WO2009038268A1 - Sulfonated poly(arylene ether), method of manufacturing the same, and crosslinked polymer electrolyte membrane using the same - Google Patents
Sulfonated poly(arylene ether), method of manufacturing the same, and crosslinked polymer electrolyte membrane using the same Download PDFInfo
- Publication number
- WO2009038268A1 WO2009038268A1 PCT/KR2008/002712 KR2008002712W WO2009038268A1 WO 2009038268 A1 WO2009038268 A1 WO 2009038268A1 KR 2008002712 W KR2008002712 W KR 2008002712W WO 2009038268 A1 WO2009038268 A1 WO 2009038268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- formula
- copolymer
- arylene ether
- sulfonated
- Prior art date
Links
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 title claims abstract description 111
- -1 poly(arylene ether Chemical class 0.000 title claims abstract description 94
- 239000012528 membrane Substances 0.000 title claims abstract description 78
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 43
- 229920006037 cross link polymer Polymers 0.000 title claims description 4
- 238000004519 manufacturing process Methods 0.000 title description 5
- 229920001577 copolymer Polymers 0.000 claims abstract description 118
- 239000000178 monomer Substances 0.000 claims abstract description 57
- 238000006243 chemical reaction Methods 0.000 claims description 67
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 60
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 229910052731 fluorine Inorganic materials 0.000 claims description 26
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims description 17
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 17
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 229910052801 chlorine Inorganic materials 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910001415 sodium ion Inorganic materials 0.000 claims description 7
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 6
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 6
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 5
- 229910001414 potassium ion Inorganic materials 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- 238000010306 acid treatment Methods 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims 3
- 229920002554 vinyl polymer Polymers 0.000 claims 2
- 230000008018 melting Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 37
- 238000000034 method Methods 0.000 abstract description 31
- 238000006068 polycondensation reaction Methods 0.000 abstract description 17
- 239000000126 substance Substances 0.000 abstract description 12
- 229920000557 Nafion® Polymers 0.000 abstract description 8
- 230000008859 change Effects 0.000 abstract description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 abstract 2
- 238000002360 preparation method Methods 0.000 description 76
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- 239000007858 starting material Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 21
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 20
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 239000000446 fuel Substances 0.000 description 18
- 230000004913 activation Effects 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 16
- VKDSBABHIXQFKH-UHFFFAOYSA-M potassium;4-hydroxy-3-sulfophenolate Chemical compound [K+].OC1=CC=C(O)C(S([O-])(=O)=O)=C1 VKDSBABHIXQFKH-UHFFFAOYSA-M 0.000 description 16
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 0 *C=C1C(F)=CC=CC([F+])=C1 Chemical compound *C=C1C(F)=CC=CC([F+])=C1 0.000 description 10
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 6
- 238000010533 azeotropic distillation Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 239000002798 polar solvent Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 5
- 239000007810 chemical reaction solvent Substances 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 229920005597 polymer membrane Polymers 0.000 description 5
- 239000003586 protic polar solvent Substances 0.000 description 5
- HMQONDPNQIFUQR-UHFFFAOYSA-N 4-[2-(2,3-difluoro-4-hydroxyphenyl)propan-2-yl]-2,3,5,6-tetrafluorophenol Chemical compound FC=1C(=C(C=CC1C(C)(C)C1=C(C(=C(C(=C1F)F)O)F)F)O)F HMQONDPNQIFUQR-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- IMHDGJOMLMDPJN-UHFFFAOYSA-N biphenyl-2,2'-diol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 125000000542 sulfonic acid group Chemical group 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- JFXDYPLHFRYDJD-UHFFFAOYSA-M sodium;6,7-dihydroxynaphthalene-2-sulfonate Chemical compound [Na+].C1=C(S([O-])(=O)=O)C=C2C=C(O)C(O)=CC2=C1 JFXDYPLHFRYDJD-UHFFFAOYSA-M 0.000 description 3
- 238000006277 sulfonation reaction Methods 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- 238000004293 19F NMR spectroscopy Methods 0.000 description 2
- AODMJIOEGCBUQL-UHFFFAOYSA-N 3-ethynylphenol Chemical compound OC1=CC=CC(C#C)=C1 AODMJIOEGCBUQL-UHFFFAOYSA-N 0.000 description 2
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- IWKPBYPUIPVYNZ-UHFFFAOYSA-N Cc(c(F)c(c(C)c1F)F)c1F Chemical compound Cc(c(F)c(c(C)c1F)F)c1F IWKPBYPUIPVYNZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 150000001555 benzenes Chemical group 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229940106691 bisphenol a Drugs 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DWFDQVMFSLLMPE-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanone Chemical compound FC1=CC=CC=C1C(=O)C1=CC=CC=C1 DWFDQVMFSLLMPE-UHFFFAOYSA-N 0.000 description 1
- CNHDIAIOKMXOLK-UHFFFAOYSA-N Cc(cc(cc1)O)c1O Chemical compound Cc(cc(cc1)O)c1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 1
- QLXLIQMODUNZBV-UHFFFAOYSA-N Cc(cc1)ccc1Oc(cc1)ccc1C(c1ccccc1)=O Chemical compound Cc(cc1)ccc1Oc(cc1)ccc1C(c1ccccc1)=O QLXLIQMODUNZBV-UHFFFAOYSA-N 0.000 description 1
- MXNIDGHTXARKLV-UHFFFAOYSA-N Cc1c(C)cc(C=C(CC2)S(O)(=O)=O)c2c1 Chemical compound Cc1c(C)cc(C=C(CC2)S(O)(=O)=O)c2c1 MXNIDGHTXARKLV-UHFFFAOYSA-N 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 125000000732 arylene group Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/321—Polymers modified by chemical after-treatment with inorganic compounds
- C08G65/326—Polymers modified by chemical after-treatment with inorganic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4006—(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4018—(I) or (II) containing halogens other than as leaving group (X)
- C08G65/4025—(I) or (II) containing fluorine other than as leaving group (X)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4056—(I) or (II) containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/05—Polymer mixtures characterised by other features containing polymer components which can react with one another
Definitions
- the present invention relates to a sulfonated poly(arylene ether) copolymer, a method of preparing the same, and a polymer electrolyte membrane using the same, and more particularly, to a sulfonated polyCarylene ether) copolymer having a crossl inked structure, a method of preparing the same, and a crossl inked polymer electrolyte membrane using the same.
- a fuel cell is an electrical energy conversion system that converts chemical energy into electrical energy through an electrochemical reaction. While the fuel cell had only limited applications in the 1960s, such as in Gemini aircraft, it is currently considered as an alternative energy source and answer to increased demand for electricity, and thus is being actively researched all over the world.
- the fuel cell can be readily applied as a power source in remote locations and in certain military applications such as submarines and mobile communications.
- the fuel cell does not store electricity, but is a more efficient power generating device than a conventional internal-combust ion engine.
- the fuel cell a clean, efficient power generating device, has nearly no emission of environmentally harmful materials such as sulfur oxide (SOx) and nitrogen oxide (NOx), and thus is expected to help solve recent environmental problems caused by use of fossil-based fuel.
- a polymer electrolyte has been studied and used as a proton exchange resin or proton exchange membrane in a fuel cell for several decades. Recent studies have focused on using the proton exchange membrane as a mediator delivering protons used for a direct methanol fuel cell (DMFC) or a polymer electrolyte membrane fuel cell (PEMFC; a polymer electrolyte membrane fuel cell, a solid polymer electrolyte fuel cell, a solid polymer fuel cell or a proton exchange membrane fuel cell).
- DMFC direct methanol fuel cell
- PEMFC polymer electrolyte membrane fuel cell
- TM cell industry is a Nafion film, which is formed of a polymer containing a perflourinated sulfonic acid group developed by DuPont (USA).
- the Nafion film has an ionic conductivity of 0.1 S/cm, excellent mechanical strength and chemical resistance, and stable performance as an electrolyte membrane enough to be applied to an automobile fuel cell.
- Similar types of commercially-available membranes include the Aciple ⁇ -S membrane (Asahi Chemicals), the Dow membrane (Dow Chemicals), the Flemion membrane (Asahi Glass), and the GoreSelect membrane (Gore & Associate), and an ⁇ - or J3 -polyunsaturated polymer is being developed by BaI lard Power Systems (Canada).
- non-fluorinated and partial ly-fluorinated proton exchange membranes which include sulfonated poly(phenylene oxides), poly(phenylene sulfides), polysulfonates, poly(para-phenylenes), polystyrenes, polyetheresterketones, and polyimides.
- U.S. Patent Application No. 6245881 discloses various methods of preparing a sulfonated polyimide such as a method using a diamine monomer containing a sulfonic acid group, and directly sulfonation a polyimide main chain.
- the sulfonated polyimide exhibits very higher thermal stability and oxidative and reductive stabilities compared to a conventional proton conductive polymeric material.
- the present invention is directed to a sulfonated poly(arylene ether) copolymer having a crossl inked structure.
- the present invention is also directed to a crossl inked polymer electrolyte membrane formed using the sulfonated polyCarylene ether) copolymer.
- One aspect of the present invention provides a sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end, represented by the following formula.
- SAr is a sulfonated aromatic group
- ArI and Ar2 are unsulfonated aromatic groups.
- CMl and CM2 are crosslinkable moieties.
- k has a range of 0.001 to 1
- s is 1-k
- n is an integer from 10 to 500 indicating the number of a repeating units.
- Another aspect of the present invention provides a sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end, represented by another formula.
- SAr is a sulfonated aromatic group
- ArI and Ar2 are unsulfonated aromatic groups.
- CMl and CM2 are crosslinkable moieties.
- k has a range of 0.001 to 1
- s is 1-k
- n is an integer from 10 to 500 indicating the number of a repeating units.
- Still another aspect of the present invention provides a crossl inked polymer electrolyte membrane, which is formed by annealing the sulfonated poly(arylene ether) copolymer obtained above.
- a polymer electrolyte membrane using a sulfonated polyCarylene ether) copolymer having a crosslinkable structure exhibits equivalent or superior thermal stability, mechanical stability, chemical stability and membrane forming capability compared to conventional polymer electrolyte membranes.
- the inventive membrane shows remarkably improved proton conductivity and cell performance, its characteristics are unaffected even when it is exposed to moisture for a long period of time, and it can be applied to a fuel cell or a secondary battery.
- FIG. 1 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-6Fs).
- FIG. 2 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-BPs).
- FIG. 3 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-HQs).
- FIG. 4 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E-SFQK-6Hs) .
- FIG. 5 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E-SFQK-DPEs).
- FIG. 6 shows H-NMR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E ⁇ SFQK-6Fs) .
- FIG. 7 shows FT-IR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH ⁇ 6Fs).
- FIG. 8 shows FT-IR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-BPs).
- FIG. 6 shows H-NMR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E ⁇ SFQK-6Fs) .
- FIG. 7 shows FT-IR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH ⁇ 6Fs).
- FIG. 8 shows FT-IR spectrumsspectra of sulf
- FIG. 9 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-6Fs).
- FIG. 10 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-BPs).
- FIG. 11 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-HQs).
- FIG. 10 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-HQs).
- FIG. 12 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-DPEs).
- FIG. 13 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-6Hs).
- FIG. 14 shows a photograph of crossl inked polymer electrolyte membrane.
- Embodimerit 1 ⁇ 38> A sulfonated poly(arylene ether) copolymer according to the present embodiment has a crossl inked structure.
- the sulfonated poly(arylene ether) copolymer is represented by Formula 1.
- SAr is a sulfonated aromatic group, which includes
- ArI and Ar2 are unsulfonated aromatic groups, which may be the same as or different from each other.
- Y is a carbon-to-carbon single bond, -Q-, -S-,
- AA is a carbon-to-carbon single bond, -Q-, -S-, -s—
- Y denotes a benzene structure having ortho
- ⁇ A V—/ denotes a fully fluorine-substituted benzene structure having ortho, meta or para-
- H denotes hydrogen
- F denotes fluorine
- Cl ⁇ C5 denote hydrogen- or fluorine-substituted alkyl structures
- L is H, F or Cl to C5
- H is hydrogen
- F is fluorine
- Cl to C5 denote hydrogen- or fluorine-substituted alky structures having 1 to 5 carbon atoms.
- Z denotes a bond directly attached to carbon of benzene
- Y is the same as described above.
- M is a counter ion having a positive charge, and may be a potassium
- CMl and CM2 denotes a crossl inkable moieties, which are independently
- R is a carbon-to-
- Rl is H, F, Cl to C5 or In Rl, H denotes hydrogen, F denotes fluorine, Cl to C5 denote hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon
- R2 ⁇ R2 atoms, and denotes benzene ring having ortho, meta or para- substituted R2.
- R2 is H, X or Cl ⁇ C5.
- H denotes hydrogen
- Cl to C5 denote hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon atoms
- X denotes a halogen atom (F, Cl or Br), which is a functional group enabling polymerization with a hydroxyl group of another polymer chain.
- k ranges from 0.001 to 1.000, s has a value of 1-k.
- n is an integer, ranging from 10 to 500, indicating the number of repeating units in a polymer.
- Reaction Scheme 1 shows a mechanism for preparing a polymer of Formula 1 by polycondensation, in which monomers participating in the reaction may vary.
- a sulfonated monomer used in Reaction Scheme 1 is a dihydroxy monomer .
- the sulfonated poly(arylene ether) copolymer having a crossl inking moiety may be prepared by Reaction Scheme 1.
