WO2009143011A1 - Compositions antivirales, procédés de fabrication et d’utilisation de ces compositions, et système de délivrance pulmonaire de ces compositions - Google Patents
Compositions antivirales, procédés de fabrication et d’utilisation de ces compositions, et système de délivrance pulmonaire de ces compositions Download PDFInfo
- Publication number
- WO2009143011A1 WO2009143011A1 PCT/US2009/044122 US2009044122W WO2009143011A1 WO 2009143011 A1 WO2009143011 A1 WO 2009143011A1 US 2009044122 W US2009044122 W US 2009044122W WO 2009143011 A1 WO2009143011 A1 WO 2009143011A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pharmaceutical composition
- particles
- antiviral
- pharmaceutically acceptable
- compositions
- Prior art date
Links
- 230000000840 anti-viral effect Effects 0.000 title claims abstract description 112
- 239000000203 mixture Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000002685 pulmonary effect Effects 0.000 title claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 191
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 139
- 239000000843 powder Substances 0.000 claims abstract description 100
- 239000000546 pharmaceutical excipient Substances 0.000 claims abstract description 51
- 239000002552 dosage form Substances 0.000 claims abstract description 9
- 239000002775 capsule Substances 0.000 claims description 62
- 150000003904 phospholipids Chemical class 0.000 claims description 49
- DNDWZFHLZVYOGF-KKUMJFAQSA-N Leu-Leu-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O DNDWZFHLZVYOGF-KKUMJFAQSA-N 0.000 claims description 34
- 108010049589 leucyl-leucyl-leucine Proteins 0.000 claims description 34
- 239000007788 liquid Substances 0.000 claims description 33
- 239000000443 aerosol Substances 0.000 claims description 23
- 238000001694 spray drying Methods 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 20
- 235000001014 amino acid Nutrition 0.000 claims description 17
- 150000001413 amino acids Chemical class 0.000 claims description 16
- 229940112141 dry powder inhaler Drugs 0.000 claims description 15
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 15
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical compound C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 claims description 14
- 229960000888 rimantadine Drugs 0.000 claims description 14
- 101710154606 Hemagglutinin Proteins 0.000 claims description 13
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims description 13
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims description 13
- 101710176177 Protein A56 Proteins 0.000 claims description 13
- 239000000185 hemagglutinin Substances 0.000 claims description 13
- 239000002911 sialidase inhibitor Substances 0.000 claims description 13
- 229940123424 Neuraminidase inhibitor Drugs 0.000 claims description 12
- 235000005772 leucine Nutrition 0.000 claims description 12
- 239000007921 spray Substances 0.000 claims description 12
- ARAIBEBZBOPLMB-UFGQHTETSA-N zanamivir Chemical group CC(=O)N[C@@H]1[C@@H](N=C(N)N)C=C(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO ARAIBEBZBOPLMB-UFGQHTETSA-N 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 208000036142 Viral infection Diseases 0.000 claims description 10
- 150000002632 lipids Chemical class 0.000 claims description 10
- 229960001028 zanamivir Drugs 0.000 claims description 10
- 239000004604 Blowing Agent Substances 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 9
- 239000002777 nucleoside Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 230000009385 viral infection Effects 0.000 claims description 9
- 150000002614 leucines Chemical class 0.000 claims description 8
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 8
- 150000001720 carbohydrates Chemical class 0.000 claims description 7
- 229910021645 metal ion Inorganic materials 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 239000006199 nebulizer Substances 0.000 claims description 5
- 239000003380 propellant Substances 0.000 claims description 5
- 239000000872 buffer Substances 0.000 claims description 4
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 claims description 3
- 229960003805 amantadine Drugs 0.000 claims description 3
- 229960003752 oseltamivir Drugs 0.000 claims description 2
- XRQDFNLINLXZLB-CKIKVBCHSA-N peramivir Chemical compound CCC(CC)[C@H](NC(C)=O)[C@@H]1[C@H](O)[C@@H](C(O)=O)C[C@H]1NC(N)=N XRQDFNLINLXZLB-CKIKVBCHSA-N 0.000 claims description 2
- 229960001084 peramivir Drugs 0.000 claims description 2
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 claims 1
- 239000003814 drug Substances 0.000 description 42
- 239000013543 active substance Substances 0.000 description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 36
- 210000004072 lung Anatomy 0.000 description 35
- 229940079593 drug Drugs 0.000 description 29
- -1 phospho Chemical class 0.000 description 29
- 239000003443 antiviral agent Substances 0.000 description 24
- 238000009472 formulation Methods 0.000 description 24
- 241000700605 Viruses Species 0.000 description 23
- 229940121357 antivirals Drugs 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000012387 aerosolization Methods 0.000 description 19
- 239000006185 dispersion Substances 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 16
- 239000000839 emulsion Substances 0.000 description 15
- 206010022000 influenza Diseases 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 238000011068 loading method Methods 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 150000001768 cations Chemical class 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000004094 surface-active agent Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 108010006232 Neuraminidase Proteins 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 102000005348 Neuraminidase Human genes 0.000 description 8
- 238000000889 atomisation Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 6
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 239000013638 trimer Substances 0.000 description 6
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229940071648 metered dose inhaler Drugs 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 210000002345 respiratory system Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 208000035143 Bacterial infection Diseases 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 208000022362 bacterial infectious disease Diseases 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- WTWWXOGTJWMJHI-UHFFFAOYSA-N perflubron Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)Br WTWWXOGTJWMJHI-UHFFFAOYSA-N 0.000 description 4
- 229960001217 perflubron Drugs 0.000 description 4
- 229950011087 perflunafene Drugs 0.000 description 4
- UWEYRJFJVCLAGH-IJWZVTFUSA-N perfluorodecalin Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)[C@@]2(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[C@@]21F UWEYRJFJVCLAGH-IJWZVTFUSA-N 0.000 description 4
- 150000008105 phosphatidylcholines Chemical class 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 108010016626 Dipeptides Proteins 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 206010035664 Pneumonia Diseases 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 206010006451 bronchitis Diseases 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 210000001163 endosome Anatomy 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000007496 glass forming Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- BPHQIXJDBIHMLT-UHFFFAOYSA-N perfluorodecane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F BPHQIXJDBIHMLT-UHFFFAOYSA-N 0.000 description 3
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 3
- 210000003800 pharynx Anatomy 0.000 description 3
- 229920001993 poloxamer 188 Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000006068 taste-masking agent Substances 0.000 description 3
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 241000712461 unidentified influenza virus Species 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 2
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 229930186147 Cephalosporin Natural products 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 206010033078 Otitis media Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 206010057190 Respiratory tract infections Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229940126575 aminoglycoside Drugs 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012867 bioactive agent Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000000621 bronchi Anatomy 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 229940124587 cephalosporin Drugs 0.000 description 2
- 150000001780 cephalosporins Chemical class 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229940088679 drug related substance Drugs 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 238000009532 heart rate measurement Methods 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 150000005828 hydrofluoroalkanes Chemical class 0.000 description 2
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 2
- 230000003434 inspiratory effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 210000001331 nose Anatomy 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 229960004624 perflexane Drugs 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 description 2
- 229940044519 poloxamer 188 Drugs 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 125000005629 sialic acid group Chemical group 0.000 description 2
- 201000009890 sinusitis Diseases 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000000235 small-angle X-ray scattering Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 2
- 229960002555 zidovudine Drugs 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- XVZCXCTYGHPNEM-IHRRRGAJSA-N (2s)-1-[(2s)-2-[[(2s)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carboxylic acid Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(O)=O XVZCXCTYGHPNEM-IHRRRGAJSA-N 0.000 description 1
- NBXPLBPWMYNZTC-IDYPWDAWSA-N (2s,5r,6r)-6-[[(2r)-2-[(4-ethyl-2,3-dioxopiperazine-1-carbonyl)amino]-2-phenylacetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;hydrate Chemical compound O.O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 NBXPLBPWMYNZTC-IDYPWDAWSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- WKJGTOYAEQDNIA-IOOZKYRYSA-N (6r,7r)-7-[[(2r)-2-amino-2-phenylacetyl]amino]-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;hydrate Chemical compound O.C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 WKJGTOYAEQDNIA-IOOZKYRYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- RXZBMPWDPOLZGW-XMRMVWPWSA-N (E)-roxithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=N/OCOCCOC)/[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 RXZBMPWDPOLZGW-XMRMVWPWSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- YKIOPDIXYAUOFN-UHFFFAOYSA-N 2,3-di(icosanoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCCC YKIOPDIXYAUOFN-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- MBRHNTMUYWQHMR-UHFFFAOYSA-N 2-aminoethanol;6-cyclohexyl-1-hydroxy-4-methylpyridin-2-one Chemical compound NCCO.ON1C(=O)C=C(C)C=C1C1CCCCC1 MBRHNTMUYWQHMR-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108050004290 Cecropin Proteins 0.000 description 1
- UQLLWWBDSUHNEB-CZUORRHYSA-N Cefaprin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CSC1=CC=NC=C1 UQLLWWBDSUHNEB-CZUORRHYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010078777 Colistin Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000037041 Community-Acquired Infections Diseases 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 102100038199 Desmoplakin Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 208000001860 Eye Infections Diseases 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 208000029433 Herpesviridae infectious disease Diseases 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- LSPYFSHXDAYVDI-SRVKXCTJSA-N Leu-Ala-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(C)C LSPYFSHXDAYVDI-SRVKXCTJSA-N 0.000 description 1
- QUAAUWNLWMLERT-IHRRRGAJSA-N Leu-Arg-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(C)C)C(O)=O QUAAUWNLWMLERT-IHRRRGAJSA-N 0.000 description 1
- DLCOFDAHNMMQPP-SRVKXCTJSA-N Leu-Asp-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O DLCOFDAHNMMQPP-SRVKXCTJSA-N 0.000 description 1
- PPBKJAQJAUHZKX-SRVKXCTJSA-N Leu-Cys-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC(C)C PPBKJAQJAUHZKX-SRVKXCTJSA-N 0.000 description 1
- QVFGXCVIXXBFHO-AVGNSLFASA-N Leu-Glu-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O QVFGXCVIXXBFHO-AVGNSLFASA-N 0.000 description 1
- HYIFFZAQXPUEAU-QWRGUYRKSA-N Leu-Gly-Leu Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(C)C HYIFFZAQXPUEAU-QWRGUYRKSA-N 0.000 description 1
- CSFVADKICPDRRF-KKUMJFAQSA-N Leu-His-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CN=CN1 CSFVADKICPDRRF-KKUMJFAQSA-N 0.000 description 1
- KUIDCYNIEJBZBU-AJNGGQMLSA-N Leu-Ile-Leu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O KUIDCYNIEJBZBU-AJNGGQMLSA-N 0.000 description 1
- TZSUCEBCSBUMDP-SRVKXCTJSA-N Leu-Leu-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O TZSUCEBCSBUMDP-SRVKXCTJSA-N 0.000 description 1
- DSFYPIUSAMSERP-IHRRRGAJSA-N Leu-Leu-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DSFYPIUSAMSERP-IHRRRGAJSA-N 0.000 description 1
- PDQDCFBVYXEFSD-SRVKXCTJSA-N Leu-Leu-Asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O PDQDCFBVYXEFSD-SRVKXCTJSA-N 0.000 description 1
- IFMPDNRWZZEZSL-SRVKXCTJSA-N Leu-Leu-Cys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(O)=O IFMPDNRWZZEZSL-SRVKXCTJSA-N 0.000 description 1
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 1
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 1
- KYIIALJHAOIAHF-KKUMJFAQSA-N Leu-Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 KYIIALJHAOIAHF-KKUMJFAQSA-N 0.000 description 1
- FAELBUXXFQLUAX-AJNGGQMLSA-N Leu-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C FAELBUXXFQLUAX-AJNGGQMLSA-N 0.000 description 1
- LXKNSJLSGPNHSK-KKUMJFAQSA-N Leu-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N LXKNSJLSGPNHSK-KKUMJFAQSA-N 0.000 description 1
- PPQRKXHCLYCBSP-IHRRRGAJSA-N Leu-Leu-Met Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)O)N PPQRKXHCLYCBSP-IHRRRGAJSA-N 0.000 description 1
- UBZGNBKMIJHOHL-BZSNNMDCSA-N Leu-Leu-Phe Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 UBZGNBKMIJHOHL-BZSNNMDCSA-N 0.000 description 1
- XVZCXCTYGHPNEM-UHFFFAOYSA-N Leu-Leu-Pro Natural products CC(C)CC(N)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(O)=O XVZCXCTYGHPNEM-UHFFFAOYSA-N 0.000 description 1
- RXGLHDWAZQECBI-SRVKXCTJSA-N Leu-Leu-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O RXGLHDWAZQECBI-SRVKXCTJSA-N 0.000 description 1
- IEWBEPKLKUXQBU-VOAKCMCISA-N Leu-Leu-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O IEWBEPKLKUXQBU-VOAKCMCISA-N 0.000 description 1
- FOBUGKUBUJOWAD-IHPCNDPISA-N Leu-Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 FOBUGKUBUJOWAD-IHPCNDPISA-N 0.000 description 1
- UCNNZELZXFXXJQ-BZSNNMDCSA-N Leu-Leu-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 UCNNZELZXFXXJQ-BZSNNMDCSA-N 0.000 description 1
- VUZMPNMNJBGOKE-IHRRRGAJSA-N Leu-Leu-Val Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O VUZMPNMNJBGOKE-IHRRRGAJSA-N 0.000 description 1
- BGZCJDGBBUUBHA-KKUMJFAQSA-N Leu-Lys-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O BGZCJDGBBUUBHA-KKUMJFAQSA-N 0.000 description 1
