+

WO2009099147A1 - Il-1 type ii receptor gene-deficient mutant of mouse - Google Patents

Il-1 type ii receptor gene-deficient mutant of mouse Download PDF

Info

Publication number
WO2009099147A1
WO2009099147A1 PCT/JP2009/051975 JP2009051975W WO2009099147A1 WO 2009099147 A1 WO2009099147 A1 WO 2009099147A1 JP 2009051975 W JP2009051975 W JP 2009051975W WO 2009099147 A1 WO2009099147 A1 WO 2009099147A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
receptor
mouse
gene
protein
Prior art date
Application number
PCT/JP2009/051975
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichiro Iwakura
Shigeru Kakuta
Yuko Tanahashi
Reiko Horai
Satoe Azechi
Akiko Nakajima
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2009099147A1 publication Critical patent/WO2009099147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0387Animal model for diseases of the immune system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/54Interleukins [IL]
    • G01N2333/545IL-1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/715Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons
    • G01N2333/7155Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the present invention relates to an IL-1 type II receptor gene-deficient mutant mouse, a method for preparing an antibody preparation for treating allergy and / or inflammation using the mutant mouse, and a method for screening an antiallergic drug or anti-inflammatory drug candidate And about.
  • IL-1 is a pro-inflammatory cytokine, and factors that down-regulate its production and / or activity are clinically important drug discovery targets.
  • the IL-1 ligand family has three members: IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist (IL-1Ra), IL-1 alpha and IL-1 beta function as agonists and IL-1Ra is known to be a specific antagonist.
  • the IL-1 receptor family includes IL-1 type I receptor (IL-1R I), IL-1 type II receptor (IL-1R II), and IL-1 receptor accessory protein (IL-1RAcP).
  • the IL-1 type I receptor is involved in IL-1 ligand signaling, but the IL-1 type II receptor has little intracellular domain and can bind to the IL-1 ligand. It is thought that no signal transduction occurs.
  • the IL-1 type II receptor does not form a complex with the type I receptor, whereas the IL-1 receptor accessory protein forms a complex with both the IL-1 type I receptor and the IL-1 type II receptor. be able to.
  • the IL-1 type II receptor is traditionally a decoy receptor that regulates IL-1 signaling by competitively inhibiting the binding of IL-1 type I receptor and IL-1 ligand. Has been considered.
  • an IL-1 type II receptor binds to an IL-1 ligand, it also binds to an IL-1 receptor accessory protein to form a complex. Thus, not only an IL-1 ligand but also an IL-1 receptor acceptor is formed.
  • Solly protein has also been considered to competitively inhibit binding to IL-1 type I receptor (Non-patent Document 2).
  • the extracellular domain of the type II receptor is cleaved by proteolytic enzymes and exists in the blood circulation as a soluble fragment. It is also known that the soluble fragment of this type II receptor, when associated with the soluble fragment of the receptor accessory protein, has a 100-fold higher affinity for IL-1 alpha and beta and forms a stable soluble complex. (Non-Patent Document 3).
  • genes for mouse IL-1 ligand and receptor family genes have been cloned one after another since the cloning of the IL-1 alpha gene in 1984.
  • the cloned genes have been produced in sequence by gene-deficient mice by homologous gene recombination methods to ES cells.
  • mice deficient in the IL-1 receptor family gene have been created by other groups. That is, IL-1 type I receptor (IL-1R I) and IL-1 receptor accessory protein (IL-1RAcP) gene-deficient mice were created in 1997 and 1998, respectively. However, despite the cloning of the IL-1 type II receptor gene in 1991, mice lacking the IL-1 type II receptor (IL-1R II) gene have reached the present from any laboratory in the world. There is no report that it was made until.
  • IL-1R I IL-1 type I receptor
  • IL-1RAcP IL-1 receptor accessory protein
  • mice lacking IL-1Ra gene produced by the inventor's group spontaneously develop various autoimmune diseases including arthritis. It is used as a model animal (Non-patent Document 5).
  • IL-1Ra is an antagonist of IL-1 ligand and inhibits stimulation of agonists IL-1alpha and IL-1beta.
  • the IL-1 type II receptor is also a decoy receptor for IL-1 ligand and IL-1RAcP, and is thought to inhibit IL-1 alpha and IL-1 beta stimulation. Therefore, the IL-1 type II receptor gene (Il1r2 locus) ) -Deficient mice are expected to be useful disease model animals.
  • the present invention provides an IL-1 type II receptor gene deletion mutant mouse having a deletion and / or insertion mutation at the IL-1 type II receptor locus on the mouse chromosome.
  • the mutation may express a green fluorescent protein instead of the full-length IL-1 type II receptor protein.
  • the present invention includes a step of immunizing a mouse IL-1 type II receptor protein to the mouse of the present invention to produce a monoclonal antibody against the receptor protein, and the monoclonal antibody is immunized from a wild-type mouse or a wild-type mouse.
  • a method for producing an antibody preparation for treating allergy and / or inflammation which comprises the step of screening a monoclonal antibody that suppresses stimulation of the immune system by IL-1 by administration to cells.
  • the present invention comprises a step of allowing IL-1 to act on an IL-1 type II receptor or a cell expressing the receptor in the presence or absence of a test substance, IL-1 type II receptor and IL-1 A method for screening an antiallergic drug or anti-inflammatory drug candidate.
  • a mutant mouse deficient in an IL-1 type II receptor gene refers to a mutant mouse that cannot normally produce a wild type IL-1 type II receptor.
  • the IL-1 type II receptor locus is located on the first chromosome of mouse, a 9-exon-linked mRNA is produced from a transcript of about 40.5 kb, and a polypeptide consisting of 410 amino acid residues Is translated.
  • the deletion mutant of the present invention is encoded by at least a part of at least one exon of a wild type gene of IL-1 type II receptor, in addition to a mutant that does not produce any IL-1 type II receptor polypeptide. Where a polypeptide is produced, including variants that lack any or all of IL-1 ligand binding, association with IL-1 receptor accessory protein, and other functions.
  • the variants of the present invention may have deletions and / or insertions in any part of any exon and / or intron of the IL-1 type II receptor locus.
  • the mutant mouse of the present invention includes not only homozygous individuals in which both of the two first chromosomes contain the mutation, but also only one of the two first chromosomes contains the mutation and the other is a wild type. Some heterozygous individuals are also included.
  • the mutant of the present invention may be created by chemical substances, radiation or any other method.
  • a preferred method for producing the mutant of the present invention is, for example, Manipulating the Mouse Embryo: A Laboratory Manual (3rd ed., Nagy, A. et al. Cold Spring Harbor Press N.Y, explained in detail in 2003). Mutation introduction into a target gene by homologous gene recombination method into a stem cell (ES cell).
  • a mutation that produces green fluorescent protein was introduced into the IL-1 type II receptor gene.
  • a sequence such as Cre provided that it is a mutant lacking any or all of IL-1 ligand binding, association with IL-1 receptor accessory protein, and other functions
  • Specific recombination sequences such as loxP recognized by specific recombinase are inserted, RNAi and other RNA and tRNA genes involved in gene expression control are inserted, green fluorescent protein and other fluorescent proteins, and Renilla Luciferase and other photoproteins derived from fireflies, etc., and alkaline phosphate Enzymes whose enzyme activity can be quantified or localized by enzymatic products such as oxidase, peroxidase and other enzyme reaction products, gene products that confer resistance to n
  • the green fluorescent protein can be expressed using the expression control mechanism of the IL-1 type II receptor gene.
  • the expression of the IL-1 type II receptor gene can be monitored using fluorescence emitted by the green fluorescent protein as an index.
  • a substance that affects the expression of an IL-1 type II receptor gene comprising the step of administering and / or expressing a drug discovery candidate substance to an individual mouse or a cell thereof that is a mutant mutant of the IL-1 type II receptor gene of the present invention.
  • the substance selected by the screening method can regulate the signal transduction mechanism by stimulating IL-1 ligand through affecting the expression of IL-1 type II receptor gene. Connected.
  • an IL-1 type II receptor caused by the mutation of the present invention can be obtained. Active substances that compensate for dysfunction can be screened.
  • a method for screening a substance that affects the expression of an IL-1 type II receptor gene comprising the step of administering and / or expressing a drug discovery candidate substance to an individual mutant mouse or a cell thereof lacking the IL-1 type II receptor gene
  • the selected substance can regulate the signal transduction mechanism by stimulating IL-1 ligand through affecting the complex formation of IL-1 ligand, leading to the development of a novel immunomodulatory drug.
  • Downstream of signal transduction due to stimulation of IL-1 ligand includes, for example, IL-6, procollagen, MCP (Monocyte Chemotactic Protein) -1, MIP (Macrophage Inflammatory Protein) -2, PGES (Prostaglandin E Synthase), etc.
  • IL-6 procollagen
  • MCP Monocyte Chemotactic Protein
  • MIP Macrophage Inflammatory Protein
  • PGES Prostaglandin E Synthase
  • a drug discovery candidate substance is a substance that can be a new drug or a lead compound for its development, and may be either a natural substance or a synthetic substance, or a polymer or multimer of chemical substances of some unit structure. It may be a monomer or a substance having any chemical structure.
  • the drug discovery candidate substance may be administered to a mouse individual or its cells using a drug delivery system according to the dissolution characteristics of the substance.
  • the drug discovery candidate substance is a virus particle or nucleic acid and has a function of inducing or inhibiting the expression of some gene in mouse cells, it is expressed by virus infection, electroporation, liposome method or other methods. There is a case to let you.
  • IL-1 ligand binds to a membrane-bound IL-1 type II receptor or a soluble fragment thereof, thereby inhibiting signal transduction via the IL-1 type receptor.
  • the IL-1 type II receptor gene-deficient mutant mouse of the present invention showed that IL-1 stimulation was suppressed. This suggests that the IL-1 type II receptor performs a previously unknown function of promoting IL-1 stimulation in normal individuals. Therefore, a novel allergy and / or inflammation therapeutic agent can be developed by searching for a substance that suppresses the IL-1 stimulation promoting function of the IL-1 type II receptor.
  • One example of a substance that suppresses the IL-1 stimulation promoting function of the IL-1 type II receptor is an antibody against the IL-1 type II receptor.
  • the immune response against the mouse IL-1 type II receptor is not suppressed, and therefore an antibody against the mouse IL-1 type II receptor protein can be prepared.
  • the monoclonal antibodies used in the present invention are described in Kohler and Milstein, Eur. J. et al. Immunol. 6: 511-519, 1976, and improved techniques thereof. These methods involve the preparation of immortal cell lines that can produce antibodies with the desired specificity.
  • Such cell lines may be generated from spleen cells derived from IL-1 type II receptor-deficient mice of the present invention immunized as described above.
  • the spleen cells are immortalized by various methods, and an immortal cell line having antibody-producing ability is prepared.
  • the spleen cells are immortalized by, for example, fusion of the immunized IL-1 type II receptor-deficient mouse of the present invention with myeloma cells derived from the same or different animals.
  • Various fusion techniques known to those skilled in the art may be used.
  • the spleen cells and myeloma cells are mixed with a nonionic surfactant for several minutes and then plated at a low concentration in a selective medium that supports the growth of hybrid cells but not the growth of myeloma cells.
  • a preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. Hybrid colonies are observed after sufficient time, usually about 1 to 2 weeks. A single colony is selected and its culture supernatant is tested for binding activity against the polypeptide. Hybridomas with high reactivity and specificity are preferred.
  • Monoclonal antibodies may be isolated from the supernatants of colonies of cell lines derived from selected growing hybridoma clones.
  • various techniques may be used to improve yield, such as injecting the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host such as a mouse.
  • Monoclonal antibodies may be recovered from the hybridoma cell ascites or blood. Contaminants may be removed from the antibody by conventional techniques such as chromatography, gel filtration, precipitation and extraction.
  • the antigen-binding fragment of the antibody used in the present invention includes an Fab fragment or F (ab ′) 2 fragment obtained by degrading an intact polyclonal antibody or monoclonal antibody with the proteolytic enzyme papain or pepsin, respectively, as well as natural antibody molecules.
  • the recombinant antibodies used in the present invention may be prepared by expression cloning of antibody genes including transformation into a suitable bacterial host or transfection into a suitable mammalian cell host.
  • the chimeric antibody used in the present invention is a fusion protein supported by the constant domain of the same or different antibody so that the antigen-binding site of the recombinant antibody of the present invention can specifically bind to the IL-1 type II receptor. is there.
  • the chimeric antibody used in the present invention includes a short chain variable region antibody (scFv) comprising an antibody heavy chain variable region (V H ) operably linked to an antibody light chain variable region (V L ), a camelid ( A camelid heavy chain antibody (HCAb), or a heavy chain variable region domain (VHH) thereof, which is a class of IgG without light chain produced by animals of Camelidae, camels, dromedaries, llamas).
  • the recombinant antibodies of the present invention can be prepared in large quantities using prokaryotic and eukaryotic derived gene expression systems.
  • the schematic diagram which shows the structure of the targeting vector 1, and the structure of homologous recombinant chromosomal DNA by this.
  • the schematic diagram which shows the structure of the targeting vector 2, and the structure of homologous recombinant chromosomal DNA by this.
  • the schematic diagram which shows the structure of the targeting vector 3, and the structure of homologous recombinant chromosomal DNA by this.
  • Southern blot diagram confirming mutation at IL-1 type II receptor locus by targeting vector 3.
  • FIG. The bar graph which shows that the CHS model allergic reaction by DNFB application
  • the bar graph which shows that the CHS model allergic reaction by TNCB application is not seen in the pinna of the IL-1 type II receptor gene deficient mouse. Electropherogram of RT-PCR product showing IL-1 type II receptor gene expression in CHS inflammatory sites.
  • FIG. 1 is a schematic diagram showing the structure of targeting vector 1 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto.
  • E2 to E8 represent the positions of the second to eighth exons, respectively. Therefore, the IL-1 type II receptor gene is transcribed from left to right in the figure.
  • a hygromycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 1, the homologous region on the left side was 1.8 kb, and the homologous region on the right side was 11.2 kb. .
  • the arrow of the hygromycin resistance gene indicates that the gene is transcribed from left to right.
  • a diphtheria toxin gene is linked adjacent to the left homologous region.
  • the second exon to the fifth exon are deleted.
  • Targets 1 Isolation of homologous recombinant ES cells Transfection of targeting vector 1 was performed as follows. 20 ⁇ g of linearized targeting vector 1 per 7 ⁇ 1 ⁇ 10 7 ES cells E14.1 strain was transfected by electroporation under conditions of 500 ⁇ F and 250 V for 1 week in ES cell medium supplemented with 140 ⁇ g / mL hygromycin After culturing, ES cells incorporating the targeting vector 1 were selected. In cells in which homologous recombination has not occurred between the chromosomal DNA and the DNA of the targeting vector 1 in the homologous region between the hygromycin resistance gene and the diphtheria toxin gene, the diphtheria toxin gene is expressed and the cell is killed.
  • the frequency of homologous recombination increases in colonies of ES cells resistant to hygromycin. Indeed, the inventors' group experience yields homologous recombinant clones with a frequency of 1-4% of the selected ES cells.
  • FIG. 2 is a schematic diagram showing the structure of targeting vector 2 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto.
  • a hygromycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 2
  • the left homologous region was 3.2 kb and the right homologous region was 4.8 kb.
  • a diphtheria toxin gene is linked adjacent to the left homologous region.
  • the second exon and a part of the third exon are deleted.
  • targeting vector 2 Isolation of homologous recombinant ES cells Transfection of targeting vector 2 was performed in the same manner as targeting vector 1. 749 clones of hygromycin-resistant ES cells introduced with the targeting vector 2 were isolated and confirmed by Southern blotting whether homologous recombination had occurred. However, none of the clones had undergone homologous recombination. It was.
  • FIG. 3 is a schematic diagram showing the structure of targeting vector 3 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto.
  • a neomycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 3.
  • the homology region on the left side was 5.5 kb, and the homology region on the right side was 2.7 kb.
  • a diphtheria toxin gene is linked adjacent to the right homologous region.
  • EGFP green fluorescent protein
  • targeting vector 3 was performed in the same manner as targeting vectors 1 and 2 except that 300 ⁇ g / mL G418 was added to the ES cell medium instead of hygromycin. . 1150 clones of G418-resistant ES cells into which the targeting vector 3 was introduced were isolated, and it was confirmed by Southern blotting whether homologous recombination occurred.
  • genomic DNA digested with BamHI was separated by agarose gel electrophoresis and copied to a solid phase, and a KpnI-PstI fragment (about 360 bp) existing 3 ′ downstream of the fifth exon was used as a probe.
  • the mutant can obtain a signal at about 7.0 kb with respect to the type of about 10.5 kb (FIG. 4). Of the 1150, only one 7A1 clone was a homologous recombinant.
  • a 7A1 clone having a mutation in the IL-1 type II receptor gene locus was prepared according to a conventional method using an agglutination chimera method. Specifically, an 8-cell embryo obtained by crossing between a BDF1 male mouse and a C57BL / 6J female mouse and 5-15 ES cells were contact-cultured overnight in M16 medium (Sigma) to obtain a chimeric blastocyst. After formation, chimeric mice were born by transplanting into the uterus of ICR female mice on the third day of pseudopregnancy treatment.
  • mice Male chimeric mice showing a contribution ratio of 70% or more ES cells as judged by hair color were mated with female C57BL / 6J mice, and a germline transmission test was performed.
  • DNA is extracted from the tail, and whether the target locus (locus having a deletion and insertion by homologous recombination in the IL-1 type II receptor gene) is determined by the PCR method And confirmed by Southern blotting.
  • Mice having the target locus were backcrossed (8 generations in the C57BL / 6J system and BALB / cA system) and used for analysis.
  • Phenotype of IL-1 type II receptor gene-deficient mice IL-1 type II receptor gene-deficient mice are born according to Mendel's law in both C57BL / 6J and BALB / cA genetic backgrounds. There was no abnormality. Unlike IL-1Ra gene-deficient mice, autoimmune diseases such as rheumatoid arthritis and psoriasis-like dermatitis were not observed with aging. In addition, in IL-1 type II receptor gene-deficient mice, a phenotype indicating that the decoy receptor for the IL-1 ligand has disappeared has not been recognized at present.
  • DNFB 2,4-Dinitrofluorobenzene
  • TNCB 2,4,6-trinitrochlorobenzene
  • FIG. 5A The result of CHS model allergic reaction by DNFB application is shown in FIG. 5A, and the result of CHS model allergic reaction by TNCB application is shown in FIG. 5B.
  • FIGS. 5A and 5B As shown in FIGS. 5A and 5B, in the IL-1 type II receptor gene-deficient mice, the onset of contact-type hypersensitivity by hapten application was suppressed.
  • IL-1 type II receptor gene expression was confirmed in wild-type mice in the CHS model allergic reaction.
  • the mouse auricle in which CHS was induced was homogenized in Sepazol RNAI Super (Nacalai), mixed with chloroform, and the aqueous phase from which RNA was extracted was collected. From this, RNA was purified using 100% isopropanol and 75% ethanol. This RNA was reverse transcribed using SuperScript TM First-Strand Synthesis System for RT-PCR (Invitrogen) to obtain cDNA. Using this as a template, the expression level of IL-1R2 mRNA was examined using the RT-PCR method.
  • Primer sequences used for PCR were IL-1R2 (Forward Primer; 5'-CTG GAA GGT GAA CCT GTG GT-3 '(SEQ ID NO: 1): Reverse Primer; 5'-CAT TTG CTC ACA GTG GGA TG-3 (SEQ ID NO: 2)), Gapdh (Forward Primer; 5′-ACC ACA GTC CAT GCC ATC TCT GCC A-3 ′ (SEQ ID NO: 3): Reverse Primer; 5′-TCC ACC ACC CTG TTG CTG TAG CTG TAG '(SEQ ID NO: 4)). Takara Ex Taq (Takara) was used as the thermostable DNA polymerase.
  • the conditions for the PCR reaction were incubation at 94 ° C. for 2 minutes, followed by reaction for 35 cycles (94 ° C. for 15 seconds, 58 ° C. for 30 seconds, 72 ° C. for 30 seconds), followed by 10 minutes at 72 ° C. This was performed under the condition of incubation for 1 minute.
  • the IL-1 type II receptor has been thought to suppress IL-1 stimulation as a decoy receptor. Thus, it was predicted that allergic reactions would be exacerbated because IL-1 stimulation could not be suppressed in mice lacking IL-1 type II receptor gene. However, as shown in FIG. 6, although the IL-1 type II receptor gene was not expressed at all in the CHS model allergic reaction, as shown in FIGS. 5A and 5B, in the IL-1 type II receptor gene-deficient mice, Allergic reactions were suppressed more than wild type mice. This is a result contrary to the conventional prediction.
  • IL-1 type II receptor gene-deficient mice as new IL-1 signal analysis tools Analysis using conventional gene-deficient mice reveals that IL-1 alpha signal is important for CHS exacerbation (Nakae et al., Int. Immunol. 13: 1471-1478 (2001)). Recently, in fibroblasts derived from scleroderma patients, pre-IL-1alpha present in the nucleus is involved in induction of expression of IL-6 and the like. At this time, pre-IL-1alpha is IL-1R2 It was reported that it functions as a transcription factor by forming a complex with (Kawaguchi, Y et al., Proc. Natl. Acad. Sci. USA, 103: 14151-14506 (2006)). . Thus, CHS, an IL-1alpha-dependent / IL-1beta-independent allergy model, is involved in the exacerbation of a new concept, pre-IL-1alpha / IL-1 type II receptor signal It was suggested that
  • biologics targeting the IL-1 system eg, Anakinra
  • Anakinra have also been put into practical use as therapeutic agents for immune diseases. From these, it is considered that the IL-1 type II receptor gene-deficient mouse is a valuable genetically modified mouse that is extremely useful and highly necessary as a signal analysis tool for IL-1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Pulmonology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Pathology (AREA)

Abstract

To clarify the role of IL-1 type II receptor in the signal transduction by IL-1 ligand, a gene deficient mutant animal never expressing IL-1 type II receptor gene is constructed. Provided is an IL-1 type II receptor gene-deficient mutant of mouse which has deletion and/or insertion mutations at the IL-1 type II receptor locus on mouse chromosome. Also provided is a method of producing an antibody preparation for treating allergy and/or inflammation which comprises a step of immunologically sensitizing the mouse as described above with mouse IL-1 type II receptor protein and thus producing a monoclonal antibody against the receptor protein, and so on. Also disclosed is a method of screening a candidate for an antiallergic agent or an antiinflammatory agent which comprises a step of treating IL-1 type II receptor or a cell expressing the receptor with IL-1 in the presence or absence of a test substance, and so on.

