+

WO2009116162A1 - Process for manufacture of packaged micro moving element, and packaged micro moving element - Google Patents

Process for manufacture of packaged micro moving element, and packaged micro moving element Download PDF

Info

Publication number
WO2009116162A1
WO2009116162A1 PCT/JP2008/055242 JP2008055242W WO2009116162A1 WO 2009116162 A1 WO2009116162 A1 WO 2009116162A1 JP 2008055242 W JP2008055242 W JP 2008055242W WO 2009116162 A1 WO2009116162 A1 WO 2009116162A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging
wafer
micro movable
packaging member
movable element
Prior art date
Application number
PCT/JP2008/055242
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 中澤
広章 井上
寛 石川
隆史 勝木
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/055242 priority Critical patent/WO2009116162A1/en
Publication of WO2009116162A1 publication Critical patent/WO2009116162A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Definitions

  • the present invention relates to a method of manufacturing a micro movable element such as an acceleration sensor or an angular velocity sensor packaged with a movable part, and a packaged micro movable element.
  • Such an element includes a sensing device (an angular velocity sensor, an acceleration sensor, etc.) having a minute movable part or a swinging part.
  • a sensing device an angular velocity sensor, an acceleration sensor, etc.
  • Such sensing devices are used in, for example, digital camera, video camera, camera shake prevention function of camera-equipped mobile phone, and car navigation system, airbag opening timing system, attitude control system such as car and robot. Is done.
  • a sensing device with a micro structure includes, for example, a swingable movable part, a fixed part, a connecting part that connects the movable part and the fixed part, a drive electrode pair for driving the movable part, and a movable part
  • a detection electrode pair for detecting operation and displacement is provided, and a plurality of terminal portions for external connection.
  • packaging may be performed at the wafer level in the manufacturing process of the sensing device in order to avoid adhesion of foreign matter or dust to the electrode or damage to the electrode. Techniques related to packaging are described in, for example, the following Patent Documents 1 to 3.
  • Some packaged sensing devices include a plurality of conductive plugs that penetrate through a packaging member and are electrically connected to a plurality of terminal portions for external connection of the sensing device.
  • the sensing device is electrically connected to the outside through these conductive plugs.
  • a packaged sensing device including a conductive plug that penetrates the packaging member is not preferable in terms of reducing manufacturing costs.
  • the movable part of the sensing device is sealed.
  • a first packaging wafer including a plurality of packaging member forming sections for forming a first packaging member on one surface side of a device wafer including a plurality of device forming sections for forming a sensing device is provided.
  • a second packaging wafer including a plurality of packaging member forming sections for forming the second packaging member is bonded to the other surface side of the device wafer.
  • the part is sealed in a predetermined sealed space.
  • a device wafer and each packaging member are bonded by a so-called anodic bonding method.
  • Anodic bonding is a bonding technique in which a surface of a bonding target is heated to, for example, about 400 ° C., and a voltage of, for example, about 500 V is applied between the surfaces to be bonded to generate an electrostatic attractive force to form a covalent bond at the bonding interface.
  • a gas such as oxygen is inevitably generated at the bonded portion.
  • part of the gas generated during anodic bonding is enclosed in the sealed space.
  • due to the presence of the enclosed gas there may be a case where a sufficient degree of vacuum cannot be obtained in the sealed space.
  • the degree of vacuum in the sealed space is lower, the high-frequency vibration of the movable part is hindered and the sensitivity as a sensing device tends to decrease, which is not preferable from the viewpoint of improving the performance of the sensing device.
  • the present invention has been conceived under such circumstances, and includes a packaged micro movable device manufacturing method and a packaged micro movable device suitable for electrical connection by wire bonding and for high performance. provide.
  • a micro movable element having a movable part and a terminal part for external connection, and a first packaging having a through hole at a position corresponding to the terminal part and joined to the micro movable element.
  • a method is provided for manufacturing a packaged micro movable device comprising a member and a second packaging member joined to the micro movable device on the opposite side of the first packaging member. In this element, at least a part of the terminal portion faces the through hole.
  • the method includes a first bonding step, a second bonding step, a first packaging wafer processing step, and a cutting step.
  • the first surface side of a device wafer having a first surface and a second surface opposite to the first surface and including a plurality of micro movable element forming sections for forming micro movable elements
  • a first packaging wafer including a plurality of first packaging member formation sections for forming the first packaging member and having a resistivity of 100 ⁇ cm or more is bonded.
  • a second packaging wafer including a plurality of second packaging member forming sections for forming the second packaging member is bonded to the second surface side of the device wafer.
  • the first bonding step may be performed before the second bonding step, or the second bonding step may be performed before the first bonding step.
  • At least one of the first joining step and the second joining step is performed by a room temperature joining method.
  • packaging at the wafer level is achieved.
  • the first packaging wafer processing step a through hole is formed in each first packaging member forming section.
  • the cutting step the stacked structure including the device wafer, the first packaging wafer, and the second packaging wafer is cut. By passing through the cutting process, individual pieces in a state where each micro movable element is packaged are obtained.
  • the individual or packaged micro movable element has a structure in which at least a part of a terminal portion for external connection of the micro movable element is exposed outside the package.
  • the packaged micro movable element obtained by this method can be configured to be electrically connected to an external circuit or the like by wire bonding because at least a part of the terminal portion for external connection is exposed outside the package. Is possible.
  • the first packaging member since the first packaging member has a resistivity of 100 ⁇ cm or more, the wiring formed so as to pass through the through hole of the first packaging member by wire bonding and the first packaging member are movable. It is possible to sufficiently suppress the generation of stray capacitance due to capacitive coupling with the packaging member (if a significant stray capacitance is generated, the movable part can be driven at a minute signal level) Detection is hindered).
  • Such a packaged micro movable element need not be provided with a conductive plug for external connection penetrating the packaging member, and is preferable from the viewpoint of, for example, manufacturing cost reduction.
  • a packaged micro movable element suitable for electrical connection by wire bonding can be manufactured.
  • the room temperature bonding method is a method in which impurities on the surface to be bonded are removed by etching with an Ar beam or the like in a high vacuum to clean the bonding surface (with the dangling bonds of the constituent atoms exposed).
  • This is a bonding method in which gas is not generated during anodic bonding as in anodic bonding. The higher the degree of vacuum in the sealed space, the easier it is for the movable part to vibrate at high frequency, and the sensitivity as a sensing device tends to improve, which is preferable from the viewpoint of improving the performance of the sensing device.
  • the packaged micro movable device manufacturing method according to the first aspect of the present invention is suitable for electrical connection by wire bonding and also for high performance.
  • the packaged micro movable element manufacturing method can easily ensure the strength or ease of handling of the first packaging wafer before being bonded to the device wafer. This is because the first packaging wafer provided for the first bonding step in the present method has no opening that penetrates the wafer.
  • the through hole to be formed in the first packaging member to expose the terminal portion of the micro movable element to the outside of the package is formed after wafer level packaging is achieved (after both the first and second bonding steps are completed). ), Formed by processing the first packaging wafer which is in a state of being hardly damaged by being bonded to the device wafer (first packaging wafer processing step).
  • the first packaging wafer is thinned in each first packaging member forming section.
  • the thickness of the first packaging wafer (including a plurality of sections for forming the first packaging member in the manufactured packaged micro movable device) to be used in the first bonding step
  • the thickness of the first packaging member is not the same as the thickness of the first packaging member but is thicker than the first packaging member.
  • the first packaging member is derived from the first packaging wafer thus thinned.
  • the configuration in which the first packaging wafer is thinned in the first packaging wafer processing step ensures the packaged micro movable element while ensuring the strength or ease of handling of the first packaging wafer before being bonded to the device wafer. It is suitable for thinning.
  • a concave portion is formed at a through hole forming portion in each first packaging member forming section of the first packaging wafer.
  • the process of removing the resist pattern used for forming the concave portion using, for example, a stripping solution after the first bonding step can be avoided. It can be avoided that the stripping solution permeates into the joint portion and the joint portion is peeled off.
  • the first packaging member forming section includes a first region and a second region including the through hole forming portion and the periphery thereof, and the first packaging wafer processing step is performed with respect to the second region. It includes a first step of forming a through-hole while thinning the second region by performing an anisotropic etching process, and a second step of thinning the first region while further thinning the second region.
  • the first packaging wafer processing step in the first packaging wafer processing step, the first packaging wafer can be appropriately thinned, and a through hole or an opening that penetrates the first packaging wafer can be appropriately formed.
  • a recess that will be opposed to the movable portion of the micro movable element is formed in each first packaging member forming section of the first packaging wafer.
  • Such a configuration is suitable for avoiding that the movable portion that swings when the micro movable element is driven contacts the first packaging member.
  • a recess that will face the movable portion of the micro movable element is formed in each second packaging member forming section of the second packaging wafer.
  • Such a configuration is suitable for avoiding that the movable portion that swings when the micro movable element is driven contacts the second packaging member.
  • At least the opening end of the through hole is formed in a shape that widens as the distance from the micro movable element increases.
  • Such a configuration is suitable for wire bonding to a terminal portion exposed outside the package through the through hole of the first packaging member of the packaged micro movable element to be manufactured.
  • the device wafer and the first packaging wafer are bonded via an insulating film.
  • Such a configuration is suitable for electrically separating the device wafer and the first packaging wafer.
  • the device wafer and the second packaging wafer are bonded via an insulating film.
  • Such a configuration is suitable for electrically separating the device wafer and the second packaging wafer.
  • the device wafer has a laminated structure including a first layer having a first surface, a second layer having a second surface, and an intermediate layer between the first and second layers.
  • a bonding process is performed before the first bonding process, and a etching process is performed on the second layer using the mask pattern provided on the second surface of the device wafer as a mask before the second bonding process.
  • the first bonding step is performed before the second bonding step, and the first layer is etched using the mask pattern provided on the first surface of the device wafer as a mask before the first bonding step.
  • a micro movable element includes a micro movable device having a movable portion and a terminal portion, and a first packaging bonded to the micro movable device having a through hole at a position corresponding to the terminal portion and having a resistivity of 100 ⁇ cm or more. And a second packaging member joined to the micro movable element on a side opposite to the first packaging member, and at least one of the first and second packaging members and the micro movable element are joined at room temperature. ing.
  • Such a micro movable element can be appropriately manufactured by the packaged micro movable element manufacturing method according to the first aspect of the present invention.
  • the first packaging member includes a first portion and a second portion that is thinner than the first portion, including the through hole formation portion and the periphery thereof.
  • Such a configuration is suitable for wire bonding to the terminal portion exposed outside the package through the through hole of the first packaging member.
  • the first packaging member and the second packaging member have a recess at a location facing the movable portion of the micro movable element.
  • at least the open end of the through hole has a shape that widens as the distance from the micro movable element increases.
  • an insulating film is interposed between the micro movable element and the first packaging member and / or between the micro movable element and the second packaging member.
  • the present micro movable element preferably includes a fixed portion and a connecting portion for connecting the fixed portion and the movable portion in addition to the movable portion and the terminal portion, and the movable portion is swingable. More preferably, the micro movable element is a sensing device such as an angular velocity sensor or an acceleration sensor.
  • FIG. 1 is a partially omitted plan view of a packaged device according to the present invention.
  • FIG. 2 is another partially omitted plan view of the packaged device according to the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is an enlarged cross-sectional view when the packaged device according to the present invention is electrically connected to an external circuit.
  • FIG. 10 shows some steps in the first method for manufacturing a packaged device according to the present invention.
  • FIG. 11 shows a process following FIG.
  • FIG. 12 shows a process following FIG.
  • FIG. 13 shows a process subsequent to FIG.
  • FIG. 14 shows a step that follows
  • FIG. 15 shows a method for manufacturing one packaging wafer in the present invention. It represents the middle of forming an electrical connection by wire bonding.
  • FIG. 17 shows some steps in the second method for manufacturing the packaged device according to the present invention.
  • FIG. 18 shows a step that follows
  • FIG. 19 shows a step that follows
  • FIG. 20 shows a step that follows FIG.
  • FIG. 1 to 8 show a packaged device X according to the present invention.
  • FIG. 1 is a partially omitted plan view of the packaged device X
  • FIG. 2 is another partially omitted plan view of the packaged device X.
  • 3 to 8 are cross-sectional views taken along line III-III, line IV-IV, line VV, line VI-VI, line VII-VII, and line VIII-VIII in FIG. 1, respectively.
  • the packaged device X includes a sensing device Y, a packaging member 80 (omitted in FIG. 1), and a packaging member 90 (omitted in FIG. 2).
  • the sensing device Y includes a land portion 10, an inner frame 20, an outer frame 30, a pair of connecting portions 40, a pair of connecting portions 50, a detection electrode 61 (not shown in FIG. 1), and a detection electrode 62A. , 62B (not shown in FIG. 2) and driving electrodes 71A, 71B, 72A, 72B, and configured as an angular velocity sensor.
  • the sensing device Y is manufactured by processing a wafer which is a so-called SOI (silicon on insulator) substrate by a bulk micromachining technology such as a MEMS technology.
  • FIG. 1 is a plan view of the packaged device X as viewed from the side of the packaging member 80 (not shown in FIG. 1). In FIG. 1, a portion that originates from the first silicon layer and protrudes from the insulating layer toward the front side of the drawing. Is represented by hatching.
  • FIG. 2 is a plan view of the packaged device X as viewed from the side of the packaging member 90 (not shown in FIG. 2). In FIG. 2, a portion that originates from the second silicon layer and protrudes from the insulating layer toward the front side of the drawing. Is represented by hatching.
  • the land part 10 is a part derived from the first silicon layer. As shown in FIGS. 3 and 5, a conductive plug 11 is embedded in the land portion 10.
  • the inner frame 20 includes a first layer portion 21 derived from the first silicon layer, a second layer portion 22 derived from the second silicon layer, and an insulating layer 23 therebetween. It has the laminated structure which becomes.
  • the first layer portion 21 includes portions 21a, 21b, 21c, 21d, 21e, and 21f. The portions 21a to 21f are separated from each other via a gap.
  • the outer frame 30 includes a first layer portion 31 derived from the first silicon layer, a second layer portion 32 derived from the second silicon layer, and an insulating layer therebetween. 33.
  • the first layer portion 31 includes portions 31a, 31b, 31c, 31d, 31e, 31f, 31g, and 31h.
  • the portions 31a to 31h are separated from the surroundings through a gap, and constitute a terminal portion for external connection in the sensing device Y.
  • the pair of connecting portions 40 are portions for connecting the land portion 10 and the inner frame 20 and are derived from the first silicon layer.
  • Each connecting portion 40 includes two torsion bars 41. As shown in FIG. 1, each torsion bar 41 of one connecting portion 40 is connected to the land portion 10 and to the portion 21a of the first layer portion 21 of the inner frame 20, and the land portion 10 and the portion 21a are electrically connected. Connect.
  • Each torsion bar 41 of the other connecting portion 40 is connected to the land portion 10 and connected to the portion 21d of the first layer portion 21 of the inner frame 20 to electrically connect the land portion 10 and the portion 21d.
  • Such a pair of connecting portions 40 defines an axis A ⁇ b> 1 of the swinging motion of the land portion 10.
  • Each connecting portion 40 including two torsion bars 41 whose intervals gradually increase from the inner frame 20 side to the land portion 10 side is suitable for suppressing generation of unnecessary displacement components in the swinging operation of the land portion 10. It is.
  • the pair of connecting portions 50 are portions for connecting the inner frame 20 and the outer frame 30 and are derived from the first silicon layer.
  • Each connecting portion 50 includes three torsion bars 51, 52, and 53.
  • the torsion bar 51 in one connecting portion 50 is connected to the portion 21 a of the first layer portion 21 of the inner frame 20 and to the portion 31 a of the first layer portion 31 of the outer frame 30.
  • the portions 21a and 31a are electrically connected, and the torsion bar 52 is connected to the portion 21b of the first layer portion 21 of the inner frame 20 and connected to the portion 31b of the first layer portion 31 of the outer frame 30 to be the portion 21b.
  • the torsion bar 53 is connected to the portion 21c of the first layer portion 21 of the inner frame 20 and is connected to the portion 31c of the first layer portion 31 of the outer frame 30 to the portions 21c, 31c.
  • the torsion bar 51 in the other connecting portion 50 is connected to the portion 21d of the first layer portion 21 of the inner frame 20 and connected to the portion 31d of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21d and 31d.
  • the torsion bar 52 is connected to the portion 21e of the first layer portion 21 of the inner frame 20 and is connected to the portion 31e of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21e and 31e.
  • the torsion bar 53 is connected to the portion 21 f of the first layer portion 21 of the inner frame 20 and is connected to the portion 31 f of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21 f and 31 f.
  • Such a pair of connecting portions 50 defines an axis A ⁇ b> 2 of the swinging motion of the inner frame 20.
  • Each connecting portion 50 including two torsion bars 51 and 53 whose intervals gradually increase from the outer frame 30 side to the inner frame 20 side suppress the generation of unnecessary displacement components in the swinging operation of the inner frame 20. It is suitable for.
  • the detection electrode 61 is a part derived from the second silicon layer. As shown in FIGS. 3 and 5, the detection electrode 61 is joined to the land portion 10 via the insulating layer 12 derived from the above insulating layer, and penetrates the land portion 10 and the insulating layer 12. The detection electrode 61 and the land portion 10 are electrically connected via the conductive plug 11.
  • the detection electrode 62A is a part derived from the first silicon layer. As shown in FIG. 5, the detection electrode 62 ⁇ / b> A extends from the portion 21 b of the first layer portion 21 of the inner frame 20 to the land portion 10 side and has a portion facing the detection electrode 61.
  • the detection electrode 62A has a plurality of openings.
  • the detection electrode 62B is a part derived from the first silicon layer. As shown in FIG. 5, the detection electrode 62 ⁇ / b> B extends from the portion 21 e of the first layer portion 21 of the inner frame 20 toward the land portion 10 and has a portion facing the detection electrode 61.
  • the detection electrode 62B has a plurality of openings.
  • the driving electrode 71A is a comb-shaped electrode derived from the first silicon layer, and includes a plurality of electrode teeth 71a extending from the portion 21c in the inner frame 20, as shown in FIG.
  • the plurality of electrode teeth 71a are parallel to each other, for example, as shown in FIGS.
  • Such a driving electrode 71A is thinner than the first layer portion 21 of the inner frame 20 in the element thickness direction.
  • the driving electrode 71B is a comb-shaped electrode derived from the first silicon layer, and includes a plurality of electrode teeth 71b extending from the portion 21f of the inner frame 20.
  • the plurality of electrode teeth 71b are parallel to each other.
  • Such a driving electrode 71B is thinner than the first layer portion 21 of the inner frame 20 in the element thickness direction.
  • the driving electrode 72A is a comb-shaped electrode derived from the first silicon layer, and is arranged to face the driving electrode 71A and includes a plurality of electrode teeth 72a extending from the portion 31g in the outer frame 30.
  • the plurality of electrode teeth 72a are parallel to each other as shown in FIGS. 1 and 6, for example, and are also parallel to the electrode teeth 71a of the drive electrode 71A described above.
  • Such a drive electrode 72A is thicker than the drive electrode 71A in the element thickness direction.
  • the driving electrode 72B is a comb-shaped electrode derived from the first silicon layer, and is arranged to face the driving electrode 71B and includes a plurality of electrode teeth 72b extending from the portion 31h in the outer frame 30.
  • the plurality of electrode teeth 72b are parallel to each other, and are also parallel to the electrode teeth 71b of the drive electrode 71B described above.
  • Such a driving electrode 72B is thicker than the driving electrode 71B in the element thickness direction.
  • the packaging member 80 is joined to the first layer portion 31 side of the outer frame 30 of the sensing device Y, and has a recess 80a at a location corresponding to the movable portion of the sensing device Y. Further, for example, as shown in FIG. 3 and FIG. 5, the packaging member 80 has a first part 81 and a second part 82 thinner than the first part 81, and the second part 82 has a through hole 82 a. Is formed.
  • the thickness of the first portion 81 is, for example, 50 to 200 ⁇ m.
  • the thickness of the second portion 82 is, for example, 20 to 100 ⁇ m as long as it is smaller than the thickness of the first portion 81.
  • the diameter of the through hole 82a is, for example, 20 to 100 ⁇ m.
  • each of the portions 31a to 31h which are external connection terminal portions in the sensing device Y, partially faces the through hole 82a. That is, the portions 31a to 31h serving as the terminal portions are all exposed to the outside of the package through the through holes 82a.
  • a packaging member 80 is made of a high resistance silicon material of 100 ⁇ cm or more.
  • the packaging member 90 is joined to the second layer portion 32 side of the outer frame 30 of the sensing device Y, and has a recess 90a at a location corresponding to the movable portion of the sensing device Y.
  • the packaging member 90 is made of, for example, a glass material.
  • At least one of the packaging members 80 and 90 is bonded to the sensing device Y by a room temperature bonding method.
  • the sensing device Y is sealed by the packaging members 80 and 90. That is, a sealed space S that encloses the movable portion (land portion 10, inner frame 20, detection electrodes 61, 62A, 62B) of sensing device Y is formed in the package.
