+

WO2009026364A1 - Numériseur de tension seuil pour réseau de transistors à seuil programmable - Google Patents

Numériseur de tension seuil pour réseau de transistors à seuil programmable Download PDF

Info

Publication number
WO2009026364A1
WO2009026364A1 PCT/US2008/073716 US2008073716W WO2009026364A1 WO 2009026364 A1 WO2009026364 A1 WO 2009026364A1 US 2008073716 W US2008073716 W US 2008073716W WO 2009026364 A1 WO2009026364 A1 WO 2009026364A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistors
codewords
voltage
ramp
word line
Prior art date
Application number
PCT/US2008/073716
Other languages
English (en)
Inventor
Pantas Sutardja
Original Assignee
Marvell World Trade Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marvell World Trade Ltd. filed Critical Marvell World Trade Ltd.
Priority to JP2010521997A priority Critical patent/JP5252665B2/ja
Publication of WO2009026364A1 publication Critical patent/WO2009026364A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/026Detection or location of defective auxiliary circuits, e.g. defective refresh counters in sense amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/563Multilevel memory reading aspects
    • G11C2211/5634Reference cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5644Multilevel memory comprising counting devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/16Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters 

Definitions

  • a memory cell 14-i may comprise a transistor 50 having a threshold voltage V ⁇ .
  • the transistor 50 may comprise a floating gate G (hereinafter gate G), a source S, and a drain D.
  • FIG. 2B a graph of drain current (I 0 ) versus gate-to-source voltage (V G s) of the transistor 50 is shown.
  • the threshold voltage V ⁇ of the transistor 50 is an intercept on the V G s axis for a predetermined value of the drain current.
  • the threshold voltage V ⁇ is a value of V G s that generates the predetermined drain current.
  • the transistor 50 may have two programmable threshold voltages V T i and V T 2 depending on the amount of charge stored in the gate G.
  • the threshold voltage of the transistor 50 is V ⁇ .
  • the threshold voltage of the transistor 50 is V T2 -
  • a gate voltage i.e., V G s
  • V G s a gate voltage having a value greater than or equal to V ⁇ or V T2 may be necessary to turn on the transistor 50 (i.e., to generate the predetermined drain current).
  • the gate voltage is less than the threshold voltage V ⁇
  • the transistor 50 is off, and the drain current is low (approximately zero).
  • the gate voltage is greater than or equal to the threshold voltage V ⁇
  • the transistor 50 turns on, and the drain current becomes high (i.e., equal to the predetermined drain current corresponding to the V ⁇ ).
  • the value of the gate voltage that generates the high drain current represents the threshold voltage V ⁇ of the transistor 50.
  • a binary search algorithm can be used to measure the threshold voltage.
  • the threshold voltage could be measured to N-bit accuracy in N search cycles, where N is an integer greater than 1.
  • the WL decoder 16 selects a word line comprising memory cells 14-1 , 14-2, ..., 14-i, ..., and 14-n (collectively memory cells 14) when the states of the memory cells are to be determined.
  • Each of the memory cells 14 includes a transistor similar to the transistor 50. The transistors are shown as capacitances C that store the charge in the gates.
  • the staircase voltage can be increased in (2 N - 1 ) steps when the memory cells 14 have 2 N states each.
  • N 2. Accordingly, the staircase voltage that can be increased in three steps.
  • the settling time T s1 of V G s of a first transistor on the selected word line is shown.
  • the first transistor is a transistor of the memory cell 14-1 that is adjacent to the WL decoder 16.
  • the V G s of the first transistor rises and settles to a value equal to the first voltage after time T s i.
  • the current sensing amplifier that measures the drain current that flows through the first transistor must wait for a time period equal to T s1 for the V G s to settle before measuring the drain current.
  • the step of waiting for the settling time before sensing the drain current is repeated for each subsequent stepped up voltage if necessary until the threshold voltage of the first transistor is determined.
  • system further comprises a synchronizing module that synchronizes the N control signals to a clock that is used to generate the codewords.
  • the system further comprises a code converter that converts the codewords to Gray-code codewords.
  • the control module stores one of the Gray-code codewords for one of the N transistors when the corresponding one of the N control signals is generated.