- k ranges from 0.001 to 1
- s is 1-k
- (k+s)/m ranges from 0.800 to 1.200.
- k, s and m independently denote mole fractions of monomers participating in the reaction.
- a compound of Formula 3 may be divided into a hydroxy-substituted HO- ⁇ -J X- monomer ( ⁇ ) and a hal ide-subst ituted monomer ( ).
- the hydroxy1-substituted monomer ( ) may be used regardless of the value of (k+s)/m.
- a sulfonated dihydroxy monomer and an unsulfonated dihydroxy monomer are activated to facilitate polycondensation of the dihydroxy monomer with the dihalide monomer.
- the unsulfonated dihalide monomer can be added together with the dihydroxy monomer in the same step of the manufacturing process.
- ⁇ 63> First, in the presence of a solvent mixture consisting of a base, an azeotropic solvent and an aprotic polar solvent, the polycondensation reaction is performed at 0 to 300 ° C for 1 to 100 hours to give a polymer of Formula 2. Also, according to the type of manufacturing process, a protic polar solvent may be used instead of the aprotic polar solvent.
- crosslinking moiety-substituted polymer of Formula 1 is prepared using the polymer of Formula 2, and the hydroxyl- or hal ide- subst ituted monomer of Formula 3.
- a preparation process for the compound of Formula 1 is the same as that for the polymer of Formula 2. That is, the crosslinkable moiety-substituted polymer of Formula 1 is prepared by activation and polycondensation. Also, removal of the azeotropic solvent may be further included after activation and before the polycondensation.
- the sulfonated polyCarylene ether) copolymer having a crosslinkable moiety of Formula 1 is prepared by substitution of a crosslinkable moiety (CM) 1 or CM2 having a crosslinking group enabling thermal crosslinking to a polymer chain through polycondensation to give improved thermal stability, electrochemical characteristics, film-forming capacity, dimensional stability, mechanical stability, chemical characteristics, physical properties and cell performance to the polymer represented by Formula 2.
- CM crosslinkable moiety
- a base which includes an inorganic base selected from the group consisting of a hydroxide of alkali metal or alkali earth metal, carbonate and sulfonate, and an organic base selected from the group consisting of general amines including ammonia, may be used as a base.
- an aprotic or protic polar solvent may be used as the reaction solvent.
- the aprotic polar solvent may include N-methylpyrolidone (NMP), dimethyl formamide (DMF), N,N-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO), and the protic polar solvent may include methylene chloride (CH2CI2), chloroform (CH 3 Cl) and tetrahydrofuran (THF).
- the azeotropic solvent may include benzene, toluene and xylene.
- the sulfonated poly(arylene ether) copolymer having a crossl inkable moiety prepared by the above described method exhibits equivalent or superior thermal stability, film-forming capacity, mechanical stability, chemical characteristics, physical properties and cell performance compared to the conventional sulfonated poly(arylene ether) copolymer or Nafion film that is commercially available as a polymer electrolyte membrane. It also exhibits remarkably improved electrochemical characteristics, and particularly, proton conductivity and cell performance, and also high dimensional stability. Further, its characteristics are unaffected even when the membrane is exposed to moisture over a long period of time.
- Each product was obtained with a yield of at least
- the polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-6F, E-SFQK90-6F, E-SFQK85-6F, E-SFQK80- 6F, E-SFQK75-6F, E-SFQK70-6F, E-SFQK60-6F, E-SFQK50-6F, E-SFQK40-6F and E- SFQK30-6F.
- Reaction Scheme 3 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- (hexaf1uoroisopropyIidene)diphenol .
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-BP, E-SFQK90-BP, E-SFQK85-BP, E-SFQK80- BP, E-SFQK75-BP, E-SFQK70-BP, E-SFQK60-BP, E-SFQK50-BP, E-SFQK40-BP and E- SFQK30-BP.
- the polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-2BP, E-SFQK90-2BP, E-SFQK85-2BP, E- SFQK80-2BP, E-SFQK75-2BP, E-SFQK70-2BP, E-SFQK60-2BP, E-SFQK50-2BP, E-SFQK40- 2BP and E-SFQK30-2BP.
- ⁇ 105> ⁇ I ()6> Preparation Example 6: Preparation of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SFQK-DPE)
- Reaction Scheme 7 was performed by the same method as Preparation Example 1 using 4,4'-dihydroxydiphenyl ether as a starting material instead of (4,4'-hexafluoroisopropylidene)diphenol .
- the polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-DPE, E-SFQK90-DPE, E-SFQK85-DPE, E- SFQK80-DPE, E-SFQK75-DPE, E-SFQK70-DPE, E-SFQK60-DPE, E-SFQK50-DPE, E-SFQK40- DPE and E-SFQK30-DPE.
- Reaction Scheme 8 was performed by the same method as Preparation Example 1 using hydroquinone as a starting material instead of (4,4'— hexaf1uoroisopropyIidene)diphenol , and 2,6-difluorobenzonitri Ie as a dihalide material instead of decafluorobiphenyl .
- the poly(arylene ether) copolymers prepared with various rations of k to s were independently named E-SPECN100-HQ, E-SPECN95-HQ, E-SPECN90-HQ, E-SPECN85-HQ, E-SPECN80-HQ, E-SPECN75-HQ, E-SPECN70-HQ, E-SPECN60-HQ, E- SPECN50-HQ and E-SPECN40-HQ.
- DMSO N,N-dimethylsulfoxide
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEK95-6F, E-SPEK90-6F, E-SPEK85-6F, E-SPEK80- 6F, E-SPEK75-6F, E-SPEK70-6F, E-SPEK60-6F, E-SPEK50-6F, E-SPEK40-6F and E- SPEK30-6F.
- Reaction Scheme 10 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropylidene)diphenol .
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEK95-BP, E-SPEK90-BP, E-SPEK85-BP, E-SPEK80- BP, E-SPEK75-BP, E-SPEK70-BP, E-SPEK60-BP, E-SPEK50-BP, E-SPEK40-BP and E- SPEK30-BP.
- Reaction Scheme 11 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropylidene)diphenol , and 4,4'—di fluorobenzophenone as a dihalide material instead of decafluoro biphenyl.
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAEKlOO, E-SPAEK95-BP, E-SPAEK90-BP, E-SPAEK85- BP, E-SPAEK80-BP, E-SPAEK75-BP, E-SPAEK70-BP, E-SPAEK60-BP, E-SPAEK50-BP and E-SPAEK40-BP.
- Reaction Scheme 12 was performed by the same method as Preparation Example 1 using 4,4'-di fluorobenzophenone as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160 ° C , and then maintained at 170°C .
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAEK95-6F, E-SPAEK90-6F, E-SPAEK85-6F, E- SPAEK80-6F, E-SPAEK75-6F, E-SPAEK70-6F, E-SPAEK65-6F, E-SPAEK60-6F, E- SPAEK50-6F and E-SPAEK40-6F.
- Reaction Scheme 13 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of 4,4'- (hexafluoroisopropylidene)diphenol , and 4,4'-di fluorodiphenyl sulfone as a dihalide material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C , and maintained at 170°C.
- the polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAES095-BP, E-SPAES090-BP, E-SPAES085-BP, E- SPAES080-BP, E-SPAES075-BP, E-SPAES070-BP, E-SPAES065-BP, E-SPAES060-BP, E- SPAES050-BP and E-SPAES040-BP.
- Reaction Scheme 14 was performed by the same method as Preparation Example 1 using 4,4'-difluorodiphenyl sulfone as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160 ° C, and then maintained at 170 ° C .
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAES095-6F, E-SPAES090-6F, E-SPAES085-6F, E- SPAES080-6F, E-SPAES075-6F, E-SPAES070-6F, E-SPAES065-6F, E-SPAES060-6F, E- SPAES050-6F and E-SPAES040-6F.
- Reaction Scheme 15 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropyIidene)diphenol , and l,3-bis(4-fluorobenzoyD-benzene instead of decafluorobiphenyl as a dihalide material. Further, activation was performed in the range of 150 to 160 ° C , and maintained at 170°C .
- the polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEKK100-BP, E-SPEKK95-BP, E-SPEKK90-BP, E- SPEKK85-BP, E-SPEKK80-BP, E-SPEKK75-BP, E-SPEKK70-BP, E-SPEKK60-BP, E- SPEKK50-BP and E-SPEKK40-BP.
- Reaction Scheme 16 was performed by the same method as Preparation Example 1 using l,3-bis(4-fluorobenzoly)-benzene, a dihalide material, as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C, and then maintained at 170°C.
- the poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEKK95-6F, E-SPEKK90-6F, E-SPEKK85-6F, E- SPEKK80-6F, E-SPEKK75-6F, E-SPEEK70-6F, E-SPEKK65-6F, E-SPEKK60-6F, E- SPEEK50-6F and E-SPEEK40-6F.
- Preparation Example 16 Preparation of polymer electrolyte membrane ⁇ 177> Sulfonated poly(arylene ether) copolymers having a crosslinkable moiety synthesized according to Preparation Examples 1 to 15 were dissolved in a solvent, followed by being filtered using a 0.45 ⁇ m to l ⁇ m PTFE membrane filter. Afterward, the polymer solvent was poured over a glass plate by casting, and maintained in an oven at 40°C for 24 hours. ⁇ 178> Subsequently, for crossl inking polymer ends, annealing was performed at 80 to 350 ° C for 30 minutes or more, and preferably at 250 to 260 ° C for at least 2 hours.
- the available solvents were dipolar solvent, including N,N'- dimethylformamide (DMF), diraethylacetamide (DMAc), dimethylsulfoxide (DMSO) and N-methy1pyro1 idone (NMP) .
- DMF N,N'- dimethylformamide
- DMAc diraethylacetamide
- DMSO dimethylsulfoxide
- NMP N-methy1pyro1 idone
- ⁇ i8i> The acid treatment was performed by soaking the membrane in a 2N H2S04 solution, IN HNO 3 solution or IN HCl solution for 24 hours and then transferred to distilled water for another 24 hours, or boiled in 0.5M H 2 SO 4 solution for 2 hours.
- the present invention is not limited thereto.
- the 15 kinds of polymer membranes formed using sulfonated poly(arylene ether) copolymers disclosed in Preparation schemes 1 to 15 were independently named CSFQH-6H, CSFQH-BP, CSFQH-HQ, CSFQH-6H, CSFQH-2BP, CSFQH-DPE, CSPECN-HQ, CSPEK-6F, CSPEK-BP, CSPAEK-BP, CSPAEK-6F, CSPAESO-BP, CSPAES0-6F, CSPEKK-BP and CSPEKK- 6F, respectively.
- Table 1 shows solubilities of the 15 kinds of polymer membranes.
- the polymer electrolyte membrane was not dissolved in any solvent, which indicates that it is crosslinked.
- the membrane has very high chemical stability and good dimensional stability.
- Tg glass transition temperatures of the polymer electrolyte membranes formed in Preparation Example 16 were taken under a nitrogen gas atmosphere at 10 ° C/inin by differential scanning calorimetry (DSC). As shown in FIGS. 9 to 13, the Tgs are at least 200 ° C, which indicates that the membranes have significantly-higher thermal stabilities than that of the Nafion film, which is commercially available, and a decomposition temperatures (Tds) are 300 ° C, which indicates the membranes have a very high thermal stability.
- CSFQH90-6F, CSFQH80-6F, CSFQH70-6F, CSFQH90-BP, CSFQH80-BP and CSFQH70-BP which are the names of the polymer electrolyte membranes, have meanings as follows.
- CSFQH90-6F denotes a polymer electrolyte membrane formed using E-SFQK90-6F prepared in Preparation Example 1
- CSFQH90-BP denotes a polymer electrolyte membrane formed using E-SFQK90-BP prepared in Preparation Example 2
- CSFQH90-HQ denotes a polymer electrolyte membrane formed using E-SFQK90-HQ prepared in Preparation Example 3
- CSFQH90-6H denotes a polymer electrolyte membrane formed using E-SFQK90-6H prepared in Preparation Example 4
- CSFQH90-DPE denotes a polymer electrolyte membrane formed using E-SFQK90-DPE prepared in Preparation Example 6.
- the polymer electrolyte membranes are transparent and amorphous.
- Table 2 shows water uptakes and proton conductivities of the polymer electrolyte membranes formed in Preparation Example 16 compared to the currently used Nafion film, which are commercially available.
- Wwet is a weight of a wet membrane
- Wdry is a weight of a dry membrane
- the polymer electrolyte membrane has much a higher ion conductivity, which is its most import characteristic, and a lower water uptakes than the Nafion film.
- Embodiment 1 ⁇ 239> A sulfonated poly(arylene ether) copolymer according to Embodiment 2 has a crosslinkable moiety, which is represented by Formula 4.
- SAr indicates a sulfonated aromatic group.
- SAr includes SO 3 M
- both ArI and Ar2 are unsulfonated aromatic groups, which may be the same as or different from each other.
- Y is a carbon-carbon single bond, -Q-, -S-, —
- substituted connecting moieties that is, denotes fully fluorine-substituted benzene structures having connecting moieties at ortho (
- e, Cl to C5 are hydrogen- or fluorine-substituted alkyl structures having 1 to 5
- L is H, F or Cl to C5
- H is hydrogen
- F is fluorine
- Cl to C5 are hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon atoms.
