+

WO2009003848A1 - Defektbasierte silizium-laserstruktur - Google Patents

Defektbasierte silizium-laserstruktur Download PDF

Info

Publication number
WO2009003848A1
WO2009003848A1 PCT/EP2008/057801 EP2008057801W WO2009003848A1 WO 2009003848 A1 WO2009003848 A1 WO 2009003848A1 EP 2008057801 W EP2008057801 W EP 2008057801W WO 2009003848 A1 WO2009003848 A1 WO 2009003848A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
substrate
laser diode
region
semiconductor laser
Prior art date
Application number
PCT/EP2008/057801
Other languages
English (en)
French (fr)
Inventor
Martin Kittler
Teimuraz Mchedlidze
Tzanimir Arguirov
Manfred Reiche
Original Assignee
Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik filed Critical Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik
Publication of WO2009003848A1 publication Critical patent/WO2009003848A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3223IV compounds
    • H01S5/3224Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3223IV compounds
    • H01S5/3224Si
    • H01S5/3227Si porous Si

Definitions

  • the invention relates to a semiconductor laser diode.
  • the present invention relates to a silicon-based semiconductor laser diode of VCSEL (Vertical Cavity Surface Emitting Laser) type, that is, a surface emitting laser diode having a vertical laser cavity.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • WO 2006/1 17389 A1 discloses a displacement-based silicon-based light emitter.
  • the light emission is caused by certain emissions of the known silicon D-luminescence band.
  • Luminescence with light wavelengths in the range of 1, 3 microns or 1, 55 microns can be conveyed by selective adjustment of rotation and tilt angle of the lattice structures of two adjacent silicon layers.
  • the D-luminescence band (also referred to as D-band luminescence) is then caused by electronic multilevel systems, which are strongly localized in the region of a dislocation network at the interface between the two silicon layers, cf. T. Sekiguchi, S. Ito, A.
  • Kanai “Cathodoluminescence study on the tilt and twist boundaries in bonded silicon wafers", Materials Science and Engineering B 91-92 (2002), pages 244-247.
  • WO 2006/117389 A1 it is stated that the light emitter described there can also be designed as a laser diode. It is further described that a resonator can be produced either by mirroring the substrate edges or alternatively by mirroring the substrate surfaces. The latter corresponds to a VCSEL structure.
  • the technical problem underlying the present invention is to provide a silicon semiconductor laser diode having light emission caused by defects, which has an increased light emission.
  • a semiconductor laser diode according to claim 1 More specifically, it is a VCSEL type semiconductor laser diode
  • a laser cavity made of silicon or silicon germanium, which extends from a main surface of the silicon substrate into the interior of the substrate and has, as resonator end faces, a first mirror layer on the substrate surface intended for light emission and a buried second mirror layer in the silicon substrate;
  • lateral and opposite conductive semiconductor regions of silicon or silicon germanium which are suitably doped for the charge carrier injection into the amplification region and provided with electrically conductive contacts for applying an operating voltage suitable for the charge carrier injection.
  • the semiconductor laser diode it is possible to exploit defect-based luminescence of silicon or silicon germanium to form a semiconductor laser to stimulated emission with greater light intensity.
  • a lateral charge carrier injection caused by the laser structure into the amplification area during operation of the diode and, on the other hand, the second mirror layer embedded in the substrate contribute to this.
  • Embodiments of the semiconductor laser diode according to the invention will be described below. The additional features of the embodiments may be combined to form further embodiments of the semiconductor laser diode of the invention, unless explicitly described as alternatives.
  • the structural defects used for optical amplification of the light in the gain region of the semiconductor laser diode may be different in alternative embodiments. In one embodiment, these are dislocations in the silicon crystal lattice. In another, alternative embodiment, the structural defects are so-called rod-shaped defects (rod like defects). This type of defect is known to have radiant transitions between electronic states that occur at - A -
  • the structural defects that interact with oxygen precipitates are the structural defects that interact with oxygen precipitates. Also, oxygen precipitates in silicon lead to a light emission, which manifests itself in an emission band which has a maximum at 0.8 eV at a temperature of 80 K.
  • the structural defects are the structural defects responsible for one of the known D-band emissions in silicon.
  • the exact nature of these defects is still under discussion in the professional world.
  • the D-band luminescence shows, in particular, narrow and light-intensive luminescence peaks, which are denoted by D1 to D4 and can each also occur alone or in groups with different intensities. Details on this are described in WO 2006/1 17 389 A1. It has been shown that with the laser structure according to the invention, said defect structures can be excited to stimulated emission, whereby a laser activity in the spectral range is achieved, which is particularly interesting for optoelectronic applications.
  • optical wavelength optical fibers known to have a minimum of their attenuation so that a light transmission over long distances is possible. So far, however, no semiconductor lasers that can be integrated into advanced silicon technology have come to market maturity.
  • the gain region of the semiconductor laser diode is in the shape of a cylinder.
  • the two oppositely conductive semiconductor regions are realized as follows: A first semiconductor region of these oppositely conductive semiconductor regions is likewise cylindrical, but with a smaller radius than the amplification region. This cylindrical first semiconductor region is arranged in the cylinder of the amplification region. It extends from the surface-side center of the reinforcing region in the direction of direction of the substrate interior. The extension extends at least along a portion of the central axis of the cylinder formed by the reinforcing region.
  • the mirror layers can either be designed as a Bragg reflector structure.
  • the first or second mirror layer may also be a silicon layer containing oxygen precipitates.
