WO2008121338A2 - Production de nanofibres grâce à un filage par fusion - Google Patents
Production de nanofibres grâce à un filage par fusion Download PDFInfo
- Publication number
- WO2008121338A2 WO2008121338A2 PCT/US2008/004081 US2008004081W WO2008121338A2 WO 2008121338 A2 WO2008121338 A2 WO 2008121338A2 US 2008004081 W US2008004081 W US 2008004081W WO 2008121338 A2 WO2008121338 A2 WO 2008121338A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melt
- distribution disc
- nanofibers
- spinning
- molten polymer
- Prior art date
Links
- 239000002121 nanofiber Substances 0.000 title claims abstract description 45
- 238000002074 melt spinning Methods 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000000835 fiber Substances 0.000 claims abstract description 105
- 238000009826 distribution Methods 0.000 claims abstract description 78
- 238000009987 spinning Methods 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims description 61
- 239000004743 Polypropylene Substances 0.000 claims description 19
- 229920001155 polypropylene Polymers 0.000 claims description 19
- -1 polypropylene Polymers 0.000 claims description 18
- 238000007664 blowing Methods 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 229920000098 polyolefin Polymers 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 239000000112 cooling gas Substances 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000004974 Thermotropic liquid crystal Substances 0.000 claims description 2
- 150000001241 acetals Chemical class 0.000 claims description 2
- 229920006397 acrylic thermoplastic Polymers 0.000 claims description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 229920013724 bio-based polymer Polymers 0.000 claims description 2
- 229920002988 biodegradable polymer Polymers 0.000 claims description 2
- 239000004621 biodegradable polymer Substances 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 229920002313 fluoropolymer Polymers 0.000 claims description 2
- 239000004811 fluoropolymer Substances 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 239000002114 nanocomposite Substances 0.000 claims description 2
- 229920005615 natural polymer Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 229920005690 natural copolymer Polymers 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 12
- 239000000155 melt Substances 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 11
- 210000003041 ligament Anatomy 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 238000001523 electrospinning Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002407 tissue scaffold Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000011304 carbon pitch Substances 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/18—Formation of filaments, threads, or the like by means of rotating spinnerets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/0023—Electro-spinning characterised by the initial state of the material the material being a polymer melt
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
- Y10T428/2931—Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
- Y10T442/184—Nonwoven scrim
- Y10T442/186—Comprising a composite fiber
Definitions
- This invention relates to a melt spinning process for forming fibers and fibrous webs.
- very fine fibers can be made and collected into a fibrous web useful for selective barrier end uses such as in the fields of air and liquid filtration, flame retardancy, biomedical, battery and capacitor separators, biofuel membranes, cosmetic facial masks, biomedical applications, such as, hemostasis, wound dressings and healing, vascular grafts, tissue scaffolds, synthetic ECM (extra cellular matrix), and sensing applications, electronic/optical textiles, EMI Shielding, and antichembio protective coatings.
- Centrifugal atomization processes are known in the art for making metal, metal alloy and ceramics powers. Centrifugal spinning processes are known in the art for making polymer fibers, carbon pitch fibers and glass fibers, such as disclosed in U.S. Patent Nos. 3,097,085 and 2,587,710. In such processes, the centrifugal force supplied by a rotational disc or distribution disc produces enough shear to cause the material to become atomized or to form fibers.
- centrifugal spinning has only been successfully used for the production of fibers with diameters larger than micron size. There is a growing need for very fine fibers and fibrous webs made from very fine fibers. These types of webs are useful for selective barrier end uses. Presently very fine fibers are made from melt spun "islands in the sea" cross section fibers, split films, some meltblown processes, and electrospinning. However, these processes are generally limited to making non-commercial quantities of nanofibers because of their very low throughput.
- Electrospinning and electroblowing are processes for forming fibers with sub-micron scale diameters from polymer solutions through the action of electrostatic forces and/or shear force.
- the fibers collected as non- woven mats have some useful properties such as high surface area-to- mass ratio, and thus have great potential in filtration, biomedical applications (such as, wound dressings, vascular grafts, tissue scaffolds), and sensing applications.
- Spinning nanofibers directly from polymer melts would offer several advantages over solution based spinning: elimination of solvents and their concomitant recycling requirements, higher throughput, and spinning of polymers with low solvent solubility.