  • the code converter converts one of the Gray-code codewords to one of the codewords.
  • an integrated circuit comprises the system and further comprises a memory array and a word line decoder.
  • the memory array includes the N bit lines, the second word line, and the second N transistors.
  • the word line decoder selects the second word line and outputs the first ramp voltage to the second word line.
  • the IC further comprises the reference word line and the N reference transistors.
  • the word line decoder selects the reference word line and outputs the first and second ramp voltages to the reference word line based on a temperature of the IC.
  • a method comprises outputting a first voltage, which is generated based on received codewords, to a first word line that communicates with N transistors each having programmable threshold voltages, where N is an integer greater than 1.
  • the method further comprises sensing currents through the N transistors via N bit lines, respectively, and generating control signals when current through a corresponding one of the N transistors is greater than or equal to a predetermined current.
  • the method further comprises converting the codewords to Gray-code codewords, storing one of the Gray-code codewords for one of the N transistors when the corresponding one of the N control signals is generated, and converting one of the Gray-code codewords to one of the codewords.
  • the method further comprises generating compensation values for the N bit lines based on the first and second ones of the codewords for the N reference transistors, respectively.
  • the method further comprises generating the compensation values by subtracting the second ones of the codewords from the first ones of the codewords for the N reference transistors, respectively.
  • the method further comprises generating the codewords using a counter, generating the first and second ramp voltages converting the codewords using a digital-to-analog converter (DAC), and incrementing the counter at a different rate when generating the second ramp voltage than when generating the first ramp voltage.
  • DAC digital-to-analog converter
  • the system further comprises control means for determining one of the codewords for one of the N transistors when a corresponding one of the control signals is generated, and generating measured values of the threshold voltages of the N transistors by compensating the ones of the codewords based on at least one of a position of the corresponding ones of the N transistors and a temperature.
  • the first voltage includes a linear ramp voltage.
  • the system further comprises code converting means for converting the codewords to Gray-code codewords.
  • the control means stores one of the Gray-code codewords for one of the N transistors when the corresponding one of the N control signals is generated.
  • the code converting means converts one of the Gray-code codewords to one of the codewords.
  • an integrated circuit comprises the system and further comprises a memory array and a word line decoder.
  • the memory array comprises the N bit lines, the first word line, and the N transistors.
  • control means generates the compensation values by subtracting the second ones of the codewords from the first ones of the codewords for the N reference transistors, respectively.
  • the ramp generating means outputs the first ramp voltage to a second word line that communicates with second N transistors having programmable threshold voltages.
  • the current sensing means sense currents through the second N transistors via the N bit lines, respectively.
  • the control means determines a third one of the codewords for one of the second N transistors when current through one of the second N transistors is greater than or equal to the predetermined current, and generates measured values of the threshold voltages by subtracting the compensation values from the third ones of the codewords, respectively.
  • the system further comprises code converting means for converting the codewords to Gray-code codewords.
  • the computer program further comprises outputting the first ramp voltage to a second word line that communicates with second N transistors having programmable threshold voltages.
  • the computer program further comprises sensing currents through the second N transistors via the N bit lines, respectively.
  • the computer program further comprises determining a third one of the codewords for one of the second N transistors when current through one of the second N transistors is greater than or equal to the predetermined current.
  • the computer program further comprises generating measured values of the threshold voltages by subtracting the compensation values from the third ones of the codewords, respectively.