  • the silicon substrate is designed as a silicon-on-insulator (SOI) substrate to increase the charge carrier confinement, that is to say to reduce the range of motion of the charge carriers to a region that is possibly limited to the gain region.
  • SOI substrate has a silicon layer containing the gain region toward the surface and a buried insulator layer adjacent to the substrate interior adjacent to the gain region.
  • the buried second mirror layer is arranged in a silicon layer adjoining the insulator layer to the substrate interior.
  • Embodiments of the semiconductor laser diode according to the invention are also described in the dependent claims.
  • Figure 1 is a schematic cross-sectional view of a first embodiment of a laser diode according to the invention
  • Figure 2 is a schematic plan view of the laser diode of Figure 1;
  • Figure 3 is a schematic cross-sectional view of a second embodiment of a laser diode according to the invention.
  • FIG. 1 shows a schematic cross-sectional view of a first exemplary embodiment of a laser diode 100.
  • the laser diode 100 is shown in FIG. 1 in a detail which does not cover the entire width and depth of the component.
  • the laser diode 100 has a silicon substrate 102, which is manufactured according to one of the production methods for crystalline (bulk) silicon customary in semiconductor technology. By subsequent processing of the substrate, a volume with dislocations, rod-like defects, oxygen precipitates or the like has developed in an amplification area 104.
  • the defects can be generated locally with well-known techniques such as ion implantation and / or thermal treatment.
  • the gain region 104 is viewed in the vertical direction, which is shown in FIG. 1 as a z-direction, in a laser cavity 106 which is delimited by two mirror layers 108 and 110.
  • the mirror layer 108 is formed on the surface of the silicon substrate 102.
  • the mirror layer 110 is embedded in the substrate at a distance from the reinforcing region.
  • the extension of the laser cavity 106 in the vertical direction is selected according to a desired emission wavelength of the laser light to be imitated.
  • a high efficiency of the laser diode is achieved if the expansion of the laser cavity in ensures a resonance peak in the spectral range of the maximum gain of the gain region 104. This can be considered according to the used amplification mechanism in the design of the laser diode accordingly.
  • the mirror layers 108 and 110 in the present embodiment are Bragg reflectors.
  • the p-type gain region is in the lateral direction, which is also referred to as x-direction in FIG. 1, between an n-conductive region 12 and a p-conductive region 1 14 arranged.
  • the reinforcing region 104 is approximately cylindrical. In its center extends along the cylinder axis, the likewise cylindrical n-type conductive region 1 12, the depth extent and radius, however, are smaller than that of the gain region 104.
  • the reinforcing region 104 is annular in the lateral direction of the p-conductive substrate region 1 14 surrounded. Also, the substrate region 116 disposed between the gain region 104 and the buried mirror layer 110, which forms part of the laser cavity 106, is p-doped.
  • the n-conductive region 112 is provided with a metal contact 118, which can be supplied via a feed line 120 with an operating voltage. Also, the p-conductive region 1 14, 1 16 is contacted by means of an annular contact structure 122, which can be supplied by means of a supply line 124 with voltage.
  • An insulator region 126 separates the contact 122 from the lead 120.
  • the insulator layer 126 also extends outside the annular contact structure on the surface of the semiconductor laser diode 100 as seen in the plan view of FIG.
  • Figures 3 and 4 show alternative embodiments of semiconductor laser diodes which differ from the semiconductor laser diode 100 of Figures 1 and 2 in that an SOI substrate is used as the substrate.
  • FIGS. 3 and 4 reference numerals corresponding to those of FIG. 1 are used. Only differing from the embodiment of Figure 1 structural elements are provided with new reference numerals. Modified, but in their function relevant elements of the laser diode of Fig. 1 corresponding structural elements are indicated by a high line.
  • the semiconductor laser diode 300 of FIG. 3 differs from the semiconductor laser diode 100 in that a buried oxide layer 130 is arranged in a depth region adjoining the lower edge of the gain region 104. Between the lower edge of the buried oxide layer 130 and the trenched mirror layer 110 is the correspondingly reduced in thickness p-type silicon region 1 16th
  • the laser diode 400 of FIG. 4 differs from the laser diode 300 of FIG. 3 in that the buried oxide layer directly adjoins the n-conductive region 112 in the depth direction.
  • Both alternative laser diodes 300 and 400 which are based on an SOI substrate, have the advantage during operation of the laser diode that the range of motion of the charge carriers injected into the amplification area by the applied operating voltage is reduced in the depth direction, so that no charge carriers can diffuse into the substrate region 16 , This increases the efficiency of the laser diode in comparison with the embodiment of Figure 1.
  • the buried oxide layer (it is also possible to use an insulator material other than silicon dioxide) itself is used as a mirror layer, so that the formation of a separate, separate mirror layer in the substrate can be dispensed with. This additionally simplifies the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Halbleiterlaserdiode vom VCSEL-Typ mit einem Siliziumsubstrat, einer Laserkavität aus Silizium oder Silizium-Germanium, die sich von einer Haupt-Oberfläche des Siliziumsubstrats ausgehend ins Substratinnere hinein erstreckt und als Resonator-Endflächen eine erste Spiegelschicht an der für die Lichtemission vorgesehenen Substratoberfläche und eine vergrabene zweite Spiegelschicht im Siliziumsubstrat aufweist; einem in der Laserkavität angeordneten Verstärkungsgebiet aus kristallinem Silizium oder Silizium-Germanium, welches strukturelle Defekte seines Kristallgitters und an diesen lokalisiert eine Vielzahl elektronischer Mehrniveau-Systeme enthält, die durch Ladungsträgerinjektion jeweils geeigneter Ladungsträgerdichte in das aktive Gebiet anregbar sind, zur spontanen Emission von Licht und als Gesamtheit in einen zur optischen Verstärkung des Lichts durch stimulierte Emission geeigneten Besetzungsinversionszustand; und mit lateral dem Verstärkungsgebiet an einander gegenüberliegenden Seiten benachbarten und entgegengesetzt leitfähigen Halbleitergebieten aus Silizium oder Silizium-Germanium, die für die Ladungsträgerinjektion in das Verstärkungsgebiet geeignet dotiert und mit elektrisch leitfähigen Kontakten zum Anlegen einer für die Ladungsträgerinjektion geeigneten Betriebsspannung versehen sind.

