WO2009153965A1 - Gate drive technique for bidirectional switches and power converter that uses the same - Google Patents
Gate drive technique for bidirectional switches and power converter that uses the same Download PDFInfo
- Publication number
- WO2009153965A1 WO2009153965A1 PCT/JP2009/002722 JP2009002722W WO2009153965A1 WO 2009153965 A1 WO2009153965 A1 WO 2009153965A1 JP 2009002722 W JP2009002722 W JP 2009002722W WO 2009153965 A1 WO2009153965 A1 WO 2009153965A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- gate
- terminal
- bidirectional switch
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/66—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
- H02M7/68—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters
- H02M7/72—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
- H03K17/6874—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/74—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
Definitions
- the present invention relates to a gate drive method for a bidirectional switch having four states by controlling a gate signal, and a power converter using the same.
- Patent Document 1 proposes a power conversion circuit using a bidirectional switch.
- a driving method of the bidirectional switch described in Patent Document 1 will be described with reference to FIG.
- FIG. 12 is an explanatory diagram of a bidirectional switch driving method in Patent Document 1.
- FIG. 12 shows driving of the gate electrode when the potential of the main electrode corresponding to the low voltage side is lower than the potential of the main electrode corresponding to the high voltage side.
- the element is non-conductive, and the gate electrode potential VG1 is lower than the gate threshold, and the gate electrode potential VG2 is higher than the gate threshold.
- VG1 is set to the gate threshold value or more, and after the delay time ⁇ 1, VG2 is set to the gate threshold value or less to conduct the element.
- VG2 is set to the gate threshold value or more, and after the delay time ⁇ 2, VG1 is set to the gate threshold value or less to put the element in the blocking state.
- the operation is performed in the same way by blocking the VG1 and VG2 of the gate electrode. The control which switches is performed.
- Patent Document 1 a general power conversion circuit (for example, an inverter device) combining a unidirectional switch and a diode is conceivable.
- a general power conversion circuit for example, an inverter device
- the present invention provides a gate drive method for a bidirectional switch with low loss while preventing unintentional overcurrent and overvoltage from occurring during control.
- the gate switch driving method of the bidirectional switch according to the present invention is applied to a bidirectional switch having the following configuration.
- a semiconductor layer stack having a channel formed on a substrate, and a first ohmic electrode and a second ohmic electrode formed on the semiconductor layer stack at a distance from each other are provided. Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the said 2nd ohmic electrode. Further, a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode. A semiconductor.
- a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal.
- the present invention provides a gate drive method for a bidirectional switch having such a configuration, wherein the first mode or the third mode or the third mode is shifted to at least one of the fourth mode and the third mode. Control is performed so as to interpose at least one of the second modes.
- FIG. 1 is a configuration diagram of a bidirectional switch according to Embodiment 1 of the present invention.
- FIG. 2A is a first equivalent circuit diagram of the bidirectional switch.
- FIG. 2B is a second equivalent circuit diagram of the bidirectional switch.
- FIG. 2C is a third equivalent circuit diagram of the bidirectional switch.
- FIG. 3A is a first voltage / current correlation diagram of the bidirectional switch.
- FIG. 3B is a second voltage / current correlation diagram of the bidirectional switch.
- FIG. 3C is a third voltage-current correlation diagram of the bidirectional switch.
- FIG. 4 is a diagram showing an operation mode of the bidirectional switch.
- FIG. 5 is an explanatory diagram of control means for performing gate drive of the bidirectional switch.
- FIG. 5 is an explanatory diagram of control means for performing gate drive of the bidirectional switch.
- FIG. 6 is a diagram showing an on / off table of the bidirectional switch.
- FIG. 7 is a configuration diagram of an inverter device using the bidirectional switch.
- FIG. 8 is a diagram showing a signal delay generation circuit of the inverter device.
- FIG. 9A is a first mode transition diagram of the bidirectional switch according to Embodiment 2 of the present invention.
- FIG. 9B is a second mode transition diagram of the bidirectional switch.
- FIG. 10 is a mode transition diagram of the bidirectional switch according to Embodiment 3 of the present invention.
- FIG. 11 is a mode transition diagram of the bidirectional switch according to Embodiment 4 of the present invention.
- FIG. 12 is an explanatory diagram of a conventional method for driving a bidirectional switch.
- FIG. 1 is a configuration diagram of a bidirectional switch according to Embodiment 1 of the present invention.
- the bidirectional switch 1 of the present embodiment includes a first gate terminal 2, a second gate terminal 3, a drain terminal 4, and a source terminal 5.
- the bidirectional switch 1 has a thickness of 1 ⁇ m in which aluminum nitride (AlN) having a thickness of 10 nm and gallium nitride (GaN) having a thickness of 10 nm are alternately stacked on a substrate 6 made of silicon (Si).
- the buffer layer 7 is formed.
- a semiconductor layer stack 8 is formed on the buffer layer 7.
- the first semiconductor layer is an undoped gallium nitride (GaN) layer 9 having a thickness of 2 ⁇ m
- the second semiconductor layer is an n-type aluminum gallium nitride (AlGaN) layer 10 having a thickness of 20 nm.
- GaN undoped gallium nitride
- AlGaN aluminum gallium nitride
- 2DEG two-dimensional electron gas
- a first ohmic electrode 11A and a second ohmic electrode 11B are formed at a distance from each other.
- titanium (Ti) and aluminum (Al) are laminated.
- the first ohmic electrode 11A and the second ohmic electrode 11B form an ohmic junction with the channel region, respectively.
- a part of the AlGaN layer 10 is removed and the GaN layer 9 is dug down by about 40 nm, and the first ohmic electrode 11A and the second ohmic electrode 11B are connected to the AlGaN layer 10, the GaN layer 9, and the like. It is formed so as to be in contact with the interface.
- the first ohmic electrode 11 ⁇ / b> A and the second ohmic electrode 11 ⁇ / b> B may be formed on the AlGaN layer 10.
- the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B are spaced from each other. And selectively formed.
- a first gate electrode 13A is formed on the first p-type semiconductor layer 12A
- a second gate electrode 13B is formed on the second p-type semiconductor layer 12B.
- the first gate electrode 13A and the second gate electrode 13B are formed by stacking palladium (Pd) and gold (Au), respectively.
- the first gate electrode 13A and the second gate electrode 13B are in ohmic contact with the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B, respectively.
- a protective film 14 made of silicon nitride (SiN) is formed so as to cover the AlGaN layer 10, the first p-type semiconductor layer 12A, and the second p-type semiconductor layer 12B.
- SiN silicon nitride
- the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B each have a thickness of 300 nm and are made of p-type GaN doped with magnesium (Mg).
- the first p-type semiconductor layer 12A, the second p-type semiconductor layer 12B, and the AlGaN layer 10 form PN junctions.
- the depletion layer spreads from the first p-type GaN layer into the channel region, so that the current flowing through the channel is cut off. can do.
- the bidirectional switch 1 realizes a so-called normally-off semiconductor element.
- the potential of the first ohmic electrode 11A is V1
- the potential of the first gate electrode 13A is V2
- the potential of the second gate electrode 13B is V3
- the potential of the second ohmic electrode 11B is V4.
- V2 is higher than V1 by 1.5V or more
- the depletion layer extending from the first p-type semiconductor layer 12A into the channel region is reduced, so that a current can flow in the channel region.
- V3 is higher than V4 by 1.5V or more
- the depletion layer extending from the second p-type semiconductor layer 12B into the channel region is reduced, and current can flow through the channel region. That is, the so-called threshold voltage of the first gate electrode 13A and the so-called threshold voltage of the second gate electrode 13B are both 1.5V.
- the threshold voltage of the first gate electrode 13A at which the depletion layer extending in the channel region below the first gate electrode 13A is reduced and current can flow through the channel region is set to the first threshold voltage.
- the threshold voltage is used.
- the depletion layer extending in the channel region below the second gate electrode 13B is reduced, and the threshold voltage of the second gate electrode 13B that allows current to flow through the channel region is reduced to the second threshold voltage.
- the distance between the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B can withstand the maximum voltage applied to the first ohmic electrode 11A and the second ohmic electrode 11B.
- a gate drive signal (that is, a control signal to the first gate terminal 2) is input between the first ohmic electrode 11A and the first gate electrode 13A.
- a gate drive signal (that is, a control signal to the second gate terminal 3) is input between the second ohmic electrode 11B and the second gate electrode 13B.
- the source terminal 5 is connected to the first ohmic electrode 11A
- the drain terminal 4 is connected to the second ohmic electrode 11B
- the first gate terminal 2 is connected to the first gate electrode 13A
- the second gate terminal. 3 is connected to the second gate electrode 13B.
- the drain terminal 4 and the source terminal 5 are connected to the power supply line.
- the potential of the first ohmic electrode 11A is 0 V
- the voltage applied to the first gate terminal 2 is Vg1
- the voltage applied to the second gate terminal 3 is Vg2.
- the voltage between the second ohmic electrode 11B and the first ohmic electrode 11A is Vs2s1
- the current flowing between the second ohmic electrode 11B and the first ohmic electrode 11A is Is2s1.
- V4 When V4 is higher than V1, for example, when V4 is + 100V and V1 is 0V, the input voltages Vg1 and Vg2 of the first gate terminal 2 and the second gate terminal 3 are set to the first threshold voltage and the first threshold voltage, respectively.
- the voltage is equal to or lower than the threshold voltage of 2, for example, 0V.
- the depletion layer extending from the first p-type semiconductor layer 12A extends in the channel region toward the second p-type GaN layer, so that the current flowing through the channel can be blocked. Therefore, even when V4 is a positive high voltage, it is possible to realize a cut-off state in which a current flowing from the second ohmic electrode 11B to the first ohmic electrode 11A is cut off.
- V4 when V4 is lower than V1, for example, even when V4 is ⁇ 100 V and V1 is 0 V, the depletion layer extending from the second p-type semiconductor layer 12B is formed in the channel region in the first p-type semiconductor layer. The current spreads in the direction of 12A and can flow through the channel. For this reason, even when a negative high voltage is applied to the second ohmic electrode 11B, the current flowing from the first ohmic electrode 11A to the second ohmic electrode 11B can be blocked. That is, the bidirectional current of the bidirectional switch 1 can be cut off.
- the first gate electrode 13A and the second gate electrode 13B share a channel region for ensuring a withstand voltage. Therefore, this element can realize the bidirectional switch 1 with the area of the channel region for one element.
- the bidirectional switch 1 as a whole, the chip area is smaller than when using a heterojunction field effect transistor (AlGaN / GaN-HFET) composed of two diodes and two normally-off AlGaN / GaN. can do. Therefore, the bidirectional switch 1 can be reduced in cost and size.
- AlGaN / GaN-HFET heterojunction field effect transistor
- Vg1 and Vg2 which are input voltages of the first gate terminal 2 and the second gate terminal 3 are voltages higher than the first threshold voltage and the second threshold voltage, respectively, for example, 5V
- the first voltage Both of the voltages applied to the gate electrode 13A and the second gate electrode 13B are higher than the threshold voltage. Accordingly, since the depletion layer does not extend from the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B to the channel region, the channel region is also formed below the first gate electrode 13A. It is not pinched off on the lower side of 13B. As a result, it is possible to realize a conductive state in which a current flows bidirectionally between the first ohmic electrode 11A and the second ohmic electrode 11B.
- the bidirectional switch 1 having the first gate terminal 2 and the second gate terminal 3 is represented by an equivalent circuit, a circuit in which a first transistor 15 and a second transistor 16 are connected in series as shown in FIG. 2A.
- the source (S) of the first transistor 15 corresponds to the first ohmic electrode 11A
- the gate (G) of the first transistor 15 corresponds to the first gate electrode 13A
- the source ( S) corresponds to the second ohmic electrode 11B
- the gate (G) of the second transistor 16 corresponds to the second gate electrode 13B.
- Vg1 is 5V and Vg2 is 0V
- Vg2 is 0V
- the fact that Vg2 is 0V is equivalent to the state where the gate and the source of the second transistor 16 are short-circuited.
- the source (S) of the second transistor 16 shown in FIG. 2B is the A terminal
- the drain (D) is the B terminal
- the gate (G) is the C terminal.
- the transistor can be regarded as a transistor in which the A terminal is a source and the B terminal is a drain.
- the voltage between the C terminal (gate) and the A terminal (source) is 0 V, which is equal to or lower than the threshold voltage, so that no current flows from the B terminal (drain) to the A terminal (source).
- the transistor when the potential of the A terminal is higher than the potential of the B terminal, the transistor can be regarded as a transistor in which the B terminal is a source and the A terminal is a drain.
- the A terminal (drain) to the B terminal Do not supply current to the (source).
- the potential of the A terminal becomes equal to or higher than the threshold voltage with reference to the B terminal, a voltage higher than the threshold voltage is applied to the gate with reference to the B terminal (source), and current flows from the A terminal (drain) to the B terminal (source). be able to.
- the drain functions as a diode and the source functions as an anode, and the forward rising voltage becomes the threshold voltage of the transistor. Therefore, the portion of the second transistor 16 shown in FIG. 2A can be regarded as a diode, and an equivalent circuit as shown in FIG. 2C is obtained.
- the so-called bidirectional device is turned on, and the cathode side of the diode is connected to the drain side.
- a switch that can be connected in series can be realized.
- FIGS. 3A to 3C are first to third voltage / current correlation diagrams of the bidirectional switch of the present embodiment, and show the relationship between Vs2s1 and Is2s1 of the bidirectional switch 1.
- FIG. 3A shows a case where Vg1 and Vg2 are changed simultaneously.
- FIG. 3B shows a case where Vg2 is set to 0 V that is equal to or lower than the second threshold voltage, and Vg1 is changed.
- FIG. 3C shows a case where Vg2 is changed by setting Vg1 to 0 V that is equal to or lower than the first threshold voltage.
- the voltage between S2 and S1 (Vs2s1) on the horizontal axis is a voltage with reference to the first ohmic electrode 11A.
- the current between S2 and S1 (Is2s1) on the vertical axis is positive for the current flowing from the second ohmic electrode 11B to the first ohmic electrode 11A.
- Vg1 and Vg2 are 0 V and 1 V
- Is2s1 does not flow regardless of whether Vs2s1 is positive or negative
- the bidirectional switch 1 is cut off.
- both Vg1 and Vg2 become higher than the threshold voltage, a conductive state in which Is2s1 flows bidirectionally according to Vs2s1 is established.
- Vg2 when Vg2 is set to 0 V that is equal to or lower than the second threshold voltage and Vg1 is set to 0 V that is equal to or lower than the first threshold voltage, Is2s1 is blocked in both directions.
- Vg1 is 2V to 5V, which is equal to or higher than the first threshold voltage
- Is2s1 does not flow when Vs2s1 is less than 1.5V, but Is2s1 flows when Vs2s1 becomes 1.5V or more. That is, a reverse blocking state is reached in which current flows only from the second ohmic electrode 11B to the first ohmic electrode 11A, and no current flows from the first ohmic electrode 11A to the second ohmic electrode 11B.
- the bidirectional switch 1 has a function of interrupting and energizing the bidirectional current according to the gate bias condition, and can also operate as a diode, and the direction in which the current of the diode is energized can be switched.
- 4 shown in FIG. 4 according to the ON (denoted as ON) or OFF (denoted as OFF in the figure) conditions of the first gate terminal 2 and the second gate terminal 3 of the bidirectional switch 1. It can operate in one mode of operation. That is, when only the first gate terminal (G1) 2 is turned on, the first mode in which the bidirectional device that is turned on from the drain terminal 4 to the source terminal 5 and the semiconductor in which the reverse diode is connected in series is operated. can get.
- the structure of the present embodiment is similar to a junction field effect transistor (JFET), but is completely different from a JFET that performs carrier modulation in a channel region by a gate electric field in that carrier injection is intentionally performed. Operates according to the operating principle. Specifically, it operates as a JFET up to a gate voltage of 3V. However, when a gate voltage of 3 V or more exceeding the built-in potential of the pn junction is applied, holes are injected into the gate, the current increases due to the mechanism described above, and a large current and low on-resistance operation is possible. Become.
- the first gate electrode 13A is formed on the first p-type semiconductor layer 12A having p-type conductivity
- the second gate electrode 13B is p-type. It is formed on the second p-type semiconductor layer 12B having the above conductivity.
- the first gate electrode 13A and the second gate electrode are formed with respect to the channel region generated in the interface region between the first semiconductor layer (GaN layer 9) and the second semiconductor layer (AlGaN layer 10).
- holes injected from the first gate electrode 13A and the second gate electrode 13B generate the same amount of electrons in the channel region, so that the effect of generating electrons in the channel region is increased, and the donor is increased. It functions like an ion. That is, since the carrier concentration can be modulated in the channel region, it is possible to realize a normally-off type nitride semiconductor layer bidirectional switch having a large operating current.
- FIG. 5 is an explanatory diagram of the control unit 17 that performs gate driving of the bidirectional switch 1.
- control part 17 is arrange
- the internal configuration of the control unit 17 is created in correspondence with the four operation modes shown in FIG. 4 so as not to directly shift between the fourth mode in the bidirectional off state and the third mode in the bidirectional on state. It is configured to output with reference to the on / off table shown in FIG.
- FIG. 7 is a configuration diagram of an inverter device using the bidirectional switch 1.
- the power conversion device of the present embodiment includes a power source 23 as an input unit and an inverter device 18 as a power conversion unit.
- the bidirectional circuit 1a to 1f constitutes the main circuit. That is, the bidirectional switches 1a, 1c, and 1e constitute the upper arm of the inverter circuit, and the bidirectional switches 1b, 1d, and 1f constitute the lower arm of the inverter circuit.
- the bidirectional switches 1a to 1f output a drive signal referring to the on / off table from the control unit 17 to the first gate terminals 2a to 2f and the second gate terminals 3a to 3f, respectively. Transition between two modes. That is, when the upper arm bidirectional switches 1a, 1c, and 1e shift from the fourth mode to the third mode, the third mode is changed from the bidirectionally blocked state of the fourth mode of the on / off table of FIG.
- shifting to the energized state in both directions, or the reverse operation that is, when moving from the energized state in both directions in the third mode to the disconnected state in both directions in the fourth mode
- the second mode is interposed. In the second mode, a diode is formed in the forward direction with respect to the intended conduction direction, and the bidirectional switch 1 forms a conduction path having a diode that is turned on only in the forward direction. .
- the bidirectional switches 1b, 1d, and 1f of the lower arm shift to the cut-off state
- the first gate terminals 2b, 2d, and 2f, and the second gate terminals 3b and 3d of the bidirectional switches 1b, 1d, and 1f respectively.
- the state in which current can be supplied in the intended direction is maintained until the moment when both terminals 3f are turned off.
- control unit 17 shifts from the fourth mode in which current is interrupted in both directions to the third mode in which current is supplied in both directions, the control unit 17 changes from the state in which the table is in the fourth mode to the third mode.
- a mode in which a reverse diode is formed with respect to the intended conduction direction (for example, if the intended current flow direction is the direction from the drain terminal 4 to the source terminal 5) Control is performed to shift to the third mode with the first mode) interposed.
- the mode is similarly shifted from the third mode to the fourth mode via the first mode.
- the mode of the bidirectional switch 1a of the first arm 18a is changed.
- a mode change of the bidirectional switch 1b is performed, and a reflux current can be supplied from the negative side of the direct current portion.
