WO2009045433A1 - Vehicular liquid conduits - Google Patents
Vehicular liquid conduits Download PDFInfo
- Publication number
- WO2009045433A1 WO2009045433A1 PCT/US2008/011360 US2008011360W WO2009045433A1 WO 2009045433 A1 WO2009045433 A1 WO 2009045433A1 US 2008011360 W US2008011360 W US 2008011360W WO 2009045433 A1 WO2009045433 A1 WO 2009045433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- liquid conduit
- vehicular liquid
- coated
- recited
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 78
- 239000002184 metal Substances 0.000 claims abstract description 78
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 229920000620 organic polymer Polymers 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 15
- 239000000446 fuel Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 229920001169 thermoplastic Polymers 0.000 claims description 7
- 230000009477 glass transition Effects 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000000945 filler Substances 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 8
- 239000000956 alloy Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- -1 poly (oxymethylene) Polymers 0.000 description 4
- 239000012744 reinforcing agent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229920006102 Zytel® Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229940083916 aluminum distearate Drugs 0.000 description 2
- RDIVANOKKPKCTO-UHFFFAOYSA-K aluminum;octadecanoate;hydroxide Chemical compound [OH-].[Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O RDIVANOKKPKCTO-UHFFFAOYSA-K 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000003017 thermal stabilizer Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001137251 Corvidae Species 0.000 description 1
- 229920006055 Durethan® Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001125877 Gobio gobio Species 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920006018 co-polyamide Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229920005548 perfluoropolymer Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001279 poly(ester amides) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- BPILDHPJSYVNAF-UHFFFAOYSA-M sodium;diiodomethanesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C(I)I BPILDHPJSYVNAF-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/14—Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
- F16L9/147—Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
- F16L58/08—Coatings characterised by the materials used by metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/0011—Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
- F02M37/0017—Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor related to fuel pipes or their connections, e.g. joints or sealings
Definitions
- Vehicular liquid conduits comprising organic polymers which are metal plated.
- Vehicles such as automobiles, trucks, motorcycles, scooters, recreational and all terrain vehicles, farm equipment such as tractors, and construction equipment such as bulldozers and graders are of course important items in modern society, and they are made of a myriad of parts. Also important are stationary internal combustion engines such as those used to power generators. Many of these parts must have certain minimum physical properties such as stiffness and/or strength. Traditionally these types of parts have been made from metals such as steel, aluminum, zinc, and other metals, but in recent decades organic polymers have been increasingly used for such parts for a variety of reasons. Such polymeric parts are often lighter, and/or easier (cheaper) to fabricate especially in complicated shapes, and/or have better corrosion resistance. However such polymeric parts have not replaced metals in some application because they are not stiff and/or strong enough, or have other property deficiencies compared to metal.
- Metal plated polymeric parts have been used in vehicles, especially for ornamental purposes. Chrome or nickel plating of visible parts, including polymeric parts, has long been done. In this use the polymer is coated with a thin layer of metal to produce a pleasing visual effect. The amount of metal used is generally the minimum required to produce the desired visual effect and be durable.
- US Patent 4,406,558 describes a gudgeon pin for an internal combustion engine which is metal plated polymer.
- US Patent 6,595,341 describes an aluminum plated plastic part for a clutch. Neither of these patents mentions LCs.
- This invention concerns a vehicular liquid conduit, comprising an organic polymer composition which is coated, at least in part, by a metal.
- This invention concerns a vehicle comprising a liquid conduit, which comprises an organic polymer composition which is coated at least in part by a metal.
- organic polymer composition a composition which comprises one or more organic polymers.
- one or more of the organic polymers is the continuous phase.
- organic polymer OP
- OP organic polymer
- OP a polymeric material which has carbon-carbon bonds in the polymeric chains and/or has groups in the polymeric chains which have carbon bound to hydrogen and/or halogen.
- the organic polymer is synthetic, i.e., made by man.
- the organic polymer may be for example a thermoplastic polymer (TPP) , or a thermoset polymer (TSP) .
- TPP is meant a polymer which is not crosslinked and which has a melting point and/or glass transition point above 30 0 C, preferably above about 100 0 C, and more preferably above about 150 0 C. The highest melting point and/or glass transition temperature is also below the point where significant thermal degradation of the TPP occurs. Melting points and glass transition points are measured using ASTM Method ASTM D3418-82. The glass transition temperature is taken at the transition midpoint, while the melting point is measured on the second heat and taken as the peak of the melting endotherm.
- TSP is meant a polymeric material which is crosslinked, i.e., is insoluble in solvents and does not melt.
- the crosslinked TSP composition has a Heat Deflection Temperature of about 50 0 C, more preferably about 100 0 C, very preferably about 150 0 C or more at a load of 0.455 MPa (66 psi) when measured using ASTM Method D648-07.
- composition By a polymeric "composition” is meant that the organic polymer is present together with any other addi- tives usually used with such a type of polymer (see below) .
- coated with a metal is meant part or all of one or more surfaces of the LC is coated with a metal.
- the metal does not necessarily directly contact a surface of the organic polymer composition.
- an adhesive may be applied to the surface of the organic polymer and the metal coated onto that. Any method of coating the metal may be used (see below) .
- metal is meant any pure metal or alloy or combination of metals. More than one layer of metal may be present, and the layers may have the same or different compositions. Many different liquids are present in a typical motor vehicle, especially one having an internal combustion engine. Among these may be coolant (usually antifreeze and water) , oil, brake fluid, transmission fluid, power steering fluid, windshield washer solvent, fuel, etc.
- the LC is not a fuel rail.
- These LCs must withstand the environment they may be in, such as heat from the engine, as well as the effects of the liquids in them. In many cases, such as brake lines and fuel lines, their function is vital to the safe operation of the vehicle.
- LCs coated with metals have improved stiffness and strength, reduced permeation to the liquid especially when fully coated, the organic polymer is further protected from degradation by the liquid in the LC when fully coated on the interior of the LC.
- the metal's properties generally do not change much in the operating temperature range of the LC, when the metals fully coat the LC they provide an extra measure of protection against leaks due to abnormally high operating temperatures and/or abnormally high internal pressures.
- the LCs may perform a variety of functions, such as coolant pipes, windshield washer solvent tubes, brake lines, oil tubes, fuel rails, or fuel lines. It is preferred that the OP composition used in the LC has resistance to the liquid being carried in the LC even if the LC is metal coated on the interior. This provides an ex- tra measure of protection for the LC even if the metal coating is somehow not continuous.
- Useful TSPs include epoxy, phenolic, and melamine resins. Parts may be formed from the thermoset resin by conventional methods such as reaction injection molding or compression molding.