Description

Defektbasierte Silizium-Laserstruktur
Die Erfindung betrifft eine Halbleiterlaserdiode. Insbesondere betrifft die vorliegende Erfindung eine silizium-basierte Halbleiterlaserdiode vom VCSEL (engl. Vertical Cavity Surface Emitting Laser)-Typ, also eine oberflächenemittierende Laserdiode mit vertikaler Laserkavität.
Aus der WO 2006/1 17389 A1 ist ein versetzungsbasierter Lichtemitter auf Siliziumbasis bekannt. Bei diesen Lichtemitter wird die Lichtemission von bestimmten Emissionen der bekannten Silizium-D-Lumineszenzbande hervorgerufen. Lumineszenz mit Lichtwellenlängen im Bereich von 1 ,3 Mikrometern oder 1 ,55 Mikro- metern kann durch gezielte Einstellung von Dreh- und Kippwinkel der Gitterstrukturen zweier aneinander angrenzender Siliziumschichten befördert werden. Die D-Lumineszenzbande (auch als D-Band-Lumineszenz bezeichnet) wird danach von elektronischen Mehrniveau-Systemen hervorgerufen, die im Bereich eines Versetzungsnetzwerkes an der Grenzfläche zwischen den beiden Siliziumschich- ten stark lokalisiert sind, vgl. T. Sekiguchi, S. Ito, A. Kanai, „Cathodoluminescen- ce study on the tilt and twist boundaries in bonded Silicon wafers", Materials Science and Engeneering B 91-92 (2002), Seiten 244 - 247. In der WO 2006/117389 A1 ist angegeben, dass der dort beschriebene Lichtemitter auch als Laserdiode ausgebildet sein kann. Weiter ist beschrieben, dass ein Resonator entweder durch eine Verspiegelung der Substratkanten oder alternativ durch eine Verspiegelung der Substratoberflächen hergestellt werden kann. Letzteres entspricht einer VCSEL-Struktur.
Es wäre wünschenswert, die aus der WO 2006/117389 A1 bekannte Laserstruktur hinsichtlich der Intensität ihrer Lichtemission zu verbessern.
Das der vorliegenden Erfindung zu Grunde liegende technische Problem ist es, eine Silizium-Halbleiterlaserdiode auf mit durch Defekte hervorgerufener Lichtemission anzugeben, die eine erhöhte Lichtemission aufweist.
Das technische Problem wird durch eine Halbleiterlaserdiode gemäß Anspruch 1 gelöst. Genauer gesagt handelt es sich um eine Halbleiterlaserdiode vom VCSEL-Typ mit
- einem Siliziumsubstrat,
- einer Laserkavität aus Silizium oder Silizium-Germanium, die sich von einer Haupt-Oberfläche des Siliziumsubstrats ausgehend ins Substratinnere hinein erstreckt und als Resonator-Endflächen eine erste Spiegelschicht an der für die Lichtemission vorgesehenen Substratoberfläche und eine vergrabene zweite Spiegelschicht im Siliziumsubstrat aufweist;
- einem in der Laserkavität angeordneten Verstärkungsgebiet aus kristallinem Silizium oder Silizium-Germanium, welches strukturelle Defekte seines Kristallgitters und an diesen lokalisiert eine Vielzahl elektronischer Mehrniveau- Systeme enthält, die durch Ladungsträgerinjektion jeweils geeigneter Ladungsträgerdichte in das aktive Gebiet anregbar sind - zur spontanen Emission von Licht und als Gesamtheit in einen zur optischen Verstärkung des Lichts durch stimulierte Emission geeigneten Besetzungsinversionszustand;
und mit
lateral dem Verstärkungsgebiet an einander gegenüberliegenden Seiten benachbarten und entgegengesetzt leitfähigen Halbleitergebieten aus Silizium oder Silizium-Germanium, die für die Ladungsträgerinjektion in das Verstärkungsgebiet geeignet dotiert und mit elektrisch leit- fähigen Kontakten zum Anlegen einer für die Ladungsträgerinjektion geeigneten Betriebsspannung versehen sind.