  • FIG. 5 is a functional block diagram of a memory IC according to the present disclosure.
  • FIG. 6 is a detailed functional block diagram of the memory IC of FIG. 5;
  • the speed of measuring the threshold voltages can be further increased by increasing the resolution of the digital code. Specifically, the time interval between successive digital codes can be reduced to less than a time constant of the word line. For example, a high-resolution linearly stepping digital code may be used. Any resulting inaccuracies in the digital values of the threshold voltages are reduced by generating correction values for each bit line using calibration. The correction codes are combined with the digital values to generate accurate digital values of the threshold voltages. [0141] The present disclosure is organized as follows. First, a linear system model of the word line is introduced, and calibration is briefly discussed. Next, a system for digitizing threshold voltages of transistors is discussed. Thereafter, calibration is discussed in detail.
  • the WL decoder 16 and the BL decoder 18 may select the transistors of the spare row 122.
  • the programming module 1 14 may program all the transistors of the spare row 122 to the predetermined threshold voltage.
  • the current sensing amplifiers 22 and the bit lines may communicate with the transistors of the spare row 122.
  • any reference to transistors during calibration includes transistors of the reference row in the memory array 12 and transistors of the spare row 122.
  • the ramp control module 1 16 decreases the rate of the ramp (ramp rate).
  • a ramp rate is the rate at which the ramp voltage changes.
  • the ramp rate may be V volts/sec during normal operation. Accordingly, the ramp control module 1 16 decreases the ramp rate to less than V volts/sec during calibration.
  • the HDD PCB 302 includes a read/write channel module (hereinafter, "read channel") 309, a hard disk controller (HDC) module 310, a buffer 31 1 , nonvolatile memory 312, a processor 313, and a spindle/VCM driver module 314.
  • the read channel 309 processes data received from and transmitted to the preamplifier device 308.
  • the HDC module 310 controls components of the HDA 301 and communicates with an external device (not shown) via an I/O interface 315.
  • the external device may include a computer, a multimedia device, a mobile computing device, etc.
  • the I/O interface 315 may include wireline and/or wireless communication links.
  • the DVD control module 321 may receive data from the buffer 322, nonvolatile memory 323, the processor 324, the spindle/FM driver module 325, the analog front-end module 326, the write strategy module 327, the DSP module 328, and/or the I/O interface 329.
  • the processor 324 may process the data, including encoding, decoding, filtering, and/or formatting.
  • the DSP module 328 performs signal processing, such as video and/or audio coding/decoding.
  • the processed data may be output to the buffer 322, nonvolatile memory 323, the processor 324, the spindle/FM driver module 325, the analog front-end module 326, the write strategy module 327, the DSP module 328, and/or the I/O interface 329.
  • the DVDA 320 may include a preamplifier device 331 , a laser driver 332, and an optical device 333, which may be an optical read/write (ORW) device or an optical read-only (OR) device.
  • a spindle motor 334 rotates an optical storage medium 335, and a feed motor 336 actuates the optical device 333 relative to the optical storage medium 335.
  • the laser driver When reading data from the optical storage medium 335, the laser driver provides a read power to the optical device 333.
  • the optical device 333 detects data from the optical storage medium 335, and transmits the data to the preamplifier device 331.
  • Memory 364 may include random access memory (RAM) and/or nonvolatile memory.
  • Nonvolatile memory may include any suitable type of semiconductor or solid-state memory, such as flash memory (including NAND and NOR flash memory), phase change memory, magnetic RAM, and multi-state memory, in which each memory cell has more than two states.
  • the storage device 366 may include an optical storage drive, such as a DVD drive, and/or a hard disk drive (HDD).
  • the power supply 362 provides power to the components of the cellular phone 358.
  • the teachings of the disclosure can be implemented in memory 383 and associated circuitry of a set top box 378.
  • the set top box 378 includes a set top control module 380, a display 381 , a power supply 382, memory 383, a storage device 384, and a network interface 385. If the network interface 385 includes a wireless local area network interface, an antenna (not shown) may be included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Semiconductor Memories (AREA)

