WO2009002120A2 - Instrument de mesure d'un courant de fuite résistif - Google Patents
Instrument de mesure d'un courant de fuite résistif Download PDFInfo
- Publication number
- WO2009002120A2 WO2009002120A2 PCT/KR2008/003729 KR2008003729W WO2009002120A2 WO 2009002120 A2 WO2009002120 A2 WO 2009002120A2 KR 2008003729 W KR2008003729 W KR 2008003729W WO 2009002120 A2 WO2009002120 A2 WO 2009002120A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leakage current
- voltage
- synchronization signal
- signal generator
- under test
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/16—Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/16—Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
- G01R27/18—Measuring resistance to earth, i.e. line to ground
Definitions
- the present invention relates, in general, to an instrument for measuring ground-resistive leakage current, and, more particularly, to an instrument for measuring leakage current, which can rapidly and accurately measure ground-resistive leakage current using a simple circuit construction.
- leakage current is generally measured using a zero current transformer in the prior art
- the leakage current measured using the zero current transformer, is a composite leakage current in which ground-resistive leakage current is added to ground capacitive leakage current attributable to the ground electric capacity of a line under test, so that the actual leakage state of an AC line, that is, the quantity of the ground-resistive leakage current of a line under test, cannot be known.
- FIG. 1 shows an example of a prior art instrument 30 for measuring ground-resistive leakage current capable of measuring only the ground- resistive leakage current of a line under test.
- the prior art instrument 30 for measuring ground-resistive leakage current includes a leakage current detection circuit 31 for detecting composite leakage current from a line 20 under test; a current-to-voltage conversion circuit 32 for converting the composite leakage current from the leakage current detection circuit 31 into voltage corresponding to the composite leakage current; an amplifier 33 for amplifying an output signal from the current-to-voltage conversion circuit 32; a synchronization signal generator 34 for detecting voltage from the line 20 under test and then generating a synchronization signal; a synchronous detector 35 for receiving the synchronization signal from the synchronization signal generator 34, synchronously detecting the output signal from the amplifier, and then outputting the detected output signal; and a smoothing circuit 36 for smoothing the output signal from the synchronous detector 35, and then outputting ground-resistive leakage current.
- the composite leakage current, detected by the leakage current detection circuit 31, is converted into voltage corresponding to the composite leakage current by the current-to-voltage conversion circuit 32, the resulting voltage is amplified to a value which is appropriate for the measurement using the amplifier, and then the amplified voltage is input to the synchronous detector 35.
- the synchronous detector 35 synchronously detects the output signal from the amplifier 35 using the synchronization signal from the synchronization signal generator 34, and the smoothing circuit 36 smoothes the output signal from the synchronous detector 35.
- the value of a signal, which is synchronously detected by the synchronous detector 35 and then smoothed by the smoothing circuit 36, is ground-resistive leakage current.
- a Resistor-Capacitor (RC) filter is generally used as the smoothing circuit, and it is preferable that the time constant of the RC filter be sufficiently large in order to smooth output.
- an object of the present invention is to provide an instrument for measuring ground-resistive leakage current which can accurately and rapidly measure varying ground-resistive leakage current using only simple circuit configuration.
- the present invention provides an instrument for measuring ground-resistive leakage current, comprising a leakage current detection circuit for detecting composite leakage current from a line under test; a current-to-voltage conversion circuit for converting the composite leakage current from the leakage current detection circuit into corresponding voltage, and then outputting the resulting voltage; an amplifier for amplifying an output signal from the current-to- voltage conversion circuit; a phase inverter for inverting the phase of one of output signals from the amplifier by an angle of 180° ; a synchronization signal generator for detecting voltage from the line under test and then generating synchronization signals; a first half-wave integrator for receiving one of the synchronization signals from the synchronization signal generator, and integrating one of the output signal from the amplifier for each half period; a second half-wave integrator for receiving a remaining synchronization signal from the synchronization signal generator, and integrating an output signal from the phase inverter for each half period; and a sample/hold circuit for
- the present invention provides a method of measuring the ground-resistive leakage current Ir of a line 20 under test for each half period of a power source 10 in detail using a leakage current detection circuit 41, a current-to-voltage conversion circuit 42, an amplifier 43, a phase inverter 44, a synchronization signal generator 45, two half-wave integrators 46 and 47 and a sample/hold circuit 48, with the result that the varying ground-resistive leakage current Ir of the line 20 under test is accurately and rapidly measured, so that there is an advantage in that rapid management can be performed when abnormality occurs in the line 20 under test.