Mit der erfindungsgemäßen Halbleiterlaserdiode gelingt es, defekt basierte Lumineszenzen des Silizium oder Silizium-Germanium zur Bildung eines Halbleiterla- sers zu stimulierter Emission mit größerer Lichtintensität auszunutzen. Hierzu tragen im Zusammenwirken einerseits eine durch die Laserstruktur bewirkte laterale Ladungsträgerinjektion in das Verstärkungsgebiet im Betrieb der Diode und andererseits die in das Substrat eingebettete zweite Spiegelschicht bei.
Nachfolgend werden Ausführungsbeispiele der erfindungsgemäßen Halbleiterlaserdiode beschrieben. Die zusätzlichen Merkmale der Ausführungsbeispiele können miteinander kombiniert werden, um weitere Ausführungsformen der Halbleiterlaserdiode der Erfindung zu bilden, es sei denn, sie sind ausdrücklich als Alternativen beschrieben.
Die für die optische Verstärkung des Lichts im Verstärkungsgebiet der Halbleiterlaserdiode genutzten strukturellen Defekte können in alternativen Ausführungsbeispielen unterschiedlicher Natur sein. In einer Ausführungsform handelt es sich um Versetzungen im Silizium-Kristallgitter. In einer anderen, alternativen Ausfüh- rungsform handelt es sich bei den strukturellen Defekten um sogenannte stab- förmige Defekte (englisch: Rod Like Defects). Dieser Defekttyp ist dafür bekannt, strahlende Übergänge zwischen elektronischen Zuständen aufzuweisen, die bei - A -
Raumtemperatur zu einer Lumineszenz im Bereich von etwa 0,75 bis 0,9 eV führen, mit einem Maximum bei 0,85 eV.
In einer anderen alternativen Ausführungsform der Halbleiterlaserdiode sind die strukturellen Defekte, die in Wechselwirkung mit Sauerstoff-Präzipitaten stehen. Auch Sauerstoffpräzipitate in Silizium führen zu einer Lichtemission, die sich in einer Emissionsbande bemerkbar macht, die bei einer Temperatur von 80 K ein Maximum bei 0,8 eV hat.
In einem weiteren alternativen Ausführungsbeispiel sind die strukturellen Defekte die für eine der bekannten D-Bandemissionen im Silizium verantwortlichen strukturellen Defekte. Über die genau Natur dieser Defekte wird in der Fachwelt derzeit noch diskutiert. Die D-Band Lumineszenz zeigt insbesondere schmale und Lichtintensive Lumineszenzpeaks, die mit D1 bis D4 bezeichnet sind und jeweils auch allein oder in Gruppierungen mit jeweils unterschiedlichen Intensitäten auftreten können. Details hierzu sind in der WO 2006/1 17 389 A1 beschrieben. Es hat sich gezeigt, dass mit der erfindungsgemäßen Laserstruktur die genannten Defektstrukturen zu stimulierter Emission angeregt werden können, womit eine Laseraktivität im Spektralbereich erzielt wird, der für optoelektronische Anwendungen besonders interessant ist. Denn in den Spektralbereichen bei 1 ,3 und 1 ,55 Mikrometern Lichtwellenlänge weisen optische Fasern bekanntlich ein Minimum ihrer Dämpfung auf, sodass eine Lichtübertragung über weite Strecken möglich ist. Bislang sind jedoch noch keine in die hochentwickelte Siliziumtechnologie integrierbaren Halbleiterlaser zu Marktreife gelangt.
In einem Ausführungsbeispiel hat das Verstärkungsgebiet der Halbleiterlaserdiode die Form eines Zylinders. Die beiden entgegengesetzt leitfähigen Halbleitergebiete werden folgender Maßen realisiert: Ein erstes Halbleitergebiet dieser entgegengesetzt leitfähigen Halbleitergebiete ist ebenfalls zylinderförmig, jedoch mit geringerem Radius als das Verstärkungsgebiet. Dieses zylinderförmige erste Halbleitergebiet ist im Zylinder des Verstärkungsgebiets angeordnet. Es erstreckt sich vom oberflächenseitigem Mittelpunkt des Verstärkungsgebiets aus in Rieh- tung des Substratinneren. Die Erstreckung reicht zumindest entlang eines Abschnitts der Mittelachse des vom Verstärkungsgebiet gebildeten Zylinders.