- the bidirectional switch 1a and the bidirectional switch 1b are controlled to perform mode transition with reference to the second mode so that the upper and lower arms are not short-circuited.
- the bidirectional switch 1b operates with a diode interposed therebetween, and the bidirectional switch 1a does not generate an energizing operation with a diode interposed.
- the bidirectional switch 1 of the present embodiment includes the first gate terminal 2, the second gate terminal 3, the drain terminal 4, and the source terminal 5.
- the first gate terminal 2 When only the first gate terminal 2 is turned on, it operates as a semiconductor in which the on-state of the bidirectional device and the cathode side of the reverse diode are connected in series between the drain terminal 4 and the source terminal 5.
- the second gate terminal 3 When only the second gate terminal 3 is turned on, it operates as a semiconductor in which the forward diode and the cathode side of the forward diode are connected in series between the drain terminal 4 and the source terminal 5.
- the first gate terminal 2 and the second gate terminal 3 When the first gate terminal 2 and the second gate terminal 3 are turned on, they operate so as to conduct in a bidirectional manner between the drain terminal 4 and the source terminal 5 without using a diode.
- the operation is performed to cut off the current in both forward and reverse directions.
- a current is passed in the intended direction so as not to make a direct transition from the bidirectional OFF state to the bidirectional ON state or the reverse transition. It is possible to turn on only one of the forward and reverse directions.
- a bidirectional switch having four operation modes has a variation in on-off time between chips due to a signal circuit or feedback capacitance to the bidirectional switch, and mutual mutual driving for driving the first gate terminal 2 and the second gate terminal 3. There is a variation in response of the gate drive circuit. Due to such variations, an unintended current flow mode (for example, the second mode (in which the intended current flow direction is the source) is set when the mode is shifted from the third mode to the fourth mode or from the fourth mode to the third mode. In the case of the terminal 5 to the drain terminal 4, there are cases where either the first mode) or the third mode) is passed.
- the bidirectional switch 1 of the present embodiment has the above-described characteristics, it is possible to avoid going through an unintended current flow mode.
- the intended other mode for example, when the intended current flow direction is from the source terminal 5 to the drain terminal 4, the second mode is changed to the “intended other mode”. It is possible to control the gate drive of the bidirectional switch 1 so as to go through.
- the bidirectional switch 1 b passes through the first mode in which a forward diode is formed with respect to the intended conduction direction at the time of the state transition from the fourth mode to the third mode. Is controlling. Therefore, when transitioning from the bi-directional off state to the bi-directional on state, it is possible to control so that the current between the drain terminal 4 and the source terminal 5 becomes the intended flow direction. That is, even when an inductive load such as a motor is connected to the output side as in the present embodiment, power conversion can be performed with a simple circuit configuration without requiring a clamp circuit or the like. Note that the number and arrangement of the bidirectional switches 1 may be changed according to the modulation method of the inverter device 18.
- the on / off table is a logic circuit 20 as a delay generation unit as shown in FIG. 8 for any one of the output terminals of the control unit 17 (for example, to realize a signal propagation time of 1 ns or more). This can also be realized by adding a logic IC having a signal propagation time of 10 ns.
- the logic circuit 20 can generate a delay time by controlling switching of the first gate terminal 2 and the second gate terminal 3 from OFF to ON, or from ON to OFF at different timings. Further, the delay time can be generated using the response speed of the logic circuit.
- the delay time generated by the delay generator is 1 ns or greater than 1 ns.
- both of the four operation modes are provided due to variations in the on / off time between chips due to semiconductor input / output or feedback capacitance, and variations in the responsiveness of the gate drive circuits that drive the first gate terminal and the second gate terminal. It is possible to prevent the operation mode transition of the direction switch from going through an unintended operation mode.
- the delay generation unit such as the logic circuit 20 does not directly shift from the fourth mode to the third mode or from the third mode to the fourth mode, but is driven by a signal delayed by the delay time of the logic circuit 20. It is good also as composition to do.
- the drive signal for the first gate terminal 2 and the drive signal for the second gate terminal 3 are shared, and the first gate terminal 2 and the second gate terminal 3 are controlled to be turned on and off with the only gate drive signal via the control unit 17. It is good also as a structure like FIG. In FIG. 8, the drive signal directly supplied from the control unit 17 to one gate drive circuit 19C is supplied via the logic circuit 20 to the other gate drive circuit 19D. The logic circuit 20 forcibly and temporarily fixes the mode.
- the timing for driving the first gate terminal 2 and the second gate terminal 3 is simply shifted. Directly, the transition between the third mode and the fourth mode can be prevented.
- FIGS. 9A and 9B are first and second mode transition diagrams of the bidirectional switch according to the present embodiment.
- Embodiment 1 attaches
- control unit 17 shifts from the fourth mode in which the bidirectional switch 1a is bi-directionally interrupted to the third mode in which current is bi-directionally passed.
- control is performed so as to shift to the third mode by interposing a mode in which a reverse diode is formed (in the direction in which current is passed from the drain terminal 4 to the source terminal 5).
- the on / off table at this time is shifted from the fourth mode shown in FIG. 6 to the third mode via the first mode, and is opposite to the intended conduction direction. This corresponds to controlling to shift to the third mode with a mode in which a diode is formed in the direction.
- the mode shift of the bidirectional switch 1b of the first arm 18a is performed.
- a reflux current can be supplied from the negative side of the DC part.
- the second gate terminal 3b is kept off at the time T1, and both the bidirectional switch 1b at the time T2.
- control is performed to shift the mode to the on state at time T3.
- the bidirectional switch 1b operates with a diode, and the bidirectional switch 1a does not generate an energizing operation with a diode.
- the bidirectional switch 1a when the intended flow direction is from the drain terminal 4 to the source terminal 5, the bidirectional switch 1a is switched from the fourth mode to the third mode via the first mode. And migrate. Thereafter, the mode is shifted to the fourth mode via the first mode.
- the bidirectional switch 1b shifts from the third mode to the fourth mode via the first mode. Thereafter, the mode is shifted to the third mode via the first mode.
- control unit 17 shifts from the fourth mode in which current is cut off in both directions to the third mode in which current is supplied in both directions, or from the third mode in which current is supplied in both directions.
- shifting to the fourth mode in which the current is interrupted control is performed so as to shift to the third mode by interposing a mode in which a reverse diode is formed with respect to the intended conduction direction.
- FIG. 10 is a mode transition diagram of the bidirectional switch in the present embodiment.
- Embodiment 1 attaches
- the control unit 17 sets the bidirectional switch 1 a in the intended conduction direction when the state transition from the third mode to the fourth mode occurs.
- control is performed so as to pass through the first mode in which a reverse diode is formed. This reduces the loss due to the forward current of the forward diode.
- the first gate terminal passes through the first mode in which the forward diode is formed with respect to the intended conduction direction (the direction of the return current) during the state transition from the fourth mode to the third mode. 2a and the second gate terminal 3a are controlled.
- the bidirectional switch 1a and the bidirectional switch 1b transition from the state in which the bidirectional switch 1b is conducted by the combination (1) to the state in which the bidirectional switch 1a is conducted by the combination (2). Is controlled to flow to the bidirectional switch 1a.
- a forward diode is formed with respect to the intended conduction direction (the direction of the return current), so that conduction is possible.
- the solid line arrow portion in FIG. 10 indicates the current direction at the time of steady state
- the dotted line arrow indicates the current direction at the time of transition
- the cross symbol attached to the arrow means that the diode does not conduct. .
- the bidirectional switch 1b performs control so as to secure a current route at the timing when the bidirectional switch 1a enters the current cutoff state with respect to the intended current direction. That is, the bidirectional switch 1a is controlled so as to cause the return current to flow through the bidirectional switch 1b via the first mode at the time of the state transition from the third mode to the fourth mode. For example, in FIG. 10, when switching from the combination (3) to the combination (1) via the combination (4), the first gate terminal 2b is turned on in the combination (4) so that both the return currents are supplied. It is made to flow to the direction switch 1b. Similarly, the bidirectional switch 1b is controlled so as to secure a current route for the state transition of the bidirectional switch 1b.
- the bidirectional switch 1b makes a state transition from the third mode to the fourth mode, control is performed so that a reflux current flows through the bidirectional switch 1b via the second mode.
- the transition is made from the combination (1) to the combination (3) via the combination (2), and in the combination (2), the first gate terminal 2a is turned on so that the return current is bidirectional. It is made to flow through the switch 1a.
- the bidirectional switch 1b and the bidirectional switch 1a are combined (2) and (4) when the bidirectional switches 1a and 1b transition from the conduction state (third mode) to the cutoff state (fourth mode). ), The current flows through the diode one by one. Since the bidirectional switch 1a and the bidirectional switch 1b go through the timing of passing the diode once as shown by the arrows in the figure, the losses are averaged with each other.
- the bidirectional switch 1a when the intended flow direction is from the drain terminal 4 to the source terminal 5, the bidirectional switch 1a is switched from the fourth mode to the first mode through the first mode and the third mode. Transition to mode. Thereafter, the mode shifts to the fourth mode again.
- the bidirectional switch 1b shifts from the third mode to the first mode via the first mode and the fourth mode. After that, the mode again shifts to the third mode.
- the present embodiment it is possible to equalize the time ratio for forming the current route with respect to the bidirectional switches 1a and 1b via the diodes. That is, the loss of the bidirectional switches 1a and 1b when the bridge circuit is formed can be averaged. Therefore, it is not necessary to perform a heat radiation design that matches the lossy bidirectional switch 1a or 1b, and a small and lightweight power conversion device can be configured.
- FIG. 11 is a mode transition diagram of the bidirectional switch in the present embodiment. Components having the same functions as those in the first to third embodiments are denoted by the same reference numerals and detailed description thereof is omitted.
- the control unit 17 forms a forward diode with respect to the intended conduction direction when the bidirectional switch 1a in the inverter device 18 undergoes a state transition from the third mode to the fourth mode. Control is performed so as to pass through the second mode (when the intended flow direction is from the drain terminal 4 to the source terminal 5). That is, control is performed by transitioning from the combination (7) to the combination (5) via the combination (8). Further, in the state transition from the fourth mode to the third mode, the first mode in which a reverse diode is formed with respect to the intended conduction direction (when the intended flow direction is from the drain to the source) is passed. So that it is controlled.
- control is performed by making a transition from the combination (5) to the combination (7) via the combination (6). This reduces the loss due to the forward current of the forward diode and averages the losses of the bidirectional switches 1a and 1b when the bridge circuit is formed.
- the first gate terminals 2a and 2b and the second gate terminals 3a and 3b are sequentially turned on and off as in combination (5) to combination (8).
- the bidirectional switch 1a of the combination (6) the current direction indicated by the broken line does not flow.
- the bidirectional switch 1b does not flow but flows through the bidirectional switch 1a.
- the direction in which a cross mark is given to the broken line portion means that the path of the other bidirectional switch 1a or bidirectional switch 1b is given priority. Therefore, the bidirectional switch 1a and the bidirectional switch 1b generate a path that passes through the forward diode with respect to each other mainly once.
- control is performed so that the number of times is the same for the bidirectional on state and the bidirectional off state.
- the bidirectional switch 1a when the intended flow direction is from the drain terminal 5 to the source terminal 4, the bidirectional switch 1a is switched from the fourth mode to the second mode via the first mode and the third mode. Enter mode.
- the bidirectional switch 1b shifts from the third mode to the first mode via the second mode and the fourth mode.
- the time ratio for forming the current route through the diodes can be made uniform for the bidirectional switches 1a and 1b. That is, the loss of the bidirectional switches 1a and 1b when the bridge circuit is formed can be averaged. Therefore, it is not necessary to perform a heat radiation design that matches the lossy bidirectional switch 1a or 1b, and a small and lightweight power conversion device can be configured.
- the bidirectional switch to which the present invention is applied includes the semiconductor layer stack having a channel formed on the substrate and the first switch formed on the semiconductor layer stack at a distance from each other.
- One ohmic electrode and a second ohmic electrode Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the 2nd ohmic electrode.
- a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode.
- a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal.
- the semiconductor device when the first gate terminal and the second gate terminal are turned on, the semiconductor device has a third mode in which it operates as a semiconductor that conducts bidirectionally between the drain terminal and the source terminal. Further, when the first gate terminal and the second gate terminal are turned off, there is a fourth mode which operates as a semiconductor that cuts off current in both forward and reverse directions.
- the present invention provides a gate drive method for such a bidirectional switch, wherein the first mode or the second mode is used when shifting from the fourth mode to the third mode, or from the third mode to the fourth mode. It controls to interpose at least one of these.
- a bidirectional switch having such four operation modes has a variation in on / off time between chips due to a signal circuit or a feedback capacitor to the bidirectional switch, and a mutual operation for driving the first gate terminal and the second gate terminal. Variation in response of the gate drive circuit occurs. Due to these variations, an unintended current flow mode (for example, either the second mode or the third mode) is passed when the mode is shifted from the third mode to the fourth mode or from the fourth mode to the third mode. That happens.
- an unintended current flow mode for example, either the second mode or the third mode
- the present invention passes through the first mode or the second mode in which the forward diode is formed so as to conduct in the intended conduction direction in the state transition from the fourth mode to the third mode. To control.
- This method makes it possible to control the current between the drain terminal and the source terminal to have the intended flow direction when transitioning from the bidirectional off state to the bidirectional on state. Therefore, even when an inductive load is connected to the output side, a power conversion can be performed with a simple circuit configuration without requiring a clamp circuit or the like.
- the present invention passes through the first mode or the second mode in which the forward diode is formed to conduct in the intended conduction direction at the time of the state transition from the third mode to the fourth mode. To control.
- This method makes it possible to control the current between the drain terminal and the source terminal to be in the intended flow direction when transitioning from the bidirectional on state to the bidirectional off state. Therefore, even when an inductive load is connected to the output side, power conversion can be performed with a simple circuit configuration without interrupting the current.
- the present invention passes through the first mode or the second mode in which the reverse diode is formed so as to cut off the intended conduction direction at the time of the state transition from the fourth mode to the third mode. To control.
- This method can reduce the loss due to the forward current of the forward diode. Therefore, when switching from a bi-directional off state to a bi-directional on state, the entire circuit is configured to be low loss without interposing a mode through which a diode that exists equivalently in the first or second mode flows. can do. Therefore, power conversion can be performed with a smaller circuit configuration.
- the reverse diode when the state transition from the third mode to the fourth mode is performed, the reverse diode is formed so as to be cut off with respect to the intended conduction direction. To control.
- This method can reduce the loss due to the forward current of the forward diode. Therefore, when switching from the bi-directional on state to the bi-directional off state, the entire circuit is configured to have a low loss without interposing a mode for passing a diode that exists equivalently in the first or second mode. can do. Therefore, power conversion can be performed with a smaller circuit configuration.
- the drive signal for the first gate terminal and the drive signal for the second gate terminal are shared, and the first gate terminal and the second gate terminal are controlled to be turned on / off by one gate drive signal.
- the present invention includes a bridge circuit using a bidirectional switch, and a reverse diode is formed so as to cut off the intended conduction direction at the time of state transition from the third mode to the fourth mode.
- a forward diode is formed so as to be controlled to pass through the first mode or the second mode, and to conduct in the intended conduction direction during the state transition from the fourth mode to the third mode. Control is performed so as to pass through the mode or the second mode.
- This method can reduce the loss due to the forward current of the forward diode, and can average the loss of the bidirectional switch. That is, when the bidirectional switches are connected in series or in parallel, the amount of generated heat is equalized. Therefore, there is no need to select a heat radiating plate based on a bidirectional switch that generates a large amount of heat, and a small and lightweight power conversion device can be configured.
- the present invention also includes a bridge circuit using a bidirectional switch, and a forward diode is formed so as to conduct in the intended conduction direction at the time of transition from the third mode to the fourth mode.
- a reverse diode is formed so as to be controlled so as to pass through the first mode or the second mode, and cut off with respect to the intended conduction direction at the time of the state transition from the fourth mode to the third mode. Control is performed so as to pass through the mode or the second mode.
- This method can reduce the loss due to the forward current of the forward diode and average the loss of the bidirectional switch. That is, when the bidirectional switches are connected in series or in parallel, the amount of generated heat is equalized. Therefore, there is no need to select a heat radiating plate based on a bidirectional switch that generates a large amount of heat, and a small and lightweight power conversion device can be configured.
- the present invention includes a delay generation unit, and switches the first gate terminal and the second gate terminal from off to on or from on to off at different timings.
- the bidirectional switch can be prevented from directly shifting from the third mode to the fourth mode or from the fourth mode to the third mode with a simpler configuration.
- the delay time generated by the delay generation unit is 1 ns or longer than 1 ns.
- this method there are four operation modes due to variations in on / off time between chips due to semiconductor input / output or feedback capacitance, and variations in responsiveness of mutual gate drive circuits for driving the first gate terminal and the second gate terminal. It is possible to prevent the operation mode transition of the bidirectional switch from passing through an unintended operation mode.
- the delay generation unit generates a delay time using the response speed of the logic circuit. By this method, the generation of the delay time can be realized with a simple and inexpensive circuit.
- a bidirectional switch to which the present invention is applied includes a semiconductor layer stack having a channel formed on a substrate, a first ohmic electrode formed on the semiconductor layer stack at a distance from each other, and And a second ohmic electrode. Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the 2nd ohmic electrode. Further, a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode. A semiconductor.
- a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal.
- the semiconductor device when the first gate terminal and the second gate terminal are turned on, the semiconductor device has a third mode in which it operates as a semiconductor that conducts bidirectionally between the drain terminal and the source terminal. Further, when the first gate terminal and the second gate terminal are turned off, there is a fourth mode which operates as a semiconductor that cuts off current in both forward and reverse directions.
- the present invention is a gate drive method for such a bidirectional switch, and controls so as not to directly shift from at least one of the fourth mode to the third mode or from the third mode to the fourth mode.
- This method makes it possible to avoid unintended current flow mode when shifting from the third mode to the fourth mode or from the fourth mode to the third mode. Therefore, even if there is a delay in signal conveyance, control can be performed so as to pass through one of the intended other modes.
- the present invention constitutes a power conversion device (for example, an inverter device) using a bidirectional switch gate drive method.
- the bidirectional switch can be applied to the power conversion device with a simpler configuration, and a low-loss and inexpensive device can be configured.
- the present invention does not directly shift from the fourth mode to the third mode, or from the third mode to the fourth mode, and is low loss and low cost, it is applied to a DC-DC converter device, an AC-DC converter device, an inverter device, etc. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Abstract
Disclosed is a low-loss gate drive technique that controls a bidirectional switch, which is equipped with a first gate terminal, a second gate terminal, a drain terminal, and a source terminal, and which possesses four operating modes in which the first gate terminal and second gate terminal are variously ON and/or OFF, so that the switch does not shift directly when shifting from a bidirectionally OFF state to a bidirectional ON state, whereby overcurrent and overvoltage incidences in the various components can be prevented from occurring in unintended transition periods.
Description
本発明は、ゲート信号の制御により4つの状態を有する双方向スイッチのゲート駆動方法およびそれを用いた電力変換装置に関する。
The present invention relates to a gate drive method for a bidirectional switch having four states by controlling a gate signal, and a power converter using the same.
