. can do.
  • the effect as described above is provided with an aggregate layer of diagonal columnar structures protruding on the surface of the support with an elevation angle of less than 90 degrees from the surface, and the water contact angle on the surface of the aggregate layer is 10 degrees or less. It can be expressed by causing the aggregate layer of the oblique columnar structures to function as a highly hydrophilic layer.
  • high wettability with respect to water can be imparted to the surface of an arbitrary base material.
  • dirt and foreign matter adhering to the substrate surface can be easily removed by washing with water, and clouding of the substrate surface due to water droplet adhesion can be prevented.
  • the fractal theory is a theory for making the surface superhydrophilic, and is a theory that the hydrophilic effect becomes stronger due to fine irregularities on the surface.
  • fractal structure a fine concavo-convex structure
  • moisture in the air is adsorbed and a fine water film is formed in the recessed portion, so that the hydrophilicity of the surface as a whole increases. Therefore, even if foreign matter or dirt adheres to such a surface, the foreign matter or dirt does not completely adhere to the surface and remains floating.
  • water washing
  • this fractal theory is known as a function to prevent the snail shell from being stained.
  • the water contact angle is 10 degrees or less, it is called super hydrophilicity, and the water drops form a flat sticky shape and do not form a water film and flow down. Therefore, in such a case, water droplets do not adhere and an effect of preventing fogging can be exhibited.
  • SYMBOLS 10 Support body or base material 20 Aggregation layer 30 Diagonal columnar structure 40 Adhesive layer 50 Shielding plate 60 Deposition source 70 Deposition roll 100 Hydrophilic sheet 200 Hydrophilic sheet
  • FIG. 1 and 2 are schematic cross-sectional views of a hydrophilic sheet which is a preferred embodiment of the present invention or a hydrophilic member which is a preferred embodiment obtained by the method of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a hydrophilic sheet, the hydrophilic sheet 100 shown in FIG. 1 has a support 10 and an aggregate layer 20 of diagonal columnar structures 30.
  • the aggregate layer 20 of the oblique columnar structure 30 may be provided on one side of the support 10 or may be provided on both sides. Further, the aggregate layer 20 of the oblique columnar structure 30 may be provided on the entire surface of the support 10 on which it is provided, or may be provided only on a part of the surface of the support 10. .
  • FIG. 1 is a schematic cross-sectional view of a hydrophilic member, the hydrophilic member 100 shown in FIG. 1 includes a base material 10 and an aggregate layer 20 of diagonal columnar structures 30.
  • the aggregate layer 20 of the oblique columnar structure 30 may be provided on one side of the substrate 10 or may be provided on both sides. Further, the aggregate layer 20 of the oblique columnar structure 30 may be provided on the entire surface of the base material 10 on which it is provided, or may be provided only on a part of the surface of the base material 10. .
  • FIG. 2 is a schematic sectional view of a hydrophilic sheet
  • the hydrophilic sheet 200 shown in FIG. 2 has an aggregate layer 20 of diagonal columnar structures 30 on one side of the support 10, and the other side of the support 10.
  • the adhesive layer 40 is provided on one side.
  • the pressure-sensitive adhesive layer 40 may be provided on the entire surface of one side of the support 10, or may be provided only on a part of one side of the support 10.
  • the aggregate layer 20 of the oblique columnar structure 30 may be provided on the entire surface of the support 10 on which the oblique columnar structure 30 is provided, or may be provided only on a part of the surface of the support 10.
  • FIG. 2 is a schematic sectional view of a hydrophilic member
  • the hydrophilic member 200 shown in FIG. 2 has an aggregate layer 20 of diagonal columnar structures 30 on one side of the base material 10, and the other side of the base material 10.
  • the adhesive layer 40 is provided on one side.
  • the pressure-sensitive adhesive layer 40 may be provided on the entire surface of one side of the base material 10, or may be provided only on a part of one side of the base material 10.
  • the aggregate layer 20 of the oblique columnar structure 30 may be provided on the entire surface of the substrate 10 on which it is provided, or may be provided only on a part of the surface of the substrate 10.
  • the aggregate layer 20 of the oblique columnar structures in the present invention is an aggregate layer of a plurality of oblique columnar structures 30.
  • the aggregate layer 20 of the oblique columnar structures can act as a dirt prevention layer or a fog prevention layer.
  • the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention can form an infinite number of fine concavo-convex structures on the surface by providing an aggregate layer of diagonal columnar structures, and has high wettability with water. In particular, it becomes a hydrophilic sheet or hydrophilic member effective for preventing dirt and fogging.
  • the oblique columnar structure 30 protrudes from the surface of the support or the substrate 10 with an elevation angle ⁇ of less than 90 degrees from the surface.
  • the elevation angle ⁇ is preferably 10 to 85 degrees, more preferably 20 to 80 degrees, and still more preferably 30 to 70 degrees.
  • the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention has high wettability with respect to water, and easily adheres dirt and foreign matter by washing with water. In addition, it is possible to prevent fogging due to water droplet adhesion.
  • the oblique columnar structure 30 may protrude substantially straight from the surface of the support 10 or the substrate at an elevation angle ⁇ , or as shown in FIG. 5, the support or the substrate. It may have a bent shape after protruding from the surface 10 at an initial elevation angle ⁇ .
  • the diagonal columnar structure has a columnar structure.
  • the columnar structure includes not only a strictly columnar structure but also a substantially columnar structure.
  • a columnar structure, a polygonal columnar structure, a cone-shaped structure, a fibrous structure, and the like are preferable.
  • the cross-sectional shape of the columnar structure may be uniform throughout the columnar structure or may be nonuniform.
  • the water contact angle on the surface of the aggregated layer of the oblique columnar structure is 10 degrees or less, preferably 8 degrees or less, more preferably 6 Less than or equal to degrees.
  • the aspect ratio of the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention is preferably 1 or more, more preferably 2 to 20, and further preferably 3 to 10.
  • the “aspect ratio” means the ratio of the length (A) of the oblique columnar structure to the length (B) of the diameter of the thickest part of the oblique columnar structure (however, (A) and (B ) Represents the same unit).
  • the length of the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention is preferably 100 nm or more, more preferably 200 to 100,000 nm, still more preferably 300 to 10,000 nm, particularly preferably. Is 500 to 5000 nm. Due to the length of the oblique columnar structure being in the above range, it has high wettability with water, and dirt and foreign matter adhering to it can be easily removed by washing with water. Can be prevented.
  • the diameter of the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention is preferably 1000 nm or less, more preferably 10 to 500 nm, still more preferably 100 to 300 nm. Due to the fact that the diameter of the oblique columnar structure is in the above range, it has high wettability with water, and attached dirt and foreign matter can be easily removed by washing with water, and also prevents clouding due to water droplet adhesion. be able to.
  • the length and diameter of the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention may be measured by any appropriate measurement method. From the viewpoint of ease of measurement, preferably, measurement using a scanning electron microscope (SEM) is mentioned. For example, the measurement using a scanning electron microscope (SEM) is to obtain the length and diameter of the oblique columnar structure by attaching the hydrophilic sheet of the present invention to the SEM observation sample stage and observing from the side surface direction. Is possible.
  • SEM scanning electron microscope
  • the number of diagonal columnar structures per unit area of the surface of the support or the substrate is preferably 1 ⁇ 10 8 / cm 2 or more. More preferably, it is 1 ⁇ 10 8 to 1 ⁇ 10 12 pieces / cm 2 , and further preferably 3 ⁇ 10 8 to 1 ⁇ 10 10 pieces / cm 2 . Since the number of the oblique columnar structures per unit area on the surface of the support or the substrate is in the above range, it has high wettability to water and easily removes adhered dirt and foreign matters by washing with water. In addition, it is possible to prevent clouding due to adhesion of water droplets.
  • any appropriate material can be adopted as the support in the hydrophilic sheet of the present invention.
  • polyimide (PI) resin polyester (PET) resin, polyethylene naphthalate (PEN) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, polyarylate (PAR) Sheets made of organic polymer resins such as resin, aramid resin, or liquid crystal polymer (LCP) resin, fluorine resin, acrylic resin, epoxy resin, polyolefin resin, polyvinyl chloride, EVA, PMMA, POM, etc.
  • a substrate made of an inorganic material such as a quartz substrate, a glass substrate, or a silicon wafer is also used.
  • a PET resin sheet and a polycarbonate resin sheet have high transparency and are preferably used.
  • any appropriate material can be adopted as the base material in the hydrophilic member obtained by the method of the present invention.
  • polyimide (PI) resin polyimide (PI) resin, polyester (PET) resin, polyethylene naphthalate (PEN) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, polyarylate (PAR) Resin, aramid resin, or liquid crystal polymer (LCP) resin, fluorine resin, acrylic resin, epoxy resin, polyolefin resin, polyvinyl chloride, EVA, PMMA, POM, and other organic polymer resins; quartz, glass , Silicon wafer, concrete, mortar, siding board, tile, earthenware, mirror, metal (iron, aluminum, alloy, steel, copper, etc.), stone, wood, inorganic materials such as slate, and the like.