Die Spiegelschichten können entweder als Bragg-Reflektorstruktur ausgebildet sein. Alternativ kann die erste oder zweite Spiegelschicht auch eine Sauerstoff- Präzipitate enthaltene Siliziumschicht sein.
In bevorzugten Ausführungsbeispielen ist das Siliziumsubstrat zur Erhöhung des Ladungsträger-Confinements, also zur Reduzierung des Bewegungsspielraumes der Ladungsträger auf einen möglichst auf das Verstärkungsgebiet beschränkten Bereich, als Silizium-auf-lsolator-Substrat (Silicon on Insolator, SOI) ausgebildet. Das SOI-Substrat hat zur Oberfläche hin eine das Verstärkungsgebiet enthaltende Siliziumschicht und zum Substratinneren an das Verstärkungsgebiet angrenzend eine vergrabene Isolatorschicht. Die vergrabene zweite Spiegelschicht ist bei diesem Ausführungsbeispiel in einer zum Substratinneren an die Isolatorschicht angrenzenden Siliziumschicht angeordnet.
Ausführungsbeispiele der erfindungsgemäßen Halbleiterlaserdiode sind auch in den abhängigen Ansprüchen beschrieben.
Nachfolgend werden verschiedene Ausführungsbeispiele der Halbleiterlaserdiode anhand der Figuren erläutert. Es zeigen:
Figur 1 Eine schematische Querschnittsansicht eines ersten Ausführungsbei- spiels einer Laserdiode gemäß der Erfindung;
Figur2 Eine schematische Draufsicht der Laserdiode der Figur 1 ;
Figur 3 Eine schematische Querschnittsansicht eines zweiten Ausführungs- beispiels einer erfindungsgemäßen Laserdiode;
Figur 4 Eine schematische Querschnittsansicht eines dritten Ausführungsbeispiels einer erfindungsgemäßen Laserdiode. Figur 1 zeigt eine schematische Querschnittsansicht eines ersten Ausführungsbeispiels einer Laserdiode 100. Die Laserdiode 100 ist in Figur 1 in einem Ausschnitt dargestellt, der nicht die gesamte Breite und Tiefe des Bauelements erfasst.
Die Laserdiode 100 hat ein Siliziumsubstrat 102, welches nach einem der in der Halbleitertechnik üblichen Herstellungsverfahren für ein kristallines (bulk) Silizium hergestellt ist. Durch nachträgliche Bearbeitung des Substrats ist in einem Ver- Stärkungsgebiet 104 ein Volumen mit Versetzungen, stabartigen Defekten, Sau- erstoff-Präzipitaten o. ä. entstanden. Die Defekte können mit an sich bekannten Techniken wie Ionen-Implantation und/oder thermische Behandlung gezielt lokal erzeugt werden.
Das Verstärkungsgebiet 104 befindet sich in vertikaler Richtung betrachtet, die in Figur 1 als z-Richtung dargestellt ist, in einer Laserkavität 106, die durch zwei Spiegelschichten 108 und 1 10 begrenzt ist. Die Spiegelschicht 108 ist auf der Oberfläche des Siliziumsubstrats 102 ausgebildet. Die Spiegelschicht 110 ist in das Substrat mit Abstand zum Verstärkungsgebiet eingebetet.
Die Ausdehnung der Laserkavität 106 in der vertikalen Richtung ist entsprechend einer gewünschten Emissionswellenlänge des zu imitierenden Laserlichts gewählt. Eine hohe Effizienz der Laserdiode wird erreicht, wenn die Ausdehnung der Laserkavität in für eine Resonanzüberhöhung im Spektralbereich der maxi- malen Verstärkung des Verstärkungsgebiets 104 sorgt. Dies kann je nach verwendetem Verstärkungsmechanismus beim Entwurf der Laserdiode entsprechend berücksichtigt werden.
Bei den Spiegelschichten 108 und 110 handelt es sich im vorliegenden Ausfüh- rungsbeispiel um Bragg-Reflektoren.