- DDVHDMSBLRAKNV-IHRRRGAJSA-N Leu-Met-Leu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O DDVHDMSBLRAKNV-IHRRRGAJSA-N 0.000 description 1
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 1
- KWLWZYMNUZJKMZ-IHRRRGAJSA-N Leu-Pro-Leu Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O KWLWZYMNUZJKMZ-IHRRRGAJSA-N 0.000 description 1
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 1
- QWWPYKKLXWOITQ-VOAKCMCISA-N Leu-Thr-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(C)C QWWPYKKLXWOITQ-VOAKCMCISA-N 0.000 description 1
- FPFOYSCDUWTZBF-IHPCNDPISA-N Leu-Trp-Leu Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H]([NH3+])CC(C)C)C(=O)N[C@@H](CC(C)C)C([O-])=O)=CNC2=C1 FPFOYSCDUWTZBF-IHPCNDPISA-N 0.000 description 1
- FPPCCQGECVKLDY-IHRRRGAJSA-N Leu-Val-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(C)C FPPCCQGECVKLDY-IHRRRGAJSA-N 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 206010024971 Lower respiratory tract infections Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 108010021062 Micafungin Proteins 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910002669 PdNi Inorganic materials 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- 206010035737 Pneumonia viral Diseases 0.000 description 1
- 229920002517 Poloxamer 338 Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102100028755 Sialidase-2 Human genes 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000037236 achy joints Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960003623 azlocillin Drugs 0.000 description 1
- JTWOMNBEOCYFNV-NFFDBFGFSA-N azlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCNC1=O JTWOMNBEOCYFNV-NFFDBFGFSA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 229960002699 bacampicillin Drugs 0.000 description 1
- PFOLLRNADZZWEX-FFGRCDKISA-N bacampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 PFOLLRNADZZWEX-FFGRCDKISA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 201000009267 bronchiectasis Diseases 0.000 description 1
- 210000003123 bronchiole Anatomy 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- XIURVHNZVLADCM-IUODEOHRSA-N cefalotin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CC1=CC=CS1 XIURVHNZVLADCM-IUODEOHRSA-N 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960004350 cefapirin Drugs 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- DYAIAHUQIPBDIP-AXAPSJFSSA-N cefonicid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](O)C=2C=CC=CC=2)CC=1CSC1=NN=NN1CS(O)(=O)=O DYAIAHUQIPBDIP-AXAPSJFSSA-N 0.000 description 1
- 229960004489 cefonicid Drugs 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004292 ceforanide Drugs 0.000 description 1
- SLAYUXIURFNXPG-CRAIPNDOSA-N ceforanide Chemical compound NCC1=CC=CC=C1CC(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)CC(O)=O)CS[C@@H]21 SLAYUXIURFNXPG-CRAIPNDOSA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- 229960005495 cefotetan Drugs 0.000 description 1
- SRZNHPXWXCNNDU-RHBCBLIFSA-N cefotetan Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CS[C@@H]21)C(O)=O)=O)C(=O)C1SC(=C(C(N)=O)C(O)=O)S1 SRZNHPXWXCNNDU-RHBCBLIFSA-N 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 229960000484 ceftazidime Drugs 0.000 description 1
- NMVPEQXCMGEDNH-TZVUEUGBSA-N ceftazidime pentahydrate Chemical compound O.O.O.O.O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 NMVPEQXCMGEDNH-TZVUEUGBSA-N 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- JQXXHWHPUNPDRT-YOPQJBRCSA-N chembl1332716 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CCN(C)CC1 JQXXHWHPUNPDRT-YOPQJBRCSA-N 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- WLNARFZDISHUGS-MIXBDBMTSA-N cholesteryl hemisuccinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 WLNARFZDISHUGS-MIXBDBMTSA-N 0.000 description 1
- 229960004375 ciclopirox olamine Drugs 0.000 description 1
- 229960004621 cinoxacin Drugs 0.000 description 1
- VDUWPHTZYNWKRN-UHFFFAOYSA-N cinoxacin Chemical compound C1=C2N(CC)N=C(C(O)=O)C(=O)C2=CC2=C1OCO2 VDUWPHTZYNWKRN-UHFFFAOYSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000004064 cosurfactant Substances 0.000 description 1
- 229960004244 cyclacillin Drugs 0.000 description 1
- HGBLNBBNRORJKI-WCABBAIRSA-N cyclacillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C1(N)CCCCC1 HGBLNBBNRORJKI-WCABBAIRSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 1
- 229940042406 direct acting antivirals neuraminidase inhibitors Drugs 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- JMGZBMRVDHKMKB-UHFFFAOYSA-L disodium;2-sulfobutanedioate Chemical compound [Na+].[Na+].OS(=O)(=O)C(C([O-])=O)CC([O-])=O JMGZBMRVDHKMKB-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JBIWCJUYHHGXTC-AKNGSSGZSA-N doxycycline Chemical compound O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O JBIWCJUYHHGXTC-AKNGSSGZSA-N 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 208000011323 eye infectious disease Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229960001447 fomivirsen Drugs 0.000 description 1
- XCWFZHPEARLXJI-UHFFFAOYSA-N fomivirsen Chemical compound C1C(N2C3=C(C(NC(N)=N3)=O)N=C2)OC(CO)C1OP(O)(=S)OCC1OC(N(C)C(=O)\N=C(\N)C=C)CC1OP(O)(=S)OCC1OC(N2C3=C(C(NC(N)=N3)=O)N=C2)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C3=C(C(NC(N)=N3)=O)N=C2)CC1OP(O)(=S)OCC1OC(N2C(N=C(N)C=C2)=O)CC1OP(O)(=S)OCC(C(C1)OP(S)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)OC1N1C=C(C)C(=O)NC1=O XCWFZHPEARLXJI-UHFFFAOYSA-N 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- QPJBWNIQKHGLAU-IQZHVAEDSA-N ganglioside GM1 Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 QPJBWNIQKHGLAU-IQZHVAEDSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229960003884 hetacillin Drugs 0.000 description 1
- DXVUYOAEDJXBPY-NFFDBFGFSA-N hetacillin Chemical compound C1([C@@H]2C(=O)N(C(N2)(C)C)[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 DXVUYOAEDJXBPY-NFFDBFGFSA-N 0.000 description 1
- 208000021760 high fever Diseases 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000008350 hydrogenated phosphatidyl choline Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- DNZMDASEFMLYBU-RNBXVSKKSA-N hydroxyethyl starch Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O.OCCOC[C@H]1O[C@H](OCCO)[C@H](OCCO)[C@@H](OCCO)[C@@H]1OCCO DNZMDASEFMLYBU-RNBXVSKKSA-N 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000022760 infectious otitis media Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000003990 inverse gas chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 1
- 229960001627 lamivudine Drugs 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000003509 long acting drug Substances 0.000 description 1
- 235000021266 loss of appetite Nutrition 0.000 description 1
- 208000019017 loss of appetite Diseases 0.000 description 1
- 239000003580 lung surfactant Substances 0.000 description 1
- 229940066294 lung surfactant Drugs 0.000 description 1
- 238000012792 lyophilization process Methods 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 229960003035 magnesium gluconate Drugs 0.000 description 1
- 235000015778 magnesium gluconate Nutrition 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- IAKLPCRFBAZVRW-XRDLMGPZSA-L magnesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;hydrate Chemical compound O.[Mg+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IAKLPCRFBAZVRW-XRDLMGPZSA-L 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000198 mezlocillin Drugs 0.000 description 1
- YPBATNHYBCGSSN-VWPFQQQWSA-N mezlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCN(S(C)(=O)=O)C1=O YPBATNHYBCGSSN-VWPFQQQWSA-N 0.000 description 1
- 229960002159 micafungin Drugs 0.000 description 1
- PIEUQSKUWLMALL-YABMTYFHSA-N micafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS(O)(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 PIEUQSKUWLMALL-YABMTYFHSA-N 0.000 description 1
- 229960005040 miconazole nitrate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229960000808 netilmicin Drugs 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229960003753 nitric oxide Drugs 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- NENPYTRHICXVCS-YNEHKIRRSA-N oseltamivir acid Chemical compound CCC(CC)O[C@@H]1C=C(C(O)=O)C[C@H](N)[C@H]1NC(C)=O NENPYTRHICXVCS-YNEHKIRRSA-N 0.000 description 1
- PGZUMBJQJWIWGJ-ONAKXNSWSA-N oseltamivir phosphate Chemical compound OP(O)(O)=O.CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 PGZUMBJQJWIWGJ-ONAKXNSWSA-N 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- WVNOAGNOIPTWPT-NDUABGMUSA-N oxiconazole nitrate Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)/CN1C=NC=C1 WVNOAGNOIPTWPT-NDUABGMUSA-N 0.000 description 1
- 229960002894 oxiconazole nitrate Drugs 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229960004236 pefloxacin Drugs 0.000 description 1
- FHFYDNQZQSQIAI-UHFFFAOYSA-N pefloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 FHFYDNQZQSQIAI-UHFFFAOYSA-N 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 239000008180 pharmaceutical surfactant Substances 0.000 description 1
- NONJJLVGHLVQQM-JHXYUMNGSA-N phenethicillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(C)OC1=CC=CC=C1 NONJJLVGHLVQQM-JHXYUMNGSA-N 0.000 description 1
- 229960004894 pheneticillin Drugs 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000008106 phosphatidylserines Chemical class 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- KQOXLKOJHVFTRN-UHFFFAOYSA-N pleconaril Chemical group O1N=C(C)C=C1CCCOC1=C(C)C=C(C=2N=C(ON=2)C(F)(F)F)C=C1C KQOXLKOJHVFTRN-UHFFFAOYSA-N 0.000 description 1
- 229960000471 pleconaril Drugs 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000009725 powder blending Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 229960005224 roxithromycin Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229940061367 tamiflu Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 229940073585 tromethamine hydrochloride Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 230000004855 vascular circulation Effects 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 208000009421 viral pneumonia Diseases 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/196—Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/575—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0075—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
Definitions
- Antiviral Compositions Methods of Making and Using Such Compositions, and Systems for Pulmonary Delivery of Such Compositions
- the present invention relates to pharmaceutical compositions comprising an antiviral active, powder compositions comprising antiviral actives, and compositions comprising combinations of two or more antiviral actives.
- One or more embodiments of the present invention include methods of making and using such compositions, and methods and systems for pulmonary delivery of such compositions.
- This invention relates to methods and compositions for treating viral infections, and has particular reference to the treatment of influenza.
- Influenza more commonly known as the flu
- the flu is an acute, viral infection that attacks mainly the upper respiratory tract-the nose, throat and bronchi and rarely also the lungs.
- the flu is considered to be an infection of the respiratory tract, individuals suffering from the flu usually become acutely ill with high fever, chills, headache, weakness, loss of appetite and aching joints.
- the typical length of time from when a person is exposed to influenza virus to when symptoms first occur ranges between one and five days, with an average of two days.
- Adults can be infectious (i.e., shedding virus) starting the day before the onset of symptoms begin until approximately 5 days after the onset of illness.
- Children can be infectious for longer periods of time.
- Systemic symptoms include abrupt onset of fever (e.g. usually 100-103 0 F in an adult and possibly higher in children), chills, headaches, myalgia and malaise.
- influenza infections are known to increase the susceptibility of an infected to particular bacterial infections caused by species of bacterial pathogens such as, pneumococcus, staphylococcus, mycoplasma, non-group H. influenza, and Moraxella catarrhalis.
- Secondary bacterial infections such as, but not limited to, infections of the lower respiratory tract (e.g., pneumonia), middle ear infections (e.g., otitis media) and bacterial sinusitis are common complications of an infection with viral influenza.
- the flu and its associated complications e.g.
- Aerosolized medicaments are used to treat patients suffering from a variety of ailments. Medicaments can be delivered directly to the lungs by having the patient inhale the aerosol through a tube and/or mouthpiece coupled to an aerosol generator. By inhaling the aerosolized medicament, the patient can quickly, safely and efficiently receive a dose of medicament.
- Aerosolized medicaments can be administered directly to the lungs to treat diseases and/or conditions of the lung, and to treat diseases or conditions having a systemic effect or component thereof.
- Many medicaments cannot be administered orally, due to their sensitivity to metabolism and/or degradation and resulting inactivation in the gastrointestinal tract, thus pulmonary delivery avoids the need for intramuscular, subcutaneous or transdermal delivery and associated needles. Additionally or alternatively, it may be safer and/or more efficacious to deliver the medicament directly to the lungs and/or pulmonary system instead of other administration routes.
- Pulmonary delivery by aerosol inhalation has received much attention as an attractive alternative to intravenous, intramuscular, and subcutaneous injection, since this approach eliminates the necessity for injection syringes and needles. Pulmonary delivery also limits irritation to the skin and body mucosa which are common side effects of transdermal ⁇ , iontophoretically, and intranasally delivered drugs, eliminates the need for nasal and skin penetration enhancers (typical components of intranasal and transdermal systems that often cause skin irritation/dermatitis), is economically attractive, is amenable to patient self-administration, and is often preferred by patients over other alternative modes of administration.
- Pulmonary delivery may comprise aerosolized liquids, dispersions, or powder forms.
- the compositions may be delivered via liquid nebulizers, metered dose (pressurized) inhalers or dry-powder inhalers.
- Dry powder inhalers are known in the art as disclosed, for example, in U.S.
- the present invention relates to antiviral pharmaceutical compositions, methods of making and using such compositions, and systems for pulmonary delivery of such compositions.
- compositions comprising particles comprising antiviral actives (i.e. drugs, pharmaceuticals, compounds, chemicals, metals, biologies and combinations having antiviral activity, individually and collectively referred to as antivirals.)
- antiviral actives i.e. drugs, pharmaceuticals, compounds, chemicals, metals, biologies and combinations having antiviral activity, individually and collectively referred to as antivirals.
- the present invention relates to pharmaceutical compositions comprising particles comprising an effective amount of an antiviral and a pharmaceutically acceptable excipient, wherein the particles have a mass median aerodynamic diameter (MMAD) from about 1 ⁇ m to about 7 ⁇ m, and a bulk density of less than about 1.0 g/cm 3 .