- Useful TPPs include poly (oxymethylene) and its copolymers; polyesters such as poly (ethylene terephtha- late) , poly (1, 4-butylene terephthalate) , poly (1,4- cyclohexyldimethylene terephthalate), and poly (1,3- poropyleneterephthalate) ; polyamides such as nylon-6, 6, nylon-6, nylon-12, nylon-11, and aromatic-aliphatic co- polyamides; polyolefins such as polyethylene (i.e.
- LCP Thermotropic liquid crystalline polymer
- Useful LCPs include polyesters, poly (ester-amides) , and poly (ester-imides) .
- One preferred form of LCP is "all aromatic", that is all of the groups in the polymer main chain are aromatic (except for the linking groups such as ester groups) , but side groups which are not aromatic may be present.
- the TPPs may be formed into parts by the usual methods, such as injection molding, thermoforming, compression molding, extrusion, and the like.
- the OP may contain other ingredients normally found in such compositions such as fillers, reinforcing agents such as glass and carbon fibers, pigments, dyes, stabilizers, toughening agents, nucleating agents, antioxidants, flame retardants, process aids, and adhesion promoters.
- An- other class of materials may be substances that improve the adhesion to the resin of the metal to be coated onto the resin. Some of these may also fit into one or more of the classes named above.
- the OP should preferably not soften significantly at the expected maximum operating temperature of the LC. Since it is often present at least in part for enhanced structural purposes, it will better maintain its overall physical properties if no softening occurs. Thus preferably the OP has a melting point and/or glass transition temperature and/or a Heat Deflection Temperature at or above the highest use temperature of the OP.
- the OP composition (without metal coating) should also preferably have a relatively high flexural modulus, preferably at least about 1 GPa, more preferably at least about 2 GPa, and very preferably at least about 10 GPa.
- Flexural modulus is measured by ASTM Method D790-03, Procedure A, preferably on molded parts, 3.2 mm thick (1/8 inch), and 12.7 mm (0.5 inch) wide, under a standard laboratory atmosphere. Since these are structural parts, and are usually preferred to be stiff, a higher flexural modulus improves the overall stiffness of the metal coated LC.
- the OP composition may be coated with metal by any known methods for accomplishing that, such as vacuum deposition (including various methods of heating the metal to be deposited) , electroless plating, electroplating, chemical vapor deposition, metal sputtering, and electron beam deposition. Preferred methods are electroless plating and electroplating, and a combination of the two.
- vacuum deposition including various methods of heating the metal to be deposited
- electroless plating electroplating
- chemical vapor deposition metal sputtering
- electron beam deposition electron beam deposition
- electroless plating and electroplating and a combination of the two.
- the metal may adhere well to the OP composition without any special treatment, usually some method for improving adhesion will be used. This may range from simple abrasion of the OP composition surface to roughen it, addition of adhesion promotion agents, chemical etching, functionalization of the surface by exposure to plasma and/or radiation (for instance laser or UV radiation) or any combination of these.
- More than one metal or metal alloy may be plated onto the organic resin, for example one metal or alloy may be plated directly onto the organic resin surface because of its good adhesion, and another metal or alloy may be plated on top of that because it has a higher strength and/or stiffness, and optionally an additional metal or alloy may be plated on top to provide corrosion protection.
- Useful metals and alloys to form the metal coating include copper, nickel, cobalt, cobalt-nickel, iron- nickel, and chromium, and combinations of these in different layers.
- Preferred metals and alloys are copper, nickel, cobalt, cobalt-nickel, and iron-nickel, and nickel is more preferred.
- the surface of the organic resin of the structural part may be fully or partly coated with metal. In dif- ferent areas of the part the thickness and/or the number of metal layers, and/or the composition of the metal layers may vary.
- grain size of the metal deposited may be controlled by the electroplat- ing conditions, see for instance U.S. Patents 5,352,266 and 5,433,797 and U.S. Patent Publication 20060125282, all of which are hereby included by reference.
- at least one of the metal layers deposited has an average grain size in the range of about 5 nm to about 200 nm, more preferably about 10 nm to about 100 nm.
- the metal has an average grain size of at least 500 nm, preferably at least about 1000 nm, and/or a maximum average grain size of 5000 nm.
- thickest metal layer if there is more than one layer, be the specified grain size.
- the thickness of the metal layer (s) deposited on the organic resin is not critical, being determined mostly by the desire to minimize weight while pro- viding certain minimum physical properties such as modulus, strength and/or stiffness. These overall properties will depend to a certain extent not only on the thickness and type of metal or alloy used, but also on the design of the structural part and the properties of the organic resin composition.
- the flexural modulus of the metal coated LC is at least about twice, more preferably at least about thrice the flexural modulus of the uncoated OP composition. This is measured in the follow- ing way.
- the procedure used is ISO Method 178, using molded test bars with dimensions 4.0 mm thick and 10.0 mm wide. The testing speed is 2.0 mm/min.
- the composition from which the LCs are made is molded into the test bars, and then some of the bars are completely coated (optionally except for the ends which do not affect the test results) with the same metal using the same procedure used to coat the LC.
- the thickness of the metal coating on the bars is the same as on the LC. If the thickness on the LC.
- test bars will be coated to the greatest metal thickness on the LC.
- the flexural moduli of the coated and uncoated bars are then measured, and these values are used to determine the ratio of flexural moduli (flexural modulus of coated/flexural modulus of un- coated) .
- the thicker the metal coating the greater the flexural modulus ratio between the uncoated and coated OP part .
- the plated OP composition be tough, for ex- ample be able to withstand impacts. It has surprisingly been found that some of the metal plated OP compositions of the present invention are surprisingly tough. It has previously been reported (M. Corley, et al., Engineering Polyolefins for Metallized Decorative Applications, in Proceedings of TPOs in Automotive 2005, held June 21-23, 2005, Geneva Switzerland, Executive Conference Management, Madison, MI 48170 USA, p. 1-6) that unfilled or lightly filled polyolefin plaques have a higher impact energy to break than their Cr plated analog. Indeed the impact strength of the plated plaques range from 50 to 86 percent of the impact strength of the unplated plaques.
- the impact maximum energies of the plated plaques are much higher than those of the unplated plaques. It is believed this is due to the higher filler levels of the OP compositions used, and in the present parts it is preferred that the OP composition have at least about 25 weight percent, more preferably about 35 weight percent, especially pref- erably at least about 45 weight percent of filler/reinforcing agent present. A preferred maximum amount of filler/reinforcing agent present is about 65 weight percent. These percentages are based on the total weight of all ingredients present.