  • Road-related materials such as tunnel interior boards, tunnel lighting, road signs, road lighting, sound barriers, guard fences, reflectors, road mirrors;
  • Building-related materials such as building sashes, curtain walls, painted steel sheets, aluminum panels, tiles, stones, crystallized glass, and glass films;
  • Store-related materials such as showcases, signs / displays, show windows, store exterior materials, refrigerated product cases, frozen product cases;
  • Agricultural materials such as glass sound quality and greenhouses;
  • Electronics-related materials such as computer displays, solar cells, glass, aluminum fans for air conditioner
  • the surface of the support or the substrate is previously subjected to plasma (sputtering) treatment, corona discharge, ultraviolet irradiation, flame, electron beam irradiation, chemical conversion, oxidation
  • plasma sputtering
  • the adhesion between the oblique columnar structure and the support may be improved by performing an etching process such as an organic undercoating process. Further, if necessary, dust removal may be performed by solvent cleaning or ultrasonic cleaning.
  • the thickness of the support or the substrate in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention any appropriate thickness can be adopted.
  • the sheet shape is preferably 10 to 250 ⁇ m, and the substrate shape is preferably 0.1 to 10 mm.
  • the support or substrate may be a single layer or a laminate of two or more layers.
  • any appropriate material can be adopted as the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention.
  • metals such as aluminum, zinc, gold, silver, platinum, nickel, chromium, copper, platinum, indium, inorganic materials such as sapphire, silicon carbide (SiC), gallium nitride (GaN), silicon monoxide (SiO ), Silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), cerium oxide (CeO 2 ), chromium oxide (Cr 2 O 3 ), gallium oxide (Ga 2 O 3 ), hafnium oxide (HfO 2 ), Tantalum pentoxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), tungsten oxide (WO 3 ), titanium monoxide (TiO), titanium dioxide (TiO 2 ), titanium pentoxide (Ti 3 O 5 ), nickel oxide (NiO), magnesium oxide (M
  • fluorine-based materials such as polyimide, aluminum fluoride, calcium fluoride, cerium fluoride, lanthanum fluoride, lithium fluoride, magnesium fluoride, neodymium fluoride, and sodium fluoride, and resins such as silicone can be used. These materials may be used alone or in combination of two or more, or may have a multilayer structure of two or more layers.
  • oxides such as silicon dioxide (SiO 2 ) and titanium dioxide (TiO 2 ), which are hydrophilic materials, are preferably used.
  • the surface free energy of the surface of the aggregated layer of the oblique columnar structure in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention is preferably 70 mJ / m 2 or more, more preferably 73 mJ / m 2 or more, More preferably, it is 75 mJ / m 2 or more.
  • the surface free energy of the surface of the aggregated layer of the oblique columnar structure is in the above range, the wettability of the surface of the aggregated layer is improved, and adhered dirt and foreign matter can be easily removed by washing with water. It can prevent clouding due to water droplets.
  • the surface free energy is obtained by measuring the contact angle with water and methylene iodide on the solid surface, and measuring the measured value and the surface free energy value of the contact angle measurement liquid (known from the literature).
  • Substituting into the following formula (1) derived from the above formula and the extended Fowkes formula, and solving the obtained two formulas as simultaneous linear equations means the surface free energy value of the solid obtained.
  • (1 + cos ⁇ ) r L 2 ⁇ (r S d r L d ) + 2 ⁇ (r S v r L v ) (1)
  • each symbol in the formula is as follows.
  • contact angle r L : surface free energy r L d of contact angle measurement liquid: dispersion force component r L v at rL: polar force component at rL r S d : dispersion force component at solid surface free energy r S v : Polar force component in surface free energy of solids
  • any appropriate conditions can be adopted as the thickness of the aggregate layer of the oblique columnar structures in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention as long as the object of the present invention can be achieved.
  • the thickness is preferably 10 nm or more, more preferably 50 to 10,000 nm, and still more preferably 100 to 5000 nm. If the thickness of the aggregate layer of the oblique columnar structure is in such a range, the wettability of the surface of the aggregate layer is improved, and adhered dirt and foreign matter can be easily removed by washing with water. Cloudy can be prevented.
  • the aggregated layer of oblique columnar structures in the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention preferably has substantially no adhesive force.
  • having substantially no tackiness means that there is no pressure-sensitive tack that represents the function of tackiness when the essence of tackiness is friction that is resistance to slippage.
  • This pressure-sensitive tack is expressed in the range where the elastic modulus of the adhesive substance is up to 1 MPa, for example, according to the Dahlquist standard.
  • a protective film may be used.
  • the protective film can be peeled off at an appropriate stage such as at the time of use.
  • a protective film formed of any appropriate material can be used.
  • plastic film examples include a copolymer, an ionomer resin, an ethylene / (meth) acrylic acid copolymer, an ethylene / (meth) acrylic acid ester copolymer, polystyrene, and polycarbonate.
  • a polyolefin resin film such as polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, etc. has releasability without using a release treatment agent, it can be used alone as a protective film.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 10 to 100 ⁇ m. Any appropriate method can be adopted as a method for forming the protective film as long as the object of the present invention can be achieved. For example, it can be formed by an injection molding method, an extrusion molding method, or a blow molding method.
  • the support is provided with an aggregate layer of oblique columnar structures projecting at an elevation angle of less than 90 degrees from one surface of the support, and the water contact angle of the surface of the aggregate layer Is 10 degrees or less, and an adhesive layer is formed on the other surface of the support.
  • any appropriate material can be adopted as the adhesive used in the adhesive layer in the hydrophilic sheet of the present invention.
  • an acrylic adhesive, a rubber adhesive, and a silicone adhesive are mentioned.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoint of low contamination to an adherend, and an acrylic mainly composed of a (meth) acrylic polymer having a weight-average molecular weight of 100,000 or less is 10% by weight or less.
  • Particularly preferred are system pressure-sensitive adhesives.
  • Examples of the monomer component for forming the (meth) acrylic polymer include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an isobutyl group, an amyl group, an isoamyl group, and a hexyl group.
  • alkyl (meth) acrylate having an alkyl group having 30 or less carbon atoms such as a dodecyl group is preferable, and an alkyl (meth) acrylate having a linear or branched alkyl group having 4 to 18 carbon atoms is more preferable.
  • alkyl (meth) acrylates may be used alone or in combination of two or more.
  • monomer components other than the above include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; Acid anhydride monomers such as maleic acid and itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, (meth) acrylic acid 6- Contains hydroxyl groups such as hydroxyhexyl, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate Mo Styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2
  • a polyfunctional monomer can be used as a copolymerization monomer component.
  • polyfunctional monomers examples include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and pentaerythritol di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, etc. And the like. These poly
  • the amount of the polyfunctional monomer used is preferably 30% by weight or less, more preferably 15% by weight or less, based on the adhesive properties and the like.
  • the (meth) acrylic polymer for example, a mixture containing one or more monomer components is used, and an appropriate method such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, or a suspension polymerization method is used. Can be applied.
  • a polymerization initiator In the preparation of the (meth) acrylic polymer, a polymerization initiator can be used.
  • the polymerization initiator include peroxides such as hydrogen peroxide, benzoyl peroxide, and t-butyl peroxide.
  • the polymerization initiator is preferably used alone, but can also be used as a redox polymerization initiator in combination with a reducing agent.
  • reducing agent examples include ionized salts such as sulfites, hydrogen sulfites, iron salts, copper salts, and cobalt salts; amines such as triethanolamine; reducing sugars such as aldose and ketose; .
  • An azo compound is also preferable as the polymerization initiator.
  • 2,2′-azobis-2-methylpropioaminate, 2,2′-azobis-2,4-dimethylvaleronitrile, 2,2′-azobis-N, N′-dimethyleneisobutylamidine acid A salt, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methyl-N- (2-hydroxyethyl) propionamide and the like can be used.
  • Only one type of polymerization initiator may be used, or two or more types may be used in combination.
  • the polymerization reaction temperature is preferably 50 to 85 ° C.
  • the polymerization reaction time is preferably 1 to 8 hours.
  • the polymerization method is particularly preferably a solution polymerization method, and the solvent of the (meth) acrylic polymer is preferably a polar solvent such as ethyl acetate or toluene.
  • the solution concentration is preferably 20 to 80% by weight.
  • a crosslinking agent can be appropriately added in order to increase the number average molecular weight of the (meth) acrylic polymer as the base polymer.
  • crosslinking agent examples include polyisocyanate compounds, epoxy compounds, aziridine compounds, melamine resins, urea resins, anhydrous compounds, polyamines, and carboxyl group-containing polymers.
  • the amount used is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the base polymer in consideration that the peeling adhesive strength does not decrease too much.
  • the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer in the hydrophilic sheet of the present invention contains, as necessary, any appropriate additive such as a tackifier, an anti-aging agent, a filler, an anti-aging agent, a coloring agent, and the like. Can be made.
  • the thickness of the pressure-sensitive adhesive layer in the hydrophilic sheet of the present invention is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • a separator is provided on the pressure-sensitive adhesive layer in the hydrophilic sheet of the present invention.
  • the laminated sheet adheresive sheet
  • the surface of the pressure-sensitive adhesive layer can be protected from dust or the like until the hydrophilic sheet is used.
  • Examples of the constituent material of the separator include polyether ether ketone, polyether imide, polyarylate, polyethylene naphthalate, polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, vinyl chloride copolymer, polyethylene terephthalate, Formed from plastics such as polybutylene terephthalate, polyurethane, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, polystyrene, polycarbonate, etc. A film etc. are mentioned.