  • the packaged device X having the above configuration can be connected to an external circuit by wire bonding.
  • each terminal portion (portions 31a to 31h) exposed in each through hole 82a of the packaging member 80 and a predetermined terminal portion of the external circuit It can be electrically connected via a wiring W formed by wire bonding.
  • the movable part (land part 10, inner frame 20, detection electrodes 61, 62A, 62B) is swung around the axis A2 at a predetermined frequency or cycle.
  • This swinging operation is realized by alternately repeating voltage application between the drive electrodes 71A and 72A and voltage application between the drive electrodes 71B and 72B.
  • application of a potential to the driving electrode 71A can be realized via the portion 31c in the outer frame 30, the torsion bar 53 of one connecting portion 50, and the portion 21c in the inner frame 20.
  • the application of a potential to the driving electrode 71B can be realized through the portion 31f in the outer frame 30, the torsion bar 53 of the other connecting portion 50, and the portion 21f in the inner frame 20.
  • the application of the potential to the driving electrode 72A can be realized through the portion 31g in the outer frame 30.
  • the application of the potential to the driving electrode 72B can be realized through the portion 31h in the outer frame 30.
  • the drive electrodes 71A and 71B are connected to the ground, and then the application of the predetermined potential to the drive electrode 72A and the application of the predetermined potential to the drive electrode 72B are alternately repeated.
  • the part can be swung. For example, as shown in FIG. 3, since the recesses 80 a and 90 a are provided in the packaging members 80 and 90, the movable portion does not contact the packaging members 80 and 90 during the swinging operation.
  • the land part 10 includes the detection electrode 61 and the axis A1.
  • the displacement of the detection electrodes 61 and 62A is changed by a predetermined amount of rotation, the capacitance between the detection electrodes 61 and 62A is changed, and the relative arrangement of the detection electrodes 61 and 62B is changed. Changes to change the capacitance between the detection electrodes 61 and 62B. Based on these capacitance changes (for example, based on the difference between the two capacitances), the rotational displacement amount of the land portion 10 and the detection electrode 61 can be detected.
  • the packaged device X including such a sensing device Y is, for example, a digital camera, a video camera, a camera shake prevention function for a camera-equipped mobile phone, and a posture of a car navigation system, an airbag opening timing system, a car, a robot, or the like. It can be used for control system applications.
  • 10 to 14 show a first method for manufacturing the packaged device X by the micromachining technology. 10 to 13 show changes in cross section corresponding to FIG. 5 included in a single device formation section. FIG. 14 represents a partial cross section across multiple device forming sections.
  • the device wafer 100 is an SOI wafer having a laminated structure including silicon layers 101 and 102 and an insulating layer 103 between the silicon layers 101 and 102, and a plurality of devices on which a sensing device Y is formed. Includes forming compartment.
  • the silicon layer 101 has a first surface 101 'and the silicon layer 102 has a second surface 102'.
  • the silicon layers 101 and 102 are made of a silicon material imparted with conductivity by doping impurities.
  • impurities p-type impurities such as B and n-type impurities such as P and Sb can be employed.
  • the insulating layer 103 is made of, for example, silicon oxide.
  • the thickness of the silicon layer 101 is, for example, 10 to 100 ⁇ m
  • the thickness of the silicon layer 102 is, for example, 100 to 500 ⁇ m
  • the thickness of the insulating layer 103 is, for example, 1 to 2 ⁇ m.
  • a through hole 101a penetrating the silicon layer 101 and the insulating layer 103 is formed.
  • the insulating layer is formed by DRIE (Deep Reactive Ion Etching) using the resist pattern as a mask.
  • DRIE Deep Reactive Ion Etching
  • An anisotropic dry etching process is performed on the silicon layer 101 until 103 is partially exposed.
  • good anisotropic dry etching can be performed in a Bosch process in which etching and sidewall protection are alternately performed. Such a Bosch process can be adopted for this step and the subsequent DRIE.
  • the exposed portion of the insulating layer 103 is removed by another etching method (for example, wet etching using buffered hydrofluoric acid [BHF] made of hydrofluoric acid and ammonium fluoride). In this way, the through hole 101a can be formed.
  • BHF buffered hydrofluoric acid
  • the conductive plug 11 is formed. Specifically, the conductive plug 11 can be formed by filling the through hole 101a with a conductive material.
  • an oxide film pattern 104 is formed on the silicon layer 101, and an oxide film pattern 105 is formed on the silicon layer 102.
  • a resist pattern (not shown) is also formed on the silicon layer 101.
  • the resist pattern outside this figure has a pattern shape corresponding to the driving electrode 71A (electrode tooth 71a) and the driving electrode 71B (electrode tooth 71b) to be formed in the silicon layer 101.
  • the oxide film pattern 104 has a pattern shape corresponding to a portion other than the driving electrodes 71A and 71B to be formed in the silicon layer 101.
  • the oxide film pattern 105 has a pattern shape corresponding to a portion to be formed in the silicon layer 102.
  • the oxide film pattern 104 In forming the oxide film pattern 104, first, for example, a silicon oxide film is formed on the surface of the silicon layer 101 by a CVD method until the thickness becomes, for example, 1 ⁇ m. Next, the oxide film on the silicon layer 101 is patterned by etching using a predetermined resist pattern as a mask. The oxide film pattern 105 can also be formed on the silicon layer 102 through formation of an oxide material, formation of a resist pattern on the oxide film, and subsequent etching treatment. On the other hand, in forming a resist pattern (not shown), first, a predetermined liquid photoresist is formed on the silicon layer 101 by spin coating. Next, the photoresist film is patterned through an exposure process and a subsequent development process.
  • the silicon layer 102 is etched by DRIE using the oxide film pattern 105 as a mask.
  • a part of the inner frame 20 to be formed in the silicon layer 102, a part of the outer frame 30, and the detection electrode 61 are formed.
  • the oxide film pattern 105 is removed by etching.
  • etching method dry etching or wet etching can be employed.
  • dry etching for example, HF gas can be employed as the etching gas.
  • wet etching for example, BHF can be used as the etchant.
  • the packaging wafer 205 is bonded to the second surface 102 'side of the device wafer 100 (second bonding step in the present invention).
  • the packaging wafer 205 includes a plurality of packaging member forming sections in which the packaging member 90 is formed, and has a recess 90a in each section (the recess 90a is, for example, an unprocessed packaging wafer).
  • the recess 90a is, for example, an unprocessed packaging wafer.
  • it can be formed by etching the packaging wafer 205 using the oxide film pattern as a mask.
  • a bonding technique in this step a room temperature bonding method or an anodic bonding method can be employed.
  • the oxide film pattern 104 and the resist pattern not shown above are used as a mask, and the depth in the middle of the thickness direction of the silicon layer 101 of the device wafer 100 is obtained by DRIE. Until then, the silicon layer 101 is etched. The depth substantially corresponds to the height of the drive electrodes 71A and 71B.
  • the silicon layer 101 is etched by DRIE using the oxide film pattern 104 as a mask as shown in FIG.
  • the land portion 10 to be formed in the silicon layer 101, a part of the inner frame 20, a part of the outer frame 30, the connecting portions 40 and 50, the detection electrodes 62A and 62B, and the driving electrode 71A, 71B, 72A and 72B are formed.
  • the exposed portions of the insulating layer 103 and the oxide film pattern 104 are removed by etching.
  • the packaging wafer 201 is bonded to the first surface 101 'side of the device wafer 100 (first bonding step in the present invention).
  • the packaging wafer 201 includes a plurality of packaging member forming sections in which the packaging member 80 is formed, and has a recess 80a for each section.
  • a room temperature bonding method is employed as a bonding method in this step.
  • the room temperature bonding method is a method in which impurities on the surface to be bonded are removed by etching with an Ar beam or the like in a high vacuum to clean the bonding surface (with the dangling bonds of the constituent atoms exposed). This is a bonding method in which gas is not generated during anodic bonding as in anodic bonding.
  • FIG. 15 shows a method for manufacturing the packaging wafer 201 as a change in cross section corresponding to the cross section of the packaging wafer 201 shown in FIG.
  • oxide film patterns 202 and 203 are formed on the wafer 201 '.
  • the wafer 201 ′ is a silicon wafer and is made of a silicon material having a high resistivity of 100 ⁇ cm or more.
  • the thickness of the wafer 201 ' is, for example, 200 to 500 ⁇ m.
  • the oxide film patterns 202 and 203 are made of, for example, silicon oxide.
  • the thicknesses of the oxide film patterns 202 and 203 are, for example, 0.1 to 2 ⁇ m.
  • Such oxide film patterns 202 and 203 can be formed, for example, by forming an oxide film on the surface of the wafer 201 'by a thermal oxidation method and then patterning the oxide film.
  • a recess 80a is formed in the wafer 201 '.
  • the recesses 80a can be formed by performing a dry etching process on the wafer 201 '.
  • a resist pattern 204 is formed on the wafer 201 ′ so as to cover the oxide film pattern 202.
  • the resist pattern 204 has an opening 204a.
  • a recess 82a ' is formed. Specifically, using the resist pattern 204 as a mask, the wafer 201 ′ is etched to a depth in the middle of the wafer 201 ′ by DRIE. Thereafter, the resist pattern 204 is removed using, for example, a stripping solution.
  • the bonding step shown in FIG. 12B the first surface 101 ′ of the silicon layer 101 of the device wafer 100, while aligning the packaging wafer 201 manufactured as described above and the device wafer 100, The oxide film pattern 203 (insulating film) on the packaging wafer 201 is bonded.
  • the recesses 82a ′ already formed on the packaging wafer 201 and the terminal portions (portions 31a to 31h) already formed on the device wafer 100 are aligned. .
  • this joining process is performed by the normal temperature joining method. Through this step, the inside of the package is substantially vacuum-sealed, and packaging at the wafer level is achieved (sealed space S is formed).
  • the packaging wafer 205 is thinned by, for example, performing DRIE or polishing treatment.
  • the packaging wafer 201 using the oxide film pattern 202 as a mask, the packaging wafer 201 to the depth in the middle of the thickness direction of the packaging wafer 201 to the wafer 201 ′ by DRIE. Etching is performed on the wafer 201 ′ (start of the first packaging wafer processing step in the present invention). As a result, a region of the wafer 201 ′ that is not covered with the oxide film pattern 202 is thinned. At this time, the recess 82 a ′ extends downward in the drawing within the packaging wafer 201. Thereafter, the oxide film pattern 202 is removed.
  • the packaging wafer 201 or the wafer 201 ' is etched by DRIE.
  • the region covered with the oxide film pattern 202 on the wafer 201 ′ is thinned, and the region not covered with the oxide film pattern 202 on the wafer 201 ′ is further thinned.
  • a first portion 81 and a thin second portion 82 at 80 are formed. Further, the recess 82 a ′ penetrates the wafer 201 ′ and reaches the oxide film pattern 203.
  • the portion of the oxide film pattern 203 that faces the recess 82a ' is removed by etching.
  • the through hole 82a in each packaging member 80 is formed (end of the first packaging wafer processing step in the present invention).
  • the laminated structure including the device wafer 100 and the packaging wafers 201 and 205 is cut (cutting process in the present invention).
  • the packaged device X according to the present invention can be manufactured.
  • the movable part (land part 10, inner frame 20, detection due to adhesion or damage of each part of the sensing device Y as a micro movable element)
  • the deterioration of the operation performance of the electrodes 61, 62A, 62B) can be suppressed.
  • part of the external connection terminal portions are exposed outside the package, and are electrically connected to an external circuit or the like by wire bonding. It is possible to connect (the part 31g is shown in FIG. 9).
  • the packaging member 80 since the packaging member 80 has a resistivity of 100 ⁇ cm or more, the wiring W formed so as to pass through the through hole 82a of the packaging member 80 by wire bonding and the packaging member 80. It is possible to sufficiently suppress stray capacitance from being capacitively coupled with each other (if significant stray capacitance occurs, driving and detection at a small signal level in the movable part is hindered.
  • the packaged device X is suitable for electrical connection by wire bonding.
  • the bonding step (first bonding step performed after the second bonding step) described above with reference to FIG. 12B for realizing the wafer level package is performed at least by the room temperature bonding method.
  • the room temperature bonding method is a bonding method in which no gas is generated during anodic bonding as in anodic bonding. Therefore, this method is suitable for achieving a high degree of vacuum in the sealed space S formed in the package and enclosing the movable part (land part 10, inner frame 20, detection electrodes 61, 62A, 62B). is there.
  • This method makes it easy to ensure the strength or ease of handling of the packaging wafer 201 before being bonded to the device wafer 100. This is because the opening portion penetrating the wafer 201 is not formed in the packaging wafer 201 used in the bonding step (first bonding step) described above with reference to FIG.
  • the through hole 82a to be formed in the packaging member 80 to expose the terminal portions (portions 31a to 31h) of the sensing device Y to the outside of the package is formed after the wafer level packaging is achieved (first and second bonding).
  • the packaging wafer 201 is bonded to the device wafer 100 and is less likely to be damaged. Then, the packaging wafer 201 is processed (first packaging wafer processing process).
  • the packaged device X is appropriately thinned.
  • a packaging wafer 201 (including a plurality of sections for forming the packaging member 80 in the manufactured packaged device X to be manufactured) used in the bonding process (first bonding process) described above with reference to FIG. ) Is not the same as the thickness of the packaging member 80, and the packaging wafer 201 thicker than the packaging member 80 is used for the first bonding step.
  • the packaging wafer 201 that is bonded to the device wafer 100 and is less likely to be damaged is processed.
  • the packaging wafer 201 is thinned to a desired degree (first packaging wafer processing step).
  • the packaging member 80 is derived from the thinned packaging wafer 201 in this way. Also, a plurality of sections for forming the packaging wafer 205 (the packaging member 90 in the packaged device X to be manufactured) used in the bonding process (second bonding process) described above with reference to FIG. Is not the same as the thickness of the packaging member 90, and the packaging wafer 205 thicker than the packaging member 90 is subjected to the second bonding step. Then, after wafer level packaging is achieved, the packaging wafer 205 is bonded to the device wafer 100 and is less likely to be damaged. Is thinned. The packaging member 90 comes from the packaging wafer 205 thinned in this way. Therefore, this method is suitable for reducing the thickness of the packaged device X while ensuring the strength or ease of handling of the packaging wafers 201 and 205 before being bonded to the device wafer 100.
  • the through hole 82a is provided in the second portion 82 that is thinner than the first portion 81. This is suitable for wire bonding to the terminal portions (portions 31a to 31h) partially exposed in the hole 82a. For example, as shown in FIG. 16, this contributes to avoiding the capillary C of the wire bonder WB from abutting against the packaging member 80 of the packaged device X during wire bonding.
  • the packaging member 80 is bonded to the sensing device Y through the oxide film pattern 203 (insulating film).
  • the sensing device Y and the packaging member 80 are electrically separated by the oxide film pattern 203, so that it is possible to prevent each part of the sensing device Y from being illegally electrically connected via the packaging member 80. .
  • the packaging member 90 made of, for example, a silicon material
  • the sensing device Y and the packaging member 90 may be joined via an insulating film such as an oxide film. In this case, it is avoided that the sensing device Y and the packaging member 90 are electrically separated by the insulating film, and that each part of the sensing device Y is illegally electrically connected via the packaging member 90. Can do.
  • each through hole 82a of the packaging member 80 in the packaged device X may have a shape that widens as the distance from the sensing device Y increases, for example, as shown in FIG.
  • Such a through hole 82a can be formed by appropriately adjusting the etching conditions in the process described above with reference to FIG. 13B and inclining the inner wall surface of the through hole 82a to a predetermined degree. it can. In such a configuration, for example, as shown in FIG. 16, it is easy to wire bond to the terminal portions (portions 31a to 31h) that are partially exposed in the respective through holes 82a.
  • FIGS. 17 to 20 show a part of the second method for manufacturing the packaged device X by the micromachining technology. 17 to 20 show changes in cross section corresponding to FIG. 5 included in a single device formation section.
  • the device wafer 100 is an SOI wafer having a laminated structure including silicon layers 101 and 102 and an insulating layer 103 between the silicon layers 101 and 102, and a plurality of devices on which a sensing device Y is formed. Includes forming compartment.
  • a through hole 101a penetrating the silicon layer 101 and the insulating layer 103 is formed.
  • the conductive plug 11 is formed.
  • an oxide film pattern 104 is formed on the silicon layer 101, and an oxide film pattern 105 is formed on the silicon layer 102.
  • a resist pattern (not shown) is also formed on the silicon layer 101.
  • the steps shown in FIGS. 17A to 17D are specifically the same as the steps described above with reference to the first method with reference to FIGS. 10A to 10D.
  • the silicon layer 101 is formed to a depth in the thickness direction of the silicon layer 101 by DRIE. Etching is performed on the surface. The depth substantially corresponds to the height of the drive electrodes 71A and 71B.
  • the silicon layer 101 is etched by DRIE using the oxide film pattern 104 as a mask.
  • the land portion 10 to be formed in the silicon layer 101, a part of the inner frame 20, a part of the outer frame 30, the connecting portions 40 and 50, the detection electrodes 62A and 62B, and the driving electrode 71A, 71B, 72A and 72B are formed.
  • the oxide film pattern 104 is removed.
  • the packaging wafer 201 is bonded to the first surface 101 'side of the device wafer 100 (first bonding step in the present invention).
  • the packaging wafer 201 includes a plurality of packaging member forming sections in which the packaging member 80 is formed, and has a recess 80a for each section.
  • the packaging wafer 201 can be manufactured as described above with reference to FIG. In this step, while aligning the packaging wafer 201 and the device wafer 100, the first surface 101 ′ of the silicon layer 101 of the device wafer 100 and the oxide film pattern 203 (insulating film) on the packaging wafer 201 Join.
  • the recesses 82a ′ already formed on the packaging wafer 201 and the terminal portions (portions 31a to 31h) already formed on the device wafer 100 are aligned.
  • a bonding technique in this step a room temperature bonding method or an anodic bonding method can be employed.
  • the silicon layer 102 is etched by DRIE using the oxide film pattern 105 as a mask.
  • a part of the inner frame 20 to be formed in the silicon layer 102, a part of the outer frame 30, and the detection electrode 61 are formed.
  • the exposed portions of the insulating layer 103 and the oxide film pattern 105 are removed by etching.
  • etching method dry etching or wet etching can be employed.
  • the packaging wafer 205 is bonded to the second surface 102 'side of the device wafer 100 (second bonding step in the present invention).
  • the packaging wafer 205 includes a plurality of packaging member forming sections in which the packaging member 90 is formed, and has a recess 90a for each section. Moreover, this joining process is performed by the normal temperature joining method. Through this step, the inside of the package is substantially vacuum-sealed, and packaging at the wafer level is achieved (sealed space S is formed).
  • the packaging wafer 205 is thinned by, for example, performing DRIE or polishing treatment.
  • Etching is performed on the wafer 201 ′ (start of the first packaging wafer processing step in the present invention).
  • a region of the wafer 201 ′ that is not covered with the oxide film pattern 202 is thinned.
  • the recess 82 a ′ extends downward in the drawing within the packaging wafer 201.
  • the oxide film pattern 202 is removed.
  • the packaging wafer 201 or the wafer 201 ' is etched by DRIE.
  • the region covered with the oxide film pattern 202 on the wafer 201 ′ is thinned, and the region not covered with the oxide film pattern 202 on the wafer 201 ′ is further thinned.
  • a first portion 81 and a thin second portion 82 at 80 are formed. Further, the recess 82 a ′ penetrates the wafer 201 ′ and reaches the oxide film pattern 203.
  • the portion of the oxide film pattern 203 facing the recess 82a ' is removed by etching (end of the first packaging wafer processing step in the present invention).
  • the through hole 82a in each packaging member 80 is formed.
  • the stacked structure including the device wafer 100 and the packaging wafers 201 and 205 is cut in the same manner as described above with respect to the first method ( Cutting step in the present invention).
  • the packaged device X according to the present invention can also be manufactured by the method as described above.
  • the movable part (land part 10, inner frame 20, detection due to adhesion or damage of each part of the sensing device Y as a micro movable element)
  • the deterioration of the operation performance of the electrodes 61, 62A, 62B) can be suppressed.
  • a packaged device X suitable for electrical connection by wire bonding can be manufactured as in the first method described above.
  • the bonding step described above with reference to FIG. 19B (second bonding step performed after the first bonding step) for realizing a wafer level package is performed at least by a room temperature bonding method.
  • the room temperature bonding method is a bonding method in which gas is not generated during anodic bonding at the time of bonding. Therefore, the present method is formed in a package to form a movable portion (land portion 10, inner frame 20, detection electrode 61, 62A, 62B) is suitable for achieving a high degree of vacuum in the enclosed space S that encloses.
  • This method makes it easy to ensure the strength or ease of handling of the packaging wafer 201 before being bonded to the device wafer 100.
  • the packaging wafer 201 used in the bonding process (first bonding process) described above with reference to FIG. 18C does not have an opening penetrating the wafer 201.
  • the through hole 82a to be formed in the packaging member 80 to expose the terminal portions (portions 31a to 31h) of the sensing device Y to the outside of the package is formed after the wafer level packaging is achieved (first and second bonding).
  • the packaging wafer 201 is bonded to the device wafer 100 and is less likely to be damaged.
  • the packaging wafer 201 is processed (first packaging wafer processing process).
  • the packaged device X is appropriately thinned.
  • a packaging wafer 201 (including a plurality of sections for forming the packaging member 80 in the manufactured packaged device X to be manufactured) provided for the bonding process (first bonding process) described above with reference to FIG. ) Is not the same as the thickness of the packaging member 80, and the packaging wafer 201 thicker than the packaging member 80 is used for the first bonding step.
  • the packaging wafer 201 that is bonded to the device wafer 100 and is less likely to be damaged is processed.
  • the packaging wafer 201 is thinned to a desired degree (first packaging wafer processing step).
  • the packaging member 80 is derived from the thinned packaging wafer 201 in this way.
  • the packaging wafer 205 (a plurality of sections for forming the packaging member 90 in the manufactured packaged device X to be manufactured) used in the bonding process (second bonding process) described above with reference to FIG. Is not the same as the thickness of the packaging member 90, and the packaging wafer 205 thicker than the packaging member 90 is subjected to the second bonding step.
  • the packaging wafer 205 is bonded to the device wafer 100 and is less likely to be damaged. Is thinned.
  • the packaging member 90 comes from the packaging wafer 205 thinned in this way. Therefore, this method is suitable for reducing the thickness of the packaged device X while ensuring the strength or ease of handling of the packaging wafers 201 and 205 before being bonded to the device wafer 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