- Typical reinforcing agents/fillers include carbon fiber, glass fiber, aramid fiber, particulate minerals such as clays (various types) , mica, silica, calcium carbonate (including limestone) , zinc oxide, wollastonite, carbon black, titanium dioxide, alumina, talc, kaolin, microspheres, alumina trihydrate, calcium sulfate, and other minerals.
- particulate minerals such as clays (various types) , mica, silica, calcium carbonate (including limestone) , zinc oxide, wollastonite, carbon black, titanium dioxide, alumina, talc, kaolin, microspheres, alumina trihydrate, calcium sulfate, and other minerals.
- the ISO179 impact energy (see below for procedure) of the metal plated LC be 1.2 times or more the impact energy of the unplated OP composition, more preferably 1.5 times or more.
- the test is run by making bars of the OP composition, and plating them by the same method used to make the LC, with the same thickness of metal applied. If the LC is metal plated on both sides (of the principal surfaces) , the test bars are plated on both sides, while if the LC is plated on one side (of the principal surfaces) the test bars are plated on one side. The impact energy of the plated bars are compared to the impact energy of bars of the unplated LC.
- LCs Another often important property of LCs is their burst strength, that is the amount of internal pressure they can withstand without failure. This is important to their function as liquid conduits, and also often an important item for safety because spillage of the liquid may cause a hazard, such as a fire hazard from the fail- ure of fuel line, or a lack of braking from the failure of a brake line.
- the metal coating will about 0.010 mm to about 1.3 mm thick, more preferably about 0.025 mm to about 1.1 mm thick, very preferably about 0.050 to about 1.0 mm thick, and especially preferably about 0.10 to about 0.7 mm thick. It is to be understood that any minimum thicknesses mentioned above may be combined with any maximum thickness mentioned above to form a different preferred thickness range.
- the thickness required to attain a certain flexural modulus is also dependent on the metal chosen for the coating. Generally speaking the higher the tensile modulus of the metal, the less will be needed to achieve a given stiffness (flexural modulus) .
- the flexural modulus of the uncoated OP composition is greater than about 200 MPa, more preferably greater than about 500 MPa, and very preferably greater than about 2.0 GPa.
- Example 1 Zytel® 70G25, a nylon 6,6 product containing 25 weight percent chopped glass fiber available from E.I. DuPont de Nemours & Co., Inc. Wilmington, DE 19898 USA, was injection molded into bars whose central section was 10.0 mm wide and 4.0 mm thick. Before molding the poly- mer composition was dried at 80 0 C in a dehumidified dryer. Molding conditions were melt temperature 2800-300 0 C and a mold temperature of 80 0 C. Some of the bars were etched using Addipost® PM847 etch, reported to be a blend of ethylene glycol and hydrochloric acid, and obtained from Rohm & Haas Chemicals Europe.
- Filler 1 - A calcined, aminosilane coated, kaolin, Polarite® 102A, available from Imerys Co., Paris, France.
- Filler 3 - Nyad® G, a wollastonite from Nyco Minerals, Willsboro, NY 12996, USA.
- Filler 4 - M10-52 talc manufactured by Barretts
- GF 1 - Chopped (nominal length 3.2 mm) glass fi- ber PPG® 3660, available from PPG Industries, Pittsburgh, PA 15272, USA.
- GF 2 - Chopped (nominal length 3.2 mm) glass fiber PPG® 3540, available from PPG Industries, Pittsburgh, PA 15272, USA.
- HS2 - A thermal stabilizer contain 7 parts KI, 11 parts aluminum distearate, and 0.5 parts CuI (by weight) .
- Polymer A Polyamide-6, 6, Zytel® 101 available from E.I. DuPont de Nemours & Co . , Inc. Wilmington, DE 19810, USA.
- Polymer C An ethylene/propylene copolymer grafted with 3 weight percent maleic anhydride.
- Polymer D A copolyamide which is a copolymer of terephthalic acid, 1, 6-diaminohexane, and 2-methyl-l, 5- diaminopentane, in which each of the diamines is present in equimolar amounts.
- Polymer E - Engage®8180 an ethylene/1-octene co- polymer available by Dow Chemical Co., Midland, MI, USA.
- Wax 2 - Licowax® OP available from Clariant Corp. Charlotte, NC 28205, USA.
- the organic polymer compositions used in these exam- pies are listed in Table 1.
- the compositions were made by melt blending of the ingredients in a 30 mm Werner & Pfleiderer 30 mm twin screw extruder.
- test pieces which were 7.62x12.70x0.30 cm plaques or ISO 527 test bars, 4 mm thick, gauge width 10 mm, were made by injection molding under the conditions given in Table 2. Before molding the polymer compositions were dried for 6-8 hr in dehumidified air under the temperatures indicated, and had a moisture content of ⁇ 0.1% before molding. Table 2
- test specimens were then etched in sulfochro- mic acid or Rohm & Haas Chrome free etching solution, and rendered conductive on all surface by electroless deposition of a very thin layer of Ni.
- Subsequent galvanic deposition of 8 ⁇ m of Cu was followed by deposition of a 100 ⁇ m thick layer of fine grain N-Fe (55-45 weight) using a pulsed electric current, as described in US Patent 5,352,266 for making fine grain size metal coatings.
- a tube of the composition of Example 3, with an outer diameter of _2.82 cm, a wall thickness of 0.25 cm, and a length of 14.0 cm was formed by injection molding. Electrolytic deposition of Ni was accomplished by etching in sulfochromic acid for 5-20 min at 50-80 0 C, rinsing four times with water, Neutraliziing with Rohm & Haas Neutral- iser PM955, rinsing, GRZ etching, rinsing, predipping in 10% HCl, Activating in Conductron® DP (35 ppm Pd) , rinsing, using Accelerator PM964, rinsing, coating elec- trolessly with Cu, and then coating with 100 ⁇ m thick Ni. It is believed the Ni is fine grained ( ⁇ 100 nm average grain size) .
- the testing apparatus was a jig that sealed the ends of the tube with end plates, one end plate having a connection for pressurized water, and the other having a pressure gauge attached.
- the end plates could be tight- ened against the tube by tightening nuts attached to threaded rods passing through the end plates. If the test was done at room temperature, the tube to be tested was sealed in the jig and water pumped in so that the test pressure was reached. Before testing any loose or jagged edges were removed from the metal coated tubes, and all of the tubes were squared off at the ends in order to achieve good seals with the jig. The tube was checked periodically for failure (leakage) . If the.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Metal plated organic polymer compositions are useful as vehicular liquid conduits (LCs). Such LCs may have lighter weight, and/or superior corrosion resistance, and may be easier to fabricate than conventional LCs.