  • One side of the separator is subjected to release treatment such as silicone treatment, long-chain alkyl treatment, fluorine treatment, treatment with fatty acid amide, treatment with silica, etc., as necessary, in order to enhance the peelability from the adhesive layer. It may be.
  • the thickness of the separator is preferably 5 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and still more preferably 38 to 60 ⁇ m.
  • the hydrophilic sheet of the present invention can be produced by forming an oblique columnar structure on the surface of a support. Any appropriate method can be adopted as a method of forming the oblique columnar structure. The oblique vapor deposition method is preferable.
  • the method for superhydrophilicizing the surface of a substrate according to the present invention is a method for making the surface of a substrate superhydrophilic, and the angle of elevation from the surface projects below 90 degrees on the surface of the substrate by an oblique deposition method.
  • An aggregate layer of oblique columnar structures is formed.
  • any suitable oblique deposition technique can be adopted as the oblique deposition method.
  • the method described in JP-A-8-27561 can be mentioned.
  • a vacuum deposition apparatus is used.
  • the deposition material is obliquely deposited on the support or the substrate by providing a partial shielding plate between the deposition source and the support or the substrate.
  • the “partial shielding plate” means that the support or substrate is completely hidden when viewed from the deposition source when the shielding plate is arranged in the space between the deposition source and the support or substrate. This means that no shielding plate is placed. That is, it means that the shielding plate is arranged so that at least a part of the support or the substrate can be seen from the vapor deposition source.
  • a support or substrate placed in a remote position is heated and vaporized or sublimated as a deposition source 60 in a vacuumed container (chamber).
  • the shielding plate 50 is used and the deposition material is deposited while being inclined with respect to the support or the substrate 10.
  • the oblique columnar structure 30 inclined with respect to the surface of the support or substrate 10 is formed by inclining and depositing the vapor deposition material with respect to the support or substrate 10.
  • the support or the substrate 10 is sent out by the vapor deposition roll 70.
  • an aggregate layer of oblique columnar structures protruding at an elevation angle of less than 90 degrees from the support or the surface can be provided on the surface of the support or the base material.
  • the radius R of the vapor deposition roll and the shortest distance from the surface of the vapor deposition roll to the vapor deposition source is particularly important in designing the apparatus.
  • the radius R of the vapor deposition roll is a set of slanted columnar structures projecting from the support or the surface of the substrate with an elevation angle of less than 90 degrees from the support or the surface. Any appropriate radius can be adopted as long as a layer can be provided and the aspect ratio of the oblique columnar structure can be controlled to be 1 or more.
  • the radius R of the vapor deposition roll is preferably 0.1 to 5 m, more preferably 0.2 to 1 m.
  • the shortest distance L3 from the surface of the vapor deposition roll to the vapor deposition source protrudes from the support or the surface of the substrate with an elevation angle of less than 90 degrees from the support or the surface. Any appropriate distance can be adopted as long as the aggregated layer of the oblique columnar structures can be provided and the aspect ratio of the oblique columnar structures can be controlled to be 1 or more.
  • the shortest distance L3 from the surface of the vapor deposition roll to the vapor deposition source is preferably 0.1 to 5 m, more preferably 0.3 to 3 m.
  • the shortest distance L1 from the center of the vapor deposition roll to the vapor deposition source protrudes from the support or the surface of the substrate at an elevation angle of less than 90 degrees from the support or the surface. Any appropriate distance can be adopted as long as the aggregated layer of the oblique columnar structures can be provided and the aspect ratio of the oblique columnar structures can be controlled to be 1 or more.
  • the shortest distance L2 from the shielding plate to the vapor deposition source is an oblique angle that protrudes from the support or the surface of the substrate with an elevation angle of less than 90 degrees from the support or the surface. Any appropriate distance can be adopted as long as an aggregate layer of columnar structures can be provided and the aspect ratio of the oblique columnar structures can be controlled to be 1 or more.
  • L2 is a length that can be set depending on L3. However, in order to achieve the effect of the present invention efficiently, generally L2 is preferably 1/2 or more of L3, more preferably Is 2/3 or more. If L2 is smaller than this, the deposited film is likely to be formed isotropically, and the angle and aspect ratio may be difficult to control.
  • the length L4 of the shielding plate is such that the support or the surface of the substrate protrudes with an elevation angle of less than 90 degrees from the support or the surface. Any appropriate length can be adopted as long as the aggregate layer can be provided and the aspect ratio of the oblique columnar structure can be controlled to be 1 or more.
  • L4 is a length that can be set depending on R. However, since it is necessary to set a deposition angle, it can be preferably set such that R ⁇ L4 ⁇ 2R. L4 is preferably 0.1 to 10 m, more preferably 0.2 to 2 m.
  • the elevation angle ⁇ from the support or the surface of the support or the substrate is less than 90 degrees, preferably 10 to 85 degrees, more preferably 20 to 80 degrees, still more preferably 30 to
  • the length L4 of the shielding plate is adjusted so that the oblique columnar structure protruding at 70 degrees is provided.
  • the position of the right end portion of the shielding plate 50 is adjusted in the horizontal direction.
  • the ultimate vacuum in the vacuum deposition apparatus is preferably 1 ⁇ 10 ⁇ 3 torr or less, more preferably 5 ⁇ 10 ⁇ 4 torr or less, and further preferably 1 ⁇ 10 ⁇ 4 torr or less. If the ultimate vacuum in the vacuum deposition apparatus is out of the above range, there is a possibility that an oblique columnar structure that can sufficiently exhibit the effects of the present invention cannot be formed.
  • the line speed at which the support or the substrate is sent out in the vacuum deposition apparatus protrudes with an elevation angle from the support or the surface of less than 90 degrees on the surface of the support or the substrate in consideration of the apparatus size and the like. Any appropriate speed may be set so that the aggregate layer of the oblique columnar structures can be provided and the aspect ratio of the oblique columnar structures can be controlled to be 1 or more.
  • any appropriate method can be adopted for vapor deposition of the vapor deposition material in the vacuum vapor deposition apparatus as long as the vapor deposition material can be heated and vaporized.
  • heating and vaporization are performed by methods such as resistance heating, electron beam, high frequency induction, and laser.
  • vapor deposition of the vapor deposition material in the vacuum vapor deposition apparatus is performed by heating and vaporization with an electron beam.
  • the emission current of the electron beam should be provided with an aggregate layer of slanted columnar structures protruding at an angle of elevation of less than 90 degrees from the support or the surface of the support or the substrate in consideration of the apparatus size and the like. Any appropriate emission current may be set so that the aspect ratio of the oblique columnar structure can be controlled to be 1 or more.
  • conditions for the oblique deposition method any appropriate conditions can be adopted in addition to the above conditions.
  • conditions can be set by appropriately changing deposition time, chamber vacuum, heating conditions (electron beam output current, acceleration voltage, etc.), substrate temperature, and the like.
  • any appropriate material can be adopted as the vapor deposition material.
  • metals such as aluminum, zinc, gold, silver, platinum, nickel, chromium, copper, platinum, indium, inorganic materials such as sapphire, silicon carbide (SiC), gallium nitride (GaN), silicon monoxide (SiO ), Silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), cerium oxide (CeO 2 ), chromium oxide (Cr 2 O 3 ), gallium oxide (Ga 2 O 3 ), hafnium oxide (HfO 2 ), Tantalum pentoxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), tungsten oxide (WO 3 ), titanium monoxide (TiO), titanium dioxide (TiO 2 ), titanium pentoxide (Ti 3 O 5 ), nickel oxide (NiO), magnesium oxide (MgO), ITO (In 2 O 3 + SnO 2), five niobium oxide (Nb
  • fluorine-based materials such as polyimide, aluminum fluoride, calcium fluoride, cerium fluoride, lanthanum fluoride, lithium fluoride, magnesium fluoride, neodymium fluoride, and sodium fluoride, and resins such as silicone can be used. These materials may be used alone or in combination of two or more, or may have a multilayer structure of two or more layers.
  • oxides such as silicon dioxide (SiO 2 ) and titanium dioxide (TiO 2 ), which are hydrophilic materials, are preferably used.
  • the hydrophilic sheet of the present invention can be used for any appropriate application.
  • contamination prevention layer and a cloudy prevention layer is mentioned, for example.
  • Example 1 (Oblique deposition method) The slanted columnar structure was formed using a take-up electron beam (EB) vacuum deposition apparatus shown in FIG.
  • EB take-up electron beam
  • a polyester film with a thickness of 50 ⁇ m manufactured by Toray, Lumirror S10
  • a silicon dioxide (SiO 2 ) as an evaporation source
  • a line speed of 0.2 m / min and an ultimate vacuum in the chamber of 4 ⁇ 10 ⁇ 5 torr
  • EB output (emission current) 500 mA and a deposition incident angle of 60 degrees.
  • a hydrophilic sheet was prepared by laminating the other surface of the 50 ⁇ m thick polyester film on which the oblique columnar structures were formed. (Evaluation) The evaluation results are shown in Table 1. Moreover, the cross-sectional SEM photograph of the obtained hydrophilic sheet
  • Example 2 Except for changing the line speed to 1.7 m / min, SiO 2 as an evaporation source was evaporated in the same manner as in Example 1 to form an oblique columnar structure on a substrate, thereby preparing a hydrophilic sheet.
