+

WO2009049599A2 - Régulation de température d'engrenages couplés les uns aux autres et d'un générateur dans une éolienne - Google Patents

Régulation de température d'engrenages couplés les uns aux autres et d'un générateur dans une éolienne Download PDF

Info

Publication number
WO2009049599A2
WO2009049599A2 PCT/DE2008/001672 DE2008001672W WO2009049599A2 WO 2009049599 A2 WO2009049599 A2 WO 2009049599A2 DE 2008001672 W DE2008001672 W DE 2008001672W WO 2009049599 A2 WO2009049599 A2 WO 2009049599A2
Authority
WO
WIPO (PCT)
Prior art keywords
generator
transmission
cooling circuit
cooling
rotor
Prior art date
Application number
PCT/DE2008/001672
Other languages
German (de)
English (en)
Other versions
WO2009049599A3 (fr
Inventor
Sönke PAULSEN
Jens Thomas Wernicke
Original Assignee
Innovative Windpower Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Windpower Ag filed Critical Innovative Windpower Ag
Priority to DE112008002661T priority Critical patent/DE112008002661A5/de
Publication of WO2009049599A2 publication Critical patent/WO2009049599A2/fr
Publication of WO2009049599A3 publication Critical patent/WO2009049599A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/48Special means compensating for misalignment of axes, e.g. for equalising distribution of load on the face width of the teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/205Cooling fluid recirculation, i.e. after having cooled one or more components the cooling fluid is recovered and used elsewhere for other purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a device for controlling the temperatures of a gearbox and a generator for a wind turbine, which converts wind energy into electrical energy, the device comprising the gearbox and the generator, wherein the gearbox and the generator are fixedly connected to one another wherein the generator comprises at least one rotor (131), at least one stator (129), at least one conductor winding and / or a permanent magnet (135), which comprises the stator (129) or the rotor (131), and a rotor ( 131) and the stator (129) comprising generator housing (127) and having a generator temperature, wherein the transmission at least one output stage, at least one drive stage, wherein the speed or the torque of the drive stage is converted into a speed or torque of the output stage, and a transmission housing comprising the drive stage and the output stage (107) and having a transmission temperature, wherein de r generator means for cooling and a corresponding cooling circuit having a cooling medium, wherein the transmission comprises a lubricant, in particular for lubrication, wherein
  • Wind turbines or wind turbines are set up at different latitudes of this world.
  • a standard wind turbine must be adjusted to a wide variety of climatic conditions. But even through the conditions set by seasonal temperature changes at a location a wind turbine must be operated as possible all year round, otherwise the economy is not given.
  • Germany typically must be considered temperature ranges between -20 and +40 0 C.
  • tempera Below freezing temperatures gear lubricants do not have the optimum viscosity for starting up or operating a wind turbine.
  • the temperature of the lubricating oil is determined in a transmission by means of a temperature sensor and heated at low temperatures of the oil sump by means of immersion heaters. Due to lack of convection, this causes the oil to be heated locally on the immersion heater, but the heat does not distribute itself ideally in the oil. In particular, the use of an immersion heater causes the oil in the vicinity of the immersion heater burns and thereby deteriorates the quality of the lubricant.
  • DE 100 16 913 A1 discloses a wind turbine with a rotor unit optionally with a gearbox and a generator, with a heat exchanger system consisting of a heat absorption unit arranged in the region of the generator and optionally of the transmission, a heat dissipation unit arranged in the region of the tower.
  • a heat exchanger system consisting of a heat absorption unit arranged in the region of the generator and optionally of the transmission, a heat dissipation unit arranged in the region of the tower.
  • one of the two units interconnected power systems, consisting of a flow line and a return line and a circulation pump shown.
  • DE 3 625 840 A1 discloses a wind energy plant consisting of a rotor which is connected to a generator via a transmission, the transmission and the generator being accommodated in a common housing.
  • the housing is rotationally symmetrical and serves on the outside of the thus coaxial storage of the scar of the rotor.
  • the rotor blades of the rotor are arranged centrally with respect to the annular base body of the scar, at the two axial end portions thereof. bearing points are located.
  • the power transmission from the rotor via a arranged on the inside of the scoring gear on the gearbox.