Description
VEHICULAR LIQUID CONDUITS
FIELD OF THE INVENTION Vehicular liquid conduits comprising organic polymers which are metal plated.
TECHNICAL BACKGROUND
Vehicles such as automobiles, trucks, motorcycles, scooters, recreational and all terrain vehicles, farm equipment such as tractors, and construction equipment such as bulldozers and graders are of course important items in modern society, and they are made of a myriad of parts. Also important are stationary internal combustion engines such as those used to power generators. Many of these parts must have certain minimum physical properties such as stiffness and/or strength. Traditionally these types of parts have been made from metals such as steel, aluminum, zinc, and other metals, but in recent decades organic polymers have been increasingly used for such parts for a variety of reasons. Such polymeric parts are often lighter, and/or easier (cheaper) to fabricate especially in complicated shapes, and/or have better corrosion resistance. However such polymeric parts have not replaced metals in some application because they are not stiff and/or strong enough, or have other property deficiencies compared to metal.
Thus vehicle manufacturers have been searching for ways to incorporate more polymeric materials into their vehicles for a variety of reasons, for example to save weight, lower costs, or provide more design freedom.
Thus improved polymeric liquid conduits (LCs) have been sought by vehicle manufacturers. It has now been found
that metal plated organic polymeric LCs have the properties desired.
Metal plated polymeric parts have been used in vehicles, especially for ornamental purposes. Chrome or nickel plating of visible parts, including polymeric parts, has long been done. In this use the polymer is coated with a thin layer of metal to produce a pleasing visual effect. The amount of metal used is generally the minimum required to produce the desired visual effect and be durable.
US Patent 4,406,558 describes a gudgeon pin for an internal combustion engine which is metal plated polymer. US Patent 6,595,341 describes an aluminum plated plastic part for a clutch. Neither of these patents mentions LCs.
SUMMARY OF THE INVENTION
This invention concerns a vehicular liquid conduit, comprising an organic polymer composition which is coated, at least in part, by a metal. This invention concerns a vehicle comprising a liquid conduit, which comprises an organic polymer composition which is coated at least in part by a metal.
DETAILS OF THE INVENTION
Herein certain terms are used and some of them are defined below:
By an "organic polymer composition" is meant a composition which comprises one or more organic polymers. Preferably one or more of the organic polymers is the continuous phase. By an "organic polymer" (OP) is meant a polymeric material which has carbon-carbon bonds in the polymeric chains and/or has groups in the polymeric chains which have carbon bound to hydrogen and/or halogen. Preferably the organic polymer is synthetic, i.e., made by man. The
organic polymer may be for example a thermoplastic polymer (TPP) , or a thermoset polymer (TSP) .
By a "TPP" is meant a polymer which is not crosslinked and which has a melting point and/or glass transition point above 300C, preferably above about 1000C, and more preferably above about 1500C. The highest melting point and/or glass transition temperature is also below the point where significant thermal degradation of the TPP occurs. Melting points and glass transition points are measured using ASTM Method ASTM D3418-82. The glass transition temperature is taken at the transition midpoint, while the melting point is measured on the second heat and taken as the peak of the melting endotherm. By a "TSP" is meant a polymeric material which is crosslinked, i.e., is insoluble in solvents and does not melt. It also refers to this type of polymeric material before it is crosslinked, but in the final LC, it is crosslinked. Preferably the crosslinked TSP composition has a Heat Deflection Temperature of about 500C, more preferably about 1000C, very preferably about 1500C or more at a load of 0.455 MPa (66 psi) when measured using ASTM Method D648-07.
By a polymeric "composition" is meant that the organic polymer is present together with any other addi- tives usually used with such a type of polymer (see below) .
By "coated with a metal" is meant part or all of one or more surfaces of the LC is coated with a metal. The metal does not necessarily directly contact a surface of the organic polymer composition. For example an adhesive may be applied to the surface of the organic polymer and the metal coated onto that. Any method of coating the metal may be used (see below) .
By "metal" is meant any pure metal or alloy or combination of metals. More than one layer of metal may be present, and the layers may have the same or different compositions. Many different liquids are present in a typical motor vehicle, especially one having an internal combustion engine. Among these may be coolant (usually antifreeze and water) , oil, brake fluid, transmission fluid, power steering fluid, windshield washer solvent, fuel, etc. Usually they are conveyed through and/or present in hollow longitudinal items called by various names such as tubing, pipe, (brake) line, fuel rail, header, nozzle and port, etc. However in one preferred form, the LC is not a fuel rail. These LCs must withstand the environment they may be in, such as heat from the engine, as well as the effects of the liquids in them. In many cases, such as brake lines and fuel lines, their function is vital to the safe operation of the vehicle.
LCs coated with metals have improved stiffness and strength, reduced permeation to the liquid especially when fully coated, the organic polymer is further protected from degradation by the liquid in the LC when fully coated on the interior of the LC. Also because the metal's properties generally do not change much in the operating temperature range of the LC, when the metals fully coat the LC they provide an extra measure of protection against leaks due to abnormally high operating temperatures and/or abnormally high internal pressures. The LCs may perform a variety of functions, such as coolant pipes, windshield washer solvent tubes, brake lines, oil tubes, fuel rails, or fuel lines. It is preferred that the OP composition used in the LC has resistance to the liquid being carried in the LC even if the LC is metal coated on the interior. This provides an ex-
tra measure of protection for the LC even if the metal coating is somehow not continuous.
Useful TSPs include epoxy, phenolic, and melamine resins. Parts may be formed from the thermoset resin by conventional methods such as reaction injection molding or compression molding.
Useful TPPs include poly (oxymethylene) and its copolymers; polyesters such as poly (ethylene terephtha- late) , poly (1, 4-butylene terephthalate) , poly (1,4- cyclohexyldimethylene terephthalate), and poly (1,3- poropyleneterephthalate) ; polyamides such as nylon-6, 6, nylon-6, nylon-12, nylon-11, and aromatic-aliphatic co- polyamides; polyolefins such as polyethylene (i.e. all forms such as low density, linear low density, high den- sity, etc.), polypropylene, polystyrene, polystyrene/poly (phenylene oxide) blends, polycarbonates such as poly (bisphenol-A carbonate); fluoropolymers including perfluoropolymers and partially fluorinated polymers such as copolymers of tetrafluoroethylene and hexafluoropro- pylene, poly (vinyl fluoride), and the copolymers of ethylene and vinylidene fluoride or vinyl fluoride; poly- sulfides such as poly (p-phenylene sulfide); polyetherke- tones such as poly (ether-ketones) , poly (ether-ether- ketones) , and poly (ether-ketone-ketones) ; poly (etherimides) ; acrylonitrile-1, 3-butadinene-styrene copolymers; thermoplastic (meth) acrylic polymers such as poly (methyl methacrylate) ; and chlorinated polymers such as poly (vinyl chloride), polyimides, polyamideimides, vinyl chloride copolymer, and poly (vinylidene chloride) . "Thermotropic liquid crystalline polymer" (LCP) herein means a polymer that is anisotropic when tested using the TOT test or any reasonable variation thereof, as described in U.S. Patent 4,118,372, which is hereby incorporated by reference. Useful LCPs include polyesters,
poly (ester-amides) , and poly (ester-imides) . One preferred form of LCP is "all aromatic", that is all of the groups in the polymer main chain are aromatic (except for the linking groups such as ester groups) , but side groups which are not aromatic may be present. The TPPs may be formed into parts by the usual methods, such as injection molding, thermoforming, compression molding, extrusion, and the like.