- ⁇ 25i> M is a counter ion having a positive charge and may be a potassium ion
- K a sodium ion (Na ) or an alkyl ammonium ion (NR4), and preferably, an K
- CMl or CM2 is a moiety, which includes .
- G is a carbon-carbon single bond, -O- , -S-
- R1 is H; F> C1 t0 C5; or X R2 _ In R1) H is hydrogen, F is fluorine, Cl to C5 are hydrogen- or fluorine-substituted alky
- R2 is H, X or Cl to C5.
- H is hydrogen
- Cl to C5 are hydrogen- or fluorine-substituted alky structures having 1 to 5 carbon atoms
- X is a halogen atom (F, Cl or Br).
- X is a functional group enabling polymerization with a hydroxy group in another polymer chain.
- k ranges from 0.001 to 1.000
- s has 1-k
- n is an integer indicating the number of a repeating unit in a macromolecular polymer.
- n is a natural number ranging from 10 to 500.
- Reaction Scheme 16 shows a reaction process for preparing a compound of Formula 4. Also, a polymer of Formula 5 is prepared by polycondensation, and a monomer participating in the reaction can be changed.
- a sulfonated monomer (X-SAr-X) used for the compound of Formula 4 is a dihalide monomer.
- the sulfonated poly(arylene ether) copolymer having a crosslinkable moiety may be prepared according to Reaction Scheme 16.
- k has a range of 0.001 to 1
- s is 1-k
- (k+s)/m has a range of 0.8 to 1.2.
- k, s and m denote molar ratios of monomers participating in the reaction.
- compounds of Formula 6 may include a hydroxy-substituted monomer
- an unsulfonated dihydroxy monomer is activated to facilitate the polycondensation facilitates the polycondensation of the dihydroxy monomer with the dihalide monomer.
- the sulfonated and unsulfonated dihalide monomers may be added to in the same step of the preparation process, together with the dihydroxy monomer .
- ⁇ 267> First, in the presence of a solvent consisting of a base, an azeotropic solution and an aprotic polar solvent, polycondensation is performed at 0 to 300 ° C for 1 to 100 hours to give a macromolecular polymer represented by Formula 5. Also, depending on the type of the preparation process, a protic polar solvent can be used instead of the aprotic polar solvent.
- a macromolecular polymer having a crosslinked structure at an end represented in Formula 4 is prepared using the macromolecular polymer of Formula 5, and the hydroxy- or halide-substituted monomer of Formula 6.
- a reaction for preparing the polymer of Formula 4 is substantially the same as the method of preparing the macromolecular polymer of Formula 5.
- the crossl inked structure-substituted macromolecular polymer of Formula 4 is prepared by activation and polycondensation, sequentially. Before the polycondensation step, the azeotropic solvent may be removed.
- CMl or CM2 including a thermal crossl inkable group is substituted at the end of the polymer chain by polycondensation to give a sulfonated poly(arylene ether) copolymer having a crossl inked structure, represented by Formula 4.
- an inorganic base selected from the group consisting of a hydroxide of alkali metal or alkali earth metal, a carbonate and a sulfate, or a group consisting of general amines including ammonia may be used as a base .
- the aprotic polar solvent such as N- methylpyrolidone (NMP), dimethyl formamide (DMF), N,N-dimethylacetamide (DMAc) or dimethylsLilfoxide (DMSO), or protic polar solvent such as methylene chloride (CH2CI2), chloroform (CH 3 Cl) or tetrahydrofuran (THF) may be used, and benzene, toluene or xylene may be used as an azeotropic solvent.
- NMP N- methylpyrolidone
- DMF dimethyl formamide
- DMAc N,N-dimethylacetamide
- DMSO dimethylsLilfoxide
- protic polar solvent such as methylene chloride (CH2CI2), chloroform (CH 3 Cl) or tetrahydrofuran (THF)
- benzene, toluene or xylene may be used as an azeotropic solvent.
- the sulfonated poly(arylene ether) copolymer having a crossl inked structure prepared by the method described above has equal or superior thermal stability, film-forming capacity, mechanical stability, chemical characteristics, physical properties and cell performance compared to the commercially available polymer electrolyte membrane, e.g., Nafion film, and further improved electrochemical characteristics such as proton conductivity and cell performance.
- the copolymer has high dimensional stability, so that the electrolyte membrane has no change in characteristics even though it is exposed to moisture for a long time.
- E-DSPES0-6F was synthesized by the same method as in Preparation Example 1, except that 3,3'-disulfonated-4,4'-difluorodiphenyl sulfone, 4,4'- difluorodiphenyl sulfone and (4,4'-hexafluoroisopropyIidene)diphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
- Activation was performed at 150 to 170 ° C for 6 to 8 hours, and then polymerization was performed at an increased temperature of 170 to 180 ° C .
- E-DSPESO-BP was synthesized by the same method as Preparation Example 1, except that 3,3 '-disulfonated-4,4'—di fluorodiphenyl sulfone, 4,4'- difluorodiphenyl sulfone and 4,4'-biphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
- Activation was performed at 150 to 170 ° C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180 ° C.
- the sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPES050-BP, E- DSPES045-BP, E-DSPES040-BP, E-DSPES035-BP and E-DSPES030-BP. Each product was obtained with a yield of 90% or more.
- E-DSPEK-6F was synthesized by the same method as Preparation Example 1, except that 3,3'-disulfonated-4,4'-difluorobenzophenone, 4,4'- difluorobenzophenone and 4,4'-(hexaf1uoroisopropyIidene)diphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
- Activation was performed at 150 to 170 ° C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180 ° C.
- E-DSPEK-BP was synthesized by the same method as Preparation Example 1, except that 3,3'-disulfonated-4,4'—di fluorobenzophenone, 4,4'- difluorobenzophenone and 4,4'-biphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer. Activation was performed at 150 to 170°C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180 ° C.
- the sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPEK50-BP, E- DSPEK45-BP, E-DSPEK40-BP, E-DSPEK35-BP and E-DSPEK30-BP. Each product was obtained with a yield of 90% or more.
- Polymer electrolyte membranes (CDSPES0-6F, CDSPESO-BP, CDSPEK-6F and CDSPEK-BP) were prepared using the sulfonated poly(arylene ether) copolymers having crossl inked structures (E-DSPES0-6F, E-DSPESO-BP, E-DSPEK-6F and E- DSPEK-BP) prepared according to Preparation Examples 17 to 20, respectively.
- the polymer electrolyte membranes were named in the sequence of the sulfonated polyCarylene ether) copolymers described above.
- the polymer electrolyte membrane using E-DSPES0-6F was named DSPES0-6F
- the polymer electrolyte membrane using E-DSPEK-BP was named CDSPEK-BP.
- Table 3 shows solubilities of the polymer electrolyte membranes. ⁇ 310> [Table 3]
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
- Polyethers (AREA)
Abstract
A crosslinked sulfonated polyCarylene ether) copolymer, a method of preparing the same and a polymer electrolyte membrane using the same are provided. The sulfonated polyCarylene ether) copolymer is synthesized by polycondensation of a dihalide monomer and a dihydroxy monomer having a sulfonate group or a dihydroxy monomer and a dihalide monomer having a sulfonate group. In addition, polymers are crosslinked by polycondensation between crossl inkable monohydroxy monomers. Thus, the copolymer and membrane have thermal stability, mechanical stability, chemical stability and film- forming capacity equal to or higher than a conventional sulfonated ρoly(arylene ether) copolymer or a commercially available polymer electrolyte membrane, i.e., a nafion film, and also have further improved proton conductivity and cell performance. Moreover, the polymer electrolyte membrane does not have any change in characteristics even though it is exposed to moisture for a long time.
Description
[DESCRIPTION] [Invention Title]
SULFONATED POLY(ARYLENE ETHER), METHOD OF MANUFACTURING THE SAME, AND CROSSLINKED POLYMER ELECTROLYTE MEMBRANE USING THE SAME [Technical Field]
<i> The present invention relates to a sulfonated poly(arylene ether) copolymer, a method of preparing the same, and a polymer electrolyte membrane using the same, and more particularly, to a sulfonated polyCarylene ether) copolymer having a crossl inked structure, a method of preparing the same, and a crossl inked polymer electrolyte membrane using the same. [Background Art]
<2> A fuel cell is an electrical energy conversion system that converts chemical energy into electrical energy through an electrochemical reaction. While the fuel cell had only limited applications in the 1960s, such as in Gemini aircraft, it is currently considered as an alternative energy source and answer to increased demand for electricity, and thus is being actively researched all over the world.
<3> Particularly, on the verge of new regulations of carbon-dioxide emissions required by Green Round (Climate Change Agreement), and new regulations of automobile emissions in the form of low pollution requirements for all new automobile sales, automobile companies around the world are hurrying to develop pollution-free automobiles such as fuel cell cars. Also, the fuel cell can be readily applied as a power source in remote locations and in certain military applications such as submarines and mobile communications. The fuel cell does not store electricity, but is a more efficient power generating device than a conventional internal-combust ion engine. Also, the fuel cell, a clean, efficient power generating device, has nearly no emission of environmentally harmful materials such as sulfur oxide (SOx) and nitrogen oxide (NOx), and thus is expected to help solve recent environmental problems caused by use of fossil-based fuel.
<4> A polymer electrolyte has been studied and used as a proton exchange
resin or proton exchange membrane in a fuel cell for several decades. Recent studies have focused on using the proton exchange membrane as a mediator delivering protons used for a direct methanol fuel cell (DMFC) or a polymer electrolyte membrane fuel cell (PEMFC; a polymer electrolyte membrane fuel cell, a solid polymer electrolyte fuel cell, a solid polymer fuel cell or a proton exchange membrane fuel cell). <5> One of the widely used proton exchange membranes in the current fuel
TM cell industry is a Nafion film, which is formed of a polymer containing a perflourinated sulfonic acid group developed by DuPont (USA). When water
TM saturated, the Nafion film has an ionic conductivity of 0.1 S/cm, excellent mechanical strength and chemical resistance, and stable performance as an electrolyte membrane enough to be applied to an automobile fuel cell. Similar types of commercially-available membranes include the Acipleχ-S membrane (Asahi Chemicals), the Dow membrane (Dow Chemicals), the Flemion membrane (Asahi Glass), and the GoreSelect membrane (Gore & Associate), and an α- or J3 -polyunsaturated polymer is being developed by BaI lard Power Systems (Canada).
<6> However, these membranes are difficult to mass-produce because of high costs and complicated synthesis methods. And, they have limited applications due to less efficient characteristics when used as a proton exchange membrane, such as methanol crossover occurring in an electrical energy system like the direct methanol fuel cell, and low proton conductivity at both high and low temperatures.
<7> To make up for these shortcomings, a great deal of research has focused on non-fluorinated and partial ly-fluorinated proton exchange membranes, which include sulfonated poly(phenylene oxides), poly(phenylene sulfides), polysulfonates, poly(para-phenylenes), polystyrenes, polyetheresterketones, and polyimides.
<8> However, when the membranes are sulfonated beyond a critical concentration since their ionic conductivities are directly proportional to
their degree of sulfonation, their molecular weight unavoidably decreases, and they cannot be used over a long period of time due to deterioration of their mechanical properties during hydration. To overcome these problems, a method of preparing a polymer using a sulfonated monomer and a method of selectively sulfonating a polymer are being developed [U.S. Patent Nos. 5468574, 5679482 and 6110616], but these methods also cannot achieve high temperature stability, nor can they completely overcome potential problems caused by long-term use.
<9> Meanwhile, U.S. Patent Application No. 6245881 discloses various methods of preparing a sulfonated polyimide such as a method using a diamine monomer containing a sulfonic acid group, and directly sulfonation a polyimide main chain. The sulfonated polyimide exhibits very higher thermal stability and oxidative and reductive stabilities compared to a conventional proton conductive polymeric material.
<io> However, when a polymer is selectively sulfonated to form a sulfonated polyimide, its mechanical strength is reduced. And when a sulfonated polyimide is prepared using a sulfonic acid diamine monomer, its solubility is lowered, thus it does not have good reactivity and facilitate film formation.
<π> Therefore, there is need of a new material that exhibits excellent electrochemical characteristics, high-temperature stability, and can be formed as a thin film. [Disclosure] [Technical Problem]
<i2> The present invention is directed to a sulfonated poly(arylene ether) copolymer having a crossl inked structure.
<i3> The present invention is also directed to a crossl inked polymer electrolyte membrane formed using the sulfonated polyCarylene ether) copolymer. [Technical Solution]
<i4> One aspect of the present invention provides a sulfonated poly(arylene
ether) copolymer having a crosslinkable moiety at an end, represented by the following formula.
CMl-K-O-SAr-O-Ar24-/-fO-ArI-O-Ar2-)^CM2 <15> L K SJn
<16> In this formula, SAr is a sulfonated aromatic group, and ArI and Ar2 are unsulfonated aromatic groups. Further, CMl and CM2 are crosslinkable moieties. Herein, k has a range of 0.001 to 1, s is 1-k, and n is an integer from 10 to 500 indicating the number of a repeating units.
<i7> Another aspect of the present invention provides a sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end, represented by another formula.
CMl^fθ-Ar2-O-SAr-)^-/-fθ-Ar2-O~Arl-)—1— CM2 <18> L K SJn
<19> In this formula, SAr is a sulfonated aromatic group, and ArI and Ar2 are unsulfonated aromatic groups. Further, CMl and CM2 are crosslinkable moieties. Herein, k has a range of 0.001 to 1, s is 1-k, and n is an integer from 10 to 500 indicating the number of a repeating units.