- multi-component systems such as blends and composites would be more readily melt spun, because in many cases there is no common solvent for such blends.
- productivity would increase 10-500 fold and costs would drop significantly due to elimination of solvent recovery.
- the present invention is directed to a nanofiber forming process comprising the steps of supplying a spinning melt of at least one thermoplastic polymer to an inner spinning surface of a heated rotating distribution disc having a forward surface fiber discharge edge, issuing the spinning melt along said inner spinning surface so as to distribute the spinning melt into a thin film and toward the forward surface fiber discharge edge, and discharging separate molten polymer fibrous streams from the forward surface discharge edge to attenuate the fibrous streams to produce polymeric nanofibers that have mean fiber diameters of less than about 1,000 nm.
- a second embodiment of the present invention is a melt spinning apparatus for making polymeric nanofibers, comprising a molten polymer supply tube having an inlet portion and an outlet portion and at least one molten polymer outlet nozzle at the outlet portion thereof, said supply tube positioned axially through said melt spinning apparatus, a spinneret comprising a rotatable molten polymer distribution disc, having an inner spinning surface inlet portion surrounding and in fluid communication with said outlet portion of said molten polymer supply tube, and an indirect heating source directed at said rotatable molten polymer distribution disc.
- Another embodiment of the present invention is a collection of nanofibers comprising polyolefin, having mean fiber diameters of less than about 500 nm.
- Figure 1 is a cut-away cross-sectional view of a melt spinning apparatus suitable for use in forming melt spun nanofibers according to the present invention.
- Figure 2 is an illustration of the desired temperature profile within the fiber spinning and formation area of the melt spinning apparatus of the present invention.
- Figure 3A is a cut-away side view
- 3B is a top view of a molten polymer distribution disc according to the present invention.
- Figure 4A is a scanning electron micrograph of polypropylene (PP) fibers from Example 1.
- Figure 4B is a histogram of the fiber diameters of Example 1.
- Figure 5A is a scanning electron micrograph of polypropylene fibers from Example 2.
- Figure 5B is a histogram of the fiber diameters of Example 2.
- Figure 6A is a scanning electron micrograph of polypropylene fibers from Example 3.
- Figure 6B is a histogram of the fiber diameters of Example 3.
- Figure 7A is a scanning electron micrograph of polypropylene fibers from Example 4.
- Figure 7B is a histogram of the fiber diameters of Example 4.
- Figure 8A is a scanning electron micrograph of polyethylene fibers from Example 5.
- Figure 8B is a histogram of the fiber diameters of Example 5.
- Capillary-based spinning uses a rotor with side nozzle holes. A polymer melt is pushed out through the side nozzle holes, and large diameter fibers are formed by centrifugal stretching, such as disclosed in U.S. Patent No. 4,937,020. Capillary-based classical centrifugal spinning is not related to the case of the present invention.
- Another is film splitting-based spinning using a conical disc as rotor, such as disclosed in U.S. Patent No. 2,433,000. A polymer melt or solution is issued either directly onto a conical disc surface, or through nozzle holes at the bottom of the distribution disc. Film splitting-based classical centrifugal spinning is more closely related to the present invention.
- nanofibers are formed by film splitting at the forward discharge edge of a rotating distribution disc, such as a bell cup; from a fully spread thin melt film on the inner surface of the distribution disc, with a typical film thickness in the low micron range.
- the polymer viscosity is relatively higher than in the case of the present invention.
- the higher the viscosity the larger the fibers which are formed.
- the spinning melt can be spun into nanofibers without any rheology modification.
- the spinning polymer can be plasticized, hydrolyzed or otherwise cracked to lower the viscosity.
- a spinning melt with a viscosity between about 1 ,000 cP to about 100,000 cP is useful, even a viscosity between about 1 ,000 cP to about 50,000 cP.
- shear disc placed downstream of the rotating distribution disc, and the polymer melt is issued through a gap between the rotating distribution disc and the shear disc, wherein the shear applied to the polymer melt causes shear thinning.
- the shear disc also acts as a melt distribution disc, helping to form a more uniform, fully spread, thin melt film on the inner surface of the rotating polymer distribution disc.
- the spinning melt comprises at least one polymer.
- Any melt spinnable, fiber-forming polymer can be used.