The OP, whether a TSP, TPP or other polymer composi- tion may contain other ingredients normally found in such compositions such as fillers, reinforcing agents such as glass and carbon fibers, pigments, dyes, stabilizers, toughening agents, nucleating agents, antioxidants, flame retardants, process aids, and adhesion promoters. An- other class of materials may be substances that improve the adhesion to the resin of the metal to be coated onto the resin. Some of these may also fit into one or more of the classes named above.
The OP (composition) should preferably not soften significantly at the expected maximum operating temperature of the LC. Since it is often present at least in part for enhanced structural purposes, it will better maintain its overall physical properties if no softening occurs. Thus preferably the OP has a melting point and/or glass transition temperature and/or a Heat Deflection Temperature at or above the highest use temperature of the OP.
The OP composition (without metal coating) should also preferably have a relatively high flexural modulus, preferably at least about 1 GPa, more preferably at least about 2 GPa, and very preferably at least about 10 GPa. Flexural modulus is measured by ASTM Method D790-03, Procedure A, preferably on molded parts, 3.2 mm thick (1/8 inch), and 12.7 mm (0.5 inch) wide, under a standard
laboratory atmosphere. Since these are structural parts, and are usually preferred to be stiff, a higher flexural modulus improves the overall stiffness of the metal coated LC. The OP composition may be coated with metal by any known methods for accomplishing that, such as vacuum deposition (including various methods of heating the metal to be deposited) , electroless plating, electroplating, chemical vapor deposition, metal sputtering, and electron beam deposition. Preferred methods are electroless plating and electroplating, and a combination of the two. Although the metal may adhere well to the OP composition without any special treatment, usually some method for improving adhesion will be used. This may range from simple abrasion of the OP composition surface to roughen it, addition of adhesion promotion agents, chemical etching, functionalization of the surface by exposure to plasma and/or radiation (for instance laser or UV radiation) or any combination of these. Which methods may be used will depend on the OP composition to be coated and the adhesion desired. Methods for improving the adhesion of coated metals to many OPs are well known in the art. More than one metal or metal alloy may be plated onto the organic resin, for example one metal or alloy may be plated directly onto the organic resin surface because of its good adhesion, and another metal or alloy may be plated on top of that because it has a higher strength and/or stiffness, and optionally an additional metal or alloy may be plated on top to provide corrosion protection.
Useful metals and alloys to form the metal coating include copper, nickel, cobalt, cobalt-nickel, iron- nickel, and chromium, and combinations of these in different layers. Preferred metals and alloys are copper,
nickel, cobalt, cobalt-nickel, and iron-nickel, and nickel is more preferred.
The surface of the organic resin of the structural part may be fully or partly coated with metal. In dif- ferent areas of the part the thickness and/or the number of metal layers, and/or the composition of the metal layers may vary.
When electroplating it is known that grain size of the metal deposited may be controlled by the electroplat- ing conditions, see for instance U.S. Patents 5,352,266 and 5,433,797 and U.S. Patent Publication 20060125282, all of which are hereby included by reference. In one preferred form at least one of the metal layers deposited has an average grain size in the range of about 5 nm to about 200 nm, more preferably about 10 nm to about 100 nm. In another preferred form of electroplated metal, the metal has an average grain size of at least 500 nm, preferably at least about 1000 nm, and/or a maximum average grain size of 5000 nm. For all these grain size preferences, it is preferred that that thickest metal layer, if there is more than one layer, be the specified grain size. The thickness of the metal layer (s) deposited on the organic resin is not critical, being determined mostly by the desire to minimize weight while pro- viding certain minimum physical properties such as modulus, strength and/or stiffness. These overall properties will depend to a certain extent not only on the thickness and type of metal or alloy used, but also on the design of the structural part and the properties of the organic resin composition.
In one preferred embodiment the flexural modulus of the metal coated LC is at least about twice, more preferably at least about thrice the flexural modulus of the uncoated OP composition. This is measured in the follow-
ing way. The procedure used is ISO Method 178, using molded test bars with dimensions 4.0 mm thick and 10.0 mm wide. The testing speed is 2.0 mm/min. The composition from which the LCs are made is molded into the test bars, and then some of the bars are completely coated (optionally except for the ends which do not affect the test results) with the same metal using the same procedure used to coat the LC. The thickness of the metal coating on the bars is the same as on the LC. If the thickness on the LC. varies, the test bars will be coated to the greatest metal thickness on the LC. The flexural moduli of the coated and uncoated bars are then measured, and these values are used to determine the ratio of flexural moduli (flexural modulus of coated/flexural modulus of un- coated) . Generally speaking the thicker the metal coating, the greater the flexural modulus ratio between the uncoated and coated OP part .
For use as LCs, it is also important in many instances that the plated OP composition be tough, for ex- ample be able to withstand impacts. It has surprisingly been found that some of the metal plated OP compositions of the present invention are surprisingly tough. It has previously been reported (M. Corley, et al., Engineering Polyolefins for Metallized Decorative Applications, in Proceedings of TPOs in Automotive 2005, held June 21-23, 2005, Geneva Switzerland, Executive Conference Management, Plymouth, MI 48170 USA, p. 1-6) that unfilled or lightly filled polyolefin plaques have a higher impact energy to break than their Cr plated analog. Indeed the impact strength of the plated plaques range from 50 to 86 percent of the impact strength of the unplated plaques. As can be seen from Examples 2-8 below, the impact maximum energies of the plated plaques are much higher than those of the unplated plaques. It is believed this is
due to the higher filler levels of the OP compositions used, and in the present parts it is preferred that the OP composition have at least about 25 weight percent, more preferably about 35 weight percent, especially pref- erably at least about 45 weight percent of filler/reinforcing agent present. A preferred maximum amount of filler/reinforcing agent present is about 65 weight percent. These percentages are based on the total weight of all ingredients present. Typical reinforcing agents/fillers include carbon fiber, glass fiber, aramid fiber, particulate minerals such as clays (various types) , mica, silica, calcium carbonate (including limestone) , zinc oxide, wollastonite, carbon black, titanium dioxide, alumina, talc, kaolin, microspheres, alumina trihydrate, calcium sulfate, and other minerals.
