+

WO2009003842A2 - Procédé pour surveiller un système d'alimentation en énergie d'un véhicule à moteur - Google Patents

Procédé pour surveiller un système d'alimentation en énergie d'un véhicule à moteur Download PDF

Info

Publication number
WO2009003842A2
WO2009003842A2 PCT/EP2008/057747 EP2008057747W WO2009003842A2 WO 2009003842 A2 WO2009003842 A2 WO 2009003842A2 EP 2008057747 W EP2008057747 W EP 2008057747W WO 2009003842 A2 WO2009003842 A2 WO 2009003842A2
Authority
WO
WIPO (PCT)
Prior art keywords
generator
detected
voltage
fes
status information
Prior art date
Application number
PCT/EP2008/057747
Other languages
German (de)
English (en)
Other versions
WO2009003842A3 (fr
Inventor
Michael Herz
Thomas Koss
Helmut Suelzle
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009003842A2 publication Critical patent/WO2009003842A2/fr
Publication of WO2009003842A3 publication Critical patent/WO2009003842A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Definitions

  • the invention relates to a method for monitoring a motor vehicle power supply system according to the preamble of claim 1. Furthermore, the invention relates to a power supply system according to the preamble of claim 6.
  • An energy supply system for a motor vehicle usually comprises a battery for the storage of electrical energy and a frequent also referred to as an alternator
  • a Generator which is driven by the engine of the motor vehicle and converts mechanical energy into electrical energy for the supply of the electrical system of the motor vehicle.
  • Such an energy supply system is known for example from DE 101 50 380 Al or from Bosch Automotive Handbook 21st Edition 1991, page 769.
  • a controller is provided, which ensures that the on-board network of the vehicle is supplied with as constant a voltage as possible.
  • the controller is a structural part of the generator.
  • wiring systems variants are discussed, which have a paged out of the generator control function.
  • the control function is integrated, for example, in a locally separate from the generator control unit.
  • a stable Power supply is extremely important for a reliable electrical system to be able to reliably supply the many consumers in the electrical system.
  • Status information of the generator is preferably forwarded by a regulator assigned to the generator to a control unit and / or also directly displayed to the driver, for example by a so-called charging control lamp.
  • the status information is generated on the basis of variables available in the controller, in particular voltage values, since these can be detected particularly easily. Fortunately available voltage values are, for example, the
  • Phase voltage, the B + charging voltage and the voltage at the switching device for switching the excitation voltage supplied to the exciter winding of the generator is its phase voltage. From the frequency of this phase voltage can be derived, for example, whether the generator rotates and is driven by the motor. It can be deduced from the amplitude of the phase voltage whether the generator supplies energy to the electrical system or if there is an undervoltage.
  • the phase voltage is particularly dependent on the
  • a method and an apparatus for measuring the excitation current of a generator are known.
  • a node voltage in the field circuit is compared with a node voltage in a reference path by means of a comparator.
  • the counting direction of an up / down counter is changed.
  • a current source arranged in the reference path is controlled in dependence on the count of the up / down counter.
  • the meter reading is output to a processing unit as a measure of the current flowing in the exciter circuit.
  • the invention has for its object to provide a method for monitoring a motor vehicle power system with improved properties, in the errors due be reduced or largely avoided by misinterpretations of the generator state.
  • an improvement of the monitoring method results in particular from the fact that only real errors and no interpretable status information are displayed.
  • defects can be diagnosed more reliably and unnecessary costs avoided by an avoidable exchange of supposedly defective components.
  • This advantage is achieved in the inventive method for monitoring the energy supply system of a motor vehicle in particular that operating states of the power supply system or its components are detected, that the detected operating conditions are compared with setpoints and that depending on the detected and compared with setpoints operating conditions status information indicating an error condition is generated.
  • An interruption in the field circuit of the generator is advantageously detected in that the switching state of the field output stage, the amount of applied excitation voltage and the excitation current of the generator are detected, that it is checked whether a predetermined filter time for the detected measures has elapsed, that at a detected On state of the field output stage, and at a lying in the desired range height of the excitation voltage and a Below a setpoint lying exciter current of the generator is generated indicating a defect of the generator status information.
  • the indication of a supposedly existing but actually non-existent error state is avoided by the switching state of the field output stage, the level of the applied exciter voltage, the B + voltage and the phase voltage at the generator and the exciter current be detected by the generator, that is checked whether a predetermined filter time for the detected measured variables has elapsed, that at a detected on-state of the field output stage, at a lying in the desired range height of the excitation voltage at a lying above a setpoint excitation current of the generator and at a lying below a setpoint B + voltage and at a lying below a setpoint phase voltage no pointing to a defect in the generator status information is generated.