Description

IL-1タイプIIレセプター遺伝子の欠損変異体マウスIL-1 type II receptor gene deletion mutant mouse
 本発明は、IL-1タイプIIレセプター遺伝子の欠損変異体マウスと、該変異体マウスを用いるアレルギー及び/又は炎症を治療する抗体製剤の作成方法と、抗アレルギー薬又は抗炎症薬候補のスクリーニング方法とに関する。 The present invention relates to an IL-1 type II receptor gene-deficient mutant mouse, a method for preparing an antibody preparation for treating allergy and / or inflammation using the mutant mouse, and a method for screening an antiallergic drug or anti-inflammatory drug candidate And about.
 IL-1は向炎症性のサイトカインで、その産生及び/又は活性を下向き調節する因子は臨床的に重要な創薬ターゲットである。以下の非特許文献1の総説に説明されるとおり、IL-1リガンドのファミリーには、IL-1アルファ、IL-1ベータ及びIL-1レセプターアンタゴニスト(IL-1Ra)という3つのメンバーがあり、IL-1アルファ及びIL-1ベータがアゴニストとして機能し、IL-1Raは特異的なアンタゴニストであることが知られている。一方、IL-1レセプターのファミリーには、IL-1タイプIレセプター(IL-1R I)と、IL-1タイプIIレセプター(IL-1R II)と、IL-1レセプターアクセソリープロテイン(IL-1RAcP)という3つのメンバーがあり、IL-1タイプIレセプターはIL-1リガンドのシグナル伝達に関与するが、IL-1タイプIIレセプターは細胞内ドメインがほとんどなく、IL-1リガンドと結合してもシグナル伝達を行わないと考えられている。IL-1タイプIIレセプターは、タイプIレセプターと複合体を形成することはないが、IL-1レセプターアクセソリープロテインは、IL-1タイプIレセプターともIL-1タイプIIレセプターとも複合体を形成することができる。 IL-1 is a pro-inflammatory cytokine, and factors that down-regulate its production and / or activity are clinically important drug discovery targets. As explained in the review of Non-Patent Document 1 below, the IL-1 ligand family has three members: IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist (IL-1Ra), IL-1 alpha and IL-1 beta function as agonists and IL-1Ra is known to be a specific antagonist. On the other hand, the IL-1 receptor family includes IL-1 type I receptor (IL-1R I), IL-1 type II receptor (IL-1R II), and IL-1 receptor accessory protein (IL-1RAcP). The IL-1 type I receptor is involved in IL-1 ligand signaling, but the IL-1 type II receptor has little intracellular domain and can bind to the IL-1 ligand. It is thought that no signal transduction occurs. The IL-1 type II receptor does not form a complex with the type I receptor, whereas the IL-1 receptor accessory protein forms a complex with both the IL-1 type I receptor and the IL-1 type II receptor. be able to.
 IL-1タイプIIレセプターは、従来、おとり(decoy)レセプターであって、IL-1タイプIレセプターとIL-lリガンドとの結合を競合的に阻害することによって、IL-1シグナル伝達を調節すると考えられてきた。また、IL-1タイプIIレセプターは、IL-1リガンドと結合すると、IL-1レセプターアクセソリープロテインとも結合して複合体を形成することから、IL-1リガンドだけでなく、IL-1レセプターアクセソリープロテインについても、IL-1タイプIレセプターとの結合を競合的に阻害するものと考えられてきた(非特許文献2)。さらにタイプIIレセプターの細胞外ドメインは、タンパク質分解酵素によって切断されて、可溶性断片として血液循環中に存在する。このタイプIIレセプターの可溶性断片は、レセプターアクセソリープロテインの可溶性断片と会合すると、IL-1アルファ及びベータへの親和性が100倍高くなり、安定な可溶性複合体を形成することも知られている(非特許文献3)。 The IL-1 type II receptor is traditionally a decoy receptor that regulates IL-1 signaling by competitively inhibiting the binding of IL-1 type I receptor and IL-1 ligand. Has been considered. In addition, when an IL-1 type II receptor binds to an IL-1 ligand, it also binds to an IL-1 receptor accessory protein to form a complex. Thus, not only an IL-1 ligand but also an IL-1 receptor acceptor is formed. Solly protein has also been considered to competitively inhibit binding to IL-1 type I receptor (Non-patent Document 2). Furthermore, the extracellular domain of the type II receptor is cleaved by proteolytic enzymes and exists in the blood circulation as a soluble fragment. It is also known that the soluble fragment of this type II receptor, when associated with the soluble fragment of the receptor accessory protein, has a 100-fold higher affinity for IL-1 alpha and beta and forms a stable soluble complex. (Non-Patent Document 3).
 表1に示すとおり、マウスIL-1リガンド及びレセプターファミリー遺伝子については1984年にIL-1アルファ遺伝子がクローニングされて以来、次々に遺伝子がクローニングされている。そして、クローニングされた遺伝子は、順次、ES細胞への相同遺伝子組換え法により遺伝子欠損マウスが作出されてきた。 As shown in Table 1, genes for mouse IL-1 ligand and receptor family genes have been cloned one after another since the cloning of the IL-1 alpha gene in 1984. The cloned genes have been produced in sequence by gene-deficient mice by homologous gene recombination methods to ES cells.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1のうち、本発明の発明者らのグループ(Horaiら、1998年)は、IL-1リガンドファミリー遺伝子の全てについて遺伝子欠損マウスを作出した。すなわち、IL-1アルファ及びIL-1ベータ遺伝子のそれぞれの欠損マウスと、二重欠損マウスとを作出し、さらに、IL-1Ra遺伝子の欠損マウスも作出した(非特許文献4)。 In Table 1, the group of the inventors of the present invention (Horai et al., 1998) created gene-deficient mice for all of the IL-1 ligand family genes. That is, a mouse deficient in each of IL-1alpha and IL-1beta genes and a double deficient mouse were created, and a mouse deficient in IL-1Ra gene was also created (Non-patent Document 4).
 IL-1レセプターファミリー遺伝子の欠損マウスは他のグループによって作出されている。すなわち、IL-1タイプIレセプター(IL-1R I)及びIL-1レセプターアクセソリープロテイン(IL-1RAcP)の遺伝子欠損マウスについては、それぞれ、1997年及び1998年に作出されている。しかし、1991年にIL-1タイプIIレセプター遺伝子がクローニングされているのに、IL-1タイプIIレセプター(IL-1R II)遺伝子の欠損マウスは、世界中のいずれの研究室からも現在に至るまで作出されたという報告がない。 Mice deficient in the IL-1 receptor family gene have been created by other groups. That is, IL-1 type I receptor (IL-1R I) and IL-1 receptor accessory protein (IL-1RAcP) gene-deficient mice were created in 1997 and 1998, respectively. However, despite the cloning of the IL-1 type II receptor gene in 1991, mice lacking the IL-1 type II receptor (IL-1R II) gene have reached the present from any laboratory in the world. There is no report that it was made until.
 IL-1関連遺伝子の欠損マウスのうち、発明者のグループで作出されたIL-1Ra遺伝子の欠損マウスは、関節炎を始めとする種々の自己免疫性疾患を自然発症することから、極めて有用な疾患モデル動物として利用されている(非特許文献5)。IL-1RaはIL-1リガンドのアンタゴニストで、アゴニストであるIL-1アルファやIL-1ベータの刺激を阻害する。IL-1タイプIIレセプターもIL-1リガンドやIL-1RAcPのデコイレセプターであり、IL-1アルファやIL-1ベータの刺激を阻害すると考えられるので、IL-1タイプIIレセプター遺伝子(Il1r2遺伝子座)の欠損マウスも有用な疾患モデル動物となることが期待される。 Among mice lacking IL-1 related genes, mice lacking IL-1Ra gene produced by the inventor's group spontaneously develop various autoimmune diseases including arthritis. It is used as a model animal (Non-patent Document 5). IL-1Ra is an antagonist of IL-1 ligand and inhibits stimulation of agonists IL-1alpha and IL-1beta. The IL-1 type II receptor is also a decoy receptor for IL-1 ligand and IL-1RAcP, and is thought to inhibit IL-1 alpha and IL-1 beta stimulation. Therefore, the IL-1 type II receptor gene (Il1r2 locus) ) -Deficient mice are expected to be useful disease model animals.
先行技術文献Prior art documents
 IL-1タイプIIレセプターがIL-1リガンドのシグナル伝達に果たす役割を解明するためには、IL-1タイプIIレセプター遺伝子が全く発現しない遺伝子欠損変異体動物を作出する必要がある。また、かかる動物個体におけるIL-1リガンド及びレセプターの動態、複合体形成及びシグナル伝達を解析する方法を開発する必要がある。さらに、IL-1タイプIIレセプターを相補することができる物質の候補からIL-1シグナル伝達調節活性を有する物質のスクリーニング方法を開発する必要もある。 In order to elucidate the role of IL-1 type II receptor in IL-1 ligand signaling, it is necessary to create a gene-deficient mutant animal that does not express any IL-1 type II receptor gene. There is also a need to develop methods to analyze IL-1 ligand and receptor dynamics, complex formation and signal transduction in such animals. Furthermore, it is also necessary to develop a screening method for substances having IL-1 signaling regulatory activity from candidate substances that can complement the IL-1 type II receptor.
 本発明は、マウス染色体上のIL?1タイプIIレセプター遺伝子座に欠失及び/又は挿入変異を有する、IL-1タイプIIレセプター遺伝子の欠損変異体マウスを提供する。 The present invention provides an IL-1 type II receptor gene deletion mutant mouse having a deletion and / or insertion mutation at the IL-1 type II receptor locus on the mouse chromosome.
 本発明のIL-1タイプIIレセプター遺伝子の欠損変異体マウスにおいて、該変異は、完全長IL-1タイプIIレセプタータンパク質の代わりに緑蛍光タンパク質が発現する場合がある。 In the IL-1 type II receptor gene-deficient mutant mouse of the present invention, the mutation may express a green fluorescent protein instead of the full-length IL-1 type II receptor protein.
 本発明は、本発明のマウスにマウスIL-1タイプIIレセプタータンパク質を免疫感作して、該レセプタータンパク質に対するモノクローナル抗体を作成するステップと、前記モノクローナル抗体を野生型マウスか野生型マウス由来の免疫細胞かに投与して、IL-1による免疫系への刺激を抑制させるモノクローナル抗体をスクリーニングするステップとを含む、アレルギー及び/又は炎症を治療する抗体製剤の作成方法を提供する。 The present invention includes a step of immunizing a mouse IL-1 type II receptor protein to the mouse of the present invention to produce a monoclonal antibody against the receptor protein, and the monoclonal antibody is immunized from a wild-type mouse or a wild-type mouse. And a method for producing an antibody preparation for treating allergy and / or inflammation, which comprises the step of screening a monoclonal antibody that suppresses stimulation of the immune system by IL-1 by administration to cells.
 本発明は、試験物質存在下又は非存在下、IL-1タイプIIレセプターか、該レセプターを発現している細胞かにIL-1を作用させるステップと、IL-1タイプIIレセプターとIL-1との結合を測定するステップとを含む、抗アレルギー薬又は抗炎症薬候補のスクリーニング方法を提供する。 The present invention comprises a step of allowing IL-1 to act on an IL-1 type II receptor or a cell expressing the receptor in the presence or absence of a test substance, IL-1 type II receptor and IL-1 A method for screening an antiallergic drug or anti-inflammatory drug candidate.