It is preferred that the ISO179 impact energy (see below for procedure) of the metal plated LC be 1.2 times or more the impact energy of the unplated OP composition, more preferably 1.5 times or more. The test is run by making bars of the OP composition, and plating them by the same method used to make the LC, with the same thickness of metal applied. If the LC is metal plated on both sides (of the principal surfaces) , the test bars are plated on both sides, while if the LC is plated on one side (of the principal surfaces) the test bars are plated on one side. The impact energy of the plated bars are compared to the impact energy of bars of the unplated LC.
Another often important property of LCs is their burst strength, that is the amount of internal pressure they can withstand without failure. This is important to their function as liquid conduits, and also often an important item for safety because spillage of the liquid may cause a hazard, such as a fire hazard from the fail-
ure of fuel line, or a lack of braking from the failure of a brake line.
Preferably the metal coating will about 0.010 mm to about 1.3 mm thick, more preferably about 0.025 mm to about 1.1 mm thick, very preferably about 0.050 to about 1.0 mm thick, and especially preferably about 0.10 to about 0.7 mm thick. It is to be understood that any minimum thicknesses mentioned above may be combined with any maximum thickness mentioned above to form a different preferred thickness range. The thickness required to attain a certain flexural modulus is also dependent on the metal chosen for the coating. Generally speaking the higher the tensile modulus of the metal, the less will be needed to achieve a given stiffness (flexural modulus) . Preferably the flexural modulus of the uncoated OP composition is greater than about 200 MPa, more preferably greater than about 500 MPa, and very preferably greater than about 2.0 GPa.
Example 1 Zytel® 70G25, a nylon 6,6 product containing 25 weight percent chopped glass fiber available from E.I. DuPont de Nemours & Co., Inc. Wilmington, DE 19898 USA, was injection molded into bars whose central section was 10.0 mm wide and 4.0 mm thick. Before molding the poly- mer composition was dried at 800C in a dehumidified dryer. Molding conditions were melt temperature 2800-3000C and a mold temperature of 800C. Some of the bars were etched using Addipost® PM847 etch, reported to be a blend of ethylene glycol and hydrochloric acid, and obtained from Rohm & Haas Chemicals Europe. Less than 1 μm of copper was then electrolessly deposited on the surface, followed by 8 μm of electrolytically deposited copper, followed by 100 μm of nickel, on all surfaces. The flexural modulus
was then determined, as described above, on the uncoated and metal coated bars. The uncoated bars had a flexural modulus of 7.7 GPa, and the metal coated bars had a flexural modulus of 29.9 GPa. Examples 2-7
Ingredients used, and their designations in the tables are:
Filler 1 - A calcined, aminosilane coated, kaolin, Polarite® 102A, available from Imerys Co., Paris, France.
Filler 2 - Calmote® UF, a calcium carbonate available from Omya UK, Ltd., Derby DE21 6LY, UK.
Filler 3 - Nyad® G, a wollastonite from Nyco Minerals, Willsboro, NY 12996, USA. Filler 4 - M10-52 talc manufactured by Barretts
Minerals, Inc., Dillon, MT, USA.
Filler 5 - Translink® 445, a treated kaolin available from BASF Corp., Florham Park, NJ 07932, USA.
GF 1 - Chopped (nominal length 3.2 mm) glass fi- ber, PPG® 3660, available from PPG Industries, Pittsburgh, PA 15272, USA.
GF 2 - Chopped (nominal length 3.2 mm) glass fiber, PPG® 3540, available from PPG Industries, Pittsburgh, PA 15272, USA. HSl - A thermal stabilizer containing 78% KI,
11% aluminum distearate, and 11% CuI (by weight) .
HS2 - A thermal stabilizer contain 7 parts KI, 11 parts aluminum distearate, and 0.5 parts CuI (by weight) . Lube - Licowax® PE 190 - a polyethylene wax used as a mold lubricant available from Clariant Corp. Charlotte, NC 28205, USA.
Polymer A - Polyamide-6, 6, Zytel® 101 available from E.I. DuPont de Nemours & Co . , Inc. Wilmington, DE 19810, USA.
Polymer B - Polyamide-6, Durethan® B29 available from Laxness AG, 51369 Leverkusen, Germany.
Polymer C - An ethylene/propylene copolymer grafted with 3 weight percent maleic anhydride. Polymer D - A copolyamide which is a copolymer of terephthalic acid, 1, 6-diaminohexane, and 2-methyl-l, 5- diaminopentane, in which each of the diamines is present in equimolar amounts.
Polymer E - Engage®8180, an ethylene/1-octene co- polymer available by Dow Chemical Co., Midland, MI, USA. Wax 1 - N, N' -ethylene bisstearamide Wax 2 - Licowax® OP, available from Clariant Corp. Charlotte, NC 28205, USA.
The organic polymer compositions used in these exam- pies are listed in Table 1. The compositions were made by melt blending of the ingredients in a 30 mm Werner & Pfleiderer 30 mm twin screw extruder.
Table 1
The test pieces, which were 7.62x12.70x0.30 cm plaques or ISO 527 test bars, 4 mm thick, gauge width 10 mm, were made by injection molding under the conditions given in Table 2. Before molding the polymer compositions were dried for 6-8 hr in dehumidified air under the temperatures indicated, and had a moisture content of <0.1% before molding.
Table 2
These test specimens were then etched in sulfochro- mic acid or Rohm & Haas Chrome free etching solution, and rendered conductive on all surface by electroless deposition of a very thin layer of Ni. Subsequent galvanic deposition of 8 μm of Cu was followed by deposition of a 100 μm thick layer of fine grain N-Fe (55-45 weight) using a pulsed electric current, as described in US Patent 5,352,266 for making fine grain size metal coatings.
The samples were tested by one or both of the following methods :
ISO 6603-2 - Machine Instron® Dynatup Model 8250, Support Ring 40 mm dia, Hemispherical Tup 20 mm dia, Ve- locity 2.2 m/s, Impacter weight 44.45 kg, Temperature
23°C, Condition dry as made. Test were run on the plaques described above.
ISO 179-leU - Sample Unnotched, Pendulum energy 25 J, Impact velocity 3.7 m/s, Temperature 23°C, Condition dry as made. Tests were run on the gauge part of the ISO 527 test bars described above.