近年、電子機器の普及がさらに拡大傾向にあるが、同時に電子機器の消費電力増加、引いては地球温暖化などが発生しており、社会的な問題と認識されている。このような社会的背景から、電子機器の低消費電力化の要求も高くなっており、根幹となる電源回路、あるいは電子機器の主たる機能を実現するためのアクチュエータなどの待機電力、運転のための電力の何れの電力消費についても技術革新による消費削減が期待されている。
In recent years, the spread of electronic devices has tended to expand further, but at the same time, the power consumption of electronic devices has increased, and global warming has occurred, which is recognized as a social problem. Due to this social background, there is an increasing demand for lower power consumption of electronic devices. Standby power for operation such as actuators to realize the main functions of power supply circuits or electronic devices, and for operation Any power consumption of electric power is expected to be reduced by technological innovation.
従来、この種の低消費電力化のための技術としては、使用する電圧に応じて、適宜半導体デバイスを電界効果型トランジスタ(MOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)を使い分ける、あるいは新しい半導体デバイスとして、双方向性スイッチを利用した電力変換回路が、例えば特許文献1などで提案されている。以下、特許文献1に記載の双方向性スイッチの駆動方法について、図12を参照しながら説明する。
Conventionally, as a technique for reducing power consumption of this type, depending on the voltage to be used, a semiconductor device is properly used as a field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT), or as a new semiconductor device. For example, Patent Document 1 proposes a power conversion circuit using a bidirectional switch. Hereinafter, a driving method of the bidirectional switch described in Patent Document 1 will be described with reference to FIG.
図12は、特許文献1における双方向性スイッチの駆動方法の説明図である。図12は、低電圧側に対応する主電極の電位が高電圧側に対応する主電極の電位よりも低い場合のゲート電極の駆動を示している。初期状態は素子が非導通でゲート電極の電位VG1をゲート閾値以下、ゲート電極の電位VG2はゲート閾値以上の状態を示している。ここで、VG1をゲート閾値以上にし、遅延時間τ1後、VG2をゲート閾値以下にして素子を導通させている。次に、VG2をゲート閾値以上にして、遅延時間τ2後、VG1をゲート閾値以下にし、素子を阻止状態としている。また、低電圧側に対応する主電極の電位が高電圧側に対応する主電極の電位よりも高い場合、その動作は、ゲート電極のVG1、VG2を逆の働きをさせて同様の導通、阻止を切換える制御を行っている。
FIG. 12 is an explanatory diagram of a bidirectional switch driving method in Patent Document 1. FIG. 12 shows driving of the gate electrode when the potential of the main electrode corresponding to the low voltage side is lower than the potential of the main electrode corresponding to the high voltage side. In the initial state, the element is non-conductive, and the gate electrode potential VG1 is lower than the gate threshold, and the gate electrode potential VG2 is higher than the gate threshold. Here, VG1 is set to the gate threshold value or more, and after the delay time τ1, VG2 is set to the gate threshold value or less to conduct the element. Next, VG2 is set to the gate threshold value or more, and after the delay time τ2, VG1 is set to the gate threshold value or less to put the element in the blocking state. In addition, when the potential of the main electrode corresponding to the low voltage side is higher than the potential of the main electrode corresponding to the high voltage side, the operation is performed in the same way by blocking the VG1 and VG2 of the gate electrode. The control which switches is performed.
また特許文献1以外では、単方向スイッチとダイオードを組み合わせた一般的な電力変換回路(例えば、インバータ装置)が考えられる。
Other than Patent Document 1, a general power conversion circuit (for example, an inverter device) combining a unidirectional switch and a diode is conceivable.
このような従来の素子構成におけるゲート駆動方法では、機器に組み込みにおいて主電極に対して順逆の電圧が印加された場合、論理を逆転させる必要がある。したがって、その素子構成、ゲート駆動方法を適用した電力変換回路では、過渡期における各部の過電流や過電圧が発生するという課題があった。
In such a conventional gate driving method in the element configuration, it is necessary to reverse the logic when a forward and reverse voltage is applied to the main electrode in the device. Therefore, in the power conversion circuit to which the element configuration and the gate driving method are applied, there is a problem in that overcurrent and overvoltage occur in each part in the transition period.
また、インダクタンス成分のある負荷(例えば、モータなど)が電力変換回路の出力側に接続された場合、還流電流を流すための閉ループの形成が困難であった。例えば、双方向スイッチを上下アームに配置した場合、前述の意図しない電流の閉ループの代表的な例として、アーム短絡の構成が挙げられる。しかし、この場合、アーム短絡による短絡電流を防止するためのデッドタイムを設ける必要がある。そのため、上下の双方向スイッチが同時にオフしている期間の存在が必要になるからである。
Also, when a load having an inductance component (for example, a motor) is connected to the output side of the power conversion circuit, it is difficult to form a closed loop for flowing a reflux current. For example, when the bidirectional switch is disposed on the upper and lower arms, a typical example of the unintended closed loop of the current described above is a configuration of an arm short circuit. However, in this case, it is necessary to provide a dead time for preventing a short circuit current due to an arm short circuit. Therefore, it is necessary to have a period in which the upper and lower bidirectional switches are simultaneously turned off.
また、特許文献1以外の一般的な電力変換回路(例えば、インバータ装置)では、単方向スイッチを組み合わせて構成している。したがって、簡単なゲート駆動方法にて実現することができる。しかし、モータなどのインダクタンス成分のある負荷が接続された場合、還流電流がダイオードを流れて還流するため、変換回路における損失が大きくなる。そのため、冷却フィン、または冷却ファンなど装置が大型化するという課題があった。
Further, in general power conversion circuits (for example, inverter devices) other than Patent Document 1, a unidirectional switch is combined. Therefore, it can be realized by a simple gate driving method. However, when a load having an inductance component such as a motor is connected, the return current flows through the diode and returns, so that the loss in the conversion circuit increases. Therefore, there has been a problem that a device such as a cooling fin or a cooling fan is increased in size.
本発明は、制御する際に、意図しない過電流や過電圧の発生を未然に防止すると共に、低損失な双方向スイッチのゲート駆動方法を提供するものである。
The present invention provides a gate drive method for a bidirectional switch with low loss while preventing unintentional overcurrent and overvoltage from occurring during control.
本発明の双方向スイッチのゲート駆動方法は、次のような構成を備えた双方向スイッチに適用される。基板の上に形成されたチャネルを有する半導体層積層体と、半導体層積層体の上に互いに間隔をおいて形成された第1のオーミック電極および第2のオーミック電極とを有している。さらに、第1のオーミック電極と前記第2のオーミック電極との間に、第1のオーミック電極側から順に形成された、第1のゲート電極および第2のゲート電極とを有している。さらに、半導体層積層体と第1のゲート電極との間に形成された第1のp型半導体層と、半導体層積層体と第2のゲート電極との間に形成された第2のp型半導体とを有している。さらに、第1のオーミック電極と第1のゲート電極との間にゲート駆動信号を入力する第1ゲート端子と、第2のオーミック電極と第2のゲート電極との間にゲート駆動信号を入力する第2ゲート端子とを有している。さらに、第1のオーミック電極に接続されたドレイン端子と、第2のオーミック電極に接続されたソース端子とを備えている。さらに、第1ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けてオン状態の双方向デバイスと逆方向ダイオードが直列接続された半導体として動作する第1モードを有している。さらに、第2ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けて順方向ダイオードとオン状態の双方向デバイスが直列接続された半導体として動作する第2モードを有している。さらに、第1ゲート端子および第2ゲート端子をオンすると、ドレイン端子からソース端子間を双方向に導通するように動作する第3モードを有している。さらに、第1ゲート端子および第2ゲート端子をオフすると順逆双方向に電流を遮断する第4モードを有している。本発明は、このような構成を備えた双方向スイッチのゲート駆動方法であって、第4モードから第3モードまたは第3モードから第4モードの少なくとも一方へ移行する際に、第1モードまたは第2モードの少なくとも一方を介在するように制御するものである。
The gate switch driving method of the bidirectional switch according to the present invention is applied to a bidirectional switch having the following configuration. A semiconductor layer stack having a channel formed on a substrate, and a first ohmic electrode and a second ohmic electrode formed on the semiconductor layer stack at a distance from each other are provided. Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the said 2nd ohmic electrode. Further, a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode. A semiconductor. Furthermore, a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal. Further, when the first gate terminal and the second gate terminal are turned on, there is a third mode that operates so as to conduct bidirectionally between the drain terminal and the source terminal. In addition, there is a fourth mode in which current is cut off in both forward and reverse directions when the first gate terminal and the second gate terminal are turned off. The present invention provides a gate drive method for a bidirectional switch having such a configuration, wherein the first mode or the third mode or the third mode is shifted to at least one of the fourth mode and the third mode. Control is performed so as to interpose at least one of the second modes.
この方法により、4つの動作モードを有した双方向スイッチへの信号回路または帰還容量によるチップ相互のオンオフ時間のばらつきや、第1ゲート端子、第2ゲート端子を駆動する相互のゲート駆動回路の応答性ばらつきにより、第3モードから第4モードまたは第4モードから第3モードへの移行の際に、意図しない電流通流モード(例えば第2モードまたは第3モードの何れか一方)を経由することを回避し、信号搬送の遅れがあっても意図した何れか他方のモードを経由するように制御することができる。
With this method, the on / off time variation between the chips due to the signal circuit or the feedback capacitor to the bidirectional switch having four operation modes, and the response of the mutual gate drive circuits for driving the first gate terminal and the second gate terminal. Due to variation in characteristics, when the mode is shifted from the third mode to the fourth mode or from the fourth mode to the third mode, an unintended current flow mode (for example, either the second mode or the third mode) is passed. Thus, even if there is a delay in signal conveyance, control can be performed so as to pass through one of the intended modes.
以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明はこれに限られるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this.
(実施の形態1)
図1は、本発明の実施の形態1における双方向スイッチの構成図である。図1において、本実施の形態の双方向スイッチ1は、第1ゲート端子2と第2ゲート端子3とドレイン端子4とソース端子5により構成されている。双方向スイッチ1は、シリコン(Si)からなる基板6の上に厚さが10nmの窒化アルミニウム(AlN)と厚さが10nmの窒化ガリウム(GaN)とが交互に積層されてなる厚さが1μmのバッファ層7が形成されている。バッファ層7の上に、半導体層積層体8が形成されている。半導体層積層体8は、第1の半導体層と、この第1の半導体層と比べてバンドギャップが大きい第2の半導体層とが基板側から順次積層されている。第1の半導体層は、厚さが2μmのアンドープの窒化ガリウム(GaN)層9であり、第2の半導体層は、厚さが20nmのn型の窒化アルミニウムガリウム(AlGaN)層10である。GaN層9のAlGaN層10とのヘテロ界面近傍には、自発分極およびピエゾ分極による電荷が生じる。これにより、シートキャリア濃度が1×1013cm-2以上で且つ移動度が1000cm2V/sec以上の2次元電子ガス(2DEG)層であるチャネル領域が生成されている。 (Embodiment 1)
FIG. 1 is a configuration diagram of a bidirectional switch according toEmbodiment 1 of the present invention. In FIG. 1, the bidirectional switch 1 of the present embodiment includes a first gate terminal 2, a second gate terminal 3, a drain terminal 4, and a source terminal 5. The bidirectional switch 1 has a thickness of 1 μm in which aluminum nitride (AlN) having a thickness of 10 nm and gallium nitride (GaN) having a thickness of 10 nm are alternately stacked on a substrate 6 made of silicon (Si). The buffer layer 7 is formed. A semiconductor layer stack 8 is formed on the buffer layer 7. In the semiconductor layer stacked body 8, a first semiconductor layer and a second semiconductor layer having a band gap larger than that of the first semiconductor layer are sequentially stacked from the substrate side. The first semiconductor layer is an undoped gallium nitride (GaN) layer 9 having a thickness of 2 μm, and the second semiconductor layer is an n-type aluminum gallium nitride (AlGaN) layer 10 having a thickness of 20 nm. In the vicinity of the heterointerface between the GaN layer 9 and the AlGaN layer 10, charges are generated due to spontaneous polarization and piezoelectric polarization. As a result, a channel region which is a two-dimensional electron gas (2DEG) layer having a sheet carrier concentration of 1 × 10 13 cm −2 or more and a mobility of 1000 cm 2 V / sec or more is generated.
図1は、本発明の実施の形態1における双方向スイッチの構成図である。図1において、本実施の形態の双方向スイッチ1は、第1ゲート端子2と第2ゲート端子3とドレイン端子4とソース端子5により構成されている。双方向スイッチ1は、シリコン(Si)からなる基板6の上に厚さが10nmの窒化アルミニウム(AlN)と厚さが10nmの窒化ガリウム(GaN)とが交互に積層されてなる厚さが1μmのバッファ層7が形成されている。バッファ層7の上に、半導体層積層体8が形成されている。半導体層積層体8は、第1の半導体層と、この第1の半導体層と比べてバンドギャップが大きい第2の半導体層とが基板側から順次積層されている。第1の半導体層は、厚さが2μmのアンドープの窒化ガリウム(GaN)層9であり、第2の半導体層は、厚さが20nmのn型の窒化アルミニウムガリウム(AlGaN)層10である。GaN層9のAlGaN層10とのヘテロ界面近傍には、自発分極およびピエゾ分極による電荷が生じる。これにより、シートキャリア濃度が1×1013cm-2以上で且つ移動度が1000cm2V/sec以上の2次元電子ガス(2DEG)層であるチャネル領域が生成されている。 (Embodiment 1)
FIG. 1 is a configuration diagram of a bidirectional switch according to
半導体層積層体8の上には、互いに間隔をおいて第1のオーミック電極11Aと第2のオーミック電極11Bとが形成されている。第1のオーミック電極11Aおよび第2のオーミック電極11Bは、チタン(Ti)とアルミニウム(Al)とが積層されている。第1のオーミック電極11Aおよび第2のオーミック電極11Bは、それぞれチャネル領域とオーミック接合を形成している。また、コンタクト抵抗を低減するために、AlGaN層10の一部を除去すると共にGaN層9を40nm程度掘り下げ、第1のオーミック電極11Aおよび第2のオーミック電極11BがAlGaN層10とGaN層9との界面に接するように形成している。なお、第1のオーミック電極11Aおよび第2のオーミック電極11Bは、AlGaN層10の上に形成してもよい。
On the semiconductor layer stack 8, a first ohmic electrode 11A and a second ohmic electrode 11B are formed at a distance from each other. In the first ohmic electrode 11A and the second ohmic electrode 11B, titanium (Ti) and aluminum (Al) are laminated. The first ohmic electrode 11A and the second ohmic electrode 11B form an ohmic junction with the channel region, respectively. In addition, in order to reduce the contact resistance, a part of the AlGaN layer 10 is removed and the GaN layer 9 is dug down by about 40 nm, and the first ohmic electrode 11A and the second ohmic electrode 11B are connected to the AlGaN layer 10, the GaN layer 9, and the like. It is formed so as to be in contact with the interface. Note that the first ohmic electrode 11 </ b> A and the second ohmic electrode 11 </ b> B may be formed on the AlGaN layer 10.
n型のAlGaN層10の上における第1のオーミック電極11Aと第2のオーミック電極11Bとの間の領域には、第1のp型半導体層12Aおよび第2のp型半導体層12Bが互いに間隔をおいて選択的に形成されている。第1のp型半導体層12Aの上には第1のゲート電極13Aが形成され、第2のp型半導体層12Bの上には第2のゲート電極13Bが形成されている。第1のゲート電極13Aおよび第2のゲート電極13Bは、それぞれパラジウム(Pd)と金(Au)とが積層されている。第1のゲート電極13Aおよび第2のゲート電極13Bは、それぞれ第1のp型半導体層12Aおよび第2のp型半導体層12Bとオーミック接触している。
In the region between the first ohmic electrode 11A and the second ohmic electrode 11B on the n-type AlGaN layer 10, the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B are spaced from each other. And selectively formed. A first gate electrode 13A is formed on the first p-type semiconductor layer 12A, and a second gate electrode 13B is formed on the second p-type semiconductor layer 12B. The first gate electrode 13A and the second gate electrode 13B are formed by stacking palladium (Pd) and gold (Au), respectively. The first gate electrode 13A and the second gate electrode 13B are in ohmic contact with the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B, respectively.
AlGaN層10および第1のp型半導体層12Aおよび第2のp型半導体層12Bを覆うように窒化シリコン(SiN)からなる保護膜14が形成されている。保護膜14を形成することで、いわゆる電流コラプスの原因となる欠陥を保障し、電流コラプスを改善することが可能となる。
A protective film 14 made of silicon nitride (SiN) is formed so as to cover the AlGaN layer 10, the first p-type semiconductor layer 12A, and the second p-type semiconductor layer 12B. By forming the protective film 14, it is possible to ensure a defect that causes so-called current collapse and to improve current collapse.
第1のp型半導体層12Aおよび第2のp型半導体層12Bは、それぞれ厚さが300nmで、マグネシウム(Mg)がドープされたp型のGaNからなる。第1のp型半導体層12Aおよび第2のp型半導体層12Bと、AlGaN層10とによりPN接合がそれぞれ形成される。これにより、第1のオーミック電極11Aと第1のゲート電極13Aとの間の電圧が例えば0Vでは、第1のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができる。同様に、第2のオーミック電極11Bと第2のゲート電極13Bとの間の電圧が例えば0V以下のときには、第2のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができる。双方向スイッチ1は、いわゆる、ノーマリーオフ動作をする半導体素子を実現している。
The first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B each have a thickness of 300 nm and are made of p-type GaN doped with magnesium (Mg). The first p-type semiconductor layer 12A, the second p-type semiconductor layer 12B, and the AlGaN layer 10 form PN junctions. As a result, when the voltage between the first ohmic electrode 11A and the first gate electrode 13A is 0 V, for example, the depletion layer spreads from the first p-type GaN layer into the channel region, so that the current flowing through the channel is cut off. can do. Similarly, when the voltage between the second ohmic electrode 11B and the second gate electrode 13B is, for example, 0 V or less, a depletion layer spreads from the second p-type GaN layer into the channel region, so that the current flowing through the channel Can be cut off. The bidirectional switch 1 realizes a so-called normally-off semiconductor element.
第1のオーミック電極11Aの電位をV1、第1のゲート電極13Aの電位をV2、第2のゲート電極13Bの電位をV3、第2のオーミック電極11Bの電位をV4とする。この場合において、V2がV1より1.5V以上高ければ、第1のp型半導体層12Aからチャネル領域中に広がる空乏層が縮小するため、チャネル領域に電流を流すことができる。同様にV3がV4より1.5V以上高ければ、第2のp型半導体層12Bからチャネル領域中に広がる空乏層が縮小し、チャネル領域に電流を流すことができる。つまり、第1のゲート電極13Aのいわゆる閾値電圧および第2のゲート電極13Bのいわゆる閾値電圧は共に1.5Vである。
The potential of the first ohmic electrode 11A is V1, the potential of the first gate electrode 13A is V2, the potential of the second gate electrode 13B is V3, and the potential of the second ohmic electrode 11B is V4. In this case, if V2 is higher than V1 by 1.5V or more, the depletion layer extending from the first p-type semiconductor layer 12A into the channel region is reduced, so that a current can flow in the channel region. Similarly, if V3 is higher than V4 by 1.5V or more, the depletion layer extending from the second p-type semiconductor layer 12B into the channel region is reduced, and current can flow through the channel region. That is, the so-called threshold voltage of the first gate electrode 13A and the so-called threshold voltage of the second gate electrode 13B are both 1.5V.