- Suitable polymers include thermoplastic materials comprising polyolefins, such as polyethylene polymers and copolymers, polypropylene polymers and copolymers; polyesters and co-polyesters, such as poly(ethylene terephthalate), biopolyesters, thermotropic liquid crystal polymers and PET coployesters; polyamides (nylons); polyaramids; polycarbonates; acrylics and meth-acrylics, such as poly(meth)acrylates; polystyrene-based polymers and copolymers; cellulose esters; thermoplastic cellulose; cellulosics; acrylonitrile-butadiene-styrene (ABS) resins; acetals; chlorinated polyethers; fluoropolymers, such as polychlorotrifluoroethylenes (CTFE), fluorinated-ethylene-propylene (FEP); and polyvin
- FIG. 1 is an illustration of the cross-section view of the nanofiber melt spinning and web collection unit according to the present invention.
- a rotating spinneret contains a rotating distribution disc 1 suitable for forming fibers from the spinning melt.
- the distribution disc can have a concave or flat open inner spinning surface and is connected to a high speed motor (not shown) by a drive shaft 6.
- concave we mean that the inner surface of the disc can be curved in cross-section, such as hemispherical, have the cross-section of an ellipse, a hyperbola, a parabola or can be frustoconical, or the like.
- the melt spinning unit can optionally include a stationary shear disc 3 mounted substantially parallel to the polymer distribution disc's inner surface.
- a spinning melt is issued along the distribution disc's inner surface, and optionally through a gap between the distribution disc inner surface and the shear disc, if present, so as to help distribute a sheared spinning polymer melt toward the forward surface of the discharge edge 2 of the distribution disc.
- the distribution disc and shear disc are heated by an indirect, non-contact heating device 10, such as an infrared source, induction heating device or other such radiational heating source, to a temperature at or above the melting point of the polymer.
- the spinning melt is pumped from an inlet portion of a supply tube 4, running axially through the shear disc 3, if present, toward the distribution disc 1 and exits the supply tube at an outlet portion thereof.
- the throughput rate of the melt can be between about 0.1 cc/min to about 200 cc/min, even between about 0.1 cc/min to about 500 cc/min.
- the rotational speed of distribution disc 1 is controlled to between about 1,000 rpm and about 100,000 rpm, even between about 5,000 rpm and about 100,000 rpm, or even between about 10,000 rpm and about 50,000 rpm.
- the thin film splits into melt ligaments, the melt ligaments are further stretched by centrifugal force, and fibers 11 are produced from the ligaments stretching.
- One or more hot gas (e.g. air or N 2 ) rings 5a and 5b, having hot gas nozzles disposed on the circumference thereof, can be positioned annular to the rotating distribution disc and/or the molten polymer supply tube, the nozzles being positioned so as to direct a hot gas flow toward the molten polymer ligaments, to maintain the temperature of the film splitting and ligament stretching regions above the melting point of the polymer, to maintain the ligaments in the melt state and enable further stretching into nanofibers.
- the hot gas flow can also act to guide the fibers toward the web collector 8.
- cooling gas e.g. air or N 2
- the cooling gas flow further guides the nanofiber stream 11 toward the web collector 8.
- Web collection can be enhanced by applying vacuum through the collector to pull the fibers onto the collector.
- the web collection ring 8 in Figure 1 is a screen ring which is cooled, electrically grounded and connected to a blower (not shown) to form a vacuum collector ring.
- the web collector 8 can be cooled with flowing cold water or dry ice.
- a tubular web collecting screen 12 is positioned inside the web collection ring 8, and is moved vertically along the web collection ring 8 in order to form a uniform nanofibrous web.
- a nonwoven web or other such fibrous scrim can be situated on the tubular web collecting screen 12, onto which the nanofibers can be deposited.
- an electrostatic charge voltage potential can be applied and maintained in the spinning space between the distribution disc and the collector to improve the uniformity of the fibrous web laydown.
- the electrostatic charge can be applied by any known in the art high voltage charging device.
- the electrical leads from the charging device can be attached to the rotating spinneret and the collector, or if an electrode is disposed within the spinning space, to the spinneret and the electrode, or to the electrode and the collector.
- the voltage potential applied to the spinning unit can be in the range between about 1 kV and about 150 kV.
- the designed temperature distribution surrounding the rotating distribution disc is an important distinguishing characteristic of the present invention process from classical centrifugal spinning.