  • the evaluation results are shown in Table 1.
  • seat is shown in FIG.
  • the photograph figure of fogging prevention property evaluation is shown in FIG.
  • Example 3 In the formation of the oblique columnar structure, the SiO 2 as the evaporation source is evaporated by the same method as in Example 1 except that a 4-inch silicon wafer is used as the substrate, and the oblique columnar structure is formed on the substrate. And the hydrophilic sheet
  • Example 4 In the formation of the oblique columnar structure, the SiO 2 as the evaporation source was evaporated in the same manner as in Example 1 except that a PMMA (polymethyl methacrylate) resin having a thickness of 2 mm was used as the base material. It formed on the base material and produced the hydrophilic sheet
  • the hydrophilic sheet of the present invention or the hydrophilic member obtained by the method of the present invention has a high wettability to water, and can be easily removed by washing with water to remove adhered dirt and foreign matter. It can be applied to an anti-fogging sheet that can prevent clouding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

 水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去でき、また、水滴付着によるくもりを防ぐことができる、親水性シートを提供する。また、任意の基材の表面に、水に対する高い濡れ性を付与する方法を提供する。  本発明の親水性シートは、支持体の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下である。また、本発明の基材表面の超親水化方法は、基材の表面を超親水化させる方法であって、斜め蒸着法によって、該基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を形成させる。    

Description

親水性シートおよび基材表面の超親水化方法
 本発明は、水に対して高い濡れ性を有する親水性シートに関する。具体的には、付着した汚れや異物を水洗によって容易に除去できる汚れ防止シートや、水滴付着によるくもりを防ぐことができるくもり防止シートなどの、親水性シートに関する。
 また、本発明は、基材表面の超親水化方法に関する。詳細には、任意の基材の表面に、水に対する高い濡れ性を付与する方法に関する。本発明の方法によれば、基材表面に付着した汚れや異物を水洗によって容易に除去でき、また、水滴付着による基材表面のくもりを防ぐことができる。
 本発明の親水性シートは、好ましくは、本発明の基材表面の超親水化方法を用いて得ることができる。
 近年、大気汚染、黄砂飛来、花粉飛散などにより、屋外で使用される部材に対する汚れ付着が深刻な問題となっている。
 他方で、化石エネルギーの代替として太陽電池技術が普及し、また、太陽光を十分に取り込むためにガラスを多用したビルが好まれるようになり、屋外におけるガラスパネルの利用が最近急激に増大している。このようなガラスパネルは、太陽光を確実に取り込むことが求められ、また、外観上も汚れが目立ちやすいため、定期的なクリーニング作業が必要となる。しかしながら、このようなガラスパネルは高所挟所に設置されている場合が多く、頻繁にクリーニング作業を行いにくい。そこで、屋外で使用される部材であって簡単に汚れを除去できる部材が求められている(例えば、特許文献1参照)。
 一方、屋内で使用される部材に対する汚れ付着についても、使用者の要求は年々厳しくなっている。
 屋内で使用される部材の中でも、特に、バス、キッチン、トイレに代表される水周りで使用される部材においては、不特定多数の人(肌)が直接接する機会が多い。このため、水垢、水カビ、石鹸残りカスなどの汚れの付着が、外観的にも衛生上の観点からも問題となっている。
 また、以前から、道路標識、表示パネル、水周りで使用される鏡などでは、水滴付着によりくもりが発生し、視界低下などの問題が起こっている。
特開2002-52667号公報
 本発明の課題は、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去でき、また、水滴付着によるくもりを防ぐことができる、親水性シートを提供することにある。
 また、本発明の課題は、上記親水性シートを得るために好適な基材表面の超親水化方法、すなわち、任意の基材の表面に、水に対する高い濡れ性を付与する方法を提供することにある。
 本発明の親水性シートは、支持体の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下である。
 好ましい実施形態においては、上記支持体の片面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下であり、上記支持体のもう一方の片面に粘着剤層が形成されている。
 好ましい実施形態においては、上記集合層が汚れ防止層である。
 好ましい実施形態においては、上記集合層がくもり防止層である。
 本発明の基材表面の超親水化方法は、基材の表面を超親水化させる方法であって、斜め蒸着法によって、該基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を形成させる。
 好ましい実施形態においては、上記斜め蒸着法は、真空蒸着装置を用いる。
 好ましい実施形態においては、上記真空蒸着装置内の到達真空度が1×10-3torr以下である。
 好ましい実施形態においては、上記真空蒸着装置内における蒸着材料の蒸着が電子ビームによる加熱・気化によって行われる。
 好ましい実施形態においては、上記斜め蒸着法は、ロールで送り出される前記基材上に蒸着材料を蒸着させて行う。
 好ましい実施形態においては、上記斜め蒸着法は、蒸着源と上記基材との間に部分的な遮へい板を設けることによって該基材上に蒸着材料を斜め蒸着させる。
 好ましい実施形態においては、上記集合層の厚みが10nm以上である。
 好ましい実施形態においては、上記基材の表面の単位面積当たりの上記斜め柱状構造体の本数が、1×10本/cm以上である。
 好ましい実施形態においては、上記集合層の表面の水接触角が10度以下である。
 本発明によれば、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる、親水性シートを提供することができる。
 上記のような効果は、支持体の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下とし、この斜め柱状構造体の集合層を高親水性層として機能させることによって、発現することができる。
 また、本発明によれば、任意の基材の表面に、水に対する高い濡れ性を付与することができる。本発明によれば、基材表面に付着した汚れや異物を水洗によって容易に除去でき、また、水滴付着による基材表面のくもりを防ぐことができる。
 上記のような効果は、斜め蒸着法によって、基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を形成させることによって発現することができる。
 つまり、支持体や基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備えることで、フラクタル理論に基づき、該集合層の表面に高い濡れ性を付与することができる。
 ここで、フラクタル理論とは、表面を超親水化する理論であり、表面の微細な凹凸によって親水効果がより強くなるという理論である。表面に微細な凹凸構造(フラクタル構造)を形成すると、空気中の水分を吸着して凹み部に微小な水膜が形成されるため、全体として表面の親水性が増大する。従って、このような表面に異物や汚れが付着しても、該異物や汚れは表面と完全に固着せず、浮いたような状態を保つ。そして、この状態において水をかけること(水洗)によって、表面と異物や汚れとの界面に水が浸透し、汚れを簡単に除去できる。自然界において、このフラクタル理論による汚れ防止は、カタツムリの殻の汚れ防止機能として知られている。
 また、一般的に、水接触角が10度以下である場合、超親水性と呼ばれ、水滴は平らに張り付いたような形となり水膜を作らず、流れ落ちる。従って、このような場合には、水滴が付着せず、くもり防止の効果が発現できる。
本発明の親水性シートまたは本発明の方法で得られる親水性部材の好ましい実施形態の概略断面図である。 本発明の親水性シートまたは本発明の方法で得られる親水性部材の好ましい実施形態の概略断面図である。 本発明の親水性シートまたは本発明の方法で得られる親水性部材の好ましい実施形態の概略断面図であって仰角αを説明する概略断面図である。 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の好ましい実施形態の概略断面図である。 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の好ましい実施形態の概略断面図である。 斜め蒸着法に用いる装置の好ましい実施形態の概略断面図である。 実施例1で得られた親水性シートの断面SEM写真である。 実施例2で得られた親水性シートの断面SEM写真である。 くもり防止性評価の写真図である。
符号の説明
 10 支持体または基材
 20 集合層
 30 斜め柱状構造体
 40 粘着剤層
 50 遮へい板
 60 蒸着源
 70 蒸着ロール
100 親水性シート
200 親水性シート
 図1、図2は本発明の好ましい実施形態である親水性シートまたは本発明の方法で得られる好ましい実施形態である親水性部材の概略断面図である。
 図1が親水性シートの概略断面図である場合、図1で示す親水性シート100は、支持体10と、斜め柱状構造体30の集合層20とを有する。斜め柱状構造体30の集合層20は、支持体10の片面に設けられていてもよいし、両面に設けられていてもよい。また、斜め柱状構造体30の集合層20は、それが設けられた支持体10の表面の全面に設けられていてもよいし、支持体10の表面の一部のみに設けられていてもよい。
 図1が親水性部材の概略断面図である場合、図1で示す親水性部材100は、基材10と、斜め柱状構造体30の集合層20とを有する。斜め柱状構造体30の集合層20は、基材10の片面に設けられていてもよいし、両面に設けられていてもよい。また、斜め柱状構造体30の集合層20は、それが設けられた基材10の表面の全面に設けられていてもよいし、基材10の表面の一部のみに設けられていてもよい。