Disclosed is a micro moving element (X). The micro moving element (X) is produced by a process comprising: a first bonding step for bonding a first packaging wafer to a first surface of a device wafer; a second bonding step for bonding a second packaging wafer to a second surface of the device wafer; and a step for forming a through-hole (82a) in a first packaging member-formed area. At least one of the first and second bonding steps which is to be carried out later is achieved by a room-temperature bonding method.

Description

パッケージドマイクロ可動素子製造方法およびパッケージドマイクロ可動素子Packaged micro movable element manufacturing method and packaged micro movable element
 本発明は、可動部を有してパッケージングされた、加速度センサや角速度センサなどのマイクロ可動素子の製造方法、および、パッケージングされたマイクロ可動素子に関する。 The present invention relates to a method of manufacturing a micro movable element such as an acceleration sensor or an angular velocity sensor packaged with a movable part, and a packaged micro movable element.
 近年、様々な技術分野において、マイクロマシニング技術により形成される微小構造を有する素子の応用化が図られている。そのような素子には、微小な可動部ないし揺動部を有するセンシングデバイス(角速度センサ,加速度センサ等)が含まれる。そのようなセンシングデバイスは、例えば、デジタルカメラや、ビデオカメラ、カメラ付き携帯電話の手振れ防止機能、および、カーナビゲーションシステム、エアバッグ開放タイミングシステム、車やロボット等の姿勢制御システムの用途で、利用される。 In recent years, in various technical fields, devices having micro structures formed by micromachining technology have been applied. Such an element includes a sensing device (an angular velocity sensor, an acceleration sensor, etc.) having a minute movable part or a swinging part. Such sensing devices are used in, for example, digital camera, video camera, camera shake prevention function of camera-equipped mobile phone, and car navigation system, airbag opening timing system, attitude control system such as car and robot. Is done.
 微小構造のセンシングデバイスは、例えば、揺動可能な可動部と、固定部と、当該可動部および固定部を連結する連結部と、可動部を駆動するための駆動用電極対と、可動部の動作や変位量を検出するための検出用電極対と、外部接続用の複数の端子部とを備える。このようなセンシングデバイスでは、電極への異物ないしゴミの付着や電極の損傷が、動作性能の悪化の要因となり得る。そのため、電極への異物ないしゴミの付着や電極の損傷を回避すべく、センシングデバイスの製造過程において、ウエハレベルでパッケージングが行われる場合がある。パッケージングに関する技術については、例えば下記の特許文献1~3に記載されている。 A sensing device with a micro structure includes, for example, a swingable movable part, a fixed part, a connecting part that connects the movable part and the fixed part, a drive electrode pair for driving the movable part, and a movable part A detection electrode pair for detecting operation and displacement is provided, and a plurality of terminal portions for external connection. In such a sensing device, adhesion of foreign matter or dust to the electrode or damage to the electrode can be a cause of deterioration in operating performance. Therefore, packaging may be performed at the wafer level in the manufacturing process of the sensing device in order to avoid adhesion of foreign matter or dust to the electrode or damage to the electrode. Techniques related to packaging are described in, for example, the following Patent Documents 1 to 3.
特開2001-196484号公報JP 2001-196484 A 特開2005-129888号公報JP 2005-129888 A 特開2005-251898号公報JP 2005-251898 A
 パッケージングされたセンシングデバイスとしては、パッケージング部材を貫通し且つセンシングデバイスの外部接続用の複数の端子部と各々が電気的に接続する複数の導電プラグを備えるものがある。このタイプのパッケージドセンシングデバイスでは、これら導電プラグを介してセンシングデバイスは外部と電気的に接続される。しかしながら、このタイプのパッケージドセンシングデバイスを製造するには、パッケージング部材に導電プラグを埋め込み形成するために多数の工程を経る必要がある。したがって、パッケージング部材を貫通する導電プラグを備えるパッケージドセンシングデバイスは、製造コストを低減するうえで好ましくない。 Some packaged sensing devices include a plurality of conductive plugs that penetrate through a packaging member and are electrically connected to a plurality of terminal portions for external connection of the sensing device. In this type of packaged sensing device, the sensing device is electrically connected to the outside through these conductive plugs. However, in order to manufacture this type of packaged sensing device, it is necessary to go through a number of steps in order to embed a conductive plug in the packaging member. Therefore, a packaged sensing device including a conductive plug that penetrates the packaging member is not preferable in terms of reducing manufacturing costs.
 パッケージングされたセンシングデバイスの製造過程においては、センシングデバイスの可動部が封止される。例えば、センシングデバイスを形成するための複数のデバイス形成区画を含むデバイスウエハの一方の面側に、第1パッケージング部材を形成するための複数のパッケージング部材形成区画を含む第1パッケージングウエハが接合され、また、デバイスウエハの他方の面側に、第2パッケージング部材を形成するための複数のパッケージング部材形成区画を含む第2パッケージングウエハが接合され、これらによって、各センシングデバイスの可動部が所定の密閉空間内に封止される。例えばこのような製造過程において、従来、デバイスウエハと各パッケージング部材とはいわゆる陽極接合法によって接合される。陽極接合は、接合対象面を例えば400℃程度に加熱しつつ接合対象面間に例えば500V程度の電圧を印加して静電引力を発生させて、接合界面で共有結合を形成する接合手法であり、陽極接合時には、接合箇所にて不可避的に酸素などのガスが発生することが知られている。上述のような製造過程において、陽極接合時に発生したガスの一部は、前記の密閉空間内に封入されてしまう。従来の技術においては、この封入されたガスの存在に起因して、密閉空間内において充分な真空度を得ることができない場合がある。密閉空間内の真空度が低いほど、可動部の高周波振動が阻害され、センシングデバイスとしての感度が低下する傾向にあり、センシングデバイスの高性能化の観点から好ましくない。 In the manufacturing process of the packaged sensing device, the movable part of the sensing device is sealed. For example, a first packaging wafer including a plurality of packaging member forming sections for forming a first packaging member on one surface side of a device wafer including a plurality of device forming sections for forming a sensing device is provided. In addition, a second packaging wafer including a plurality of packaging member forming sections for forming the second packaging member is bonded to the other surface side of the device wafer. The part is sealed in a predetermined sealed space. For example, in such a manufacturing process, conventionally, a device wafer and each packaging member are bonded by a so-called anodic bonding method. Anodic bonding is a bonding technique in which a surface of a bonding target is heated to, for example, about 400 ° C., and a voltage of, for example, about 500 V is applied between the surfaces to be bonded to generate an electrostatic attractive force to form a covalent bond at the bonding interface. It is known that during anodic bonding, a gas such as oxygen is inevitably generated at the bonded portion. In the manufacturing process as described above, part of the gas generated during anodic bonding is enclosed in the sealed space. In the prior art, due to the presence of the enclosed gas, there may be a case where a sufficient degree of vacuum cannot be obtained in the sealed space. As the degree of vacuum in the sealed space is lower, the high-frequency vibration of the movable part is hindered and the sensitivity as a sensing device tends to decrease, which is not preferable from the viewpoint of improving the performance of the sensing device.
 本発明は、このような事情の下で考え出されたものであって、ワイヤボンディングによる電気的接続に適し且つ高性能化に適した、パッケージドマイクロ可動素子製造方法およびパッケージドマイクロ可動素子を提供する。 The present invention has been conceived under such circumstances, and includes a packaged micro movable device manufacturing method and a packaged micro movable device suitable for electrical connection by wire bonding and for high performance. provide.
 本発明の第1の側面によると、可動部および外部接続用の端子部を有するマイクロ可動素子と、端子部に対応する位置に貫通孔を有してマイクロ可動素子に接合された第1パッケージング部材と、第1パッケージング部材とは反対の側においてマイクロ可動素子に接合された第2パッケージング部材とを備える、パッケージドマイクロ可動素子を製造するための方法が提供される。本素子において、端子部の少なくとも一部は貫通孔に臨む。本方法は、第1接合工程と、第2接合工程と、第1パッケージングウエハ加工工程と、切断工程とを含む。第1接合工程では、第1面および当該第1面とは反対の第2面を有し、マイクロ可動素子を形成するための複数のマイクロ可動素子形成区画を含むデバイスウエハ、の第1面側に、第1パッケージング部材を形成するための複数の第1パッケージング部材形成区画を含み且つ100Ωcm以上の抵抗率を有する第1パッケージングウエハを接合する。第2接合工程では、第2パッケージング部材を形成するための複数の第2パッケージング部材形成区画を含む第2パッケージングウエハを、デバイスウエハの第2面側に接合する。第1接合工程を第2接合工程より前に行ってもよいし、第2接合工程を第1接合工程より前に行ってもよい。第1接合工程および第2接合工程の少なくともいずれか遅い工程は、常温接合法によって行う。このような第1および第2接合工程を経ることによってウエハレベルでのパッケージングが達成される。第1パッケージングウエハ加工工程では、各第1パッケージング部材形成区画において貫通孔を形成する。切断工程では、デバイスウエハ、第1パッケージングウエハ、および第2パッケージングウエハを含む積層構造体を切断する。切断工程を経ることによって、各マイクロ可動素子がパッケージングされた状態にある個片が得られる。この個片ないしパッケージドマイクロ可動素子は、マイクロ可動素子の外部接続用の端子部の少なくとも一部をパッケージ外に露出させる構造をとる。 According to the first aspect of the present invention, a micro movable element having a movable part and a terminal part for external connection, and a first packaging having a through hole at a position corresponding to the terminal part and joined to the micro movable element. A method is provided for manufacturing a packaged micro movable device comprising a member and a second packaging member joined to the micro movable device on the opposite side of the first packaging member. In this element, at least a part of the terminal portion faces the through hole. The method includes a first bonding step, a second bonding step, a first packaging wafer processing step, and a cutting step. In the first bonding step, the first surface side of a device wafer having a first surface and a second surface opposite to the first surface and including a plurality of micro movable element forming sections for forming micro movable elements In addition, a first packaging wafer including a plurality of first packaging member formation sections for forming the first packaging member and having a resistivity of 100 Ωcm or more is bonded. In the second bonding step, a second packaging wafer including a plurality of second packaging member forming sections for forming the second packaging member is bonded to the second surface side of the device wafer. The first bonding step may be performed before the second bonding step, or the second bonding step may be performed before the first bonding step. At least one of the first joining step and the second joining step is performed by a room temperature joining method. Through such first and second bonding steps, packaging at the wafer level is achieved. In the first packaging wafer processing step, a through hole is formed in each first packaging member forming section. In the cutting step, the stacked structure including the device wafer, the first packaging wafer, and the second packaging wafer is cut. By passing through the cutting process, individual pieces in a state where each micro movable element is packaged are obtained. The individual or packaged micro movable element has a structure in which at least a part of a terminal portion for external connection of the micro movable element is exposed outside the package.
 本方法によって得られるパッケージドマイクロ可動素子は、外部接続用の端子部の少なくとも一部がパッケージ外に露出しているため、ワイヤボンディングによって外部回路等と電気的に接続するように構成することが可能である。そして、本パッケージドマイクロ可動素子においては、第1パッケージング部材が100Ωcm以上の抵抗率を有するため、ワイヤボンディングによって第1パッケージング部材の貫通孔を通過するように形成される配線と当該第1パッケージング部材との間が容量結合して浮遊容量が発生するのを、充分に抑制することが可能である(有意な浮遊容量が発生してしまうと、可動部における微小信号レベルでの駆動や検知が阻害される)。このようなパッケージドマイクロ可動素子は、パッケージング部材を貫通する外部接続用の導電プラグを設ける必要がなく、例えば製造コスト抑制の観点から好ましい。このように、本方法によると、ワイヤボンディングによる電気的接続に適したパッケージドマイクロ可動素子を製造することができる。 The packaged micro movable element obtained by this method can be configured to be electrically connected to an external circuit or the like by wire bonding because at least a part of the terminal portion for external connection is exposed outside the package. Is possible. In the packaged micro movable element, since the first packaging member has a resistivity of 100 Ωcm or more, the wiring formed so as to pass through the through hole of the first packaging member by wire bonding and the first packaging member are movable. It is possible to sufficiently suppress the generation of stray capacitance due to capacitive coupling with the packaging member (if a significant stray capacitance is generated, the movable part can be driven at a minute signal level) Detection is hindered). Such a packaged micro movable element need not be provided with a conductive plug for external connection penetrating the packaging member, and is preferable from the viewpoint of, for example, manufacturing cost reduction. Thus, according to the present method, a packaged micro movable element suitable for electrical connection by wire bonding can be manufactured.
 また、本方法においては、ウエハレベルパッケージを実現するための第1接合工程および第2接合工程のうち少なくともいずれか遅い工程は、常温接合法によって行われる。そのため、本方法は、パッケージ内に形成されて可動部を包容する密閉空間内において高真空度を達成するのに好適である。常温接合法とは、高真空中で、接合する表面の不純物をArビームなどによってエッチング除去して当該接合表面を清浄化した状態(構成原子のダングリングボンドを露出させた状態)で部材間を張り合わせる手法であって、接合時において陽極接合の様にはガスが発生しない接合手法である。密閉空間内の真空度が高いほど、可動部は高周波振動しやすく、センシングデバイスとしての感度が向上する傾向にあり、センシングデバイスの高性能化の観点から好ましい。 In this method, at least one of the first bonding step and the second bonding step for realizing the wafer level package is performed by a room temperature bonding method. Therefore, this method is suitable for achieving a high degree of vacuum in a sealed space formed in the package and enclosing the movable part. The room temperature bonding method is a method in which impurities on the surface to be bonded are removed by etching with an Ar beam or the like in a high vacuum to clean the bonding surface (with the dangling bonds of the constituent atoms exposed). This is a bonding method in which gas is not generated during anodic bonding as in anodic bonding. The higher the degree of vacuum in the sealed space, the easier it is for the movable part to vibrate at high frequency, and the sensitivity as a sensing device tends to improve, which is preferable from the viewpoint of improving the performance of the sensing device.
 以上のように、本発明の第1の側面に係るパッケージドマイクロ可動素子製造方法は、ワイヤボンディングによる電気的接続に適し、且つ、高性能化に適するのである。 As described above, the packaged micro movable device manufacturing method according to the first aspect of the present invention is suitable for electrical connection by wire bonding and also for high performance.
 加えて、本パッケージドマイクロ可動素子製造方法は、デバイスウエハに接合される前の第1パッケージングウエハの強度ないし取り扱いやすさを確保しやすい。本方法における第1接合工程に供される第1パッケージングウエハには、ウエハを貫通する開口部が形成されていないからである。マイクロ可動素子の端子部をパッケージ外に露出させるために第1パッケージング部材に形成されるべき貫通孔は、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハに接合して破損しにくくなった状態にある第1パッケージングウエハに対して加工が施されることによって形成される(第1パッケージングウエハ加工工程)。 In addition, the packaged micro movable element manufacturing method can easily ensure the strength or ease of handling of the first packaging wafer before being bonded to the device wafer. This is because the first packaging wafer provided for the first bonding step in the present method has no opening that penetrates the wafer. The through hole to be formed in the first packaging member to expose the terminal portion of the micro movable element to the outside of the package is formed after wafer level packaging is achieved (after both the first and second bonding steps are completed). ), Formed by processing the first packaging wafer which is in a state of being hardly damaged by being bonded to the device wafer (first packaging wafer processing step).
 本発明の第1の側面における第1パッケージングウエハ加工工程では、好ましくは、各第1パッケージング部材形成区画において第1パッケージングウエハを薄肉化する。このような構成を採用する場合、第1接合工程に供される第1パッケージングウエハ(製造されるパッケージドマイクロ可動素子における第1パッケージング部材を形成するための複数の区画を含む)の厚さは、第1パッケージング部材の厚さと同じではなく、第1パッケージング部材よりも厚い第1パッケージングウエハが第1接合工程に供される。そして、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハに接合して破損しにくくなった状態にある第1パッケージングウエハに対して加工が施されることによって、第1パッケージングウエハは所望の程度に薄肉化される(第1パッケージングウエハ加工工程)。第1パッケージング部材はこのようにして薄肉化された第1パッケージングウエハに由来することとなる。第1パッケージングウエハ加工工程において第1パッケージングウエハを薄肉化するという構成は、デバイスウエハに接合される前の第1パッケージングウエハの強度ないし取り扱いやすさを確保しつつ、パッケージドマイクロ可動素子を薄肉化するのに好適である。 In the first packaging wafer processing step according to the first aspect of the present invention, preferably, the first packaging wafer is thinned in each first packaging member forming section. When such a configuration is employed, the thickness of the first packaging wafer (including a plurality of sections for forming the first packaging member in the manufactured packaged micro movable device) to be used in the first bonding step The thickness of the first packaging member is not the same as the thickness of the first packaging member but is thicker than the first packaging member. After wafer level packaging is achieved (after both the first and second bonding steps are completed), processing is performed on the first packaging wafer that is bonded to the device wafer and is less likely to be damaged. By being applied, the first packaging wafer is thinned to a desired degree (first packaging wafer processing step). The first packaging member is derived from the first packaging wafer thus thinned. The configuration in which the first packaging wafer is thinned in the first packaging wafer processing step ensures the packaged micro movable element while ensuring the strength or ease of handling of the first packaging wafer before being bonded to the device wafer. It is suitable for thinning.
 好ましくは、第1接合工程より前または後に、第1パッケージングウエハの各第1パッケージング部材形成区画における貫通孔形成箇所に凹部を形成する。第1接合工程より前に当該凹部を形成する場合、凹部形成に利用するレジストパターンを第1接合工程後に例えば剥離液を使用して除去するプロセスを、回避することができ、第1接合工程での接合箇所に当該剥離液が浸入して接合箇所が剥がれてしまうことを、回避することができる。 Preferably, before or after the first bonding step, a concave portion is formed at a through hole forming portion in each first packaging member forming section of the first packaging wafer. When the concave portion is formed before the first bonding step, the process of removing the resist pattern used for forming the concave portion using, for example, a stripping solution after the first bonding step can be avoided. It can be avoided that the stripping solution permeates into the joint portion and the joint portion is peeled off.
 好ましくは、第1パッケージング部材形成区画は、第1領域と、前記の貫通孔形成箇所およびその周囲を含む第2領域とを含み、第1パッケージングウエハ加工工程は、第2領域に対して異方性エッチング処理を施すことによって当該第2領域を薄肉化しつつ貫通孔を形成する第1工程と、第2領域を更に薄肉化しつつ第1領域を薄肉化する第2工程とを含む。このような手法によると、第1パッケージングウエハ加工工程において、第1パッケージングウエハを適切に薄肉化できるとともに、第1パッケージングウエハを貫く貫通孔ないし開口部を適切に形成することができる。 Preferably, the first packaging member forming section includes a first region and a second region including the through hole forming portion and the periphery thereof, and the first packaging wafer processing step is performed with respect to the second region. It includes a first step of forming a through-hole while thinning the second region by performing an anisotropic etching process, and a second step of thinning the first region while further thinning the second region. According to such a method, in the first packaging wafer processing step, the first packaging wafer can be appropriately thinned, and a through hole or an opening that penetrates the first packaging wafer can be appropriately formed.
 好ましくは、第1接合工程より前に、第1パッケージングウエハの各第1パッケージング部材形成区画において、マイクロ可動素子の可動部に相対することとなる凹部を形成する。このような構成は、マイクロ可動素子の駆動時に揺動する可動部が第1パッケージング部材に当接すること回避するうえで好適である。 Preferably, before the first bonding step, a recess that will be opposed to the movable portion of the micro movable element is formed in each first packaging member forming section of the first packaging wafer. Such a configuration is suitable for avoiding that the movable portion that swings when the micro movable element is driven contacts the first packaging member.
 好ましくは、第2接合工程より前に、第2パッケージングウエハの各第2パッケージング部材形成区画において、マイクロ可動素子の可動部に相対することとなる凹部を形成する。このような構成は、マイクロ可動素子の駆動時に揺動する可動部が第2パッケージング部材に当接すること回避するうえで好適である。 Preferably, prior to the second bonding step, a recess that will face the movable portion of the micro movable element is formed in each second packaging member forming section of the second packaging wafer. Such a configuration is suitable for avoiding that the movable portion that swings when the micro movable element is driven contacts the second packaging member.
 好ましくは、第1パッケージングウエハ加工工程では、貫通孔の少なくとも開口端を、マイクロ可動素子から遠ざかるにつれて広がる形状に形成する。このような構成は、製造されるパッケージドマイクロ可動素子の第1パッケージング部材の貫通孔にてパッケージ外に露出する端子部に対し、ワイヤボンディングするのに好適である。 Preferably, in the first packaging wafer processing step, at least the opening end of the through hole is formed in a shape that widens as the distance from the micro movable element increases. Such a configuration is suitable for wire bonding to a terminal portion exposed outside the package through the through hole of the first packaging member of the packaged micro movable element to be manufactured.
 好ましくは、第1接合工程では、絶縁膜を介してデバイスウエハと第1パッケージングウエハとを接合する。このような構成は、デバイスウエハと第1パッケージングウエハとを電気的に分離するうえで好適である。 Preferably, in the first bonding step, the device wafer and the first packaging wafer are bonded via an insulating film. Such a configuration is suitable for electrically separating the device wafer and the first packaging wafer.
 好ましくは、第2接合工程では、絶縁膜を介してデバイスウエハと第2パッケージングウエハとを接合する。このような構成は、デバイスウエハと第2パッケージングウエハとを電気的に分離するうえで好適である。 Preferably, in the second bonding step, the device wafer and the second packaging wafer are bonded via an insulating film. Such a configuration is suitable for electrically separating the device wafer and the second packaging wafer.
 好ましくは、デバイスウエハは、第1面を有する第1層と、第2面を有する第2層と、当該第1および第2層の間の中間層とからなる積層構造を有し、第2接合工程を第1接合工程より前に行い、第2接合工程より前に、デバイスウエハの第2面上に設けたマスクパターンをマスクとして用いて第2層に対してエッチング処理を施す加工工程を行う。この場合、第2接合工程より後であって第1接合工程より前に、デバイスウエハの第1面上に設けたマスクパターンをマスクとして用いて第1層に対してエッチング処理を施す加工工程を行うのが好ましい。或は、第1接合工程を第2接合工程より前に行い、第1接合工程より前に、デバイスウエハの第1面上に設けたマスクパターンをマスクとして用いて第1層に対してエッチング処理を施す加工工程を行ってもよい。この場合、第1接合工程より後であって第2接合工程より前に、デバイスウエハの第2面上に設けたマスクパターンをマスクとして用いて第2層に対してエッチング処理を施す加工工程を行うのが好ましい。 Preferably, the device wafer has a laminated structure including a first layer having a first surface, a second layer having a second surface, and an intermediate layer between the first and second layers. A bonding process is performed before the first bonding process, and a etching process is performed on the second layer using the mask pattern provided on the second surface of the device wafer as a mask before the second bonding process. Do. In this case, a processing step of performing an etching process on the first layer using the mask pattern provided on the first surface of the device wafer as a mask after the second bonding step and before the first bonding step. It is preferred to do so. Alternatively, the first bonding step is performed before the second bonding step, and the first layer is etched using the mask pattern provided on the first surface of the device wafer as a mask before the first bonding step. You may perform the process which gives. In this case, a processing step of performing an etching process on the second layer using the mask pattern provided on the second surface of the device wafer as a mask after the first bonding step and before the second bonding step. It is preferred to do so.