- MMAD mass median aerodynamic diameter
- the present invention is directed to a pharmaceutical composition for pulmonary delivery comprising particles comprising at least one antiviral and a pharmaceutically acceptable excipient, wherein pulmonary distribution (i.e. to and throughout bronchi, bronchioles and alveoli) is very good.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising one or more antivirals selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor, an M2 proton channel blocker, a nucleoside analog, peptide analogs, protease inhibitors, SiRNAs, antibodies, antibody fragments, antibody constructs and glycodendritic structures or polymers and any combination thereof.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising one or more antivirals selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor, an M2 proton channel blocker, a nucleoside analog and any combination thereof.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising two or more antivirals selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor and a M2 proton channel blocker.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising an antiviral which is selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor, a M2 proton channel blocker, a nucleoside analog and combinations thereof, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m, and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising an antiviral which is selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor, a M2 proton channel blocker, a nucleoside analog and combinations thereof, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 5 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to one of the aforementioned pharmaceutical composition comprising particles comprising about 10-99 wt% of antiviral which is selected from a neuraminidase inhibitor, a hemagglutinin inhibitor, a M2 proton channel blocker, a nucleoside analog and combinations thereof.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising a neuraminidase inhibitor and a M2 proton channel blocker, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a pharmaceutical composition comprising porous and/or holiow particles comprising an antiviral.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles as described above, wherein the composition is in the form of a powder.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising at least one antiviral selected from the group consisting of a neuraminidase inhibitor, a hemagglutinin inhibitor, a M2 proton channel blocker and a nucleoside analog, and at least one excipient, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 , a particle size distribution of at least 50% of the particles having an aerodynamic diameter of less than about 3 microns.
- the composition provides an emitted dose of active of at least about 50% of the antiviral.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising zamanivir and an excipient selected from a phospholipid or a di- or tri-peptide comprising at least two leucines, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 , a particle size distribution of at least 50% having an aerodynamic diameter less than about 3 microns, and wherein the composition further provides an emitted dose of active of at least about 50%.
- the present invention is directed to a pharmaceutical composition
- a pharmaceutical composition comprising particles comprising rimantadine and a pharmaceutically acceptable excipient selected from a phospholipid or a di- or tri-peptide comprising at least two leucines, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 , a particle size distribution of at least 50% having an aerodynamic diameter less than about 3 microns, and wherein the composition further provides an emitted dose of active of at least about 50%.
- the present invention is directed to a unit dosage form, comprising a container containing a pharmaceutical composition comprising particles comprising an effective amount of antiviral and a pharmaceutically acceptable excipient, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a unit dosage form, comprising a container containing a pharmaceutical composition comprising particles comprising an effective amount of antiviral and a di or tri- peptide containing at least two leucines, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a unit dosage form, comprising a container containing a pharmaceutical composition comprising particles comprising an effective amount of antiviral and a phospholipid, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a delivery system, comprising an inhaler and a pharmaceutical composition comprising particles comprising antiviral and a pharmaceutically acceptable excipient as set out above.
- the present invention is directed to a method of making particles, comprising suspending an antiviral in a liquid to form a feedstock and removing the liquid therefrom to produce particles, wherein the particles comprise an antiviral and have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a method of making particles, comprising suspending an antiviral in a liquid to form a feedstock and spray drying the feedstock to produce spray-dried particles, wherein the particles comprise an antiviral and have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a method of treating a patient with a condition associated with a viral infection comprising administering an effective amount of a pharmaceutical composition comprising antiviral by inhalation to a patient, wherein the composition comprises particles comprising an antiviral a pharmaceutically acceptable excipient, such particles having a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 .
- the present invention is directed to a method of treating viral infections by pulmonary administration of a pharmaceutical composition as set out above comprising an antiviral combination, wherein an effective dose of the antiviral combination is at least about ten times lower than an effective dose of the same antiviral delivered orally.
- the present invention is directed to a kit comprising a pharmaceutical composition comprising particles comprising an effective amount of antiviral and a pharmaceutically acceptable excipient, wherein the particles have a mass median aerodynamic diameter from about 1 ⁇ m to about 7 ⁇ m and a bulk density of less than about 1.0 g/cm 3 , and a delivery device for the composition.
- Figs 1A-1E show a passive inhaler device.
- Figs 2A-2D are photomicrographs showing particles made with varying amounts of antiviral and excipient, in accordance with one or more embodiments of the present invention.
- Fig 3 is a graph showing particle size and particle size distribution for particles made in accordance with one or more embodiments of the present invention.
- Fig 4 is a bar graph showing emitted dose showing particles made with varying amounts of antiviral and excipient, in accordance with one or more embodiments of the present invention
- Figs 5A-5B are graphs showing emptying profiles of amorphous drug particles made with varying amounts of antiviral and excipient, in accordance with one or more embodiments of the present invention.
- Fig 6 is a bar graph of drug delivered (as lung dose) for particles made with varying amounts of antiviral and excipient, in accordance with one or more embodiments of the present invention
- a phospholipid includes a single phospholipid as well as two or more phospholipids in combination or admixture unless the context clearly dictates otherwise.
- an active agent when referring to an active agent, the term encompasses not only the specified molecular entity, but also its pharmaceutically acceptable, pharmacologically active analogs, including, but not limited to, salts, esters, amides, hydrazides, N-alkyl derivatives, N-acyl derivatives, prodrugs, conjugates, active metabolites, and other such derivatives, analogs, and related compounds. Therefore, as used herein, the term “antiviral” refers to antivirals per se or derivatives, analogs, or related compounds noted above, as long as such antivirals derivatives, analogs, or related compounds exhibit antiviral activity.
- treating and “treatment” refer to reduction in severity and/or frequency of symptoms, elimination of symptoms and/or underlying cause, reduction in likelihood of the occurrence of symptoms and/or underlying cause, and improvement or remediation of damage.
- treating a patient with an active agent as provided herein includes prevention of a particular condition, disease or disorder in a susceptible individual as well as treatment of a clinically symptomatic individual.
- effective amount refers to an amount covering both therapeutically effective amounts and prophylactically effective amounts.
- therapeutically effective amount refers to an amount that is effective to achieve the desired therapeutic result.
- a therapeutically effective amount of a given active agent will typically vary with respect to factors such as the type and severity of the disorder or disease being treated and the age, gender, and weight of the patient.
- prophylactically effective amount refers to an amount that is effective to achieve the desired prophylactic result. Because a prophylactic dose is administered in patients prior to onset of disease, the prophylactically effective amount typically is tess than the therapeutically effective amount.
- the term "respiratory infections” includes, but is not limited to upper respiratory tract infections such as sinusitis, pharyngitis, and influenza, and lower respiratory tract infections such as tuberculosis, bronchiectasis (both the cystic fibrosis and non-cystic fibrosis indications), bronchitis (both acute bronchitis and acute exacerbation of chronic bronchitis), and pneumonia (including various types of complications that arise from viral and bacterial infections including hospital-acquired and community-acquired infections).
- upper respiratory tract infections such as sinusitis, pharyngitis, and influenza
- lower respiratory tract infections such as tuberculosis, bronchiectasis (both the cystic fibrosis and non-cystic fibrosis indications), bronchitis (both acute bronchitis and acute exacerbation of chronic bronchitis), and pneumonia (including various types of complications that arise from viral and bacterial infections including hospital
- MMD mass median diameter
- powder samples are added directly to the feeder funnel of the Sympatec RODOS dry powder dispersion unit. This can be achieved manually or by agitating mechanically from the end of a VIBRI vibratory feeder element.
- Samples are dispersed to primary particles via application of pressurized air (2 to 3 bar), with vacuum depression (suction) maximized for a given dispersion pressure.
- Dispersed particles are probed with a 632.8 nm laser beam that intersects the dispersed particles' trajectory at right angles.
- Laser light scattered from the ensemble of particles is imaged onto a concentric array of photomultiplier detector elements using a reverse-Fourier lens assembly. Scattered light is acquired in time-slices of 5 ms.
- Particle size distributions are back-calculated from the scattered light spatial/intensity distribution using a proprietary algorithm.
- geometric diameter refers to the diameter of a single particle, as determined by microscopy, unless the context indicates otherwise.
- MMAD mass median aerodynamic diameter
- the “aerodynamic diameter” is the diameter of a unit density sphere having the same settling velocity, generally in air, as a powder and is therefore a useful way to characterize an aerosolized powder or other dispersed particle or particle formulation in terms of its settling behavior.
- the aerodynamic diameter encompasses particle or particle shape, density, and physical size of the particle or particle.
- MMAD refers to the median of the aerodynamic particle or particle size distribution of an aerosolized powder determined by cascade impaction, unless the context indicates otherwise.
- the term "emitted dose” or "ED" refers to an indication of the delivery of dry powder from an inhaler device after an actuation or dispersion event from a powder unit or reservoir.
- ED is defined as the ratio of the dose delivered by an inhaler device to the nominal dose (i.e., the mass of powder per unit dose placed into a suitable inhaler device prior to firing).
- the ED is an experimentally determined amount, and may be determined using an in vitro device set up which mimics patient dosing.
- a nominal dose of dry powder (as defined herein) is placed into a suitable inhaler device, for example, a Turbospin® DPI device (PH&T, Italy), described in U.S. Patent Nos. 4,069,819 and 4,995,385, which are incorporated herein by reference in their entireties.
- the inhaler device is actuated, dispersing the powder.
- the resulting aerosol cloud is then drawn from the device by vacuum (30 L/min) for 2.5 seconds after actuation, where it is captured on a tared glass fiber filter (Gelman, 47 mm diameter) attached to the device mouthpiece.
- the amount of powder that reaches the filter constitutes the delivered dose.
- passive dry powder inhaler refers to an inhalation device that relies upon a patient's inspiratory effort to disperse and aerosolize a pharmaceutical composition contained within the device in a reservoir or in a unit dose form and does not include inhaler devices which comprise a means for providing energy, such as pressurized gas and vibrating or rotating elements, to disperse and aerosolize the drug composition.
- active dry powder inhaler refers to an inhalation device that does not rely solely on a patient's inspiratory effort to disperse and aerosolize a pharmaceutical composition contained within the device in a reservoir or in a unit dose form and does include inhaler devices that comprise a means for providing energy to disperse and aerosolize the drug composition, such as pressurized gas and vibrating or rotating elements.
- compositions including antivirals may include various forms and amounts of antivirals.
- the antiviral may be present in an amount from, in weight percentage (wt%) at least about 0.01 , or 0.5 or 1 or 2 or 5 or 10 or 20 or 30 or 40 or 50 or 60 or 70 or 80 or 90 or 95 or 98 or 99 wt%, or in a range of any combination of the stated amounts.
- the pharmaceutical composition according to one or more embodiments of the invention may comprise one or more antiviral and, optionally, one or more other active ingredients and/or pharmaceutically acceptable excipients.
- the pharmaceutical composition may comprise neat particles of antiviral, may comprise neat particles of antiviral together with other particles, and/or may comprise particles comprising antiviral and one or more active ingredients and/or one or more pharmaceutically acceptable excipients.
- the particles may be as a dry powder, or may be suspended or dispersed in a liquid.
- compositions according to one or more embodiments of the invention may comprise one or more antiviral and, optionally, one or more other active ingredients and/or pharmaceutically acceptable excipients.
- the pharmaceutical composition according to one or more embodiments of the invention may, if desired, contain a combination of antiviral and one or more other active ingredients.
- other active agents include, but are not limited to, agents that may be delivered to or through the lungs or nasal passages.
- the other active agent(s) may be long-acting agents and/or active agents that are active against pulmonary and/or nasal infections such as antifungals and/or antibiotics.
- the present invention comprises a particulate formulation comprising at least one antiviral. In one or more embodiments, the present invention comprises a formulation comprising at least two antivirals. In one or more embodiments, the present invention comprises a formulation comprising at least two antivirals wherein the antivirals are of different classes. In one or more embodiments, the present invention comprises a formulation comprising at least three antivirals wherein the antivirals are of different classes.
- Antivirals may be classified by a variety of schemes. One such scheme is based upon the target inhibited within the viral life cycle stage. In this classification scheme, antivirals may be conveniently divided into three classes, by approximate functional mode
- a very early stage of viral infection is viral entry, when the virus attaches to and enters the host cell.
- the virus must first bind to a specific receptor molecule on the surface of the host cell. Viruses that have a lipid envelope must also fuse their envelope with the target cell, or with a vesicle that transports them into the cell, before they can uncoat.
- This stage of viral replication can be inhibited by using agents which mimic the virus-associated protein (VAP) and bind to the cellular receptors.
- VAP virus-associated protein
- This may include VAP anti-idiotypic antibodies, anti-receptor antibodies, and natural ligands of the receptor and anti-receptor antibodies.
- Agents which mimic the receptor and bind to the VAP also exist, such as anti-VAP antibodies, receptor anti-idiotypic antibodies, extraneous receptor and synthetic receptor mimics.
- One entry-blocker is pleconaril, which works against rhinoviruses, by blocking a pocket on the surface of the virus that controls the uncoating process.
- Hemagglutinin is an antigenic glycoprotein found on the surface of the influenza viruses (as well as many other bacteria and viruses). It is responsible for binding the virus to the cell that is being infected. HA binds to the monosaccharide sialic acid which is present on the surface of its target cells. This causes the viral particles to stick to the cell's surface. The cell membrane then engulfs the virus and the portion of the membrane that encloses it pinches off to form a new membrane-bound compartment within the cell (an endosome), which contains the engulfed virus. The cell then attempts to begin digesting the contents of the endosome by acidifying its interior and transforming it into a lysosome.
- a second approach is to target the processes that synthesize virus components after a virus invades a cell.
- One way of doing this is to develop nucleotide or nucleoside analogues that look like the building blocks of RNA or DNA, but deactivate the enzymes that synthesize the RNA or DNA once the analogue is incorporated.
- Examples include acyclovir and zidovudine, which are effective against herpes virus infections.
- lamivudine approved to treat hepatitis B, which uses reverse transcriptase as part of its replication process.
- Inhibitors have been developed that do not look like nucleosides, but can still block reverse transcriptase.
- mRNA messenger RNA
- Antisense molecules are segments of DNA or RNA designed as mirror images to critical sections of viral genomes, and the binding of these antisense segments to these target sections blocks the operation of those genomes.