 図2が親水性シートの概略断面図である場合、図2で示す親水性シート200は、支持体10の片面に斜め柱状構造体30の集合層20を有し、支持体10のもう一方の片面に粘着剤層40を有する。粘着剤層40は、支持体10の片面の全面に設けられてもよいし、支持体10の片面の一部のみに設けられていてもよい。斜め柱状構造体30の集合層20は、それが設けられた支持体10の表面の全面に設けられていてもよいし、支持体10の表面の一部のみに設けられていてもよい。
 図2が親水性部材の概略断面図である場合、図2で示す親水性部材200は、基材10の片面に斜め柱状構造体30の集合層20を有し、基材10のもう一方の片面に粘着剤層40を有する。粘着剤層40は、基材10の片面の全面に設けられてもよいし、基材10の片面の一部のみに設けられていてもよい。斜め柱状構造体30の集合層20は、それが設けられた基材10の表面の全面に設けられていてもよいし、基材10の表面の一部のみに設けられていてもよい。
 図1、図2に示すように、本発明における斜め柱状構造体の集合層20は、複数の斜め柱状構造体30の集合層である。斜め柱状構造体の集合層20は、汚れ防止層あるいはくもり防止層として作用し得る。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材は、斜め柱状構造体の集合層を備えることで、表面に無数の微細な凹凸構造を形成でき、水に対して高い濡れ性を発現し、特に、汚れ防止やくもり防止に対して有効な親水性シートまたは親水性部材となる。
 斜め柱状構造体30は、図3に示すように、支持体または基材10の表面に該表面からの仰角αが90度未満で突出している。仰角αは、好ましくは10~85度、より好ましくは20~80度、さらに好ましくは30~70度である。仰角αが90度未満であることにより、本発明の親水性シートまたは本発明の方法で得られる親水性部材は、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 斜め柱状構造体30は、図4に示すように、支持体10または基材の表面から仰角αで実質的にまっすぐに突出していてもよいし、図5に示すように、支持体または基材10の表面から初期仰角αで突出した後に曲がった形状となっていてもよい。
 斜め柱状構造体は、柱状構造を有している。柱状構造としては、厳密に柱状の構造のみならず、略柱状の構造をも含む。例えば、円柱状構造、多角形柱状構造、コーン状構造、繊維状構造などが好ましく挙げられる。また、柱状構造の断面形状は、柱状構造体全体にわたって均一であってもよいし、不均一であってもよい。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材においては、斜め柱状構造体の集合層の表面の水接触角が10度以下であり、好ましくは8度以下、より好ましくは6度以下である。斜め柱状構造体の集合層の表面の水接触角を上記の範囲とすることで、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体のアスペクト比は、好ましくは1以上、より好ましくは2~20、さらに好ましくは3~10である。本発明において「アスペクト比」とは、斜め柱状構造体の長さ(A)と斜め柱状構造体の径が最も太い部分の径の長さ(B)の比(ただし、(A)と(B)の単位は同じものとする)を表す。斜め柱状構造体のアスペクト比が上記の範囲にあることにより、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の長さは、好ましくは100nm以上であり、より好ましくは200~100000nm、さらに好ましくは300~10000nm、特に好ましくは500~5000nmである。斜め柱状構造体の長さが上記の範囲にあることにより、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の径は、好ましくは1000nm以下であり、より好ましくは10~500nm、さらに好ましくは100~300nmである。斜め柱状構造体の径が上記の範囲にあることにより、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の長さおよび径は、任意の適切な測定方法によって測定すれば良い。測定の容易さ等の点から、好ましくは、走査型電子顕微鏡(SEM)を用いた測定が挙げられる。走査型電子顕微鏡(SEM)を用いた測定は、例えば、SEM観察試料台に本発明の親水性シートを貼り付け、側面方向から観察することで、斜め柱状構造体の長さおよび径を求めることが可能である。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材において、支持体または基材の表面の単位面積当たりの斜め柱状構造体の本数は、好ましくは1×10本/cm以上、より好ましくは1×10~1×1012本/cm、さらに好ましくは3×10~1×1010本/cmである。支持体または基材の表面の単位面積当たりの斜め柱状構造体の本数が上記の範囲にあることにより、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートにおける支持体としては、任意の適切な材料を採用し得る。例えば、ポリイミド(PI)系樹脂、ポリエステル(PET)系樹脂、ポリエチレンナフタレート(PEN)系樹脂、ポリエーテルサルフォン(PES)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリアリレート(PAR)系樹脂、アラミド系樹脂、または液晶ポリマー(LCP)樹脂、フッ素系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニル、EVA、PMMA、POM等の有機高分子樹脂からなるシートや基板のほか、石英基板、ガラス基板、シリコンウェハなどの無機材料などからなる基板も用いられる。これらの中でも、特に、PET系樹脂シート、ポリカーボネート系樹脂シートは、透明性が高く、好適に用いられる。
 本発明の方法で得られる親水性部材における基材としては、任意の適切な材料を採用し得る。例えば、ポリイミド(PI)系樹脂、ポリエステル(PET)系樹脂、ポリエチレンナフタレート(PEN)系樹脂、ポリエーテルサルフォン(PES)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリアリレート(PAR)系樹脂、アラミド系樹脂、または液晶ポリマー(LCP)樹脂、フッ素系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニル、EVA、PMMA、POM等の有機高分子樹脂;石英、ガラス、シリコンウェハ、コンクリート、モルタル、サイディングボード、タイル、陶器、鏡、金属(鉄、アルミニウム、合金、鋼、銅など)、石材、木材、スレートなどの無機材料;などが挙げられる。
 本発明の親水性シートにおける支持体または本発明の方法で得られる親水性部材における基材としては、より具体的には、用途別に列挙すると、例えば、
(1)トンネル内装板、トンネル内照明、道路標識、道路照明、防音壁、ガードフェンス、反射板、道路鏡などの道路関連資材;
(2)キッチン設備部材、浴室設備部材、住宅内装部材、サイディング材、タイル、ガラス、サッシ、網戸、門扉、カーポート、サンルーム、ベランダ部材、屋根用部材、住宅外壁部材、浴室鏡、化粧鏡、衛生陶器などの住宅関連資材;
(3)ビルサッシ、カーテンウォール、塗装鋼板、アルミパネル、タイル、石材、結晶化ガラス、ガラス用フィルムなどのビル関連資材;
(4)ショーケース、サイン・表示類、ショーウィンドウ、店舗用外装材、冷蔵商品ケース、冷凍商品ケースなどの店舗関連資材;
(5)ガラス音質、ビニールハウスなどの農業関連資材;
(6)コンピュータディスプレイ、太陽電池、ガラス、エアコン用アルミファン、高圧電線などのエレクトロニクス関連資材;
(7)自動車ボディ、車両ボディ、自動車塗装部材、車両塗装部材、前照灯カバー、窓ガラス、ヘルメットシールド、ガラス用フィルム、ドアミラー、二輪車バックミラー、二輪車風防、ミラー用フィルムなどの車両関連資材;
(8)光学レンズ、内視鏡レンズなどの光学機器関連資材;
(9)コンタクトレンズ、カテーテルなどの医療関連資材;
(10)食器、調理器具、防汚メンテナンス材、防曇メンテナンス材などの日用品・消費財関連資材;
などが挙げられる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材においては、支持体または基材の表面に予めプラズマ(スパッタ)処理、コロナ放電、紫外線照射、火炎、電子線照射、化成、酸化などのエッチング処理や、有機物の下塗り処理を施して、斜め柱状構造体と支持体との密着性を向上させてもよい。また、必要に応じて、溶剤洗浄や超音波洗浄などにより、除塵清浄化してもよい。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における支持体または基材の厚みとしては、任意の適切な厚みを採用し得る。例えば、シート状であれば、好ましくは10~250μm、基板状であれば、好ましくは0.1~10mmである。なお、支持体または基材は単層でも良いし、2層以上の積層体でも良い。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体としては、任意の適切な材料を採用し得る。例えば、アルミニウム、亜鉛、金、銀、プラチナ、ニッケル、クロム、銅、白金、インジウムなどの金属類やサファイア、炭化珪素(SiC)、チッ化ガリウム(GaN)などの無機材料、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化セリウム(CeO)、酸化クロム(Cr)、酸化ガリウム(Ga)、酸化ハフニウム(HfO)、五酸化タンタル(Ta)、酸化イットリウム(Y)、酸化タングステン(WO)、一酸化チタン(TiO)、二酸化チタン(TiO)、五酸化チタン(Ti)、酸化ニッケル(NiO)、酸化マグネシウム(MgO)、ITO(In+SnO)、五酸化ニオブ(Nb)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)などの酸化物も使用できる。また、ポリイミド、フッ化アルミニウム、フッ化カルシウム、フッ化セリウム、フッ化ランタン、フッ化リチウム、フッ化マグネシウム、フッ化ネオジウム、フッ化ナトリウムなどのフッ素系材料、シリコーンなどの樹脂等も利用できる。これらの材料は、1種のみを単独で用いても良いし、2種以上を混合して用いても良いし、2層以上の多層構造としても良い。特に、親水性を有する材料である二酸化ケイ素(SiO)、二酸化チタン(TiO)などの酸化物が好適に用いられる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の集合層の表面の表面自由エネルギーは、好ましくは70mJ/m以上、より好ましくは73mJ/m以上、さらに好ましくは75mJ/m以上である。斜め柱状構造体の集合層の表面の表面自由エネルギーが上記の範囲にあることにより、集合層の表面の濡れ性が向上し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 ここで、表面自由エネルギーとは、固体表面に対して水およびヨウ化メチレンを用いてそれぞれ接触角を測定し、この測定値と接触角測定液体の表面自由エネルギー値(文献より既知)を、Youngの式および拡張Fowkesの式から導かれる下記の式(1)に代入し、得られる二つの式を連立一次方程式として解くことにより、求められる固体の表面自由エネルギー値を意味するものである。