<20> Still another aspect of the present invention provides a crossl inked polymer electrolyte membrane, which is formed by annealing the sulfonated poly(arylene ether) copolymer obtained above. [Advantageous Effects]
<2i> According to the present invention, a polymer electrolyte membrane using a sulfonated polyCarylene ether) copolymer having a crosslinkable structure exhibits equivalent or superior thermal stability, mechanical stability, chemical stability and membrane forming capability compared to conventional polymer electrolyte membranes. In addition, the inventive membrane shows remarkably improved proton conductivity and cell performance, its characteristics are unaffected even when it is exposed to moisture for a long period of time, and it can be applied to a fuel cell or a secondary battery. [Description of Drawings]
1 19
<22> FIG. 1 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-6Fs).
1 19
<23> FIG. 2 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-BPs).
1 19
<24> FIG. 3 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crossl inked structures (E-SFQK-HQs).
1 19
<25> FIG. 4 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E-SFQK-6Hs) .
1 19
<26> FIG. 5 shows H-NMR and F-NMR spectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E-SFQK-DPEs).
<27> FIG. 6 shows H-NMR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (E~SFQK-6Fs) . <28> FIG. 7 shows FT-IR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH~6Fs). <29> FIG. 8 shows FT-IR spectrumsspectra of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-BPs). <30> FIG. 9 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-6Fs). <3i> FIG. 10 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-BPs). <32> FIG. 11 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-HQs). <33> FIG. 12 shows glass transition temperatures (Tg) and decomposition temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-DPEs). <34> FIG. 13 shows glass transition temperatures (Tg) and decomposition
temperatures (Td) of sulfonated poly(arylene ether) copolymers having crosslinked structures (CSFQH-6Hs).
<35> FIG. 14 shows a photograph of crossl inked polymer electrolyte membrane. [Mode for Invention]
<36> Hereinafter, embodiments of the present invention will be described in detai 1.
<37> Embodimerit 1 <38> A sulfonated poly(arylene ether) copolymer according to the present embodiment has a crossl inked structure. The sulfonated poly(arylene ether) copolymer is represented by Formula 1.
<39> [Formula 1]
CMl-H-O-SAr-O-Ar2-)p/-fθ-ArI-O-Ar2-)4- CM2
<40> <41> In Formula 1, SAr is a sulfonated aromatic group, which includes
<42> In addition, ArI and Ar2 are unsulfonated aromatic groups, which may be the same as or different from each other.
/=VA~
-A-
\_J \ //
, AA is a carbon-to-carbon single bond, -Q-, -S-, -s—
, and E is H, F, C1~C5 or
A-
-A-
<45> Here, in Y, denotes a benzene structure having ortho, A— meta or para-substituted connecting moieties, and ~A V—/ denotes a fully fluorine-substituted benzene structure having ortho, meta or para-
A- substituted connecting moieties. That is, ^~^ ^^ denotes fully
F F A F
fluorine-substituted benzene structures having ortho- ( ),
meta-(
) substituted connecting moieties. In addition, in E, H denotes hydrogen, F denotes
fluorine, Cl~ C5 denote hydrogen- or fluorine-substituted alkyl structures
having 1 to 5 carbon atoms, respectively, and
denotes an L- substituted benzene structure. In the above structural formula, L is H, F or Cl to C5, H is hydrogen, F is fluorine, and Cl to C5 denote hydrogen- or fluorine-substituted alky structures having 1 to 5 carbon atoms. <46> In addition, Z denotes a bond directly attached to carbon of benzene
at an ortho, meta or para position. In Z, Y is the same as described above.
+ <47> M is a counter ion having a positive charge, and may be a potassium
ion (K), a sodium ion (Na) or an alkyl ammonium ion (NR4), and preferably, a potassium ion or a sodium ion. <48> CMl and CM2 denotes a crossl inkable moieties, which are independently
)
or vinyl part ((R= ), which is substituted with Rl, or v , and may positioned at ortho, meta or para position. In R, G is a carbon-to-
carbon single bond, -Q-, -S- or
, and Rl is H, F, Cl to C5 or
In Rl, H denotes hydrogen, F denotes fluorine, Cl to C5 denote hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon
^R2 atoms, and denotes benzene ring having ortho, meta or para- substituted R2. Here, R2 is H, X or Cl ~ C5. In R2, H denotes hydrogen, Cl
to C5 denote hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon atoms, and X denotes a halogen atom (F, Cl or Br), which is a functional group enabling polymerization with a hydroxyl group of another polymer chain. Also, in Formula 1, k ranges from 0.001 to 1.000, s has a value of 1-k. And n is an integer, ranging from 10 to 500, indicating the number of repeating units in a polymer.
<49> A method of manufacturing the sulfonated poly(ethylene ether) copolymer represented by Formula 1 is prepared by the following Reaction Scheme 1, which will be described in detail.
<50> [Reaction Scheme 1]
<5i> k HO-SAr-OH + s HO-ArI-OH + m X-Ar2-X
<52> [Formul a 2]
(-O-SAr-O- Ar2-)r-/-fθ- ArI-O- Ar2-)— ]—
<53> L k S J n
<54> [Formula 3]
HO- X-
D R
<55> κ or
<56> [Formula 1]
CMl-H-O-SAr-O-Ar2-V-/-fO-ArI-O-Ar2-)—I— CM2
<57> L k sJn
<58> Reaction Scheme 1 shows a mechanism for preparing a polymer of Formula 1 by polycondensation, in which monomers participating in the reaction may vary. Here, a sulfonated monomer used in Reaction Scheme 1 is a dihydroxy monomer .
<59> The sulfonated poly(arylene ether) copolymer having a crossl inking moiety may be prepared by Reaction Scheme 1.
<60> In Reaction Scheme 1, k ranges from 0.001 to 1, s is 1-k, and (k+s)/m ranges from 0.800 to 1.200. Also, k, s and m independently denote mole fractions of monomers participating in the reaction.
<6i> Here, a compound of Formula 3 may be divided into a hydroxy-substituted
HO-< -J X- monomer ( κ ) and a hal ide-subst ituted monomer ( ). In
Reaction Scheme 1, when (k+s)/m is 1.000 or less, the hydroxy1-subst ituted monomer may be used, and when (k+s)/m is more than 1.000, the halide- subst ituted monomer may be used. When R2 is X in the compound of Formula 3,
<62> In the preparation process of Reaction Scheme 1, a sulfonated dihydroxy monomer and an unsulfonated dihydroxy monomer are activated to facilitate polycondensation of the dihydroxy monomer with the dihalide monomer. Also, the unsulfonated dihalide monomer can be added together with the dihydroxy monomer in the same step of the manufacturing process.
<63> First, in the presence of a solvent mixture consisting of a base, an azeotropic solvent and an aprotic polar solvent, the polycondensation reaction is performed at 0 to 300°C for 1 to 100 hours to give a polymer of Formula 2. Also, according to the type of manufacturing process, a protic polar solvent may be used instead of the aprotic polar solvent.
<64> Subsequently, the crosslinking moiety-substituted polymer of Formula 1 is prepared using the polymer of Formula 2, and the hydroxyl- or hal ide- subst ituted monomer of Formula 3.
<65> A preparation process for the compound of Formula 1 is the same as that for the polymer of Formula 2. That is, the crosslinkable moiety-substituted polymer of Formula 1 is prepared by activation and polycondensation. Also, removal of the azeotropic solvent may be further included after activation and before the polycondensation.
<66> Further, in the present embodiment, the sulfonated polyCarylene ether) copolymer having a crosslinkable moiety of Formula 1 is prepared by substitution of a crosslinkable moiety (CM) 1 or CM2 having a crosslinking group enabling thermal crosslinking to a polymer chain through polycondensation to give improved thermal stability, electrochemical
characteristics, film-forming capacity, dimensional stability, mechanical stability, chemical characteristics, physical properties and cell performance to the polymer represented by Formula 2.
<67> In the polycondensat ion and crossl inking group introduction for preparing the sulfonated poly(arylene ether) copolymer having a crossl inkable moiety, a base is used, which includes an inorganic base selected from the group consisting of a hydroxide of alkali metal or alkali earth metal, carbonate and sulfonate, and an organic base selected from the group consisting of general amines including ammonia, may be used as a base.
<68> Also, an aprotic or protic polar solvent may be used as the reaction solvent. The aprotic polar solvent may include N-methylpyrolidone (NMP), dimethyl formamide (DMF), N,N-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO), and the protic polar solvent may include methylene chloride (CH2CI2), chloroform (CH3Cl) and tetrahydrofuran (THF). The azeotropic solvent may include benzene, toluene and xylene.
<69> The sulfonated poly(arylene ether) copolymer having a crossl inkable moiety prepared by the above described method exhibits equivalent or superior thermal stability, film-forming capacity, mechanical stability, chemical characteristics, physical properties and cell performance compared to the conventional sulfonated poly(arylene ether) copolymer or Nafion film that is commercially available as a polymer electrolyte membrane. It also exhibits remarkably improved electrochemical characteristics, and particularly, proton conductivity and cell performance, and also high dimensional stability. Further, its characteristics are unaffected even when the membrane is exposed to moisture over a long period of time.
<70> The present invention will now be described in more detail with reference to Preparation Examples, however its scope is not limited thereto.
<7i> Preparation Example 1: Synthesis of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SFQK-6F)
<74> <75> Prepared was a 100ml two-necked round-bottom flask connected with a stirrer, a nitrogen gas inlet, a magnetic stir bar and a Dean-Stark (azeotropic distillation) device. Therein, hydroquinonesulfonic acid potassium salt and (4,4'-hexafluoroisopropyIidene)diphenol were mixed in a molar ratio of 19:1 mmol (k:s=0.95:0.05) , and then K2CO3 (equivalent ratio of
1.15), N,N-dimethylacetamide (DMAc; 60ml) and benzene (20ml) were added.
<76> Activation was performed at 135 to 140"C for 6 to 8 hours, and water generated as a byproduct in the reaction was removed by azeotropic distillation using benzene, one of the reaction solvents, which was removed from the reactor after the activation step.
<77> Then, 20mmol of decaf1uorobiphenyl was added to the reactor and maintained at 140°C for more than 12 hours to give an intermediate compound at 140°C for at least 20 hours.
<78> 3-ethynyl phenol was added with an amount corresponding to a 0.2 to 0.5 times the molar ratio than a of decafluorobiphenyl monomer, together with benzene (10ml) and K2CO3 (equivalent ratio of 1.15), in the solution having the intermediate compound, and maintained for at least 6 hours at 140°C , and
then benzene was completely removed. Also, water, the byproduct generated from the reaction, was removed by azeotropic distillation with benzene. Afterward, the resulting product was precipitated with 500ml ethanol, washed with water and ethanol several times, and vacuum-dried at 60°C for 3 days. The final product (E-SFQK95-6F) was obtained as a light brown solid with a yield of 90% or more.
<79> Also, sulfonated polyCarylene ether) copolymers having crossl inking moiety were independently prepared using starting materials, including hydroquinonesulfonic acid potassium salt and 4,4'- (hexafluoroisopropylidiene)diphenol , in various molar ratios of lδmmo1 :2mmo1 (k:s=0.9:0.1), 17mmol:3mmol (k:s=0.85:0.15), 16mmo1 :4mmo1 (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol:8mmol (k:s=0.6:0.4), lOmmol :10mmol (k:s=0.5:0.5), 8mmol:12mmol (k:s=0.4:0.6) and 6mmo1 : 14mmo1 (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<80> The polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-6F, E-SFQK90-6F, E-SFQK85-6F, E-SFQK80- 6F, E-SFQK75-6F, E-SFQK70-6F, E-SFQK60-6F, E-SFQK50-6F, E-SFQK40-6F and E- SFQK30-6F.
<81>
<82> Preparation Example 2: Preparation of sulfonated polyCarylene ether) copolymer having a crossl inkable moiety (E-SFQK-BP) <83> [Reaction Scheme 3]
zerae
<85> Reaction Scheme 3 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- (hexaf1uoroisopropyIidene)diphenol . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'-biphenol as starting materials in various molar ratios of 19mmol:lmmol (k:s=0.95:0.05) , 18mmol:2mmol (k:s=0.9:0.1), 17mmo1 :3mmo1 (k:s=0.85:0.15), 16mmol:4mmol (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol:8mmol (k:s=0.6:0.4), lOmmol :lOmmol (k:s=0.5:0.5), 8mmol:l2mmol (k:s=0.4:0.6) , and βmmol :l4mmol (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<86> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-BP, E-SFQK90-BP, E-SFQK85-BP, E-SFQK80- BP, E-SFQK75-BP, E-SFQK70-BP, E-SFQK60-BP, E-SFQK50-BP, E-SFQK40-BP and E- SFQK30-BP.