- a phospho roth bate antisense drug named fomivirsen is used to treat opportunistic eye infections in AIDS patients caused by cytomegalovirus.
- Morpholino oligos have been used to experimentally suppress many viral types including caliciviruses, flaviviruses (including WNV, Dengue and HCV), and corona viruses.
- ribozymes are enzymes that will cut apart viral RNA or DNA at selected sites.
- a ribozyme antivirals exist or are under development to treat hepatitis C and HIV.
- viruses include a protease that cuts viral protein chains apart so they can be assembled into their final configuration. Protease inhibitors can thus attack the virus at the assembly phase of its life-cycle.
- the class of M2 channel blockers includes amantadine and rimantadine.
- Zanamivir (Relenza), oseltamivir (Tamiflu) and Peramivir have been introduced to treat influenza by preventing the release of viral particles by blocking the neuraminidase enzyme (neuraminidase inhibitors) that is found on the surface of flu viruses.
- Zanamivir may be formulated for as a powder for inhalation.
- a commercially-available inhalation powder of Zanamivir (Relenza) is formulated with lactose, yielding relatively large particles.
- Neuraminidase is a glycoside hydrolase enzyme (EC 3.2.1.18). It is frequently found as an antigenic glycoprotein and is best known as one of the enzymes found on the surface of the Influenza virus. Some variants of the influenza neuraminidase confer more virulence to the virus than others. At least four neuraminidases in the human genome have been described. Neuraminidase has functions that aid in the efficiency of virus release from cells. Neuraminidase cleaves terminal sialic acid residues from carbohydrate moieties on the surfaces of infected cells. This promotes the release of progeny viruses from infected cells. Neuraminidase also cleaves sialic acid residues from viral proteins, preventing aggregation of viruses. Administration of chemical inhibitors of neuraminidase is a treatment that limits the severity and spread of viral infections.
- Antivirals may also be classified by chemical type, such as: nucleoside analogs; peptide anologs, neuraminic acid mimetics, proteins, triazoles, tricyclic amines, small cyclic molecules and kinase inhibitors, for example.
- SiRNA small interfering RNAs
- SiRNA small interfering RNAs
- antivirals include, but are not limited to, acyclovir, gangcyclovir, azidothymidine, cytidine arabinoside, ribavirin, rifampacin, iododeoxyuridine, poscamet, and trifluridine.
- the present invention comprises one or more antivirals formulated for inhalation in the form of particles to have a MMAD particle size of less than about 7 microns, such as less than about 6 or 5 or 4 or 3 or 2 microns.
- the antiviral composition comprises a powder which can be administered using an inhaler device.
- the antiviral composition comprises particles which are sufficiently small to provide good lung distribution, through the lower airways and alveoli. Such distribution not only aids in therapeutic effect, but helps to mitigate, reduce or eliminate toxicity associated with uneven distribution of drug. Moreover, the specified small particle size helps to mitigate, reduce or eliminate bronchospasm.
- the antiviral composition comprises particles comprising at least two different antiviral actives and an excipient matrix such that the individual particles comprise predominantly all three components. In one or more embodiments, the antiviral composition comprises particles comprising a single antiviral active and an excipient matrix such that the individual particles comprise predominantly only two components. In one or more embodiments, the antiviral composition comprises a mixture of first and second particles, wherein the first particle comprises a first antiviral active and an excipient matrix, and the second particle comprises a second antiviral active and an excipient matrix, and wherein the excipient may be the same or different, and the first and second particles may be of substantially similar physical characteristics, or may differ in one or more physical characteristics.
- the antiviral formulation of the present invention when administered by inhalation, affords a beneficial ratio of lung C max to serum C max .
- a lung concentration is sufficiently high to provide therapeutic effectiveness, while a serum concentration is sufficiently low to eliminate or minimize side effects, unwanted effects, adverse reactions and/or toxicity.
- a ratio of lung C m a x to serum C max is at least about 2000:1.
- the agents may be provided in combination in a single species of pharmaceutical composition or individually in separate species of pharmaceutical compositions. Further, the pharmaceutical composition may be combined with one or more other active or bioactive agents that provide the desired dispersion stability or powder dispersibility.
- the amount of active agent ⁇ s), e.g., antiviral, in the pharmaceutical composition may vary.
- the amount of active agent(s) is typically at least about 0.5 wt%, such as at least about 1 wt%, at least about 2 wt%, at least about 5 wt%, at least about 10 wt%, at least about 20 wt%, at least about 30 wt%, at least about 40 wt%, at least about 50 wt%, at least about 60 wt%, at least about 70 wt%, or at least about 80 wt%, of the total amount of the pharmaceutical composition.
- the amount of active agent(s) generally varies between about 0.1 wt% to 100 wt%, such as about 1 wt% to about 95 wt%, about 2 wt% to about 90 wt%, about 30 wt% to about 80 wt%, about 40 wt% to about 70 wt%, about 50 wt% to about 60 wt%, about 1 wt% to about 20 wt%, about 2 wt% to about 10 wt%, about 5 wt% to about 50 wt%, or about 4 wt% to about 20 wt%.
- the pharmaceutical composition may include one or more pharmaceutically acceptable excipients.
- pharmaceutically acceptable excipients include, but are not limited to, lipids, metal ions, surfactants, amino acids, carbohydrates, buffers, salts, polymers, and the like, and combinations thereof.
- lipids include, but are not limited to, phospholipids, glycolipids, ganglioside GM1 , sphingomyelin, phosphatide acid, cardiolipin; lipids bearing polymer chains such as polyethylene glycol, chitin, hyaluronic acid, or polyvinylpyrrolidone; lipids bearing sulfonated mono-, di-, and polysaccharides; fatty acids such as palmitic acid, stearic acid, and oleic acid; cholesterol, cholesterol esters, and cholesterol hemisuccinate.
- the phospholipid comprises a saturated phospholipid, such as one or more phosphatidylcholines.
- exemplary acyl chain lengths are 16:0 and 18:0 (i.e., palmitoyl and stearoyl).
- the phospholipid content may be determined by the active agent activity, the mode of delivery, and other factors.
- Phospholipids from both natural and synthetic sources may be used in varying amounts. When phospholipids are present, the amount is typically sufficient to coat the active agent(s) with at least a single molecular layer of phospholipid. In general, the phospholipid content ranges from about 5 wt% to about 99.9 wt%, such as about 20 wt% to about 80 wt%.
- compatible phospholipids comprise those that have a gel to liquid crystal phase transition greater than about 40 0 C, such as greater than about 60 0 C, or greater than about 80 0 C.
- the incorporated phospholipids may be relatively long chain ⁇ e.g., C 16 -C 22 ) saturated lipids.
- Exemplary phospholipids useful in the disclosed stabilized preparations include, but are not limited to, phosphoglycerides such as dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, diarachidoylphosphatidylcholine, dibehenoylphosphatidylcholine, dimyristoylphosphatidylcholine, diphosphatidyl glycerols, short-chain phosphatidylcholines, hydrogenated phosphatidylcholine, E-100-3 (available from Lipoid KG, Ludwigshafen, Germany), long-chain saturated phosphatidylethanolamines, long- chain saturated phosphatidylserines, long-chain saturated phosphatidylglycerols, long- chain saturated phosphatidylinositols, phosphatidic acid, phosphatidylinositol, and sphingomyelin.
- phosphoglycerides such as
- metal ions include, but are not limited to, divalent cations, including calcium, magnesium, zinc, iron, and the like.
- the pharmaceutical composition may also comprise a polyvalent cation, as disclosed in WO 01/85136 and WO 01/85137, which are incorporated herein by reference in their entireties.
- the polyvalent cation may be present in an amount effective to increase the melting temperature (T m ) of the phospholipid such that the pharmaceutical composition exhibits a T m which is greater than its storage temperature (T s ) by at least about 20 0 C, or 25°C or 30 0 C or 35°C or 40 0 C or 45 0 C or more.
- the molar ratio of polyvalent cation to phospholipid may be at least about 0.05:1, such as about 0.05:1 to about 2.0: 1 or about 0.25: 1 to about 1.0: 1.
- An example of the molar ratio of polyvalent cation:phospholipid is about 0.50:1.
- the polyvalent cation is calcium, it may be in the form of calcium chloride. Although metal ion, such as calcium, is often included with phospholipid, none is required.
- One or more embodiments of the pharmaceutical composition may include one or more surfactants.
- one or more surfactants may be in the liquid phase with one or more being associated with solid particles or particles of the composition.
- associated with it is meant that the pharmaceutical compositions may incorporate, sorb, adsorb, absorb, be coated with, or be formed by the surfactant.
- Surfactants include, but are not limited to, fluorinated and nonfluorinated compounds, such as saturated and unsaturated lipids, nonionic detergents, nonionic block copolymers, ionic surfactants, and combinations thereof. It should be emphasized that, in addition to the aforementioned surfactants, suitable fluorinated surfactants are compatible with the teachings herein and may be used to provide the desired preparations.
- nonionic detergents include, but are not limited to, sorbitan esters including sorbitan trioleate (SpanTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyf polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and sucrose esters.
- sorbitan esters including sorbitan trioleate (SpanTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyf polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters
- block copolymers include, but are not limited to, diblock and triblock copolymers of polyoxyethylene and polyoxypropylene, including poloxamer 188 (PluronicTM F-68), poloxamer 407 (PluronicTM F-127), and poloxamer 338.
- ionic surfactants include, but are not limited to, sodium sulfosuccinate, and fatty acid soaps.
- amino acids include, but are not limited to, hydrophobic amino acids.
- Use of amino acids as pharmaceutically acceptable excipients is known in the art as disclosed in WO 95/31479, WO 96/32096, and WO 96/32149, which are incorporated herein by reference.
- Hydrophobic amino acids and lipids are capable of providing a particle surface of low surface energy. Magnesium stearate may also be used as an excipient to reduce surface energy.
- Examples of carbohydrates include, but are not limited to, monosaccharides, disaccharides, and polysaccharides.
- monosaccharides such as dextrose (anhydrous and monohydrate), galactose, mannitol, D-mannose, sorbitol, sorbose and the like; disaccharides such as lactose, maltose, sucrose, trehalose, and the like; trisaccharides such as raffinose and the like; and other carbohydrates such as starches (hydroxyethylstarch), cyclodextrins and maltodextrins.
- buffers include, but are not limited to, tris, citrate, acetate, phosphate, TES and MES.
- acids include, but are not limited to, organic acids such as carboxylic acids, in particular mono and di- carboxylic acids. .
- salts include, but are not limited to, sodium chloride, salts of carboxylic acids, (e.g., sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, etc.), ammonium carbonate, ammonium acetate, ammonium chloride, and the like.
- carboxylic acids e.g., sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, etc.
- ammonium carbonate e.g., sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, etc.
- the excipients may be glass forming excipients providing an amorphous glass, e.g., with a glass transition temperature that is at least 20 0 C greater than the storage temperature.
- Glass forming systems are disclosed in U.S. Patent Nos. 6,258,341; 5,098,893; 5,928,469; and 6,071 ,428, which are incorporated herein by reference.
- the pharmaceutical composition of one or more embodiments of the present invention may also include a biocompatible, such as biodegradable polymer, copolymer, or blend or other combination thereof.
- useful polymers comprise polylactides, polylactide-glycolides, cyclodextrins, polyacrylates, methylcellulose, carboxymethylcellulose, polyvinyl alcohols, polyanhydrides, polylactams, polyvinyl pyrrolidones, polysaccharides (dextrans, starches, chitin, chitosan, etc.), hyaluronic acid, proteins, (albumin, collagen, gelatin, etc.).
- the delivery efficiency of the composition and/or the stability of the dispersions may be tailored to optimize the effectiveness of the active agent(s).
- compositions may be desirable to add other pharmaceutically acceptable excipients to the pharmaceutical composition to improve particle rigidity, production yield, emitted dose and deposition, shelf-life, and patient acceptance.
- pharmaceutically acceptable excipients include, but are not limited to: coloring agents, taste masking agents, buffers, hygroscopic agents, antioxidants, and chemical stabilizers.
- various pharmaceutically acceptable excipients may be used to provide structure and form to the particle compositions (e.g., latex particles).
- the rigidifying components can be removed using a post-production technique such as selective solvent extraction.
- compositions may also include mixtures of pharmaceutically acceptable excipients.
- excipients include, but are not limited to, (a) distearoylphosphatidylcholine to calcium chloride (e.g., in a 2:1 molar ratio); (b) core-shell particles comprised of a shell of trileucine, and a core comprised of glass forming excipients, including sodium citrate and trehalose.
- the present invention may comprise one or more antivirals combined with one or more antibiotics, such as an antifungal and/or antbiotic.
- antifungals include, but are not limited to, azoles (e.g., imidazoles, itraconazole, pozaconazole), micafungin, caspafungin, salicylic acid, oxiconazole nitrate, ciclopirox olamine, ketoconazole, miconazole nitrate, and butoconazofe nitrate.
- antibiotics include, but are not limited to, penicillin and drugs of the penicillin family of antimicrobial drugs, including but not limited to penicillin-G, penicillin-V, phenethicillin, ampicillin, amoxacillin, cyclacillin, bacampicillin, hetacillin, cloxacillin, dicloxacillin, methicillin, nafcillin, oxacillin, azlocillin, carbenicillin, mezlocillin, piperacillin, ticaricillin, and imipenim; cephalosporin and drugs of the cephalosporin family, including but not limited to cefadroxil, cefazolin, caphalexn, cephalothin, cephapirin, cephradine, cefaclor, cefamandole, cefonicid, cefoxin, cefuroxime, ceforanide, cefotetan, cefinetazole, cefoperazone, cefotaxime
- compositions of one or more embodiments of the present invention may take various forms, such as dry powders, capsules, tablets, reconstituted powders, suspensions, or dispersions comprising a non-aqueous phase, such as propellants (e.g., chlorofluorocarbon, hydrofluoroalkane).
- a non-aqueous phase such as propellants (e.g., chlorofluorocarbon, hydrofluoroalkane).