Das p-leitfähige Verstärkungsgebiet ist in lateraler Richtung, die in Figur 1 auch als x-Richtung bezeichnet ist, zwischen einem n-leitfähigen Bereich 1 12 und einem p-leitfähigen Bereich 1 14 angeordnet. Das Verstärkungsgebiet 104 ist annähernd zylinderförmig. In seinem Zentrum erstreckt sich entlang der Zylinderachse das ebenfalls zylinderförmige n-leitfähige Gebiet 1 12, dessen Tiefenerstreckung und Radius jedoch geringer sind, als die des Verstärkungsgebiets 104. Das Verstärkungsgebiet 104 ist in lateraler Richtung ringförmig vom p- leitfähigem Substratbereich 1 14 umgeben. Auch das zwischen dem Verstärkungsgebiet 104 und der vergrabenen Spiegelschicht 1 10 angeordnete Substratgebiet 116, welches einen Teil der Laserkavität 106 bildet, ist p-dotiert.
Das n-leitfähige Gebiet 112 ist mit einem Metallkontakt 118 versehen, der über eine Zuleitung 120 mit einer Betriebsspannung versorgt werden kann. Auch das p-leitfähige Gebiet 1 14, 1 16 ist mit Hilfe einer ringförmigen Kontaktstruktur 122 kontaktiert, die mit Hilfe einer Zuleitung 124 mit Spannung versorgt werden kann.
Die Struktur der Kontakte ist in der in Figur 2 dargestellten Draufsicht deutlich erkennbar. Ein Isolatorgebiet 126 trennt den Kontakt 122 von der Zuleitung 120. Die Isolatorschicht 126 erstreckt sich, wie in der Draufsicht der Figur 2 erkennbar ist, auch außerhalb der ringförmigen Kontaktstruktur auf der Oberfläche der Halbleiterlaserdiode 100.
Die Figuren 3 und 4 zeigen alternative Ausführungsbeispiele von Halbleiterlaserdioden, die sich von der Halbleiterlaserdiode 100 der Figuren 1 und 2 darin unterscheiden, dass als Substrat ein SOI-Substrat verwendet wird. In den Figuren 3 und 4 werden Bezugszeichen verwendet, die denen der Figur 1 entsprechen. Lediglich von dem Ausführungsbeispiel der Figur 1 abweichende Strukturelemente werden mit neuen Bezugszeichen versehen. Abgewandelte, jedoch in ihrer Funktion betreffenden Elementen der Laserdiode der Fig. 1 entsprechende Strukturelemente werden durch einen Hochstrich gekennzeichnet.
Die Halbleiterlaserdiode 300 der Figur 3 unterscheidet sich von der Halbleiterlaserdiode 100 darin, dass sich in einem Tiefenbereich, der an die Unterkante des Verstärkungsgebiets 104 anschließt, eine vergrabene Oxidschicht 130 angeordnet ist. Zwischen der Unterkante der vergrabenen Oxidschicht 130 und der ver- grabenen Spiegelschicht 110 befindet sich der in seiner Dicke entsprechend reduzierte p-leitfähige Siliziumbereich 1 16.
Die Laserdiode 400 der Figur 4 unterscheidet sich von der Laserdiode 300 der Figur 3 dadurch, dass die vergrabene Oxidschicht in der Tiefenrichtung unmittelbar an das n-leitfähige Gebiet 112 angrenzt.
Beide alternativen, auf einem SOI-Substrat basierenden Laserdioden 300 und 400 haben im Betrieb der Laserdiode den Vorteil, dass der Bewegungsspielraum der durch die angelegte Betriebsspannung in das Verstärkungsgebiet injizierten Ladungsträger in der Tiefenrichtung reduziert ist, sodass keine Ladungsträger in den Substratbereich 1 16 diffundieren können. Dies erhöht die Effizienz der Laserdiode im Vergleich mit dem Ausführungsbeispiel der Figur 1.
In einem weiteren, hier nicht dargestellten Ausführungsbeispiel wird die vergrabene Oxidschicht (es kann auch ein anderes Isolatormaterial als Siliziumdioxid Verwendung finden) selbst als Spiegelschicht verwendet, so das auf die Ausbildung einer getrennten separaten Spiegelschicht im Substrat verzichtet werden kann. Dies vereinfacht die Struktur zusätzlich.