<87> <88> Preparation Example 3: Preparation of sulfonated poly(arylene ether)
copolymer having a cross l inkable moi ety (E-SFQK-HQ)
<89> [React ion Scheme 4]
<91 > Reaction Scheme 4 was performed by the same method as Preparation Example 1 using hydroquinone as a starting material instead of (4,4'- hexafluoroisopropyIidene)diphenol . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using the starting materials, that is hydroquinonesulfonic acid potassium salt and hydroquinone as initial materials in various molar ratios of 19mmo1 : lmmo1 (k:s=0.95:0.05), 18mmol:2mmol (k:s=0.9:0.1), 17mmo1 :3mmo1 (k:s=0.85:0.15), lβmmo1 :4mmo1 (k:s=0.8:0.2), lδmmol :5mmol (k:s=0.75:0.25) , 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol:8mmol (k:s=0.6:0.4), lOmmo1 : lOmmo1 (k:s=0.5:0.5), 8mmo1 : 12mmo1 (k:s=0.4:0.6) and 6mmo1 : 14mmo1 (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<92> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-HQ, E-SFQK90- HQ, E-SFQK85-HQ, E-SFQK80- HQ, E-SFQK75-HQ, E-SFQK70-HQ, E-SFQK60-HQ, E-SFQK50-HQ, E-SFQK40-HQ and E- SFQK30-HQ.
<93> <94> Preparation Example 4: Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SFQK-6H)
<9^> [Reaction Scheme 5]
<97> Reaction Scheme 5 was performed by the same method as Preparation Example 1 using bisphenol-A as a starting material instead of (4,4'- hexafluoroisopropylidene)diphenol . Sulfonated polyCarylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and bisphenol-A as starting materials in various molar ratios of 19mmol:lmmol (k:s=0.95:0.05), 18mmol:2mmol (k:s=0.9:0.1), 17mraol :3mmol (k:s=0.85:0.15), 16mmol:4mmol (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmol:6mmol (k:s=0.7:0.3), 12mmol:8mmol (k:s=0.6:0.4), lOmmol :lOmmol (k:s=0.5:0.5), 8mmo1 : 12mmo1 (k:s=0.4:0.6) and 6mmo1 : 14mmo1 (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<98> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-6H, E-SFQK90-6H, E-SFQK85-6H, E-SFQK80- 6H, E-SFQK75-6H, E-SFQK70-6H, E-SFQK60-6H, E-SFQK50-6H, E-SFQK40-6H and E- SFQK30-6H.
<99> <10()> Preparation Example 5: Preparation of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SFQK-2BP)
<101> [Reaction Scheme 6J
<l O3> Reaction Scheme 6 was performed by the same method as Preparation Example 1 using 2,2'-biphenol as a starting material instead of (4,4'- hexafluoroisopropyIidene)diphenol . Sulfonated poly(arylene ether) copolymers having crossl inkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 2,2'-biphenol as starting materials in various molar ratios of 19mmol:lmmol (k:s=0.95:0.05), lδmmol :2mmol (k:s=0.9:0.1), 17mmol:3mmol (k:s=0.85:0.15) , lδmmo1 :4inmo1 (k:s=0.8:0.2), lδmmol :5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol :8mmol (k:s=0.6:0.4), 10mmol:l0mmol (k:s=0.5:0.5), 8mmo1 : 12mmo1 (k:s=0.4:0.6) and βmmo1 : 14mmo1 (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<104> The polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-2BP, E-SFQK90-2BP, E-SFQK85-2BP, E- SFQK80-2BP, E-SFQK75-2BP, E-SFQK70-2BP, E-SFQK60-2BP, E-SFQK50-2BP, E-SFQK40- 2BP and E-SFQK30-2BP.
<105> < I ()6> Preparation Example 6: Preparation of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SFQK-DPE)
<107> [Reaction Scheme 7]
<lO9> Reaction Scheme 7 was performed by the same method as Preparation Example 1 using 4,4'-dihydroxydiphenyl ether as a starting material instead of (4,4'-hexafluoroisopropylidene)diphenol . Sulfonated poly(arylene ether) copolymers having crossl inkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4, 4'-dihydroxydiphenyl ether as starting materials in various molar ratios of 19mmol ^lmmol (k:s=0.95:0.05), 18mmol:2mmol (k:s=0.9:0.1), 17mmol :3mmol (k:s=0.85:0.15), 16mmo1 :4mmo1 (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol:8mmol (k:s=0.6:0.4), lOmmo1 : lOmmo1 (k:s=0.5:0.5), 8mmo1 : 12mmo1 (k:s=0.4:0.6) and 6mmol:14mmol (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<l lθ> The polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SFQK95-DPE, E-SFQK90-DPE, E-SFQK85-DPE, E- SFQK80-DPE, E-SFQK75-DPE, E-SFQK70-DPE, E-SFQK60-DPE, E-SFQK50-DPE, E-SFQK40-
DPE and E-SFQK30-DPE.
<1 12> Preparation Example !'• Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SPECN-HQ)
<1 13> [Reaction Scheme 8]
<ll5> Reaction Scheme 8 was performed by the same method as Preparation Example 1 using hydroquinone as a starting material instead of (4,4'— hexaf1uoroisopropyIidene)diphenol , and 2,6-difluorobenzonitri Ie as a dihalide material instead of decafluorobiphenyl .
<116> Further, instead of DMAc and benzene, dimethylsulfoxide (DMSO; 60ml) and toluene (20ml) was added as a reaction solvent. Activation was performed at 150 to 160°C and maintained at 170"C . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and hydroquinone as starting materials in various molar ratios of 20mmol:0mmol (k:s=1.00:0), 19mmol:lmmol (k:s=0.95:0.05), 18mmo1 :2mmo1 (k:s=O.9:0.1), 17mmol :3mmol (k:s=0.85:0.15), 16mmol:4mmol (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1
(k:s=0.7:0.3), 12mmol :8mmol (k:s=0.6:0.4), lOmmol :10mmol (k:s=0.4:0.5) and 8mmo1 : 12mmo1 (k:s=0.3'0.7) . Each product was obtained with a yield of at least 90%.
<I17> The poly(arylene ether) copolymers prepared with various rations of k to s were independently named E-SPECN100-HQ, E-SPECN95-HQ, E-SPECN90-HQ, E- SPECN85-HQ, E-SPECN80-HQ, E-SPECN75-HQ, E-SPECN70-HQ, E-SPECN60-HQ, E- SPECN50-HQ and E-SPECN40-HQ.
<I18> <119> Preparation Example 8: Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SPEK-6F)
<120> [Reaction Scheme 9]
_ O 14D C1 6 hrs , i aθ X 24 hre k + S HO— ~OH ^_
CF^ KjCO5 DMSO . Toluene
HO OH
S O, Na
HO
O CF5
O ' C I O O
140 X, 6 hre k KyCO' DMSO , Toluene
SO4Kb
O
, Q C O k *
<121> <122> Prepared was a 100ml two-necked round-bottom flask connected with a stirrer, a nitrogen gas inlet, a magnetic stir bar and a Dean-Stark (azeotropic distillation) device. Therein, 2,3-dihydroxynaphthalene-6- sulfonic acid monosodium salt and 4,4'-hexafluoroisopropylidene)diphenol were mixed in a molar ratio of 12:8 mmol Ck^s=O.6:0.4) , and added together with K2CO3 (equivalent ratio of 1.15), N,N-dimethylsulfoxide (DMSO; 60ml) and toluene (20ml).
<123> Activation was performed at 135 to 1400C for 6 to 8 hours, and water generated as a byproduct in the reaction was removed by azeotropic distillation with toluene, one of the reaction solvents, which was removed from a reaction after the reactor.
<124> Then, 20 mmol of 4,4' —di fluorobenzophenone was added to the reactor and maintained at 180°C for at least 12 hours to produce an intermediate compound.
<125> 3-ethynyl phenol was added with an amount corresponding to 0.2 to 0.5 times the mole ratio of 4,4' —di fluorobenzophenone monomer in the polymer solution including the intermediate compound, together with benzene (10ml) and K2CO3 (equivalent ratio of 1.15) for at least 6 hours at 140°C, and then toluene was completely removed. Also, water, the byproduct, was removed by azeotropic distillation with toluene. Afterward, the resulting product was precipitated with 500ml ethanol, washed with water and ethanol several times, and vacuum-dried at 60°C for 3 days. The final product (E-SPEK60-6F) was obtained as a light brown solid with a yield of at least 90% or more.
<126> Also, sulfonated poly(arylene ether) copolymers having crossl inked structures were prepared using 2,3-dihydroxynaphthalene-6-sulfonic acid monosodium salt and 4,4'-(hexafluoroisopropylidene)diphenol as starting materials in various molar ratios of 19mmo1 : lmmo1 (k:s=0.95:0.05), 18mmol:2mmol (k:s=0.9:0.1), 17mmo1 :3mmo1 (k:s=0.85:0.15), lβramol :4mmol (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), lOmmoiαOmmol (k:s=0.5:0.5), 8mmol:l2mmol (k: s=0.4:0.6) and 6mmol :14mmol (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<127> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEK95-6F, E-SPEK90-6F, E-SPEK85-6F, E-SPEK80- 6F, E-SPEK75-6F, E-SPEK70-6F, E-SPEK60-6F, E-SPEK50-6F, E-SPEK40-6F and E- SPEK30-6F.
<128>
<129> Preparation Example 9: Preparation of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SPEK-BP)
< 130> [Reaction Scheme 10]
<13 1 > <132> Reaction Scheme 10 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropylidene)diphenol . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using 2,3-dihydroxynaphthalene-6- sulfonic acid monosodium salt and 4,4'-biphenol as starting materials in various molar ratios of 19mmol :lmmol(k:s=0.95:0.05), lδmmol :2mmol (k:s=O.9:0.1), 17mmol :3mmol (k:s=0.85:0.15), 16mmol:4mmol (k:s=0.8:0.2), lδmmol :5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmo1 :8mmo1 (k:s=0.6:0.4), lOmmol :lOmmol (k:s=0.5:0.5), 8mmol:l2mmol (k:s=0.4:0.6) and 6mmo1 : 14mmo1 (k:s=0.3:0.7). Each product was obtained with a yield of at least 90%.
<133> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEK95-BP, E-SPEK90-BP, E-SPEK85-BP, E-SPEK80- BP, E-SPEK75-BP, E-SPEK70-BP, E-SPEK60-BP, E-SPEK50-BP, E-SPEK40-BP and E- SPEK30-BP.
<134>
<135> Preparat ion Example 10 : Preparat i on of sul fonated poly(arylene ether ) copolymer having a cross l inkabl e moi ety (E-SPAEK-BP) <I 36> [React i on Scheme 11 ]
K2CO5 o k HO i OH + S HO- /-OH F-i ,HM /)-F 17O tJ
<137> <138> Reaction Scheme 11 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropylidene)diphenol , and 4,4'—di fluorobenzophenone as a dihalide material instead of decafluoro biphenyl.
<139> Further, activation was performed at 150 to 160°C , and maintained at 170°C. Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'-biphenol as starting materials in various molar ratios of 20mmo1 :Ommo1 (k:s=1.00:0), 19mmol :lmmol (k:s=0.95:0.05), 18mmo1 :2mmo1 (k:s=0.9:0.1), 17mmo1 :3mmo1 Ck^s=O.85:0.15), lβmmol ^mmol (k:s=0.8:0.2), 15mmo1 :5mmo1 (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 12mmol :8mmol (k:s=0.6:0.4), lOmmo1 : lOmmo1 (k:s=0.5:0.5) and 8mmo1 : 12mmo1 (k:s=0.4:0.6). Each product was obtained with a yield of at least 90%.
<140> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAEKlOO, E-SPAEK95-BP, E-SPAEK90-BP, E-SPAEK85-
BP, E-SPAEK80-BP, E-SPAEK75-BP, E-SPAEK70-BP, E-SPAEK60-BP, E-SPAEK50-BP and E-SPAEK40-BP.
<141> <!42> Preparation Example 11: Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SPAEK-6F)
<143> [Reaction Scheme 12]
SOi K+ K2CO3
CFj DMAc I Benzene k HO OH + s HO- -^ >-i OH F i, ,r~ C -χ ,) -F 170 1Q
CFs
<
< 145> Reaction Scheme 12 was performed by the same method as Preparation Example 1 using 4,4'-di fluorobenzophenone as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C , and then maintained at 170°C . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'- (hexafluoroisopropylidene)diphenol as starting materials in various molar ratios of 19mmol:lmmol (k:s=0.95:0.05) , 18mmol :2mmol (k:s=O.9:0.1), 17mmo1 :3mmo1 (k:s=0.85:0.15), 16mmo1 :4mmo1 (k:s=0.8:0.2), lδmmol :5mmol (k:s=0.75:0.25), 14mmo1 :6mmo1 (k:s=0.7:0.3), 13mmo1 :7ramo1 (k:s=0.65:0.35), 12mmol:8mmol
lOmmol :10mmol (k:s=0.5:0.5) and 8mmo1 : 12mmo1 (k:s=0.4:0.6). Each product was obtained with a yield of at least 90%.
<146> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAEK95-6F, E-SPAEK90-6F, E-SPAEK85-6F, E-
SPAEK80-6F, E-SPAEK75-6F, E-SPAEK70-6F, E-SPAEK65-6F, E-SPAEK60-6F, E- SPAEK50-6F and E-SPAEK40-6F.