  • DE 20 2006 006 326 Ul represents a cabinet for receiving electrical and electronic components and switching elements, which is exposed to rotation and the at least one cooling device with a lying in its interior cold-emitting device part and a lying outside the circuit heat-emitting device part wherein the cooling device is preferably designed as a Peltier element, wherein the control cabinet is arranged for example in the tower head of a wind turbine, which consists of a tower, the tower head, a wind-driven turbine and an electric generator arranged in the tower head, wherein the turbine is rotated by wind , The rotational movement is transmitted via a rotor shaft or a gearbox to the electric generator, which converts the rotational energy into electricity, wherein the lying in the interior of the cabinet cold side of the in a wall of the control cabinet ang eordneten cooling device is arranged a condensate ring as a cup-shaped sump for accumulating condensation, the interior of which is connected to a led out of the interior of the cabinet hose, which is formed in the
  • An object of the invention is to improve the state of the art.
  • a device for controlling the temperatures of a transmission and a generator for a wind turbine, which wind energy in electrical energy converts wherein the device comprises the transmission and the generator, wherein the transmission and the generator are fixedly connected to each other, wherein the generator at least one rotor, at least one stator, at least one conductor winding and / or a permanent magnet, which the stator or the rotor comprises, and a generator housing comprising the rotor and stator and having a generator temperature, the transmission at least one output stage, at least one drive stage, wherein the speed or the torque of the drive stage is converted into a speed or torque of the output stage and a transmission housing comprising the drive stage and the output stage and having a transmission temperature, wherein the generator comprises means for cooling and a corresponding cooling circuit with a cooling medium, wherein the transmission comprises a lubricant, in particular for lubrication, wherein the means for cooling to temper be used in the transmission.
  • a two-stage planetary gear can be used with or without downstream spur gear in a preferred manner.
  • multi-stage planetary gear can be used with or without downstream spur gear.
  • the term "generator” is understood to mean, in particular, devices which convert mechanical energy into electrical energy.
  • the generator can be designed so that in the yoke or corresponding rotor (yoke is also called rotor hereinafter) are permanent magnets which induce a voltage in the coils of the stator during rotation of the yoke.
  • the generator can be configured as a double stator and a monotor.
  • Conductor coil is essentially an arrangement of conductor loops, which form a magnetic field when energized or generate current when passing through a magnetic field.
  • the conductor loop may be configured to extend over inner and outer stators.
  • the magnet in the rotor can be configured as a current-excitable magnet.
  • the fixed connection between the generator and the transmission can be configured as a flanged connection. This detachable attachment allows replacement of components and easier maintenance.
  • a plate which transfers the heat from the generator to the transmission or in the reverse direction be mounted between the gearbox and generator, while still a firm connection between the gearbox and generator can be realized.
  • the drive stage and the output stage can mesh with each other so that a speed or torque conversion takes place.
  • further devices can be provided, which implement further conversions of the rotational speed or enrovend of the torque between the drive stage and the output stage.
  • the generator may include cooling means which regulate the temperature of the generator resulting from induction and hence current flow in the conductor loops.
  • cooling means which regulate the temperature of the generator resulting from induction and hence current flow in the conductor loops.
  • water or water / glycol mixtures can be used as the coolant in the cooling circuit.
  • a coolant pump can pump the coolant through the cooling circuit.
  • the cooling circuit can be actively and / or passively cooled.
  • the active cooling can take place by means of a cooling unit.
  • the cooling unit is supplied with a power source which provides the necessary energy for the cooling.
  • the passive cooling can be done via a heat sink.
  • This heat sink can be mounted outside the housing or the wind turbine.
  • the cooling takes place via heat-conducting cooling fins, which can be in exchange with cooling air.
  • the tempering may be passive and / or active.
  • the passive tempering can be done by extending the cooling circuit to the transmission.
  • the cooling circuit is designed so that a temperature exchange between the cooling circuit of the generator and the transmission (oil) takes place.
  • the cooling circuit extended into the transmission can be switched on by means of a switching element.