Claims

Ansprüche
1. Halbleiterlaserdiode vom VCSEL-Typ mit
- einem Siliziumsubstrat,
einer Laserkavität aus Silizium oder Silizium-Germanium, die sich von einer Haupt-Oberfläche des Siliziumsubstrats ausgehend ins Substratinnere hinein erstreckt und als Resonator-Endflächen eine erste Spiegelschicht an der für die Lichtemission vorgesehenen Substratoberfläche und eine vergrabene zweite Spiegelschicht im Siliziumsubstrat aufweist;
einem in der Laserkavität angeordneten Verstärkungsgebiet aus kri- stallinem Silizium oder Silizium-Germanium, welches strukturelle Defekte seines Kristallgitters und an diesen lokalisiert eine Vielzahl elektronischer Mehrniveau-Systeme enthält, die durch Ladungsträgerinjektion jeweils geeigneter Ladungsträgerdichte in das aktive Gebiet anregbar sind
zur spontanen Emission von Licht und
als Gesamtheit in einen zur optischen Verstärkung des Lichts durch stimulierte Emission geeigneten Besetzungsinversionszu- stand;
und mit
lateral dem Verstärkungsgebiet an einander gegenüberliegen- den Seiten benachbarten und entgegengesetzt leitfähigen Halbleitergebieten aus Silizium oder Silizium-Germanium, die für die Ladungsträgerinjektion in das Verstärkungsgebiet geeignet dotiert und mit elektrisch leitfähigen Kontakten zum Anlegen einer für die Ladungsträgerinjektion geeigneten Betriebsspannung versehen sind.
2. Halbleiterlaserdiode nach Anspruch 1 , bei der die strukturellen Defekte Versetzungen sind.
3. Halbleiterlaserdiode nach Anspruch 1 , bei der die strukturellen Defekte stabförmige Defekte sind.
4. Halbleiterlaserdiode nach Anspruch 1 , bei der die strukturellen Defekte mit Sauerstoff-Präzipitaten gefüllt sind.
5. Halbleiterlaserdiode nach Anspruch 1 , bei der die strukturellen Defekte die für eine der bekannten D-Band-Emissionen im Silizium verantwortlichen strukturellen Defekte sind.
6. Halbleiterlaserdiode nach einem der vorstehenden Ansprüche, bei der das Verstärkungsgebiet die Form eines Zylinders hat, und bei der ein erstes Halbleitergebiet der entgegengesetzt leitfähigen Halbleitergebiete ebenfalls zylinderförmig ist, jedoch mit geringerem Radius als das Verstärkungsgebiet, und sich vom oberflächenseitigen Mittelpunkt des Verstärkungsgebietes aus in Richtung des Substratinneren zumindest entlang eines Abschnitts der Mittelachse des vom Verstärkungsgebiets gebildeten Zylinders erstreckt.
7. Halbleiterlaserdiode nach Anspruch 1 , bei der die erste oder zweite Spiegelschicht eine Bragg-Reflektorstruktur bildet.
8. Halbleiterlaserdiode nach Anspruch 1 , bei der die erste oder zweite Spie- gelschicht eine Sauerstoff-Präzipitate enthaltende Siliziumschicht ist.
9. Halbleiterlaserdiode nach Anspruch 1 , bei der das Siliziumsubstrat ein Silizium-auf-lsolator-Substrat ist, das zur Substratoberfläche hin eine das Verstärkungsgebiet enthaltende Siliziumschicht und zum Substratinneren hin an das Verstärkungsgebiet angrenzend eine vergrabene Isolatorschicht enthält, wobei die vergrabene zweite Spiegelschicht in einer zum Substratinneren hin an die Isolatorschicht angrenzenden Siliziumschicht angeordnet ist.
PCT/EP2008/057801 2007-06-29 2008-06-19 Defektbasierte silizium-laserstruktur WO2009003848A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007031132A DE102007031132B4 (de) 2007-06-29 2007-06-29 Defektbasierte Silizium-Laserstruktur
DE102007031132.1 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009003848A1 true WO2009003848A1 (de) 2009-01-08

Family

ID=39739313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057801 WO2009003848A1 (de) 2007-06-29 2008-06-19 Defektbasierte silizium-laserstruktur

Country Status (2)