- FIG. 1 is a view showing a prior art instrument for measuring ground- resistive leakage current
- FIG. 2 is a view showing an instrument for measuring leakage current according to the present invention
- FIG. 3 is a vector diagram showing the phase relationship between composite leakage current, ground-resistive leakage current, and ground capacitive leakage current.
- FIG. 4 is a view showing the operation of the instrument for measuring leakage current according to the present invention.
- FIG. 2 is a view showing an instrument for measuring leakage current according to the present invention, the same reference numerals are used throughout the drawing to designate the same components of FIG. 1 which shows the prior art, and a description thereof will be omitted.
- the instrument 40 for measuring ground-resistive leakage current includes a leakage current detection circuit 41 for detecting composite leakage current from a line 20 under test; a current-to-voltage conversion circuit 42 for converting the composite leakage current from the leakage current detection circuit 41 into corresponding voltage, and then outputting the resulting voltage; an amplifier 43 for amplifying an output signal from the current-to-voltage conversion circuit 42; a phase inverter 44 for inverting the phase of one of output signals from the amplifier 43 by an angle of 180° ; a synchronization signal generator 45 for detecting voltage from the line 20 under test and then generating synchronization signals; a first half-wave integrator 46 for receiving one of the synchronization signals from the synchronization signal generator 45, and integrating one of the output signal from the amplifier 43 for each half period; a second half- wave integrator 47 for receiving a remaining synchronization signal from the synchronization signal generator 45, and integrating an output signal from the phase inverter 44 for each half
- a well-known zero current transformer for detecting composite leakage current while surrounding the line 20 under test is applied as the leakage current detection circuit 41.
- a well-known resistor R is applied as the current-to-voltage conversion circuit 42.
- a well-known pulse signal generator which is connected to the line 20 under test and configured to perform division on the voltage of the line and then measure the resulting voltage, and to generate a pulse (a (zero cross pulse) whenever the polarity of the voltage is changed, is applied as the synchronization signal generator 45.
- a ground-resistive leakage current effective value Ir has the same phase as the voltage effective value V of the line 20 under test
- the ground capacitive leakage current effective value Ic has a phase which precedes the phase of the voltage effective value V of the line 20 under test by an angle of 90°
- the composite leakage current effective value Ig is the vector addition of the effective value Ir of the ground- resistive leakage current and the effective value Ic of the ground capacitive leakage current, and it can be seen that the composite leakage current effective value Ig has a phase which precedes the phase of the voltage effective value V of the line 20 under test by an angle of ⁇ .
- Equation 1 Equation 1 (refer to (a) of Fig. 4):
- V is the voltage effective value of the line 20 under test
- w 2 ⁇ f, where f is the power frequency of the line 20 under test.
- Ig is the effective value of composite leakage current
- ⁇ is a phase angle made by the voltage instantaneous value v of the line 20 under test and the instantaneous value ig of the composite leakage current.
- K is the gain of the amplifier 22
- N is the current transformation ratio of the leakage current detection circuit 41
- R is the resistance of the current-to-voltage conversion circuit 42 connected to the secondary side of the leakage current detection circuit 41.