  • the transmission may have a cooling circuit with coolant.
  • the transmission can be connected via switchable valves, which are mounted between the cooling circuit of the transmission and the generator, the cooling circuit of the transmission with that of the generator.
  • the coolant flows through both the transmission and the generator.
  • the active tempering can be carried out by bringing the lubricant to the means for cooling.
  • a pump may be attached, which conveys the lubricant to the points in the transmission, where a good exchange of heat with the coolant can be done.
  • the pump can be designed mechanically as well as electrically.
  • the mechanical pump can be designed as a gear pump.
  • the conductor windings in the generator may be powered by an external power source. This causes the current flow to heat the conductor winding. This heat can be absorbed by the coolant and used to warm the lubricant in the generator.
  • the cooling of the coolant can be omitted during the warm-up. This can be done by switching off the cooling unit or thermally conductive separation of the passive coolant (eg through a valve in the access to the passive coolant).
  • one phase of the power source may be used to power the conductor windings.
  • the conductor winding can be impressed with a corresponding current profile, by means of which the heat development is optimally configured for the warming-up of the coolant.
  • the rotor which is coupled to the output stage for the production of electrical energy, can be decoupled from the output stage. This causes the rotor to rotate and the generator to act as a motor. This ensures that the shaft does not rotate despite the rotating rotor.
  • the decoupling can be done circuit technology by controlling a bolt or bolt.
  • the object is achieved by a method for tempering, in particular warming up a transmission and / or a generator of a wind power plant, wherein the transmission and the generator are fixedly connected to each other, wherein generator and transmission each comprise a cooling circuit , in which, especially when starting the wind turbine, the generator, the gearbox or the gearbox tempered the generator.
  • Both the cooling circuit of the generator and the cooling circuit of the transmission can each include coolant, cooling pumps and cooling units.
  • the cooling circuits may form a common overall cooling circuit and this overall cooling circuit may comprise a coolant pump which pumps a cooling medium or coolant through the entire cooling circuit.
  • this overall cooling circuit may comprise a coolant pump which pumps a cooling medium or coolant through the entire cooling circuit.
  • the entire cooling circuit can advantageously be configured via a connection of the cooling circuits with the gearbox and the generator.
  • the connection can be designed such that both an inflow and an outflow can be realized.
  • the compound can split into two separate compounds, which essentially a supply and an outflow is feasible.
  • connection can be switched via at least one valve.
  • the connection can be switched via at least one valve.
  • the object can be achieved by a method for controlling the temperature of a transmission of a wind turbine, wherein the wind turbine comprises a generator, wherein generator and transmission each comprise a cooling circuit, wherein the cooling circuit of the transmission and the cooling circuit of the generator form a total cooling circuit through a connection, wherein the generator is energized, whereby by the generator, the function of an engine can be realized, which emits heat to the cooling circuit of the generator.
  • connection between the cooling circuit of the transmission and the cooling circuit of the generator can be switched via valves.
  • the cooling circuit of the transmission can be switched on at the time when the temperature of the coolant in the cooling circuit of the generator has reached a certain temperature.
  • This temperature is in particular above the freezing point of water. For warming up, this temperature may also be above the operating temperature of the generator or transmission.
  • the case is encompassed that in the engine operation of the generator, the transmission is operated in a defined manner. This defined starting can be generated by the mechanical friction of the components in the transmission heat. This heat can heat up the gearbox or the lubricant accordingly.
  • the wind turbine can comprise a rotor blade, which is flanged on a scar on the transmission, and the transmission is configured with respect to the scar or corresponding rotor blade freewheeling.
  • the generator motor operation advantageously does not have to drive the rotor blade.
  • the generator may comprise a rotor (yoke) which forms a substantially fixed connection with the gear, wherein the rotor rotatably in a power generation direction and opposite to the power generation direction, which corresponds in particular to the motor rotation direction of the generator , can be designed free-running.