以下においては、第1のゲート電極13Aの下側においてチャネル領域中に広がる空乏層が縮小し、チャネル領域に電流を流すことができるようになる第1のゲート電極13Aの閾値電圧を第1の閾値電圧とする。また、第2のゲート電極13Bの下側においてチャネル領域中に広がる空乏層が縮小し、チャネル領域に電流を流すことができるようになる第2のゲート電極13Bの閾値電圧を第2の閾値電圧とする。また、第1のp型半導体層12Aと第2のp型半導体層12Bとの間の距離は、第1のオーミック電極11Aおよび第2のオーミック電極11Bに印加される最大電圧に耐えられるように構成する。
In the following, the threshold voltage of the first gate electrode 13A at which the depletion layer extending in the channel region below the first gate electrode 13A is reduced and current can flow through the channel region is set to the first threshold voltage. The threshold voltage is used. The depletion layer extending in the channel region below the second gate electrode 13B is reduced, and the threshold voltage of the second gate electrode 13B that allows current to flow through the channel region is reduced to the second threshold voltage. And The distance between the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B can withstand the maximum voltage applied to the first ohmic electrode 11A and the second ohmic electrode 11B. Constitute.
第1のオーミック電極11Aと第1のゲート電極13Aとの間にゲート駆動信号(すなわち、第1ゲート端子2への制御信号)を入力するようになっている。第2のオーミック電極11Bと第2のゲート電極13Bとの間も同様にゲート駆動信号(すなわち、第2ゲート端子3への制御信号)を入力するようになっている。なお、ソース端子5は第1のオーミック電極11Aに接続され、ドレイン端子4は第2のオーミック電極11Bに接続され、第1ゲート端子2は第1のゲート電極13Aに接続され、第2ゲート端子3は第2のゲート電極13Bに接続されている。ドレイン端子4、ソース端子5は電源ラインに接続されている。
A gate drive signal (that is, a control signal to the first gate terminal 2) is input between the first ohmic electrode 11A and the first gate electrode 13A. Similarly, a gate drive signal (that is, a control signal to the second gate terminal 3) is input between the second ohmic electrode 11B and the second gate electrode 13B. The source terminal 5 is connected to the first ohmic electrode 11A, the drain terminal 4 is connected to the second ohmic electrode 11B, the first gate terminal 2 is connected to the first gate electrode 13A, and the second gate terminal. 3 is connected to the second gate electrode 13B. The drain terminal 4 and the source terminal 5 are connected to the power supply line.
次に、本実施の形態の双方向スイッチ1の動作について説明する。説明のため、第1のオーミック電極11Aの電位を0Vとし、第1ゲート端子2に印加する電圧をVg1、第2ゲート端子3に印加する電圧をVg2とする。また、第2のオーミック電極11Bと第1のオーミック電極11Aとの間の電圧をVs2s1、第2のオーミック電極11Bと第1のオーミック電極11Aとの間に流れる電流をIs2s1とする。
Next, the operation of the bidirectional switch 1 of the present embodiment will be described. For the sake of explanation, the potential of the first ohmic electrode 11A is 0 V, the voltage applied to the first gate terminal 2 is Vg1, and the voltage applied to the second gate terminal 3 is Vg2. Further, the voltage between the second ohmic electrode 11B and the first ohmic electrode 11A is Vs2s1, and the current flowing between the second ohmic electrode 11B and the first ohmic electrode 11A is Is2s1.
V4がV1よりも高い場合、例えば、V4が+100Vで、V1が0Vの場合において、第1ゲート端子2と第2ゲート端子3の入力電圧であるVg1およびVg2をそれぞれ第1の閾値電圧および第2の閾値電圧以下の電圧、例えば0Vとする。これにより、第1のp型半導体層12Aから広がる空乏層が、チャネル領域中を第2のp型GaN層の方向へ向けて広がるため、チャネルに流れる電流を遮断することができる。従って、V4が正の高電圧であっても、第2のオーミック電極11Bから第1のオーミック電極11Aへ流れる電流を遮断する遮断状態を実現できる。一方、V4がV1よりも低い場合、例えばV4が-100Vで、V1が0Vの場合においても、第2のp型半導体層12Bから広がる空乏層が、チャネル領域中を第1のp型半導体層12Aの方向へ向けて広がり、チャネルに流れる電流を遮断することができる。このため、第2のオーミック電極11Bに負の高電圧が印加されている場合においても、第1のオーミック電極11Aから第2のオーミック電極11Bへ流れる電流を遮断することができる。すなわち、双方向スイッチ1の双方向の電流を遮断することが可能となる。
When V4 is higher than V1, for example, when V4 is + 100V and V1 is 0V, the input voltages Vg1 and Vg2 of the first gate terminal 2 and the second gate terminal 3 are set to the first threshold voltage and the first threshold voltage, respectively. The voltage is equal to or lower than the threshold voltage of 2, for example, 0V. As a result, the depletion layer extending from the first p-type semiconductor layer 12A extends in the channel region toward the second p-type GaN layer, so that the current flowing through the channel can be blocked. Therefore, even when V4 is a positive high voltage, it is possible to realize a cut-off state in which a current flowing from the second ohmic electrode 11B to the first ohmic electrode 11A is cut off. On the other hand, when V4 is lower than V1, for example, even when V4 is −100 V and V1 is 0 V, the depletion layer extending from the second p-type semiconductor layer 12B is formed in the channel region in the first p-type semiconductor layer. The current spreads in the direction of 12A and can flow through the channel. For this reason, even when a negative high voltage is applied to the second ohmic electrode 11B, the current flowing from the first ohmic electrode 11A to the second ohmic electrode 11B can be blocked. That is, the bidirectional current of the bidirectional switch 1 can be cut off.
以上のような構造および動作において、耐圧を確保するためのチャネル領域を第1のゲート電極13Aと第2のゲート電極13Bとが共有する。そのため、この素子は、1素子分のチャネル領域の面積で双方向スイッチ1が実現可能である。双方向スイッチ1全体を考えると、2つのダイオードと2つのノーマリーオフ型のAlGaN/GaNからなるヘテロ接合電界効果型トランジスタ(AlGaN/GaN-HFET)を用いた場合と比べてチップ面積をより少なくすることができる。したがって、双方向スイッチ1の低コスト化および小型化が可能となる。
In the structure and operation as described above, the first gate electrode 13A and the second gate electrode 13B share a channel region for ensuring a withstand voltage. Therefore, this element can realize the bidirectional switch 1 with the area of the channel region for one element. Considering the bidirectional switch 1 as a whole, the chip area is smaller than when using a heterojunction field effect transistor (AlGaN / GaN-HFET) composed of two diodes and two normally-off AlGaN / GaN. can do. Therefore, the bidirectional switch 1 can be reduced in cost and size.
次に、第1ゲート端子2、第2ゲート端子3の入力電圧であるVg1およびVg2が、それぞれ第1の閾値電圧および第2の閾値電圧よりも高い電圧、例えば5Vの場合には、第1のゲート電極13Aおよび第2のゲート電極13Bに印加される電圧は、共に閾値電圧よりも高くなる。従って、第1のp型半導体層12Aおよび第2のp型半導体層12Bからチャネル領域に空乏層が広がらないため、チャネル領域は第1のゲート電極13Aの下側においても、第2のゲート電極13Bの下側においてもピンチオフされない。その結果、第1のオーミック電極11Aと第2のオーミック電極11Bとの間に双方向に電流が流れる導通状態を実現できる。
Next, when Vg1 and Vg2 which are input voltages of the first gate terminal 2 and the second gate terminal 3 are voltages higher than the first threshold voltage and the second threshold voltage, respectively, for example, 5V, the first voltage Both of the voltages applied to the gate electrode 13A and the second gate electrode 13B are higher than the threshold voltage. Accordingly, since the depletion layer does not extend from the first p-type semiconductor layer 12A and the second p-type semiconductor layer 12B to the channel region, the channel region is also formed below the first gate electrode 13A. It is not pinched off on the lower side of 13B. As a result, it is possible to realize a conductive state in which a current flows bidirectionally between the first ohmic electrode 11A and the second ohmic electrode 11B.
次に、Vg1を第1の閾値電圧よりも高い電圧とし、Vg2を第2の閾値電圧以下とした場合の動作について説明する。第1ゲート端子2、第2ゲート端子3を備えた双方向スイッチ1を等価回路で表すと図2Aに示すように第1のトランジスタ15と第2のトランジスタ16とが直列に接続された回路とみなすことができる。この場合、第1のトランジスタ15のソース(S)が第1のオーミック電極11A、第1のトランジスタ15のゲート(G)が第1のゲート電極13Aに対応し、第2のトランジスタ16のソース(S)が第2のオーミック電極11B、第2のトランジスタ16のゲート(G)が第2のゲート電極13Bに対応する。このような回路において、例えば、Vg1を5V、Vg2を0Vとした場合、Vg2が0Vであるということは第2のトランジスタ16のゲートとソースが短絡されている状態と等しいため、双方向スイッチ1は図2Bに示すような回路とみなすことができる。
Next, the operation when Vg1 is higher than the first threshold voltage and Vg2 is equal to or lower than the second threshold voltage will be described. When the bidirectional switch 1 having the first gate terminal 2 and the second gate terminal 3 is represented by an equivalent circuit, a circuit in which a first transistor 15 and a second transistor 16 are connected in series as shown in FIG. 2A. Can be considered. In this case, the source (S) of the first transistor 15 corresponds to the first ohmic electrode 11A, the gate (G) of the first transistor 15 corresponds to the first gate electrode 13A, and the source ( S) corresponds to the second ohmic electrode 11B, and the gate (G) of the second transistor 16 corresponds to the second gate electrode 13B. In such a circuit, for example, when Vg1 is 5V and Vg2 is 0V, the fact that Vg2 is 0V is equivalent to the state where the gate and the source of the second transistor 16 are short-circuited. Can be regarded as a circuit as shown in FIG. 2B.
さらに、図2Bに示す第2のトランジスタ16のソース(S)をA端子、ドレイン(D)をB端子、ゲート(G)をC端子として説明を行う。図に示すB端子の電位がA端子の電位よりも高い場合には、A端子がソースでB端子がドレインであるトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ソース)との間の電圧は0Vであり、閾値電圧以下のため、B端子(ドレイン)からA端子(ソース)に電流は流れない。一方、A端子の電位がB端子の電位よりも高い場合には、B端子がソースでA端子がドレインのトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ドレイン)との電位が同じであるため、A端子の電位がB端子を基準として閾値電圧以下の場合にはA端子(ドレイン)からB端子(ソース)へ電流を通電しない。A端子の電位がB端子を基準として閾値電圧以上となると、ゲートにB端子(ソース)を基準として閾値電圧以上の電圧が印加され、A端子(ドレイン)からB端子(ソース)へ電流を流すことができる。つまり、トランジスタのゲートとソースとを短絡させた場合、ドレインがカソードで、ソースがアノードのダイオードとして機能し、その順方向立上り電圧はトランジスタの閾値電圧となる。そのため、図2Aに示す第2のトランジスタ16の部分は、ダイオードとみなすことができ、図2Cに示すような等価回路となる。
Further, description will be made assuming that the source (S) of the second transistor 16 shown in FIG. 2B is the A terminal, the drain (D) is the B terminal, and the gate (G) is the C terminal. When the potential of the B terminal shown in the drawing is higher than the potential of the A terminal, the transistor can be regarded as a transistor in which the A terminal is a source and the B terminal is a drain. In such a case, the voltage between the C terminal (gate) and the A terminal (source) is 0 V, which is equal to or lower than the threshold voltage, so that no current flows from the B terminal (drain) to the A terminal (source). On the other hand, when the potential of the A terminal is higher than the potential of the B terminal, the transistor can be regarded as a transistor in which the B terminal is a source and the A terminal is a drain. In such a case, since the potentials of the C terminal (gate) and the A terminal (drain) are the same, when the potential of the A terminal is equal to or lower than the threshold voltage with respect to the B terminal, the A terminal (drain) to the B terminal Do not supply current to the (source). When the potential of the A terminal becomes equal to or higher than the threshold voltage with reference to the B terminal, a voltage higher than the threshold voltage is applied to the gate with reference to the B terminal (source), and current flows from the A terminal (drain) to the B terminal (source). be able to. That is, when the gate and the source of the transistor are short-circuited, the drain functions as a diode and the source functions as an anode, and the forward rising voltage becomes the threshold voltage of the transistor. Therefore, the portion of the second transistor 16 shown in FIG. 2A can be regarded as a diode, and an equivalent circuit as shown in FIG. 2C is obtained.
図2Cに示す等価回路において、双方向スイッチ1のドレイン端子4の電位がソース端子5の電位よりも高い場合、第1のトランジスタ15の第1ゲート端子2に5Vが印加されている場合には、第1のトランジスタ15はオン状態であり、S2からS1へ電流を流すことが可能となる。ただし、ダイオードの順方向立上り電圧によるオン電圧が発生する。また、双方向スイッチ1のS1の電位がS2の電位よりも高い場合、その電圧は第2のトランジスタ16からなるダイオードが担い、双方向スイッチ1のS1からS2へ流れる電流を阻止する。つまり、第1ゲート端子2に閾値電圧以上の電圧を与え、第2ゲート端子3に閾値電圧以下の電圧を与えることにより、いわゆる双方向素子をオンした状態と、ドレイン側にダイオードのカソード側を直列接続した動作が可能なスイッチが実現できる。
In the equivalent circuit shown in FIG. 2C, when the potential of the drain terminal 4 of the bidirectional switch 1 is higher than the potential of the source terminal 5, or when 5 V is applied to the first gate terminal 2 of the first transistor 15. The first transistor 15 is in an on state, and a current can flow from S2 to S1. However, an on-voltage is generated due to the forward rising voltage of the diode. Further, when the potential of S1 of the bidirectional switch 1 is higher than the potential of S2, the voltage is carried by the diode composed of the second transistor 16, and the current flowing from S1 to S2 of the bidirectional switch 1 is blocked. That is, by applying a voltage equal to or higher than the threshold voltage to the first gate terminal 2 and applying a voltage equal to or lower than the threshold voltage to the second gate terminal 3, the so-called bidirectional device is turned on, and the cathode side of the diode is connected to the drain side. A switch that can be connected in series can be realized.
図3A~図3Cは、本実施の形態の双方向スイッチの第1~第3の電圧・電流の相関図であって、双方向スイッチ1のVs2s1とIs2s1との関係を示している。すなわち、図3Aは、Vg1とVg2とを同時に変化させた場合を示している。図3Bは、Vg2を第2の閾値電圧以下の0Vとし、Vg1を変化させた場合を示している。図3Cは、Vg1を第1の閾値電圧以下の0VとしてVg2を変化させた場合を示している。なお、図3A~図3Cにおいて、横軸であるS2-S1間電圧(Vs2s1)は、第1のオーミック電極11Aを基準とした電圧である。また、縦軸であるS2-S1間電流(Is2s1)は第2のオーミック電極11Bから第1のオーミック電極11Aへ流れる電流を正としている。
FIGS. 3A to 3C are first to third voltage / current correlation diagrams of the bidirectional switch of the present embodiment, and show the relationship between Vs2s1 and Is2s1 of the bidirectional switch 1. FIG. That is, FIG. 3A shows a case where Vg1 and Vg2 are changed simultaneously. FIG. 3B shows a case where Vg2 is set to 0 V that is equal to or lower than the second threshold voltage, and Vg1 is changed. FIG. 3C shows a case where Vg2 is changed by setting Vg1 to 0 V that is equal to or lower than the first threshold voltage. 3A to 3C, the voltage between S2 and S1 (Vs2s1) on the horizontal axis is a voltage with reference to the first ohmic electrode 11A. In addition, the current between S2 and S1 (Is2s1) on the vertical axis is positive for the current flowing from the second ohmic electrode 11B to the first ohmic electrode 11A.
図3Aに示すように、Vg1およびVg2が0Vの場合および1Vの場合には、Vs2s1が正の場合にも負の場合にもIs2s1は流れず、双方向スイッチ1は遮断状態となる。また、Vg1とVg2とが共に閾値電圧よりも高くなると、Vs2s1に応じてIs2s1が双方向に流れる導通状態となる。
As shown in FIG. 3A, when Vg1 and Vg2 are 0 V and 1 V, Is2s1 does not flow regardless of whether Vs2s1 is positive or negative, and the bidirectional switch 1 is cut off. Further, when both Vg1 and Vg2 become higher than the threshold voltage, a conductive state in which Is2s1 flows bidirectionally according to Vs2s1 is established.
一方、図3Bに示すように、Vg2を第2の閾値電圧以下の0Vとし、Vg1を第1の閾値電圧以下の0Vとした場合には、Is2s1は双方向に遮断される。しかし、Vg1を第1の閾値電圧以上の2V~5Vとした場合には、Vs2s1が1.5V未満の場合にはIs2s1が流れないが、Vs2s1が1.5V以上になるとIs2s1が流れる。つまり、第2のオーミック電極11Bから第1のオーミック電極11Aにのみに電流が流れ、第1のオーミック電極11Aから第2のオーミック電極11Bには電流が流れない逆阻止状態となる。
On the other hand, as shown in FIG. 3B, when Vg2 is set to 0 V that is equal to or lower than the second threshold voltage and Vg1 is set to 0 V that is equal to or lower than the first threshold voltage, Is2s1 is blocked in both directions. However, when Vg1 is 2V to 5V, which is equal to or higher than the first threshold voltage, Is2s1 does not flow when Vs2s1 is less than 1.5V, but Is2s1 flows when Vs2s1 becomes 1.5V or more. That is, a reverse blocking state is reached in which current flows only from the second ohmic electrode 11B to the first ohmic electrode 11A, and no current flows from the first ohmic electrode 11A to the second ohmic electrode 11B.
また、図3Cに示すように、Vg1を0Vとし、Vg2を変化させた場合には、第1のオーミック電極11Aから第2のオーミック電極11Bにのみに電流が流れ、第2のオーミック電極11Bから第1のオーミック電極11Aには電流が流れない逆阻止状態となる。
As shown in FIG. 3C, when Vg1 is set to 0 V and Vg2 is changed, current flows only from the first ohmic electrode 11A to the second ohmic electrode 11B, and from the second ohmic electrode 11B. The first ohmic electrode 11A is in a reverse blocking state where no current flows.