Abstract

L'invention concerne la lecture et le calibrage de réseaux de transistors à seuil programmable multiniveau. Un système comprend un générateur de tension (106), des amplificateurs de lecture de courant (22) et un module de commande (102). Le générateur de tension fournit en sortie une première tension, qui est générée en se basant sur des mots de code reçus, à une première ligne de mots qui communique avec N transistors (14) ayant chacun des tensions à seuil programmable, où N est un entier supérieur à 1. Les amplificateurs de lecture de courant (22) lisent des courants à travers les N transistors via N lignes de bits, respectivement, et génèrent des signaux de commande lorsqu'un courant traversant l'un des N transistors correspondants est supérieur ou égal à un courant prédéterminé. Le module de commande génère des valeurs mesurées des tensions seuil des N transistors en compensant les mots de code en se basant sur au moins une d'une position des transistors correspondants parmi les N transistors et d'une température.
PCT/US2008/073716 2007-08-20 2008-08-20 Numériseur de tension seuil pour réseau de transistors à seuil programmable WO2009026364A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521997A JP5252665B2 (ja) 2007-08-20 2008-08-20 閾値がプログラム可能なトランジスタアレイ用の閾値電圧デジタル化装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US96553507P 2007-08-20 2007-08-20
US60/965,535 2007-08-20
US12/193,380 US7800951B2 (en) 2007-08-20 2008-08-18 Threshold voltage digitizer for array of programmable threshold transistors
US12/193,380 2008-08-18

Publications (1)

Publication Number Publication Date
WO2009026364A1 true WO2009026364A1 (fr) 2009-02-26

Family

ID=39761059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/073716 WO2009026364A1 (fr) 2007-08-20 2008-08-20 Numériseur de tension seuil pour réseau de transistors à seuil programmable

Country Status (5)