 本明細書において、IL-1タイプIIレセプター遺伝子の欠損変異体マウスとは、野生型IL-1タイプIIレセプターを正常に産生することができないような変異体のマウスをいう。IL-1タイプIIレセプターの遺伝子座はマウスの第1番染色体に位置し、約40.5kbにわたる転写産物から9個のエクソンが連結したmRNAが産生され、410個のアミノ酸残基からなるポリペプチドが翻訳される。 In the present specification, a mutant mouse deficient in an IL-1 type II receptor gene refers to a mutant mouse that cannot normally produce a wild type IL-1 type II receptor. The IL-1 type II receptor locus is located on the first chromosome of mouse, a 9-exon-linked mRNA is produced from a transcript of about 40.5 kb, and a polypeptide consisting of 410 amino acid residues Is translated.
 本発明の欠損変異体は、IL-1タイプIIレセプターのポリペプチドが全く産生されない変異体の他、IL-1タイプIIレセプターの野生型遺伝子の少なくとも1つエクソンの少なくとも一部にコード化されるポリペプチドが産生される場合であって、IL-1リガンドの結合、IL-1レセプターアクセソリープロテインとの会合、その他の機能のいずれか又は全てを欠いている変異体を含む。本発明の変異体は、IL-1タイプIIレセプター遺伝子座のうち、いずれのエクソン及び/又はイントロンのいかなる部分について欠失及び/又は挿入が生じていてもかまわない。本発明の変異体マウスには、2本の第1染色体の両方が前記変異を含むホモ接合個体だけでなく、2本の第1染色体のうち一方だけが前記変異を含み、他方は野生型である、ヘテロ接合個体も含む。 The deletion mutant of the present invention is encoded by at least a part of at least one exon of a wild type gene of IL-1 type II receptor, in addition to a mutant that does not produce any IL-1 type II receptor polypeptide. Where a polypeptide is produced, including variants that lack any or all of IL-1 ligand binding, association with IL-1 receptor accessory protein, and other functions. The variants of the present invention may have deletions and / or insertions in any part of any exon and / or intron of the IL-1 type II receptor locus. The mutant mouse of the present invention includes not only homozygous individuals in which both of the two first chromosomes contain the mutation, but also only one of the two first chromosomes contains the mutation and the other is a wild type. Some heterozygous individuals are also included.
 本発明の変異体は化学物質、放射線その他のいかなる方法で作出してもかまわない。好ましい本発明の変異体の作出方法は、例えばManipulating the Mouse Embryo: A Laboratory Manual(3rd ed., Nagy, A. et al. Cold Spring Harbor Press N.Y., 2003)に詳しく説明される胚性幹細胞(ES細胞)への相同遺伝子組換え法による標的遺伝子への変異導入である。 The mutant of the present invention may be created by chemical substances, radiation or any other method. A preferred method for producing the mutant of the present invention is, for example, Manipulating the Mouse Embryo: A Laboratory Manual (3rd ed., Nagy, A. et al. Cold Spring Harbor Press N.Y, explained in detail in 2003). Mutation introduction into a target gene by homologous gene recombination method into a stem cell (ES cell).
 本発明の1つの実施態様では、緑蛍光タンパク質が産生されるような変異をIL-1タイプIIレセプター遺伝子に導入した。しかし、IL-1タイプIIレセプターのポリペプチドが全く産生されない変異体か、IL-1タイプIIレセプターの野生型遺伝子の少なくとも1つエクソンの少なくとも一部にコード化されるポリペプチドが産生される場合であって、IL-1リガンドの結合、IL-1レセプターアクセソリープロテインとの会合、その他の機能のいずれか又は全てを欠いている変異体かであることを条件として、例えばCreのような配列特異的組換え酵素が認識するloxPのような特異的組換え配列が挿入されたり、RNAiその他遺伝子発現制御に関与するRNAやtRNAの遺伝子が挿入されたり、緑蛍光タンパク質その他の蛍光タンパク質と、ウミシイタケ、ホタル等由来のルシフェラーゼその他の発光タンパク質と、アルカリフォスファターゼ、ペルオキシダーゼその他の酵素反応産物により酵素活性の定量又は局在が可能な酵素と、ネオマイシン、ハイグロマイシン、ゼオシン、ピューロマイシン、ブラストシジンSその他の薬剤に対する耐性を付与する遺伝子産物と、栄養要求性による選択を可能にする遺伝子産物と、IL-1リガンドによるシグナル伝達機構とは明確に区別できる別のシグナル伝達機構に関与するタンパク質とを含むが、これらに限定されないいずれかのタンパク質が産生されたりしてもかまわない。 In one embodiment of the present invention, a mutation that produces green fluorescent protein was introduced into the IL-1 type II receptor gene. However, if a variant that does not produce any IL-1 type II receptor polypeptide or a polypeptide encoded by at least a part of an exon of at least one wild type gene of IL-1 type II receptor is produced A sequence such as Cre, provided that it is a mutant lacking any or all of IL-1 ligand binding, association with IL-1 receptor accessory protein, and other functions Specific recombination sequences such as loxP recognized by specific recombinase are inserted, RNAi and other RNA and tRNA genes involved in gene expression control are inserted, green fluorescent protein and other fluorescent proteins, and Renilla Luciferase and other photoproteins derived from fireflies, etc., and alkaline phosphate Enzymes whose enzyme activity can be quantified or localized by enzymatic products such as oxidase, peroxidase and other enzyme reaction products, gene products that confer resistance to neomycin, hygromycin, zeocin, puromycin, blasticidin S and other drugs, and nutritional requirements Any protein is produced that includes, but is not limited to, a gene product that allows for sexual selection and another signaling mechanism that is clearly distinguishable from that of IL-1 ligand signaling. It does not matter.
 本発明の1つの実施態様で導入する変異では、IL-1タイプIIレセプター遺伝子の発現制御機構を用いて緑蛍光タンパク質を発現させることができる。かかる変異体マウスを用いると、緑蛍光タンパク質による蛍光発光を指標としてIL-1タイプIIレセプター遺伝子の発現をモニターすることができる。前記変異体マウスを用いると、さまざまな創薬候補物質からIL-1タイプIIレセプター遺伝子を上向き調節又は下向き調節する物質をハイスループットなやり方でスクリーニングすることができる。本発明のIL-1タイプIIレセプター遺伝子の欠損変異体マウス個体又はその細胞に創薬候補物質を投与及び/又は発現させるステップを含む、IL-1タイプIIレセプター遺伝子の発現に影響を与える物質のスクリーニング方法によって選ばれる物質は、IL-1タイプIIレセプター遺伝子の発現に影響を与えることを通じて、IL-1リガンドの刺激によるシグナル伝達機構を調節することができるので、新規な免疫調節医薬の開発につながる。 In the mutation introduced in one embodiment of the present invention, the green fluorescent protein can be expressed using the expression control mechanism of the IL-1 type II receptor gene. When such a mutant mouse is used, the expression of the IL-1 type II receptor gene can be monitored using fluorescence emitted by the green fluorescent protein as an index. By using the mutant mouse, it is possible to screen a substance that up-regulates or down-regulates an IL-1 type II receptor gene from various drug candidate substances in a high-throughput manner. A substance that affects the expression of an IL-1 type II receptor gene, comprising the step of administering and / or expressing a drug discovery candidate substance to an individual mouse or a cell thereof that is a mutant mutant of the IL-1 type II receptor gene of the present invention. The substance selected by the screening method can regulate the signal transduction mechanism by stimulating IL-1 ligand through affecting the expression of IL-1 type II receptor gene. Connected.
 また、本発明のIL-1タイプIIレセプター遺伝子の欠損変異体マウス又はその細胞に創薬候補物質を投与及び/又は発現させることによって、本発明の変異が原因となるIL-1タイプIIレセプターの機能不全を補償するような活性のある物質をスクリーニングすることができる。IL-1タイプIIレセプター遺伝子の欠損変異体マウス個体又はその細胞に創薬候補物質を投与及び/又は発現させるステップを含む、IL-1タイプIIレセプター遺伝子の発現に影響を与える物質のスクリーニング方法によって選ばれる物質は、IL-1リガンドの複合体形成に影響を与えることを通じて、IL-1リガンドの刺激によるシグナル伝達機構を調節することができるので、新規な免疫調節医薬の開発につながる。 In addition, by administering and / or expressing a drug discovery candidate substance to a mutant mutant mouse of the IL-1 type II receptor gene of the present invention or a cell thereof, an IL-1 type II receptor caused by the mutation of the present invention can be obtained. Active substances that compensate for dysfunction can be screened. By a method for screening a substance that affects the expression of an IL-1 type II receptor gene, the method comprising the step of administering and / or expressing a drug discovery candidate substance to an individual mutant mouse or a cell thereof lacking the IL-1 type II receptor gene The selected substance can regulate the signal transduction mechanism by stimulating IL-1 ligand through affecting the complex formation of IL-1 ligand, leading to the development of a novel immunomodulatory drug.
 IL-1リガンドの刺激によるシグナル伝達の下流には、例えば、IL-6、プロコラーゲン、MCP(Monocyte Chemotactic Protein)-1、MIP(Macrophage Inflammatory Protein)-2、PGES(Prostaglandin E synthase)等を含むが、これらに限定されない遺伝子があり、IL-1リガンドによる刺激はこれらの遺伝子の発現の誘導又は亢進につながる。したがって上記の免疫調節医薬の開発において、IL-1リガンドの刺激によるシグナル伝達は、IL-6、プロコラーゲン、MCP-1、MIP-2、PGES等を含むが、これらに限定されない遺伝子の発現量の変化に基づいて定量的に解析することができる。 Downstream of signal transduction due to stimulation of IL-1 ligand includes, for example, IL-6, procollagen, MCP (Monocyte Chemotactic Protein) -1, MIP (Macrophage Inflammatory Protein) -2, PGES (Prostaglandin E Synthase), etc. However, there are genes that are not limited to these, and stimulation with IL-1 ligand leads to induction or enhancement of the expression of these genes. Therefore, in the development of the above-described immunomodulatory drugs, signal transduction by IL-1 ligand stimulation includes IL-6, procollagen, MCP-1, MIP-2, PGES, etc., but is not limited thereto Quantitative analysis can be performed based on the change of.