 (1+cosθ)r=2√(r )+2√(r )・・・(1)
 ただし、式中の各記号は、それぞれ以下の通りである。
θ:接触角
:接触角測定液体の表面自由エネルギー
:rLにおける分散力成分
:rLにおける極性力成分
:固体の表面自由エネルギーにおける分散力成分
:固体の表面自由エネルギーにおける極性力成分
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の集合層の厚みは、本発明の目的を達成し得る範囲において、任意の適切な条件を採用し得る。好ましくは10nm以上、より好ましくは50~10000nm、さらに好ましくは100~5000nmである。斜め柱状構造体の集合層の厚みがこのような範囲であれば、集合層の表面の濡れ性が向上し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着によるくもりを防ぐことができる。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の集合層は、好ましくは、実質的に粘着力を有しない。ここで、実質的に粘着性を有しないとは、粘着の本質を滑りに対する抵抗である摩擦としたとき、粘着性の機能を代表する感圧性タックがないことを意味する。この感圧性タックは、たとえばDahlquistの基準にしたがうと、粘着性物質の弾性率が1MPaまでの範囲で発現するものである。
 本発明の親水性シートまたは本発明の方法で得られる親水性部材における斜め柱状構造体の集合層の表面を保護するために、保護フィルムを用いてもよい。保護フィルムは、使用時など適切な段階で剥離され得る。保護フィルムとしては、任意の適切な材料から形成される保護フィルムを用い得る。例えば、シリコーン系、長鎖アルキル系、フッ素系、脂肪酸アミド系、シリカ系の剥離剤などで剥離処理されたポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン酢酸ビニル共重合体、アイオノマー樹脂、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エステル共重合体、ポリスチレン、ポリカーボネートなどからなるプラスチックフィルムが挙げられる。また、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテンなどのポリオレフィン樹脂系のフィルムについては、離型処理剤を用いなくとも離型性を有するので、それ単体を保護フィルムとして使用することもできる。
 保護フィルムの厚さは、好ましくは1~100μmであり、より好ましくは10~100μmである。保護フィルムの形成方法は、本発明の目的を達成し得る範囲において、任意の適切な方法が採用され得る。例えば、射出成形法、押出成形法、ブロー成形法により形成することができる。
 本発明の親水性シートの好ましい実施形態としては、上記支持体の片面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下であり、上記支持体のもう一方の片面に粘着剤層が形成されている。
 本発明の親水性シートにおける粘着剤層に用いられる粘着剤としては、任意の適切な材料を採用し得る。例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤が挙げられる。中でも、被着体への汚染性が低いなどの点から、アクリル系粘着剤が好ましく、重量平均分子量が10万以下の成分が10重量%以下である(メタ)アクリル系ポリマーを主剤としたアクリル系粘着剤が特に好ましい。
 (メタ)アクリル系ポリマーを形成するモノマー成分としては、例えば、メチル基、エチル基、n-プルピル基、イソプルピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、ヘプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、及びドデシル基などの、炭素数30以下のアルキル基を有するアルキル(メタ)アクリレートが好ましく、より好ましくは、炭素数4~18の直鎖又は分岐のアルキル基を有するアルキル(メタ)アクリレートである。これらアルキル(メタ)アクリレートは、1種のみ単独で用いてもよく、2種以上を併用してもよい。
 上記以外のモノマー成分としては、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマール酸、及びクロトン酸などのカルボキシル基含有モノマー;無水マレイン酸や無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、及び(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;などが挙げられる。これらモノマー成分は1種のみ単独で用いてもよく、2種以上を併用してもよい。
 また、(メタ)アクリル系ポリマーの架橋処理等を目的として、必要に応じて、多官能モノマーを共重合モノマー成分として用いることができる。
 多官能モノマーとしては、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これら多官能モノマーは、1種のみ単独で用いてもよく、2種以上を併用してもよい。
 多官能モノマーの使用量は、粘着特性等の観点より、全モノマー成分の30重量%以下であることが好ましく、15重量%以下であることがより好ましい。
 (メタ)アクリル系ポリマーの調製は、例えば、1種または2種以上のモノマー成分を含む混合物を用い、溶液重合方式、乳化重合方式、塊状重合方式、又は懸濁重合方式等の適宜な方式を適用して行うことができる。
 (メタ)アクリル系ポリマーの調製においては、重合開始剤を使用し得る。重合開始剤としては、例えば、過酸化水素、過酸化ベンゾイル、t-ブチルパーオキサイドなどの過酸化物系が挙げられる。
 重合開始剤は、単独で用いるのが望ましいが、還元剤と組み合わせてレドックス系重合開始剤として使用することもできる。
 還元剤としては、例えば、亜硫酸塩、亜硫酸水素塩、鉄塩、銅塩、コバルト塩などのイオン化の塩;トリエタノールアミン等のアミン類;アルドース、ケトース等の還元糖;などを挙げることができる。
 重合開始剤としてアゾ化合物も好ましい。例えば、2,2’-アゾビス-2-メチルプロピオアミジン酸塩、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-N,N’-ジメチレンイソブチルアミジン酸塩、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド等を使用することができる。
 重合開始剤は、1種のみを用いても良いし、2種以上を併用しても良い。
 重合の反応温度は、好ましくは、50~85℃である。重合の反応時間は、好ましくは、1~8時間である。
 重合方式としては、特に、溶液重合方式が好ましく、(メタ)アクリル系ポリマーの溶媒としては、酢酸エチルやトルエン等の極性溶剤が好ましい。溶液濃度は、好ましくは、20~80重量%である。
 本発明の親水性シートにおける粘着剤層に用いられる粘着剤には、ベースポリマーである(メタ)アクリル系ポリマーの数平均分子量を高めるため、架橋剤を適宜に加えることもできる。
 架橋剤としては、例えば、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン樹脂、尿素樹脂、無水化合物、ポリアミン、カルボキシル基含有ポリマーなどが挙げられる。
 架橋剤を使用する場合、その使用量は、引き剥がし粘着力が下がり過ぎないことを考慮し、ベースポリマー100重量部に対して、0.01~5重量部が好ましい。
 本発明の親水性シートにおける粘着剤層に用いられる粘着剤には、必要により、任意の適切な添加剤、例えば、粘着付与剤、老化防止剤、充填剤、老化防止剤、着色剤等を含有させることができる。
 本発明の親水性シートにおける粘着剤層の厚みは、1~100μmが好ましく、3~50μmがより好ましく、5~20μmが特に好ましい。
 本発明の親水性シートにおける粘着剤層上には、セパレータが設けられていることが好ましい。セパレータを設けることにより、積層シート(粘着シート)をロール状にして加熱処理したり、保管したりすることができる。また、親水性シートを使用するまでの間、粘着剤層の表面を埃等から保護することができる。
 セパレータの構成材料としては、例えば、ポリエーテルエーテルケトン,ポリエーテルイミド、ポリアリレート,ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ポリ塩化ビニル、塩化ビニル共重合体,ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、ポリスチレン、ポリカーボネート等のプラスチックから形成されるフィルムなどが挙げられる。
 セパレータの片面には、粘着剤層からの剥離性を高めるため、必要に応じて、シリコーン処理、長鎖アルキル処理、フッ素処理、脂肪酸アミド系による処理、シリカ系による処理等の剥離処理が施されていてもよい。
 セパレータの厚みは、5~200μmが好ましく、25~100μmがより好ましく、38~60μmがさらに好ましい。
 本発明の親水性シートは、支持体の表面に、斜め柱状構造体を形成させて製造し得る。斜め柱状構造体の形成方法としては、任意の適切な方法を採用し得る。好ましくは、斜め蒸着法である。
 本発明の基材表面の超親水化方法は、基材の表面を超親水化させる方法であって、斜め蒸着法によって、該基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を形成させる。
 斜め蒸着法としては、任意の適切な斜め蒸着法の技術を採用し得る。例えば、特開平8-27561号公報に記載の方法が挙げられる。好ましくは、真空蒸着装置を用いる。また、ロールで送り出される支持体上や基材上に蒸着材料を蒸着させて行うことも好ましい。また、蒸着源と支持体または基材との間に部分的な遮へい板を設けることによって該支持体上または該基材上に蒸着材料を斜め蒸着させることも好ましい。ここで、「部分的な遮へい板」とは、蒸着源と支持体または基材との間の空間に遮へい板を配置するにあたって、蒸着源から見て支持体または基材が完全に隠れるように遮へい板を配置しないことを意味する。すなわち、蒸着源から見て支持体または基材の少なくとも一部が見えるように遮へい板を配置することを意味する。
 好ましい実施態様として、図6に示すように、真空にした容器(チャンバー)の中で、蒸着材料を蒸着源60として加熱し気化もしくは昇華して、離れた位置に置かれた支持体または基材10の表面に付着させる際に、遮へい板50を用い、蒸着材料を支持体または基材10に対して傾斜させて蒸着させる。蒸着材料を支持体または基材10に対して傾斜し蒸着させることで、支持体または基材10表面に対して傾斜した斜め柱状構造体30が形成される。このとき、支持体または基材10は蒸着ロール70で送り出される。図6に示すような真空蒸着装置を用いる場合、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御するために、装置設計上、特に重要となるのは、蒸着ロールの半径Rと、蒸着ロールの表面から蒸着源までの最短距離L3である。
 図6に示すような真空蒸着装置を用いる場合、蒸着ロールの半径Rは、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できる限り、任意の適切な半径を採用し得る。効率よく本発明の効果を発現するためには、蒸着ロールの半径Rは、好ましくは、0.1~5m、より好ましくは0.2~1mである。