- FIG 2 is an illustration of the designed temperature profile within the melt spinning region surrounding the rotational distribution disc 1 , in which T1 is the temperature of melt spinning zone around the rotating distribution disc, T2 is the temperature of melt threads (ligaments) 11 stretching zone, and T3 is the temperature of rapid quenching and nanofiber solidifying zone, where T1 >T2> Tm (the melting point of polymer) and T3 « Tm 1 i.e. well below the melting point of the polymer.
- Figure 3A is a side view and Figure 3B is a top view of an example of a molten polymer distribution disc 1.
- the distribution disc geometry can influence the formation of fibers and fiber size.
- Diameter D of the present distribution disc is between about 10 mm and 200 mm
- the angle ⁇ of the forward surface discharge edge is 0 degrees when the disc is flat, or between greater than 0 degrees to about 90 degrees
- the edge of the distribution disc is optionally serrated 15 in order to form the fully spread thin film on the inner surface of the distribution disc.
- the serration on the distribution disc edge also helps to form the more uniform nanofibers with relatively narrow fiber diameter distribution.
- the present process can make very fine fibers, preferably continuous fibers, with a mean fiber diameter of less than about 1 ,000 nm and even between about 100 nm to about 500 nm.
- the fibers can be collected onto a fibrous web or scrim.
- the collector can be conductive for creating an electrical field between it and the rotary spinneret or an electrode disposed downstream of the spinneret.
- the collector can also be porous to allow the use of a vacuum device to pull the hot and/or cooling gases away from the fibers and help pin the fibers to the collector to make the fibrous web.
- a scrim material can be placed on the collector to collect the fiber directly onto the scrim thereby making a composite material.
- a nonwoven web or other porous scrim material such as a spunbond web, a melt blown web, a carded web or the like, can be placed on the collector and the fiber deposited onto the nonwoven web or scrim. In this way composite fabrics can be produced.
- the process and apparatus of the present invention have been demonstrated to successfully melt spin polyolefin nanofibers, in particular polypropylene and polyethylene nanofibers.
- the fiber size (diameter) distributions of said polyolefin nanofibers are believed to be significantly lower than heretofore known in the art polyolefin fibers.
- U.S. Patent No. 4,397,020 discloses a radial spinning process which, while suggesting the production of sub-micron polyolefin fibers having diameters as low as 0.1 micron, exemplifies only PP fibers having diameters of 1.1 micron.
- collections of polyolefin nanofibers having a mean fiber diameter of less than about 500 nm have been obtained, even less than or equal to about 400 nm, and the median of the fiber diameter distributions can be less than or equal to about 400 nm, or even less than 360 nm.
- Fiber Diameter was determined as follows. Ten scanning electron microscope (SEM) images at 5,00Ox magnification were taken of each nanofiber layer sample. The diameter of more than 200, or even more than 300 clearly distinguishable nanofibers were measured from the SEM images and recorded. Defects were not included (i.e., lumps of nanofibers, polymer drops, intersections of nanofibers). The average fiber diameter for each sample was calculated and reported in nanometers (nm).
- Example 1 Continuous fibers were made using an apparatus as illustrated in
- the typical shear viscosity of Metocene MF650Y PP is 4.89181 Pa-sec, at the shear rate of 10,000/sec. at 400 0 F.
- the melting point of Metocene MF650Y PP is Tm>160 °C.
- a PRISM extruder with a gear pump was used to deliver the polymer melt to the rotating spinneret through the supply tube.
- the pressure was set to a constant 61 psi.
- the gear pump speed was set to a constant set point 5 and this produced a melt feed rate of about 0.8 cc/min.
- the hot blowing air was set at a constant 30 psi.
- the rotating polymer melt distribution disc had a concave angle of 30 degrees, without a serrated discharge edge and in the absence of a shear disc.
- the rotation speed of the distribution disc was set to a constant 11 ,000 rpm.
- the temperature of the spinning melt from the melt supply tube was set to 251 0 C 1 the temperature of the distribution disc was set to 260 0 C and the temperature of the blowing air was set to 220 0 C. No electrical field was used during this test.
- Nanofibers were collected on a Reemay nonwoven collection screen that was held in place 15 inches away from the distribution disc by stainless steel sheet metal.
- An SEM image of the fibers can be seen in Fig. 4A.