 本明細書において、創薬候補物質とは、新規医薬又はその開発のリード化合物となりうる物質であって、天然物質及び合成物質のいずれでもよく、なんらかの単位構造の化学物質の重合体又は多量体であっても、単量体であってもよく、いかなる化学構造の物質でもかまわない。前記創薬候補物質は、該物質の溶解特性等に応じた薬物伝達システムを用いてマウス個体又はその細胞に投与される場合がある。前記創薬候補物質がウイルス粒子又は核酸であって、マウス細胞内でなんらかの遺伝子の発現の誘導又は阻害を起こす機能を有するものであるときには、ウイルス感染、電気穿孔法、リポソーム法その他の方法で発現させる場合がある。 In this specification, a drug discovery candidate substance is a substance that can be a new drug or a lead compound for its development, and may be either a natural substance or a synthetic substance, or a polymer or multimer of chemical substances of some unit structure. It may be a monomer or a substance having any chemical structure. The drug discovery candidate substance may be administered to a mouse individual or its cells using a drug delivery system according to the dissolution characteristics of the substance. When the drug discovery candidate substance is a virus particle or nucleic acid and has a function of inducing or inhibiting the expression of some gene in mouse cells, it is expressed by virus infection, electroporation, liposome method or other methods. There is a case to let you.
 IL-1リガンドは、膜結合型のIL-1タイプIIレセプター又はその可溶性断片と結合することにより、IL-1タイプレセプターを介したシグナル伝達が阻害されると考えられてきた。しかし、本発明のIL-1タイプIIレセプター遺伝子の欠損変異体マウスでは、IL-1による刺激が抑制されるという結果が得られた。このことは、IL-1タイプIIレセプターは正常な個体ではIL-1刺激を促進するという、これまで知られていなかった機能を果たしていることを示唆する。したがって、IL-1タイプIIレセプターのIL-1刺激促進機能を抑制する物質を探索することにより、新規なアレルギー及び/又は炎症の治療薬を開発することができる。 It has been considered that IL-1 ligand binds to a membrane-bound IL-1 type II receptor or a soluble fragment thereof, thereby inhibiting signal transduction via the IL-1 type receptor. However, the IL-1 type II receptor gene-deficient mutant mouse of the present invention showed that IL-1 stimulation was suppressed. This suggests that the IL-1 type II receptor performs a previously unknown function of promoting IL-1 stimulation in normal individuals. Therefore, a novel allergy and / or inflammation therapeutic agent can be developed by searching for a substance that suppresses the IL-1 stimulation promoting function of the IL-1 type II receptor.
 前記IL-1タイプIIレセプターのIL-1刺激促進機能を抑制する物質の1つの例は、IL-1タイプIIレセプターに対する抗体である。本発明のIL-1タイプIIレセプター欠損マウスでは、マウスIL-1タイプIIレセプターに対する免疫反応は抑制されないので、マウスIL-1タイプIIレセプタータンパク質に対する抗体を作成することができる。かかる抗体には、本発明で用いられるモノクローナル抗体は、Kohler及びMilstein、Eur.J.Immunol.6:511-519、1976の技術と、その改良技術を用いて調製される場合がある。これらの方法は、所望の特異性を有する抗体を産生できる不死性細胞株の調製を伴う。かかる細胞株は上記のとおり免疫された本発明のIL-1タイプIIレセプター欠損マウス由来の脾臓細胞から作成される場合がある。前記脾臓細胞は、さまざまな方法で不死化され、抗体産生能を有する不死化細胞株が調製される。前記脾臓細胞は、例えば、前記免疫された本発明のIL-1タイプIIレセプター欠損マウスと同種又は異種の動物由来のミエローマ細胞との融合によって不死化される。当業者に周知のさまざまな融合技術を用いる場合がある。例えば、前記脾臓細胞とミエローマ細胞とは非イオン性界面活性剤と数分間混合され、それからハイブリッド細胞の増殖は支持するがミエローマ細胞の増殖は支持しない選択培地に低濃度でプレートされる。好ましい選択技術はHAT(ヒポキサンチン、アミノプテリン、チミジン)選択を用いる。通常約1ないし2週間の十分な時間の後、ハイブリッドのコロニーが観察される。シングルコロニーが選択され、その培養上清が前記ポリペプチドに対する結合活性についてテストされる。反応性及び特異性が高いハイブリドーマが好ましい。限界希釈法によるクローニングを繰り返すことにより、反応性及び特異的が高い抗体を安定的に大量に産生するハイブリドーマのクローンが選択される。モノクローナル抗体は増殖中の選択されたハイブリドーマクローン由来の細胞株のコロニーの上清から単離される場合がある。さらに、マウスのような適当な脊椎動物宿主の腹腔内に前記ハイブリドーマ細胞株を注射するような、収率を向上させるためのさまざまな技術が用いられる場合がある。モノクローナル抗体は前記ハイブリドーマ細胞腹水又は血液から回収される場合がある。汚染物は、クロマトグラフィー、ゲルろ過、沈殿及び抽出のような従来技術によって前記抗体から除去される場合がある。 One example of a substance that suppresses the IL-1 stimulation promoting function of the IL-1 type II receptor is an antibody against the IL-1 type II receptor. In the IL-1 type II receptor-deficient mouse of the present invention, the immune response against the mouse IL-1 type II receptor is not suppressed, and therefore an antibody against the mouse IL-1 type II receptor protein can be prepared. For such antibodies, the monoclonal antibodies used in the present invention are described in Kohler and Milstein, Eur. J. et al. Immunol. 6: 511-519, 1976, and improved techniques thereof. These methods involve the preparation of immortal cell lines that can produce antibodies with the desired specificity. Such cell lines may be generated from spleen cells derived from IL-1 type II receptor-deficient mice of the present invention immunized as described above. The spleen cells are immortalized by various methods, and an immortal cell line having antibody-producing ability is prepared. The spleen cells are immortalized by, for example, fusion of the immunized IL-1 type II receptor-deficient mouse of the present invention with myeloma cells derived from the same or different animals. Various fusion techniques known to those skilled in the art may be used. For example, the spleen cells and myeloma cells are mixed with a nonionic surfactant for several minutes and then plated at a low concentration in a selective medium that supports the growth of hybrid cells but not the growth of myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. Hybrid colonies are observed after sufficient time, usually about 1 to 2 weeks. A single colony is selected and its culture supernatant is tested for binding activity against the polypeptide. Hybridomas with high reactivity and specificity are preferred. By repeating the cloning by the limiting dilution method, a hybridoma clone that stably produces a large amount of highly reactive and specific antibody is selected. Monoclonal antibodies may be isolated from the supernatants of colonies of cell lines derived from selected growing hybridoma clones. In addition, various techniques may be used to improve yield, such as injecting the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host such as a mouse. Monoclonal antibodies may be recovered from the hybridoma cell ascites or blood. Contaminants may be removed from the antibody by conventional techniques such as chromatography, gel filtration, precipitation and extraction.
 本発明で用いられる抗体の抗原結合断片は、インタクトなポリクローナル抗体又はモノクローナル抗体をそれぞれタンパク質分解酵素パパイン又はペプシンで分解して得られるFab断片又はF(ab’)断片の他、天然抗体分子の抗原認識能及び結合能の多くを保持する抗原結合部位を含む非共有結合的なV及びV領域のヘテロ2量体を含むFv断片を含む。 The antigen-binding fragment of the antibody used in the present invention includes an Fab fragment or F (ab ′) 2 fragment obtained by degrading an intact polyclonal antibody or monoclonal antibody with the proteolytic enzyme papain or pepsin, respectively, as well as natural antibody molecules. Includes Fv fragments containing non-covalent heterodimers of V H and V L regions that contain an antigen binding site that retains much of the ability to recognize and bind antigen.
 本発明で用いられる組換え抗体は、適当な細菌宿主への形質転換か、適当なほ乳類細胞宿主へのトランスフェクションかを含む抗体遺伝子の発現クローニングによって調製される場合がある。本発明で用いられるキメラ抗体は、前記本発明の組換え抗体の抗原結合部位がIL-1タイプIIレセプターと特異的に結合できるように同種又は異種の抗体の定常ドメインによって支持された融合タンパク質である。本発明で用いられるキメラ抗体には、抗体軽鎖可変領域(V)に操作可能に連結された抗体重鎖可変領域(V)を含む短鎖可変部抗体(scFv)と、ラクダ科(Camelidae、ラクダ、ヒトコブラクダ、ラマを含む)の動物が産生する軽鎖がないIgGのクラスであるラクダ重鎖抗体(HCAb)又はその重鎖可変部ドメイン(VHH)とを含む。本発明の組換え抗体は原核生物及び真核生物由来の遺伝子発現システムを用いて大量に調製することができる。 The recombinant antibodies used in the present invention may be prepared by expression cloning of antibody genes including transformation into a suitable bacterial host or transfection into a suitable mammalian cell host. The chimeric antibody used in the present invention is a fusion protein supported by the constant domain of the same or different antibody so that the antigen-binding site of the recombinant antibody of the present invention can specifically bind to the IL-1 type II receptor. is there. The chimeric antibody used in the present invention includes a short chain variable region antibody (scFv) comprising an antibody heavy chain variable region (V H ) operably linked to an antibody light chain variable region (V L ), a camelid ( A camelid heavy chain antibody (HCAb), or a heavy chain variable region domain (VHH) thereof, which is a class of IgG without light chain produced by animals of Camelidae, camels, dromedaries, llamas). The recombinant antibodies of the present invention can be prepared in large quantities using prokaryotic and eukaryotic derived gene expression systems.
ターゲティングベクター1の構造と、これによる相同組換え体染色体DNAの構造とを示す模式図。The schematic diagram which shows the structure of the targeting vector 1, and the structure of homologous recombinant chromosomal DNA by this. ターゲティングベクター2の構造と、これによる相同組換え体染色体DNAの構造とを示す模式図。The schematic diagram which shows the structure of the targeting vector 2, and the structure of homologous recombinant chromosomal DNA by this. ターゲティングベクター3の構造と、これによる相同組換え体染色体DNAの構造とを示す模式図。The schematic diagram which shows the structure of the targeting vector 3, and the structure of homologous recombinant chromosomal DNA by this. ターゲティングベクター3によるIL-1タイプIIレセプター遺伝子座での変異を確認するサザンブロット図。Southern blot diagram confirming mutation at IL-1 type II receptor locus by targeting vector 3. FIG. DNFB塗布によるCHSモデルアレルギー反応がIL-1タイプIIレセプター遺伝子欠損マウスの耳介ではみられないことを示す棒グラフ。The bar graph which shows that the CHS model allergic reaction by DNFB application | coating is not seen in the pinna of the IL-1 type II receptor gene deletion mouse | mouth. TNCB塗布によるCHSモデルアレルギー反応がIL-1タイプIIレセプター遺伝子欠損マウスの耳介ではみられないことを示す棒グラフ。The bar graph which shows that the CHS model allergic reaction by TNCB application is not seen in the pinna of the IL-1 type II receptor gene deficient mouse. CHS炎症局所でのIL-1タイプIIレセプター遺伝子発現を示すRT-PCR産物の電気泳動図。Electropherogram of RT-PCR product showing IL-1 type II receptor gene expression in CHS inflammatory sites.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下に実施例を示すが、これらは実施態様の例示を意図しており本発明の範囲を限定することは意図しない。 Examples are shown below, but these are intended to illustrate the embodiments and are not intended to limit the scope of the present invention.