Country Link
US (5) US7800951B2 (fr)
JP (2) JP5252665B2 (fr)
KR (1) KR101534788B1 (fr)
TW (1) TWI473089B (fr)
WO (1) WO2009026364A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112354A2 (fr) 2010-03-09 2011-09-15 Micron Technology, Inc. Opérations de détection dans un dispositif de mémoire
JP2014503932A (ja) * 2010-12-15 2014-02-13 マイクロン テクノロジー, インク. セグメント化されたプログラミングの方法およびメモリデバイス
US8717824B2 (en) 2007-08-20 2014-05-06 Marvell World Trade Ltd. Threshold voltage digitizer for array of programmable threshold transistors
US8849219B2 (en) 2012-03-22 2014-09-30 Kabushiki Kaisha Toshiba DA converter and wireless communication apparatus
US11769551B2 (en) 2017-12-14 2023-09-26 Micron Technology, Inc. Multi-level self-selecting memory device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879329B2 (en) 2010-11-19 2014-11-04 Micron Technology, Inc. Program verify operation in a memory device
US8462537B2 (en) * 2011-03-21 2013-06-11 Intel Corporation Method and apparatus to reset a phase change memory and switch (PCMS) memory cell
US8917553B2 (en) * 2011-03-25 2014-12-23 Micron Technology, Inc. Non-volatile memory programming
US9030870B2 (en) 2011-08-26 2015-05-12 Micron Technology, Inc. Threshold voltage compensation in a multilevel memory
US9076547B2 (en) 2012-04-05 2015-07-07 Micron Technology, Inc. Level compensation in multilevel memory
US9236102B2 (en) 2012-10-12 2016-01-12 Micron Technology, Inc. Apparatuses, circuits, and methods for biasing signal lines
US9042190B2 (en) * 2013-02-25 2015-05-26 Micron Technology, Inc. Apparatuses, sense circuits, and methods for compensating for a wordline voltage increase
KR102090677B1 (ko) * 2013-09-16 2020-03-18 삼성전자주식회사 비휘발성 메모리 장치 및 그것의 동작 방법
US9672875B2 (en) 2014-01-27 2017-06-06 Micron Technology, Inc. Methods and apparatuses for providing a program voltage responsive to a voltage determination
KR102193468B1 (ko) * 2014-04-04 2020-12-21 삼성전자주식회사 타이밍 마진을 적응적으로 보정하는 메모리 장치 및 이를 포함하는 집적 회로
KR102218722B1 (ko) 2014-06-09 2021-02-24 삼성전자주식회사 불휘발성 메모리 시스템 및 메모리 컨트롤러의 동작 방법
US9653156B2 (en) 2015-02-20 2017-05-16 Kabushiki Kaisha Toshiba Memory controller, nonvolatile semiconductor memory device and memory system
US9892791B2 (en) * 2015-06-16 2018-02-13 Sandisk Technologies Llc Fast scan to detect bit line discharge time
KR102609130B1 (ko) * 2016-02-17 2023-12-05 삼성전자주식회사 읽기 전압 서치 유닛을 포함하는 데이터 저장 장치
JP6239665B2 (ja) 2016-03-16 2017-11-29 株式会社東芝 半導体装置
US10438648B2 (en) * 2018-01-11 2019-10-08 Micron Technology, Inc. Apparatuses and methods for maintaining a duty cycle error counter
JP2019169212A (ja) * 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体メモリ装置
US10891080B1 (en) * 2018-06-04 2021-01-12 Mentium Technologies Inc. Management of non-volatile memory arrays
US11067629B2 (en) * 2019-06-03 2021-07-20 Teradyne, Inc. Automated test equipment for testing high-power electronic components
JP2021047936A (ja) 2019-09-17 2021-03-25 キオクシア株式会社 メモリシステムおよびメモリシステムの制御方法
JP2021047966A (ja) 2019-09-19 2021-03-25 キオクシア株式会社 半導体メモリ装置及び方法
KR102768163B1 (ko) * 2019-11-12 2025-02-19 삼성전자주식회사 위치 정보를 식별하여 셀프 캘리브레이션을 수행하는 메모리 장치 및 그것을 포함하는 메모리 모듈
JP2021140847A (ja) * 2020-03-05 2021-09-16 キオクシア株式会社 半導体記憶装置
KR20230092827A (ko) 2021-12-14 2023-06-26 양쯔 메모리 테크놀로지스 씨오., 엘티디. 메모리 디바이스 및 그 동작

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751635A (en) * 1994-11-02 1998-05-12 Invoice Technology, Inc. Read circuits for analog memory cells
US5754475A (en) * 1996-06-24 1998-05-19 Advanced Micro Devices, Inc. Bit line discharge method for reading a multiple bits-per-cell flash EEPROM
US6392931B1 (en) * 1998-11-27 2002-05-21 Stmicroelectronics S.R.L. Method for high precision programming nonvolatile memory cells, with optimized programming speed
US20060028872A1 (en) * 2004-07-08 2006-02-09 Stmicroelectronics S.R.L. Read/verify circuit for multilevel memory cells with ramp read voltage, and read/verify method thereof
EP1729302A1 (fr) * 2005-05-31 2006-12-06 STMicroelectronics S.r.l. Circuit pour l'extraction de données stockées dans des cellules de mémoire à semiconducteurs.