- SEM scanning electron microscopy
- Example 2 was prepared similarly to Example 1 , except the rotation speed of the distribution disc was set to a constant 13,630 rpm. The diameters of fibers became smaller than Example 1.
- An SEM image of the fibers can be seen in Fig. 5A.
- the typical shear viscosity of Metocene MF650Y PP is 5.76843 Pa-sec, at the shear rate of 10,000/sec. at 400 0 F.
- the melting point of Metocene MF650Y PP is Tm>160 °C.
- the distribution disc had a concave angle of 15 degrees, without a serrated discharge edge and in the presence of a stationary shear disc.
- the rotation speed of the distribution disc was set to a constant 11 ,000 rpm.
- the temperature of the spinning melt from the melt supply tube was set to 251 0 C, the temperature of the distribution disc was set to 270 0 C and the temperature of the blowing air was set to 220 0 C. No electrical field was used during this test.
- Fibers were collected on a Reemay nonwoven collection screen that was held in place 15 inches away from the rotary spinning disc by stainless steel sheet metal.
- An SEM image of the fibers can be seen in Fig. 6A.
- SEM scanning electron microscopy
- the typical shear viscosity of Metocene MF650Y PP is 9.45317 Pa-sec, at the shear rate of 10,000/sec. at 400 0 F.
- the melting point of Metocene MF650Y PP is Tm>160 °C.
- the distribution disc had a concave angle of 30 degrees, without a serrated discharge edge and in the absence of shear disc.
- the rotation speed of the distribution disc was set to a constant 11 ,000 rpm.
- the temperature of the spinning melt from melt supply tube was set to 251 0 C, the temperature of the distribution disc was set to 260 C C and the temperature of the blowing air was set to 220 0 C. No electrical field was used during this test.
- Fibers were collected on a Reemay nonwoven collection screen that was held in place 15 inches away from the distribution disc by stainless steel sheet metal.
- An SEM image of the fibers can be seen in Fig. 7A.
- Continuous fibers were made according to Example 1 , except using a polyethylene (LLDPE) injection molding resin (SURPASS® IFs932-R from NOVA Chemicals, Canada), a high melt index resin with very narrow molecular weight distribution.
- LLDPE polyethylene
- SURPASS® IFs932-R injection molding resin
- a PRISM extruder with a gear pump is used for deliver melt to the distribution disc through the supply tube.
- the pressure was set to a constant 61 psi.
- the gear pump speed was set to a constant 10 and this produced a melt feed rate of about 1.6 cc/min.
- the hot blowing air was set at a constant 30 psi.
- the rotary spinning disc had a concave angle of 30 degrees, with serrated discharge edge and in presence of a stationary shear disc.
- the rotation speed of the distribution disc was set to a constant 13,630 rpm.
- the temperature of the spinning melt from the melt supply tube was set to 250 0 C, the temperature of the rotary spinning disc was set to 220 0 C and the temperature of the blowing air was set to 160 0 C. No electrical field was used during this test.
- Fibers were collected on a Reemay nonwoven collection screen that was held in place 15 inches away from the distribution disc by stainless steel sheet metal.