 ターゲティングベクター1の構造
 図1は、ターゲティングベクター1の構造と、これに対応する野生型染色体DNA及び相同組換え体DNAの構造とを示す模式図である。E2ないしE8はそれぞれ第2ないし第8エクソンの位置を表す。したがって、IL-1タイプIIレセプター遺伝子は図の左から右の向きに転写される。ターゲティングベクター1には、ターゲティングベクター1を取り込んだES細胞を選別するためのマーカーとしてハイグロマイシン耐性遺伝子を用い、その左側の相同領域は1.8kb、その右側の相同領域は11.2kbであった。ハイグロマイシン耐性遺伝子の矢印は、該遺伝子が左から右の向きに転写されることを示す。また、相同組換え体を選別するためのマーカーとして、前記左側の相同領域に隣接してジフテリア毒素遺伝子が連結されている。ターゲティングベクター1では第2エクソンから第5エクソンまでが欠失する。
Structure of Targeting Vector 1 FIG. 1 is a schematic diagram showing the structure of targeting vector 1 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto. E2 to E8 represent the positions of the second to eighth exons, respectively. Therefore, the IL-1 type II receptor gene is transcribed from left to right in the figure. As the targeting vector 1, a hygromycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 1, the homologous region on the left side was 1.8 kb, and the homologous region on the right side was 11.2 kb. . The arrow of the hygromycin resistance gene indicates that the gene is transcribed from left to right. Further, as a marker for selecting a homologous recombinant, a diphtheria toxin gene is linked adjacent to the left homologous region. In targeting vector 1, the second exon to the fifth exon are deleted.
 相同組換え体ES細胞の単離
 ターゲティングベクター1のトランスフェクションは以下のとおり行った。ES細胞E14.1株1x10個あたり20μgの直鎖化したターゲティングベクター1を500μF、250Vの条件で電気穿孔法でトランスフェクションし、140μg/mLのハイグロマイシンを添加したES細胞用培地で1週間培養して、ターゲティングベクター1を取り込んだES細胞を選択した。なお、ハイグロマイシン耐性遺伝子とジフテリア毒素遺伝子との間の相同領域で染色体DNAとターゲティングベクター1のDNAとの間で相同組換えが起こっていない細胞では、ジフテリア毒素遺伝子が発現して細胞が死滅する場合が多く、結果的にハイグロマイシン耐性のES細胞のコロニーでは相同組換え体の頻度が上昇する。実際、発明者のグループの経験では、選択されたES細胞の1-4%の頻度で相同組換え体クローンが得られる。
Isolation of homologous recombinant ES cells Transfection of targeting vector 1 was performed as follows. 20 μg of linearized targeting vector 1 per 7 × 1 × 10 7 ES cells E14.1 strain was transfected by electroporation under conditions of 500 μF and 250 V for 1 week in ES cell medium supplemented with 140 μg / mL hygromycin After culturing, ES cells incorporating the targeting vector 1 were selected. In cells in which homologous recombination has not occurred between the chromosomal DNA and the DNA of the targeting vector 1 in the homologous region between the hygromycin resistance gene and the diphtheria toxin gene, the diphtheria toxin gene is expressed and the cell is killed. In many cases, the frequency of homologous recombination increases in colonies of ES cells resistant to hygromycin. Indeed, the inventors' group experience yields homologous recombinant clones with a frequency of 1-4% of the selected ES cells.
 ターゲティングベクター1を導入したハイグロマイシン耐性のES細胞のクローンを1099個単離して、相同組換えを起こしているかどうかサザンブロット法で確認したが、相同組換えを起こしていたクローンは1個もなかった。 1099 clones of hygromycin-resistant ES cells introduced with the targeting vector 1 were isolated and confirmed by Southern blotting to determine whether homologous recombination had occurred. None of the clones had undergone homologous recombination. It was.
 ターゲティングベクター2の構造
 図2は、ターゲティングベクター2の構造と、これに対応する野生型染色体DNA及び相同組換え体DNAの構造とを示す模式図である。ターゲティングベクター1には、ターゲティングベクター2を取り込んだES細胞を選別するためのマーカーとしてハイグロマイシン耐性遺伝子を用い、その左側の相同領域は3.2kb、その右側の相同領域は4.8kbであった。また、相同組換え体を選別するためのマーカーとして、前記左側の相同領域に隣接してジフテリア毒素遺伝子が連結されている。ターゲティングベクター2では第2エクソンと第3エクソンの一部が欠失する。
Structure of Targeting Vector 2 FIG. 2 is a schematic diagram showing the structure of targeting vector 2 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto. For the targeting vector 1, a hygromycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 2, and the left homologous region was 3.2 kb and the right homologous region was 4.8 kb. . Further, as a marker for selecting a homologous recombinant, a diphtheria toxin gene is linked adjacent to the left homologous region. In targeting vector 2, the second exon and a part of the third exon are deleted.
 相同組換え体ES細胞の単離
 ターゲティングベクター2のトランスフェクションはターゲティングベクター1と同様に行った。ターゲティングベクター2を導入したハイグロマイシン耐性のES細胞のクローンを749個単離して、相同組換えを起こしているかどうかサザンブロット法で確認したが、相同組換えを起こしていたクローンは1個もなかった。
Isolation of homologous recombinant ES cells Transfection of targeting vector 2 was performed in the same manner as targeting vector 1. 749 clones of hygromycin-resistant ES cells introduced with the targeting vector 2 were isolated and confirmed by Southern blotting whether homologous recombination had occurred. However, none of the clones had undergone homologous recombination. It was.
 ターゲティングベクター3の構造
 図3は、ターゲティングベクター3の構造と、これに対応する野生型染色体DNA及び相同組換え体DNAの構造とを示す模式図である。ターゲティングベクター3には、ターゲティングベクター3を取り込んだES細胞を選別するためのマーカーとしてネオマイシン耐性遺伝子を用い、その左側の相同領域は5.5kb、その右側の相同領域は2.7kbであった。また、相同組換え体を選別するためのマーカーとして、前記右側の相同領域に隣接してジフテリア毒素遺伝子が連結されている。ターゲティングベクター3では第2エクソンの一部と、第3エクソン及び第4エクソンが欠失し、IL-1タイプIIレセプタータンパク質の代わりに緑蛍光タンパク質(EGFP)が発現するようにコード化される。
Structure of Targeting Vector 3 FIG. 3 is a schematic diagram showing the structure of targeting vector 3 and the structures of wild-type chromosomal DNA and homologous recombinant DNA corresponding thereto. As the targeting vector 3, a neomycin resistance gene was used as a marker for selecting ES cells incorporating the targeting vector 3. The homology region on the left side was 5.5 kb, and the homology region on the right side was 2.7 kb. Further, as a marker for selecting a homologous recombinant, a diphtheria toxin gene is linked adjacent to the right homologous region. In the targeting vector 3, a part of the second exon, the third exon and the fourth exon are deleted, and encoded such that green fluorescent protein (EGFP) is expressed instead of the IL-1 type II receptor protein.
 相同組換え体ES細胞の単離
 ターゲティングベクター3のトランスフェクションは、ハイグロマイシンの代わりに300μg/mLのG418をES細胞用培地に添加することを除いて、ターゲティングベクター1及び2と同様に行った。ターゲティングベクター3を導入したG418耐性のES細胞のクローンを1150個単離して、相同組換えを起こしているかどうかサザンブロット法で確認した。ここで、BamHIで消化したゲノムDNAをアガロースゲル電気泳動により分離して固相に写し取り、第5エクソンの3’下流に存在するKpnI-PstI断片(約360bp)をプローブとして用いることにより、野生型約10.5kbに対して変異型は約7.0 kbにシグナルを得ることができる(図4)。前記1150個のうち7A1クローン1個だけが相同組換え体であった。
Isolation of homologous recombinant ES cells Transfection of targeting vector 3 was performed in the same manner as targeting vectors 1 and 2 except that 300 μg / mL G418 was added to the ES cell medium instead of hygromycin. . 1150 clones of G418-resistant ES cells into which the targeting vector 3 was introduced were isolated, and it was confirmed by Southern blotting whether homologous recombination occurred. Here, genomic DNA digested with BamHI was separated by agarose gel electrophoresis and copied to a solid phase, and a KpnI-PstI fragment (about 360 bp) existing 3 ′ downstream of the fifth exon was used as a probe. The mutant can obtain a signal at about 7.0 kb with respect to the type of about 10.5 kb (FIG. 4). Of the 1150, only one 7A1 clone was a homologous recombinant.
 ES細胞キメラマウスの作出
 IL-1タイプIIレセプター遺伝子座に変異を持つ7A1クローンは定法に従いアグリーゲションキメラ法を用いてキメラマウスの作製を行った。すなわち、BDF1オスマウスとC57BL/6Jメスマウスとの交配により得られた8細胞期胚と5-15個のES細胞とをM16培地(Sigma)内で一晩接触共培養することによりキメラ胚盤胞を形成させた後、偽妊娠処理3日目のICRメスマウスの子宮内に移植することによりキメラマウスを出生させた。毛色による判定で70%以上のES細胞の寄与率を示すオスキメラマウスは、メスC57BL/6Jマウスとの交配を行い、生殖系列伝達試験を行った。ES細胞由来を示す野生色の仔マウスについては尻尾よりDNAを抽出し、ターゲット遺伝子座(IL-1タイプIIレセプター遺伝子に相同組換えにより欠失及び挿入を有する遺伝子座)を持つかどうかPCR法及びサザンブロット法により確認を行った。ターゲット遺伝子座を持つマウスは、戻し交配(C57BL/6J系及びBALB/cA系に8世代)行い、解析に用いた。
Production of ES cell chimeric mouse A 7A1 clone having a mutation in the IL-1 type II receptor gene locus was prepared according to a conventional method using an agglutination chimera method. Specifically, an 8-cell embryo obtained by crossing between a BDF1 male mouse and a C57BL / 6J female mouse and 5-15 ES cells were contact-cultured overnight in M16 medium (Sigma) to obtain a chimeric blastocyst. After formation, chimeric mice were born by transplanting into the uterus of ICR female mice on the third day of pseudopregnancy treatment. Male chimeric mice showing a contribution ratio of 70% or more ES cells as judged by hair color were mated with female C57BL / 6J mice, and a germline transmission test was performed. For wild-colored pups derived from ES cells, DNA is extracted from the tail, and whether the target locus (locus having a deletion and insertion by homologous recombination in the IL-1 type II receptor gene) is determined by the PCR method And confirmed by Southern blotting. Mice having the target locus were backcrossed (8 generations in the C57BL / 6J system and BALB / cA system) and used for analysis.