以上より、双方向スイッチ1は、そのゲートバイアス条件により、双方向の電流を遮断・通電する機能を有すると共に、ダイオード動作も可能であり、そのダイオードの電流が通電する方向も切換えることができる。以上、説明したように双方向スイッチ1の第1ゲート端子2と第2ゲート端子3のオン(図ではONと記す)またはオフ(図ではOFFと記す)条件に応じて、図4に示す4つの動作モードで動作することができる。すなわち、第1ゲート端子(G1)2のみをオンすると、ドレイン端子4からソース端子5間に向けてオン状態の双方向デバイスと、逆方向ダイオードが直列接続された半導体として動作する第1モードが得られる。第2ゲート端子(G2)3のみをオンすると、ドレイン端子4からソース端子5間に向けて順方向ダイオードとオン状態の双方向デバイスが直列接続された半導体として動作する第2モードが得られる。第1ゲート端子(G1)2および第2ゲート端子(G2)3をオンすると、ドレイン端子4からソース端子5間にダイオードを介さない双方向に導通するように動作する第3モードが得られる。第1ゲート端子(G1)2および第2ゲート端子(G2)3をオフすると、順逆双方向に電流を遮断する第4モードが得られる。
As described above, the bidirectional switch 1 has a function of interrupting and energizing the bidirectional current according to the gate bias condition, and can also operate as a diode, and the direction in which the current of the diode is energized can be switched. As described above, 4 shown in FIG. 4 according to the ON (denoted as ON) or OFF (denoted as OFF in the figure) conditions of the first gate terminal 2 and the second gate terminal 3 of the bidirectional switch 1. It can operate in one mode of operation. That is, when only the first gate terminal (G1) 2 is turned on, the first mode in which the bidirectional device that is turned on from the drain terminal 4 to the source terminal 5 and the semiconductor in which the reverse diode is connected in series is operated. can get. When only the second gate terminal (G2) 3 is turned on, a second mode in which a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal 4 to the source terminal 5 is obtained. When the first gate terminal (G1) 2 and the second gate terminal (G2) 3 are turned on, a third mode is obtained that operates so as to conduct in a bidirectional manner between the drain terminal 4 and the source terminal 5 without using a diode. When the first gate terminal (G1) 2 and the second gate terminal (G2) 3 are turned off, a fourth mode in which current is interrupted in both forward and reverse directions is obtained.
本実施の形態の構造は接合型電界効果トランジスタ(JFET)に類似しているが、キャリア注入を意図的に行うという点で、ゲート電界によりチャネル領域内のキャリア変調を行うJFETとは全く異なった動作原理により動作する。具体的には、ゲート電圧が3VまではJFETとして動作する。しかし、pn接合のビルトインポテンシャルを超える3V以上のゲート電圧が印加された場合には、ゲートに正孔が注入され、前述したメカニズムにより電流が増加し、大電流且つ低オン抵抗の動作が可能となる。
The structure of the present embodiment is similar to a junction field effect transistor (JFET), but is completely different from a JFET that performs carrier modulation in a channel region by a gate electric field in that carrier injection is intentionally performed. Operates according to the operating principle. Specifically, it operates as a JFET up to a gate voltage of 3V. However, when a gate voltage of 3 V or more exceeding the built-in potential of the pn junction is applied, holes are injected into the gate, the current increases due to the mechanism described above, and a large current and low on-resistance operation is possible. Become.
また、本実施の形態の双方向スイッチ1は、第1のゲート電極13Aがp型の導電性を有する第1のp型半導体層12Aの上に形成され、第2のゲート電極13Bがp型の導電性を有する第2のp型半導体層12Bの上に形成されている。このため、第1の半導体層(GaN層9)と第2の半導体層(AlGaN層10)との界面領域に生成されるチャネル領域に対して、第1のゲート電極13Aおよび第2のゲート電極13Bから順方向のバイアスを印加することにより、チャネル領域内に正孔を注入することができる。窒化物半導体においては正孔の移動度は、電子の移動度よりもはるかに低いため、チャネル領域に注入された正孔は電流を流す担体としてほとんど寄与しない。このため、第1のゲート電極13Aおよび第2のゲート電極13Bから注入された正孔は同量の電子をチャネル領域内に発生させるので、チャネル領域内に電子を発生させる効果が高くなり、ドナーイオンのような機能を発揮する。つまり、チャネル領域内においてキャリア濃度の変調を行うことが可能となるため、動作電流が大きいノーマリーオフ型の窒化物半導体層双方向スイッチを実現することが可能となる。
In the bidirectional switch 1 of the present embodiment, the first gate electrode 13A is formed on the first p-type semiconductor layer 12A having p-type conductivity, and the second gate electrode 13B is p-type. It is formed on the second p-type semiconductor layer 12B having the above conductivity. For this reason, the first gate electrode 13A and the second gate electrode are formed with respect to the channel region generated in the interface region between the first semiconductor layer (GaN layer 9) and the second semiconductor layer (AlGaN layer 10). By applying a forward bias from 13B, holes can be injected into the channel region. In a nitride semiconductor, the mobility of holes is much lower than the mobility of electrons, so that holes injected into the channel region hardly contribute as carriers for passing current. For this reason, holes injected from the first gate electrode 13A and the second gate electrode 13B generate the same amount of electrons in the channel region, so that the effect of generating electrons in the channel region is increased, and the donor is increased. It functions like an ion. That is, since the carrier concentration can be modulated in the channel region, it is possible to realize a normally-off type nitride semiconductor layer bidirectional switch having a large operating current.
次に、本実施の形態の双方向スイッチ1のゲート駆動を行う制御部17について、図5を参照しながら説明する。図5は、双方向スイッチ1のゲート駆動を行う制御部17の説明図である。
Next, the control unit 17 that performs gate driving of the bidirectional switch 1 of the present embodiment will be described with reference to FIG. FIG. 5 is an explanatory diagram of the control unit 17 that performs gate driving of the bidirectional switch 1.
図5に示すように、制御部17は、ゲート駆動回路19A、19Bを介して、それぞれ第1ゲート端子2、第2ゲート端子3に配置されている。制御部17の内部構成は、双方向オフ状態である第4モードと双方向オン状態である第3モード間を直接移行しないように、図4に示した4つの動作モードに対応させて作成した図6に示すオン・オフテーブルを参照して出力するように構成されている。
As shown in FIG. 5, the control part 17 is arrange | positioned at the 1st gate terminal 2 and the 2nd gate terminal 3 via the gate drive circuits 19A and 19B, respectively. The internal configuration of the control unit 17 is created in correspondence with the four operation modes shown in FIG. 4 so as not to directly shift between the fourth mode in the bidirectional off state and the third mode in the bidirectional on state. It is configured to output with reference to the on / off table shown in FIG.
以下、このオン・オフテーブルを参照して出力した場合の電力変換装置としてのインバータ装置18について、図7を参照しながら説明する。図7は、双方向スイッチ1を用いたインバータ装置の構成図である。図7において、本実施の形態の電力変換装置は、入力部としての電源23と電力変換部としてのインバータ装置18とを備えている。図7では、双方向スイッチ1a~1fにて主回路を構成している。すなわち、双方向スイッチ1a、1c、1eでインバータ回路の上アームを構成し、双方向スイッチ1b、1d、1fで同インバータ回路の下アームを構成する。そして、双方向スイッチ1a~1fは、それぞれ第1ゲート端子2a~2f、第2ゲート端子3a~3fに対して、オン・オフテーブルを参照した駆動信号を制御部17から出力することで、4つのモードを遷移する。すなわち、上アームの双方向スイッチ1a、1c、1eにおいて第4モードから第3モードへ移行する際に、図6のオン・オフテーブルの第4モードの双方向に遮断の状態から第3モードの双方向に通電の状態に移行するまで、または逆の動作、すなわち第3モードの双方向に通電している状態から第4モードの双方向に遮断の状態に移行するまでの動作をする際に、例えば、意図した電流の通流方向がドレイン端子4からソース端子5への方向であれば、第2モードを介在するようになっている。第2モードの介在は、意図した導通方向に対して順方向にダイオードが形成されることとなり、双方向スイッチ1としては、順方向のみをオンしたダイオードを有した導通経路を形成することとなる。
Hereinafter, the inverter device 18 as a power conversion device when output with reference to this on / off table will be described with reference to FIG. FIG. 7 is a configuration diagram of an inverter device using the bidirectional switch 1. In FIG. 7, the power conversion device of the present embodiment includes a power source 23 as an input unit and an inverter device 18 as a power conversion unit. In FIG. 7, the bidirectional circuit 1a to 1f constitutes the main circuit. That is, the bidirectional switches 1a, 1c, and 1e constitute the upper arm of the inverter circuit, and the bidirectional switches 1b, 1d, and 1f constitute the lower arm of the inverter circuit. The bidirectional switches 1a to 1f output a drive signal referring to the on / off table from the control unit 17 to the first gate terminals 2a to 2f and the second gate terminals 3a to 3f, respectively. Transition between two modes. That is, when the upper arm bidirectional switches 1a, 1c, and 1e shift from the fourth mode to the third mode, the third mode is changed from the bidirectionally blocked state of the fourth mode of the on / off table of FIG. When shifting to the energized state in both directions, or the reverse operation, that is, when moving from the energized state in both directions in the third mode to the disconnected state in both directions in the fourth mode For example, if the intended current flow direction is from the drain terminal 4 to the source terminal 5, the second mode is interposed. In the second mode, a diode is formed in the forward direction with respect to the intended conduction direction, and the bidirectional switch 1 forms a conduction path having a diode that is turned on only in the forward direction. .
また、下アームの双方向スイッチ1b、1d、1fがそれぞれ遮断状態に移行する際には、双方向スイッチ1b、1d、1fの第1ゲート端子2b、2d、2f、第2ゲート端子3b、3d、3fの各両端子をオフする瞬間まで、意図した方向に電流が通電できる状態を保持する。
In addition, when the bidirectional switches 1b, 1d, and 1f of the lower arm shift to the cut-off state, the first gate terminals 2b, 2d, and 2f, and the second gate terminals 3b and 3d of the bidirectional switches 1b, 1d, and 1f, respectively. The state in which current can be supplied in the intended direction is maintained until the moment when both terminals 3f are turned off.
まず、制御部17は、双方向に電流遮断する第4モードから双方向に電流を通電する第3モードに移行する際に、テーブルの第4モードの双方向に遮断の状態から第3モードの双方向に通電の状態に移行するまで、意図した導通方向に対して逆方向ダイオードが形成されるモード(例えば、意図した電流の通流方向がドレイン端子4からソース端子5への方向であれば第1モード)を介在させて、第3モードに移行するように制御する。
First, when the control unit 17 shifts from the fourth mode in which current is interrupted in both directions to the third mode in which current is supplied in both directions, the control unit 17 changes from the state in which the table is in the fourth mode to the third mode. A mode in which a reverse diode is formed with respect to the intended conduction direction (for example, if the intended current flow direction is the direction from the drain terminal 4 to the source terminal 5) Control is performed to shift to the third mode with the first mode) interposed.
そして、逆に双方向に電流を通電する第3モードから双方向に電流遮断する第4モードに移行する際には、同様に第3モードから第1モードを経由して第4モードへ移行するように制御する。但し、この制御では、例えば、図7に示すようなインバータ装置18の負荷側に誘導負荷が接続された際に、第1アーム18aの双方向スイッチ1aをモード移行する場合、第1アーム18aの双方向スイッチ1bのモード移行を行い、直流部の負側から還流電流を流すことができる。さらに、双方向スイッチ1aと双方向スイッチ1bが上下アーム短絡を発生させないように、第2モードを参照してモード移行を行うように制御する。この場合、双方向スイッチ1bがダイオードを介在した動作となり、双方向スイッチ1aはダイオードを介在した通電動作は発生しない。
On the contrary, when shifting from the third mode in which current is passed in both directions to the fourth mode in which current is cut off in both directions, the mode is similarly shifted from the third mode to the fourth mode via the first mode. To control. However, in this control, for example, when an inductive load is connected to the load side of the inverter device 18 as shown in FIG. 7, the mode of the bidirectional switch 1a of the first arm 18a is changed. A mode change of the bidirectional switch 1b is performed, and a reflux current can be supplied from the negative side of the direct current portion. Furthermore, the bidirectional switch 1a and the bidirectional switch 1b are controlled to perform mode transition with reference to the second mode so that the upper and lower arms are not short-circuited. In this case, the bidirectional switch 1b operates with a diode interposed therebetween, and the bidirectional switch 1a does not generate an energizing operation with a diode interposed.
以上のように、本実施の形態の双方向スイッチ1は、第1ゲート端子2、第2ゲート端子3、ドレイン端子4、ソース端子5を備えている。そして、第1ゲート端子2のみをオンすると、ドレイン端子4からソース端子5との間に双方向デバイスのオン状態と逆方向ダイオードのカソード側が直列接続された半導体として動作する。第2ゲート端子3のみをオンすると、ドレイン端子4からソース端子5との間に順方向ダイオードと順方向ダイオードのカソード側が直列接続された半導体として動作する。第1ゲート端子2および第2ゲート端子3をオンすると、ドレイン端子4からソース端子5との間にダイオードを介さない双方向に導通するように動作する。第1ゲート端子2および第2ゲート端子3をオフすると順逆双方向に電流を遮断するように動作する。このような特性を有した双方向スイッチ1のゲート駆動においては、双方向オフの状態から双方向オンの状態への遷移、または逆の遷移を直接移行しないように、意図した方向に電流を通流する順逆何れか一方向のみオンさせるようにすることができる。
As described above, the bidirectional switch 1 of the present embodiment includes the first gate terminal 2, the second gate terminal 3, the drain terminal 4, and the source terminal 5. When only the first gate terminal 2 is turned on, it operates as a semiconductor in which the on-state of the bidirectional device and the cathode side of the reverse diode are connected in series between the drain terminal 4 and the source terminal 5. When only the second gate terminal 3 is turned on, it operates as a semiconductor in which the forward diode and the cathode side of the forward diode are connected in series between the drain terminal 4 and the source terminal 5. When the first gate terminal 2 and the second gate terminal 3 are turned on, they operate so as to conduct in a bidirectional manner between the drain terminal 4 and the source terminal 5 without using a diode. When the first gate terminal 2 and the second gate terminal 3 are turned off, the operation is performed to cut off the current in both forward and reverse directions. In the gate drive of the bidirectional switch 1 having such characteristics, a current is passed in the intended direction so as not to make a direct transition from the bidirectional OFF state to the bidirectional ON state or the reverse transition. It is possible to turn on only one of the forward and reverse directions.
一般に、4つの動作モードを有した双方向スイッチは、双方向スイッチへの信号回路または帰還容量によるチップ相互のオンオフ時間のばらつきや、第1ゲート端子2、第2ゲート端子3を駆動する相互のゲート駆動回路の応答性ばらつきを有する。このようなばらつきにより、第3モードから第4モードまたは第4モードから第3モードへの移行の際に、意図しない電流通流モード(例えば、第2モード(意図した電流の通流方向がソース端子5からドレイン端子4の場合は第1モード)または第3モードの何れか一方)を経由することがある。しかし、本実施の形態の双方向スイッチ1では、上記した特性を有するために、意図しない電流通流モード経由することを回避することができる。したがって、信号搬送の遅れがあっても意図した何れか他方のモード(例えば、意図した電流の通流方向がソース端子5からドレイン端子4の場合は第2モードが「意図した他方のモード」になる)を経由するように、双方向スイッチ1のゲート駆動の制御を行うことができる。
In general, a bidirectional switch having four operation modes has a variation in on-off time between chips due to a signal circuit or feedback capacitance to the bidirectional switch, and mutual mutual driving for driving the first gate terminal 2 and the second gate terminal 3. There is a variation in response of the gate drive circuit. Due to such variations, an unintended current flow mode (for example, the second mode (in which the intended current flow direction is the source) is set when the mode is shifted from the third mode to the fourth mode or from the fourth mode to the third mode. In the case of the terminal 5 to the drain terminal 4, there are cases where either the first mode) or the third mode) is passed. However, since the bidirectional switch 1 of the present embodiment has the above-described characteristics, it is possible to avoid going through an unintended current flow mode. Therefore, even if there is a delay in signal conveyance, the intended other mode (for example, when the intended current flow direction is from the source terminal 5 to the drain terminal 4, the second mode is changed to the “intended other mode”. It is possible to control the gate drive of the bidirectional switch 1 so as to go through.
また、インバータ装置18の例では、双方向スイッチ1bにおいて第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して順方向ダイオードが形成される第1モードを経由するように制御している。したがって、双方向オフ状態から双方向オン状態へと遷移する際に、ドレイン端子4とソース端子5との間の電流が意図通りの通流方向となるように制御することができる。すなわち、本実施の形態のように、出力側にモータなどの誘導負荷が接続された場合であっても、クランプ回路などを必要とせず、簡単な回路構成で電力変換を行うことができる。なお、インバータ装置18の変調方式に応じて、双方向スイッチ1の個数および配置は変更しても良い。
Further, in the example of the inverter device 18, the bidirectional switch 1 b passes through the first mode in which a forward diode is formed with respect to the intended conduction direction at the time of the state transition from the fourth mode to the third mode. Is controlling. Therefore, when transitioning from the bi-directional off state to the bi-directional on state, it is possible to control so that the current between the drain terminal 4 and the source terminal 5 becomes the intended flow direction. That is, even when an inductive load such as a motor is connected to the output side as in the present embodiment, power conversion can be performed with a simple circuit configuration without requiring a clamp circuit or the like. Note that the number and arrangement of the bidirectional switches 1 may be changed according to the modulation method of the inverter device 18.
また、オン・オフテーブルは、制御部17の各出力端の何れか一方に対して図8に示すような遅延生成部としての論理回路20など(例えば、1ns以上の信号伝搬時間を実現させるための信号伝搬時間が10nsのロジックIC)を付加して実現することもできる。例えば、この論理回路20で、第1ゲート端子2と第2ゲート端子3のオフからオン、またはオンからオフへの切換えを相異なるタイミングで制御して遅延時間を生成できる。また、論理回路の応答速度を利用して遅延時間を生成することができる。遅延生成部の生成する遅延時間は、1nsまたは1nsよりも大きい。これにより、半導体の入出力または帰還容量によるチップ相互のオンオフ時間のばらつきや、第1ゲート端子、第2ゲート端子を駆動する相互のゲート駆動回路の応答性ばらつきにより、4つの動作モードを有する双方向スイッチの動作モードの遷移が意図しない動作モードを経由することを回避することができる。
The on / off table is a logic circuit 20 as a delay generation unit as shown in FIG. 8 for any one of the output terminals of the control unit 17 (for example, to realize a signal propagation time of 1 ns or more). This can also be realized by adding a logic IC having a signal propagation time of 10 ns. For example, the logic circuit 20 can generate a delay time by controlling switching of the first gate terminal 2 and the second gate terminal 3 from OFF to ON, or from ON to OFF at different timings. Further, the delay time can be generated using the response speed of the logic circuit. The delay time generated by the delay generator is 1 ns or greater than 1 ns. As a result, both of the four operation modes are provided due to variations in the on / off time between chips due to semiconductor input / output or feedback capacitance, and variations in the responsiveness of the gate drive circuits that drive the first gate terminal and the second gate terminal. It is possible to prevent the operation mode transition of the direction switch from going through an unintended operation mode.
このように、論理回路20のような遅延生成部により、第4モードから第3モードへ、または第3モードから第4モードへ直接移行せず、論理回路20の遅延時間分遅れた信号で駆動する構成としても良い。
As described above, the delay generation unit such as the logic circuit 20 does not directly shift from the fourth mode to the third mode or from the third mode to the fourth mode, but is driven by a signal delayed by the delay time of the logic circuit 20. It is good also as composition to do.
また、第1ゲート端子2の駆動信号と第2ゲート端子3の駆動信号を共用し、制御部17を介して第1ゲート端子2および第2ゲート端子3を唯一のゲート駆動信号でオンオフ制御する図8のような構成としても良い。図8において、一方のゲート駆動回路19Cに制御部17から直接供給される駆動信号が、他方のゲート駆動回路19Dに対して、論理回路20を介して供給される。論理回路20は、強制的かつ一時的にモードを固定する。
Further, the drive signal for the first gate terminal 2 and the drive signal for the second gate terminal 3 are shared, and the first gate terminal 2 and the second gate terminal 3 are controlled to be turned on and off with the only gate drive signal via the control unit 17. It is good also as a structure like FIG. In FIG. 8, the drive signal directly supplied from the control unit 17 to one gate drive circuit 19C is supplied via the logic circuit 20 to the other gate drive circuit 19D. The logic circuit 20 forcibly and temporarily fixes the mode.