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404655A (en) * 1981-01-28 1983-09-13 General Instrument Corporation Data sense apparatus for use in multi-threshold read only memory
JPS6224498A (ja) * 1985-07-24 1987-02-02 Nippon Telegr & Teleph Corp <Ntt> メモリ読出し方式
JP3526894B2 (ja) * 1993-01-12 2004-05-17 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
JPH0863969A (ja) * 1994-08-19 1996-03-08 Toshiba Corp 半導体記憶装置
US5508958A (en) * 1994-09-29 1996-04-16 Intel Corporation Method and apparatus for sensing the state of floating gate memory cells by applying a variable gate voltage
JPH09251793A (ja) * 1996-03-14 1997-09-22 Hitachi Ltd 半導体記憶装置及びデータ処理装置
US5748533A (en) * 1996-03-26 1998-05-05 Invoice Technology, Inc. Read circuit which uses a coarse-to-fine search when reading the threshold voltage of a memory cell
JPH09320300A (ja) * 1996-05-28 1997-12-12 Mitsubishi Electric Corp 半導体記憶装置
JPH11132096A (ja) * 1997-10-27 1999-05-18 Keihin Corp エンジン制御装置
US6038166A (en) * 1998-04-01 2000-03-14 Invox Technology High resolution multi-bit-per-cell memory
US6208542B1 (en) * 1998-06-30 2001-03-27 Sandisk Corporation Techniques for storing digital data in an analog or multilevel memory
EP1028433B1 (fr) * 1999-02-10 2004-04-28 SGS-THOMSON MICROELECTRONICS s.r.l. Mémoire multiniveau non-volatile et méthode pour lire celle-ci
JP4212760B2 (ja) * 2000-06-02 2009-01-21 富士通マイクロエレクトロニクス株式会社 半導体記憶装置
ATE275979T1 (de) 2000-06-09 2004-10-15 Us Gov Health & Human Serv Pegylation von linker verbessert die antitumor- aktivität und verringert die toxizität von immunkonjugaten
JP3829088B2 (ja) * 2001-03-29 2006-10-04 株式会社東芝 半導体記憶装置
JP2004087002A (ja) * 2002-08-27 2004-03-18 Fujitsu Ltd Acセンス方式のメモリ回路
JP2004220711A (ja) * 2003-01-16 2004-08-05 Nec Micro Systems Ltd 半導体集積回路装置
JP4331966B2 (ja) * 2003-04-14 2009-09-16 株式会社ルネサステクノロジ 半導体集積回路
CN1591693A (zh) * 2003-04-29 2005-03-09 戴洛格半导体公司 预检测数据丢失的闪速存储器
JP4408696B2 (ja) * 2003-12-26 2010-02-03 パナソニック株式会社 不揮発性半導体記憶装置
JP2005276345A (ja) * 2004-03-25 2005-10-06 Nec Electronics Corp 不揮発性記憶装置及び不揮発性記憶装置の検証方法
KR100942870B1 (ko) * 2005-07-04 2010-02-17 마이크론 테크놀로지, 인크. 저전력 다중 비트 감지 증폭기
ITRM20050353A1 (it) * 2005-07-04 2007-01-05 Micron Technology Inc Amplificatore di rilevazione di piu' bit a bassa potenza.
JP4942990B2 (ja) * 2005-12-12 2012-05-30 パナソニック株式会社 半導体記憶装置
US7349264B2 (en) * 2005-12-28 2008-03-25 Sandisk Corporation Alternate sensing techniques for non-volatile memories
US7400527B2 (en) * 2006-03-16 2008-07-15 Flashsilicon, Inc. Bit symbol recognition method and structure for multiple bit storage in non-volatile memories
US7639542B2 (en) * 2006-05-15 2009-12-29 Apple Inc. Maintenance operations for multi-level data storage cells
WO2008026364A1 (fr) 2006-08-30 2008-03-06 Tti Ellebeau, Inc. Dispositif d'ionophorèse
US7545678B2 (en) * 2007-06-29 2009-06-09 Sandisk Corporation Non-volatile storage with source bias all bit line sensing
US7471567B1 (en) * 2007-06-29 2008-12-30 Sandisk Corporation Method for source bias all bit line sensing in non-volatile storage
US7800951B2 (en) * 2007-08-20 2010-09-21 Marvell World Trade Ltd. Threshold voltage digitizer for array of programmable threshold transistors
US7944754B2 (en) * 2008-12-31 2011-05-17 Sandisk Corporation Non-volatile memory and method with continuous scanning time-domain sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751635A (en) * 1994-11-02 1998-05-12 Invoice Technology, Inc. Read circuits for analog memory cells
US5754475A (en) * 1996-06-24 1998-05-19 Advanced Micro Devices, Inc. Bit line discharge method for reading a multiple bits-per-cell flash EEPROM
US6392931B1 (en) * 1998-11-27 2002-05-21 Stmicroelectronics S.R.L. Method for high precision programming nonvolatile memory cells, with optimized programming speed
US20060028872A1 (en) * 2004-07-08 2006-02-09 Stmicroelectronics S.R.L. Read/verify circuit for multilevel memory cells with ramp read voltage, and read/verify method thereof
EP1729302A1 (fr) * 2005-05-31 2006-12-06 STMicroelectronics S.r.l. Circuit pour l'extraction de données stockées dans des cellules de mémoire à semiconducteurs.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717824B2 (en) 2007-08-20 2014-05-06 Marvell World Trade Ltd. Threshold voltage digitizer for array of programmable threshold transistors
WO2011112354A2 (fr) 2010-03-09 2011-09-15 Micron Technology, Inc. Opérations de détection dans un dispositif de mémoire
EP2545555A2 (fr) * 2010-03-09 2013-01-16 Micron Technology, Inc. Opérations de détection dans un dispositif de mémoire
EP2545555A4 (fr) * 2010-03-09 2014-08-06 Micron Technology Inc Opérations de détection dans un dispositif de mémoire
US9123423B2 (en) 2010-03-09 2015-09-01 Micron Technology, Inc. Programming operations in a memory device
US9423969B2 (en) 2010-03-09 2016-08-23 Micron Technology, Inc. Sensing operations in a memory device
JP2014503932A (ja) * 2010-12-15 2014-02-13 マイクロン テクノロジー, インク. セグメント化されたプログラミングの方法およびメモリデバイス
US8849219B2 (en) 2012-03-22 2014-09-30 Kabushiki Kaisha Toshiba DA converter and wireless communication apparatus
US11769551B2 (en) 2017-12-14 2023-09-26 Micron Technology, Inc. Multi-level self-selecting memory device