  • a monitoring of the full excitation in the event of a defect in the exciter circuit is advantageously achieved in the method according to the invention by detecting the switching state of the field output stage, the level of the applied exciter voltage and the excitation current of the generator, and checking whether a predetermined filter time for the detected measured variables It has elapsed that in the event of a detected off-state of the field output stage, if the exciter voltage is in the desired range, and if the excitation current of the generator is above a desired value, status information indicative of a defect in the generator is generated. Furthermore, in the method according to the invention, an error can advantageously be recognized by detecting the switching state of the field output stage, the level of the voltage across the field output stage, the level of the applied excitation voltage, and checking whether a predetermined voltage is detected
  • Filter time for the detected measured variables has elapsed that at a detected off-state of the field output stage, at a lying in the desired range height of the excitation voltage, and at a lying below a setpoint voltage over the field output stage indicating a defect of the generator status information is generated.
  • the status information is particularly advantageously supplied to a control unit, since it can be further analyzed there or used for further processing.
  • An advantageous further processing can be, for example, that a warning device is provided which generates a warning signal for the driver when generating a pointing to a defect in the generator status information.
  • Figure 1 is a block diagram of a
  • Figure 2 is a first flowchart
  • FIG. 3 is a second flowchart
  • FIG. 4 is a third flowchart
  • Figure 5 is a fourth flowchart.
  • Power supply system 1 for a motor vehicle comprises a battery 11, a generator 13 and a controller 14.
  • the controller 14 is associated with the generator 13 and preferably structurally arranged thereon. In further embodiments, the controller 14 may also be arranged locally separated from the generator 13. In particular, a regulator function for the generator 13 may also be integrated into a control unit 16 structurally separate from the generator 13.
  • reference numeral 17 are summarily other components of the electrical system of the
  • Reference numeral 15 denotes a memory device associated with the controller 14, which comprises a plurality of components 15.1, 15.2, 15.3, 15.4, 15.5. In each component an operating state of the generator 13 and / or the controller 14 characterizing status information SI can be stored. The stored status information can be read later, for example, during a maintenance or repair of the vehicle and stand for a diagnosis of the state of the electrical system and its components, in particular of the generator 13 and / or the controller 14, available.
  • the energy supply system 1 further comprises a switching device S3, which is controllable by a control unit 16. By means of the switching device S3, an output of the controller 14 with a component of the memory device 15 is connectable.
  • the status information SI can be supplied to the components of the memory device 15.
  • An output of the memory device 15 is connected to an input of the control unit 16. In this way, status information SI can be transmitted from the memory device 15 to the control unit 16 and possibly to a warning device 18 connected to the control unit 16.
  • the aforementioned status information is generated on the basis of variables available in the controller. In this case, voltage values are the comparatively easily detectable measured variables. Thus, derived from the phase voltage, the B + charging voltage and / or the voltage at the switch for switching the excitation current, the mentioned status information can be generated.
  • Too low a phase voltage can be caused, for example, by a too large resistance or an interruption in the Be caused by the exciter circuit. It is assumed that this high resistance or an interruption in the exciter circuit obstructs or even inhibits the flow of the excitation current and, consequently, that the output voltage generated by the generator is too low. This state would then be displayed as corresponding status information. Now, however, can be met in an overload of the generator 13 by consumers 17 in the electrical system substantially matching criteria and lead to the aforementioned status information, which is stored for example in a fault memory. Furthermore, too low rotational speeds of the generator can lead to a similar status information. Too low speed collectives or frequent short trips can result in a negative charge balance of the battery 11 and cause a similar error signal. When evaluating the status information in a workshop, this can contribute to a faulty diagnosis, which leads to the replacement of the supposedly defective generator, although possibly another component is faulty. This will cause unnecessary costs.
  • a limit value UES is specified for the voltage UE, below which an additional current measurement is performed.
  • a limit value IES for the excitation current is predetermined and the excitation current IE detected by measurement is compared with this limit value IES in order to enable a clear determination of the error. Is the measured Excitation current IE above this limit IES, can be assumed, despite temporarily too low excitation voltage UE, from an intact generator 13. However, if the measured excitation current IE is below the mentioned limit value I ES, although it controls the exciter current IE