これにより、ゲート駆動用の信号として、1素子当たり2信号をマイクロプロセッサから出力する必要がなく、簡略化が図れ、より安価な構成とすることができる。
Thereby, it is not necessary to output two signals per one element from the microprocessor as gate driving signals, and simplification can be achieved and a more inexpensive configuration can be achieved.
このように、図8に示す構成によれば、図4の第1モードおよび第2モードを用いないで、単に第1ゲート端子2と第2ゲート端子3を駆動するタイミングをずらせるだけで、直接、第3モードと第4モードとの間の移行を阻止できる。
As described above, according to the configuration shown in FIG. 8, without using the first mode and the second mode of FIG. 4, the timing for driving the first gate terminal 2 and the second gate terminal 3 is simply shifted. Directly, the transition between the third mode and the fourth mode can be prevented.
(実施の形態2)
以下、図9A、図9Bを参照しながら本発明の実施の形態2の双方向スイッチ1のゲート駆動方法について説明する。図9A、図9Bは、本実施の形態における双方向スイッチの第1および第2のモード遷移図である。なお、実施の形態1と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 2)
Hereinafter, a gate driving method of thebidirectional switch 1 according to the second embodiment of the present invention will be described with reference to FIGS. 9A and 9B. 9A and 9B are first and second mode transition diagrams of the bidirectional switch according to the present embodiment. In addition, what has the same function as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits detailed description.
以下、図9A、図9Bを参照しながら本発明の実施の形態2の双方向スイッチ1のゲート駆動方法について説明する。図9A、図9Bは、本実施の形態における双方向スイッチの第1および第2のモード遷移図である。なお、実施の形態1と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 2)
Hereinafter, a gate driving method of the
図9Aに示すように、制御部17は、双方向スイッチ1aを双方向に電流遮断する第4モードから双方向に電流を通電する第3モードに移行する際に、意図した導通方向(本実施の形態の場合、ドレイン端子4からソース端子5に電流を通電する方向)に対して逆方向ダイオードが形成されるモードを介在させて、第3モードに移行するように制御する。この時のオン・オフテーブルは、双方向スイッチ1aの場合、図6に示した第4モードから第1モードを経由して第3モードへ移行しており、意図した導通方向に対して、逆方向にダイオードが形成されるモードを介在させて第3モードへ移行するように制御することに対応している。
As shown in FIG. 9A, when the control unit 17 shifts from the fourth mode in which the bidirectional switch 1a is bi-directionally interrupted to the third mode in which current is bi-directionally passed, In the case of this form, control is performed so as to shift to the third mode by interposing a mode in which a reverse diode is formed (in the direction in which current is passed from the drain terminal 4 to the source terminal 5). In the case of the bidirectional switch 1a, the on / off table at this time is shifted from the fourth mode shown in FIG. 6 to the third mode via the first mode, and is opposite to the intended conduction direction. This corresponds to controlling to shift to the third mode with a mode in which a diode is formed in the direction.
また、逆に、双方向スイッチ1aを双方向に電流を通電する第3モードから双方向に電流遮断する第4モードに移行する際には、図9Bに示すように、意図した導通方向に対して逆方向ダイオードが形成されるモードを介在させて、第3モードに移行するように制御する。この時のオン・オフは、双方向スイッチ1aの場合、図6に示した第3モードから第1モードを経由して第4モードへ移行しており、意図した導通方向(本実施の形態の場合、ドレイン端2子4からソース端子5に電流を通電する方向)に対して、逆方向にダイオードが形成されるモードを介在させて第4モードへ移行するように制御することに対応している。但し、この制御では、例えばインバータ装置18の負荷側に誘導負荷が接続された際に、第1アーム18aの双方向スイッチ1aをモード移行する場合、第1アーム18aの双方向スイッチ1bのモード移行を行い、直流部の負側から還流電流を流すことができる。さらに、双方向スイッチ1aと双方向スイッチ1bが上下アーム短絡を発生させないように、双方向スイッチ1bに対しても、時間T1において第2ゲート端子3bはオフ状態を保持し、時間T2おいて双方向スイッチ1aの第2ゲート端子3aがオフ状態に移行した後に時間T3においてオン状態へモードを移行するように制御する。この場合、双方向スイッチ1bがダイオードを介在した動作となり、双方向スイッチ1aはダイオードを介在した通電動作は発生しないこととなる。
On the contrary, when the bidirectional switch 1a shifts from the third mode in which current is supplied bidirectionally to the fourth mode in which current is bidirectionally interrupted, as shown in FIG. Then, control is performed so as to shift to the third mode through a mode in which a reverse diode is formed. In the case of the bidirectional switch 1a, the on / off at this time is shifted from the third mode shown in FIG. 6 to the fourth mode via the first mode, and the intended conduction direction (in this embodiment) Corresponding to the control to shift to the fourth mode by interposing a mode in which a diode is formed in the opposite direction with respect to the direction in which current flows from the drain end element 4 to the source terminal 5). Yes. However, in this control, for example, when the inductive load is connected to the load side of the inverter device 18 and the bidirectional switch 1a of the first arm 18a is shifted to the mode, the mode shift of the bidirectional switch 1b of the first arm 18a is performed. Thus, a reflux current can be supplied from the negative side of the DC part. Further, in order to prevent the bidirectional switch 1a and the bidirectional switch 1b from causing a short circuit between the upper and lower arms, the second gate terminal 3b is kept off at the time T1, and both the bidirectional switch 1b at the time T2. After the second gate terminal 3a of the direction switch 1a shifts to the off state, control is performed to shift the mode to the on state at time T3. In this case, the bidirectional switch 1b operates with a diode, and the bidirectional switch 1a does not generate an energizing operation with a diode.
このように、実施の形態2の図9Aでは、意図した通流方向がドレイン端子4からソース端子5の場合、双方向スイッチ1aについては、第4モードから第1モードを経由して第3モードと移行する。その後は、第1モードを経由して第4モードへ移行する。双方向スイッチ1bについては、第3モードから第1モードを経由して第4モードと移行する。その後は、第1モードを経由して第3モードに移行する。
As described above, in FIG. 9A of the second embodiment, when the intended flow direction is from the drain terminal 4 to the source terminal 5, the bidirectional switch 1a is switched from the fourth mode to the third mode via the first mode. And migrate. Thereafter, the mode is shifted to the fourth mode via the first mode. The bidirectional switch 1b shifts from the third mode to the fourth mode via the first mode. Thereafter, the mode is shifted to the third mode via the first mode.
以上のように、制御部17は、双方向に電流遮断する第4モードから双方向に電流を通電する第3モードに移行する際、または双方向に電流を通電する第3モードから双方向に電流遮断する第4モードに移行する際に、意図した導通方向に対して逆方向ダイオードが形成されるモードを介在させて、第3モードに移行するように制御する。これにより、双方向スイッチ1bを第1または第2モードを経由した場合であっても、その際に通流電流を発生させず、ダイオードの順方向電圧による損失の発生を防止することができる。
As described above, the control unit 17 shifts from the fourth mode in which current is cut off in both directions to the third mode in which current is supplied in both directions, or from the third mode in which current is supplied in both directions. When shifting to the fourth mode in which the current is interrupted, control is performed so as to shift to the third mode by interposing a mode in which a reverse diode is formed with respect to the intended conduction direction. As a result, even when the bidirectional switch 1b passes through the first or second mode, no conduction current is generated at that time, and loss due to the forward voltage of the diode can be prevented.
(実施の形態3)
以下、本発明の実施の形態3について、図10を参照しながら双方向スイッチ1のゲート駆動方法について説明する。図10は、本実施の形態における双方向スイッチのモード遷移図である。なお、実施の形態1、2と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 3)
Hereinafter, the gate driving method of thebidirectional switch 1 will be described with reference to FIG. 10 for the third embodiment of the present invention. FIG. 10 is a mode transition diagram of the bidirectional switch in the present embodiment. In addition, what has the same function as Embodiment 1, 2 attaches | subjects the same code | symbol, and abbreviate | omits detailed description.
以下、本発明の実施の形態3について、図10を参照しながら双方向スイッチ1のゲート駆動方法について説明する。図10は、本実施の形態における双方向スイッチのモード遷移図である。なお、実施の形態1、2と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 3)
Hereinafter, the gate driving method of the
図10に示すように、制御部17は、本発明の電力変換装置としてのインバータ装置18において、双方向スイッチ1aが第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して逆方向ダイオードが形成される第1モードを経由するように制御する。このことで順方向ダイオードの通流電流による損失を低減する。また、第4モードから第3モードへの状態遷移の際に、意図した導通方向(還流電流の方向)に対して順方向ダイオードが形成される第1モードを経由するように、第1ゲート端子2aと第2ゲート端子3aを制御する。すなわち、双方向スイッチ1aと双方向スイッチ1bは、組合せ(1)により双方向スイッチ1bが導通している状態から組合せ(2)により双方向スイッチ1aに導通する状態に遷移し、このとき還流電流を双方向スイッチ1aに流れるよう制御する。組合せ(2)の双方向スイッチ1aは、意図した導通方向(還流電流の方向)に対して順方向ダイオードが形成されるため、導通が可能となる。ここで、図10の中の実線矢印部分は定常時の電流方向を示し、点線矢印は過渡時の電流方向を示し、また、矢印に付したバツ記号はダイオードにより導通しないことを意味している。
As shown in FIG. 10, in the inverter device 18 as the power conversion device of the present invention, the control unit 17 sets the bidirectional switch 1 a in the intended conduction direction when the state transition from the third mode to the fourth mode occurs. On the other hand, control is performed so as to pass through the first mode in which a reverse diode is formed. This reduces the loss due to the forward current of the forward diode. In addition, the first gate terminal passes through the first mode in which the forward diode is formed with respect to the intended conduction direction (the direction of the return current) during the state transition from the fourth mode to the third mode. 2a and the second gate terminal 3a are controlled. That is, the bidirectional switch 1a and the bidirectional switch 1b transition from the state in which the bidirectional switch 1b is conducted by the combination (1) to the state in which the bidirectional switch 1a is conducted by the combination (2). Is controlled to flow to the bidirectional switch 1a. In the bidirectional switch 1a of the combination (2), a forward diode is formed with respect to the intended conduction direction (the direction of the return current), so that conduction is possible. Here, the solid line arrow portion in FIG. 10 indicates the current direction at the time of steady state, the dotted line arrow indicates the current direction at the time of transition, and the cross symbol attached to the arrow means that the diode does not conduct. .
一方、双方向スイッチ1bは、意図した電流の方向に対して双方向スイッチ1aの電流遮断状態となるタイミングで電流ルートを確保するように制御する。すなわち、双方向スイッチ1aが、第3モードから第4モードへの状態遷移の際に、第1モードを経由させて、双方向スイッチ1bに還流電流を流すように制御する。例えば、図10において、組合せ(3)から組合せ(4)を経由して組合せ(1)に遷移する際に、組合せ(4)で第1ゲート端子2bはオン状態とすることで還流電流を双方向スイッチ1bに流すようにする。また、双方向スイッチ1bの状態遷移に対しても、同様に双方向スイッチ1aにて電流ルートを確保するように制御する。すなわち、双方向スイッチ1bが第3モードから第4モードへの状態遷移の際には、第2モードを経由させて、双方向スイッチ1bに還流電流を流すように制御する。この場合には、組合せ(1)から組合せ(2)を経由して組合せ(3)へと遷移し、組合せ(2)において、第1ゲート端子2aをオン状態とすることで還流電流を双方向スイッチ1aに流すようにする。
On the other hand, the bidirectional switch 1b performs control so as to secure a current route at the timing when the bidirectional switch 1a enters the current cutoff state with respect to the intended current direction. That is, the bidirectional switch 1a is controlled so as to cause the return current to flow through the bidirectional switch 1b via the first mode at the time of the state transition from the third mode to the fourth mode. For example, in FIG. 10, when switching from the combination (3) to the combination (1) via the combination (4), the first gate terminal 2b is turned on in the combination (4) so that both the return currents are supplied. It is made to flow to the direction switch 1b. Similarly, the bidirectional switch 1b is controlled so as to secure a current route for the state transition of the bidirectional switch 1b. That is, when the bidirectional switch 1b makes a state transition from the third mode to the fourth mode, control is performed so that a reflux current flows through the bidirectional switch 1b via the second mode. In this case, the transition is made from the combination (1) to the combination (3) via the combination (2), and in the combination (2), the first gate terminal 2a is turned on so that the return current is bidirectional. It is made to flow through the switch 1a.
このように双方向スイッチ1bと双方向スイッチ1aは、双方向スイッチ1a、1bが導通状態(第3モード)から遮断状態(第4モード)へ遷移するときに互いの組合せ(2)、(4)により、ダイオードに電流が流れるモードを一度ずつ経由する。双方向スイッチ1aと双方向スイッチ1bは、図示した矢印の通り、ダイオードを通流するタイミングを一度ずつ経由するため、損失が互いに平均化される。
As described above, the bidirectional switch 1b and the bidirectional switch 1a are combined (2) and (4) when the bidirectional switches 1a and 1b transition from the conduction state (third mode) to the cutoff state (fourth mode). ), The current flows through the diode one by one. Since the bidirectional switch 1a and the bidirectional switch 1b go through the timing of passing the diode once as shown by the arrows in the figure, the losses are averaged with each other.
このように、本実施の形態では、意図した通流方向がドレイン端子4からソース端子5の場合、双方向スイッチ1aについては、第4モードから第1モードおよび第3モードを経由して第1モードへ移行する。その後は、再び第4モードと移行する。双方向スイッチ1bについては、第3モードから第1モードおよび第4モードを経由して第1モードへ移行する。その後は再び第3モードへ移行する。
Thus, in the present embodiment, when the intended flow direction is from the drain terminal 4 to the source terminal 5, the bidirectional switch 1a is switched from the fourth mode to the first mode through the first mode and the third mode. Transition to mode. Thereafter, the mode shifts to the fourth mode again. The bidirectional switch 1b shifts from the third mode to the first mode via the first mode and the fourth mode. After that, the mode again shifts to the third mode.
以上のように、本実施の形態によれば、双方向スイッチ1a、1bに対して、互いにダイオードを介して電流ルートを形成する時間比率を均等にすることができる。すなわち、ブリッジ回路を形成した際の相互の双方向スイッチ1a、1bの損失を平均化することができる。したがって、損失の大きな双方向スイッチ1aまたは1bに合わせた放熱設計を行う必要がなく、小型で軽量の電力変換装置を構成することができる。
As described above, according to the present embodiment, it is possible to equalize the time ratio for forming the current route with respect to the bidirectional switches 1a and 1b via the diodes. That is, the loss of the bidirectional switches 1a and 1b when the bridge circuit is formed can be averaged. Therefore, it is not necessary to perform a heat radiation design that matches the lossy bidirectional switch 1a or 1b, and a small and lightweight power conversion device can be configured.
(実施の形態4)
以下、本発明の実施の形態4の双方向スイッチ1のゲート駆動方法について、図11を参照しながら説明する。図11は、本実施の形態における双方向スイッチのモード遷移図である。なお、実施の形態1~3と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 4)
Hereinafter, a gate driving method of thebidirectional switch 1 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a mode transition diagram of the bidirectional switch in the present embodiment. Components having the same functions as those in the first to third embodiments are denoted by the same reference numerals and detailed description thereof is omitted.
以下、本発明の実施の形態4の双方向スイッチ1のゲート駆動方法について、図11を参照しながら説明する。図11は、本実施の形態における双方向スイッチのモード遷移図である。なお、実施の形態1~3と同一機能を有するものは、同一符号を付して詳細な説明は省略する。 (Embodiment 4)
Hereinafter, a gate driving method of the
図11に示すように、制御部17は、インバータ装置18において双方向スイッチ1aが第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して順方向ダイオードが形成される第2モード(意図した通流方向がドレイン端子4からソース端子5の場合)を経由するように制御している。すなわち、組合せ(7)から組合せ(8)を経由して組合せ(5)へと遷移させて制御する。また、第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して逆方向ダイオードが形成される第1モード(意図した通流方向がドレインからソースの場合)を経由するように制御している。すなわち、組合せ(5)から組合せ(6)を経由して組合せ(7)へと遷移させて制御する。このことで順方向ダイオードの通流電流による損失を低減し、ブリッジ回路を形成した際の相互の双方向スイッチ1a、1bの損失を平均化する。
As shown in FIG. 11, the control unit 17 forms a forward diode with respect to the intended conduction direction when the bidirectional switch 1a in the inverter device 18 undergoes a state transition from the third mode to the fourth mode. Control is performed so as to pass through the second mode (when the intended flow direction is from the drain terminal 4 to the source terminal 5). That is, control is performed by transitioning from the combination (7) to the combination (5) via the combination (8). Further, in the state transition from the fourth mode to the third mode, the first mode in which a reverse diode is formed with respect to the intended conduction direction (when the intended flow direction is from the drain to the source) is passed. So that it is controlled. That is, control is performed by making a transition from the combination (5) to the combination (7) via the combination (6). This reduces the loss due to the forward current of the forward diode and averages the losses of the bidirectional switches 1a and 1b when the bridge circuit is formed.
具体的には、組合せ(5)~組合せ(8)のように順次第1ゲート端子2a、2bと第2ゲート端子3a、3bをそれぞれオンオフ制御する。組合せ(6)の双方向スイッチ1aは、破線に示した電流方向が流れないとしている。しかし、組合せが移行する瞬間の過渡期においては双方向スイッチ1bを通流せず、双方向スイッチ1aを流れる。但し、破線部にバツ印を付与した方向は、他方の双方向スイッチ1aまたは双方向スイッチ1bの経路が優先されることを意味している。従って、双方向スイッチ1aと双方向スイッチ1bは、相互に順方向ダイオードを通過する経路を主として1回発生することとなる。また、双方向オン状態、双方向オフ状態についても同じ回数となるように制御する。
Specifically, the first gate terminals 2a and 2b and the second gate terminals 3a and 3b are sequentially turned on and off as in combination (5) to combination (8). In the bidirectional switch 1a of the combination (6), the current direction indicated by the broken line does not flow. However, in the transition period at the moment of transition of the combination, the bidirectional switch 1b does not flow but flows through the bidirectional switch 1a. However, the direction in which a cross mark is given to the broken line portion means that the path of the other bidirectional switch 1a or bidirectional switch 1b is given priority. Therefore, the bidirectional switch 1a and the bidirectional switch 1b generate a path that passes through the forward diode with respect to each other mainly once. In addition, control is performed so that the number of times is the same for the bidirectional on state and the bidirectional off state.
このように、本実施の形態では、意図した通流方向がドレイン端子5からソース端子4の場合、双方向スイッチ1aについては、第4モードから第1モードおよび第3モードを経由して第2モードに移行する。双方向スイッチ1bについては、第3モードから第2モードおよび第4モードを経由して第1モードに移行する。
Thus, in this embodiment, when the intended flow direction is from the drain terminal 5 to the source terminal 4, the bidirectional switch 1a is switched from the fourth mode to the second mode via the first mode and the third mode. Enter mode. The bidirectional switch 1b shifts from the third mode to the first mode via the second mode and the fourth mode.