 IL-1タイプIIレセプター遺伝子欠損マウスの表現型
 IL-1タイプIIレセプター遺伝子欠損マウスは、C57BL/6J、BALB/cAいずれの遺伝的背景においてもメンデルの法則に則って出生し、外見上も特に異常は見当たらなかった。また、IL-1Ra遺伝子欠損マウスと異なり、加齢と共にリウマチ様関節炎や乾癬様皮膚炎などの自己免疫疾患の発症は認められなかった。さらに、IL-1タイプIIレセプター遺伝子欠損マウスでは、IL-1リガンドに対するおとりレセプターが消失したことを示す表現型は、現在のところ認められていない。
Phenotype of IL-1 type II receptor gene-deficient mice IL-1 type II receptor gene-deficient mice are born according to Mendel's law in both C57BL / 6J and BALB / cA genetic backgrounds. There was no abnormality. Unlike IL-1Ra gene-deficient mice, autoimmune diseases such as rheumatoid arthritis and psoriasis-like dermatitis were not observed with aging. In addition, in IL-1 type II receptor gene-deficient mice, a phenotype indicating that the decoy receptor for the IL-1 ligand has disappeared has not been recognized at present.
 ハプテン塗布による接触型過敏症モデル
 IL-1のシグナルが増悪化に関与することが知られているハプテン塗布による接触型過敏症(CHS)モデルをIL-1タイプIIレセプター遺伝子欠損マウスに行なった。免疫感作するためのハプテンとしては2,4-ジニトロフルオロベンセン(DNFB)又は2,4,6-トリニトロクロロベンゼン(TNCB)を用いた。剃毛して2日後のマウスの腹部に0.5%に溶解したDNFB又は3.0%に溶解したTNCBを50μL塗布した。この時、溶媒としてオリーブオイル(和光):アセトン(ナカライ)=1:4の混合液を用いた。免疫感作5日後のマウスの片方の耳介に0.2%DNFB又は1.0%TNCBを25μL塗布し、もう一方の耳介には溶媒のみを塗布して炎症を誘導した。二度目のハプテン塗布から24時間後にマウスの左右の耳介を直径6mmのパンチで切り取りその重量差を測定した。
 [耳介の腫れ(mg)]=[ハプテンを塗布した耳介片重量(mg)]
              -[溶媒を塗布した耳介片重量(mg)]。
Hapten-applied contact hypersensitivity model A hapten-applied contact hypersensitivity (CHS) model, which is known to be involved in the exacerbation of IL-1 signal, was performed on IL-1 type II receptor gene-deficient mice. 2,4-Dinitrofluorobenzene (DNFB) or 2,4,6-trinitrochlorobenzene (TNCB) was used as a hapten for immunization. 50 μL of DNFB dissolved in 0.5% or TNCB dissolved in 3.0% was applied to the abdomen of the mouse 2 days after shaving. At this time, a mixed solution of olive oil (Wako): acetone (Nacalai) = 1: 4 was used as a solvent. Five days after immunization, 25 μL of 0.2% DNFB or 1.0% TNCB was applied to one pinna of the mouse, and inflammation was induced by applying only the solvent to the other pinna. 24 hours after the second hapten application, the left and right auricles of the mouse were cut with a punch having a diameter of 6 mm, and the weight difference was measured.
[Swelling of pinna (mg)] = [Weight of pinna to which hapten was applied (mg)]
-[Auricular piece weight (mg) coated with solvent].
 DNFB塗布によるCHSモデルアレルギー反応の結果を図5A、TNCB塗布によるCHSモデルアレルギー反応の結果を図5Bに示す。図5A及び図5Bに示すとおり、IL-1タイプIIレセプター遺伝子欠損マウスでは、ハプテン塗布による接触型過敏症の発症が抑制された。 The result of CHS model allergic reaction by DNFB application is shown in FIG. 5A, and the result of CHS model allergic reaction by TNCB application is shown in FIG. 5B. As shown in FIGS. 5A and 5B, in the IL-1 type II receptor gene-deficient mice, the onset of contact-type hypersensitivity by hapten application was suppressed.
 IL-1タイプIIレセプター遺伝子発現の確認
 前記CHSモデルアレルギー反応においてIL-1タイプIIレセプター遺伝子が野生型マウスでは発現していることを確認した。CHSを誘導したマウス耳介をセパゾールRNAIスーパー(ナカライ)中でホモジナイズし、クロロホルムを加えて混和した後、RNAが抽出された水相を回収した。ここから100%イソプロパノール、75%エタノールを用いてRNAを精製した。このRNAをSuperScript(商標)First-Strand Synthesis System for RT-PCR(Invitrogen)を用いて逆転写し、cDNAを得た。これをテンプレートとしRT-PCR法を用いてIL-1R2mRNA発現量を調べた。PCRに用いたプライマー配列は、IL-1R2(Forward Primer; 5’ -CTG GAA GGT GAA CCT GTG GT-3’(配列番号1): Reverse Primer; 5’ -CAT TTG CTC ACA GTG GGA TG-3’(配列番号2))、Gapdh(Forward Primer; 5’ -ACC ACA GTC CAT GCC ATC TCT GCC A-3’(配列番号3): Reverse Primer; 5’ -TCC ACC ACC CTG TTG CTG TAG CCG T-3’(配列番号4))である。耐熱性DNAポリメラーゼとしてTakara Ex Taq(Takara)を用いた。PCR反応の条件は、94°Cで2分間インキュベーションした後、(94°Cで15秒間、58°Cで30秒間、72°Cで30秒間)×35サイクル反応させ、その後72°Cで10分間インキュベーションする条件で行った。
Confirmation of IL-1 type II receptor gene expression It was confirmed that the IL-1 type II receptor gene was expressed in wild-type mice in the CHS model allergic reaction. The mouse auricle in which CHS was induced was homogenized in Sepazol RNAI Super (Nacalai), mixed with chloroform, and the aqueous phase from which RNA was extracted was collected. From this, RNA was purified using 100% isopropanol and 75% ethanol. This RNA was reverse transcribed using SuperScript ™ First-Strand Synthesis System for RT-PCR (Invitrogen) to obtain cDNA. Using this as a template, the expression level of IL-1R2 mRNA was examined using the RT-PCR method. Primer sequences used for PCR were IL-1R2 (Forward Primer; 5'-CTG GAA GGT GAA CCT GTG GT-3 '(SEQ ID NO: 1): Reverse Primer; 5'-CAT TTG CTC ACA GTG GGA TG-3 (SEQ ID NO: 2)), Gapdh (Forward Primer; 5′-ACC ACA GTC CAT GCC ATC TCT GCC A-3 ′ (SEQ ID NO: 3): Reverse Primer; 5′-TCC ACC ACC CTG TTG CTG TAG CTG TAG '(SEQ ID NO: 4)). Takara Ex Taq (Takara) was used as the thermostable DNA polymerase. The conditions for the PCR reaction were incubation at 94 ° C. for 2 minutes, followed by reaction for 35 cycles (94 ° C. for 15 seconds, 58 ° C. for 30 seconds, 72 ° C. for 30 seconds), followed by 10 minutes at 72 ° C. This was performed under the condition of incubation for 1 minute.
 図6に示すとおり、RT?PCR法によるIL-1タイプIIレセプター遺伝子発現解析の結果、野生型マウスでは、DNFB塗布によるCHSモデルアレルギー反応の際にIL-1タイプIIレセプター遺伝子は発現が亢進したが、IL-1タイプIIレセプター遺伝子座の欠損マウスではIL-1タイプIIレセプター遺伝子の発現は全く検出されなかった。 As shown in FIG. 6, as a result of IL-1 type II receptor gene expression analysis by RT-PCR method, in wild type mice, expression of IL-1 type II receptor gene was enhanced during CHS model allergic reaction by DNFB application. However, no IL-1 type II receptor gene expression was detected in mice lacking the IL-1 type II receptor locus.
 IL-1タイプIIレセプターはおとりレセプターとしてIL-1刺激を抑制すると考えられてきた。そこで、IL-1タイプIIレセプター遺伝子欠損マウスではIL-1刺激を抑制することができないからアレルギー反応は増悪すると予測された。しかし、図6に示すとおり、CHSモデルアレルギー反応ではIL-1タイプIIレセプター遺伝子が全く発現していないにもかかわらず、図5A及び図5Bに示すとおり、IL-1タイプIIレセプター遺伝子欠損マウスではアレルギー反応は野生型マウスよりも抑制された。これは、従来の予測に反する結果である。 The IL-1 type II receptor has been thought to suppress IL-1 stimulation as a decoy receptor. Thus, it was predicted that allergic reactions would be exacerbated because IL-1 stimulation could not be suppressed in mice lacking IL-1 type II receptor gene. However, as shown in FIG. 6, although the IL-1 type II receptor gene was not expressed at all in the CHS model allergic reaction, as shown in FIGS. 5A and 5B, in the IL-1 type II receptor gene-deficient mice, Allergic reactions were suppressed more than wild type mice. This is a result contrary to the conventional prediction.
 新しいIL-1シグナル解析ツールとしてのIL-1タイプIIレセプター遺伝子欠損マウス
 これまでの遺伝子欠損マウスを用いた解析から、CHSの増悪化にはIL-1アルファのシグナルが重要であることが明らかになっていた(Nakaeら、Int. Immunol.13:1471-1478(2001))。また、最近、強皮症患者由来の繊維芽細胞では核内に存在するpre-IL-1アルファがIL-6などの発現誘導に関与すること、このときpre-IL-1アルファはIL-1R2と複合体を形成することにより転写因子として機能していることが報告された(Kawaguchi,Yら、Proc. Natl. Acad. Sci. U.S.A., 103:14501-14506(2006))。このことから、IL-1アルファ依存性/IL-1ベータ非依存性のアレルギー・モデルであるCHSは、新しい概念であるpre-IL-1アルファ/IL-1タイプIIレセプターシグナルが増悪化に関与していると示唆された。
IL-1 type II receptor gene-deficient mice as new IL-1 signal analysis tools Analysis using conventional gene-deficient mice reveals that IL-1 alpha signal is important for CHS exacerbation (Nakae et al., Int. Immunol. 13: 1471-1478 (2001)). Recently, in fibroblasts derived from scleroderma patients, pre-IL-1alpha present in the nucleus is involved in induction of expression of IL-6 and the like. At this time, pre-IL-1alpha is IL-1R2 It was reported that it functions as a transcription factor by forming a complex with (Kawaguchi, Y et al., Proc. Natl. Acad. Sci. USA, 103: 14151-14506 (2006)). . Thus, CHS, an IL-1alpha-dependent / IL-1beta-independent allergy model, is involved in the exacerbation of a new concept, pre-IL-1alpha / IL-1 type II receptor signal It was suggested that
 IL-1は、NCBIが公開している医学・生物学の文献データベースであるPubMed(http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed)で検索した場合、2008年1月現在で43,014報もの論文がヒットする、極めて注目度の高い分子である。また、IL-1システムを標的とした生物製剤(例:Anakinra)も免疫疾患の治療薬として実用化に至っている。これらのことから、IL-1タイプIIレセプター遺伝子欠損マウスはIL-1のシグナル解析ツールとして、極めて有用かつ必要度の高い、貴重な遺伝子改変マウスであると考えられる。 IL-1 is searched by PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed), which is a database of medical and biological literature published by NCBI. As of January of this year, 43,014 papers are hit, and this is a very high-profile molecule. In addition, biologics targeting the IL-1 system (eg, Anakinra) have also been put into practical use as therapeutic agents for immune diseases. From these, it is considered that the IL-1 type II receptor gene-deficient mouse is a valuable genetically modified mouse that is extremely useful and highly necessary as a signal analysis tool for IL-1.