  • a predefinable duration D can be set particularly advantageously for the measurement, in order to prevent a falsification of the measured values due to instabilities or the like. If the excitation current IE continues to be below the limit value IEG even after expiry of this measurement duration D, then there is a serious error in the device with great certainty
  • this error can be signaled to the driver by a warning signal of a warning device 18.
  • step 21A the switching state of the field output stage FES is checked. It is thus determined whether the ON state or the OFF state exists.
  • Step 22A indicates a filtering time DF for monitoring the switching state.
  • step 23A it is determined that the ON state exists. This result is displayed in step 24 with further, described below, monitoring results linked.
  • step 21B the applied excitation voltage UE is detected.
  • Step 22B again indicates a filter time DF for the measurement of this quantity.
  • step 23B the measured value of the excitation voltage UE is compared with a threshold value UES.
  • step 24 If the measured value of UE is greater than the threshold value UES, a branch is made to step 24.
  • the exciting current IE of the generator 13 is measured.
  • the step 22C again indicates a filter time DF for the measurement of this quantity.
  • the measured value is compared with a threshold value IES. If the measured value is above the threshold value IES, a branch is made to step 24.
  • the results of the mentioned measurements are combined and result in a status information SI, which is output in step 25.
  • Step 30 the switching state of the field output stage FES is checked. It is thus determined whether the ON state or the OFF state exists.
  • Step 32A indicates a filter time DF for monitoring the
  • step 33A it is determined that the ON state exists. This result is linked in step 34 with further monitoring results, which are described below.
  • step 31B the applied excitation voltage UE is detected.
  • the step 32B again indicates a filter time DF for the measurement of this quantity.
  • step 33B the measured value of the excitation voltage UE is compared with a threshold value UES. If the measured value of UE is greater than the threshold value UES, a branch is made to step.
  • step 31C the excitation current IE of the generator 13 is measured.
  • Step 32C again indicates a filter time DF for the measurement of this quantity.
  • step 33C the measured value is compared with a threshold value IES.
  • step 31D the B + voltage is measured at the generator 13 UB +.
  • Step 32D indicates a filter time DF for this measurement.
  • step 33D it is checked whether the measured value exceeds a set value UB + S. If this is the case, a branch is made to step 34.
  • step 31E the phase voltage UV is detected. The step 32 E indicates a filter time DF for this measurand.
  • step 33E it is checked whether the measured value exceeds a threshold value UVS. If this is the case, a branch is made to step 34.
  • step 34 the results of the mentioned measurements are combined and result in a status information SI, which is output in step 25. In this monitoring, however, no indication of an error of the generator 13 status information is output because there is no error.
  • step 41A the switching state of the field output stage FES is checked. It is thus determined whether the ON state or the OFF state exists.
  • step 42A indicates a filter time DF for monitoring the switching state.
  • step 43A it is determined that the OFF state exists. This result is linked in step 44 with further monitoring results, which are described below.
  • step 41B the applied excitation voltage UE is detected.
  • step 42B again indicates a filter time DF for the measurement of this quantity.
  • step 43B the measured value of the excitation voltage UE is compared with a threshold value UES. If the measured value of UE is greater than the threshold value UES, a branch is made to step 44.
  • step 41C the voltage UDF across the field output stage FES of the generator 13 is measured.
  • Step 42C again indicates a filter time DF for the measurement of this quantity.
  • step 43C the measured value of the voltage UDF is compared with a threshold value UDFS. If the measured value is above the threshold value UDFS, a branch is made to step 44.
  • step 44 the results of the mentioned measurements are combined and lead to a status information SI indicative of a defect of the generator 13, which is output in step 45.
  • step 51A the switching state of the field output stage FES is checked. It is thus determined whether the ON state or the OFF state exists.
  • Step 52A indicates a filter time DF for monitoring the switching state.
  • step 53A it is determined that the OFF state exists. This result is linked in step 54 with further monitoring results, which are described below.
  • step 51B the applied excitation voltage UE is detected.
  • step 52B again indicates a filter time DF for the measurement of this magnitude.
  • step 53B the measured value of the excitation voltage UE is compared with a threshold value UES. If the measured value of UE is greater than the threshold value UES, a branch is made to step 54.
  • the excitation current IE of the generator 13 is measured.
  • Step 52C again indicates a filter time DF for the measurement of this quantity.
  • the measured value is compared with a threshold value IES. If the measured value is above the threshold value IES, a branch is made to step 54.
  • the results of the mentioned measurements are combined and result in status information SI representing a defect, which is output in step 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