<I47> <148> Preparation Example 12: Preparation of sulfonated polyCarylene ether) copolymer having a crossl inkable moiety (E-SPAESO-BP)
<149> [Reaction Scheme 13]
<151 > Reaction Scheme 13 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of 4,4'- (hexafluoroisopropylidene)diphenol , and 4,4'-di fluorodiphenyl sulfone as a dihalide material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C , and maintained at 170°C. Sulfonated polyCarylene ether) copolymers having crossl inkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'-biphenol as starting materials in various molar ratios of 19mmo1 : lmino1 (k:s=0.95-'0.05) , 18mmol:2mmol (k:s=O.9:0.1), 17mmo1 :3mmo1 (k:s=0.85:0.15), 16mmol:4mmol (k:s=0.8:0.2), 15mmol:5mmol (k:s=0.75:0.25), 14mmol:6mmol (k:s=0.7:0.3), 13mmol:7mmol (k:s=0.65:0.35) , 12mmol :8mmol (k:s=0.6:0.4), lOmmol :lOmmol (k:s=0.5:0.5) and 8mmol:12mmol (k:s=0.4:0.6). Each product was obtained with a yield of at least 90%.
<152> The polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAES095-BP, E-SPAES090-BP, E-SPAES085-BP, E- SPAES080-BP, E-SPAES075-BP, E-SPAES070-BP, E-SPAES065-BP, E-SPAES060-BP, E- SPAES050-BP and E-SPAES040-BP.
<153>
<154> Preparation Example 13: Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SPAES0-6F)
<157> Reaction Scheme 14 was performed by the same method as Preparation Example 1 using 4,4'-difluorodiphenyl sulfone as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C, and then maintained at 170°C . Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'- (hexafluoroisopropylidene)diphenol as starting materials in various molar ratios of 19mmol:lmmol (k:s=0.95:0.05) , 18mmo1 :2mmo1 (k:s=0.9:0.1), 17mmol:3mmol (k:s=0.85:0.15), lβmmo1 :4mmo1 (k:s=0.8:0.2), lδinmol :5mmol (k:s=0.75:0.25), 14mmol:6mmol (k:s=0.7:0.3), 13mmo1 :7mmo1 (k:s=0.65:0.35),
12mmol:8mmol (k:s=0.6:0.4), lOmmo1 : lOmmo1 (k:s=0.5:0.5) and 8mmol :l2mmol (k:s=0.4:0.6) . Each product was obtained with a yield of at least 90%.
<158> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPAES095-6F, E-SPAES090-6F, E-SPAES085-6F, E- SPAES080-6F, E-SPAES075-6F, E-SPAES070-6F, E-SPAES065-6F, E-SPAES060-6F, E- SPAES050-6F and E-SPAES040-6F.
<159> <I6O> Preparation Example 14: Preparation of sulfonated poly(arylene ether) copolymer having a crossl inkable moiety (E-SPEKK-BP)
<16I> [Reaction Scheme 15]
SO5-K4 Beniβπe
<162> <163> Reaction Scheme 15 was performed by the same method as Preparation Example 1 using 4,4'-biphenol as a starting material instead of (4,4'- hexafluoroisopropyIidene)diphenol , and l,3-bis(4-fluorobenzoyD-benzene instead of decafluorobiphenyl as a dihalide material. Further, activation was performed in the range of 150 to 160°C , and maintained at 170°C . Sulfonated poly(arylene ether) copolymers having crossl inkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'-biphenol as starting materials in various molar ratios of 20mmo1 :Ommo1 (k:s=1.00:0), 19mmol:lmmol (k:s=0.95:0.05) , 18mmo1 :2mmo1 (k:s=0.9:0.1), 17mmo1 :3mmo1
(k:s=0.85:0.15), 16mmo1 :4mmo1 (k:s=0.8:0.2), lδmmol :5mmol (k:s=0.75:0.25) , 14mmol:6mmol (k:s=0.7:0.3), 12mmo1 :8mmo1
lOmmo1 : lOmmo1 (k:s=0.5:0.5) and 8mmo1 : 12mmo1 (k:s=0.4:0.6). Each product was obtained with a yield of at least 90%.
<164> The polyCarylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEKK100-BP, E-SPEKK95-BP, E-SPEKK90-BP, E- SPEKK85-BP, E-SPEKK80-BP, E-SPEKK75-BP, E-SPEKK70-BP, E-SPEKK60-BP, E- SPEKK50-BP and E-SPEKK40-BP.
<165> <166> Preparation Example 15: Preparation of sulfonated poly(arylene ether) copolymer having a crosslinkable moiety (E-SPEKK-6F)
<167> [Reaction Scheme 16]
<168> <169> Reaction Scheme 16 was performed by the same method as Preparation Example 1 using l,3-bis(4-fluorobenzoly)-benzene, a dihalide material, as a starting material instead of decafluorobiphenyl . Further, activation was performed in the range of 150 to 160°C, and then maintained at 170°C. Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared using hydroquinonesulfonic acid potassium salt and 4,4'- (hexafluoroisopropylidene)diphenol as starting materials in various molar ratios of 19mmo1 : lmmo1 (k:s=0.95:0.05) , lδmmol :2mmol (k:s=O.9:0.1),
17mmol:3mmol (k:s=0.85:0.15), lθmmol :4mmol (k:s=0.8:0.2), 15mmo1 :5mmo1 (k:s=0.75:0.25), 14mmo1 :6ramo1 (k:s=0.7:0.3), 13mmo1 :7mmo1 (k:s=0.6:0.35) , 12mmol:8mmol (k:s=0.5:0.4), lOmmol : lOmmol (k:s=0.5:0.5) and 8mmo1 : 12mmo1 (k:s=0.4:0.6) . Each product was obtained with a yield of at least 90%. <17O> The poly(arylene ether) copolymers prepared with various ratios of k to s were independently named E-SPEKK95-6F, E-SPEKK90-6F, E-SPEKK85-6F, E- SPEKK80-6F, E-SPEKK75-6F, E-SPEEK70-6F, E-SPEKK65-6F, E-SPEKK60-6F, E- SPEEK50-6F and E-SPEEK40-6F.
<171>
<i72> Structures of the sulfonated poly(arylene ether) copolymers having crosslinkable moieties synthesized by Preparation Examples 1 to 15 were analyzed using IH-NMR, 19F-NMR and FT-IR.
<173> Referring to IH-NMR results shown in FIGS. 1 to 6, the polymers were compared to an E-SFQK polymer formed by polymerization of hydroquinonesulfonic acid potassium salt with decafluorobiphenyl and introduction of an ethynyl group. The results show no peak corresponding to a hydroxyl group of a monomer and a proton peak corresponding to an ethynyl group. Thus, it could be confirmed that the polymer is substituted with a crosslinkable ethynyl group.
<174> The results also show peaks corresponding to the polymers. In 19F-NMR results, only two peaks are shown, which indicates that F, located at a para position on the decafluorobiphenyl group, participated in polymerization and then released.
<175>
<176> Preparation Example 16: Preparation of polymer electrolyte membrane <177> Sulfonated poly(arylene ether) copolymers having a crosslinkable moiety synthesized according to Preparation Examples 1 to 15 were dissolved in a solvent, followed by being filtered using a 0.45μm to lμm PTFE membrane filter. Afterward, the polymer solvent was poured over a glass plate by casting, and maintained in an oven at 40°C for 24 hours. <178> Subsequently, for crossl inking polymer ends, annealing was performed at
80 to 350°C for 30 minutes or more, and preferably at 250 to 260°C for at least 2 hours.
<i79> Here, the available solvents were dipolar solvent, including N,N'- dimethylformamide (DMF), diraethylacetamide (DMAc), dimethylsulfoxide (DMSO) and N-methy1pyro1 idone (NMP) .
<i80> After the annealing, the polymer membrane was cooled down to room
+ + temperature, and treated with an acid to substitute a counter ion (Na , K or alkyl ammonium ion) of a sulfone part in the polymers prepared in Reaction Schemes 2 to 15 with hydrogen.
<i8i> The acid treatment was performed by soaking the membrane in a 2N H2S04 solution, IN HNO3 solution or IN HCl solution for 24 hours and then transferred to distilled water for another 24 hours, or boiled in 0.5M H2SO4 solution for 2 hours. However, the present invention is not limited thereto.
<182> According to the sulfonated poly(arylene ether) copolymers prepared by Preparation Examples 1 to 15, the polymer membranes were independently named. That is, when the polymer membrane was formed using E-SFQK-6F in Preparation Example 1, the membrane was named CSFQH-6F. Accordingly, the 15 kinds of polymer membranes formed using sulfonated poly(arylene ether) copolymers disclosed in Preparation schemes 1 to 15 were independently named CSFQH-6H, CSFQH-BP, CSFQH-HQ, CSFQH-6H, CSFQH-2BP, CSFQH-DPE, CSPECN-HQ, CSPEK-6F, CSPEK-BP, CSPAEK-BP, CSPAEK-6F, CSPAESO-BP, CSPAES0-6F, CSPEKK-BP and CSPEKK- 6F, respectively.
<183> Table 1 shows solubilities of the 15 kinds of polymer membranes.
<i84> [Table 1]
<187> As shown in Table 1, the polymer electrolyte membrane was not dissolved in any solvent, which indicates that it is crosslinked. Thus, the membrane has very high chemical stability and good dimensional stability.
< I 88> In FIGS. 7 and 8, a structure of the crosslinked polymer electrolyte membrane was analyzed by FT-IR, compared to an electrolyte membrane CSFQH prepared of an E-SFQK polymer by polymerization of hydroquinonesulfonic acid potassium salt with decafluorobiphenyl and then introduction of an ethynyl group.
<189> Further, glass transition temperatures (Tg) of the polymer electrolyte membranes formed in Preparation Example 16 were taken under a nitrogen gas atmosphere at 10°C/inin by differential scanning calorimetry (DSC). As shown in FIGS. 9 to 13, the Tgs are at least 200°C, which indicates that the membranes have significantly-higher thermal stabilities than that of the Nafion film, which is commercially available, and a decomposition temperatures (Tds) are 300°C, which indicates the membranes have a very high
thermal stability.
<i90> In FIGS. 9 to 13, CSFQH90-6F, CSFQH80-6F, CSFQH70-6F, CSFQH90-BP, CSFQH80-BP and CSFQH70-BP, which are the names of the polymer electrolyte membranes, have meanings as follows. For examples, CSFQH90-6F denotes a polymer electrolyte membrane formed using E-SFQK90-6F prepared in Preparation Example 1, and CSFQH90-BP denotes a polymer electrolyte membrane formed using E-SFQK90-BP prepared in Preparation Example 2, CSFQH90-HQ denotes a polymer electrolyte membrane formed using E-SFQK90-HQ prepared in Preparation Example 3, CSFQH90-6H denotes a polymer electrolyte membrane formed using E-SFQK90-6H prepared in Preparation Example 4, and CSFQH90-DPE denotes a polymer electrolyte membrane formed using E-SFQK90-DPE prepared in Preparation Example 6.
<i9i> Also, as shown in FIG. 14, it can be noted that the polymer electrolyte membranes are transparent and amorphous.
<192> Table 2 shows water uptakes and proton conductivities of the polymer electrolyte membranes formed in Preparation Example 16 compared to the currently used Nafion film, which are commercially available.
<i93> [Table 2]
<194> <195> <196>
<197>
<198>
<199>
<200>
<201>
<202>
<203>
<204>
<205>
<206>
<207>
<208>
<209>
<210>
<211>
<212>
<213>
<2!6>
<217>
<218>
<219>
<220>
<221>
<222>
<223>
<224>
<225>
<226>
<227>
<228>
<229>
<230>
<231>
a : Calculated as a monomer molar ratio! IEC = (1000/molecular weight of repeating unit)x sulfonation ratioX the number of sulfonic acid groups}
<232> b : For titration, the membrane was soaked in 0.01N NaCl solution for
24 hours, and then titrated using 0.01N NaOH. (The indicator used in the test was phenolphthalein)
<233> c : Equivalent weight per sulfonic acid group
<234> d '• Analyzed by an impedance analyzer (AutoLab, PGSTAT 30,
Netherlands)! σ (S/cm)/(Rx S), L(cm) is a distance between both electrodes, R(Ω) is membrane resistance, S(cni2) is surface area of an ion transporting membrane}
<235> e • Estimated weight of a membrane {Water Uptake(%) = (Wwet - Wdry) x
100/Wdry, Wwet is a weight of a wet membrane, Wdry is a weight of a dry membrane}
<236>
It can be noted from Table 2 that the polymer electrolyte membrane has much a higher ion conductivity, which is its most import characteristic, and a lower water uptakes than the Nafion film.
<237> <238> Embodiment 1 <239> A sulfonated poly(arylene ether) copolymer according to Embodiment 2 has a crosslinkable moiety, which is represented by Formula 4.
<240> [Formula 4]
CMl -H-O-Atf-O-SAr-V-/-fθ-Ar2-O-Arl-)—I— CM2
<241> L λ <242> In Formula 4, SAr indicates a sulfonated aromatic group.
<244> Also, both ArI and Ar2 are unsulfonated aromatic groups, which may be the same as or different from each other.
O — S — o Il
-A
<248> Further , in Y , denotes a benzene structure having ortho,
/=v A-
-A- F' meta or para-substituted connecting moieties, and — denotes a fully fluorine-substituted benzene structure, which has ortho, meta or para-
substituted connecting moieties. That is,
denotes fully fluorine-substituted benzene structures having connecting moieties at ortho (
<249> In the above structural formula, L is H, F or Cl to C5, H is hydrogen, F is fluorine, and Cl to C5 are hydrogen- or fluorine-substituted alkyl structures having 1 to 5 carbon atoms.
- +
<250> Z denotes a bond directly attached to carbon of benzene and - SO3 M ,
or , which may be connected at an ortho, meta or para position. Y in Z is the same as described above.