Also Published As

Publication number Publication date
US8717824B2 (en) 2014-05-06
US8149626B2 (en) 2012-04-03
TWI473089B (zh) 2015-02-11
KR20100063018A (ko) 2010-06-10
US20090052256A1 (en) 2009-02-26
US20120176846A1 (en) 2012-07-12
JP5252665B2 (ja) 2013-07-31
US20130322182A1 (en) 2013-12-05
US20110310672A1 (en) 2011-12-22
US7800951B2 (en) 2010-09-21
JP5737695B2 (ja) 2015-06-17
JP2010537360A (ja) 2010-12-02
US8014206B2 (en) 2011-09-06
US8488398B2 (en) 2013-07-16
TW200921670A (en) 2009-05-16
US20110001547A1 (en) 2011-01-06
KR101534788B1 (ko) 2015-07-24
JP2013152780A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
US7800951B2 (en) Threshold voltage digitizer for array of programmable threshold transistors
US10366744B2 (en) Digital filters with memory
KR101097510B1 (ko) 고체 상태 메모리에서의 프로그래밍 레이트의 식별 및 제어
EP2176765B1 (fr) Programmations grossière et fine dans une mémoire à semi-conducteurs
KR101154648B1 (ko) 시스템 영향을 제거하기 위한 메모리 제어기 자체 교정
US8149646B2 (en) Digital filters for semiconductor devices
CN101346773A (zh) 非易失性存储器中的参考感测放大器及补偿感测的方法
US8677221B2 (en) Partial voltage read of memory
US8681557B2 (en) Memory with correlated resistance
US11514990B1 (en) Two way single VREF trim for fully differential CDAC for accurate temperature sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08827610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010521997

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107003517

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08827610

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载