- the moisture content of dry powder may be less than about 15 wt%, such as less than about 10 wt%, less than about 5 wt%, less than about 2 wt%, less than about 1 wt%, or less than about 0.5 wt%.
- propellants e.g., chlorofluorocarbon, hydrofluoroalkane
- the moisture content of dry powder may be less than about 15 wt%, such as less than about 10 wt%, less than about 5 wt%, less than about 2 wt%
- compositions of antiviral incorporated in a matrix material with little, if any, unincorporated antiviral.
- at least about 40 wt%, at least about 50 wt%, at least about 60 wt%, at least about 70%, at least about 80%, at least about 90 wt%, at least about 95 wt%, or at least about 99 wt%, of the composition may comprise particles including both antiviral and matrix material.
- the particle size (such as a mass median diameter, and/or a geometric diameter, and or aerodynamic diameter) of the particles is particularly advantageous for the particle size (such as a mass median diameter, and/or a geometric diameter, and or aerodynamic diameter) of the particles to be below 3.0 microns, preferably below 2.5 microns, and more preferably below about 2.0 microns, in order to provide highly dispersible, homogenous compositions of active agent incorporated into the matrix material. Accordingly, a preferred embodiment is directed to homogeneous compositions of active agent incorporated in a matrix material without any unincorporated active agents particles.
- a heterogeneous composition may be desirable in order to provide a desired pharmacokinetic profile of the antiviral to be administered, and in these cases, a large antiviral particle (e.g., mass median diameter of about 3 ⁇ m to about 10 ⁇ m, or larger) may be used.
- a large antiviral particle e.g., mass median diameter of about 3 ⁇ m to about 10 ⁇ m, or larger
- the pharmaceutical composition comprises an antiviral incorporated into a phospholipid matrix.
- the pharmaceutical composition may comprise phospholipid matrices that incorporate the active agent and that are in the form of particles that are hollow and/or porous microstructures, as described in the aforementioned WO 99/16419, WO 99/16420, WO 99/16422, WO 01/85136, and WO 01/85137, US 20040156792; and US 20050214224, all of which are incorporated herein by reference in their entireties.
- the hollow and/or porous microstructures are useful in delivering the antiviral to the lungs because the density, size, and aerodynamic qualities of the hollow and/or porous microstructures facilitate transport into the deep lungs during a user's inhalation.
- the phospholipid-based hollow and/or porous microstructures reduce the attraction forces between particles, making the pharmaceutical composition easier to deagglomerate during aerosolization and improving the flow properties of the pharmaceutical composition making it easier to process.
- the pharmaceutical composition is composed of hollow and/or porous microstructures having a bulk density less than about 1.0 g/cm 3 , less than about 0.8 g/cm 3 , less than about 0.5 g/cm 3 , less than about 0.3 g/cm 3 , less than about 0.2 g/cm 3 , or less than about 0.1 g/cm 3 .
- small porous particles of the present invention may have a bulk density ranging from 0.01 g/cm 3 to 0.4 g/cm 3 , such as from 0.03 g/cm 3 to 0.25 g/cm 3 .
- Particle density can be controlled by controlling the drying rate and surface composition of spray-dried particles, or by inclusion of a specific pore forming agent in the formulation.
- Preferred pore-forming agents are medium chain fluorocarbons such as perfluorooctyl bromide (PFOB), perfluorodecalin (PFD), and perfluorooctyl ethane (PFOE).
- PFOB perfluorooctyl bromide
- PFD perfluorodecalin
- PFOE perfluorooctyl ethane
- the minimum powder mass that can be filled into a unit dose container is reduced, which eliminates the need for carrier particles. That is, the relatively low density of the powders of one or more embodiments of the present invention provides for the reproducible administration of relatively low dose pharmaceutical compounds. Moreover, the elimination of carrier particles will potentially reduce throat deposition and any "gag" effect or coughing, since large carrier particles, e.g., lactose particles, will impact the throat and upper airways due to their size.
- the pharmaceutical composition is in dry powder form and is contained within a unit dose receptacle which may be inserted into or near the aerosolization apparatus to aerosolize the unit dose of the pharmaceutical composition.
- This version is useful in that the dry powder form may be stably stored in its unit dose receptacle for a long period of time.
- the pharmaceutical compositions of one or more embodiments of the present invention may be stable for at least about 2 years. In some versions, no refrigeration may be required to obtain stability. In other versions, reduced temperatures, e.g., at 2-8 0 C, may be used to prolong stable storage. In many versions, the storage stability allows aerosolization with an external power source.
- compositions disclosed herein may comprise a structural matrix that exhibits, defines or comprises voids, pores, defects, hollows, spaces, interstitial spaces, apertures, perforations or holes.
- the absolute shape (as opposed to the morphology) of the perforated microstructure is generally not critical and any overall configuration that provides the desired characteristics is contemplated as being within the scope of the invention. Accordingly, some embodiments comprise approximately spherical shapes. However, non-spherical shapes, or amorphous shapes, such as collapsed, deformed or fractured spherical-shaped particles are also within the scope of the invention.
- the antiviral is incorporated in a matrix that forms a discrete particle
- the pharmaceutical composition comprises a plurality of the discrete particles.
- the discrete particles may be sized so that they are effectively administered and/or so that they are available where needed.
- the particles are of a size that allows the particles to be aerosolized and delivered to a user's respiratory tract during the user's inhalation.
- the pharmaceutical composition comprises particles having a mass median diameter less than about 20 ⁇ m, such as less than about 10 ⁇ m, less than about 7 ⁇ m, or less than about 5 ⁇ m, and may, e.g., range from 1 ⁇ m to 10 ⁇ m, such as from 1 ⁇ m to 5 ⁇ m.
- the particles may have a mass median aerodynamic diameter (MMAD) ranging from about 1 ⁇ m to about 6 ⁇ m, such as about 1.5 ⁇ m to about 5 ⁇ m, or about 2 ⁇ m to about 4 ⁇ m.
- MMAD mass median aerodynamic diameter
- the particle size and/or size distribution are selected to maximize and/or optimize the number and/or mass of particles that will reach the deep lung.
- the particle size and/or size distribution are additionally or alternatively selected to minimize or optimize the number and/or mass of particles that may be exhaled.
- the matrix material may comprise a hydrophobic or a partially hydrophobic material.
- the matrix material may comprise a lipid, such as a phospholipid, and/or a hydrophobic amino acid, such as leucine or tri-leucine.
- phospholipid matrices are described in WO 99/16419, WO 99/16420, WO 99/16422, WO 01/85136, and WO 01/85137 and in U.S. Patent Nos. 5,874,064; 5,855,913; 5,985,309; and 6,503,480, and in U.S. Application Publication No. 20040156792, all of which are incorporated herein by reference in their entireties.
- hydrophobic amino acid matrices examples include hydrophobic amino acid matrices, and in U.S. Application Publication No. 20020177562, each of which are incorporated herein by reference in their entireties.
- the pharmaceutical composition may also comprise a polyvalent cation, as disclosed in WO 01/85136 and WO 01/85137, which are incorporated herein by reference in their entireties.
- release kinetics of the active agent(s) containing composition is controlled.
- the compositions of the present invention provide immediate release of the active agent(s).
- the compositions of other embodiments of the present invention may be provided as non-homogeneous mixtures of active agent incorporated into a matrix material and unincorporated active agent in order to provide desirable release rates of antifungal agent.
- active agents formulated using the emulsion-based manufacturing process of one or more embodiments of the present invention have utility in immediate release applications when administered to the respiratory tract. Rapid release is facilitated by: (a) the high specific surface area of the low density porous powders and; (c) the low surface energy of the particles.
- the particle matrix so that extended release of the active agent(s) is effected. This may be particularly desirable when the active agent(s) is rapidly cleared from the lungs or when sustained release is desired.
- the nature of the phase behavior of phospholipid molecules is influenced by the nature of their chemical structure and/or preparation methods in spray- drying feedstock and drying conditions and other composition components utilized.
- the active agent(s) are encapsulated within multiple bilayers and are released over an extended time.
- spray-drying of a feedstock comprised of emulsion droplets and dispersed or dissolved active agent(s) in accordance with the teachings herein leads to a phospholipid matrix with less long-range order, thereby facilitating rapid release. While not being bound to any particular theory, it is believed that this is due in part to the fact that the active agent(s) are never formally encapsulated in the phospholipid, and the fact that the phospholipid is initially present on the surface of the emulsion droplets as a monolayer (not a bilayer as in the case of liposomes).
- the spray-dried particles prepared by the emulsion-based manufacturing process of one or more embodiments of the present invention often have a high degree of disorder.
- the spray-dried particles typically have low surface energies, where values as low as 20 mN/m have been observed for spray-dried DSPC particles (determined by inverse gas chromatography).
- SAXS Small angle X- ray scattering
- a matrix having a high gel to liquid crystal phase transition temperature is not sufficient in itself to achieve sustained release of the active agent(s). Having sufficient order for the bilayer structures is also important for achieving sustained release.
- an emulsion-system of high porosity (high surface area), and minimal interaction between the drug substance and phospholipid may be used.
- the pharmaceutical composition formation process may also include the additions of other composition components (e.g., small polymers such as Pluronic F-68; carbohydrates, salts, hydrotropes) to break the bilayer structure are also contemplated.
- incorporation of the phospholipid in bilayer form may be used, especially if the active agent is encapsulated therein.
- T m of the phospholipid may provide benefit via incorporation of divalent counterions or cholesterol.
- increasing the interaction between the phospholipid and drug substance via the formation of ion-pairs negatively charged active + steaylamine, positively charged active + phosphatidylglycerol
- the active is amphiphilic, surfactant/surfactant interactions may also slow active dissolution.
- divalent counterions e.g., calcium or magnesium ions
- long-chain saturated phosphatidylcholines results in an interaction between the negatively charged phosphate portion of the zwitterionic headgroup and the positively charged metal ion. This results in a displacement of water of hydration and a condensation of the packing of the phospholipid lipid headgroup and acyl chains. Further, this results in an increase in the Tm of the phospholipid.
- the decrease in headgroup hydration can have profound effects on the spreading properties of spray-dried phospholipid particles on contact with water.
- compositions of the invention may comprise one or more di- or tripeptides containing two or more leucine residues.
- di-leucyl- containing dipeptides e.g., dileucine
- tripeptides are superior in their ability to increase the dispersibility of powdered compositions, and, as demonstrated in the Examples, are better than leucine in improving aerosol performance.
- Di-leucyl containing tripeptides for use in the invention are tripeptides having the formula, X-Y-Z, where at least X and Y or X and Z are furcyl residues (i.e., the leucyl residues can be adjacent to each other (at the 1 and 2 positions), or can form the ends of the trimer (occupying positions 1 and 3).
- the remaining amino acid contained in the trimer can be any amino acid as defined in section I above.
- Suitable are amino acids such as glycine (gly), alanine (ala), valine (val), leucine (leu), isoleucine (ile), methionine (met), proline (pro), phenylalanine (phe), trytophan (trp), serine (ser), threonine (thr), cysteine (cys), tyrosine (tyr), asparagine (asp), glutamic acid (glu), lysine (lys), arginine (arg), histidine (his), norleucine (nor), and modified forms thereof.
- the third amino acid component of the trimer is one of the following: leucine (leu), valine (val), isofeucine (isoleu), tryptophan (try) alanine (ala), methionine (met), phenylalanine (phe), tyrosine (tyr), histidine (his), and proline (pro).
- trimers for use in the invention include but are not limited to the following: leu-leu-gly, leu- leu-ala, leu-leu-val, !eu-leu-leu, leu-leu-ile, leu-leu-met, leu-leu-pro, leu-leu-phe, leu-leu- trp, leu-leu-ser, leu-leu-thr, leu-leu-cys, leu-leu-tyr, leu-leu-asp, leu-leu-glu, leu-leu-lys, leu-leu-arg, leu-leu-his, leu-leu-nor, leu-gly-leu, leu-ala-leu, leu-val-leu, leu-ile-leu, leu- met-leu, leu-pro-leu, leu-phe-leu, leu-trp-
- additional dispersibility-enhancing peptides for use in the invention are 4-mers and 5-mers containing two or more leucine residues.
- the leucine residues may occupy any position within the peptide, and the remaining (i.e., non- leucyl) amino acids positions are occupied by any amino acid as described above, provided that the resulting 4-mer or 5-mer has a solubility in water of at least about 1 mg/ml.
- the non-leucyl amino acids in a 4-mer or 5-mer are hydrophilic amino acids such as lysine, to thereby increase the solubility of the peptide in water.
- di- and tripeptides having a glass transition temperature greater than about 40DC.
- di- and tripeptides for use in the present invention are those peptides that are surface active.
- Dileucine and trileucine are extremely effective, even when present in low concentrations, at significantly depressing the surface tension of water.
- the noted Kuo et al patents show that dipeptides and tripeptides containing two or more leucines have a much greater surface activity than dipeptides and tripeptides composed of fewer than two leucyl residues. Due to their highly surface active nature, the di- and tripeptides of the invention, when contained in dry powder compositions, tend to concentrate on the surface (enriching the surface) of the powder particles, thereby imparting to the resulting particles high dispersivities.
- the compositions of the invention will contain from about 1% to about 99% by weight di- or tripeptide, preferably from about 2% to about 75% by weight di- or tripeptide, and even more preferably from about 5% to about 50% by weight di- or tripeptide.
- the optimal amount of di- or tripeptide is determined experimentally, i.e., by preparing compositions containing varying amounts of di- or tripeptide (ranging from low to high), examining the dispersibilities of the resulting compositions, and further exploring the range at which optimal aerosol performance is attained.
- an optimal amount of trileucine appears to be around 22-25% by weight.
- the pharmaceutical composition comprises low density particles achieved by co-spray-drying with a perfluorocarbon-in-water emulsion.
- perfluorocarbons include, but are not limited to, perfluorohexane, perfluorooctyl bromide, perfluorooctyl ethane, perfluorodecalin, perfluorobutyi ethane.