- the first half-wave integrator 46 and the second half-wave integrator 47 respectively receive the synchronization signals Sl and S2 of the synchronization signal generator 45 (refer to (b) of FIG. 4), and then alternately integrate the output signal vl of the amplifier 43 and the output signal v2 of the phase inverter 44 for each half period of the power source 10.
- Equation 5 The integrated output Pl of the first half-wave integrator 46 can be expressed using the following Equation 5:
- Equation 6 Equation 6
- both the integrated output Pl of the first half-wave integrator 46 and the integrated output P2 of the second half-wave integrator 47 become the ground-resistive leakage current Ir.
- the ground-resistive leakage current Ir is measured for each half period of the power source 10, so that the occurrence of abnormality in the line 20 under test can be accurately and rapidly detected (by measuring the ground-resistive leakage current for each half period of the power), compared to the prior art instrument 30 for measuring ground-resistive leakage current.
- the sample/hold circuit 48 receives the synchronization signals Sl and S2 from the synchronization signal generator 45, alternately performs sampling on the integrated output Pl of the first half-wave integrator 46 and the integrated output P2 of the second half-wave integrator 47, and then holds each of the integrated outputs during a half period (refer to (e) of FIG.4).
- the output signal Y of the sample/hold circuit 47 has a complete direct current waveform when the ground-resistive leakage current Ir is constant, but the waveform of the output signal Y of the sample/hold circuit 47 is changed into a staircase waveform when the ground-resistive leakage current Ir varies.
- the applied first and second half-wave integrators 46 and 47 and sample/hold circuit 48 are embodied in an analog manner, they can be embodied in a digital manner if necessary.
- the instrument 40 for measuring ground-resistive leakage current when abnormality occurs in the line 20 under test, the instrument 40 for measuring ground-resistive leakage current according to the present invention can rapidly detect the abnormality. Therefore, it is preferable that the instrument 40 for measuring ground-resistive leakage current be applied to an electric leakage breaker so that the electric leakage breaker can rapidly cut off the line 20 under test when leakage current occurs.
- the present invention is not limited thereto, and can be applied to and utilized in various fields.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
L'invention concerne un instrument de mesure d'un courant de fuite résistif par la terre. Un circuit de détection de courant de fuite détecte le courant de fuite composite dans une ligne testée. Un circuit de conversion courant-tension convertit le courant de fuite composite détecté par le circuit de détection de courant de fuite en une tension correspondante, puis sort la tension résultante. Un amplificateur amplifie le signal de sortie du circuit de conversion courant-tension. Un inverseur de phase inverse la phase d'un des signaux de sortie de l'amplificateur. Un générateur de signal de synchronisation détecte la tension dans la ligne testée est génère des signaux de synchronisation. Deux intégrateurs demi-onde reçoivent les signaux de synchronisation en provenance du générateur de signaux de synchronisation et effectuent en alternance l'intégration des signaux de sortie de l'amplificateur sur chaque demi-période. Un circuit d'échantillonnage/maintien reçoit les signaux de synchronisation en provenance du générateur de signaux de synchronisation, effectue en alternance l'échantillonnage des sorties des intégrateurs demi-onde sur chaque demi-période, puis maintient les valeurs correspondant aux sorties pendant une demi-période.