以上のように、双方向スイッチ1a、1bに対して、互いにダイオードを介して電流ルートを形成する時間比率を均等にすることができる。すなわち、ブリッジ回路を形成した際の相互の双方向スイッチ1a、1bの損失を平均化することができる。したがって、損失の大きな双方向スイッチ1aまたは1bに合わせた放熱設計を行なう必要がなく、小型で軽量の電力変換装置を構成することができる。
As described above, the time ratio for forming the current route through the diodes can be made uniform for the bidirectional switches 1a and 1b. That is, the loss of the bidirectional switches 1a and 1b when the bridge circuit is formed can be averaged. Therefore, it is not necessary to perform a heat radiation design that matches the lossy bidirectional switch 1a or 1b, and a small and lightweight power conversion device can be configured.
以上説明してきたように、本発明が適用される双方向スイッチは、基板の上に形成されたチャネルを有する半導体層積層体と、半導体層積層体の上に互いに間隔をおいて形成された第1のオーミック電極および第2のオーミック電極とを有している。さらに、第1のオーミック電極と第2のオーミック電極との間に、第1のオーミック電極側から順に形成された、第1のゲート電極および第2のゲート電極とを有している。さらに、半導体層積層体と第1のゲート電極との間に形成された第1のp型半導体層と、半導体層積層体と第2のゲート電極との間に形成された第2のp型半導体とを有している。さらに、第1のオーミック電極と第1のゲート電極との間にゲート駆動信号を入力する第1ゲート端子と、第2のオーミック電極と第2のゲート電極との間にゲート駆動信号を入力する第2ゲート端子とを有している。さらに、第1のオーミック電極に接続されたドレイン端子と、第2のオーミック電極に接続されたソース端子とを備えている。さらに、第1ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けてオン状態の双方向デバイスと逆方向ダイオードが直列接続された半導体として動作する第1モードを有している。さらに、第2ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けて順方向ダイオードとオン状態の双方向デバイスが直列接続された半導体として動作する第2モードを有している。さらに、第1ゲート端子および第2ゲート端子をオンすると、ドレイン端子からソース端子間を双方向に導通する半導体として動作する第3モードを有している。さらに、第1ゲート端子および第2ゲート端子をオフすると、順逆双方向に電流を遮断する半導体として動作する第4モードとを有している。本発明は、このような双方向スイッチのゲート駆動方法であって、第4モードから第3モード、または第3モードから第4モードの少なくとも一方へ移行する際に、第1モードまたは第2モードの少なくとも一方を介在するように制御するものである。
As described above, the bidirectional switch to which the present invention is applied includes the semiconductor layer stack having a channel formed on the substrate and the first switch formed on the semiconductor layer stack at a distance from each other. One ohmic electrode and a second ohmic electrode. Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the 2nd ohmic electrode. Further, a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode. A semiconductor. Furthermore, a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal. Furthermore, when the first gate terminal and the second gate terminal are turned on, the semiconductor device has a third mode in which it operates as a semiconductor that conducts bidirectionally between the drain terminal and the source terminal. Further, when the first gate terminal and the second gate terminal are turned off, there is a fourth mode which operates as a semiconductor that cuts off current in both forward and reverse directions. The present invention provides a gate drive method for such a bidirectional switch, wherein the first mode or the second mode is used when shifting from the fourth mode to the third mode, or from the third mode to the fourth mode. It controls to interpose at least one of these.
一般に、このような4つの動作モードを有した双方向スイッチは、双方向スイッチへの信号回路または帰還容量によるチップ相互のオンオフ時間のばらつきや、第1ゲート端子、第2ゲート端子を駆動する相互のゲート駆動回路の応答性ばらつきが生じる。これらのばらつきにより、第3モードから第4モードまたは第4モードから第3モードへの移行の際に、意図しない電流通流モード(例えば第2モードまたは第3モードの何れか一方)を経由することが生じる。
In general, a bidirectional switch having such four operation modes has a variation in on / off time between chips due to a signal circuit or a feedback capacitor to the bidirectional switch, and a mutual operation for driving the first gate terminal and the second gate terminal. Variation in response of the gate drive circuit occurs. Due to these variations, an unintended current flow mode (for example, either the second mode or the third mode) is passed when the mode is shifted from the third mode to the fourth mode or from the fourth mode to the third mode. That happens.
しかし、本発明の上記した駆動方法により、第3モードから第4モードまたは第4モードから第3モードへの移行の際に、意図しない電流通流モードを経由することを回避できる。したがって、信号搬送の遅れがあっても意図した何れか他方のモードを経由するように制御することができる。
However, according to the above-described driving method of the present invention, it is possible to avoid passing through an unintended current flow mode when shifting from the third mode to the fourth mode or from the fourth mode to the third mode. Therefore, even if there is a delay in signal conveyance, control can be performed so as to pass through one of the intended other modes.
また、本発明は、第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して導通させるように順方向ダイオードが形成される第1モードまたは第2モードを経由するように制御するものである。
Further, the present invention passes through the first mode or the second mode in which the forward diode is formed so as to conduct in the intended conduction direction in the state transition from the fourth mode to the third mode. To control.
この方法により、双方向オフ状態から双方向オン状態へと遷移する際に、ドレイン端子とソース端子間の電流が意図通りの通流方向となるように制御することができる。したがって、出力側に誘導負荷が接続された場合であっても、クランプ回路などを必要とせず、簡単な回路構成で電力変換を行うことができる。
This method makes it possible to control the current between the drain terminal and the source terminal to have the intended flow direction when transitioning from the bidirectional off state to the bidirectional on state. Therefore, even when an inductive load is connected to the output side, a power conversion can be performed with a simple circuit configuration without requiring a clamp circuit or the like.
さらに、本発明は、第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して導通させるように順方向ダイオードが形成される第1モードまたは第2モードを経由するように制御するものである。
Furthermore, the present invention passes through the first mode or the second mode in which the forward diode is formed to conduct in the intended conduction direction at the time of the state transition from the third mode to the fourth mode. To control.
この方法により、双方向オン状態から双方向オフ状態へと遷移する際に、ドレイン端子とソース端子間の電流が意図通りの通流方向となるように制御することができる。したがって、出力側に誘導負荷が接続された場合であっても、電流が遮断されることなく、簡単な回路構成で電力変換を行うことができる。
This method makes it possible to control the current between the drain terminal and the source terminal to be in the intended flow direction when transitioning from the bidirectional on state to the bidirectional off state. Therefore, even when an inductive load is connected to the output side, power conversion can be performed with a simple circuit configuration without interrupting the current.
また、本発明は、第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して遮断するように逆方向ダイオードが形成される第1モードまたは第2モードを経由するように制御する。
Further, the present invention passes through the first mode or the second mode in which the reverse diode is formed so as to cut off the intended conduction direction at the time of the state transition from the fourth mode to the third mode. To control.
この方法により、順方向ダイオードの通流電流による損失を低減することができる。したがって、双方向にオフの状態から双方向にオンの状態とする際に、第1または第2モード時に等価的に存在するダイオードを通流するモードを介在せず、回路全体を低損失に構成することができる。そのため、より小規模の回路構成で電力変換を行うことができる。
This method can reduce the loss due to the forward current of the forward diode. Therefore, when switching from a bi-directional off state to a bi-directional on state, the entire circuit is configured to be low loss without interposing a mode through which a diode that exists equivalently in the first or second mode flows. can do. Therefore, power conversion can be performed with a smaller circuit configuration.
また、本発明は、第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して遮断するように逆方向ダイオードが形成される第1モードまたは第2モードを経由するように制御する。
Further, according to the present invention, when the state transition from the third mode to the fourth mode is performed, the reverse diode is formed so as to be cut off with respect to the intended conduction direction. To control.
この方法により、順方向ダイオードの通流電流による損失を低減することができる。したがって、双方向にオンの状態から双方向にオフの状態とする際に、第1または第2モード時に等価的に存在するダイオードを通流するモードを介在せず、回路全体を低損失に構成することができる。そのため、より小規模の回路構成で電力変換を行うことができる。
This method can reduce the loss due to the forward current of the forward diode. Therefore, when switching from the bi-directional on state to the bi-directional off state, the entire circuit is configured to have a low loss without interposing a mode for passing a diode that exists equivalently in the first or second mode. can do. Therefore, power conversion can be performed with a smaller circuit configuration.
また、本発明は、第1ゲート端子の駆動信号と第2ゲート端子の駆動信号を共用し、第1ゲート端子および第2ゲート端子を1つのゲート駆動信号でオンオフ制御するものである。
In the present invention, the drive signal for the first gate terminal and the drive signal for the second gate terminal are shared, and the first gate terminal and the second gate terminal are controlled to be turned on / off by one gate drive signal.
この方法により、ゲート駆動用の信号として、1素子当たり2信号をマイクロプロセッサから出力する必要がなく、簡略化が図れ、より安価な構成とすることができる。
With this method, it is not necessary to output two signals per one element from the microprocessor as gate driving signals, and simplification can be achieved and a more inexpensive configuration can be achieved.
また、本発明は、双方向スイッチを用いたブリッジ回路を備え、第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して遮断するように逆方向ダイオードが形成される第1モードまたは第2モードを経由するように制御し、第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して導通させるように順方向ダイオードが形成される第1モードまたは第2モードを経由するように制御するものである。
In addition, the present invention includes a bridge circuit using a bidirectional switch, and a reverse diode is formed so as to cut off the intended conduction direction at the time of state transition from the third mode to the fourth mode. A forward diode is formed so as to be controlled to pass through the first mode or the second mode, and to conduct in the intended conduction direction during the state transition from the fourth mode to the third mode. Control is performed so as to pass through the mode or the second mode.
この方法により、順方向ダイオードの通流電流による損失を低減でき、また双方向スイッチの損失を平均化できる。すなわち、双方向スイッチを直列または並列に接続した際に、それぞれの発熱量が均等化される。したがって、発熱量の多い双方向スイッチを基準にした放熱板の選定をする必要がなく、小型で軽量な電力変換装置を構成することができる。
This method can reduce the loss due to the forward current of the forward diode, and can average the loss of the bidirectional switch. That is, when the bidirectional switches are connected in series or in parallel, the amount of generated heat is equalized. Therefore, there is no need to select a heat radiating plate based on a bidirectional switch that generates a large amount of heat, and a small and lightweight power conversion device can be configured.
また、本発明は、双方向スイッチを用いたブリッジ回路を備え、第3モードから第4モードへの状態遷移の際に、意図した導通方向に対して導通させるように順方向ダイオードが形成される第1モードまたは第2モードを経由するように制御し、第4モードから第3モードへの状態遷移の際に、意図した導通方向に対して遮断するように逆方向ダイオードが形成される第1モードまたは第2モードを経由するように制御するものである。
The present invention also includes a bridge circuit using a bidirectional switch, and a forward diode is formed so as to conduct in the intended conduction direction at the time of transition from the third mode to the fourth mode. A reverse diode is formed so as to be controlled so as to pass through the first mode or the second mode, and cut off with respect to the intended conduction direction at the time of the state transition from the fourth mode to the third mode. Control is performed so as to pass through the mode or the second mode.
この方法により、順方向ダイオードの通流電流による損失を低減し、双方向スイッチの損失を平均化することができる。すなわち、双方向スイッチを直列または並列に接続した際に、それぞれの発熱量が均等化される。したがって、発熱量の多い双方向スイッチを基準にした放熱板の選定をする必要がなく、小型で軽量な電力変換装置を構成することができる。
This method can reduce the loss due to the forward current of the forward diode and average the loss of the bidirectional switch. That is, when the bidirectional switches are connected in series or in parallel, the amount of generated heat is equalized. Therefore, there is no need to select a heat radiating plate based on a bidirectional switch that generates a large amount of heat, and a small and lightweight power conversion device can be configured.
また、本発明は、遅延生成部を備え、第1ゲート端子と第2ゲート端子のオフからオン、またはオンからオフへの切換えを相異なるタイミングとするものである。
Further, the present invention includes a delay generation unit, and switches the first gate terminal and the second gate terminal from off to on or from on to off at different timings.
この方法により、信号に遅延時間を持たせて切り換えるため、より簡単な構成で双方向スイッチを第3モードから第4モードまたは第4モードから第3モードへ直接移行しないようにすることができる。
By this method, since the signal is switched with a delay time, the bidirectional switch can be prevented from directly shifting from the third mode to the fourth mode or from the fourth mode to the third mode with a simpler configuration.
また、本発明は、遅延生成部の生成する遅延時間は、1nsまたは1nsよりも大きい。この方法により、半導体の入出力または帰還容量によるチップ相互のオンオフ時間のばらつきや、第1ゲート端子、第2ゲート端子を駆動する相互のゲート駆動回路の応答性ばらつきにより、4つの動作モードを有する双方向スイッチの動作モードの遷移が意図しない動作モードを経由することを回避することができる。
In the present invention, the delay time generated by the delay generation unit is 1 ns or longer than 1 ns. According to this method, there are four operation modes due to variations in on / off time between chips due to semiconductor input / output or feedback capacitance, and variations in responsiveness of mutual gate drive circuits for driving the first gate terminal and the second gate terminal. It is possible to prevent the operation mode transition of the bidirectional switch from passing through an unintended operation mode.
また、遅延生成部は、論理回路の応答速度を利用して遅延時間を生成するものである。この方法により、遅延時間の生成を簡単かつ安価な回路で実現することができる。
The delay generation unit generates a delay time using the response speed of the logic circuit. By this method, the generation of the delay time can be realized with a simple and inexpensive circuit.
また、本発明が適用される双方向スイッチは、基板の上に形成されたチャネルを有する半導体層積層体と、半導体層積層体の上に互いに間隔をおいて形成された第1のオーミック電極および第2のオーミック電極とを有している。さらに、第1のオーミック電極と第2のオーミック電極との間に、第1のオーミック電極側から順に形成された、第1のゲート電極および第2のゲート電極とを有している。さらに、半導体層積層体と第1のゲート電極との間に形成された第1のp型半導体層と、半導体層積層体と第2のゲート電極との間に形成された第2のp型半導体とを有している。さらに、第1のオーミック電極と第1のゲート電極との間にゲート駆動信号を入力する第1ゲート端子と、第2のオーミック電極と第2のゲート電極との間にゲート駆動信号を入力する第2ゲート端子とを有している。さらに、第1のオーミック電極に接続されたドレイン端子と、第2のオーミック電極に接続されたソース端子とを備えている。さらに、第1ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けてオン状態の双方向デバイスと逆方向ダイオードが直列接続された半導体として動作する第1モードを有している。さらに、第2ゲート端子のみをオンすると、ドレイン端子からソース端子間に向けて順方向ダイオードとオン状態の双方向デバイスが直列接続された半導体として動作する第2モードを有している。さらに、第1ゲート端子および第2ゲート端子をオンすると、ドレイン端子からソース端子間を双方向に導通する半導体として動作する第3モードを有している。さらに、第1ゲート端子および第2ゲート端子をオフすると、順逆双方向に電流を遮断する半導体として動作する第4モードとを有している。本発明は、このような双方向スイッチのゲート駆動方法であって、第4モードから第3モード、または第3モードから第4モードの少なくとも一方へ直接移行しないように制御するものである。
A bidirectional switch to which the present invention is applied includes a semiconductor layer stack having a channel formed on a substrate, a first ohmic electrode formed on the semiconductor layer stack at a distance from each other, and And a second ohmic electrode. Furthermore, it has the 1st gate electrode and the 2nd gate electrode which were formed in order from the 1st ohmic electrode side between the 1st ohmic electrode and the 2nd ohmic electrode. Further, a first p-type semiconductor layer formed between the semiconductor layer stack and the first gate electrode, and a second p-type formed between the semiconductor layer stack and the second gate electrode. A semiconductor. Furthermore, a gate drive signal is input between the first gate terminal that inputs a gate drive signal between the first ohmic electrode and the first gate electrode, and between the second ohmic electrode and the second gate electrode. And a second gate terminal. Furthermore, a drain terminal connected to the first ohmic electrode and a source terminal connected to the second ohmic electrode are provided. Further, when only the first gate terminal is turned on, the first mode operates as a semiconductor in which a bidirectional device and a reverse diode connected in series are connected in series from the drain terminal to the source terminal. Further, when only the second gate terminal is turned on, a forward diode and an on-state bidirectional device operate as a semiconductor connected in series from the drain terminal to the source terminal. Furthermore, when the first gate terminal and the second gate terminal are turned on, the semiconductor device has a third mode in which it operates as a semiconductor that conducts bidirectionally between the drain terminal and the source terminal. Further, when the first gate terminal and the second gate terminal are turned off, there is a fourth mode which operates as a semiconductor that cuts off current in both forward and reverse directions. The present invention is a gate drive method for such a bidirectional switch, and controls so as not to directly shift from at least one of the fourth mode to the third mode or from the third mode to the fourth mode.
この方法により、第3モードから第4モードまたは第4モードから第3モードへの移行の際に、意図しない電流通流モードを経由することを回避できる。したがって、信号搬送の遅れがあっても意図した何れか他方のモードを経由するように制御することができる。
This method makes it possible to avoid unintended current flow mode when shifting from the third mode to the fourth mode or from the fourth mode to the third mode. Therefore, even if there is a delay in signal conveyance, control can be performed so as to pass through one of the intended other modes.
さらに、本発明は、双方向スイッチのゲート駆動方法を使用した電力変換装置(例えばインバータ装置)を構成したものである。
Furthermore, the present invention constitutes a power conversion device (for example, an inverter device) using a bidirectional switch gate drive method.
この構成により、双方向スイッチをより簡単な構成で電力変換装置へ適用することができ、低損失かつ安価な装置を構成することができる。
With this configuration, the bidirectional switch can be applied to the power conversion device with a simpler configuration, and a low-loss and inexpensive device can be configured.
本発明は、第4モードから第3モード、または第3モードから第4モードに直接移行しないので低損失かつ安価であるため、DC-DCコンバータ装置、AC-DC変換装置、インバータ装置などに適用できる。
Since the present invention does not directly shift from the fourth mode to the third mode, or from the third mode to the fourth mode, and is low loss and low cost, it is applied to a DC-DC converter device, an AC-DC converter device, an inverter device, etc. it can.