 本発明の第2の側面によるとマイクロ可動素子が提供される。このマイクロ可動素子は、可動部および端子部を有するマイクロ可動素子と、端子部に対応する位置に貫通孔を有し且つ100Ωcm以上の抵抗率を有する、マイクロ可動素子に接合された第1パッケージング部材と、第1パッケージング部材とは反対の側においてマイクロ可動素子に接合された第2パッケージング部材とを備え、第1および第2パッケージング部材の少なくとも一方とマイクロ可動素子とは常温接合されている。このようなマイクロ可動素子は、本発明の第1の側面に係るパッケージドマイクロ可動素子製造方法によって適切に製造することが可能である。 According to a second aspect of the present invention, a micro movable element is provided. The micro movable device includes a micro movable device having a movable portion and a terminal portion, and a first packaging bonded to the micro movable device having a through hole at a position corresponding to the terminal portion and having a resistivity of 100 Ωcm or more. And a second packaging member joined to the micro movable element on a side opposite to the first packaging member, and at least one of the first and second packaging members and the micro movable element are joined at room temperature. ing. Such a micro movable element can be appropriately manufactured by the packaged micro movable element manufacturing method according to the first aspect of the present invention.
 本発明の第2の側面において、好ましくは、第1パッケージング部材は、第1部位と、貫通孔の形成箇所およびその周囲を含んで第1部位よりも薄い第2部位とを含む。このような構成は、第1パッケージング部材の貫通孔にてパッケージ外に露出する端子部に対し、ワイヤボンディングするのに好適である。 In the second aspect of the present invention, preferably, the first packaging member includes a first portion and a second portion that is thinner than the first portion, including the through hole formation portion and the periphery thereof. Such a configuration is suitable for wire bonding to the terminal portion exposed outside the package through the through hole of the first packaging member.
 好ましくは、第1パッケージング部材および第2パッケージング部材は、マイクロ可動素子の可動部に相対する箇所に凹部を有する。好ましくは、貫通孔の少なくとも開口端は、マイクロ可動素子から遠ざかるにつれて広がる形状を有する。好ましくは、マイクロ可動素子と第1パッケージング部材の間、および/または、マイクロ可動素子と第2パッケージング部材の間には、絶縁膜が介在する。 Preferably, the first packaging member and the second packaging member have a recess at a location facing the movable portion of the micro movable element. Preferably, at least the open end of the through hole has a shape that widens as the distance from the micro movable element increases. Preferably, an insulating film is interposed between the micro movable element and the first packaging member and / or between the micro movable element and the second packaging member.
 本マイクロ可動素子は、好ましくは、可動部および端子部に加え、固定部と、当該固定部および可動部を連結するための連結部とを備え、可動部は揺動可能である。より好ましくは、マイクロ可動素子は、角速度センサまたは加速度センサ等のセンシングデバイスである。 The present micro movable element preferably includes a fixed portion and a connecting portion for connecting the fixed portion and the movable portion in addition to the movable portion and the terminal portion, and the movable portion is swingable. More preferably, the micro movable element is a sensing device such as an angular velocity sensor or an acceleration sensor.
図1は、本発明に係るパッケージドデバイスの一部省略平面図である。FIG. 1 is a partially omitted plan view of a packaged device according to the present invention. 図2は、本発明に係るパッケージドデバイスの他の一部省略平面図である。FIG. 2 is another partially omitted plan view of the packaged device according to the present invention. 図3は、図1の線III-IIIに沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図4は、図1の線IV-IVに沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、図1の線V-Vに沿った断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6は、図1の線VI-VIに沿った断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図1の線VII-VIIに沿った断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、図1の線VIII-VIIIに沿った断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 図9は、本発明に係るパッケージドデバイスが外部回路と電気的に接続された場合における一の拡大断面図である。FIG. 9 is an enlarged cross-sectional view when the packaged device according to the present invention is electrically connected to an external circuit. 図10は、本発明に係るパッケージドデバイスを製造するための第1の方法における一部の工程を表す。FIG. 10 shows some steps in the first method for manufacturing a packaged device according to the present invention. 図11は、図10の後に続く工程を表す。FIG. 11 shows a process following FIG. 図12は、図11の後に続く工程を表す。FIG. 12 shows a process following FIG. 図13は、図12の後に続く工程を表す。FIG. 13 shows a process subsequent to FIG. 図14は、図13の後に続く工程を表す。FIG. 14 shows a step that follows FIG. 図15は、本発明における一方のパッケージングウエハの製造方法を表す。FIG. 15 shows a method for manufacturing one packaging wafer in the present invention. ワイヤボンディングによって電気的接続を形成する途中を表す。It represents the middle of forming an electrical connection by wire bonding. 図17は、本発明に係るパッケージドデバイスを製造するための第2の方法における一部の工程を表す。FIG. 17 shows some steps in the second method for manufacturing the packaged device according to the present invention. 図18は、図17の後に続く工程を表す。FIG. 18 shows a step that follows FIG. 図19は、図18の後に続く工程を表す。FIG. 19 shows a step that follows FIG. 図20は、図19の後に続く工程を表す。FIG. 20 shows a step that follows FIG.
 図1から図8は、本発明に係るパッケージドデバイスXを表す。図1はパッケージドデバイスXの一部省略平面図であり、図2はパッケージドデバイスXの他の一部省略平面図である。図3から図8は、各々、図1の線III-III、線IV-IV、線V-V、線VI-VI、線VII-VII、および線VIII-VIIIに沿った断面図である。 1 to 8 show a packaged device X according to the present invention. FIG. 1 is a partially omitted plan view of the packaged device X, and FIG. 2 is another partially omitted plan view of the packaged device X. 3 to 8 are cross-sectional views taken along line III-III, line IV-IV, line VV, line VI-VI, line VII-VII, and line VIII-VIII in FIG. 1, respectively.
 パッケージドデバイスXは、センシングデバイスYと、パッケージング部材80(図1において省略)と、パッケージング部材90(図2において省略)とを備える。 The packaged device X includes a sensing device Y, a packaging member 80 (omitted in FIG. 1), and a packaging member 90 (omitted in FIG. 2).
 センシングデバイスYは、ランド部10と、内フレーム20と、外フレーム30と、一対の連結部40と、一対の連結部50と、検出用電極61(図1において省略)と、検出用電極62A,62B(図2において省略)と、駆動用電極71A,71B,72A,72Bとを備え、角速度センサとして構成されたものである。また、センシングデバイスYは、MEMS技術などのバルクマイクロマシニング技術により、いわゆるSOI(silicon on insulator)基板であるウエハに対して加工を施すことによって製造されたものである。当該ウエハは、例えば、第1および第2シリコン層ならびに当該シリコン層間の絶縁層よりなる積層構造を有し、各シリコン層は、不純物のドープにより所定の導電性が付与されている。図1は、パッケージドデバイスXをパッケージング部材80(図1において省略)の側から見た平面図であり、図1では、第1シリコン層に由来して絶縁層より紙面手前方向に突き出る部位について、斜線ハッチングを付して表す。図2は、パッケージドデバイスXをパッケージング部材90(図2において省略)の側から見た平面図であり、図2では、第2シリコン層に由来して絶縁層より紙面手前方向に突き出る部位について、斜線ハッチングを付して表す。 The sensing device Y includes a land portion 10, an inner frame 20, an outer frame 30, a pair of connecting portions 40, a pair of connecting portions 50, a detection electrode 61 (not shown in FIG. 1), and a detection electrode 62A. , 62B (not shown in FIG. 2) and driving electrodes 71A, 71B, 72A, 72B, and configured as an angular velocity sensor. The sensing device Y is manufactured by processing a wafer which is a so-called SOI (silicon on insulator) substrate by a bulk micromachining technology such as a MEMS technology. The wafer has, for example, a laminated structure composed of first and second silicon layers and an insulating layer between the silicon layers, and each silicon layer is given predetermined conductivity by doping impurities. FIG. 1 is a plan view of the packaged device X as viewed from the side of the packaging member 80 (not shown in FIG. 1). In FIG. 1, a portion that originates from the first silicon layer and protrudes from the insulating layer toward the front side of the drawing. Is represented by hatching. FIG. 2 is a plan view of the packaged device X as viewed from the side of the packaging member 90 (not shown in FIG. 2). In FIG. 2, a portion that originates from the second silicon layer and protrudes from the insulating layer toward the front side of the drawing. Is represented by hatching.
 ランド部10は、上記の第1シリコン層に由来する部位である。ランド部10には、図3および図5に示すように、導電プラグ11が埋め込み形成されている。 The land part 10 is a part derived from the first silicon layer. As shown in FIGS. 3 and 5, a conductive plug 11 is embedded in the land portion 10.
 内フレーム20は、例えば図3に示すように、第1シリコン層に由来する第1層部21と、第2シリコン層に由来する第2層部22と、これらの間の絶縁層23とからなる積層構造を有する。第1層部21は、図1に示すように、部分21a,21b,21c,21d,21e,21fを含む。部分21a~21fは、空隙を介して互いに分離している。 For example, as shown in FIG. 3, the inner frame 20 includes a first layer portion 21 derived from the first silicon layer, a second layer portion 22 derived from the second silicon layer, and an insulating layer 23 therebetween. It has the laminated structure which becomes. As shown in FIG. 1, the first layer portion 21 includes portions 21a, 21b, 21c, 21d, 21e, and 21f. The portions 21a to 21f are separated from each other via a gap.
 外フレーム30は、例えば図3および図4に示すように、第1シリコン層に由来する第1層部31と、第2シリコン層に由来する第2層部32と、これらの間の絶縁層33とからなる積層構造を有する。第1層部31は、図1に示すように、部分31a,31b,31c,31d,31e,31f,31g,31hを含む。部分31a~31hは、空隙を介して周囲と分離し、センシングデバイスYにおける外部接続用の端子部を構成する。 As shown in FIGS. 3 and 4, for example, the outer frame 30 includes a first layer portion 31 derived from the first silicon layer, a second layer portion 32 derived from the second silicon layer, and an insulating layer therebetween. 33. As shown in FIG. 1, the first layer portion 31 includes portions 31a, 31b, 31c, 31d, 31e, 31f, 31g, and 31h. The portions 31a to 31h are separated from the surroundings through a gap, and constitute a terminal portion for external connection in the sensing device Y.
 一対の連結部40は、ランド部10および内フレーム20を連結するための部位であり、第1シリコン層に由来する。各連結部40は、二本のトーションバー41からなる。図1に示すように、一方の連結部40の各トーションバー41は、ランド部10に接続するとともに内フレーム20の第1層部21の部分21aに接続し、ランド部10および部分21aを電気的に接続する。他方の連結部40の各トーションバー41は、ランド部10に接続するとともに内フレーム20の第1層部21の部分21dに接続し、ランド部10および部分21dを電気的に接続する。このような一対の連結部40は、ランド部10の揺動動作の軸心A1を規定する。内フレーム20の側からランド部10の側にかけて間隔が漸増する二本のトーションバー41を含む各連結部40は、ランド部10の揺動動作における不要な変位成分の発生を抑制するのに好適である。 The pair of connecting portions 40 are portions for connecting the land portion 10 and the inner frame 20 and are derived from the first silicon layer. Each connecting portion 40 includes two torsion bars 41. As shown in FIG. 1, each torsion bar 41 of one connecting portion 40 is connected to the land portion 10 and to the portion 21a of the first layer portion 21 of the inner frame 20, and the land portion 10 and the portion 21a are electrically connected. Connect. Each torsion bar 41 of the other connecting portion 40 is connected to the land portion 10 and connected to the portion 21d of the first layer portion 21 of the inner frame 20 to electrically connect the land portion 10 and the portion 21d. Such a pair of connecting portions 40 defines an axis A <b> 1 of the swinging motion of the land portion 10. Each connecting portion 40 including two torsion bars 41 whose intervals gradually increase from the inner frame 20 side to the land portion 10 side is suitable for suppressing generation of unnecessary displacement components in the swinging operation of the land portion 10. It is.
 一対の連結部50は、内フレーム20および外フレーム30を連結するための部位であり、第1シリコン層に由来する。各連結部50は、三本のトーションバー51,52,53からなる。図1に示すように、一方の連結部50におけるトーションバー51は、内フレーム20の第1層部21の部分21aに接続するとともに外フレーム30の第1層部31の部分31aに接続して部分21a,31aを電気的に接続し、トーションバー52は、内フレーム20の第1層部21の部分21bに接続するとともに外フレーム30の第1層部31の部分31bに接続して部分21b,31bを電気的に接続し、トーションバー53は、内フレーム20の第1層部21の部分21cに接続するとともに外フレーム30の第1層部31の部分31cに接続して部分21c,31cを電気的に接続する。他方の連結部50におけるトーションバー51は、内フレーム20の第1層部21の部分21dに接続するとともに外フレーム30の第1層部31の部分31dに接続して部分21d,31dを電気的に接続し、トーションバー52は、内フレーム20の第1層部21の部分21eに接続するとともに外フレーム30の第1層部31の部分31eに接続して部分21e,31eを電気的に接続し、トーションバー53は、内フレーム20の第1層部21の部分21fに接続するとともに外フレーム30の第1層部31の部分31fに接続して部分21f,31fを電気的に接続する。このような一対の連結部50は、内フレーム20の揺動動作の軸心A2を規定する。外フレーム30の側から内フレーム20の側にかけて間隔が漸増する二本のトーションバー51,53を含む各連結部50は、内フレーム20の揺動動作における不要な変位成分の発生を抑制するのに好適である。 The pair of connecting portions 50 are portions for connecting the inner frame 20 and the outer frame 30 and are derived from the first silicon layer. Each connecting portion 50 includes three torsion bars 51, 52, and 53. As shown in FIG. 1, the torsion bar 51 in one connecting portion 50 is connected to the portion 21 a of the first layer portion 21 of the inner frame 20 and to the portion 31 a of the first layer portion 31 of the outer frame 30. The portions 21a and 31a are electrically connected, and the torsion bar 52 is connected to the portion 21b of the first layer portion 21 of the inner frame 20 and connected to the portion 31b of the first layer portion 31 of the outer frame 30 to be the portion 21b. , 31b are electrically connected, and the torsion bar 53 is connected to the portion 21c of the first layer portion 21 of the inner frame 20 and is connected to the portion 31c of the first layer portion 31 of the outer frame 30 to the portions 21c, 31c. Are electrically connected. The torsion bar 51 in the other connecting portion 50 is connected to the portion 21d of the first layer portion 21 of the inner frame 20 and connected to the portion 31d of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21d and 31d. The torsion bar 52 is connected to the portion 21e of the first layer portion 21 of the inner frame 20 and is connected to the portion 31e of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21e and 31e. The torsion bar 53 is connected to the portion 21 f of the first layer portion 21 of the inner frame 20 and is connected to the portion 31 f of the first layer portion 31 of the outer frame 30 to electrically connect the portions 21 f and 31 f. Such a pair of connecting portions 50 defines an axis A <b> 2 of the swinging motion of the inner frame 20. Each connecting portion 50 including two torsion bars 51 and 53 whose intervals gradually increase from the outer frame 30 side to the inner frame 20 side suppress the generation of unnecessary displacement components in the swinging operation of the inner frame 20. It is suitable for.
 検出用電極61は、第2シリコン層に由来する部位である。また、図3および図5に示すように、検出用電極61は、上記の絶縁層に由来する絶縁層12を介してランド部10に接合されており、ランド部10および絶縁層12を貫通する導電プラグ11を介して、検出用電極61およびランド部10は電気的に接続されている。 The detection electrode 61 is a part derived from the second silicon layer. As shown in FIGS. 3 and 5, the detection electrode 61 is joined to the land portion 10 via the insulating layer 12 derived from the above insulating layer, and penetrates the land portion 10 and the insulating layer 12. The detection electrode 61 and the land portion 10 are electrically connected via the conductive plug 11.
 検出用電極62Aは、第1シリコン層に由来する部位である。図5に示すように、検出用電極62Aは、内フレーム20の第1層部21の部分21bからランド部10側へ延出し、検出用電極61に対向する部位を有する。また、検出用電極62Aは、複数の開口部を有する。 The detection electrode 62A is a part derived from the first silicon layer. As shown in FIG. 5, the detection electrode 62 </ b> A extends from the portion 21 b of the first layer portion 21 of the inner frame 20 to the land portion 10 side and has a portion facing the detection electrode 61. The detection electrode 62A has a plurality of openings.
 検出用電極62Bは、第1シリコン層に由来する部位である。図5に示すように、検出用電極62Bは、内フレーム20の第1層部21の部分21eからランド部10側へ延出し、検出用電極61に対向する部位を有する。また、検出用電極62Bは、複数の開口部を有する。 The detection electrode 62B is a part derived from the first silicon layer. As shown in FIG. 5, the detection electrode 62 </ b> B extends from the portion 21 e of the first layer portion 21 of the inner frame 20 toward the land portion 10 and has a portion facing the detection electrode 61. The detection electrode 62B has a plurality of openings.
 駆動用電極71Aは、第1シリコン層に由来する櫛歯型電極であり、図1に示すように、内フレーム20における部分21cから延出する複数の電極歯71aからなる。複数の電極歯71aは、例えば図1および図6に示すように、相互に平行である。このような駆動用電極71Aは、素子厚さ方向において、内フレーム20の第1層部21より薄い。 The driving electrode 71A is a comb-shaped electrode derived from the first silicon layer, and includes a plurality of electrode teeth 71a extending from the portion 21c in the inner frame 20, as shown in FIG. The plurality of electrode teeth 71a are parallel to each other, for example, as shown in FIGS. Such a driving electrode 71A is thinner than the first layer portion 21 of the inner frame 20 in the element thickness direction.
 駆動用電極71Bは、第1シリコン層に由来する櫛歯型電極であり、内フレーム20における部分21fから延出する複数の電極歯71bからなる。複数の電極歯71bは、相互に平行である。このような駆動用電極71Bは、素子厚さ方向において、内フレーム20の第1層部21より薄い。 The driving electrode 71B is a comb-shaped electrode derived from the first silicon layer, and includes a plurality of electrode teeth 71b extending from the portion 21f of the inner frame 20. The plurality of electrode teeth 71b are parallel to each other. Such a driving electrode 71B is thinner than the first layer portion 21 of the inner frame 20 in the element thickness direction.
 駆動用電極72Aは、第1シリコン層に由来する櫛歯型電極であり、駆動用電極71Aに対向して配置され、外フレーム30における部分31gから延出する複数の電極歯72aからなる。複数の電極歯72aは、例えば図1および図6に示すように、相互に平行であり、また、上述の駆動用電極71Aの電極歯71aとも平行である。このような駆動用電極72Aは、素子厚さ方向において駆動用電極71Aよりも厚い。 The driving electrode 72A is a comb-shaped electrode derived from the first silicon layer, and is arranged to face the driving electrode 71A and includes a plurality of electrode teeth 72a extending from the portion 31g in the outer frame 30. The plurality of electrode teeth 72a are parallel to each other as shown in FIGS. 1 and 6, for example, and are also parallel to the electrode teeth 71a of the drive electrode 71A described above. Such a drive electrode 72A is thicker than the drive electrode 71A in the element thickness direction.
 駆動用電極72Bは、第1シリコン層に由来する櫛歯型電極であり、駆動用電極71Bに対向して配置され、外フレーム30における部分31hから延出する複数の電極歯72bからなる。複数の電極歯72bは、相互に平行であり、また、上述の駆動用電極71Bの電極歯71bとも平行である。このような駆動用電極72Bは、素子厚さ方向において駆動用電極71Bよりも厚い。 The driving electrode 72B is a comb-shaped electrode derived from the first silicon layer, and is arranged to face the driving electrode 71B and includes a plurality of electrode teeth 72b extending from the portion 31h in the outer frame 30. The plurality of electrode teeth 72b are parallel to each other, and are also parallel to the electrode teeth 71b of the drive electrode 71B described above. Such a driving electrode 72B is thicker than the driving electrode 71B in the element thickness direction.
 パッケージング部材80は、センシングデバイスYの外フレーム30の第1層部31側に接合されており、センシングデバイスYの可動部に対応する箇所に凹部80aを有する。また、パッケージング部材80は、例えば図3や図5に示すように、第1部位81および当該第1部位81よりも薄い第2部位82を有し、第2部位82には貫通孔82aが形成されている。第1部位81の厚さは例えば50~200μmである。第2部位82の厚さは、第1部位81の厚さよりも小さい限りにおいて例えば20~100μmである。貫通孔82aの直径は例えば20~100μmである。図3、図5、図7、および図8に示すように、センシングデバイスYにおける外部接続用の端子部である部分31a~31hの各々は、貫通孔82aに部分的に臨む。すなわち、端子部たる部分31a~31hは、いずれも、貫通孔82aを介して部分的にパッケージ外に露出している。このようなパッケージング部材80は、100Ωcm以上の高抵抗シリコン材料よりなる。 The packaging member 80 is joined to the first layer portion 31 side of the outer frame 30 of the sensing device Y, and has a recess 80a at a location corresponding to the movable portion of the sensing device Y. Further, for example, as shown in FIG. 3 and FIG. 5, the packaging member 80 has a first part 81 and a second part 82 thinner than the first part 81, and the second part 82 has a through hole 82 a. Is formed. The thickness of the first portion 81 is, for example, 50 to 200 μm. The thickness of the second portion 82 is, for example, 20 to 100 μm as long as it is smaller than the thickness of the first portion 81. The diameter of the through hole 82a is, for example, 20 to 100 μm. As shown in FIGS. 3, 5, 7, and 8, each of the portions 31a to 31h, which are external connection terminal portions in the sensing device Y, partially faces the through hole 82a. That is, the portions 31a to 31h serving as the terminal portions are all exposed to the outside of the package through the through holes 82a. Such a packaging member 80 is made of a high resistance silicon material of 100 Ωcm or more.
 パッケージング部材90は、センシングデバイスYの外フレーム30の第2層部32側に接合されており、センシングデバイスYの可動部に対応する箇所に凹部90aを有する。パッケージング部材90は、例えばガラス材料よりなる。 The packaging member 90 is joined to the second layer portion 32 side of the outer frame 30 of the sensing device Y, and has a recess 90a at a location corresponding to the movable portion of the sensing device Y. The packaging member 90 is made of, for example, a glass material.
 これらパッケージング部材80,90の少なくとも一方は、常温接合法によって、センシングデバイスYに対して接合されている。これらパッケージング部材80,90によって、センシングデバイスYは封止されている。すなわち、センシングデバイスYの可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)を包容する密閉空間Sがパッケージ内に形成されている。 At least one of the packaging members 80 and 90 is bonded to the sensing device Y by a room temperature bonding method. The sensing device Y is sealed by the packaging members 80 and 90. That is, a sealed space S that encloses the movable portion (land portion 10, inner frame 20, detection electrodes 61, 62A, 62B) of sensing device Y is formed in the package.
 以上のような構成を有するパッケージドデバイスXは、ワイヤボンディングによって外部回路と接続され得る。端子部たる部分31gについて一例として図9に示すように、パッケージング部材80の各貫通孔82aにて露出している各端子部(部分31a~31h)と外部回路の所定の端子部とが、ワイヤボンディングによって形成される配線Wを介して電気的に接続され得る。 The packaged device X having the above configuration can be connected to an external circuit by wire bonding. As shown in FIG. 9 as an example of the portion 31g serving as the terminal portion, each terminal portion (portions 31a to 31h) exposed in each through hole 82a of the packaging member 80 and a predetermined terminal portion of the external circuit, It can be electrically connected via a wiring W formed by wire bonding.
 角速度センサたるセンシングデバイスYの駆動時には、可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)は、所定の振動数ないし周期で軸心A2まわりに揺動動作される。この揺動動作は、駆動用電極71A,72A間への電圧印加と、駆動用電極71B,72B間への電圧印加とを、交互に繰り返すことによって実現される。その際、駆動用電極71Aへの電位付与は、外フレーム30における部分31c、一方の連結部50のトーションバー53、および、内フレーム20における部分21cを介して、実現することができる。駆動用電極71Bへの電位付与は、外フレーム30における部分31f、他方の連結部50のトーションバー53、および、内フレーム20における部分21fを介して、実現することができる。駆動用電極72Aへの電位付与は、外フレーム30における部分31gを介して、実現することができる。駆動用電極72Bへの電位付与は、外フレーム30における部分31hを介して、実現することができる。本実施形態では、例えば、駆動用電極71A,71Bをグラウンド接続したうえで、駆動用電極72Aへの所定電位の付与と駆動用電極72Bへの所定電位の付与とを交互に繰り返すことによって、可動部を揺動動作させることができる。例えば図3に示すようにパッケージング部材80,90に凹部80a,90aが設けられているため、揺動動作時においては、可動部はパッケージング部材80,90に当接しない。 When the sensing device Y as an angular velocity sensor is driven, the movable part (land part 10, inner frame 20, detection electrodes 61, 62A, 62B) is swung around the axis A2 at a predetermined frequency or cycle. This swinging operation is realized by alternately repeating voltage application between the drive electrodes 71A and 72A and voltage application between the drive electrodes 71B and 72B. At that time, application of a potential to the driving electrode 71A can be realized via the portion 31c in the outer frame 30, the torsion bar 53 of one connecting portion 50, and the portion 21c in the inner frame 20. The application of a potential to the driving electrode 71B can be realized through the portion 31f in the outer frame 30, the torsion bar 53 of the other connecting portion 50, and the portion 21f in the inner frame 20. The application of the potential to the driving electrode 72A can be realized through the portion 31g in the outer frame 30. The application of the potential to the driving electrode 72B can be realized through the portion 31h in the outer frame 30. In the present embodiment, for example, the drive electrodes 71A and 71B are connected to the ground, and then the application of the predetermined potential to the drive electrode 72A and the application of the predetermined potential to the drive electrode 72B are alternately repeated. The part can be swung. For example, as shown in FIG. 3, since the recesses 80 a and 90 a are provided in the packaging members 80 and 90, the movable portion does not contact the packaging members 80 and 90 during the swinging operation.