- An SEM image of the fibers can be seen in Fig. 8A.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nonwoven Fabrics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Artificial Filaments (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020097022684A KR101519169B1 (ko) | 2007-03-29 | 2008-03-27 | 용융 방사에 의한 나노섬유의 제조 |
CN2008800173840A CN101755081B (zh) | 2007-03-29 | 2008-03-27 | 通过熔体纺丝法来制备纳米纤维 |
BRPI0807306-6A2A BRPI0807306A2 (pt) | 2007-03-29 | 2008-03-27 | "processo de formação de nanofibra, aparelho de fiação via sistema de fusão para a produção de nanofibras polimérica e coleta de nanofibras" |
JP2010501009A JP5394368B2 (ja) | 2007-03-29 | 2008-03-27 | 溶融紡糸によるナノ繊維の製造 |
EP08727205.0A EP2129816B1 (fr) | 2007-03-29 | 2008-03-27 | Production de nanofibres grâce à un filage par fusion |
EP12181094.9A EP2527503B1 (fr) | 2007-03-29 | 2008-03-27 | Production de nanofibres grâce à un filage par fusion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92113507P | 2007-03-29 | 2007-03-29 | |
US60/921,135 | 2007-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008121338A2 true WO2008121338A2 (fr) | 2008-10-09 |
WO2008121338A3 WO2008121338A3 (fr) | 2009-04-16 |
Family
ID=39795241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/004081 WO2008121338A2 (fr) | 2007-03-29 | 2008-03-27 | Production de nanofibres grâce à un filage par fusion |
Country Status (7)
Country | Link |
---|---|
US (1) | US8277711B2 (fr) |
EP (2) | EP2527503B1 (fr) |
JP (1) | JP5394368B2 (fr) |
KR (1) | KR101519169B1 (fr) |
CN (2) | CN102534829B (fr) |
BR (1) | BRPI0807306A2 (fr) |
WO (1) | WO2008121338A2 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2257660A4 (fr) * | 2008-03-17 | 2012-01-04 | Univ Texas | Procédés et appareils pour réaliser des fibres superfines |
WO2013157969A1 (fr) | 2012-04-17 | 2013-10-24 | Politechnika Łodzka | Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins |
US8647541B2 (en) | 2011-02-07 | 2014-02-11 | Fiberio Technology Corporation | Apparatuses and methods for the simultaneous production of microfibers and nanofibers |
WO2015061377A1 (fr) * | 2013-10-22 | 2015-04-30 | E. I. Du Pont De Nemours And Company | Voile nanofibreux fin en polypropylène filé à l'état fondu |
US9242024B2 (en) | 2011-03-29 | 2016-01-26 | University-Industry Cooperation Group Of Kyung-Hee University Et Al | Three-dimensional nanofiber scaffold for tissue repair and preparation method thereof |
EP3396039A4 (fr) * | 2015-12-21 | 2019-01-09 | Panasonic Intellectual Property Management Co., Ltd. | Ensemble de fibres |
US11408096B2 (en) | 2017-09-08 | 2022-08-09 | The Board Of Regents Of The University Of Texas System | Method of producing mechanoluminescent fibers |
US11427937B2 (en) | 2019-02-20 | 2022-08-30 | The Board Of Regents Of The University Of Texas System | Handheld/portable apparatus for the production of microfibers, submicron fibers and nanofibers |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1936017T3 (da) * | 2006-12-22 | 2013-11-04 | Reifenhaeuser Gmbh & Co Kg | Fremgangsmåde og indretning til fremstilling af spunbonded stof af cellulosefilamenter |
US20090326128A1 (en) * | 2007-05-08 | 2009-12-31 | Javier Macossay-Torres | Fibers and methods relating thereto |
WO2009055413A1 (fr) * | 2007-10-23 | 2009-04-30 | Ppg Industries Ohio, Inc. | Fabrication d'une fibre par filage électromécanique |
US9834865B2 (en) * | 2007-12-17 | 2017-12-05 | E I Du Pont De Nemours And Company | Centrifugal solution spun nanofiber process |
US8034396B2 (en) | 2008-04-01 | 2011-10-11 | Tyco Healthcare Group Lp | Bioadhesive composition formed using click chemistry |
US8470236B2 (en) * | 2008-11-25 | 2013-06-25 | E I Du Pont De Nemours And Company | Process of making a non-woven web |
TWI392642B (zh) * | 2009-01-05 | 2013-04-11 | Chuh Yung Chen | 奈米複合材料裝置及其製作方法、及奈米材料裝置 |
US20130268062A1 (en) | 2012-04-05 | 2013-10-10 | Zeus Industrial Products, Inc. | Composite prosthetic devices |
US8257640B2 (en) | 2009-08-07 | 2012-09-04 | Zeus Industrial Products, Inc. | Multilayered composite structure with electrospun layer |