L'invention concerne un procédé pour surveiller le système d'alimentation en énergie (1) d'un véhicule à moteur comportant une batterie (11), un générateur (13), un régulateur (14) associé au générateur (13) et un dispositif de surveillance. Le procédé selon l'invention consiste à saisir des états de fonctionnement du système d'alimentation en énergie (1) ou de ses éléments. Les états de fonctionnement ainsi saisis sont comparés à des valeurs nominales. En fonction des états de fonctionnement saisis et comparés à des valeurs nominales, des informations d'état sont générées indiquant une défaillance.
PCT/EP2008/057747 2007-07-02 2008-06-19 Procédé pour surveiller un système d'alimentation en énergie d'un véhicule à moteur WO2009003842A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007030714.6 2007-07-02
DE102007030714A DE102007030714A1 (de) 2007-07-02 2007-07-02 Verfahren für die Überwachung eines Kraftfahrzeugenergieversorgungssystems

Publications (2)

Publication Number Publication Date
WO2009003842A2 true WO2009003842A2 (fr) 2009-01-08
WO2009003842A3 WO2009003842A3 (fr) 2009-03-26

Family

ID=40092312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057747 WO2009003842A2 (fr) 2007-07-02 2008-06-19 Procédé pour surveiller un système d'alimentation en énergie d'un véhicule à moteur

Country Status (2)

Country Link
DE (1) DE102007030714A1 (fr)
WO (1) WO2009003842A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963678B1 (fr) * 2010-08-05 2012-08-17 Peugeot Citroen Automobiles Sa Dispositif de detection de deconnexion d'une batterie d'un reseau d'alimentation electrique, par analyse de stabilite de courant consecutive a une variation de fonctionnement imposee d'un organe electrique
DE102020130214A1 (de) 2020-11-16 2022-05-19 Seg Automotive Germany Gmbh Verfahren und Kurzschlussschaltungseinrichtung zum Betreiben einer Generatoreinheit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436308A1 (de) * 1983-10-03 1985-04-18 Mitsubishi Denki K.K., Tokio/Tokyo Verfahren zur stoerungsanzeige fuer in fahrzeugen eingebauten gleichstromgeneratoren
EP0990563A2 (fr) * 1998-10-02 2000-04-05 Volkswagen Aktiengesellschaft Methode et agencement de circuit de détection de pannes dans le système éléctrique d'un véhicule automobile
DE102004023084B3 (de) * 2004-05-11 2005-06-16 Daimlerchrysler Ag Verfahren zur Spannungsüberwachung bei einer Fahrzeug-Steuergeräteanordnung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150380A1 (de) 2001-10-11 2003-04-17 Bosch Gmbh Robert Energieversorgung für Kraftfahrzeuge mit redundanter Generatorregelung
DE10219823B4 (de) 2002-05-03 2019-08-14 Robert Bosch Gmbh Messung des Erregerstroms mittels eines Referenztransistors
DE10347185A1 (de) 2003-10-10 2005-05-12 Bosch Gmbh Robert Verfahren und Vorrichtung zum Feststellen eines Generatordefekts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436308A1 (de) * 1983-10-03 1985-04-18 Mitsubishi Denki K.K., Tokio/Tokyo Verfahren zur stoerungsanzeige fuer in fahrzeugen eingebauten gleichstromgeneratoren
EP0990563A2 (fr) * 1998-10-02 2000-04-05 Volkswagen Aktiengesellschaft Methode et agencement de circuit de détection de pannes dans le système éléctrique d'un véhicule automobile
DE102004023084B3 (de) * 2004-05-11 2005-06-16 Daimlerchrysler Ag Verfahren zur Spannungsüberwachung bei einer Fahrzeug-Steuergeräteanordnung