 例えば上述のようにして可動部を揺動動作ないし振動させている状態において、センシングデバイスYないし可動部に所定の角速度や加速度が作用すると、ランド部10が検出用電極61を伴って軸心A1まわりに所定程度に回転変位し、検出用電極61,62Aの相対的配置が変化して当該検出用電極61,62A間の静電容量が変化するとともに、検出用電極61,62Bの相対的配置が変化して当該検出用電極61,62B間の静電容量が変化する。これら静電容量変化に基づいて(例えば二つの静電容量の差に基づいて)、ランド部10および検出用電極61の回転変位量を検出することができる。その検出結果に基づき、センシングデバイスYないし可動部に作用する角速度や加速度を算出することが可能である。このようなセンシングデバイスYを含むパッケージドデバイスXは、例えば、デジタルカメラや、ビデオカメラ、カメラ付き携帯電話の手振れ防止機能、および、カーナビゲーションシステム、エアバッグ開放タイミングシステム、車やロボット等の姿勢制御システムの用途で、利用することができる。 For example, when a predetermined angular velocity or acceleration is applied to the sensing device Y or the movable part in a state where the movable part is swung or vibrated as described above, the land part 10 includes the detection electrode 61 and the axis A1. The displacement of the detection electrodes 61 and 62A is changed by a predetermined amount of rotation, the capacitance between the detection electrodes 61 and 62A is changed, and the relative arrangement of the detection electrodes 61 and 62B is changed. Changes to change the capacitance between the detection electrodes 61 and 62B. Based on these capacitance changes (for example, based on the difference between the two capacitances), the rotational displacement amount of the land portion 10 and the detection electrode 61 can be detected. Based on the detection result, the angular velocity and acceleration acting on the sensing device Y or the movable part can be calculated. The packaged device X including such a sensing device Y is, for example, a digital camera, a video camera, a camera shake prevention function for a camera-equipped mobile phone, and a posture of a car navigation system, an airbag opening timing system, a car, a robot, or the like. It can be used for control system applications.
 図10から図14は、マイクロマシニング技術によってパッケージドデバイスXを製造するための第1の方法を表す。図10から図13は、単一のデバイス形成区画に含まれる図5に対応する断面の変化を表したものである。図14は、複数のデバイス形成区画にわたる部分断面を表す。 10 to 14 show a first method for manufacturing the packaged device X by the micromachining technology. 10 to 13 show changes in cross section corresponding to FIG. 5 included in a single device formation section. FIG. 14 represents a partial cross section across multiple device forming sections.
 本方法においては、まず、図10(a)に示すようなデバイスウエハ100を用意する。デバイスウエハ100は、シリコン層101,102と、当該シリコン層101,102間の絶縁層103とからなる積層構造を有するSOIウエハであり、各々にセンシングデバイスYが形成されることとなる複数のデバイス形成区画を含む。シリコン層101は第1面101’を有し、シリコン層102は第2面102’を有する。また、シリコン層101,102は、不純物をドープすることにより導電性を付与されたシリコン材料よりなる。不純物としては、Bなどのp型不純物や、PおよびSbなどのn型不純物を採用することができる。絶縁層103は例えば酸化シリコンよりなる。シリコン層101の厚さは例えば10~100μmであり、シリコン層102の厚さは例えば100~500μmであり、絶縁層103の厚さは例えば1~2μmである。 In this method, first, a device wafer 100 as shown in FIG. The device wafer 100 is an SOI wafer having a laminated structure including silicon layers 101 and 102 and an insulating layer 103 between the silicon layers 101 and 102, and a plurality of devices on which a sensing device Y is formed. Includes forming compartment. The silicon layer 101 has a first surface 101 'and the silicon layer 102 has a second surface 102'. The silicon layers 101 and 102 are made of a silicon material imparted with conductivity by doping impurities. As the impurities, p-type impurities such as B and n-type impurities such as P and Sb can be employed. The insulating layer 103 is made of, for example, silicon oxide. The thickness of the silicon layer 101 is, for example, 10 to 100 μm, the thickness of the silicon layer 102 is, for example, 100 to 500 μm, and the thickness of the insulating layer 103 is, for example, 1 to 2 μm.
 次に、図10(b)に示すように、シリコン層101および絶縁層103を貫通する貫通孔101aを形成する。具体的には、まず、所定の開口部を有するレジストパターン(図示略)をシリコン層101上に形成した後、当該レジストパターンをマスクとして利用して、DRIE(Deep Reactive Ion Etching)により、絶縁層103が部分的に露出するまでシリコン層101に対して異方性ドライエッチング処理を施す。DRIEでは、エッチングと側壁保護とを交互に行うBoschプロセスにおいて、良好な異方性ドライエッチングを行うことができる。本工程および後出のDRIEについては、このようなBoschプロセスを採用することができる。この後、絶縁層103において露出した部分を、他のエッチング手法(例えば、フッ酸とフッ化アンモニウムからなるバッファードフッ酸〔BHF〕によるウェットエッチング)により、除去する。このようにして、貫通孔101aを形成することができる。 Next, as shown in FIG. 10B, a through hole 101a penetrating the silicon layer 101 and the insulating layer 103 is formed. Specifically, first, after a resist pattern (not shown) having a predetermined opening is formed on the silicon layer 101, the insulating layer is formed by DRIE (Deep Reactive Ion Etching) using the resist pattern as a mask. An anisotropic dry etching process is performed on the silicon layer 101 until 103 is partially exposed. In DRIE, good anisotropic dry etching can be performed in a Bosch process in which etching and sidewall protection are alternately performed. Such a Bosch process can be adopted for this step and the subsequent DRIE. Thereafter, the exposed portion of the insulating layer 103 is removed by another etching method (for example, wet etching using buffered hydrofluoric acid [BHF] made of hydrofluoric acid and ammonium fluoride). In this way, the through hole 101a can be formed.
 次に、図10(c)に示すように、導電プラグ11を形成する。具体的には、貫通孔101a内を導電材料で充填することによって導電プラグ11を形成することができる。 Next, as shown in FIG. 10C, the conductive plug 11 is formed. Specifically, the conductive plug 11 can be formed by filling the through hole 101a with a conductive material.
 次に、図10(d)に示すように、シリコン層101上に酸化膜パターン104を形成し、シリコン層102上に酸化膜パターン105を形成する。また、シリコン層101上に図外のレジストパターンも形成する。この図外のレジストパターンは、シリコン層101にて形成されるべき駆動用電極71A(電極歯71a)および駆動用電極71B(電極歯71b)に対応するパターン形状を有する。酸化膜パターン104は、シリコン層101にて形成されるべき駆動用電極71A,71B以外の部位に対応するパターン形状を有する。酸化膜パターン105は、シリコン層102にて形成されるべき部位に対応するパターン形状を有する。 Next, as shown in FIG. 10D, an oxide film pattern 104 is formed on the silicon layer 101, and an oxide film pattern 105 is formed on the silicon layer 102. A resist pattern (not shown) is also formed on the silicon layer 101. The resist pattern outside this figure has a pattern shape corresponding to the driving electrode 71A (electrode tooth 71a) and the driving electrode 71B (electrode tooth 71b) to be formed in the silicon layer 101. The oxide film pattern 104 has a pattern shape corresponding to a portion other than the driving electrodes 71A and 71B to be formed in the silicon layer 101. The oxide film pattern 105 has a pattern shape corresponding to a portion to be formed in the silicon layer 102.
 酸化膜パターン104の形成においては、まず、CVD法により、シリコン層101の表面に、厚さが例えば1μmとなるまで例えば酸化シリコンを成膜する。次に、シリコン層101上の当該酸化膜について、所定のレジストパターンをマスクとして利用して行うエッチングによりパターニングする。酸化膜パターン105についても、酸化物材料の成膜、酸化膜上のレジストパターンの形成、およびその後のエッチング処理、を経てシリコン層102上に形成することができる。一方、図外のレジストパターンの形成においては、まず、シリコン層101上に液状の所定のフォトレジストをスピンコーティングにより成膜する。次に、露光処理およびその後の現像処理を経て、当該フォトレジスト膜をパターニングする。 In forming the oxide film pattern 104, first, for example, a silicon oxide film is formed on the surface of the silicon layer 101 by a CVD method until the thickness becomes, for example, 1 μm. Next, the oxide film on the silicon layer 101 is patterned by etching using a predetermined resist pattern as a mask. The oxide film pattern 105 can also be formed on the silicon layer 102 through formation of an oxide material, formation of a resist pattern on the oxide film, and subsequent etching treatment. On the other hand, in forming a resist pattern (not shown), first, a predetermined liquid photoresist is formed on the silicon layer 101 by spin coating. Next, the photoresist film is patterned through an exposure process and a subsequent development process.
 次に、図11(a)に示すように、酸化膜パターン105をマスクとして利用して、DRIEにより、シリコン層102に対してエッチング処理を施す。本工程にて、シリコン層102において形成されるべき内フレーム20の一部、外フレーム30の一部、および検出用電極61が成形されることとなる。 Next, as shown in FIG. 11A, the silicon layer 102 is etched by DRIE using the oxide film pattern 105 as a mask. In this step, a part of the inner frame 20 to be formed in the silicon layer 102, a part of the outer frame 30, and the detection electrode 61 are formed.
 次に、図11(b)に示すように、酸化膜パターン105をエッチング除去する。エッチング手法としては、ドライエッチングまたはウェットエッチングを採用することができる。ドライエッチングを採用する場合、エッチングガスとしては、例えばHFガスなどを採用することができる。ウェットエッチングを採用する場合、エッチング液としては、例えばBHFを使用することができる。 Next, as shown in FIG. 11B, the oxide film pattern 105 is removed by etching. As an etching method, dry etching or wet etching can be employed. When dry etching is employed, for example, HF gas can be employed as the etching gas. When employing wet etching, for example, BHF can be used as the etchant.
 次に、図11(c)に示すように、デバイスウエハ100における第2面102’側にパッケージングウエハ205を接合する(本発明における第2接合工程)。パッケージングウエハ205は、各々にパッケージング部材90が形成されることとなる複数のパッケージング部材形成区画を含み、当該区画ごとに凹部90aを有する(凹部90aは、例えば、未加工のパッケージングウエハ205上に所定の酸化膜パターンを形成した後、当該酸化膜パターンをマスクとして利用してパッケージングウエハ205に対してエッチング処理を施すことによって形成することができる)。本工程での接合手法としては、常温接合法や陽極接合法を採用することができる。 Next, as shown in FIG. 11C, the packaging wafer 205 is bonded to the second surface 102 'side of the device wafer 100 (second bonding step in the present invention). The packaging wafer 205 includes a plurality of packaging member forming sections in which the packaging member 90 is formed, and has a recess 90a in each section (the recess 90a is, for example, an unprocessed packaging wafer). After forming a predetermined oxide film pattern on 205, it can be formed by etching the packaging wafer 205 using the oxide film pattern as a mask. As a bonding technique in this step, a room temperature bonding method or an anodic bonding method can be employed.
 次に、図11(d)に示すように、酸化膜パターン104および上述の図外のレジストパターンをマスクとして利用して、DRIEにより、デバイスウエハ100のシリコン層101の厚さ方向の途中の深さまで、シリコン層101に対してエッチング処理を施す。当該深さは、駆動用電極71A,71Bの高さに略相当する。 Next, as shown in FIG. 11 (d), the oxide film pattern 104 and the resist pattern not shown above are used as a mask, and the depth in the middle of the thickness direction of the silicon layer 101 of the device wafer 100 is obtained by DRIE. Until then, the silicon layer 101 is etched. The depth substantially corresponds to the height of the drive electrodes 71A and 71B.
 次に、図外のレジストパターンを除去した後、図12(a)に示すように、酸化膜パターン104をマスクとして利用して、DRIEにより、シリコン層101に対してエッチング処理を施す。本工程にて、シリコン層101において形成されるべきランド部10、内フレーム20の一部、外フレーム30の一部、連結部40,50、検出用電極62A,62B、および駆動用電極71A,71B,72A,72Bが成形されることとなる。本工程の後、絶縁層103において露出している箇所、および酸化膜パターン104を、エッチング除去する。 Next, after removing the resist pattern (not shown), the silicon layer 101 is etched by DRIE using the oxide film pattern 104 as a mask as shown in FIG. In this step, the land portion 10 to be formed in the silicon layer 101, a part of the inner frame 20, a part of the outer frame 30, the connecting portions 40 and 50, the detection electrodes 62A and 62B, and the driving electrode 71A, 71B, 72A and 72B are formed. After this step, the exposed portions of the insulating layer 103 and the oxide film pattern 104 are removed by etching.
 次に、図12(b)に示すように、デバイスウエハ100における第1面101’側にパッケージングウエハ201を接合する(本発明における第1接合工程)。パッケージングウエハ201は、各々にパッケージング部材80が形成されることとなる複数のパッケージング部材形成区画を含み、当該区画ごとに凹部80aを有する。本工程での接合手法としては、常温接合法を採用する。常温接合法とは、高真空中で、接合する表面の不純物をArビームなどによってエッチング除去して当該接合表面を清浄化した状態(構成原子のダングリングボンドを露出させた状態)で部材間を張り合わせる手法であって、接合時において陽極接合の様にはガスが発生しない接合手法である。 Next, as shown in FIG. 12B, the packaging wafer 201 is bonded to the first surface 101 'side of the device wafer 100 (first bonding step in the present invention). The packaging wafer 201 includes a plurality of packaging member forming sections in which the packaging member 80 is formed, and has a recess 80a for each section. A room temperature bonding method is employed as a bonding method in this step. The room temperature bonding method is a method in which impurities on the surface to be bonded are removed by etching with an Ar beam or the like in a high vacuum to clean the bonding surface (with the dangling bonds of the constituent atoms exposed). This is a bonding method in which gas is not generated during anodic bonding as in anodic bonding.
 図15は、図12(b)に示すパッケージングウエハ201の断面に対応する断面の変化として、パッケージングウエハ201の作製方法を表す。 FIG. 15 shows a method for manufacturing the packaging wafer 201 as a change in cross section corresponding to the cross section of the packaging wafer 201 shown in FIG.
 パッケージングウエハ201の作製においては、まず、図15(a)に示すように、ウエハ201’上に酸化膜パターン202,203を形成する。ウエハ201’は、シリコンウエハであり、100Ωcm以上の高抵抗率を有するシリコン材料よりなる。ウエハ201’の厚さは例えば200~500μmである。酸化膜パターン202,203は例えば酸化シリコンよりなる。酸化膜パターン202,203の厚さは例えば0.1~2μmである。このような酸化膜パターン202,203は、例えば、熱酸化法によってウエハ201’表面に酸化膜を形成した後、当該酸化膜をパターニングすることによって形成することができる。 In manufacturing the packaging wafer 201, first, as shown in FIG. 15A, oxide film patterns 202 and 203 are formed on the wafer 201 '. The wafer 201 ′ is a silicon wafer and is made of a silicon material having a high resistivity of 100 Ωcm or more. The thickness of the wafer 201 'is, for example, 200 to 500 μm. The oxide film patterns 202 and 203 are made of, for example, silicon oxide. The thicknesses of the oxide film patterns 202 and 203 are, for example, 0.1 to 2 μm. Such oxide film patterns 202 and 203 can be formed, for example, by forming an oxide film on the surface of the wafer 201 'by a thermal oxidation method and then patterning the oxide film.
 次に、図15(b)に示すように、ウエハ201’に凹部80aを形成する。酸化膜パターン203のパターニングの際に用いたレジストパターン(図示略)をマスクとして利用して、ウエハ201’に対してドライエッチング処理を施すことによって、凹部80aを形成することができる。 Next, as shown in FIG. 15B, a recess 80a is formed in the wafer 201 '. By using the resist pattern (not shown) used for patterning the oxide film pattern 203 as a mask, the recesses 80a can be formed by performing a dry etching process on the wafer 201 '.
 次に、図15(c)に示すように、ウエハ201’上に酸化膜パターン202を覆うようにしてレジストパターン204を形成する。レジストパターン204は開口部204aを有する。 Next, as shown in FIG. 15C, a resist pattern 204 is formed on the wafer 201 ′ so as to cover the oxide film pattern 202. The resist pattern 204 has an opening 204a.
 次に、図15(d)に示すように凹部82a’を形成する。具体的には、レジストパターン204をマスクとして利用して、DRIEにより、ウエハ201’の厚さ方向の途中の深さまで、ウエハ201’に対してエッチング処理を施す。この後、例えば剥離液を使用して、レジストパターン204を除去する。 Next, as shown in FIG. 15D, a recess 82a 'is formed. Specifically, using the resist pattern 204 as a mask, the wafer 201 ′ is etched to a depth in the middle of the wafer 201 ′ by DRIE. Thereafter, the resist pattern 204 is removed using, for example, a stripping solution.
 図12(b)に示す接合工程では、以上のようにして作製されるパッケージングウエハ201と、デバイスウエハ100とを位置合わせしつつ、デバイスウエハ100のシリコン層101の第1面101’と、パッケージングウエハ201上の酸化膜パターン203(絶縁膜)とを接合する。このとき、正確な位置合わせを行うべく、パッケージングウエハ201に既に形成されている各凹部82a’と、デバイスウエハ100に既に形成されている各端子部(部分31a~31h)とを位置合わせする。また、本接合工程は常温接合法により行う。本工程を経ることによって、パッケージ内は実質的に真空封止され、ウエハレベルでのパッケージングが達成される(密閉空間Sが形成される)。 In the bonding step shown in FIG. 12B, the first surface 101 ′ of the silicon layer 101 of the device wafer 100, while aligning the packaging wafer 201 manufactured as described above and the device wafer 100, The oxide film pattern 203 (insulating film) on the packaging wafer 201 is bonded. At this time, in order to perform accurate alignment, the recesses 82a ′ already formed on the packaging wafer 201 and the terminal portions (portions 31a to 31h) already formed on the device wafer 100 are aligned. . Moreover, this joining process is performed by the normal temperature joining method. Through this step, the inside of the package is substantially vacuum-sealed, and packaging at the wafer level is achieved (sealed space S is formed).
 パッケージドデバイスXの製造においては、次に、図12(c)に示すように、例えばDRIEまたは研磨処理を施すことによって、パッケージングウエハ205を薄肉化する。 In the manufacture of the packaged device X, next, as shown in FIG. 12C, the packaging wafer 205 is thinned by, for example, performing DRIE or polishing treatment.
 次に、図13(a)に示すように、酸化膜パターン202をマスクとして利用して、DRIEにより、パッケージングウエハ201ないしウエハ201’の厚さ方向の途中の深さまで、パッケージングウエハ201ないしウエハ201’に対してエッチング処理を施す(本発明における第1パッケージングウエハ加工工程の開始)。これにより、ウエハ201’において酸化膜パターン202によって覆われていない領域が薄肉化される。また、このとき、パッケージングウエハ201内にて凹部82a’は図中下方に延びる。この後、酸化膜パターン202を除去する。 Next, as shown in FIG. 13A, using the oxide film pattern 202 as a mask, the packaging wafer 201 to the depth in the middle of the thickness direction of the packaging wafer 201 to the wafer 201 ′ by DRIE. Etching is performed on the wafer 201 ′ (start of the first packaging wafer processing step in the present invention). As a result, a region of the wafer 201 ′ that is not covered with the oxide film pattern 202 is thinned. At this time, the recess 82 a ′ extends downward in the drawing within the packaging wafer 201. Thereafter, the oxide film pattern 202 is removed.
 次に、図13(b)に示すように、DRIEにより、パッケージングウエハ201ないしウエハ201’に対してエッチング処理を施す。本工程にて、ウエハ201’において酸化膜パターン202によって覆われていた領域は薄肉化され且つウエハ201’において酸化膜パターン202によって覆われていなかった領域は更に薄肉化されて、各パッケージング部材80における第1部位81および薄肉の第2部位82が形成される。また、凹部82a’は、ウエハ201’を貫通して酸化膜パターン203に至ることとなる。 Next, as shown in FIG. 13B, the packaging wafer 201 or the wafer 201 'is etched by DRIE. In this step, the region covered with the oxide film pattern 202 on the wafer 201 ′ is thinned, and the region not covered with the oxide film pattern 202 on the wafer 201 ′ is further thinned. A first portion 81 and a thin second portion 82 at 80 are formed. Further, the recess 82 a ′ penetrates the wafer 201 ′ and reaches the oxide film pattern 203.
 次に、図13(c)に示すように、酸化膜パターン203において凹部82a’に臨む箇所をエッチング除去する。本工程にて、各パッケージング部材80における貫通孔82aが形成されることとなる(本発明における第1パッケージングウエハ加工工程の終了)。 Next, as shown in FIG. 13C, the portion of the oxide film pattern 203 that faces the recess 82a 'is removed by etching. In this step, the through hole 82a in each packaging member 80 is formed (end of the first packaging wafer processing step in the present invention).
 次に、図14の(a)および(b)に示すように、デバイスウエハ100およびパッケージングウエハ201,205よりなる積層構造体を切断する(本発明における切断工程)。以上のようにして、本発明に係るパッケージドデバイスXを製造することができる。 Next, as shown in FIGS. 14A and 14B, the laminated structure including the device wafer 100 and the packaging wafers 201 and 205 is cut (cutting process in the present invention). As described above, the packaged device X according to the present invention can be manufactured.
 本方法によると、ウエハレベルでのパッケージングを達成することができるので、マイクロ可動素子たるセンシングデバイスYの各部のゴミの付着や損傷に起因する、可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)の動作性能の悪化を抑制することができる。 According to this method, since packaging at the wafer level can be achieved, the movable part (land part 10, inner frame 20, detection due to adhesion or damage of each part of the sensing device Y as a micro movable element) The deterioration of the operation performance of the electrodes 61, 62A, 62B) can be suppressed.
 本方法によって得られるパッケージドデバイスXは、上述のように、外部接続用の端子部(部分31a~31h)の一部がパッケージ外に露出しており、ワイヤボンディングによって外部回路等と電気的に接続することが可能である(部分31gについて図9に示す)。そして、パッケージドデバイスXにおいては、パッケージング部材80が100Ωcm以上の抵抗率を有するため、ワイヤボンディングによってパッケージング部材80の貫通孔82aを通過するように形成される配線Wと当該パッケージング部材80との間が容量結合して浮遊容量が発生するのを、充分に抑制することが可能である(有意な浮遊容量が発生してしまうと、可動部における微小信号レベルでの駆動や検知が阻害される)。したがって、パッケージドデバイスXは、ワイヤボンディングによる電気的接続に適する。このようなパッケージドデバイスXでは、パッケージング部材を貫通する外部接続用の導電プラグを設ける必要がなく、例えば製造コスト抑制の観点から好ましい。 In the packaged device X obtained by this method, as described above, part of the external connection terminal portions (parts 31a to 31h) are exposed outside the package, and are electrically connected to an external circuit or the like by wire bonding. It is possible to connect (the part 31g is shown in FIG. 9). In the packaged device X, since the packaging member 80 has a resistivity of 100 Ωcm or more, the wiring W formed so as to pass through the through hole 82a of the packaging member 80 by wire bonding and the packaging member 80. It is possible to sufficiently suppress stray capacitance from being capacitively coupled with each other (if significant stray capacitance occurs, driving and detection at a small signal level in the movable part is hindered. ) Therefore, the packaged device X is suitable for electrical connection by wire bonding. In such a packaged device X, it is not necessary to provide a conductive plug for external connection penetrating the packaging member, which is preferable from the viewpoint of, for example, manufacturing cost reduction.
 本方法においては、ウエハレベルパッケージを実現するための、図12(b)を参照して上述した接合工程(第2接合工程よりも後に行われる第1接合工程)は少なくとも、常温接合法によって行われる。常温接合法は、接合時において陽極接合の様にはガスが発生しない接合手法である。そのため、本方法は、パッケージ内に形成されて可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)を包容する密閉空間S内において高真空度を達成するのに好適である。密閉空間S内の真空度が高いほど、可動部は高周波振動しやすく、センシングデバイスYの感度が向上する傾向にあり、センシングデバイスYの高性能化の観点から好ましい。 In this method, the bonding step (first bonding step performed after the second bonding step) described above with reference to FIG. 12B for realizing the wafer level package is performed at least by the room temperature bonding method. Is called. The room temperature bonding method is a bonding method in which no gas is generated during anodic bonding as in anodic bonding. Therefore, this method is suitable for achieving a high degree of vacuum in the sealed space S formed in the package and enclosing the movable part (land part 10, inner frame 20, detection electrodes 61, 62A, 62B). is there. The higher the degree of vacuum in the sealed space S, the easier it is for the movable part to vibrate at a high frequency, and the sensitivity of the sensing device Y tends to improve, which is preferable from the viewpoint of improving the performance of the sensing device Y.