  • the generation of the heat can be carried out essentially in the generator.
  • the rotor of the generator can be made lockable and the lock can be activated in a connectable manner. It can be advantageously generated without the rotation of components heat over the energized coils of the generator. This heat is stored in the cooling circuit and preferably provided to the transmission at a defined time, where the tempered coolant heat the lubricant and mechanical components.
  • FIG. 36 shows a side view of a section of a generator flanged to a gearbox.
  • the gear housing 107 includes a flanged to the hub 101 hollow shaft 103, which is designed as a ring gear 103 of the transmission.
  • This ring gear is mounted in the gear housing by bearings 105.
  • the teeth of this ring gear 103 engage in the planet 110 mounted by means of flex pins 119.
  • These planets 110 in turn transmit the rotation to the hollow sun 115, which at the same time is designed as a ring gear 115 for the output stage.
  • the drive stage in this case comprises the ring gear 103, the planetary gears 110 and the hollow sun 115.
  • the output stage comprises the ring gear 115, which is non-rotatably connected to the hollow sun 115 of the drive stage, the planet 111 mounted by means of FlexPins 109 and the hollow sun 113, which its Rotation to the shaft 117 gives off.
  • the planets 111 of the output stage are additionally mounted in the ring gear 103. This leads to a power distribution and thus has the output stage described here at the same time also has the function of a drive stage.
  • the shaft 117 is further supported by bearings 121, 122.
  • the rotor of the generator 131 is flanged by means of controllable brakes or holding elements 133.
  • the rotor 131 follows the rotation of the shaft 117.
  • permanent magnets 135 are inserted so as to interact with the conductor coils or conductor windings 129 of the inner and outer stators, respectively.
  • a voltage is thus induced in the conductor windings (conductors).
  • the generator housing 127 includes the rotor 131, the stators with conductor windings 129 and a part of the cooling circuit 125, which is filled with a coolant and is in heat exchange with the conductor windings 129.
  • the conductor windings can be flowed around by the coolant or, as illustrated here, via conductive materials with the cooling circuit 125 in contact.
  • the generator housing 127 is flanged to the transmission housing 107 via a heating plate 123. A further part of the cooling circuit 125 is integrated in the heating plate.
  • the coolant is cooled by the cooling unit 137. This can also be done passively via metal ribs 143.
  • the cooling unit 137 comprises a pump (not shown), which pumps the coolant through the cooling circuit 125.
  • the transmission cooling circuit 141 is connected to the cooling circuit 125. This connection can also be controlled via two switchable valves (not shown).
  • the transmission cooling circuit 141 is in heat exchanging contact with the oil sump (not shown) of the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention concerne un dispositif permettant de réguler les températures d'un engrenage et d'un générateur d'une éolienne qui transforme de l'énergie éolienne en énergie électrique. Selon l'invention, le dispositif entoure l'engrenage et le générateur. L'engrenage et le générateur sont fixement reliés l'un à l'autre. Le générateur comprend au moins un rotor (131), au moins un stator (129), au moins un enroulement conducteur et/ou un aimant permanent (135) qui entoure le stator (129) ou le rotor (131), ainsi qu'un carter de générateur (127) qui entoure le rotor (131) et le stator (129). Le générateur présente une température de générateur. L'engrenage comprend au moins un étage de sortie, au moins un étage d'entraînement, la vitesse de rotation ou le couple de l'étage d'entraînement étant converti en une vitesse de rotation ou un couple de l'étage de sortie, ainsi qu'un carter d'engrenage (107) qui entoure l'étage d'entraînement et l'étage de sortie. L'engrenage présente une température d'engrenage. Le générateur présente des moyens de refroidissement et un circuit de refroidissement correspondant qui comporte un milieu de refroidissement. L'engrenage présente un lubrifiant permettant notamment de lubrifier. Les moyens de refroidissement sont utilisés pour tempérer l'engrenage.
PCT/DE2008/001672 2007-10-15 2008-10-15 Régulation de température d'engrenages couplés les uns aux autres et d'un générateur dans une éolienne WO2009049599A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008002661T DE112008002661A5 (de) 2007-10-15 2008-10-15 Temperaturregelung von aneinandergekoppeltem Getriebe und Generator bei einer Windenergieanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007049599.6 2007-10-15
DE102007049599A DE102007049599A1 (de) 2007-10-15 2007-10-15 Temperaturregelung von aneinandergekoppeltem Getriebe und Generator bei einer Windenergieanlage