+
<25i> M is a counter ion having a positive charge and may be a potassium ion
(K ), a sodium ion (Na ) or an alkyl ammonium ion ( NR4), and preferably, an K
+ or Na ion.
CMl or CM2, R is a Rl-substitued ethynyl part (R= ^R1 ), vinyl part (R= Rl
RI \ /
) or v which may be an ortho, meta or para-substituted radical on a benzene ring. In R, G is a carbon-carbon single bond, -O- , -S-
O or —OC- Also> R1 is H; F> C1 t0 C5; or XR2 _ In R1) H is hydrogen, F is fluorine, Cl to C5 are hydrogen- or fluorine-substituted alky
—^^R2 structures having 1 to 5 carbon atoms, denotes benzene ring having ortho, meta or para-substituted R2. R2 is H, X or Cl to C5. In R2, H is hydrogen, Cl to C5 are hydrogen- or fluorine-substituted alky structures having 1 to 5 carbon atoms, and X is a halogen atom (F, Cl or Br). Here, X is a functional group enabling polymerization with a hydroxy group in another polymer chain. Also, in Formula 1, k ranges from 0.001 to 1.000, s has 1-k, and n is an integer indicating the number of a repeating unit in a macromolecular polymer. Here, n is a natural number ranging from 10 to 500.
<253> The sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end of Formula 4 is prepared by the method shown in Reaction Scheme 16, which will now be described in detail.
<254> [Reaction Scheme 16]
<255> k X - Sar-X + s X-ArI-X + m H0-Ar2-0H
<256> [Formul a 5]
-O-Ar2-O—SAr-)r-/-fθ-Ar2-O—ArI
<257> 's Jn
<258> [Formula 6]
CMl- O -Ar2-O-SAr-)—/-fθ-Ar2-O-Arl^—I— CM2
<261> ;k v ;s Jn
<262> Reaction Scheme 16 shows a reaction process for preparing a compound of Formula 4. Also, a polymer of Formula 5 is prepared by polycondensation, and a monomer participating in the reaction can be changed.
<263> A sulfonated monomer (X-SAr-X) used for the compound of Formula 4 is a dihalide monomer. The sulfonated poly(arylene ether) copolymer having a crosslinkable moiety may be prepared according to Reaction Scheme 16.
<264> In Reaction Scheme 16, k has a range of 0.001 to 1, s is 1-k, and (k+s)/m has a range of 0.8 to 1.2. Further, k, s and m denote molar ratios of monomers participating in the reaction.
<265> Here, compounds of Formula 6 may include a hydroxy-substituted monomer
HO—{ Λ ^~ \ x
( ° ) and a halide-substituted monomer ( ). In Reaction
( ) participates in the reaction, and when (k+s)/m is more than 1,
HO- ^^ the hydroxy group-substituted monomer ( ^) participates in the reaction. Further, when R2 in Formula 6 is X, the hydroxy group-substituted
monomer (
) may participate in the reaction regardless of the value of (k+S)/m. <266> In the preparation process of Reaction Scheme 16, an unsulfonated
dihydroxy monomer is activated to facilitate the polycondensation facilitates the polycondensation of the dihydroxy monomer with the dihalide monomer. Also, the sulfonated and unsulfonated dihalide monomers may be added to in the same step of the preparation process, together with the dihydroxy monomer .
<267> First, in the presence of a solvent consisting of a base, an azeotropic solution and an aprotic polar solvent, polycondensation is performed at 0 to 300°C for 1 to 100 hours to give a macromolecular polymer represented by Formula 5. Also, depending on the type of the preparation process, a protic polar solvent can be used instead of the aprotic polar solvent.
<268> Subsequently, a macromolecular polymer having a crosslinked structure at an end represented in Formula 4 is prepared using the macromolecular polymer of Formula 5, and the hydroxy- or halide-substituted monomer of Formula 6. A reaction for preparing the polymer of Formula 4 is substantially the same as the method of preparing the macromolecular polymer of Formula 5.
<269> That is, the crossl inked structure-substituted macromolecular polymer of Formula 4 is prepared by activation and polycondensation, sequentially. Before the polycondensation step, the azeotropic solvent may be removed.
<270> Also, in the present embodiment, to improve thermal stability, electrochemical stability, film-forming capacity, dimensional stability, mechanical stability, chemical characteristics, physical properties and cell performance of the polymer represented by Formula 5, CMl or CM2 including a thermal crossl inkable group is substituted at the end of the polymer chain by polycondensation to give a sulfonated poly(arylene ether) copolymer having a crossl inked structure, represented by Formula 4.
<27i> For the polycondensation and introduction of crossl inkable groups to synthesize the sulfonated polyCarylene ether) copolymer having a crossl inked structure, an inorganic base selected from the group consisting of a hydroxide of alkali metal or alkali earth metal, a carbonate and a sulfate, or a group consisting of general amines including ammonia may be used as a
base .
<272> Also, as a reaction solvent, the aprotic polar solvent such as N- methylpyrolidone (NMP), dimethyl formamide (DMF), N,N-dimethylacetamide (DMAc) or dimethylsLilfoxide (DMSO), or protic polar solvent such as methylene chloride (CH2CI2), chloroform (CH3Cl) or tetrahydrofuran (THF) may be used, and benzene, toluene or xylene may be used as an azeotropic solvent.
<273> The sulfonated poly(arylene ether) copolymer having a crossl inked structure prepared by the method described above has equal or superior thermal stability, film-forming capacity, mechanical stability, chemical characteristics, physical properties and cell performance compared to the commercially available polymer electrolyte membrane, e.g., Nafion film, and further improved electrochemical characteristics such as proton conductivity and cell performance. Moreover, the copolymer has high dimensional stability, so that the electrolyte membrane has no change in characteristics even though it is exposed to moisture for a long time.
<274> <275> Preparation Example 1'- Preparation of sulfonated poly(arylene ether) copolymer having crossl inkable moiety (E-DSPES0-6F)
<276> [Reaction Scheme 17]
<277> <278> E-DSPES0-6F was synthesized by the same method as in Preparation
Example 1, except that 3,3'-disulfonated-4,4'-difluorodiphenyl sulfone, 4,4'- difluorodiphenyl sulfone and (4,4'-hexafluoroisopropyIidene)diphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
<279> Activation was performed at 150 to 170°C for 6 to 8 hours, and then polymerization was performed at an increased temperature of 170 to 180°C .
<280> Sulfonated polyCarylene ether) copolymers having crosslinkable moieties were prepared with various molar ratios of 3,3'-disulfonated-4,4'- difluorodiphenyl sulfone to 4,4'-difluorodiphenyl sulfone of lOmmol :10mmol (k:s=0.5:0.5), 9mmol:llmmol (k:s=0.45:0.55), 8mmol:l2mmol (k:s=0.4:0.6), 7mmol:l3mmol (k:s=0.3:0.65) and 6mmo1 : 14mmo1 (k:s=0.3:0.7).
<28 I > The sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPES050-6F, E- DSPES045-6F, E-DSPES040-6F, E-DSPES035-6F and E-DSPES030-6F, respectively. Each product was obtained with a yield of 90% or more.
<282> <283> Preparation Example 18: Preparation of sulfonated poly(arylene ether) copolymer having crosslinkable moiety (E-DSPESO-BP)
<284> [Reaction Scheme 18]
*Na%S SO3-Na*
K2CO3
L \ DMfte I Benzene
% f no c
<285> <286> E-DSPESO-BP was synthesized by the same method as Preparation Example 1, except that 3,3 '-disulfonated-4,4'—di fluorodiphenyl sulfone, 4,4'-
difluorodiphenyl sulfone and 4,4'-biphenol were independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
<287> Activation was performed at 150 to 170°C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180°C.
<288> Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared with various molar ratios of 3,3'-disulfonated-4,4'- difluorodiphenyl sulfone to 4,4'-difluorodiphenyl sulfone of lOmmol • lOmmol (k:s=0.5:0.5), 9mmol :llmmol (k:s=0.45:0.55) , 8mmo1 : 12mmo1 (k:s=0.4:0.6), 7mmol:l3mmol (k:s=0.3:0.65) and 6mmo1 : 14mmo1 (k:s=0.3:0.7).
<289> The sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPES050-BP, E- DSPES045-BP, E-DSPES040-BP, E-DSPES035-BP and E-DSPES030-BP. Each product was obtained with a yield of 90% or more.
<290> <291> Preparation Example 19: Preparation of sulfonated polyCarylene ether) copolymer having crosslinkable moiety (E-DSPEK-6F)
<292> [Reaction Scheme 19]
<293> <294> E-DSPEK-6F was synthesized by the same method as Preparation Example 1, except that 3,3'-disulfonated-4,4'-difluorobenzophenone, 4,4'- difluorobenzophenone and 4,4'-(hexaf1uoroisopropyIidene)diphenol were
independently used as a sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer.
<295> Activation was performed at 150 to 170°C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180°C.
<296> Sulfonated poly(arylene ether) copolymers having crosslinkable moieties were prepared with various molar ratios of 3,3'-disuifonated-4,4'- difluorobenzophenone to 4,4' -difluorobenzophenone of lOmiiiol :lOmmol (k: s=0.5:0.5), 9mmol :llmmol (k:s=0.45:0.55) , 8mmol : 12mmol (k:s=0.4:0.6), 7mmol:13mmol (k:s=0.3:0.65) and βmmol : 14mmol (k:s=0.3:0.7).
<297> The sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPEK50-6F, E- DSPEK45-6F, E-DSPE40-6F, E-DSPEK35-6F and E-DSPEK30-6F. Each product was obtained with a yield of 90% or more.
<298> <299> Preparation Example 20: Preparation of sulfonated poly(arylene ether) copolymer having crosslinkable moiety (E-DSPEK-BP)
<300> [Reaction Scheme 20]
-NsO3S SO.-Na*
^ O ^ O K*CO,
Il Dtølftc / Benzene ij~h~U f XJ-^-\j F * HO1 % 4n -OH 170 C
<301 > <302> E-DSPEK-BP was synthesized by the same method as Preparation Example 1, except that 3,3'-disulfonated-4,4'—di fluorobenzophenone, 4,4'- difluorobenzophenone and 4,4'-biphenol were independently used as a
sulfonated monomer, an unsulfonated dihalide monomer and a dihydroxy monomer. Activation was performed at 150 to 170°C for 6 to 8 hours, and polymerization was performed at an increased temperature of 170 to 180°C.
<303> Sulfonated polyCarylene ether) copolymers having crosslinkable moieties were prepared with various molar ratios of 3,3'-disulfonated-4,4'- difluorobenzophenone to 4,4'-difluorobenzophenone of lOmmol :10mmol (k:s=0.5:0.5), 9mmol:llmmol (k:s=0.45:0.55), 8mmo1 : 12mmo1 (k:s=0.4:0.6), 7mmo1 : 13mmo1 (k:s=0.3:0.65) and 6mmo1 : 14mmo1 (k:s=0.3:0.7) .
<304> The sulfonated poly(arylene ether) copolymers prepared with various ratios of k to s described above were independently named E-DSPEK50-BP, E- DSPEK45-BP, E-DSPEK40-BP, E-DSPEK35-BP and E-DSPEK30-BP. Each product was obtained with a yield of 90% or more.
<305>
<306> Preparation Example 21: Formation of polymer electrolyte membranes (CDSPES0-6F, CDSPESO-BP, CDSPEK-6F and CDSPEK-BP)
<307> Polymer electrolyte membranes (CDSPES0-6F, CDSPESO-BP, CDSPEK-6F and CDSPEK-BP) were prepared using the sulfonated poly(arylene ether) copolymers having crossl inked structures (E-DSPES0-6F, E-DSPESO-BP, E-DSPEK-6F and E- DSPEK-BP) prepared according to Preparation Examples 17 to 20, respectively. The polymer electrolyte membranes were named in the sequence of the sulfonated polyCarylene ether) copolymers described above. For example, the polymer electrolyte membrane using E-DSPES0-6F was named DSPES0-6F, and the polymer electrolyte membrane using E-DSPEK-BP was named CDSPEK-BP.
<308> Further, a method of forming the polymer electrolyte membrane was the same as the methods described in Preparation Example 16.
<309> Table 3 shows solubilities of the polymer electrolyte membranes.
<310> [Table 3]
<313> It can be noted from Table 3 that the polymer electrolyte membrane is not dissolved in any solvent, which indicates that the polymer electrolyte membrane is crossl inked. It can be also noted that the polymer electrolyte membrane has very high chemical stability and dimensional stability.
<314> While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
[Claim 1] <3i6> A sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end, represented by Formula 1, <3i7> [Formula 1]
CMl . -^H"-Oo-~SSAArr-~'Oo-~ AArr22-7)]jr—//—"T f Oo-~ AArrIl-~Oo-~ AArr22TT~ CM2
<318> L k S J n
<3i9> wherein SAr is a sulfonated aromatic group, ArI and Ar2 are unsulfonated aromatic groups, and CMl and CM2 are crosslinkable moieties, and <320> k has a range of 0.001 to 1, s has a value of 1-k, and n is an integer from 10 to 500 indicating the number of repeat units.