 本方法は、デバイスウエハ100に接合される前のパッケージングウエハ201の強度ないし取り扱いやすさを確保しやすい。図12(b)を参照して上述した接合工程(第1接合工程)に供されるパッケージングウエハ201には、当該ウエハ201を貫通する開口部が形成されていないからである。センシングデバイスYの端子部(部分31a~31h)をパッケージ外に露出させるためにパッケージング部材80に形成されるべき貫通孔82aは、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ201に対して加工が施されることによって形成される(第1パッケージングウエハ加工工程)。 This method makes it easy to ensure the strength or ease of handling of the packaging wafer 201 before being bonded to the device wafer 100. This is because the opening portion penetrating the wafer 201 is not formed in the packaging wafer 201 used in the bonding step (first bonding step) described above with reference to FIG. The through hole 82a to be formed in the packaging member 80 to expose the terminal portions (portions 31a to 31h) of the sensing device Y to the outside of the package is formed after the wafer level packaging is achieved (first and second bonding). After the processes are completed, the packaging wafer 201 is bonded to the device wafer 100 and is less likely to be damaged. Then, the packaging wafer 201 is processed (first packaging wafer processing process).
 本方法においては、パッケージドデバイスXについて適切に薄型化が図られている。図12(b)を参照して上述した接合工程(第1接合工程)に供されるパッケージングウエハ201(製造されるパッケージドデバイスXにおけるパッケージング部材80を形成するための複数の区画を含む)の厚さは、パッケージング部材80の厚さと同じではなく、パッケージング部材80よりも厚いパッケージングウエハ201が第1接合工程に供される。そして、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ201に対して加工が施されることによって、パッケージングウエハ201は所望の程度に薄肉化される(第1パッケージングウエハ加工工程)。パッケージング部材80はこのようにして薄肉化されたパッケージングウエハ201に由来することとなる。また、図11(c)を参照して上述した接合工程(第2接合工程)に供されるパッケージングウエハ205(製造されるパッケージドデバイスXにおけるパッケージング部材90を形成するための複数の区画を含む)の厚さは、パッケージング部材90の厚さと同じではなく、パッケージング部材90よりも厚いパッケージングウエハ205が第2接合工程に供される。そして、ウエハレベルパッケージングが達成された後、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ205に対して加工が施されることによって、パッケージングウエハ205は所望の程度に薄肉化される。パッケージング部材90はこのようにして薄肉化されたパッケージングウエハ205に由来することとなる。したがって、本方法は、デバイスウエハ100に接合される前のパッケージングウエハ201,205の強度ないし取り扱いやすさを確保しつつ、パッケージドデバイスXを薄肉化するのに好適である。 In this method, the packaged device X is appropriately thinned. A packaging wafer 201 (including a plurality of sections for forming the packaging member 80 in the manufactured packaged device X to be manufactured) used in the bonding process (first bonding process) described above with reference to FIG. ) Is not the same as the thickness of the packaging member 80, and the packaging wafer 201 thicker than the packaging member 80 is used for the first bonding step. After wafer level packaging is achieved (after both the first and second bonding steps are completed), the packaging wafer 201 that is bonded to the device wafer 100 and is less likely to be damaged is processed. As a result, the packaging wafer 201 is thinned to a desired degree (first packaging wafer processing step). The packaging member 80 is derived from the thinned packaging wafer 201 in this way. Also, a plurality of sections for forming the packaging wafer 205 (the packaging member 90 in the packaged device X to be manufactured) used in the bonding process (second bonding process) described above with reference to FIG. Is not the same as the thickness of the packaging member 90, and the packaging wafer 205 thicker than the packaging member 90 is subjected to the second bonding step. Then, after wafer level packaging is achieved, the packaging wafer 205 is bonded to the device wafer 100 and is less likely to be damaged. Is thinned. The packaging member 90 comes from the packaging wafer 205 thinned in this way. Therefore, this method is suitable for reducing the thickness of the packaged device X while ensuring the strength or ease of handling of the packaging wafers 201 and 205 before being bonded to the device wafer 100.
 本方法によって製造されるパッケージドデバイスXのパッケージング部材80においては、第1部位81よりも更に薄肉の第2部位82に貫通孔82aが設けられているところ、このような構成は、各貫通孔82aにて部分的に露出する端子部(部分31a~31h)に対してワイヤボンディングするのに好適である。例えば図16に示すように、ワイヤボンディングの際にワイヤボンダWBのキャピラリCがパッケージドデバイスXのパッケージング部材80に不当に当接するのを回避するのに資するからである。 In the packaging member 80 of the packaged device X manufactured by this method, the through hole 82a is provided in the second portion 82 that is thinner than the first portion 81. This is suitable for wire bonding to the terminal portions (portions 31a to 31h) partially exposed in the hole 82a. For example, as shown in FIG. 16, this contributes to avoiding the capillary C of the wire bonder WB from abutting against the packaging member 80 of the packaged device X during wire bonding.
 本方法によって製造されるパッケージドデバイスXにおいては、パッケージング部材80は酸化膜パターン203(絶縁膜)を介してセンシングデバイスYに対して接合されている。酸化膜パターン203によって、センシングデバイスYとパッケージング部材80とが電気的に分離され、センシングデバイスYの各部がパッケージング部材80を介して不当に電気的に接続するのを、回避することができる。 In the packaged device X manufactured by this method, the packaging member 80 is bonded to the sensing device Y through the oxide film pattern 203 (insulating film). The sensing device Y and the packaging member 80 are electrically separated by the oxide film pattern 203, so that it is possible to prevent each part of the sensing device Y from being illegally electrically connected via the packaging member 80. .
 パッケージドデバイスXにおいて例えばシリコン材料よりなるパッケージング部材90を採用する場合には、酸化膜などの絶縁膜を介してセンシングデバイスYとパッケージング部材90とを接合してもよい。この場合、当該絶縁膜によって、センシングデバイスYとパッケージング部材90とが電気的に分離され、センシングデバイスYの各部がパッケージング部材90を介して不当に電気的に接続するのを、回避することができる。 When the packaging member 90 made of, for example, a silicon material is employed in the packaged device X, the sensing device Y and the packaging member 90 may be joined via an insulating film such as an oxide film. In this case, it is avoided that the sensing device Y and the packaging member 90 are electrically separated by the insulating film, and that each part of the sensing device Y is illegally electrically connected via the packaging member 90. Can do.
 パッケージドデバイスXにおけるパッケージング部材80の各貫通孔82aの少なくとも開口端は、例えば図9に示すように、センシングデバイスYから遠ざかるにつれて広がる形状を有してもよい。このような貫通孔82aは、図13(b)を参照して上述した工程でのエッチング条件を適当に調整して、貫通孔82aの内壁面を所定程度に傾斜させることによって、形成することができる。このような構成においては、例えば図16に示すように、各貫通孔82aにて部分的に露出する端子部(部分31a~31h)に対してワイヤボンディングしやすい。 At least the open end of each through hole 82a of the packaging member 80 in the packaged device X may have a shape that widens as the distance from the sensing device Y increases, for example, as shown in FIG. Such a through hole 82a can be formed by appropriately adjusting the etching conditions in the process described above with reference to FIG. 13B and inclining the inner wall surface of the through hole 82a to a predetermined degree. it can. In such a configuration, for example, as shown in FIG. 16, it is easy to wire bond to the terminal portions (portions 31a to 31h) that are partially exposed in the respective through holes 82a.
 また、本方法においては、図12(b)を参照して上述した接合工程(第1接合工程)の前に図15の(c)および(d)を参照して上述した工程を行う代わりに、図15(b)に示す状態にあるパッケージングウエハ201を第1接合工程にてデバイスウエハ100に接合した後に、当該パッケージングウエハ201に対し、図15の(c)および(d)を参照して上述した工程を行ってもよい。 Moreover, in this method, instead of performing the process described above with reference to FIGS. 15C and 15D prior to the bonding process (first bonding process) described above with reference to FIG. 15B, after bonding the packaging wafer 201 in the state shown in FIG. 15B to the device wafer 100 in the first bonding step, refer to FIGS. 15C and 15D for the packaging wafer 201. And you may perform the process mentioned above.
 図17から図20は、マイクロマシニング技術によってパッケージドデバイスXを製造するための第2の方法の一部を表す。図17から図20は、単一のデバイス形成区画に含まれる図5に対応する断面の変化を表したものである。 FIGS. 17 to 20 show a part of the second method for manufacturing the packaged device X by the micromachining technology. 17 to 20 show changes in cross section corresponding to FIG. 5 included in a single device formation section.
 本方法においては、まず、図17(a)に示すようなデバイスウエハ100を用意する。デバイスウエハ100は、シリコン層101,102と、当該シリコン層101,102間の絶縁層103とからなる積層構造を有するSOIウエハであり、各々にセンシングデバイスYが形成されることとなる複数のデバイス形成区画を含む。次に、図17(b)に示すように、シリコン層101および絶縁層103を貫通する貫通孔101aを形成する。次に、図17(c)に示すように、導電プラグ11を形成する。次に、図17(d)に示すように、シリコン層101上に酸化膜パターン104を形成し、シリコン層102上に酸化膜パターン105を形成する。また、シリコン層101上に図外のレジストパターンも形成する。図17の(a)から(d)に示す工程は、具体的には、図10の(a)から(d)を参照して第1の方法に関して上述した工程と同じである。 In this method, first, a device wafer 100 as shown in FIG. The device wafer 100 is an SOI wafer having a laminated structure including silicon layers 101 and 102 and an insulating layer 103 between the silicon layers 101 and 102, and a plurality of devices on which a sensing device Y is formed. Includes forming compartment. Next, as shown in FIG. 17B, a through hole 101a penetrating the silicon layer 101 and the insulating layer 103 is formed. Next, as shown in FIG. 17C, the conductive plug 11 is formed. Next, as illustrated in FIG. 17D, an oxide film pattern 104 is formed on the silicon layer 101, and an oxide film pattern 105 is formed on the silicon layer 102. A resist pattern (not shown) is also formed on the silicon layer 101. The steps shown in FIGS. 17A to 17D are specifically the same as the steps described above with reference to the first method with reference to FIGS. 10A to 10D.
 次に、図18(a)に示すように、酸化膜パターン104および図外のレジストパターンをマスクとして利用して、DRIEにより、シリコン層101の厚さ方向の途中の深さまで、シリコン層101に対してエッチング処理を施す。当該深さは、駆動用電極71A,71Bの高さに略相当する。 Next, as shown in FIG. 18A, using the oxide film pattern 104 and a resist pattern outside the figure as a mask, the silicon layer 101 is formed to a depth in the thickness direction of the silicon layer 101 by DRIE. Etching is performed on the surface. The depth substantially corresponds to the height of the drive electrodes 71A and 71B.
 次に、図外のレジストパターンを除去した後、図18(b)に示すように、酸化膜パターン104をマスクとして利用して、DRIEにより、シリコン層101に対してエッチング処理を施す。本工程にて、シリコン層101において形成されるべきランド部10、内フレーム20の一部、外フレーム30の一部、連結部40,50、検出用電極62A,62B、および駆動用電極71A,71B,72A,72Bが成形されることとなる。本工程の後、酸化膜パターン104を除去する。 Next, after removing the resist pattern outside the figure, as shown in FIG. 18B, the silicon layer 101 is etched by DRIE using the oxide film pattern 104 as a mask. In this step, the land portion 10 to be formed in the silicon layer 101, a part of the inner frame 20, a part of the outer frame 30, the connecting portions 40 and 50, the detection electrodes 62A and 62B, and the driving electrode 71A, 71B, 72A and 72B are formed. After this step, the oxide film pattern 104 is removed.
 次に、図18(c)に示すように、デバイスウエハ100における第1面101’側にパッケージングウエハ201を接合する(本発明おける第1接合工程)。パッケージングウエハ201は、各々にパッケージング部材80が形成されることとなる複数のパッケージング部材形成区画を含み、当該区画ごとに凹部80aを有する。パッケージングウエハ201は、図15を参照して上述したように作製することができる。本工程では、パッケージングウエハ201と、デバイスウエハ100とを位置合わせしつつ、デバイスウエハ100のシリコン層101の第1面101’と、パッケージングウエハ201上の酸化膜パターン203(絶縁膜)とを接合する。このとき、正確な位置合わせを行うべく、パッケージングウエハ201に既に形成されている各凹部82a’と、デバイスウエハ100に既に形成されている各端子部(部分31a~31h)とを位置合わせする。本工程における接合手法としては、常温接合法や陽極接合法を採用することができる。 Next, as shown in FIG. 18C, the packaging wafer 201 is bonded to the first surface 101 'side of the device wafer 100 (first bonding step in the present invention). The packaging wafer 201 includes a plurality of packaging member forming sections in which the packaging member 80 is formed, and has a recess 80a for each section. The packaging wafer 201 can be manufactured as described above with reference to FIG. In this step, while aligning the packaging wafer 201 and the device wafer 100, the first surface 101 ′ of the silicon layer 101 of the device wafer 100 and the oxide film pattern 203 (insulating film) on the packaging wafer 201 Join. At this time, in order to perform accurate alignment, the recesses 82a ′ already formed on the packaging wafer 201 and the terminal portions (portions 31a to 31h) already formed on the device wafer 100 are aligned. . As a bonding technique in this step, a room temperature bonding method or an anodic bonding method can be employed.
 次に、図18(d)に示すように、酸化膜パターン105をマスクとして利用して、DRIEにより、シリコン層102に対してエッチング処理を施す。本工程にて、シリコン層102において形成されるべき内フレーム20の一部、外フレーム30の一部、および検出用電極61が成形されることとなる。 Next, as shown in FIG. 18D, the silicon layer 102 is etched by DRIE using the oxide film pattern 105 as a mask. In this step, a part of the inner frame 20 to be formed in the silicon layer 102, a part of the outer frame 30, and the detection electrode 61 are formed.
 次に、図19(a)に示すように、絶縁層103において露出している箇所、および酸化膜パターン105を、エッチング除去する。エッチング手法としては、ドライエッチングまたはウェットエッチングを採用することができる。 Next, as shown in FIG. 19A, the exposed portions of the insulating layer 103 and the oxide film pattern 105 are removed by etching. As an etching method, dry etching or wet etching can be employed.
 次に、図19(b)に示すように、デバイスウエハ100における第2面102’側にパッケージングウエハ205を接合する(本発明における第2接合工程)。パッケージングウエハ205は、各々にパッケージング部材90が形成されることとなる複数のパッケージング部材形成区画を含み、当該区画ごとに凹部90aを有する。また、本接合工程は常温接合法により行う。本工程を経ることによって、パッケージ内は実質的に真空封止され、ウエハレベルでのパッケージングが達成される(密閉空間Sが形成される)。 Next, as shown in FIG. 19B, the packaging wafer 205 is bonded to the second surface 102 'side of the device wafer 100 (second bonding step in the present invention). The packaging wafer 205 includes a plurality of packaging member forming sections in which the packaging member 90 is formed, and has a recess 90a for each section. Moreover, this joining process is performed by the normal temperature joining method. Through this step, the inside of the package is substantially vacuum-sealed, and packaging at the wafer level is achieved (sealed space S is formed).
 次に、図19(c)に示すように、例えばDRIEまたは研磨処理を施すことによって、パッケージングウエハ205を薄肉化する。 Next, as shown in FIG. 19C, the packaging wafer 205 is thinned by, for example, performing DRIE or polishing treatment.
 次に、図20(a)に示すように、酸化膜パターン202をマスクとして利用して、DRIEにより、パッケージングウエハ201ないしウエハ201’の厚さ方向の途中の深さまで、パッケージングウエハ201ないしウエハ201’に対してエッチング処理を施す(本発明における第1パッケージングウエハ加工工程の開始)。これにより、ウエハ201’において酸化膜パターン202によって覆われていない領域が薄肉化される。また、このとき、パッケージングウエハ201内にて凹部82a’は図中下方に延びる。この後、酸化膜パターン202を除去する。 Next, as shown in FIG. 20A, using the oxide film pattern 202 as a mask, the packaging wafer 201 thru | or the depth in the middle of the thickness direction of the packaging wafer 201 thru | or wafer 201 'by DRIE. Etching is performed on the wafer 201 ′ (start of the first packaging wafer processing step in the present invention). As a result, a region of the wafer 201 ′ that is not covered with the oxide film pattern 202 is thinned. At this time, the recess 82 a ′ extends downward in the drawing within the packaging wafer 201. Thereafter, the oxide film pattern 202 is removed.
 次に、図20(b)に示すように、DRIEにより、パッケージングウエハ201ないしウエハ201’に対してエッチング処理を施す。本工程にて、ウエハ201’において酸化膜パターン202によって覆われていた領域は薄肉化され且つウエハ201’において酸化膜パターン202によって覆われていなかった領域は更に薄肉化されて、各パッケージング部材80における第1部位81および薄肉の第2部位82が形成される。また、凹部82a’は、ウエハ201’を貫通して酸化膜パターン203に至ることとなる。 Next, as shown in FIG. 20B, the packaging wafer 201 or the wafer 201 'is etched by DRIE. In this step, the region covered with the oxide film pattern 202 on the wafer 201 ′ is thinned, and the region not covered with the oxide film pattern 202 on the wafer 201 ′ is further thinned. A first portion 81 and a thin second portion 82 at 80 are formed. Further, the recess 82 a ′ penetrates the wafer 201 ′ and reaches the oxide film pattern 203.
 次に、図20(c)に示すように、酸化膜パターン203において凹部82a’に臨む箇所をエッチング除去する(本発明における第1パッケージングウエハ加工工程の終了)。本工程にて、各パッケージング部材80における貫通孔82aが形成されることとなる。 Next, as shown in FIG. 20C, the portion of the oxide film pattern 203 facing the recess 82a 'is removed by etching (end of the first packaging wafer processing step in the present invention). In this step, the through hole 82a in each packaging member 80 is formed.
 次に、図14の(a)および(b)に示すように、第1の方法に関して上述したのと同様にして、デバイスウエハ100およびパッケージングウエハ201,205よりなる積層構造体を切断する(本発明における切断工程)。以上のような方法によっても、本発明に係るパッケージドデバイスXを製造することができる。 Next, as shown in FIGS. 14A and 14B, the stacked structure including the device wafer 100 and the packaging wafers 201 and 205 is cut in the same manner as described above with respect to the first method ( Cutting step in the present invention). The packaged device X according to the present invention can also be manufactured by the method as described above.
 本方法によると、ウエハレベルでのパッケージングを達成することができるので、マイクロ可動素子たるセンシングデバイスYの各部のゴミの付着や損傷に起因する、可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)の動作性能の悪化を抑制することができる。 According to this method, since packaging at the wafer level can be achieved, the movable part (land part 10, inner frame 20, detection due to adhesion or damage of each part of the sensing device Y as a micro movable element) The deterioration of the operation performance of the electrodes 61, 62A, 62B) can be suppressed.
 本方法によると、上述の第1の方法と同様に、ワイヤボンディングによる電気的接続に適したパッケージドデバイスXを製造することができる。 According to this method, a packaged device X suitable for electrical connection by wire bonding can be manufactured as in the first method described above.
 本方法においては、ウエハレベルパッケージを実現するための、図19(b)を参照して上述した接合工程(第1接合工程よりも後に行われる第2接合工程)は少なくとも、常温接合法によって行われる。常温接合法は、接合時において陽極接合の様にはガスが発生しない接合手法であるため、本方法は、パッケージ内に形成されて可動部(ランド部10、内フレーム20、検出用電極61,62A,62B)を包容する密閉空間S内において高真空度を達成するのに好適である。密閉空間S内の真空度が高いほど、可動部は高周波振動しやすく、センシングデバイスYの感度が向上する傾向にあり、センシングデバイスYの高性能化の観点から好ましい。 In this method, the bonding step described above with reference to FIG. 19B (second bonding step performed after the first bonding step) for realizing a wafer level package is performed at least by a room temperature bonding method. Is called. The room temperature bonding method is a bonding method in which gas is not generated during anodic bonding at the time of bonding. Therefore, the present method is formed in a package to form a movable portion (land portion 10, inner frame 20, detection electrode 61, 62A, 62B) is suitable for achieving a high degree of vacuum in the enclosed space S that encloses. The higher the degree of vacuum in the sealed space S, the easier it is for the movable part to vibrate at a high frequency, and the sensitivity of the sensing device Y tends to improve, which is preferable from the viewpoint of improving the performance of the sensing device Y.
 本方法は、デバイスウエハ100に接合される前のパッケージングウエハ201の強度ないし取り扱いやすさを確保しやすい。図18(c)を参照して上述した接合工程(第1接合工程)に供されるパッケージングウエハ201には、当該ウエハ201を貫通する開口部が形成されていないからである。センシングデバイスYの端子部(部分31a~31h)をパッケージ外に露出させるためにパッケージング部材80に形成されるべき貫通孔82aは、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ201に対して加工が施されることによって形成される(第1パッケージングウエハ加工工程)。 This method makes it easy to ensure the strength or ease of handling of the packaging wafer 201 before being bonded to the device wafer 100. This is because the packaging wafer 201 used in the bonding process (first bonding process) described above with reference to FIG. 18C does not have an opening penetrating the wafer 201. The through hole 82a to be formed in the packaging member 80 to expose the terminal portions (portions 31a to 31h) of the sensing device Y to the outside of the package is formed after the wafer level packaging is achieved (first and second bonding). After the processes are completed, the packaging wafer 201 is bonded to the device wafer 100 and is less likely to be damaged. Then, the packaging wafer 201 is processed (first packaging wafer processing process).
 本方法においては、パッケージドデバイスXについて適切に薄型化が図られている。図18(c)を参照して上述した接合工程(第1接合工程)に供されるパッケージングウエハ201(製造されるパッケージドデバイスXにおけるパッケージング部材80を形成するための複数の区画を含む)の厚さは、パッケージング部材80の厚さと同じではなく、パッケージング部材80よりも厚いパッケージングウエハ201が第1接合工程に供される。そして、ウエハレベルパッケージングが達成された後(第1および第2接合工程が共に終了した後)、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ201に対して加工が施されることによって、パッケージングウエハ201は所望の程度に薄肉化される(第1パッケージングウエハ加工工程)。パッケージング部材80はこのようにして薄肉化されたパッケージングウエハ201に由来することとなる。また、図19(b)を参照して上述した接合工程(第2接合工程)に供されるパッケージングウエハ205(製造されるパッケージドデバイスXにおけるパッケージング部材90を形成するための複数の区画を含む)の厚さは、パッケージング部材90の厚さと同じではなく、パッケージング部材90よりも厚いパッケージングウエハ205が第2接合工程に供される。そして、ウエハレベルパッケージングが達成された後、デバイスウエハ100に接合して破損しにくくなった状態にあるパッケージングウエハ205に対して加工が施されることによって、パッケージングウエハ205は所望の程度に薄肉化される。パッケージング部材90はこのようにして薄肉化されたパッケージングウエハ205に由来することとなる。したがって、本方法は、デバイスウエハ100に接合される前のパッケージングウエハ201,205の強度ないし取り扱いやすさを確保しつつ、パッケージドデバイスXを薄肉化するのに好適である。 In this method, the packaged device X is appropriately thinned. A packaging wafer 201 (including a plurality of sections for forming the packaging member 80 in the manufactured packaged device X to be manufactured) provided for the bonding process (first bonding process) described above with reference to FIG. ) Is not the same as the thickness of the packaging member 80, and the packaging wafer 201 thicker than the packaging member 80 is used for the first bonding step. After wafer level packaging is achieved (after both the first and second bonding steps are completed), the packaging wafer 201 that is bonded to the device wafer 100 and is less likely to be damaged is processed. As a result, the packaging wafer 201 is thinned to a desired degree (first packaging wafer processing step). The packaging member 80 is derived from the thinned packaging wafer 201 in this way. In addition, the packaging wafer 205 (a plurality of sections for forming the packaging member 90 in the manufactured packaged device X to be manufactured) used in the bonding process (second bonding process) described above with reference to FIG. Is not the same as the thickness of the packaging member 90, and the packaging wafer 205 thicker than the packaging member 90 is subjected to the second bonding step. Then, after wafer level packaging is achieved, the packaging wafer 205 is bonded to the device wafer 100 and is less likely to be damaged. Is thinned. The packaging member 90 comes from the packaging wafer 205 thinned in this way. Therefore, this method is suitable for reducing the thickness of the packaged device X while ensuring the strength or ease of handling of the packaging wafers 201 and 205 before being bonded to the device wafer 100.
 また、本方法においては、図18(c)を参照して上述した接合工程(第1接合工程)の前に図15の(c)および(d)の工程を行う代わりに、図15(b)に示す状態にあるパッケージングウエハ201を第1接合工程にてデバイスウエハ100に接合した後に、当該パッケージングウエハ201に対し、図15の(c)および(d)を参照して上述した工程を行ってもよい。 Further, in this method, instead of performing the steps (c) and (d) in FIG. 15 before the joining step (first joining step) described above with reference to FIG. ) After bonding the packaging wafer 201 in the state shown in FIG. 15 to the device wafer 100 in the first bonding process, the process described above with reference to FIGS. 15C and 15D with respect to the packaging wafer 201. May be performed.