 図6に示すような真空蒸着装置を用いる場合、蒸着ロールの表面から蒸着源までの最短距離L3は、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できる限り、任意の適切な距離を採用し得る。効率よく本発明の効果を発現するためには、蒸着ロールの表面から蒸着源までの最短距離L3は、好ましくは、0.1~5m、より好ましくは0.3~3mである。
 図6に示すような真空蒸着装置を用いる場合、蒸着ロールの中心から蒸着源までの最短距離L1は、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できる限り、任意の適切な距離を採用し得る。なお、L1は、L1=R+L3で決まる長さである。したがって、効率よく本発明の効果を発現するためには、蒸着ロールの中心から蒸着源までの最短距離L1は、好ましくは、0.2~10m、より好ましくは0.5~4mである。
 図6に示すような真空蒸着装置を用いる場合、遮へい板から蒸着源までの最短距離L2は、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できる限り、任意の適切な距離を採用し得る。なお、L2はL3に依存して設定され得る長さであるが、効率よく本発明の効果を発現するためには、一般的には、L2は、好ましくはL3の1/2以上、より好ましくは2/3以上である。L2がこれよりも小さいと、蒸着膜が等方的に成膜されやすくなり、上記の角度、アスペクト比が制御しにくいおそれがある。
 図6に示すような真空蒸着装置を用いる場合、遮へい板の長さL4は、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できる限り、任意の適切な長さを採用し得る。なお、L4はRに依存して設定され得る長さであるが、蒸着角度をつける必要があることから、好ましくはR<L4<2Rで設定し得る。L4は、好ましくは0.1~10m、より好ましくは0.2~2mである。また、具体的には、支持体または基材の表面に該支持体または該表面からの仰角αが90度未満、好ましくは10~85度、より好ましくは20~80度、さらに好ましくは30~70度で突出した斜め柱状構造体が設けられるように、遮へい板の長さL4を調整する。図5の場合、遮へい板50の右端部の位置を水平方向に調整する。
 上記真空蒸着装置内の到達真空度は、好ましくは1×10-3torr以下、より好ましくは5×10-4torr以下、さらに好ましくは1×10-4torr以下である。上記真空蒸着装置内の到達真空度が上記範囲から外れると、本発明の効果を十分に発揮させ得る斜め柱状構造体を形成できないおそれがある。
 上記真空蒸着装置内において支持体または基材が送り出されるライン速度は、装置サイズ等を考慮して、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できるように、任意の適切な速度を設定すれば良い。
 上記真空蒸着装置内における蒸着材料の蒸着は、該蒸着材料を加熱・気化できる方法であれば、任意の適切な方法を採用し得る。例えば、抵抗加熱、電子ビーム、高周波誘導、レーザーなどの方法で加熱・気化する。好ましくは、上記真空蒸着装置内における蒸着材料の蒸着が電子ビームによる加熱・気化によって行われる。
 上記電子ビームのエミッション電流は、装置サイズ等を考慮して、支持体または基材の表面に該支持体または該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を設けることができ、且つ、該斜め柱状構造体のアスペクト比が1以上であるように制御できるように、任意の適切なエミッション電流を設定すれば良い。
 斜め蒸着法の条件としては、上記の条件の他に、任意の適切な条件を採用し得る。例えば、蒸着時間、チャンバー真空度、加熱条件(電子ビーム出力電流、加速電圧など)、基板温度などを適宜変更して、条件を設定し得る。
 上記蒸着材料としては、任意の適切な材料を採用し得る。例えば、アルミニウム、亜鉛、金、銀、プラチナ、ニッケル、クロム、銅、白金、インジウムなどの金属類やサファイア、炭化珪素(SiC)、チッ化ガリウム(GaN)などの無機材料、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化セリウム(CeO)、酸化クロム(Cr)、酸化ガリウム(Ga)、酸化ハフニウム(HfO)、五酸化タンタル(Ta)、酸化イットリウム(Y)、酸化タングステン(WO)、一酸化チタン(TiO)、二酸化チタン(TiO)、五酸化チタン(Ti)、酸化ニッケル(NiO)、酸化マグネシウム(MgO)、ITO(In+SnO)、五酸化ニオブ(Nb)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)などの酸化物も使用できる。また、ポリイミド、フッ化アルミニウム、フッ化カルシウム、フッ化セリウム、フッ化ランタン、フッ化リチウム、フッ化マグネシウム、フッ化ネオジウム、フッ化ナトリウムなどのフッ素系材料、シリコーンなどの樹脂等も利用できる。これらの材料は、1種のみを単独で用いても良いし、2種以上を混合して用いても良いし、2層以上の多層構造としても良い。特に、親水性を有する材料である二酸化ケイ素(SiO)、二酸化チタン(TiO)などの酸化物が好適に用いられる。
 本発明の親水性シートは、任意の適切な用途に用いうる。好ましくは、例えば、汚れ防止層やくもり防止層を有する親水性シートが挙げられる。
 以下、本発明を実施例に基づいて説明するが、本発明はこれに限定されるものではない。
[水接触角、表面自由エネルギー]
 斜め柱状構造体の集合層表面に対して水およびヨウ化メチレンを用いてそれぞれ接触角を測定し、式(1)により表面自由エネルギーを算出した。
[汚れ防止性評価]
 親水性シートの斜め蒸着構造体の集合層上に油滴(松村石油研究所製、ネオバックMR-200)を適量のせた。その後、油滴の周りに、純水を油滴を取り囲むように流しこみ、純水による油滴の除去性を確認した。評価は5段階(5が最も良好)の官能性評価で行った。
[くもり防止性評価]
 10cm□にカットした親水性シートの粘着剤層側のセパレータを剥離し、窓ガラスに貼り合せた。その後、斜め柱状構造体の集合層に息を吹きかけ、窓ガラスのくもりとめ性を確認した。評価は5段階(5が最も良好)の官能性評価で行った。
[実施例1]
(斜め蒸着法)
 斜め柱状構造体の形成は、図6に示す巻き取り式電子ビーム(EB)真空蒸着装置を使用した。基材としては厚み50μmのポリエステルフィルム(東レ製、ルミラーS10)、蒸発源として二酸化シリコン(SiO)を用い、ライン速度を0.2m/minとして、チャンバー内到達真空度4×10-5torr、EB出力(エミッション電流)500mA、蒸着入射角60度の条件にて作製した。
(親水性シート作製)
 アクリル酸ブチル100部及びアクリル酸3部からなるモノマ―混合液から得たアクリルポリマー100部に対して、ポリイソシアネート化合物(日本ポリウレタン工業製、商品名:コロネートL)2部、エポキシ系化合物(三菱瓦斯化学製、商品名:テトラッドC)0.6部を均一に混合して、アクリル系粘着剤溶液を調製した。片面がシリコーン系離型剤にて処理されたポリエステル性セパレータ(三菱化学ポリエステルフィルム製、商品名MRF50、厚み50μm、幅250mm)のシリコーン離型処理面に、上記粘着剤溶液を乾燥後の厚みが10umとなるようにコーティングし乾燥させた。斜め柱状構造体が形成された50μm厚のポリエステルフィルムの他面にラミネートし、親水性シートを作製した。
(評価)
 評価結果を表1に示す。また、得られた親水性シートの断面SEM写真を図7に示す。さらに、くもり防止性評価の写真図を図9に示す。
[実施例2]
 ライン速度を1.7m/minとした以外は実施例1と同様の方法にて蒸発源のSiOを蒸発させ、斜め柱状構造体を基材上に形成し、親水性シートを作製した。評価結果を表1に示す。また、得られた親水性シートの断面SEM写真を図8に示す。さらに、くもり防止性評価の写真図を図9に示す。
[実施例3]
 斜め柱状構造体の形成において、基材として4インチのシリコンウェハを用いた以外は、実施例1と同様の方法にて蒸発源のSiOを蒸発させ、斜め柱状構造体を基材上に形成し、親水性シートを作製した。評価結果を表1に示す。
[実施例4]
 斜め柱状構造体の形成において、基材として厚み2mmのPMMA(ポリメチルメタクリレート)樹脂を用いた以外は、実施例1と同様の方法にて蒸発源のSiOを蒸発させ、斜め柱状構造体を基材上に形成し、親水性シートを作製した。評価結果を表1に示す。
[比較例1]
 ライン速度を2.9m/minとした以外は実施例1と同様の方法にて蒸発源のSiOを蒸発させ、斜め柱状構造体を基材上に形成し、親水性シートを作製した。評価結果を表1に示す。また、くもり防止性評価の写真図を図9に示す。
[比較例2]
 ライン速度を4.3m/minとした以外は実施例1と同様の方法にて蒸発源のSiOを蒸発させ、斜め柱状構造体を基材上に形成し、親水性シートを作製した。評価結果を表1に示す。また、くもり防止性評価の写真図を図9に示す。
[比較例3]
 斜め柱状構造体を形成せず、片面粘着剤層からなるシートを作製した。評価結果を表1に示す。また、くもり防止性評価の写真図を図9に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の親水性シートまたは本発明の方法で得られる親水性部材は、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去できる汚れ防止シートや、水滴付着によるくもりを防ぐことができるくもり防止シートなどに適用できる。

Claims (13)

  1.  支持体の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下である、親水性シート。
  2.  前記支持体の片面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を備え、該集合層の表面の水接触角が10度以下であり、前記支持体のもう一方の片面に粘着剤層が形成されている、請求項1に記載の親水性シート。
  3.  前記集合層が汚れ防止層である、請求項1または2のいずれかに記載の親水性シート。
  4.  前記集合層がくもり防止層である、請求項1または2のいずれかに記載の親水性シート。
  5.  基材の表面を超親水化させる方法であって、
     斜め蒸着法によって、該基材の表面に該表面からの仰角が90度未満で突出した斜め柱状構造体の集合層を形成させる、
     基材表面の超親水化方法。
  6.  前記斜め蒸着法は、真空蒸着装置を用いる、請求項5に記載の基材表面の超親水化方法。
  7.  前記真空蒸着装置内の到達真空度が1×10-3torr以下である、請求項6に記載の基材表面の超親水化方法。
  8.  前記真空蒸着装置内における蒸着材料の蒸着が電子ビームによる加熱・気化によって行われる、請求項6または7に記載の基材表面の超親水化方法。
  9.  前記斜め蒸着法は、ロールで送り出される前記基材上に蒸着材料を蒸着させて行う、請求項5から8までのいずれかに記載の基材表面の超親水化方法。
  10.  前記斜め蒸着法は、蒸着源と前記基材との間に部分的な遮へい板を設けることによって該基材上に蒸着材料を斜め蒸着させる、請求項5から9までのいずれかに記載の基材表面の超親水化方法。
  11.  前記集合層の厚みが10nm以上である、請求項5から10までのいずれかに記載の基材表面の超親水化方法。