- the particle compositions will preferably be provided in a "dry" state. That is, in one or more embodiments, the particles will possess a moisture content that allows the powder to remain chemically and physically stable during storage at ambient or reduced temperature and remain dispersible. In this regard, there is little or no change in primary particle size, content, purity, and aerodynamic particle size distribution.
- the moisture content of the particles is typically less than about 10 wt%, such as less than about 6 wt%, less than about 3 wt%, or less than about 1 wt%.
- the moisture content is, at least in part, dictated by the composition and is controlled by the process conditions employed, e.g., inlet temperature, feed concentration, pump rate, and blowing agent type, concentration and post drying. Reduction in bound water leads to significant improvements in the dispersibility and flowability of phospholipid based powders, leading to the potential for highly efficient delivery of powdered lung surfactants or particle composition comprising active agent dispersed in the phospholipid.
- the improved dispersibility allows simple passive DPI devices to be used to effectively deliver these powders.
- compositions that may comprise, or may be partially or completely coated with, charged species that prolong residence time at the point of contact or enhance penetration through mucosae.
- anionic charges are known to favor mucoadhesion while cationic charges may be used to associate the formed particle with negatively charged bioactive agents such as genetic material.
- the charges may be imparted through the association or incorporation of polyanionic or polycationic materials such as polyacrylic acids, polylysine, polylactic acid, and chitosan.
- These unit dose pharmaceutical compositions may be contained in a container.
- containers include, but are not limited to, capsules, blisters, vials, ampoules, or container closure systems made of metal, polymer (e.g., plastic, elastomer), glass, or the like.
- the container may be inserted into an aerosol ization device.
- the container may be of a suitable shape, size, and material to contain the pharmaceutical composition and to provide the pharmaceutical composition in a usable condition.
- the capsule or blister may comprise a wall which comprises a material that does not adversely react with the pharmaceutical composition.
- the wall may comprise a material that allows the capsule to be opened to allow the pharmaceutical composition to be aerosolized.
- the wall comprises one or more of gelatin, hydroxypropyl methylcellulose (HPMC), polyethyleneglycol-compounded HPMC, hydroxyproplycellulose, agar, aluminum foil, or the like.
- the capsule may comprise telescopically adjoining sections, as described for example in U.S. Patent No.
- the size of the capsule may be selected to adequately contain the dose of the pharmaceutical composition.
- the sizes generally range from size 5 to size 000 with the outer diameters ranging from about 4.91 mm to 9.97 mm, the heights ranging from about 11.10 mm to about 26.14 mm, and the volumes ranging from about 0.13 mL to about 1.37 mL Suitable capsules are available commercially from, for example, Shionogi Qualicaps Co. in Nara, Japan and Capsugel in Greenwood, South Carolina.
- a top portion may be placed over the bottom portion to form a capsule shape and to contain the powder within the capsule, as described in U.S. Patent Nos. 4,846,876 and 6,357,490, and in WO 00/07572, which are incorporated herein by reference in their entireties.
- the capsule can optionally be banded.
- the pharmaceutical composition comprising antiviral is aerosolizable so that it may be delivered to the lungs of a patient during the patient's inhalation.
- the antiviral in the pharmaceutical composition is delivered directly to the site of infection. This is advantageous over systemic administration.
- the active agent(s) often have renal or other toxicity, minimizing systemic exposure is typically preferred. Therefore, the amount of active agent(s) that may be delivered to the lungs is preferably limited to the minimum pharmacologically effective dose. By administering the active agent(s) directly to the lungs, a greater amount may be delivered to the site in need of the therapy while significantly reducing systemic exposure.
- compositions of one or more embodiments of the present invention lack taste.
- taste masking agents are optionally included within the composition, the compositions often lack taste even without a taste masking agent.
- the particles, particles, and compositions of one or more embodiments of the present invention may be made by any of the various methods and techniques known and available to those skilled in the art.
- the pharmaceutical composition may be produced using various known techniques.
- the composition may be formed by spray drying, lyophilization, milling (e.g., wet milling, dry milling), and the like.
- a liquid solution, suspension or dispersion of one or more antiviral actives, and optional excipient or excipients in an appropriate solvent may be made, and then converted to a powder form by a liquid or solvent removal process.
- a liquid or solvent removal process may comprise a supercritical solvent extraction, spray-drying, or other solvent removal process.
- the preparation to be spray-dried or feedstock can be any solution, coarse suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray drying apparatus.
- the feedstock may comprise a suspension as described above.
- a dilute solution and/or one or more solvents may be utilized in the feedstock.
- the feed stock will comprise a colloidal system such as an emulsion, reverse emulsion, microemulsion, multiple emulsion, particle dispersion, or slurry.
- the antiviral and the matrix material are added to an aqueous feedstock to form a feedstock solution, suspension, or emulsion.
- the feedstock is then spray dried to produce dried particles comprising the matrix material and the antiviral.
- Suitable spray-drying processes are known in the art, for example as disclosed in WO 99/16419 and U.S. Patent Nos. 6,077,543; 6,051,256; 6,001 ,336; 5,985,248; and 5,976,574, which are incorporated herein by reference in their entireties.
- the first step in particle production typically comprises feedstock preparation. If a phosphoiipids-based particle is intended to act as a carrier for the antiviral, the selected active agent(s) may be introduced into a liquid, such as water, to produce a concentrated suspension.
- concentration of antiviral and optional active agents typically depends on the amount of agent required in the final powder and the performance of the delivery device employed, e.g., the fine particle dose for a metered dose inhaler (MDI) or a dry powder inhaler (DPI).
- MDI metered dose inhaler
- DPI dry powder inhaler
- any additional active agent(s) may be incorporated in a single feedstock preparation and subjected to a solvent removal process (e.g. spray drying) to provide a single pharmaceutical composition species comprising a plurality of active agents.
- a solvent removal process e.g. spray drying
- individual active agents could be added to separate stocks and subjected to a solvent removal process (e.g. spray drying) separately to provide a plurality of pharmaceutical composition species with different compositions.
- These individual species could be added to the suspension medium or dry powder dispensing compartment in any desired proportion and placed in the aerosol delivery system as described below.
- Polyvalent cation may be combined with the antiviral suspension, combined with the phospholipid emulsion, or combined with an oN-in-water emulsion formed in a separate vessel.
- the antiviral may also be dispersed directly in the emulsion.
- polyvalent cation and phospholipid may be homogenized in hot distilled water (e.g., 70 0 C) using a suitable high shear mechanical mixer (e.g., Ultra-Turrax model T-25 mixer) at 8000 rpm for 2 to 5 min. Typically, 5 to 25 g of fluorocarbon is added dropwise to the dispersed surfactant solution while mixing. The resulting polyvalent cation-containing perfluorocarbon in water emulsion may then be processed using a high pressure homogenizer to reduce the particle size. Typically, the emulsion is processed for five discrete passes at 12,000 to 18,000 PSI and kept at about 50 0 C to about 80 0 C.
- a suitable high shear mechanical mixer e.g., Ultra-Turrax model T-25 mixer
- the dispersion stability and dispersibility of the spray dried pharmaceutical composition can be improved by using a blowing agent, as described in US 6565885, which is incorporated herein by reference in its entirety.
- a blowing agent as described in US 6565885, which is incorporated herein by reference in its entirety.
- This process forms an emulsion, optionally stabilized by an incorporated surfactant, typically comprising submicron droplets of water immiscible blowing agent dispersed in an aqueous continuous phase.
- the blowing agent may be a fluorinated compound (e.g.
- liquid blowing agents include non-fluorinated oils, chloroform, Freon® fluorocarbons, ethyl acetate, alcohols, hydrocarbons, nitrogen, and carbon dioxide gases.
- the blowing agent may be emulsified with a phospholipid.
- the pharmaceutical compositions may be formed using a blowing agent as described above, it will be appreciated that, in some instances, no additional blowing agent is required and an aqueous dispersion of the antiviral and/or pharmaceutically acceptable excipients and surfactant(s) are spray dried directly.
- the pharmaceutical composition may possess certain physicochemical properties (e.g., elevated melting temperature, surface activity, etc.) that make it particularly suitable for use in such techniques.
- cosurfactants such as poloxamer 188 or span 80 may be dispersed into this annex solution. Additionally, pharmaceutically acceptable excipients such as sugars and starches can also be added.
- the feedstock(s) may then be fed into a spray dryer.
- the feedstock is sprayed into a current of warm filtered air that evaporates the solvent and conveys the dried product to a collector.
- the spent air is then exhausted with the solvent.
- Commercial spray dryers manufactured by B ⁇ chi Ltd. or Niro Corp. may be modified for use to produce the pharmaceutical composition. Examples of spray drying methods and systems suitable for making the dry powders of one or more embodiments of the present invention are disclosed in U.S. Patent Nos. 6,077,543; 6,051 ,256; 6,001 ,336; 5,985,248; and 5,976,574, which are incorporated herein by reference in their entireties.
- Exemplary settings are as follows: an air inlet temperature between about 60°C and about 170 0 C, such as between 80 0 C and 120 0 C; an air outlet between about 40 0 C to about 120 0 C, such as about 50 0 C and 70°C; a feed rate between about 3 mL/min to about 15 mL/min; an aspiration air flow of about 300 L/min; and an atomization air flow rate between about 25 L/min and about 50 L/min.
- the solids content in the spray-drying feedstock will typically be in the range from 0.5 wt% to 10 wt%, such as 1.0 wt% to 5.0 wt%.
- the settings will, of course, vary depending on the type of equipment used. In any event, the use of these and similar methods allow formation of aerodynamically light particles with diameters appropriate for aerosol deposition into the lung.
- Hollow and/or porous microstructures may be formed by spray drying, as disclosed in WO 99/16419, which is incorporated herein by reference.
- the spray-drying process can result in the formation of a pharmaceutical composition comprising particles having a relatively thin porous wall defining a large internal void.
- the spray-drying process is also often advantageous over other processes in that the particles formed are less likely to rupture during processing or during deagglomeration.
- compositions useful in one or more embodiments of the present invention may additionally or alternatively formed by lyophilization.
- Lyophilization is a freeze-drying process in which water is sublimed from the composition after it is frozen.
- the lyophilization process is often used because biologicals and pharmaceuticals that are relatively unstable in an aqueous solution may be dried without exposure to elevated temperatures, and then stored in a dry state where there are fewer stability problems.
- such techniques are particularly compatible with the incorporation of peptides, proteins, genetic material and other natural and synthetic macromolecules in pharmaceutical compositions without compromising physiological activity.
- Lyophilized cake containing a fine foam-like structure can be micronized using techniques known in the art to provide particles of the desired size.
- a formulation comprising two or more antiviral actives may be produced by preparing individual feedstocks comprising a single antiviral active in an appropriate liquid. Each feedstock is then subjected to a liquid removal process with characteristics selected to yield particles of appropriate physical characteristics. For example, a feedstock may be spray-dried, supertically processed or other liquid removal process. The resulting particles may then be dry blended to produce a powder having a combination of two or more antiviral actives.
- the liquid removal step and powder blending steps may occur simultaneously, for example, by spray drying two or more feedstocks with a multiple nozzle spray drier, leading to a common powder collector.
- compositions of one or more embodiments of the present invention may be administered by known techniques, such as inhalation, oral, intramuscular, intravenous, intratracheal, intraperitoneal, subcutaneous, and transdermal.
- pharmaceutical compositions of one or more embodiments of the invention are effective in the treatment, including adjunctive treatment, of viral diseases or conditions.
- compositions when inhaled, penetrate into the nasal cavities and/or airways of the lungs to achieve effective antiviral concentrations.
- compositions may include a bronchodilator, and/or other adjuncts intended to improve drug or delivery effectiveness, patient compliance or safety.
- a pharmaceutical composition comprising antiviral is administered to the lungs of a patient in need thereof.
- the patient may have been diagnosed with a viral infection or the patient may be determined to be susceptible to a viral infection.
- compositions of one or more embodiments of the present invention can be used to treat and/or provide prophylaxis for a broad range of patients.
- a suitable patient for receiving treatment and/or prophylaxis as described herein is any mammalian patient in need thereof, preferably such mammal is a human. Examples of patients include, but are not limited to, pediatric patients, adult patients, and geriatric patients.
- an aerosolizeable pharmaceutical composition comprising antiviral is administered to the lungs and/or nasal cavity of a patient in a manner that results in an effective antiviral concentration.
- the pharmaceutical composition comprising antiviral is administered so that a target concentration is maintained over a desired period of time. For example, it has been determined that an administration routine that maintains a target concentration of antiviral is effective in treating and/or providing prophylaxis.
- the antiviral concentration is maintained at the target lung concentration for a period of at least about 1 week, or about 2 weeks, or about 3 weeks.
- the dosage necessary and the frequency of dosing for maintaining the antiviral concentration within the target concentration depends on the composition and concentration of the antiviral within the composition. In each of the administration regimens, the dosages and frequencies are determined to give a lung antiviral concentration that is maintained within a certain target range.
- the antiviral may be administered daily. In such versions, the daily dosage of antiviral may range from about 2 mg to about 75 mg, such as about 3 mg to about 50 mg, about 4 mg to about 25 mg, about 5 mg to about 20 mg, and about 7 mg to about 10 mg.
- a unit dosage of antiviral may comprise from about 20 mg to about 60 mg, such as about 30 mg to about 40 mg.
- a pharmaceutical formulation comprises at least 10 or 20 or 30 or 40 or 45 or 50 or 55 or 60 mg of antiviral.
- a human dose of the pharmaceutical formulation comprises at least about 0.1 or 0.2 or 0.3 or 0.4 or 0.5 or 0.6 or 0.7 or 0.8 or 0.9 or 1.0 or 1.5 or 2.0 mg/Kg of antiviral.
- the drug loading in the small porous particles of the present invention depends upon factors including: (a) the volume of the unit dose (blister or capsule); (b) the lung delivery efficiency achieved with the device; (c) factors related to the mechanism of device emptying.
- pulmonary delivery efficiency for the powder formulations of the present invention with portable, passive dry powder inhalers will be 40%-80%. In such versions, this would suggest a powder loading of 125 to 250% of the target lung dose.