Claims (4)

  1.  マウス染色体上のIL-1タイプIIレセプター遺伝子座に欠失及び/又は挿入変異を有することを特徴とする、IL-1タイプIIレセプター遺伝子の欠損変異体マウス。 An IL-1 type II receptor gene deletion mutant mouse, characterized by having a deletion and / or insertion mutation at the IL-1 type II receptor locus on the mouse chromosome.
  2.  前記変異は、完全長IL-1タイプIIレセプタータンパク質の代わりに緑蛍光タンパク質が発現することを特徴とする、請求項1に記載のIL-1タイプIIレセプター遺伝子の欠損変異体マウス。 The IL-1 type II receptor gene-deficient mutant mouse according to claim 1, wherein the mutation expresses green fluorescent protein instead of full-length IL-1 type II receptor protein.
  3.  請求項1又は2に記載のマウスにマウスIL-1タイプIIレセプタータンパク質を免疫感作して、該レセプタータンパク質に対するモノクローナル抗体を作成するステップと、前記モノクローナル抗体を野生型マウスか野生型マウス由来の免疫細胞かに投与して、IL-1による免疫系への刺激を抑制させるモノクローナル抗体をスクリーニングするステップとを含むことを特徴とする、アレルギー及び/又は炎症を治療する抗体製剤の作成方法。 A step of immunizing a mouse IL-1 type II receptor protein in the mouse according to claim 1 or 2 to produce a monoclonal antibody against the receptor protein, and said monoclonal antibody is derived from a wild type mouse or a wild type mouse. A method for producing an antibody preparation for treating allergy and / or inflammation, which comprises the step of screening for a monoclonal antibody that is administered to immune cells and suppresses stimulation of the immune system by IL-1.
  4.  試験物質存在下又は非存在下、IL-1タイプIIレセプターか、該レセプターを発現している細胞かにIL-1を作用させるステップと、IL-1タイプIIレセプターとIL-1との結合を測定するステップとを含むことを特徴とする、抗アレルギー薬又は抗炎症薬候補のスクリーニング方法。 Allowing IL-1 to act on IL-1 type II receptor or cells expressing the receptor in the presence or absence of a test substance, and binding of IL-1 type II receptor to IL-1 A method for screening an anti-allergic drug or anti-inflammatory drug candidate.
PCT/JP2009/051975 2008-02-05 2009-02-05 Il-1 type ii receptor gene-deficient mutant of mouse WO2009099147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008024807A JP2009183176A (en) 2008-02-05 2008-02-05 IL-1 type II receptor gene deletion mutant mouse
JP2008-024807 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009099147A1 true WO2009099147A1 (en) 2009-08-13