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008800111454A CN101663589B (zh) | 2007-06-28 | 2008-06-27 | 阻性电泄漏电流的测量仪器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070064664A KR100896091B1 (ko) | 2007-06-28 | 2007-06-28 | 대지저항성 누전전류 측정기 |
KR10-2007-0064664 | 2007-06-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009002120A2 true WO2009002120A2 (fr) | 2008-12-31 |
WO2009002120A3 WO2009002120A3 (fr) | 2009-03-12 |
Family
ID=40186176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2008/003729 WO2009002120A2 (fr) | 2007-06-28 | 2008-06-27 | Instrument de mesure d'un courant de fuite résistif |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100896091B1 (fr) |
CN (1) | CN101663589B (fr) |
WO (1) | WO2009002120A2 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5228128B1 (ja) * | 2012-05-28 | 2013-07-03 | タナシン電機株式会社 | 信号生成装置、測定装置、漏電検出装置及び信号生成方法 |
US8803569B1 (en) | 2013-06-27 | 2014-08-12 | International Business Machines Corporation | Ramp generator using operational amplifier based integration and switched capacitor techniques |
JP2016057314A (ja) * | 2016-01-12 | 2016-04-21 | パナソニックIpマネジメント株式会社 | 漏電検出装置 |
JP2018128270A (ja) * | 2017-02-06 | 2018-08-16 | 株式会社日立産機システム | 絶縁監視装置および絶縁監視システム |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200453295Y1 (ko) * | 2009-10-22 | 2011-04-20 | 주식회사 에렐 | 큰 충전전류 전로용 누전차단기 |
CA2800584A1 (fr) * | 2010-06-07 | 2011-12-15 | Ampcontrol Pty Ltd | Procede de detection de courants de fuite ou de defaut depuis un equipement dans un systeme d'alimentation electrique |
KR101157125B1 (ko) * | 2011-05-04 | 2012-06-22 | 주식회사 유컴테크놀러지 | 저항성 전류 검출 장치 및 검출 방법 |
KR101671638B1 (ko) * | 2015-07-13 | 2016-11-01 | 김진학 | 활선상태의 단상 전력선의 대지절연저항 표시 및 경보장치 |
JP6460146B2 (ja) * | 2017-04-21 | 2019-01-30 | オムロン株式会社 | 漏洩電流算出装置および漏洩電流算出方法 |
CN110794258B (zh) * | 2019-10-28 | 2022-05-06 | 江苏能电科技有限公司 | 电气线路打火检测方法、装置、设备以及存储介质 |
CN111766497B (zh) * | 2020-07-28 | 2023-01-17 | 哈尔滨工业大学 | 一种高精度微弱瞬态电流测试系统及方法 |
CN112526437A (zh) * | 2020-11-27 | 2021-03-19 | 国网湖北省电力有限公司营销服务中心(计量中心) | 一种高压互感器群运行状态实时采集系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4558275A (en) * | 1981-04-21 | 1985-12-10 | The Superior Electric Company | Line voltage monitor system |
US6556397B2 (en) * | 2000-05-12 | 2003-04-29 | Human El-Tech, Inc. | Device and method for detecting arc fault |
KR200381335Y1 (ko) * | 2005-01-18 | 2005-04-12 | 주식회사 텔코코리아 | 전자식 누전 차단기 |
US20060109009A1 (en) * | 2004-11-19 | 2006-05-25 | Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh | Method and device for the detection of fault current arcing in electric circuits |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08182180A (ja) | 1994-12-22 | 1996-07-12 | Tempearl Ind Co Ltd | 積分判定回路とそれを利用した抵抗成分漏電検知回路 |
CN2399735Y (zh) * | 1999-08-18 | 2000-10-04 | 屠亚奇 | 电脑控制绝缘监测装置 |
CN2847308Y (zh) * | 2005-07-08 | 2006-12-13 | 河海大学常州校区 | 避雷器的泄漏电流检测仪的电路装置 |
-
2007
- 2007-06-28 KR KR1020070064664A patent/KR100896091B1/ko active Active