  12.  前記基材の表面の単位面積当たりの前記斜め柱状構造体の本数が、1×10本/cm以上である、請求項5から11までのいずれかに記載の基材表面の超親水化方法。
  13.  前記集合層の表面の水接触角が10度以下である、請求項5から12までのいずれかに記載の基材表面の超親水化方法。
PCT/JP2009/052483 2008-03-19 2009-02-16 親水性シートおよび基材表面の超親水化方法 WO2009116335A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801098428A CN102026802A (zh) 2008-03-19 2009-02-16 亲水性片材及基材表面的超亲水化方法
US12/933,329 US20110014432A1 (en) 2008-03-19 2009-02-16 Hydrophilic sheet and method of imparting ultrahigh hydrophilicity to surface of base material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008071397A JP5508686B2 (ja) 2008-03-19 2008-03-19 基材表面の超親水化方法
JP2008071396A JP5269448B2 (ja) 2008-03-19 2008-03-19 親水性シート
JP2008-071396 2008-03-19
JP2008-071397 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116335A1 true WO2009116335A1 (ja) 2009-09-24

Family

ID=41090743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052483 WO2009116335A1 (ja) 2008-03-19 2009-02-16 親水性シートおよび基材表面の超親水化方法

Country Status (4)

Country Link
US (1) US20110014432A1 (ja)
CN (1) CN102026802A (ja)
TW (1) TW200946349A (ja)
WO (1) WO2009116335A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141079A1 (en) * 2007-05-10 2008-11-20 Biocryst Pharmaceuticals, Inc. Tetrahydrofuro [3 4-d] dioxolane compounds for use in the treatment of viral infections and cancer
WO2009034827A1 (ja) * 2007-09-11 2009-03-19 Nitto Denko Corporation 粘着テープおよびその製造方法
KR101844956B1 (ko) * 2013-03-14 2018-04-03 한국과학기술연구원 친수성이 향상된 알루미늄 표면의 제조방법 및 친수성 알루미늄 표면체
US10293449B2 (en) 2013-05-17 2019-05-21 3M Innovative Properties Company Easy-clean surface and method of making the same
JP6234768B2 (ja) 2013-10-21 2017-11-22 日東電工株式会社 光導波路ならびに該光導波路を用いたsprセンサセルおよび比色センサセル
GB2525020A (en) * 2014-05-08 2015-10-14 Andrew Richard Parker Surface microstructures
CN108463745B (zh) * 2015-09-29 2019-12-06 富士胶片株式会社 亲水性多层膜及其制造方法和摄像系统
CN110475901B (zh) * 2017-03-15 2022-08-09 佳能奥普特龙株式会社 亲水性蒸镀膜以及蒸镀材料
FR3071909B1 (fr) * 2017-09-29 2019-10-18 Eurokera S.N.C. Plaque vitroceramique comprenant un cordon de retention des liquides.
CN107998908B (zh) * 2017-12-14 2021-04-13 北京林业大学 一种基于微纳基底的超亲水有机膜的制备方法
WO2019150394A1 (en) * 2018-02-02 2019-08-08 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) A modified surface for condensation
MX2020012010A (es) 2018-05-11 2021-01-29 Owens Corning Intellectual Capital Llc Lamina transpirable reforzada.
CN111940261B (zh) * 2020-07-21 2023-05-30 华帝股份有限公司 一种基材表面处理方法
US20230286713A1 (en) * 2022-03-14 2023-09-14 Semes Co., Ltd. Bowl, mehtod of manufacturing bowl, and apparatus for treating substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827561A (ja) * 1994-07-13 1996-01-30 Nitto Denko Corp 無機質微孔膜とその製法
JP2005274641A (ja) * 2004-03-23 2005-10-06 Sony Corp 液晶パネルの製造方法および液晶パネル
JP2007140326A (ja) * 2005-11-22 2007-06-07 Seiko Epson Corp 液晶表示パネルの製造方法
JP2008274409A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 防曇膜の形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206302C (zh) * 1999-03-09 2005-06-15 东陶机器株式会社 亲水性材料、制备它的方法以及用于制备它的涂料和装置
JP2003117479A (ja) * 2001-10-12 2003-04-22 Three M Innovative Properties Co 表面親水性シート
JP4118086B2 (ja) * 2002-05-31 2008-07-16 トヨタ自動車株式会社 親水性を有する防曇防汚性薄膜の製造方法
TWI427709B (zh) * 2003-05-05 2014-02-21 Nanosys Inc 用於增加表面面積之應用的奈米纖維表面
WO2006116424A2 (en) * 2005-04-26 2006-11-02 Nanosys, Inc. Paintable nanofiber coatings
US20100034335A1 (en) * 2006-12-19 2010-02-11 General Electric Company Articles having enhanced wettability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827561A (ja) * 1994-07-13 1996-01-30 Nitto Denko Corp 無機質微孔膜とその製法
JP2005274641A (ja) * 2004-03-23 2005-10-06 Sony Corp 液晶パネルの製造方法および液晶パネル
JP2007140326A (ja) * 2005-11-22 2007-06-07 Seiko Epson Corp 液晶表示パネルの製造方法
JP2008274409A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 防曇膜の形成方法

Also Published As

Publication number Publication date
CN102026802A (zh) 2011-04-20
TW200946349A (en) 2009-11-16
US20110014432A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
WO2009116335A1 (ja) 親水性シートおよび基材表面の超親水化方法
JP5269448B2 (ja) 親水性シート
JP5482656B2 (ja) 耐候性物品、耐候性フィルム及び光学部材
US9804305B2 (en) Methods for sealing the edges of multi-layer articles
JP2012223904A (ja) 粘着剤層付き透明樹脂フィルム、積層フィルムおよびタッチパネル
US20150010743A1 (en) Films including a copolymer, articles and methods
EP3741797A1 (en) Organic-inorganic hybrid membrane
JP5508686B2 (ja) 基材表面の超親水化方法
TW201706128A (zh) 透明導電性膜用載膜及積層體
EP3659803A1 (en) Transparent resin laminate
WO2019181216A1 (ja) 滑雪用フィルム又はシート
JP6584187B2 (ja) 積層体及びその製造方法
JP6584188B2 (ja) 積層体及びその製造方法
JP2006272757A (ja) 光触媒ハードコートフィルム
WO2010024143A1 (ja) 遮熱性物品、遮熱性物品の製造方法、及び建築部材
WO2023190740A1 (ja) 外貼り用ウィンドウフィルム
JP2019130889A (ja) 積層体および樹脂フィルム
WO2009147928A1 (ja) 遮熱樹脂フィルムおよびこれを貼り合わせた建築部材
JP5153271B2 (ja) 粘着テープ
EP3418342B1 (en) Pressure-sensitive adhesive and articles including same
WO2009148045A1 (ja) 遮熱樹脂基材またこれを用いた建築部材
JP6834866B2 (ja) フィルム積層体及びその製造方法
JP5048436B2 (ja) 粘着テープの製造方法
JP5116412B2 (ja) 基板処理装置のクリーニング方法
WO2022137832A1 (ja) 光学フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109842.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12933329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721675

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载