Country Link
DE (1) DE102007031132B4 (de)
WO (1) WO2009003848A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011377B2 (en) 2019-04-04 2021-05-18 International Business Machines Corporation Method for fabricating a semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829534A (en) * 1985-01-08 1989-05-09 Canon Kabushiki Kaisha Semiconductor laser device having a semiconductor region for creating a depletion layer in a laser active layer for controlling current flow therethrough
DE4342527A1 (de) * 1993-12-15 1995-06-22 Forschungszentrum Juelich Gmbh Verfahren zum elektrischen Kontaktieren von porösem Silizium
US6023076A (en) * 1996-08-22 2000-02-08 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting device having a current path between electrodes
DE10000707A1 (de) * 2000-01-10 2001-07-12 Rubitec Gesellschaft Fuer Innovation & Technologie Ruhr Univ Bochum Mbh Herstellungsverfahren für leuchtende Strukturen auf Siliziumsubstrat
US20020048289A1 (en) * 2000-08-08 2002-04-25 Atanackovic Petar B. Devices with optical gain in silicon
WO2005119859A1 (en) * 2004-05-28 2005-12-15 Brown University Indirect-bandgap semiconductor laser and method to fabricate same
WO2006117389A1 (de) * 2005-05-03 2006-11-09 Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik Versetzungsbasierter lichtemitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042997B4 (de) * 2004-05-14 2006-04-06 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Silizium-basierter Lichtemitter
US7596158B2 (en) * 2005-10-28 2009-09-29 Massachusetts Institute Of Technology Method and structure of germanium laser on silicon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829534A (en) * 1985-01-08 1989-05-09 Canon Kabushiki Kaisha Semiconductor laser device having a semiconductor region for creating a depletion layer in a laser active layer for controlling current flow therethrough
DE4342527A1 (de) * 1993-12-15 1995-06-22 Forschungszentrum Juelich Gmbh Verfahren zum elektrischen Kontaktieren von porösem Silizium
US6023076A (en) * 1996-08-22 2000-02-08 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting device having a current path between electrodes
DE10000707A1 (de) * 2000-01-10 2001-07-12 Rubitec Gesellschaft Fuer Innovation & Technologie Ruhr Univ Bochum Mbh Herstellungsverfahren für leuchtende Strukturen auf Siliziumsubstrat
WO2001052331A1 (de) * 2000-01-10 2001-07-19 RUBITEC Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Herstellungsverfahren für leuchtende strukturen auf siliziumsubstrat
US20020048289A1 (en) * 2000-08-08 2002-04-25 Atanackovic Petar B. Devices with optical gain in silicon
WO2005119859A1 (en) * 2004-05-28 2005-12-15 Brown University Indirect-bandgap semiconductor laser and method to fabricate same
WO2006117389A1 (de) * 2005-05-03 2006-11-09 Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik Versetzungsbasierter lichtemitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEKIGUCHI T ET AL: "Cathodoluminescence study on the tilt and twist boundaries in bonded silicon wafers", MATERIALS SCIENCE AND ENGINEERING B, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 91-92, 30 April 2002 (2002-04-30), pages 244 - 247, XP004355536, ISSN: 0921-5107 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011377B2 (en) 2019-04-04 2021-05-18 International Business Machines Corporation Method for fabricating a semiconductor device

Also Published As

Publication number Publication date
DE102007031132A1 (de) 2009-01-02
DE102007031132B4 (de) 2010-09-16

Similar Documents

Publication Publication Date Title
EP2169733B1 (de) Halbleiterlichtquelle
DE69632961T2 (de) Halbleiterdiode mit niederohmigem kontakt
DE69510129T2 (de) Oberflächenemittierende lumineszente Halbleitervorrichtung
DE102008025922B4 (de) Kantenemittierender Halbleiterlaser mit Phasenstruktur
DE69132860T2 (de) Halbleiterlaser und Verfahren zu seiner Herstellung
WO2011069769A2 (de) Laserdiodenanordnung und verfahren zum herstellen einer laserdiodenanordnung
DE102017108949B4 (de) Halbleiterchip
DE19911701B4 (de) Licht-emittierende AlGaInP-Bauelemente mit dünnen aktiven Schichten
DE102005013580A1 (de) Licht emittierendes Element
DE102006051745A1 (de) LED-Halbleiterkörper und Verwendung eines LED-Halbleiterkörpers
DE102008058436A1 (de) Kantenemittierender Halbleiterlaserchip
DE69521719T2 (de) Halbleiter-laserelement
DE69023813T2 (de) Optisches System unter Verwendung eines Halbleiterlasers mit abstimmbarer Wellenlänge.
DE69416291T2 (de) Halbleiterlaser mit gestuftem Substrat zur Lichtemission aus einem schrägstehenden Abschnitt
DE102011002923A1 (de) Diodenlaser mit hoher Effizienz
DE69402733T2 (de) Diodenlaser
DE102008040374A1 (de) Lasereinrichtung
EP1880425B1 (de) Versetzungsbasierter lichtemitter
DE102008035110A1 (de) Optoelektronischer Halbleiterchip
DE3888575T2 (de) Lichtemittierende Vorrichtung.
DE69028885T2 (de) Optische Halbleitervorrichtung mit verstellbarem Brechungsindexprofil
WO2009003848A1 (de) Defektbasierte silizium-laserstruktur
DE60016486T2 (de) Halbleiterlaser und zugehöriges Herstellungsverfahren
WO2010048918A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
DE3877750T2 (de) Verfahren fuer das selektive aufwachsen von gaas.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08761229

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载