Publications (2)

Publication Number Publication Date
WO2009049599A2 true WO2009049599A2 (fr) 2009-04-23
WO2009049599A3 WO2009049599A3 (fr) 2010-01-07

Family

ID=40514139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001672 WO2009049599A2 (fr) 2007-10-15 2008-10-15 Régulation de température d'engrenages couplés les uns aux autres et d'un générateur dans une éolienne

Country Status (2)

Country Link
DE (2) DE102007049599A1 (fr)
WO (1) WO2009049599A2 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048766A1 (de) 2009-10-08 2011-04-14 Robert Bosch Gmbh Antriebsstrang und Windkraftanlage
DE102009048767A1 (de) 2009-10-08 2011-04-14 Robert Bosch Gmbh Antriebsstrang und Windkraftanlage
WO2010142263A3 (fr) * 2009-06-11 2011-07-21 Aerodyn Energiesysteme Gmbh Éolienne comportant un processus de recyclage d'un fluide de refroidissement
EP2508753A1 (fr) * 2011-04-07 2012-10-10 Siemens Aktiengesellschaft Unité de générateur et système d'entraînement compacte pour éoliennes
WO2013021181A1 (fr) * 2011-08-05 2013-02-14 David Brown Gear Systems Limited Agencement de commande pour éolienne
US8393993B2 (en) 2006-01-25 2013-03-12 Vestas Wing Systems A/S Wind turbine comprising at least one gearbox and an epicyclic gearbox
US8536726B2 (en) 2010-09-17 2013-09-17 Vestas Wind Systems A/S Electrical machines, wind turbines, and methods for operating an electrical machine
US8568099B2 (en) 2010-12-17 2013-10-29 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
EP2309125A3 (fr) * 2009-10-09 2014-03-12 Gamesa Innovation & Technology, S.L. Système de réfrigération auxiliaire et méthode d'exploitation
CN103958889B (zh) * 2011-08-05 2016-11-30 英国戴维布朗风力有限公司 一种用于风力涡轮机的驱动装置
DE102019119473A1 (de) * 2019-07-18 2021-01-21 Renk Aktiengesellschaft Triebstranganordnung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008672A1 (de) * 2011-01-15 2012-07-19 Hydac Filtertechnik Gmbh Vorrichtung zum Schmieren eines Getriebes sowie eines Lagers
DE102014215020A1 (de) * 2014-07-30 2016-02-04 Zf Friedrichshafen Ag Windkraftgetriebe
DE102015105543A1 (de) * 2015-04-10 2016-10-13 Wittenstein Ag Getriebekühlung
DE202019101918U1 (de) 2019-03-08 2020-06-09 Liebherr-Components Biberach Gmbh Temperiervorrichtung für Antriebs- und/oder Getriebeeinheiten wie Tunnelbohrer-Getriebe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3625840A1 (de) * 1986-07-30 1988-02-11 Scholz Hans Ulrich Windkraftanlage
DE10016913A1 (de) * 2000-04-05 2001-10-18 Aerodyn Eng Gmbh Offshore-Windenergieanlage mit einem Wärmetauschersystem
ITMI20021439A1 (it) * 2002-06-28 2003-12-29 High Technology Invest Bv Impianto di generazione eolica ad alto rendimento energetico
BRPI0520632A2 (pt) * 2005-11-01 2009-05-19 Vestas Wind Sys As método para prolongar e/ou controlar o tempo de vida útil de um ou mais componentes geradores de calor e/ou passivos em uma turbina eólica, e turbina eólica
DE202006006326U1 (de) * 2005-11-23 2007-03-29 Pfannenberg Gmbh Schaltschrank mit einem Kühlgerät, der einer Rotation ausgesetzt ist, und ein Kühlgerät hierfür
US7168251B1 (en) * 2005-12-14 2007-01-30 General Electric Company Wind energy turbine
ES2656346T3 (es) * 2007-04-30 2018-02-26 Vestas Wind Systems A/S Turbina eólica y método para controlar la temperatura de fluido que fluye en un primer sistema de control de temperatura de una turbina eólica