Claims (20)

  1.  可動部および端子部を有するマイクロ可動素子と、前記端子部に対応する位置に貫通孔を有して前記マイクロ可動素子に接合された第1パッケージング部材と、前記第1パッケージング部材とは反対の側において前記マイクロ可動素子に接合された第2パッケージング部材とを備える、パッケージドマイクロ可動素子を製造するための方法であって、
     第1面および当該第1面とは反対の第2面を有し、前記マイクロ可動素子を形成するための複数のマイクロ可動素子形成区画を含むデバイスウエハ、の前記第1面側に、前記第1パッケージング部材を形成するための複数の第1パッケージング部材形成区画を含み且つ100Ωcm以上の抵抗率を有する第1パッケージングウエハを接合する、第1接合工程と、
     前記第2パッケージング部材を形成するための複数の第2パッケージング部材形成区画を含む第2パッケージングウエハを、前記デバイスウエハの前記第2面側に接合する、第2接合工程と、
     各第1パッケージング部材形成区画において前記貫通孔を形成する第1パッケージングウエハ加工工程と、
     前記デバイスウエハ、前記第1パッケージングウエハ、および前記第2パッケージングウエハを含む積層構造体を切断する切断工程と、を含み、
     前記第1接合工程および前記第2接合工程の少なくともいずれか遅い工程は、常温接合法によって行う、パッケージドマイクロ可動素子製造方法。
    A micro movable element having a movable part and a terminal part, a first packaging member having a through hole at a position corresponding to the terminal part and joined to the micro movable element, and the first packaging member being opposite to each other And a second packaging member joined to the micro movable element on the side of the package, the method for manufacturing a packaged micro movable element,
    A device wafer having a first surface and a second surface opposite to the first surface and including a plurality of micro movable element forming sections for forming the micro movable element, on the first surface side, the first surface side Bonding a first packaging wafer including a plurality of first packaging member forming sections for forming one packaging member and having a resistivity of 100 Ωcm or more;
    A second bonding step of bonding a second packaging wafer including a plurality of second packaging member forming sections for forming the second packaging member to the second surface side of the device wafer;
    A first packaging wafer processing step for forming the through hole in each first packaging member forming section;
    Cutting the stacked structure including the device wafer, the first packaging wafer, and the second packaging wafer,
    The packaged micro movable element manufacturing method, wherein at least one of the first joining step and the second joining step is performed by a room temperature joining method.
  2.  前記第1パッケージングウエハ加工工程では、各第1パッケージング部材形成区画において前記第1パッケージングウエハを薄肉化する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The packaged micro movable device manufacturing method according to claim 1, wherein, in the first packaging wafer processing step, the first packaging wafer is thinned in each first packaging member forming section.
  3.  前記第1接合工程より前または後に、前記第1パッケージングウエハの各第1パッケージング部材形成区画における貫通孔形成箇所に凹部を形成する、請求項2に記載のパッケージドマイクロ可動素子製造方法。 3. The packaged micro movable device manufacturing method according to claim 2, wherein a recess is formed at a through hole forming portion in each first packaging member forming section of the first packaging wafer before or after the first bonding step.
  4.  前記第1パッケージング部材形成区画は、第1領域と、前記貫通孔形成箇所およびその周囲を含む第2領域とを含み、前記第1パッケージングウエハ加工工程は、前記第2領域に対して異方性エッチング処理を施すことによって当該第2領域を薄肉化しつつ前記貫通孔を形成する第1工程と、前記第2領域を更に薄肉化しつつ前記第1領域を薄肉化する第2工程とを含む、請求項3に記載のパッケージドマイクロ可動素子製造方法。 The first packaging member forming section includes a first region and a second region including the through hole forming portion and its periphery, and the first packaging wafer processing step is different from the second region. A first step of forming the through-hole while thinning the second region by performing an isotropic etching process; and a second step of thinning the first region while further thinning the second region. The packaged micro movable device manufacturing method according to claim 3.
  5.  前記第1接合工程より前に、前記第1パッケージングウエハの各第1パッケージング部材形成区画において、前記マイクロ可動素子の前記可動部に相対することとなる凹部を形成する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The recessed part which will be opposed to the said movable part of the said micro movable element is formed in each 1st packaging member formation division of the said 1st packaging wafer before the said 1st joining process. Packaged micro movable element manufacturing method.
  6.  前記第2接合工程より前に、前記第2パッケージングウエハの各第2パッケージング部材形成区画において、前記マイクロ可動素子の前記可動部に相対することとなる凹部を形成する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The recessed part which will be opposed to the said movable part of the said micro movable element is formed in each 2nd packaging member formation division of the said 2nd packaging wafer before the said 2nd joining process. Packaged micro movable element manufacturing method.
  7.  前記第1パッケージングウエハ加工工程では、前記貫通孔の少なくとも開口端を、前記マイクロ可動素子から遠ざかるにつれて広がる形状に形成する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 2. The packaged micro movable device manufacturing method according to claim 1, wherein in the first packaging wafer processing step, at least an opening end of the through hole is formed in a shape that widens as the distance from the micro movable device increases.
  8.  前記第1接合工程では、絶縁膜を介して前記デバイスウエハと前記第1パッケージングウエハとを接合する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The packaged micro movable device manufacturing method according to claim 1, wherein, in the first bonding step, the device wafer and the first packaging wafer are bonded via an insulating film.
  9.  前記第2接合工程では、絶縁膜を介して前記デバイスウエハと前記第2パッケージングウエハとを接合する、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The packaged micro movable element manufacturing method according to claim 1, wherein, in the second bonding step, the device wafer and the second packaging wafer are bonded via an insulating film.
  10.  前記デバイスウエハは、前記第1面を有する第1層と、前記第2面を有する第2層と、当該第1および第2層の間の中間層とからなる積層構造を有し、前記第2接合工程を前記第1接合工程より前に行い、前記第2接合工程より前に、前記第2面上に設けたマスクパターンをマスクとして用いて前記第2層に対してエッチング処理を施す加工工程を行う、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The device wafer has a laminated structure including a first layer having the first surface, a second layer having the second surface, and an intermediate layer between the first and second layers. A process in which two bonding steps are performed before the first bonding step, and an etching process is performed on the second layer using a mask pattern provided on the second surface as a mask before the second bonding step. The packaged micro movable device manufacturing method according to claim 1, wherein the step is performed.
  11.  前記第2接合工程より後であって前記第1接合工程より前に、前記第1面上に設けたマスクパターンをマスクとして用いて前記第1層に対してエッチング処理を施す加工工程を行う、請求項10に記載のパッケージドマイクロ可動素子製造方法。 After the second bonding step and before the first bonding step, a processing step of performing an etching process on the first layer using a mask pattern provided on the first surface as a mask is performed. The packaged micro movable device manufacturing method according to claim 10.
  12.  前記デバイスウエハは、前記第1面を有する第1層と、前記第2面を有する第2層と、当該第1および第2層の間の中間層とからなる積層構造を有し、前記第1接合工程を前記第2接合工程より前に行い、前記第1接合工程より前に、前記第1面上に設けたマスクパターンをマスクとして用いて前記第1層に対してエッチング処理を施す加工工程を行う、請求項1に記載のパッケージドマイクロ可動素子製造方法。 The device wafer has a laminated structure including a first layer having the first surface, a second layer having the second surface, and an intermediate layer between the first and second layers. A process in which one bonding step is performed before the second bonding step, and an etching process is performed on the first layer using a mask pattern provided on the first surface as a mask before the first bonding step. The packaged micro movable device manufacturing method according to claim 1, wherein the step is performed.
  13.  前記第1接合工程より後であって前記第2接合工程より前に、前記第2面上に設けたマスクパターンをマスクとして用いて前記第2層に対してエッチング処理を施す加工工程を行う、請求項12に記載のパッケージドマイクロ可動素子製造方法。 After the first bonding step and before the second bonding step, a processing step of performing an etching process on the second layer using a mask pattern provided on the second surface as a mask is performed. The packaged micro movable device manufacturing method according to claim 12.
  14.  可動部および端子部を有するマイクロ可動素子と、
     前記端子部に対応する位置に貫通孔を有し且つ100Ωcm以上の抵抗率を有する、前記マイクロ可動素子に接合された第1パッケージング部材と、
     前記第1パッケージング部材とは反対の側において前記マイクロ可動素子に接合された第2パッケージング部材と、を備え、
     前記第1および第2パッケージング部材の少なくとも一方と前記マイクロ可動素子とは常温接合されている、パッケージドマイクロ可動素子。
    A micro movable element having a movable part and a terminal part;
    A first packaging member having a through hole at a position corresponding to the terminal portion and having a resistivity of 100 Ωcm or more, joined to the micro movable element;
    A second packaging member joined to the micro movable element on a side opposite to the first packaging member,
    A packaged micro movable element, wherein at least one of the first and second packaging members and the micro movable element are joined at room temperature.
  15.  前記第1パッケージング部材は、第1部位と、前記貫通孔の形成箇所およびその周囲を含んで前記第1部位よりも薄い第2部位とを含む、請求項14に記載のパッケージドマイクロ可動素子。 The packaged micro movable element according to claim 14, wherein the first packaging member includes a first part and a second part that is thinner than the first part, including a part where the through hole is formed and its periphery. .
  16.  前記第1パッケージング部材および/または前記第2パッケージング部材は、前記マイクロ可動素子の前記可動部に相対する箇所に凹部を有する、請求項14に記載のパッケージドマイクロ可動素子。 15. The packaged micro movable device according to claim 14, wherein the first packaging member and / or the second packaging member has a concave portion at a location facing the movable portion of the micro movable device.
  17.  前記貫通孔の少なくとも開口端は、前記マイクロ可動素子から遠ざかるにつれて広がる形状を有する、請求項14に記載のパッケージドマイクロ可動素子。 15. The packaged micro movable element according to claim 14, wherein at least an open end of the through hole has a shape that widens as the distance from the micro movable element increases.
  18.  前記マイクロ可動素子と前記第1パッケージング部材の間、および/または、前記マイクロ可動素子と前記第2パッケージング部材の間には、絶縁膜が介在する、請求項14に記載のパッケージドマイクロ可動素子。 15. The packaged micro movable device according to claim 14, wherein an insulating film is interposed between the micro movable device and the first packaging member and / or between the micro movable device and the second packaging member. element.
  19.  前記マイクロ可動素子は、前記可動部に加え、固定部と、当該固定部および前記可動部を連結するための連結部とを備え、前記可動部は揺動可能である、請求項14に記載のパッケージドマイクロ可動素子。 The micro movable element includes a fixed part and a connecting part for connecting the fixed part and the movable part in addition to the movable part, and the movable part is swingable. Packaged micro movable element.
  20.  前記マイクロ可動素子は、角速度センサまたは加速度センサである、請求項19に記載のパッケージドマイクロ可動素子。 The packaged micro movable element according to claim 19, wherein the micro movable element is an angular velocity sensor or an acceleration sensor.
PCT/JP2008/055242 2008-03-21 2008-03-21 Process for manufacture of packaged micro moving element, and packaged micro moving element WO2009116162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055242 WO2009116162A1 (en) 2008-03-21 2008-03-21 Process for manufacture of packaged micro moving element, and packaged micro moving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055242 WO2009116162A1 (en) 2008-03-21 2008-03-21 Process for manufacture of packaged micro moving element, and packaged micro moving element