Testing results are given in Table 3.
Table 3
Example 8
A tube of the composition of Example 3, with an outer diameter of _2.82 cm, a wall thickness of 0.25 cm, and a length of 14.0 cm was formed by injection molding. Electrolytic deposition of Ni was accomplished by etching in sulfochromic acid for 5-20 min at 50-800C, rinsing four times with water, Neutraliziing with Rohm & Haas Neutral- iser PM955, rinsing, GRZ etching, rinsing, predipping in 10% HCl, Activating in Conductron® DP (35 ppm Pd) , rinsing, using Accelerator PM964, rinsing, coating elec- trolessly with Cu, and then coating with 100 μm thick Ni. It is believed the Ni is fine grained (<100 nm average grain size) .
The testing apparatus was a jig that sealed the ends of the tube with end plates, one end plate having a connection for pressurized water, and the other having a pressure gauge attached. The end plates could be tight- ened against the tube by tightening nuts attached to threaded rods passing through the end plates. If the test was done at room temperature, the tube to be tested was sealed in the jig and water pumped in so that the test pressure was reached. Before testing any loose or jagged edges were removed from the metal coated tubes, and all of the tubes were squared off at the ends in order to achieve good seals with the jig. The tube was
checked periodically for failure (leakage) . If the. test was done at an elevated temperature, the jig was placed in an oven at the test temperature and checked periodically for failure (leakage) . A tube which had no metal coating failed when the pressure reached 5.5 MPa (800 psi) as the pressure was slowly raised at room temperature. A similar but metal coated tube as described above had no leaks at 8.3 MPa (1200 psi) after 1 hour at room temperature. An uncoated tube was tested at 3.5 MPa (500 psi) at 1500C and failed in less than 10 min. A similar metal coated tube as described above was tested at 3.5 MPa (500 psi) at 1500C and had no failure after 1 hr. At 1800C and 3.5 MPa pressure a metal coated tube leaked after 30-40 minutes.
Claims
1. A vehicular liquid conduit, comprising an organic polymer composition which is coated at least in part by a metal .
2. The vehicular liquid conduit as recited in claim 1 wherein said organic polymer, if a thermoplastic has a melting point and/or a glass transition point of about 1500C or more, or if a thermoset has a heat deflection temperature of 1500C or more at a load of 0.455 MPa.
3. The vehicular liquid conduit as recited in claim 1 or 2 wherein said vehicular liquid conduit is metal coated on the exterior and/or interior of said vehicular liquid conduit.
4. The vehicular liquid conduit as recited in any one of claims 1 to 3 wherein at least one layer of said metal coating has an average grain size of about 5 nm to about 200 nm.
5. The vehicular liquid conduit as recited in any one of claims 1 to 3 wherein a thickest layer of said metal coating has an average grain size of at least about 500 nm.
6. The vehicular liquid conduit as recited in any one of claims 1 to 5 wherein said metal coating is about 0.010 mm to about 1.3 mm thick.
7. The vehicular liquid conduit as recited in any one of claims 1 to 5 wherein said metal coating is about 0.025 mm to about 1.3 mm thick.
8. The vehicular liquid conduit of claim 1 which is a brake line, fuel rail, header, or nozzle and port.
9. The vehicular liquid conduit as recited in any one of claims 1 to 7 which is not fuel rail.
10. A vehicle, comprising, a vehicular liquid conduit of any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99766107P | 2007-10-04 | 2007-10-04 | |
US60/997,661 | 2007-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009045433A1 true WO2009045433A1 (en) | 2009-04-09 |
Family
ID=40526539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/011360 WO2009045433A1 (en) | 2007-10-04 | 2008-10-01 | Vehicular liquid conduits |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009045433A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2517937A3 (en) * | 2011-04-26 | 2013-10-02 | Bombardier Transportation GmbH | Railway vehicle with a working media supply |
EP2813552A1 (en) * | 2013-06-10 | 2014-12-17 | Hamilton Sundstrand Corporation | Duct with electrically conductive coating |
WO2016097329A1 (en) * | 2014-12-19 | 2016-06-23 | Solvay Specialty Polymers Italy S.P.A. | Methods for making multilayer tubular articles |
EP2971264A4 (en) * | 2013-03-15 | 2017-05-31 | Modumetal, Inc. | Nanolaminate coatings |
US10253419B2 (en) | 2009-06-08 | 2019-04-09 | Modumetal, Inc. | Electrodeposited, nanolaminate coatings and claddings for corrosion protection |
US10781524B2 (en) | 2014-09-18 | 2020-09-22 | Modumetal, Inc. | Methods of preparing articles by electrodeposition and additive manufacturing processes |
US10808322B2 (en) | 2013-03-15 | 2020-10-20 | Modumetal, Inc. | Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes |
US10844504B2 (en) | 2013-03-15 | 2020-11-24 | Modumetal, Inc. | Nickel-chromium nanolaminate coating having high hardness |
US10961635B2 (en) | 2005-08-12 | 2021-03-30 | Modumetal, Inc. | Compositionally modulated composite materials and methods for making the same |
US11180864B2 (en) | 2013-03-15 | 2021-11-23 | Modumetal, Inc. | Method and apparatus for continuously applying nanolaminate metal coatings |
US11286575B2 (en) | 2017-04-21 | 2022-03-29 | Modumetal, Inc. | Tubular articles with electrodeposited coatings, and systems and methods for producing the same |
US11293272B2 (en) | 2017-03-24 | 2022-04-05 | Modumetal, Inc. | Lift plungers with electrodeposited coatings, and systems and methods for producing the same |
US11365488B2 (en) | 2016-09-08 | 2022-06-21 | Modumetal, Inc. | Processes for providing laminated coatings on workpieces, and articles made therefrom |
US11519093B2 (en) | 2018-04-27 | 2022-12-06 | Modumetal, Inc. | Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation |
US11692281B2 (en) | 2014-09-18 | 2023-07-04 | Modumetal, Inc. | Method and apparatus for continuously applying nanolaminate metal coatings |
US12076965B2 (en) | 2016-11-02 | 2024-09-03 | Modumetal, Inc. | Topology optimized high interface packing structures |
US12077876B2 (en) | 2016-09-14 | 2024-09-03 | Modumetal, Inc. | System for reliable, high throughput, complex electric field generation, and method for producing coatings therefrom |