- optimal performance of capsule-based devices e.g., the inhaler shown in Figs. 1A-1 E) depends at least in part, upon having sufficient mass in the capsule to facilitate proper capsule spinning and emptying characteristics.
- a drug loading i.e. active drug as a percentage of powder composition
- a higher drug loading can be achieved with a blister- based inhaler.
- An example of such an inhaler is disclosed in international application published as WO2008/051621 , the disclosure of which is fully incorporated herein by reference.
- This device comprises a smaller volume for loading powder.
- the loading will typically range from 5 wt% to 90 wt%, such as 10 wt% to 80 wt%.
- a drug loading will provide for delivery of between about 10 mg to 100 mg, such as between about 32 mg to 75 mg, of active in a single puff (i.e. a single inhalation) from a dry powder inhaler.
- the reduction in administration time is anticipated to improve patient compliance.
- the dose may be administered during a single inhalation or may be administered during several inhalations.
- the fluctuations of lung antiviral concentration can be reduced by administering the pharmaceutical composition more often or may be increased by administering the pharmaceutical composition less often. Therefore, the pharmaceutical composition of one or more embodiments of the present invention may be administered from about three times daily to about once every two days.
- the amount per dose of antiviral is be an amount that is effective, especially therapeutically-effective.
- a dose ranges from about 0.01 mg/kg to about 5.0 mg/kg, such as about 0.4 mg/kg to about 4.0 mg/kg, or about 0.7 mg/kg to about 3.0 mg/kg.
- the pharmaceutical composition may be delivered to the lungs of a patient in the form of a dry powder.
- the pharmaceutical composition comprises a dry powder that may be effectively delivered to the deep lungs or to another target site.
- This pharmaceutical composition is in the form of a dry powder comprising particles or particles having a size selected to permit penetration into the alveoli of the lungs.
- a unit dose such as powder doses of 5 mg or 10 mg or greater of antiviral to the lung in a single inhalation.
- the above described dry powder particles allow for powder doses of about 5 mg or greater, in some embodiments greater than about 10 mg, and in some embodiments greater than about 25 mg, to be delivered in a single inhalation and in an advantageous manner.
- a dosage may be delivered over two or more inhalations.
- a 10 mg powder dosage may be delivered by providing two unit doses of 5 mg each, and the two unit doses may be separately inhaled.
- the dispersions or powder pharmaceutical compositions may be administered using an aerosolization device.
- the aerosolization device may be a nebulizer, a metered dose inhaler, a liquid dose instillation device, or a dry powder inhaler.
- the powder pharmaceutical composition may be delivered by a nebulizer as described in WO 99/16420, by a metered dose inhaler as described in WO 99/16422, by a liquid dose instillation apparatus as described in WO 99/16421 , and by a dry powder inhaler as described in U.S. Patent Application No. 09/888,311 filed on June 22, 2001, in WO 99/16419, in WO 02/83220, in U.S. Patent No.
- an inhaler may comprise a canister containing the particles or particles and propellant, and wherein the inhaler comprises a metering valve in communication with an interior of the canister.
- the propellant may be a hydrofluoroalkane.
- Suitable passive dry powder inhalers include both capsule-based inhalers and blister-based inhalers.
- Suitable capsule-based inhalers include: devices by Nektar Therapeutics disclosed in U.S. Application Nos.
- Suitable blister-based inhalers include: the Diskus (GSK), the device of Nektar Therapeutics disclosed in WO 2008/051621, which is incorporated herein by reference, Gyrohaler (Vectura), E-Flex, Microdrug, Diskhaler (GSK). Also contemplated are active dry powder inhalers including: the inhalation device described in U.S. Patent No. 6,257,233, Aspirair (Vectura), and Microdose inhaler (Microdose).
- the pharmaceutical composition of one or more embodiments of the present invention typically has improved emitted dose efficiency. Accordingly, high doses of the pharmaceutical composition may be delivered using a variety of aerosol ization devices and techniques.
- the emitted dose (ED) of these powders may be greater than about 30%, such as greater than about 40%, or 45%, or 50%, or 55% or 60%, or 65% or 70% or 75% or 80% or 85% or 90% or 95%.
- FIG. 1A An example of a dry powder aerosol ization apparatus particularly useful in aerosolizing a pharmaceutical composition 100 according to one or more embodiments of the present invention is shown schematically in Fig. 1A.
- the aerosolization apparatus 200 comprises a housing 205 defining a chamber 210 having one or more air inlets 215 and one or more air outlets 220.
- the chamber 210 is sized to receive a capsule 225 which contains an aerosolizable pharmaceutical composition comprising antiviral.
- a puncturing mechanism 230 comprises a puncture member 235 that is moveable within the chamber 210.
- Near or adjacent the outlet 220 is an end section 240 that may be sized and shaped to be received in a user's mouth or nose so that the user may inhale through an opening 245 in the end section 240 that is in communication with the outlet 220.
- the dry powder aerosolization apparatus 200 utilizes air flowing through the chamber 210 to aerosolize the pharmaceutical composition in the capsule 225.
- Figs. 1A-1E illustrate the operation of a version of an aerosolization apparatus 200 where air flowing through the inlet 215 is used to aerosolize the pharmaceutical composition and the aerosolized pharmaceutical composition flows through the outlet 220 so that it may be delivered to the user through the opening 245 in the end section 240.
- the dry powder aerosolization apparatus 200 is shown in its initial condition in Fig. 1A.
- the capsule 225 is positioned within the chamber 210 and the pharmaceutical composition is contained within the capsule 225.
- the pharmaceutical composition in the capsule 225 is exposed to allow it to be aerosolized.
- the puncture mechanism 230 is advanced within the chamber 210 by applying a force 250 to the puncture mechanism 230.
- a force 250 For example, a user may press against a surface 255 of the puncturing mechanism 230 to cause the puncturing mechanism 230 to slide within the housing 205 so that the puncture member 235 contacts the capsule 225 in the chamber 210, as shown in Fig. 1B.
- the puncture member 235 is advanced into and through the wall of the capsule 225, as shown in Fig, 1 C.
- the puncture member may comprise one or more sharpened tips 252 to facilitate the advancement through the wall of the capsule 225.
- the puncturing mechanism 230 is then retracted to the position shown in Fig. 1 D, leaving an opening 260 through the wall of the capsule 225 to expose the pharmaceutical composition in the capsule 225.
- Air or other gas then flows through an inlet 215, as shown by arrows 265 in Fig. 1E.
- the flow of air causes the pharmaceutical composition to be aerosolized.
- the aerosolized pharmaceutical composition is delivered to the user's respiratory tract.
- the air flow 265 may be caused by the user's inhalation 270.
- compressed air or other gas may be ejected into the inlet 215 to cause the aerosolizing air flow 265.
- the chamber 210 comprises a longitudinal axis that lies generally in the inhalation direction, and the capsule 225 is insertable lengthwise into the chamber 210 so that the capsule's longitudinal axis may be parallel to the longitudinal axis of the chamber 210.
- the chamber 210 is sized to receive a capsule 225 containing a pharmaceutical composition in a manner which allows the capsule to move within the chamber 210.
- the inlets 215 comprise a plurality of tangentially oriented slots.
- the capsule 225 rotates within the chamber 210 in a manner where the longitudinal axis of the capsule is remains at an angle less than 80 degrees, and preferably less than 45 degrees from the longitudinal axis of the chamber.
- the movement of the capsule 225 in the chamber 210 may be caused by the width of the chamber 210 being less than the length of the capsule 225.
- the chamber 210 comprises a tapered section that terminates at an edge. During the flow of swirling air in the chamber 210, the forward end of the capsule 225 contacts and rests on the partition and a sidewall of the capsule 225 contacts the edge and slides and/or rotates along the edge. This motion of the capsule is particularly effective in forcing a large amount of the pharmaceutical composition through one or more openings 260 in the rear of the capsule 225.
- the dry powder aerosolization apparatus 200 may be configured differently than as shown in Figs. 1A-1E.
- the chamber 210 may be sized and shaped to receive the capsule 225 so that the capsule 225 is orthogonal to the inhalation direction, as described in U.S. Patent No. 3,991 ,761, which is incorporated herein by reference in its entirety.
- the puncturing mechanism 230 may puncture both ends of the capsule 225.
- the chamber may receive the capsule 225 in a manner where air flows through the capsule 225 as described for example in U.S. Patent Nos. 4,338,931 and 5,619,985.
- the aerosolization of the pharmaceutical composition may be accomplished by pressurized gas flowing through the inlets, as described for example in U.S. Patent Nos. 5,458,135; 5,785,049; and 6,257,233, or propellant, as described in WO 00/72904 and U.S. Patent No. 4,114,615, which are incorporated herein by reference.
- These types of dry powder inhalers are generally referred to as active dry powder inhalers.
- a blister-based inhaler device can achieve a high drug loading loading.
- a specific example of such a device is that disclosed in the WO 2008/051621. This device typically operates with a smaller volume for loading powder.
- the loading will typically range from 5 wt% to 50 wt%, such as 4 wt% to 20 wt%.
- the loading will typically range from about 0.7 to 8 mg per blister, such as from about 4 to 6 mg per blister.
- such drug loading and device will provide for delivery of up to about 4 mg (of antiviral active) in a single puff (or inhalation) from a dry powder inhaler.
- the pharmaceutical composition disclosed herein may also be administered to the pulmonary and/or nasal air passages of a patient via aerosolization, such as with a metered dose inhaler.
- aerosolization such as with a metered dose inhaler.
- the use of such stabilized preparations provides for superior dose reproducibility and improved lung deposition as disclosed in WO 99/16422, which is incorporated herein by reference in its entirety.
- MDIs are well known in the art and could be employed for administration of the antiviral. Breath activated MDIs, as well as those comprising other types of improvements which have been, or will be, developed are also compatible with the pharmaceutical composition of one or more embodiments of the present invention.
- Nebulizers are known in the art and can be employed for administration of the antiviral dosage forms herein by making a dispersion or aerosol thereof. Breath activated nebulizers, as well as those comprising other types of improvements which have been, or will be, developed are also compatible with dispersions, which are contemplated as being with in the scope of one or more embodiments of the present invention. Along with the aforementioned embodiments, the dispersions of one or more embodiments of the present invention may also be used in conjunction with nebulizers as disclosed in WO 99/16420, which is incorporated herein by reference in its entirety, in order to provide an aerosolized medicament that may be administered to the pulmonary and/or nasal air passages of a patient in need thereof.
- the stabilized dispersions, suspensions or solutions of one or more embodiments of the present invention may be used in conjunction with liquid dose instillation or LDI techniques as disclosed in, for example, WO 99/16421 , which is incorporated herein by reference in its entirety.
- Liquid dose instillation involves the direct administration of a stabilized dispersion to the lung.
- direct pulmonary and/or nasal administration of bioactive compounds is particularly effective in the treatment of disorders especially where poor vascular circulation of diseased portions of a lung reduces the effectiveness of intravenous drug delivery.
- the stabilized dispersions are preferably used in conjunction with partial liquid ventilation or total liquid ventilation.
- one or more embodiments of the present invention may further comprise introducing a therapeutically beneficial amount of a physiologically acceptable gas (such as nitric oxide or oxygen) into the pharmaceutical microdispersion prior to, during or following administration.
- a physiologically acceptable gas such as nitric oxide or oxygen
- the time for dosing is typically short. For a single capsule (e.g., 5 mg powder dose), the total dosing time is normally less than about 1 minute. A two capsule close (e.g., 10 mg powder) usually takes about 1 min. A five capsule dose (e.g., 25 mg powder) may take about 3.5 min to administer. Thus, the time for dosing may be less than about 5 min, such as less than about 4 min, less than about 3 min, less than about 2 min, or less than about 1 min.
- the pharmaceutical composition may comprise a liquid form and may be aerosolized using an aerosol generator nebulizer.
- aerosol generator nebulizers include, but are not limited to, the Aeroneb®Go or Aeroneb®Pro nebulizers, available from Stamford Ltd, of Galway, Ireland.
- the nebulizer i.e., aerosol generator
- the nebulizer thus may be of the type, for example, where a vibratable member is vibrated at ultrasonic frequencies to produce liquid droplets.
- the ultrasonic frequency of vibration comprises at least about 45 kHz.
- Some specific, non-limiting examples of technologies for producing fine liquid droplets is by supplying liquid to an aperture plate having a plurality of tapered apertures and vibrating the aperture plate to eject liquid droplets through the apertures. Such techniques are described generally in U.S. Patent Nos. 5,164,740; 5,938,117; 5,586,550; 5,758,637, 6,014,970, and 6,085,740, the complete disclosures of which are incorporated by reference.
- the aerosol generator comprises a vibrating mesh type, wherein vibrational energy is supplied via a piezoelectric element in communication (directly or indirectly) with the mesh element.
- the aerosolization element may be constructed of a variety of materials, comprising metals, which may be electroformed to create apertures as the element is formed, as described, for example, in U.S. patent No. 6,235,177 assigned to the present assignee and incorporated by reference herein in its entirety.
- Palladium is believed to be of particular usefulness in producing an electroformed, multi-apertured aerosolization element, as well as in operation thereof to aerosolize liquids.
- Other metals that can be used are palladium alloys, such as PdNi, with, for example, 80 percent palladium and 20% nickel. Other metals and materials may be used without departing from the present invention.
- the aerosol generator comprises a tube core design, as described in WO 2006/127181, assigned to the same assignee as the invention herein, and incorporated by reference herein in its entirety for all purposes.
- Feed stock preparation All feedstock component ratios, including liquids were based upon mass. Trileucine was dissolved in the specified mass of water/ethanol. Zanamivir and rimantadine were added and the solution was adjusted to pH 6.5 - 6.6. The compositions of all feed stocks are shown in Table 1 below.
- Spray Drying Powders were spray dried on a Buchi Spray dryer using a standard Buchi nozzle, and nitrogen as the atomization and drying gas. Feed stock feed rate was 5.0 ml/min. Atomization pressures were 20 and 40 psi and outlet temperature was 7O 0 C.