Publications (1)

Publication Number Publication Date
WO2009116162A1 true WO2009116162A1 (en) 2009-09-24

Family

ID=41090584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055242 WO2009116162A1 (en) 2008-03-21 2008-03-21 Process for manufacture of packaged micro moving element, and packaged micro moving element

Country Status (1)

Country Link
WO (1) WO2009116162A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050772A (en) * 2000-08-02 2002-02-15 Murata Mfg Co Ltd Device and method for manufacturing semiconductor sensor
WO2007061047A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Wafer level package structure and method for manufacturing same
JP2007305804A (en) * 2006-05-11 2007-11-22 Olympus Corp Semiconductor device, and manufacturing method thereof
JP2008058005A (en) * 2006-08-29 2008-03-13 Seiko Instruments Inc Dynamic quantity sensor, electronic device, and manufacturing method of dynamic quantity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050772A (en) * 2000-08-02 2002-02-15 Murata Mfg Co Ltd Device and method for manufacturing semiconductor sensor
WO2007061047A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. Wafer level package structure and method for manufacturing same
JP2007305804A (en) * 2006-05-11 2007-11-22 Olympus Corp Semiconductor device, and manufacturing method thereof
JP2008058005A (en) * 2006-08-29 2008-03-13 Seiko Instruments Inc Dynamic quantity sensor, electronic device, and manufacturing method of dynamic quantity sensor

Similar Documents

Publication Publication Date Title
US6263735B1 (en) Acceleration sensor
TWI598965B (en) Hybrid integriertes bauteil und verfahren zu dessen herstellung
JP5177015B2 (en) Packaged device and packaged device manufacturing method
JP4919750B2 (en) Microstructure manufacturing method and microstructure
CN100416826C (en) Capacitive physical quantity sensor with sensor chip and circuit chip
JP5040021B2 (en) Hermetic package and method for manufacturing hermetic package
WO2007061059A1 (en) Sensor device and method for manufacturing same
CN108217581B (en) MEMS piezoelectric sensor and manufacturing method thereof
US20130126990A1 (en) Sensor manufacturing method and microphone structure made by using the same
TWI634069B (en) Hybrid integrated component and process for its production
JP4556454B2 (en) Manufacturing method of semiconductor device
KR100981515B1 (en) Micro Movable Devices, Wafers and Wafer Manufacturing Methods
US9372202B2 (en) Packaged device
JP5023734B2 (en) Method for manufacturing piezoelectric vibrating piece and piezoelectric vibrating element
JP2008207306A (en) Method for manufacturing packaged micro movable device and packaged micro movable device
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
WO2009116162A1 (en) Process for manufacture of packaged micro moving element, and packaged micro moving element
WO2009081459A1 (en) Manufacturing method of packaged micro moving element and the packaged micro moving element
JP2008039595A (en) Capacitance acceleration sensor
WO2018135211A1 (en) Sensor
JP2003156509A (en) Semiconductor accelerometer and method of manufacturing the same
JP3435647B2 (en) Manufacturing method of vibration type semiconductor sensor
JP2010177280A (en) Method of manufacturing semiconductor sensor, and semiconductor sensor
US11981560B2 (en) Stress-isolated MEMS device comprising substrate having cavity and method of manufacture
JP2000082824A (en) Manufacture of semiconductor mechanical strain sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载