US12227869B2 (en) | 2016-09-09 | 2025-02-18 | Modumetal, Inc. | Application of laminate and nanolaminate materials to tooling and molding processes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060135282A1 (en) * | 2004-12-17 | 2006-06-22 | Integran Technologies, Inc. | Article comprising a fine-grained metallic material and a polymeric material |
-
2008
- 2008-10-01 WO PCT/US2008/011360 patent/WO2009045433A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060135282A1 (en) * | 2004-12-17 | 2006-06-22 | Integran Technologies, Inc. | Article comprising a fine-grained metallic material and a polymeric material |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10961635B2 (en) | 2005-08-12 | 2021-03-30 | Modumetal, Inc. | Compositionally modulated composite materials and methods for making the same |
US10253419B2 (en) | 2009-06-08 | 2019-04-09 | Modumetal, Inc. | Electrodeposited, nanolaminate coatings and claddings for corrosion protection |
US11242613B2 (en) | 2009-06-08 | 2022-02-08 | Modumetal, Inc. | Electrodeposited, nanolaminate coatings and claddings for corrosion protection |
US10544510B2 (en) | 2009-06-08 | 2020-01-28 | Modumetal, Inc. | Electrodeposited, nanolaminate coatings and claddings for corrosion protection |
EP2517937A3 (en) * | 2011-04-26 | 2013-10-02 | Bombardier Transportation GmbH | Railway vehicle with a working media supply |
US11118280B2 (en) | 2013-03-15 | 2021-09-14 | Modumetal, Inc. | Nanolaminate coatings |
US11180864B2 (en) | 2013-03-15 | 2021-11-23 | Modumetal, Inc. | Method and apparatus for continuously applying nanolaminate metal coatings |
US10513791B2 (en) | 2013-03-15 | 2019-12-24 | Modumental, Inc. | Nanolaminate coatings |
US12084773B2 (en) | 2013-03-15 | 2024-09-10 | Modumetal, Inc. | Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes |
US11851781B2 (en) | 2013-03-15 | 2023-12-26 | Modumetal, Inc. | Method and apparatus for continuously applying nanolaminate metal coatings |
EP2971264A4 (en) * | 2013-03-15 | 2017-05-31 | Modumetal, Inc. | Nanolaminate coatings |
US10808322B2 (en) | 2013-03-15 | 2020-10-20 | Modumetal, Inc. | Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes |
US10844504B2 (en) | 2013-03-15 | 2020-11-24 | Modumetal, Inc. | Nickel-chromium nanolaminate coating having high hardness |
US11168408B2 (en) | 2013-03-15 | 2021-11-09 | Modumetal, Inc. | Nickel-chromium nanolaminate coating having high hardness |
EP2813552A1 (en) * | 2013-06-10 | 2014-12-17 | Hamilton Sundstrand Corporation | Duct with electrically conductive coating |
US9618145B2 (en) | 2013-06-10 | 2017-04-11 | Hamilton Sundstrand Corporation | Duct with electrically conductive coating |
CN104235522A (en) * | 2013-06-10 | 2014-12-24 | 哈米尔顿森德斯特兰德公司 | Duct with electrically conductive coating |
US11692281B2 (en) | 2014-09-18 | 2023-07-04 | Modumetal, Inc. | Method and apparatus for continuously applying nanolaminate metal coatings |
US11560629B2 (en) | 2014-09-18 | 2023-01-24 | Modumetal, Inc. | Methods of preparing articles by electrodeposition and additive manufacturing processes |
US10781524B2 (en) | 2014-09-18 | 2020-09-22 | Modumetal, Inc. | Methods of preparing articles by electrodeposition and additive manufacturing processes |
US10676827B2 (en) | 2014-12-19 | 2020-06-09 | Solvay Speciality Polymers Italy S.P.A. | Methods for making multilayer tubular articles |
WO2016097329A1 (en) * | 2014-12-19 | 2016-06-23 | Solvay Specialty Polymers Italy S.P.A. | Methods for making multilayer tubular articles |
US11365488B2 (en) | 2016-09-08 | 2022-06-21 | Modumetal, Inc. | Processes for providing laminated coatings on workpieces, and articles made therefrom |
US12227869B2 (en) | 2016-09-09 | 2025-02-18 | Modumetal, Inc. | Application of laminate and nanolaminate materials to tooling and molding processes |
US12077876B2 (en) | 2016-09-14 | 2024-09-03 | Modumetal, Inc. | System for reliable, high throughput, complex electric field generation, and method for producing coatings therefrom |
US12076965B2 (en) | 2016-11-02 | 2024-09-03 | Modumetal, Inc. | Topology optimized high interface packing structures |
US11293272B2 (en) | 2017-03-24 | 2022-04-05 | Modumetal, Inc. | Lift plungers with electrodeposited coatings, and systems and methods for producing the same |
US11286575B2 (en) | 2017-04-21 | 2022-03-29 | Modumetal, Inc. | Tubular articles with electrodeposited coatings, and systems and methods for producing the same |
US11519093B2 (en) | 2018-04-27 | 2022-12-06 | Modumetal, Inc. | Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009045433A1 (en) | Vehicular liquid conduits | |
EP3342827B1 (en) | Thermoplastic resin composition and molded article produced therefrom | |
EP2207627B1 (en) | Metal coated structural parts for portable electronic devices | |
KR20110139756A (en) | Plastic article optionally with partial metal coating and method of making same | |
US6855787B2 (en) | Multi-layer hose | |
JP4522406B2 (en) | Laminated structure | |
KR0169168B1 (en) | Automotive metal pipelines with protective coating layers | |
EP2193664B1 (en) | Vehicular electrical and electronic housings | |
CA2600334A1 (en) | Semi-aromatic polyamide resin | |
CA3082313C (en) | Tubing for brake and fuel systems incorporating graphene impregnated polyamides | |
KR20110110217A (en) | Chromium-free method of conditioning and etching of thermoplastic substrates for metal plating | |
US8663815B2 (en) | Vehicular transmission parts | |
US8268423B2 (en) | Vehicular oil pans | |
WO2009045415A1 (en) | Internal combustion engine covers | |
WO2009045430A1 (en) | Vehicular air ducts | |
WO2009045429A1 (en) | Vehicular wheels | |
WO2009045428A1 (en) | Vehicular turbocharger components | |
WO2009045432A1 (en) | Vehicular pump housings | |
WO2009045427A1 (en) | Vehicular pulleys | |
WO2009045424A1 (en) | Vehicular steering column bracket | |
WO2009045398A1 (en) | Vehicular axle and drive shafts | |
US20100270767A1 (en) | Vehicular suspension components | |
WO2009045417A1 (en) | Internal combustion engine gasket systems | |
US20230184353A1 (en) | Abrasion resistant coated tube | |
KR101893709B1 (en) | Polyamide resin composition and article comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08836378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08836378 Country of ref document: EP Kind code of ref document: A1 |