- Figs 2B-2C Yields of the spray-dried feed stocks were 67% to 71 %.
- the powders containing trileucine had similar "dimpled" or "raisin-like" morphologies, as shown in Figs 2B-2C.
- Fig 2A shows formulation 5976- 56, which lacks trileucine.
- Figs 2B, 2C and 2D show the -59, -61 and -67 formulations, respectively.
- the powder lacking trileucine contained more spherical particles, which posses less favorable aerodynamic properties.
- a graph of particle size distributions for Sample 5976-67 ⁇ 25% trileucine, 9% zanamivir and 66% rimantadine) is shown in Fig 3.
- Table 2 shows median particles sizes (in microns) for Sample No. 5976-67. In the Table, particles sizes are given as below the 10, 16, 50, 84 and 90% distribution ranges.
- Trileucine appears to result in good aerosol performance.
- the emitted dose for Sample No. 5976-59 (30% trileucine) and No. 5976-67 (25% trileucine) were above 90% with %SD of 2% and capsule retentions of 1% and 2% respectively.
- the ED was still 83% with %SD of 6 and capsule retention of 6%.
- Figs 5A-5B show aerosol pulse measurement of two powders, wherein Fig 5 A refers to Sample No. 5976-67, exiting an inhaler device mouthpiece, demonstrating times required to complete emptying formulations of the present invention. It can be seen that peak flow rates reach about 60L/min, thus a 2L volume is emptied in less than about 2 to 2.5 seconds.
- aqueous feedstock formulation of rimantadine was prepared by dissolving 80% rimandadine and 20% trileucine in a sufficient amount of a 95% water, 5% ethanol solution to yield a 2% solids level. All feedstock component ratios, including liquids, were based upon mass. The solution was adjusted to pH 6.5. Ethanol was used to decrease the solubility of the trileucine and to cause early shell formation.
- the feedstock was spray dried on a Buchi Spray dryer using a standard Buchi nozzle, and nitrogen as the atomization and drying gas.
- Feed stock feed rate was 5.0 ml/min
- Atomization pressures were 20 and 40psi
- outlet temperature was 6O 0 C or 72 0 C.
- the feedstock formulation was divided into two lots: one was spray dried and at 60 0 C (lot 11/60) and the other at 72°C (lot 11/72) outlet temperatures.
- the spray-dried powders were transferred into a glovebox with a relative humidity less than 5% and placed into unit dosage forms (capsules or blisters) suitable for use in a dry powder inhaler device as described herein, for example, as described in U.S. Patent No. 4995305.
- An aqueous feedstock formulation of zanamivir is prepared by dissolving 80% zanamivir and 20% trileucine in a sufficient amount of a 95% water, 5% ethanol solution to yield a 2% solids level. The solution is adjusted to pH 6.5. Ethanol is used to decrease the solubility of the trileucine and to cause early shell formation. All feedstock component ratios, including liquids, are based upon mass.
- the feedstock is spray dried on a Buchi Spray dryer using a standard Buchi nozzle, and nitrogen as the atomization and drying gas.
- Feed stock feed rate is 5.0 ml/min
- Atomization pressures are 20 and 40 psi
- outlet temperature is 7O 0 C.
- the powders are transferred into a glovebox with a relative humidity less than 5% and placed into unit dosage forms (capsules or blisters) suitable for use in a dry powder inhaler device as described herein, for example, as described in U.S. Patent No. 4995305.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Otolaryngology (AREA)
- Pulmonology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
La présente invention concerne une composition pharmaceutique qui comprend des particules comprenant un principe actif antiviral, les particules ayant un diamètre aérodynamique médian en masse d’environ 1 µm à environ 7 µm et une densité apparente inférieure à environ 1,0 g/cm3. Une composition pharmaceutique comprend une poudre comprenant une quantité efficace d’antiviral et d’excipient pharmaceutiquement acceptable, la poudre comprenant des particules ayant un diamètre aérodynamique médian en masse d’environ 1 µm à environ 7 µm, et une densité apparente inférieure à environ 1,0 g/cm3. La présente invention concerne également des compositions pharmaceutiques comprenant des combinaisons de deux principes actifs antiviraux ou plus. La présente invention concerne en outre des formes posologiques unitaires, des procédés de fabrication et d’utilisation de ces compositions, ainsi que des procédés et des systèmes de délivrance pulmonaire de ces compositions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12838608P | 2008-05-20 | 2008-05-20 | |
US61/128,386 | 2008-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009143011A1 true WO2009143011A1 (fr) | 2009-11-26 |
Family
ID=41092172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/044122 WO2009143011A1 (fr) | 2008-05-20 | 2009-05-15 | Compositions antivirales, procédés de fabrication et d’utilisation de ces compositions, et système de délivrance pulmonaire de ces compositions |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009143011A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013016754A1 (fr) * | 2011-08-01 | 2013-02-07 | Monash University | Procédé et formulation pour inhalation |
CN103446051A (zh) * | 2013-08-26 | 2013-12-18 | 陈永奇 | 含有帕拉米韦和/或其衍生物制剂的给药方法 |
CN103446078A (zh) * | 2013-08-26 | 2013-12-18 | 陈永奇 | 含有奥司他韦羧酸胍基类似体和/或其乙酯制剂的给药方法 |
WO2016106050A1 (fr) * | 2014-12-26 | 2016-06-30 | Emory University | N4-hydroxycytidine, ses dérivés et utilisations anti-virales |
WO2017085692A1 (fr) | 2015-11-18 | 2017-05-26 | Glaxosmithkline Intellectual Property (No.2) Limited | Compositions pharmaceutiques à base de ribavirine |
WO2017156380A1 (fr) * | 2016-03-10 | 2017-09-14 | Emory University | N4-hydroxycytidine et dérivés et leurs utilisations anti-virales |
CN111358773A (zh) * | 2020-04-10 | 2020-07-03 | 广州南鑫药业有限公司 | 一种帕拉米韦干粉吸入剂及其制备方法 |
US10806770B2 (en) | 2014-10-31 | 2020-10-20 | Monash University | Powder formulation |
US20210386697A1 (en) * | 2019-02-25 | 2021-12-16 | Guangzhou Nanxin Pharmaceutical Co., Ltd. | Peramivir solution type inhalant and preparation method therefor |
US11331331B2 (en) | 2017-12-07 | 2022-05-17 | Emory University | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
IT202100002003A1 (it) * | 2021-02-01 | 2022-08-01 | Plumestars S R L | Nuove composizioni antivirali e loro utilizzo in terapia e nel trattamento di infezioni virali |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0267050A2 (fr) * | 1986-11-06 | 1988-05-11 | Research Development Foundation | Aérosols contenant des liposomes et méthods pour leur production. |
WO2000027359A1 (fr) * | 1998-11-12 | 2000-05-18 | Pilkiewicz Frank G | Systeme d'inhalation |
US6518239B1 (en) * | 1999-10-29 | 2003-02-11 | Inhale Therapeutic Systems, Inc. | Dry powder compositions having improved dispersivity |
WO2007070875A1 (fr) * | 2005-12-15 | 2007-06-21 | Aerosol Science Laboratories, Inc. | Traitement d'infections actives et compositions associees |
US20070178166A1 (en) * | 2005-12-15 | 2007-08-02 | Acusphere, Inc. | Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration |
-
2009
- 2009-05-15 WO PCT/US2009/044122 patent/WO2009143011A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0267050A2 (fr) * | 1986-11-06 | 1988-05-11 | Research Development Foundation | Aérosols contenant des liposomes et méthods pour leur production. |
WO2000027359A1 (fr) * | 1998-11-12 | 2000-05-18 | Pilkiewicz Frank G | Systeme d'inhalation |
US6518239B1 (en) * | 1999-10-29 | 2003-02-11 | Inhale Therapeutic Systems, Inc. | Dry powder compositions having improved dispersivity |
US20050147567A1 (en) * | 1999-10-29 | 2005-07-07 | Kuo Mei-Chang | Compositions comprising an active agent |
WO2007070875A1 (fr) * | 2005-12-15 | 2007-06-21 | Aerosol Science Laboratories, Inc. | Traitement d'infections actives et compositions associees |
US20070178166A1 (en) * | 2005-12-15 | 2007-08-02 | Acusphere, Inc. | Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12186361B2 (en) | 2011-08-01 | 2025-01-07 | Monash University | Method and formulation for inhalation |
AU2011374218B2 (en) * | 2011-08-01 | 2017-05-11 | Monash University | Method and formulation for inhalation |
WO2013016754A1 (fr) * | 2011-08-01 | 2013-02-07 | Monash University | Procédé et formulation pour inhalation |
CN103446051A (zh) * | 2013-08-26 | 2013-12-18 | 陈永奇 | 含有帕拉米韦和/或其衍生物制剂的给药方法 |
CN103446078A (zh) * | 2013-08-26 | 2013-12-18 | 陈永奇 | 含有奥司他韦羧酸胍基类似体和/或其乙酯制剂的给药方法 |
WO2015027848A1 (fr) * | 2013-08-26 | 2015-03-05 | Chen Yongqi | Méthode pour administrer une formulation comportant du peramivir et/ou un dérivé correspondant |
WO2015027847A3 (fr) * | 2013-08-26 | 2015-04-23 | 陈永奇 | Procédé d'administration d'une préparation contenant des analogues de guanidino de carboxylate d'oseltamivir et/ou leurs esters éthyliques |
US10806770B2 (en) | 2014-10-31 | 2020-10-20 | Monash University | Powder formulation |
IL252997B (en) * | 2014-12-26 | 2021-01-31 | Univ Emory | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
WO2016106050A1 (fr) * | 2014-12-26 | 2016-06-30 | Emory University | N4-hydroxycytidine, ses dérivés et utilisations anti-virales |
US11628181B2 (en) | 2014-12-26 | 2023-04-18 | Emory University | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
WO2017085692A1 (fr) | 2015-11-18 | 2017-05-26 | Glaxosmithkline Intellectual Property (No.2) Limited | Compositions pharmaceutiques à base de ribavirine |
WO2017156380A1 (fr) * | 2016-03-10 | 2017-09-14 | Emory University | N4-hydroxycytidine et dérivés et leurs utilisations anti-virales |
US10874683B2 (en) | 2016-03-10 | 2020-12-29 | Emory University | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
US11331331B2 (en) | 2017-12-07 | 2022-05-17 | Emory University | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
US11903959B2 (en) | 2017-12-07 | 2024-02-20 | Emory University | N4-hydroxycytidine and derivatives and anti-viral uses related thereto |
EP3932400A4 (fr) * | 2019-02-25 | 2022-09-21 | Guangzhou Nanxin Pharmaceutical Co., Ltd. | Inhalant de type solution de péramivir et son procédé de préparation |
US12226384B2 (en) * | 2019-02-25 | 2025-02-18 | Guangzhou Nanxin Pharmaceutical Co., Ltd. | Peramivir solution type inhalant and preparation method therefor |
US20210386697A1 (en) * | 2019-02-25 | 2021-12-16 | Guangzhou Nanxin Pharmaceutical Co., Ltd. | Peramivir solution type inhalant and preparation method therefor |
CN111358773B (zh) * | 2020-04-10 | 2021-03-30 | 广州南鑫药业有限公司 | 一种帕拉米韦干粉吸入剂及其制备方法 |
EP4134074A4 (fr) * | 2020-04-10 | 2024-04-10 | Guangzhou Nucien Pharmaceutical Co., Ltd. | Produit d'inhalation de poudre sèche de peramivir et sa méthode de préparation |
WO2021203914A1 (fr) * | 2020-04-10 | 2021-10-14 | 广州南鑫药业有限公司 | Produit d'inhalation de poudre sèche de peramivir et sa méthode de préparation |
CN111358773A (zh) * | 2020-04-10 | 2020-07-03 | 广州南鑫药业有限公司 | 一种帕拉米韦干粉吸入剂及其制备方法 |
WO2022162635A1 (fr) * | 2021-02-01 | 2022-08-04 | Plumestars S.R.L. | Nouvelles compositions antivirales et leur utilisation en thérapie et dans le traitement d'infections virales |
IT202100002003A1 (it) * | 2021-02-01 | 2022-08-01 | Plumestars S R L | Nuove composizioni antivirali e loro utilizzo in terapia e nel trattamento di infezioni virali |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009143011A1 (fr) | Compositions antivirales, procédés de fabrication et d’utilisation de ces compositions, et système de délivrance pulmonaire de ces compositions | |
EP1589947B1 (fr) | Formulation pharmaceutique ayant un agent actif insoluble | |
US7326691B2 (en) | Compositions comprising amphotericin B, methods, and systems | |
US20040176391A1 (en) | Aerosolizable pharmaceutical formulation for fungal infection therapy | |
ES2389156T3 (es) | Administración pulmonar de levodopa | |
JP2002529393A (ja) | 吸入システム | |
JP2003507412A (ja) | 多孔性粒子を形成するための単純アミノ酸の使用 | |
KR20110020816A (ko) | 플루오로퀴놀론의 폐 전달 | |
MX2014001345A (es) | Metodo y formulacion para inhalacion. | |
US20050214224A1 (en) | Lipid formulations for spontaneous drug encapsulation | |
US20070031342A1 (en) | Sustained release microparticles for pulmonary delivery | |
US20120128728A1 (en) | Compositions Comprising Amphotericin B | |
WO2008013955A2 (fr) | Formulations à libération prolongée pour administration pulmonaire | |
WO2009120619A2 (fr) | Compositions de nucléase, procédés de préparation et d’utilisation de ces compositions, et systèmes d’administration pulmonaire de ces compositions | |
WO2006124446A2 (fr) | Microparticules a liberation prolongee, destinees a etre administrees par voie respiratoire | |
US20030003057A1 (en) | Methods for administering leuprolide by inhalation | |
KR102259824B1 (ko) | 보센탄을 함유한 약학 제제 | |
KR20070023761A (ko) | 암포테리신 b 포함 조성물, 방법 및 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09751240 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09751240 Country of ref document: EP Kind code of ref document: A1 |