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8393993B2 (en) 2006-01-25 2013-03-12 Vestas Wing Systems A/S Wind turbine comprising at least one gearbox and an epicyclic gearbox
WO2010142263A3 (fr) * 2009-06-11 2011-07-21 Aerodyn Energiesysteme Gmbh Éolienne comportant un processus de recyclage d'un fluide de refroidissement
WO2011042082A3 (fr) * 2009-10-08 2011-11-17 Robert Bosch Gmbh Chaîne cinématique et éolienne
DE102009048767A1 (de) 2009-10-08 2011-04-14 Robert Bosch Gmbh Antriebsstrang und Windkraftanlage
WO2011042084A2 (fr) 2009-10-08 2011-04-14 Robert Bosch Gmbh Chaîne cinématique et éolienne
DE102009048766A1 (de) 2009-10-08 2011-04-14 Robert Bosch Gmbh Antriebsstrang und Windkraftanlage
WO2011042084A3 (fr) * 2009-10-08 2011-11-24 Robert Bosch Gmbh Chaîne cinématique et éolienne
CN102667148A (zh) * 2009-10-08 2012-09-12 罗伯特·博世有限公司 传动链与风力发电设备
WO2011042082A2 (fr) 2009-10-08 2011-04-14 Robert Bosch Gmbh Chaîne cinématique et éolienne
EP2309125A3 (fr) * 2009-10-09 2014-03-12 Gamesa Innovation & Technology, S.L. Système de réfrigération auxiliaire et méthode d'exploitation
US8536726B2 (en) 2010-09-17 2013-09-17 Vestas Wind Systems A/S Electrical machines, wind turbines, and methods for operating an electrical machine
US8568099B2 (en) 2010-12-17 2013-10-29 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
EP2508753A1 (fr) * 2011-04-07 2012-10-10 Siemens Aktiengesellschaft Unité de générateur et système d'entraînement compacte pour éoliennes
WO2013021181A1 (fr) * 2011-08-05 2013-02-14 David Brown Gear Systems Limited Agencement de commande pour éolienne
KR20140088513A (ko) * 2011-08-05 2014-07-10 데이비드 브라운 윈드 유케이 리미티드 풍력 터빈용 구동 장치
CN103958889A (zh) * 2011-08-05 2014-07-30 英国戴维布朗风力有限公司 一种用于风力涡轮机的驱动装置
AU2012293499B2 (en) * 2011-08-05 2015-10-29 Moventas Gears Uk Limited A drive arrangement for a wind turbine
US9413205B2 (en) 2011-08-05 2016-08-09 David Brown Wind Uk Limited Drive arrangement for a wind turbine
CN103958889B (zh) * 2011-08-05 2016-11-30 英国戴维布朗风力有限公司 一种用于风力涡轮机的驱动装置
DE102019119473A1 (de) * 2019-07-18 2021-01-21 Renk Aktiengesellschaft Triebstranganordnung
US11466669B2 (en) 2019-07-18 2022-10-11 Renk Aktiengesellschaft Drive train arrangement

Also Published As

Publication number Publication date
DE102007049599A1 (de) 2009-05-07
DE112008002661A5 (de) 2010-07-01
WO2009049599A3 (fr) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2009049599A2 (fr) Régulation de température d'engrenages couplés les uns aux autres et d'un générateur dans une éolienne
AU2010204474B2 (en) Starting method for rotating machine and starting method for wind turbine generator
DE102006035721B4 (de) Verfahren und Vorrichtung zur Kühlung von Windkraftanlagengeneratoren
EP2126990B1 (fr) Véhicule comprenant un alternateur thermoélectrique
EP2184487B1 (fr) Système de lubrification d'éolienne
DE10000370B4 (de) Windenergieanlage mit einem geschlossenen Kühlkreislauf
EP2504575B1 (fr) Éolienne et procédé de régulation de température d'au moins un composant d'éolienne
EP2486276B1 (fr) Chaîne cinématique et éolienne
EP1034357B1 (fr) Turbogenerateur a paliers et soupapes lubrifies par eau
DE102007033457A1 (de) Elektrische Maschine mit einem flüssigkeitsgekühlten Rotor
DE102013226804B4 (de) Antriebsanordnung mit integrierter Schmierung
DE112012000617T5 (de) Montageanordnung für eine Leistungssteuereinheit
DE102014217959A1 (de) Verfahren und Klimatisierungseinrichtung zum Klimatisieren eines Innenraums eines elektrisch angetriebenen Fahrzeugs
DE102019131731A1 (de) Generatoranordnung für Hybridfahrzeug
DE102009011347A1 (de) Antriebseinheit für einen Lüfter und Anordnung mit einer Antriebseinheit
EP2349768A1 (fr) Dispositif d'entraînement hybride
EP3610563B1 (fr) Procédé servant à refroidir une éolienne sans transmission
DE102018219837B4 (de) System mit einer Elektromaschine und einem Getriebe
EP3330499B1 (fr) Système et procédé de récupération d'énergie dans des installations industrielles
DE102004044654B4 (de) Brennstoffzellensystem und seine Verwendung
WO2011042084A2 (fr) Chaîne cinématique et éolienne
WO2013091756A2 (fr) Éolienne
DE10024044A1 (de) Wärmepumpe bzw. Kälteanlage mit direktem Windenergieantrieb für Heizung und kühlung ohne Fremdenergie
DE102007024617B4 (de) Wärmetauschmodul und Getriebe
EP2388478A2 (fr) Appareil et procédé de transformation de l'énergie d'écoulement d'un fluide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1120080026610

Country of ref document: DE

REF Corresponds to

Ref document number: 112008002661

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08838833

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08838833

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08838833

Country of ref document: EP

Kind code of ref document: A2

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载