1,1a~1f 双方向スイッチ
2,2a~2f 第1ゲート端子
3,3a~3f 第2ゲート端子
4 ドレイン端子
5 ソース端子
6 基板
7 バッファ層
8 半導体層積層体
9 GaN層
10 AlGaN層
11A 第1のオーミック電極
11B 第2のオーミック電極
12A 第1のp型半導体層
12B 第2のp型半導体層
13A 第1のゲート電極
13B 第2のゲート電極
14 保護膜
15 第1のトランジスタ
16 第2のトランジスタ
17 制御部
18 インバータ装置
18a 第1アーム
19A,19B,19C,19D ゲート駆動回路
20 論理回路(遅延生成部)
23 電源 DESCRIPTION OF SYMBOLS 1,1a-1f Bidirectional switch 2,2a-2f 1st gate terminal 3,3a-3f 2nd gate terminal 4 Drain terminal 5 Source terminal 6 Substrate 7 Buffer layer 8 Semiconductor layer laminated body 9 GaN layer 10 AlGaN layer 11A 1st 1 ohmic electrode 11B second ohmic electrode 12A first p-type semiconductor layer 12B second p-type semiconductor layer 13A first gate electrode 13B second gate electrode 14 protective film 15 first transistor 16 second transistor Transistor 17 Control unit 18 Inverter device 18a First arm 19A, 19B, 19C, 19D Gate drive circuit 20 Logic circuit (delay generation unit)
23 Power supply
2,2a~2f 第1ゲート端子
3,3a~3f 第2ゲート端子
4 ドレイン端子
5 ソース端子
6 基板
7 バッファ層
8 半導体層積層体
9 GaN層
10 AlGaN層
11A 第1のオーミック電極
11B 第2のオーミック電極
12A 第1のp型半導体層
12B 第2のp型半導体層
13A 第1のゲート電極
13B 第2のゲート電極
14 保護膜
15 第1のトランジスタ
16 第2のトランジスタ
17 制御部
18 インバータ装置
18a 第1アーム
19A,19B,19C,19D ゲート駆動回路
20 論理回路(遅延生成部)
23 電源 DESCRIPTION OF
23 Power supply
Claims (13)
- 基板の上に形成されたチャネルを有する半導体層積層体と、前記半導体層積層体の上に互いに間隔をおいて形成された第1のオーミック電極および第2のオーミック電極と、前記第1のオーミック電極と前記第2のオーミック電極との間に、前記第1のオーミック電極側から順に形成された、第1のゲート電極および第2のゲート電極と、前記半導体層積層体と前記第1のゲート電極との間に形成された第1のp型半導体層と、前記半導体層積層体と前記第2のゲート電極との間に形成された第2のp型半導体と、前記第1のオーミック電極と前記第1のゲート電極との間にゲート駆動信号を入力する第1ゲート端子と、前記第2のオーミック電極と前記第2のゲート電極との間にゲート駆動信号を入力する第2ゲート端子と、前記第1のオーミック電極に接続されたドレイン端子と、前記第2のオーミック電極に接続されたソース端子とを備え、前記第1ゲート端子のみをオンすると、前記ドレイン端子から前記ソース端子間に向けてオン状態の双方向デバイスと逆方向ダイオードが直列接続された半導体として動作する第1モードと、前記第2ゲート端子のみをオンすると、前記ドレイン端子から前記ソース端子間に向けて順方向ダイオードとオン状態の前記双方向デバイスが直列接続された半導体として動作する第2モードと、前記第1ゲート端子および前記第2ゲート端子をオンすると、前記ドレイン端子から前記ソース端子間を双方向に導通する半導体として動作する第3モードと、前記第1ゲート端子および前記第2ゲート端子をオフすると、順逆双方向に電流を遮断する半導体として動作する第4モードとを有した双方向スイッチのゲート駆動方法であって、前記第4モードから前記第3モード、または前記第3モードから前記第4モードの少なくとも一方へ移行する際に、前記第1モードまたは前記第2モードの少なくともいずれか一方を介在させるように制御する双方向スイッチのゲート駆動方法。 A semiconductor layer stack having a channel formed on a substrate; a first ohmic electrode and a second ohmic electrode formed on the semiconductor layer stack spaced apart from each other; and the first ohmic electrode. A first gate electrode and a second gate electrode, which are formed in order from the first ohmic electrode side, between the electrode and the second ohmic electrode, the semiconductor layer stack, and the first gate; A first p-type semiconductor layer formed between the electrode, a second p-type semiconductor formed between the semiconductor layer stack and the second gate electrode, and the first ohmic electrode. And a first gate terminal for inputting a gate drive signal between the first gate electrode and a second gate terminal for inputting a gate drive signal between the second ohmic electrode and the second gate electrode And the first option A drain terminal connected to the mic electrode and a source terminal connected to the second ohmic electrode. When only the first gate terminal is turned on, the drain terminal is turned on between the source terminal and the source terminal. A first mode in which a bidirectional device and a reverse diode operate as a semiconductor connected in series, and when only the second gate terminal is turned on, the forward diode and the on state are turned on between the drain terminal and the source terminal. A second mode in which a bidirectional device operates as a semiconductor connected in series, and when the first gate terminal and the second gate terminal are turned on, it operates as a semiconductor that conducts bidirectionally from the drain terminal to the source terminal. When the third mode and the first gate terminal and the second gate terminal are turned off, the current is interrupted in both forward and reverse directions. A bidirectional switch gate driving method having a fourth mode operating as a semiconductor, wherein the mode is shifted from the fourth mode to the third mode, or from the third mode to the fourth mode. And a bidirectional switch gate drive method for controlling to intervene at least one of the first mode and the second mode.
- 前記第4モードから前記第3モードへの状態遷移の際に、意図した導通方向に対して導通させるように前記順方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 When the state transition from the fourth mode to the third mode passes through the first mode or the second mode in which the forward diode is formed to conduct in the intended conduction direction. 2. The method for driving a gate of a bidirectional switch according to claim 1, which is controlled.
- 前記第3モードから前記第4モードへの状態遷移の際に、前記意図した導通方向に対して導通させるように前記順方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 In the state transition from the third mode to the fourth mode, the forward diode is formed so as to conduct with respect to the intended conduction direction so as to pass through the first mode or the second mode. The bidirectional switch gate drive method according to claim 1, wherein the bidirectional switch is controlled.
- 前記第4モードから前記第3モードへの状態遷移の際に、前記意図した導通方向に対して遮断するように前記逆方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 In the state transition from the fourth mode to the third mode, the reverse diode is formed so as to be cut off with respect to the intended conduction direction so as to pass through the first mode or the second mode. The bidirectional switch gate drive method according to claim 1, wherein the bidirectional switch is controlled.
- 前記第3モードから前記第4モードへの状態遷移の際に、前記意図した導通方向に対して遮断するように前記逆方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 In the state transition from the third mode to the fourth mode, the reverse diode is formed so as to be cut off with respect to the intended conduction direction so as to pass through the first mode or the second mode. The bidirectional switch gate drive method according to claim 1, wherein the bidirectional switch is controlled.
- 前記第1ゲート端子の駆動信号と前記第2ゲート端子の駆動信号を共用し、前記第1ゲート端子および前記第2ゲート端子を1つのゲート駆動信号でオンオフ制御する請求項1~5のいずれか1項に記載の双方向スイッチのゲート駆動方法。 6. The drive signal for the first gate terminal and the drive signal for the second gate terminal are shared, and the first gate terminal and the second gate terminal are controlled to be turned on / off by one gate drive signal. 2. A gate drive method for a bidirectional switch according to item 1.
- 前記双方向スイッチを用いたブリッジ回路をさらに備え、前記第3モードから前記第4モードへの状態遷移の際に、前記意図した導通方向に対して遮断するように前記逆方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御し、前記第4モードから前記第3モードへの状態遷移の際に、前記意図した導通方向に対して導通させるように前記順方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 The circuit further comprises a bridge circuit using the bidirectional switch, and the reverse diode is formed so as to cut off with respect to the intended conduction direction at the time of the state transition from the third mode to the fourth mode. The forward diode is controlled so as to pass through the first mode or the second mode, and conducts in the intended conduction direction during the state transition from the fourth mode to the third mode. The bidirectional switch gate driving method according to claim 1, wherein control is performed so as to pass through the first mode or the second mode.
- 前記双方向スイッチを用いた前記ブリッジ回路をさらに備え、前記第3モードから前記第4モードへの状態遷移の際に、前記意図した導通方向に対して導通させるように前記順方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御し、前記第4モードから前記第3モードへの状態遷移の際に、前記意図した導通方向に対して遮断するように前記逆方向ダイオードが形成される前記第1モードまたは前記第2モードを経由するように制御する請求項1記載の双方向スイッチのゲート駆動方法。 The bridge circuit using the bidirectional switch is further provided, and the forward diode is formed to conduct in the intended conduction direction at the time of transition from the third mode to the fourth mode. The first direction or the second mode is controlled, and the reverse direction is cut off with respect to the intended conduction direction during the state transition from the fourth mode to the third mode. 2. The bidirectional switch gate drive method according to claim 1, wherein control is performed so as to pass through the first mode or the second mode in which a diode is formed.
- 遅延生成部をさらに備え、前記第1ゲート端子と前記第2ゲート端子のオフからオン、またはオンからオフへの切換えを相異なるタイミングとする請求項1記載の双方向スイッチのゲート駆動方法。 The bidirectional switch gate driving method according to claim 1, further comprising a delay generation unit, wherein the first gate terminal and the second gate terminal are switched from off to on, or from on to off.
- 前記遅延生成部の生成する遅延時間は、1nsまたは1nsよりも大きい請求項9記載の双方向スイッチのゲート駆動方法。 The bidirectional switch gate driving method according to claim 9, wherein a delay time generated by the delay generation unit is 1 ns or greater than 1 ns.
- 前記遅延生成部は、論理回路の応答速度を利用して遅延時間を生成する請求項9記載の双方向スイッチのゲート駆動方法。 The bidirectional switch gate driving method according to claim 9, wherein the delay generation unit generates a delay time using a response speed of a logic circuit.
- 基板の上に形成されたチャネルを有する半導体層積層体と、前記半導体層積層体の上に互いに間隔をおいて形成された第1のオーミック電極および第2のオーミック電極と、前記第1のオーミック電極と前記第2のオーミック電極との間に、前記第1のオーミック電極側から順に形成された、第1のゲート電極および第2のゲート電極と、前記半導体層積層体と前記第1のゲート電極との間に形成された第1のp型半導体層と、前記半導体層積層体と前記第2のゲート電極との間に形成された第2のp型半導体と、前記第1のオーミック電極と前記第1のゲート電極との間にゲート駆動信号を入力する第1ゲート端子と、前記第2のオーミック電極と前記第2のゲート電極との間にゲート駆動信号を入力する第2ゲート端子と、前記第1のオーミック電極に接続されたドレイン端子と、前記第2のオーミック電極に接続されたソース端子とを備え、前記第1ゲート端子のみをオンすると、前記ドレイン端子から前記ソース端子間に向けてオン状態の双方向デバイスと逆方向ダイオードが直列接続された半導体として動作する第1モードと、前記第2ゲート端子のみをオンすると、前記ドレイン端子から前記ソース端子間に向けて順方向ダイオードとオン状態の前記双方向デバイスが直列接続された半導体として動作する第2モードと、前記第1ゲート端子および前記第2ゲート端子をオンすると、前記ドレイン端子から前記ソース端子間にダイオードを介さない双方向に導通する半導体として動作する第3モードと、前記第1ゲート端子および前記第2ゲート端子をオフすると、順逆双方向に電流を遮断する半導体として動作する第4モードとを有した双方向スイッチのゲート駆動方法であって、前記第4モードから前記第3モード、または前記第3モードから前記第4モードの少なくとも一方へ直接移行しないように制御する双方向スイッチのゲート駆動方法。 A semiconductor layer stack having a channel formed on a substrate; a first ohmic electrode and a second ohmic electrode formed on the semiconductor layer stack spaced apart from each other; and the first ohmic electrode. A first gate electrode and a second gate electrode, which are formed in order from the first ohmic electrode side, between the electrode and the second ohmic electrode, the semiconductor layer stack, and the first gate; A first p-type semiconductor layer formed between the electrode, a second p-type semiconductor formed between the semiconductor layer stack and the second gate electrode, and the first ohmic electrode. And a first gate terminal for inputting a gate drive signal between the first gate electrode and a second gate terminal for inputting a gate drive signal between the second ohmic electrode and the second gate electrode And the first option A drain terminal connected to the mic electrode and a source terminal connected to the second ohmic electrode. When only the first gate terminal is turned on, the drain terminal is turned on between the source terminal and the source terminal. A first mode in which a bidirectional device and a reverse diode operate as a semiconductor connected in series, and when only the second gate terminal is turned on, the forward diode and the on state are turned on between the drain terminal and the source terminal. A second mode in which a bidirectional device operates as a semiconductor connected in series, and when the first gate terminal and the second gate terminal are turned on, conduction between the drain terminal and the source terminal in a bidirectional manner without a diode. When the third mode operating as a semiconductor and the first gate terminal and the second gate terminal are turned off, the order A bidirectional switch gate driving method having a fourth mode that operates as a semiconductor that cuts off current in both directions, wherein the fourth mode is changed to the third mode, or the third mode is changed to the fourth mode. A gate drive method for a bidirectional switch that is controlled so that it does not shift directly to at least one.
- 請求項1~請求項12のいずれか1項に記載の双方向スイッチのゲート駆動方法を用いた電力変換装置。 A power converter using the bidirectional switch gate drive method according to any one of claims 1 to 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008158679A JP2011172298A (en) | 2008-06-18 | 2008-06-18 | Gate drive technique for bidirectional switch, and power converter that uses the same |
JP2008-158679 | 2008-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009153965A1 true WO2009153965A1 (en) | 2009-12-23 |
Family
ID=41433886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002722 WO2009153965A1 (en) | 2008-06-18 | 2009-06-16 | Gate drive technique for bidirectional switches and power converter that uses the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011172298A (en) |
WO (1) | WO2009153965A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012176449A1 (en) * | 2011-06-23 | 2012-12-27 | パナソニック株式会社 | Equivalent circuit of bidirectional switch, bidirectional switch simulation method, and bidirectional switch simulation device |
EP2707959A1 (en) * | 2011-05-10 | 2014-03-19 | Enphase Energy, Inc. | Four quadrant bidirectional switch |
IT201800002257A1 (en) * | 2018-01-31 | 2019-07-31 | St Microelectronics Srl | SWITCHING CIRCUIT, CORRESPONDING DEVICE AND PROCEDURE |
US10749474B2 (en) | 2018-01-31 | 2020-08-18 | Stmicroelectronics S.R.L. | Switching circuit, corresponding device and method |
GB2601533A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601534A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601531A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601528A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601530A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601535A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099053A1 (en) * | 2011-12-28 | 2013-07-04 | パナソニック株式会社 | Multilevel inverter device |
US11595038B2 (en) * | 2018-06-29 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Control system, switch system, power converter, method for controlling bidirectional switch element, and program |
WO2020095510A1 (en) * | 2018-11-08 | 2020-05-14 | パナソニックIpマネジメント株式会社 | Bi-directional switch, electric device, and multi-level inverter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001061276A (en) * | 1999-08-20 | 2001-03-06 | Yaskawa Electric Corp | Pwm cyclo-converter, and breaker circuit and method |
JP2004229492A (en) * | 2002-11-29 | 2004-08-12 | Hitachi Ltd | Control device for matrix converter |
WO2008062800A1 (en) * | 2006-11-20 | 2008-05-29 | Panasonic Corporation | Semiconductor device and its drive method |
-
2008
- 2008-06-18 JP JP2008158679A patent/JP2011172298A/en active Pending
-
2009
- 2009-06-16 WO PCT/JP2009/002722 patent/WO2009153965A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001061276A (en) * | 1999-08-20 | 2001-03-06 | Yaskawa Electric Corp | Pwm cyclo-converter, and breaker circuit and method |
JP2004229492A (en) * | 2002-11-29 | 2004-08-12 | Hitachi Ltd | Control device for matrix converter |
WO2008062800A1 (en) * | 2006-11-20 | 2008-05-29 | Panasonic Corporation | Semiconductor device and its drive method |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2707959A1 (en) * | 2011-05-10 | 2014-03-19 | Enphase Energy, Inc. | Four quadrant bidirectional switch |
EP2707959A4 (en) * | 2011-05-10 | 2014-10-22 | Enphase Energy Inc | Four quadrant bidirectional switch |
US9130570B2 (en) | 2011-05-10 | 2015-09-08 | Enphase Energy, Inc. | Four quadrant bidirectional switch |
WO2012176449A1 (en) * | 2011-06-23 | 2012-12-27 | パナソニック株式会社 | Equivalent circuit of bidirectional switch, bidirectional switch simulation method, and bidirectional switch simulation device |
JP5261621B1 (en) * | 2011-06-23 | 2013-08-14 | パナソニック株式会社 | Bidirectional switch simulation method, bidirectional switch simulation apparatus, and program |
US8745569B2 (en) | 2011-06-23 | 2014-06-03 | Panasonic Corporation | Equivalent circuit of bidirectional switch, simulation method for bidirectional switch, and simulation device for bidirectional switch |
IT201800002257A1 (en) * | 2018-01-31 | 2019-07-31 | St Microelectronics Srl | SWITCHING CIRCUIT, CORRESPONDING DEVICE AND PROCEDURE |
EP3522374A1 (en) * | 2018-01-31 | 2019-08-07 | STMicroelectronics Srl | A switch circuit, corresponding device and method |
US10523197B2 (en) | 2018-01-31 | 2019-12-31 | Stmicroelectronics S.R.L. | Switch circuit, corresponding device and method |
US10749474B2 (en) | 2018-01-31 | 2020-08-18 | Stmicroelectronics S.R.L. | Switching circuit, corresponding device and method |
GB2601530A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
WO2022117991A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
GB2601531A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601528A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601533A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601535A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
WO2022117986A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
WO2022117988A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
WO2022117992A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
GB2601534A (en) * | 2020-12-03 | 2022-06-08 | Dyson Technology Ltd | Drive circuit for a brushless motor |
WO2022117987A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
WO2022117990A1 (en) * | 2020-12-03 | 2022-06-09 | Dyson Technology Limited | Drive circuit for a brushless motor |
GB2601528B (en) * | 2020-12-03 | 2023-09-06 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601531B (en) * | 2020-12-03 | 2023-09-06 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601533B (en) * | 2020-12-03 | 2023-09-13 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601535B (en) * | 2020-12-03 | 2023-09-13 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601534B (en) * | 2020-12-03 | 2023-09-13 | Dyson Technology Ltd | Drive circuit for a brushless motor |
GB2601530B (en) * | 2020-12-03 | 2024-07-17 | Dyson Technology Ltd | Drive circuit for a brushless motor |
Also Published As
Publication number | Publication date |
---|---|
JP2011172298A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009153965A1 (en) | Gate drive technique for bidirectional switches and power converter that uses the same | |
CN101675579B (en) | Power conversion circuit | |
US8299737B2 (en) | Motor driving circuit | |
CN101976684B (en) | Semiconductor device and driving method thereof | |
JP5666157B2 (en) | Bidirectional switch element and bidirectional switch circuit using the same | |
JP2008153748A (en) | Bidirectional switch and bidirectional switch driving method | |
CN102460709A (en) | power conversion device | |
JP2009159222A (en) | Switch device | |
WO2011067903A1 (en) | Switch device | |
JP2014229823A (en) | Semiconductor device and semiconductor module | |
JP2013219306A (en) | Semiconductor diode device | |
JP2010094006A (en) | Gate drive circuit and inverter circuit using the same | |
JP5440201B2 (en) | Gate driver for bidirectional switch | |
JP6266483B2 (en) | Semiconductor device | |
JP2010004697A (en) | Method of driving gate of bidirectional switch and power conversion equipment using it | |
CN119174098A (en) | Cascode Normally Off Switch with Driver and Self-Bias | |
JP2011087368A (en) | Power converting module, power converter using the same or, motor driver or air conditioner | |
JP2018196026A (en) | Gate drive device | |
JP2011151905A (en) | Gate driving device for bidirectional switches | |
JP2011109761A (en) | Power conversion module, and power converter, motor drive or air conditioner each using the same | |
JP2011172425A (en) | Gate drive circuit for bidirectional switch, and inverter or matrix converter using the same | |
JP5423450B2 (en) | Gate driver for bidirectional switch | |
JP2011160559A (en) | Single phase or three-phase inverter, and air conditioner using the same | |
JP5625363B2 (en) | Gate driver for bidirectional switch | |
JP2020120435A (en) | Power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09766413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09766413 Country of ref document: EP Kind code of ref document: A1 |