Also Published As

Publication number Publication date
DE102007030714A1 (de) 2009-01-08
WO2009003842A3 (fr) 2009-03-26

Similar Documents

Publication Publication Date Title
EP3126181B1 (fr) Procédé de contrôle d'une connexion entre un réseau basse tension et une batterie, et véhicule automobile
EP0408867B1 (fr) Dispositif pour l'essai de r'écepteurs électriques d'une automobile connectés à une source de courant continu
EP2513655B1 (fr) Capteur de courant avec fonction d'autotest
EP2785558B1 (fr) Dispositif pour détecter l'état d'un accumulateur
DE19952693A1 (de) Verfahren und Vorrichtung zum Ermitteln, Anzeigen und/oder Auslesen des Zustandes einer Batterie, insbesondere einer Starterbatterie für ein Kraftfahrzeug
WO2013182439A1 (fr) Système de batterie et procédé correspondant de détermination de la résistance interne d'éléments de batterie ou de modules de batterie du système de batterie
AT511807A4 (de) Verfahren und vorrichtung zur online-erkennung einer zustandsverschlechterung einer isolierung in einer elektrischen maschine
DE102012205401A1 (de) Vorrichtung und Verfahren zur redundanten Bestimmung eines über die Pole einer Batterie fließenden Batteriestroms
DE102012215946A1 (de) Schaltung zum Leiten eines elektrischen Stromes
EP1436168B1 (fr) Procede et dispositif permettant de determiner la puissance electrique disponible dans un tableau de bord
DE19516481B4 (de) Einrichtung zum Erfassen, Speichern und Ausgeben von Daten eines Steuergeräts in einem Kraftfahrzeug
DE102006013911A1 (de) Verfahren zur Prüfung elektrischer Verbraucher durch Bewertung eines Spannungsverlaufs unter schnell wechselnder Last
EP1361448B1 (fr) Méthode et dispositif de détection de malfunctionement d'un batterie d'un véhicule
DE102014219807A1 (de) Verfahren und Vorrichtung zur Prüfung einer Funktionsfähigkeit eines Stromsensors und Fahrzeug
EP1093205A2 (fr) Dispositif pour d'etecter une interruption dans la ligne de charge entre un générateur et une batterie d'un véhicule
WO2009003842A2 (fr) Procédé pour surveiller un système d'alimentation en énergie d'un véhicule à moteur
WO2016177488A1 (fr) Procédé de détection d'un raccordement correct d'au moins un accumulateur d'énergie à un réseau de bord
EP1423717B1 (fr) Procede et dispositif pour realiser a bord un diagnostic d'un reseau de bord d'une automobile
DE19949031A1 (de) Vorrichtung zur automatischen Erkennung eines Generatortyps eines Kraftfahrzeugs
DE102005004174B4 (de) Verfahren zur Diagnose einer Kraftfahrzeugbatterie
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
DE10309913B3 (de) Verfahren zur Erkennung einer defekten Fahrzeugbatterie
DE3939630A1 (de) System zur erfassung von anormalitaeten bei elektrischen schaltungen
EP1994417B1 (fr) Dispositif pour mesurer une première tension et une seconde tension au moyen d'un voltmètre différentiel
DE10243983B4 (de) Verfahren und Vorrichtung zur Früherkennung eines Generatordefekts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761193

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08761193

Country of ref document: EP

Kind code of ref document: A2

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载