Family

ID=40952220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051975 WO2009099147A1 (en) 2008-02-05 2009-02-05 Il-1 type ii receptor gene-deficient mutant of mouse

Country Status (2)

Country Link
JP (1) JP2009183176A (en)
WO (1) WO2009099147A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018982A1 (en) * 1990-06-05 1991-12-12 Immunex Corporation Type ii interleukin-1 receptors
WO1999025857A2 (en) * 1997-11-13 1999-05-27 Medical Science Systems, Inc. Transgenic models of inflammatory disease
WO2000010383A1 (en) * 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
WO2000057695A1 (en) * 1999-03-31 2000-10-05 Keio University Autoimmune disease model animal
WO2003014309A2 (en) * 2001-08-07 2003-02-20 Immunex Corporation Interleukin-1 receptors in the treatment of diseases
WO2003035384A1 (en) * 2001-10-26 2003-05-01 Atofina Polyamide or polyester- and aluminium multilayer tube for fluid transfer
WO2003101497A1 (en) * 2002-04-12 2003-12-11 Cartela Ab Knockout mice and their use
WO2004056310A2 (en) * 2002-12-09 2004-07-08 Children's Hospital Medical Center Methods of diagnosis and treatment of interstitial lung disease

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018982A1 (en) * 1990-06-05 1991-12-12 Immunex Corporation Type ii interleukin-1 receptors
WO1999025857A2 (en) * 1997-11-13 1999-05-27 Medical Science Systems, Inc. Transgenic models of inflammatory disease
WO2000010383A1 (en) * 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
WO2000057695A1 (en) * 1999-03-31 2000-10-05 Keio University Autoimmune disease model animal
WO2003014309A2 (en) * 2001-08-07 2003-02-20 Immunex Corporation Interleukin-1 receptors in the treatment of diseases
WO2003035384A1 (en) * 2001-10-26 2003-05-01 Atofina Polyamide or polyester- and aluminium multilayer tube for fluid transfer
WO2003101497A1 (en) * 2002-04-12 2003-12-11 Cartela Ab Knockout mice and their use
WO2004056310A2 (en) * 2002-12-09 2004-07-08 Children's Hospital Medical Center Methods of diagnosis and treatment of interstitial lung disease

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GLACCUM, M.B. ET AL.: "Phenotypic and functional characterization of mice that lack the type I receptor for IL-1", JOURNAL OF IMMUNOLOGY, vol. 159, no. 7, 1997, pages 3364 - 3371 *
MCMAHAN, C.J. ET AL.: "A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types", EMBO J, vol. 10, no. 10, 1991, pages 2821 - 32 *
NAKAE S. ET AL.: "Cytokine ni Kansuru Saikin no Shinpo Kogen Tokuiteki T-B Saibo no Kasseika ni Okeru IL-1 no Yakuwari", CLINICAL IMMUNOLOGY, vol. 33, no. 4, 2000, pages 396 - 399 *

Also Published As

Publication number Publication date
JP2009183176A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR102362774B1 (en) Non-human mammals for the production of chimeric antibodies
US11071290B2 (en) Genetically modified non-human animal with human or chimeric CTLA-4
KR102186822B1 (en) Humanized light chain mice
US20190387724A1 (en) Method for Constructing PD-1 Gene Modified Humanized Animal Model and Use Thereof
US20190352666A1 (en) Genetically Modified Non-Human Animal With Human Or Chimeric OX40
WO2018041121A1 (en) Genetically modified non-human animal with human or chimeric ctla-4
EP3289869B1 (en) Transgenic non-human animal expressing human-specific molecules and human fc gamma receptor family
US11832598B2 (en) Genetically modified non-human animals and methods for producing heavy chain-only antibodies
JP2019068850A (en) Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
CN109136261B (en) Preparation method and application of humanized CD28 gene modified animal model
US11154041B2 (en) Genetically modified non-human animal with human or chimeric genes
US20190364861A1 (en) Genetically modified non-human animal with human or chimeric gitr
CN113388640B (en) CCR4 gene humanized non-human animal and construction method and application thereof
WO2021204166A1 (en) Genetically modified non-human animal with human or chimeric il1b and/or il1a
WO2018233607A1 (en) Genetically modified non-human animal with human or chimeric cd40
KR102649524B1 (en) Methods for Genetically Modified Non-Human Animals and Complement-Dependent Cell Toxicity
WO2009099147A1 (en) Il-1 type ii receptor gene-deficient mutant of mouse
CN115010800A (en) Construction method and application of PVRIG gene humanized non-human animal
CN115011606A (en) Construction method and application of CD37 gene humanized non-human animal
CN112501202B (en) CXCR4 gene humanized non-human animal and construction method and application thereof
WO2025067231A1 (en) Genetically modified non-human animals with humanized immunoglobulin locus
JP2005517410A (en) Mutant gene encoding LAT protein and biological application thereof
CN114990128A (en) Construction method and application of CD20 gene humanized non-human animal
CN115948464A (en) TREM1 gene humanized non-human animal and construction method and application thereof
CN119464380A (en) A method for constructing a non-human animal with humanized ERBB gene and its application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707969

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载