[Claim 2] <32i> The copolymer according to claim 1, wherein the sulfonated poly(arylene ether) copolymer having a crosslinkable moiety at an end, represented by
Formula 1 is prepared by Reaction scheme 1 <322> [Reaction scheme 1] <323> kOH-SAr-OH + sHC-Arl-OH + mX-Ar2-X
<324> [Formula 2]
<326> [Formul a 3]
<328> [Formul a 1]
CMl-H- 0-SAr-O- Ar2-)r-/-fθ- ArI-O- Ar2-)-^ I— CM2
<329> L k S J n
<330> wherein k has a range of 0.001 to 1, s is 1-k, (k+s)/m has a range of 0.800 to 1.200, and k, s and m are molar ratios of monomers participated in the reaction.
SO3M
E E O
I I I I
O — C — —Si — P
<336> wherein M is a counter ion having a positive charge.
[Claim 4] <337> The copolymer according to claim 2, wherein the counter ion having a positive charge is a potassium ion, a sodium ion or an alkyl ammonium ion.
[Claim 5]
<338> The copolymer according to claim 2, wherein ArI and Ar2 are
O
—S
<340> wherein A is a carbon-carbon single bond, -Q-, -S-, —s— (3
[Claim 6] <343> The copolymer according to claim 2, wherein CMl and CM2 are
<344> wherein R is a Rl-substituted ethynyl (R= ^=R1 ) or vinyl part
<345> wherein G is a carbon-carbon single bond, -Q-, -S- or -o-c-
<347> wherein R2 is H, X or C1-C5.
[Claim 7] <348> A sulfonated poly(arylene ether) copolymer having a crosslinkable moitey at an end, represented by Formula 4. <349> [Formula 4] CM2
<35i> wherein SAr is a sulfonated aromatic group, ArI and Ar2 are unsulfonated aromatic groups, and CMl and CM2 are crosslinkable moieties, and <352> k has a range of 0.001 to 1, s is 1-k, and n is an integer from 10 to
500 indicating the number of repeating units.
[Claim 8] <353> The copolymer according to claim 7, wherein the sulfonated poly(arylene ether) copolymer having a crosslinkable moitey at an end, represented by
Formula 4, is prepared by Reaction scheme 2. <354> [Reaction scheme 2]
<355> kX-SAr-X + sX-Arl-X + mH0-Ar2-0H
<356> [Formula 5]
f O- Ar2-O-SAr-W-f O- Ar2-O- ArI -^j-
<357> <358> [Formula 6]
HO- X-
R
[Claim 9]
<364> wherein Z denotes a bond directly attached to carbon of benzene and -
—
O
O —S
<366> wherein A is a carbon-carbon single bond, -Q-, -S-, -s Il— O
+
<369> wherein M is a counter ion having a positive charge.
[Claim 10]
<370> The copolymer according to claim 8, wherein the counter ion having a positive charge is a potassium ion, a sodium ion or an alkyl ammonium ion.
[Claim 11]
<371> The copolymer according to claim 8, wherein the ArI and Ar2 are
O
Il
O — S
<372> wherein Y is a carbon-carbon single bond, -0-, -S-, s , °
<375> wherein L is H, F or Cl ~ C5.
[Claim 12]
<376> The copolymer according to claim 8, wherein CMl and CM2 are
<377> wherein R is a Rl-subst ituted ethynyl (R= ~^R1 ) or vinyl
Rl
(R= R1 ) part or ~^ ,
O
<378> wherein G is a carbon-carbon single bond, -Q-, -S- or ~~ O-C—
<380> wherein R2 is H, X or C1~C5.
[Claim 13] <38i> A polymer electrolyte membrane crossl inked by annealing using a poly(arylene ether ) copolymer represented by Formula 7 or 8. <382> [Formula 7]
CMl -f-f O-SAr- O-Ar24-/-f O- ArI-O- Ar2 -)-4- i <383> L k sJn
<384> [Formula 8]
CMl- -O-Ar2-O-SAr4— /-f O-Ar2-O-Arl4— 1— CM2
<385> <386> wherein SAr is a sulfonate aromatic group, ArI and Ar2 are unsulfonated aromatic groups, and CMl and CM2 are crosslinkable moieties, and
<387> k has a range of 0.001 to 1, s is 1-k, and n is an integer from 10 to 500 indicating the number of a repeating units.
[Claim 14] 'M
<389> wherein Z denotes a bond directly attached to carbon of benzene and -
/=\
-A- F' -A -i FΛ or
—
I I
O — C — — S i -P
I
— c— or E
+
<394> wherein M is a counter ion having a positive charge.
[Claim 15] <395> The membrane according to claim 14, wherein the counter ion having a positive charge is a potassium ion, a sodium ion or an alkyl ammonium ion. [Claim 16]
<396> The membrane according to claim 15, wherein the crosslinked polymer electrolyte membrane has hydrogen substituting for the counter ion on the sulfonated aromatic ring by acid treatment. [Claim 17]
<397> The membrane according to claim 13, wherein ArI and Ar2 are
<398> wherein Y is a carbon-carbon single bond, -O-, -S-, <399> wherein A is a carbon-carbon single bond, -Q-, -S-, -
<402> wherein CMl and CM2 are independently <403> wherein R is a Rl-substituted ethynyl (R= ^^^1 ) or vinyl (Rz
Rl
-G
Rl .0
Rl ) part , or
<405> wherein Rl is H, F, Cl ~C5 or "R2 , and <406> wherein R2 is H, X or C1~C5. [Claim 18]
<407> The membrane according to claim 13, wherein the annealing is performed at 80 to 350°C using a dipolar solvent after melting the sulfonated poly(arylene ether) copolymer of Formula 7 or 8.
<408> <409>
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070096951A KR100954060B1 (en) | 2007-09-21 | 2007-09-21 | Sulfonated poly (arylene ether) copolymer, preparation method thereof and crosslinked polymer electrolyte membrane using the same |
KR10-2007-0096951 | 2007-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009038268A1 true WO2009038268A1 (en) | 2009-03-26 |
Family
ID=40468059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2008/002712 WO2009038268A1 (en) | 2007-09-21 | 2008-05-15 | Sulfonated poly(arylene ether), method of manufacturing the same, and crosslinked polymer electrolyte membrane using the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100954060B1 (en) |
WO (1) | WO2009038268A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2463959A (en) * | 2008-09-02 | 2010-04-07 | Gen Electric | Electrolyte membrane, methods of manufacture thereof, and articles comprising the same |
CN111363140A (en) * | 2020-03-09 | 2020-07-03 | 吉林大学 | Crosslinkable fluorine-containing polyarylether and preparation method and application thereof |
CN113234221A (en) * | 2021-05-10 | 2021-08-10 | 吉林大学 | Fluorine-containing polyarylether containing fluorene as well as preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452063B (en) * | 2012-03-29 | 2014-09-11 | Univ Nat Sun Yat Sen | Polymer of sulfonated poly (arylene ether) s and manufacturing method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147074A (en) * | 2001-11-16 | 2003-05-21 | Toyobo Co Ltd | Aromatic polyarylene ether compound containing sulfonic acid group and polymer electrolyte membrane |
WO2005053060A2 (en) * | 2003-11-20 | 2005-06-09 | Virginia Tech Intellectual Properties, Inc. | Multiblock copolymers containing hydrophilic-hydrophobic segments for proton exchange membrane |
JP2005264008A (en) * | 2004-03-19 | 2005-09-29 | Toyobo Co Ltd | Crosslinkable sulfo-containing polyarylene ether compound |
EP1772922A1 (en) * | 2005-10-06 | 2007-04-11 | Samsung SDI Co., Ltd. | Catalyst layer for a membrane-electrode assembly of a fuel cell, a compound for forming the catalyst layer, a method of preparing the catalyst layer, and a membrane-electrode assembly including the catalyst layer |
US20070163951A1 (en) * | 2006-01-18 | 2007-07-19 | Mcgrath James E | Chlorine resistant desalination membranes based on directly sulfonated poly(Arylene Ether Sulfone) copolymers |
KR100760452B1 (en) * | 2006-11-20 | 2007-10-04 | 광주과학기술원 | Poly (arylene ether) copolymer and polymer electrolyte membrane using same |
-
2007
- 2007-09-21 KR KR1020070096951A patent/KR100954060B1/en not_active Expired - Fee Related
-
2008
- 2008-05-15 WO PCT/KR2008/002712 patent/WO2009038268A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147074A (en) * | 2001-11-16 | 2003-05-21 | Toyobo Co Ltd | Aromatic polyarylene ether compound containing sulfonic acid group and polymer electrolyte membrane |
WO2005053060A2 (en) * | 2003-11-20 | 2005-06-09 | Virginia Tech Intellectual Properties, Inc. | Multiblock copolymers containing hydrophilic-hydrophobic segments for proton exchange membrane |
JP2005264008A (en) * | 2004-03-19 | 2005-09-29 | Toyobo Co Ltd | Crosslinkable sulfo-containing polyarylene ether compound |
EP1772922A1 (en) * | 2005-10-06 | 2007-04-11 | Samsung SDI Co., Ltd. | Catalyst layer for a membrane-electrode assembly of a fuel cell, a compound for forming the catalyst layer, a method of preparing the catalyst layer, and a membrane-electrode assembly including the catalyst layer |
US20070163951A1 (en) * | 2006-01-18 | 2007-07-19 | Mcgrath James E | Chlorine resistant desalination membranes based on directly sulfonated poly(Arylene Ether Sulfone) copolymers |
KR100760452B1 (en) * | 2006-11-20 | 2007-10-04 | 광주과학기술원 | Poly (arylene ether) copolymer and polymer electrolyte membrane using same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2463959A (en) * | 2008-09-02 | 2010-04-07 | Gen Electric | Electrolyte membrane, methods of manufacture thereof, and articles comprising the same |
US8197955B2 (en) | 2008-09-02 | 2012-06-12 | General Electric Company | Electrolyte membrane, methods of manufacture thereof and articles comprising the same |
GB2463959B (en) * | 2008-09-02 | 2013-07-31 | Gen Electric | Electrolyte membrane, methods of manufacture thereof and articles comprising the same |
CN111363140A (en) * | 2020-03-09 | 2020-07-03 | 吉林大学 | Crosslinkable fluorine-containing polyarylether and preparation method and application thereof |
CN113234221A (en) * | 2021-05-10 | 2021-08-10 | 吉林大学 | Fluorine-containing polyarylether containing fluorene as well as preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20090031107A (en) | 2009-03-25 |
KR100954060B1 (en) | 2010-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI406895B (en) | Polymeric electrolyte material, polymeric electrolyte article thereof and method for manufacturing the same, membrane electrode complex and solid polymeric fuel cell | |
KR101546816B1 (en) | Ion conducting polymer comprising partially branched multiblock copolymer and use thereof | |
JP5222687B2 (en) | Sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain, sulfonated poly (arylene ether) copolymer having a crosslinked structure inside and at the end of the polymer chain, and Used polymer electrolyte membrane | |
KR101911982B1 (en) | Block copolymer, manufacturing method therefor, and polymer electrolyte material, molded polymer electrolyte, and solid-polymer fuel cell using said block copolymer | |
KR100819332B1 (en) | Sulfonated poly (arylene ether) copolymer, which forms a crosslinked structure at the end, a preparation method thereof and a polymer electrolyte membrane using the same | |
Miyatake et al. | Block poly (arylene ether sulfone ketone) s containing densely sulfonated linear hydrophilic segments as proton conductive membranes | |
KR20060115886A (en) | Multiblock copolymers containing hydrophilic-hydrophobic segments for proton exchange membrane | |
Yoo et al. | Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics | |
JP6336601B2 (en) | POLYMER ELECTROLYTE COMPOSITION AND POLYMER ELECTROLYTE MEMBRANE, ELECTROLYTE MEMBRANE WITH CATALYST LAYER, MEMBRANE ELECTRODE COMPLEX AND SOLID POLYMER TYPE FUEL CELL | |
KR100963409B1 (en) | Sulfonated poly (arylene ether) alternating copolymer and sulfonated poly (arylene ether) alternating copolymer containing a crosslinked structure at the polymer chain terminal and polymer electrolyte membrane using the same | |
WO2009038268A1 (en) | Sulfonated poly(arylene ether), method of manufacturing the same, and crosslinked polymer electrolyte membrane using the same | |
US7473714B2 (en) | Materials for use as proton conducting membranes for fuel cells | |
KR101235167B1 (en) | Sulfonated poly(arylene ether) copolymer comprising crosslink structure and polymer electrolyte membrane comprising the same | |
KR100760452B1 (en) | Poly (arylene ether) copolymer and polymer electrolyte membrane using same | |
KR101605049B1 (en) | Ion-conducting polymer comprising controlled sulfonated poly(phenyl sulfone) and use thereof | |
KR100934535B1 (en) | Sulfonated poly (arylene ether) copolymer having a crosslinked structure and a polymer electrolyte membrane crosslinked using the same | |
EP2048182A1 (en) | Sulfonate poly(arylene ether) having crosslinkable moiety combined in chain of polymer, sulfonated poly(arylene ether) having crosslinkable moieties combined in polymer and at polymer end group, and polymer electrolyte membrane using sulfonated poly(arylene ether) | |
JP5412718B2 (en) | POLYMER ELECTROLYTE MOLDED MANUFACTURING METHOD, POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE COMPONENT, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE FUEL CELL | |
JP4089821B2 (en) | Proton conductive resin composition, proton conductive membrane and cross-linked product | |
JP2021005553A (en) | Polymer electrolyte membrane for redox flow cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08753508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08753508 Country of ref document: EP Kind code of ref document: A1 |