-
2008
- 2008-06-27 WO PCT/KR2008/003729 patent/WO2009002120A2/fr active Application Filing
- 2008-06-27 CN CN2008800111454A patent/CN101663589B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4558275A (en) * | 1981-04-21 | 1985-12-10 | The Superior Electric Company | Line voltage monitor system |
US6556397B2 (en) * | 2000-05-12 | 2003-04-29 | Human El-Tech, Inc. | Device and method for detecting arc fault |
US20060109009A1 (en) * | 2004-11-19 | 2006-05-25 | Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh | Method and device for the detection of fault current arcing in electric circuits |
KR200381335Y1 (ko) * | 2005-01-18 | 2005-04-12 | 주식회사 텔코코리아 | 전자식 누전 차단기 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5228128B1 (ja) * | 2012-05-28 | 2013-07-03 | タナシン電機株式会社 | 信号生成装置、測定装置、漏電検出装置及び信号生成方法 |
DE102013008882A1 (de) | 2012-05-28 | 2013-11-28 | Tanashin Denki Co., Ltd. | Signalerzeugungseinrichtung und Signalerzeugungsverfahren |
KR101346498B1 (ko) * | 2012-05-28 | 2013-12-31 | 다나신덴기가부시키가이샤 | 신호 생성 장치 및 신호 생성 방법 |
US9013156B2 (en) | 2012-05-28 | 2015-04-21 | Tanashin Denki Co., Ltd. | Signal generation device and signal generation method |
DE102013008882B4 (de) * | 2012-05-28 | 2017-04-20 | Tanashin Denki Co., Ltd. | Signalerzeugungseinrichtung und Signalerzeugungsverfahren |
US8803569B1 (en) | 2013-06-27 | 2014-08-12 | International Business Machines Corporation | Ramp generator using operational amplifier based integration and switched capacitor techniques |
JP2016057314A (ja) * | 2016-01-12 | 2016-04-21 | パナソニックIpマネジメント株式会社 | 漏電検出装置 |
JP2018128270A (ja) * | 2017-02-06 | 2018-08-16 | 株式会社日立産機システム | 絶縁監視装置および絶縁監視システム |
Also Published As
Publication number | Publication date |
---|---|
KR100896091B1 (ko) | 2009-05-14 |
KR20090000530A (ko) | 2009-01-07 |
WO2009002120A3 (fr) | 2009-03-12 |
CN101663589B (zh) | 2012-07-25 |
CN101663589A (zh) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009002120A2 (fr) | Instrument de mesure d'un courant de fuite résistif | |
US9588147B2 (en) | Electronic integrator for Rogowski coil sensors | |
JP2017058176A (ja) | インピーダンス測定装置およびインピーダンス測定方法 | |
CN100403037C (zh) | 测量交流电的方法和装置 | |
Irmak et al. | Design and application of a novel zero-crossing detector circuit | |
TWI553318B (zh) | 接地阻抗量測裝置及其操作方法 | |
KR100498927B1 (ko) | 피뢰기의 열화 진단에 있어서 시간 지연 합성법을 이용한저항성 누설전류의 측정 방법 및 장치 | |
CN110261668A (zh) | 电流检测电路及检测方法 | |
KR100771939B1 (ko) | 대지저항성 누전전류 측정기 | |
JP2011072163A (ja) | 地絡方向検出装置 | |
JP2002311061A (ja) | 電力用処理装置 | |
WO2014012393A1 (fr) | Procédé et système permettant de détecter une énergie de courant de foudre et dispositif parafoudre | |
JP5020508B2 (ja) | 地絡方向検出装置 | |
JP2010261722A (ja) | 電圧検出装置および線間電圧検出装置 | |
JP2560772B2 (ja) | 避雷器の劣化検出装置 | |
JP5717427B2 (ja) | 抵抗測定装置 | |
KR100771583B1 (ko) | 대지저항성 누전전류 측정기 | |
JP2003232826A (ja) | 漏電検出装置 | |
US6448780B1 (en) | Method of calculating a resistance | |
JP2004093416A (ja) | 電圧・電流計測装置 | |
JP5402622B2 (ja) | インバータ試験装置及びインバータ試験方法 | |
JPH0817552A (ja) | 避雷器の劣化検出装置 | |
CN103513096A (zh) | 一种h型滤波电容器组不平衡电流检测设备 | |
Comic et al. | A New Approach to Voltage Measurements in Power Systems | |
JPH04328472A (ja) | 避雷器劣化検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880011145.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08778409 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08778409 Country of ref document: EP Kind code of ref document: A2 |