PL2384375T3 (pl) | 2009-01-16 | 2017-12-29 | Zeus Industrial Products, Inc. | Elektrospinning PTFE materiałami o wysokiej lepkości |
AU2010215200A1 (en) | 2009-02-21 | 2011-10-13 | Sofradim Production | Apparatus and method of reaching polymers by exposure to UV radiation to produce injectable medical devices |
EP2398524B1 (fr) | 2009-02-21 | 2017-07-12 | Covidien LP | Dispositifs médicaux présentant des surfaces activées |
US8512728B2 (en) | 2009-02-21 | 2013-08-20 | Sofradim Production | Method of forming a medical device on biological tissue |
US8663689B2 (en) | 2009-02-21 | 2014-03-04 | Sofradim Production | Functionalized adhesive medical gel |
US9039979B2 (en) | 2009-02-21 | 2015-05-26 | Sofradim Production | Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices |
US8877170B2 (en) | 2009-02-21 | 2014-11-04 | Sofradim Production | Medical device with inflammatory response-reducing coating |
WO2010095055A1 (fr) | 2009-02-21 | 2010-08-26 | Sofradim Production | Fibres réticulées et procédé de fabrication associé à l'aide de rayons uv |
US8535477B2 (en) | 2009-02-21 | 2013-09-17 | Sofradim Production | Medical devices incorporating functional adhesives |
US8968733B2 (en) | 2009-02-21 | 2015-03-03 | Sofradim Production | Functionalized surgical adhesives |
CA2753165A1 (fr) | 2009-02-21 | 2010-08-26 | Sofradim Production | Composes et dispositifs medicaux actives par des lieurs solvophobes |
WO2010095045A1 (fr) | 2009-02-21 | 2010-08-26 | Sofradim Production | Composés amphiphiles et compositions à auto-assemblage obtenues à partir de ceux-ci |
CA2753188A1 (fr) | 2009-02-21 | 2010-08-26 | Tyco Healthcare Group Lp | Dispositifs medicaux presentant des surfaces activees |
AU2010215196B2 (en) | 2009-02-21 | 2015-04-16 | Covidien Lp | Crosslinked fibers and method of making same by extrusion |
EP2398850B1 (fr) | 2009-02-21 | 2018-08-22 | Sofradim Production | Dispositifs médicaux à revêtement activé |
CN105477650A (zh) | 2009-03-19 | 2016-04-13 | Emd密理博公司 | 使用纳米纤维过滤介质从流体样品除去微生物 |
US9410267B2 (en) | 2009-05-13 | 2016-08-09 | President And Fellows Of Harvard College | Methods and devices for the fabrication of 3D polymeric fibers |
US8636833B2 (en) * | 2009-09-16 | 2014-01-28 | E I Du Pont De Nemours And Company | Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment |
WO2011117745A2 (fr) | 2010-03-25 | 2011-09-29 | Sofradim Production | Fixations chirurgicales et procédés pour fermer des plaies |
EP2550031B1 (fr) | 2010-03-25 | 2015-08-19 | Sofradim Production | Dispositifs médicaux incorporant des adhésifs fonctionnels |
KR20130081640A (ko) * | 2010-04-30 | 2013-07-17 | 고쿠리츠다이가쿠호징 야마나시다이가쿠 | 폴리올레핀 나노 필라멘트 다공질 시트로 이루어지는 전지용 세퍼래이터 |
US9247931B2 (en) | 2010-06-29 | 2016-02-02 | Covidien Lp | Microwave-powered reactor and method for in situ forming implants |
US8865857B2 (en) | 2010-07-01 | 2014-10-21 | Sofradim Production | Medical device with predefined activated cellular integration |
WO2012014080A2 (fr) | 2010-07-27 | 2012-02-02 | Sofradim Production | Fibres polymères ayant des éléments réactifs aux tissus |
EP2599908B1 (fr) * | 2010-07-29 | 2015-03-04 | Mitsui Chemicals, Inc. | Tissu non tissé, procédé et dispositif pour sa production |
CN108579207A (zh) | 2010-08-10 | 2018-09-28 | Emd密理博公司 | 用于去除反转录病毒的方法 |
ES2376680B8 (es) * | 2010-08-16 | 2013-04-30 | Nylstar, S.A. | Fibra textil cosmética, procedimiento de obtención y su empleo. |
JP2013520584A (ja) | 2010-10-14 | 2013-06-06 | ゼウス インダストリアル プロダクツ インコーポレイテッド | 抗菌基質 |
JP6203639B2 (ja) | 2011-01-28 | 2017-09-27 | メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. | 電界紡糸されたptfeでコーティングされたステントおよび使用方法 |
AU2012225311A1 (en) * | 2011-03-09 | 2013-10-24 | Board Of Regents Of The University Of Texas System | Apparatuses and methods for the production of fibers |
US11154821B2 (en) | 2011-04-01 | 2021-10-26 | Emd Millipore Corporation | Nanofiber containing composite membrane structures |
US8496088B2 (en) | 2011-11-09 | 2013-07-30 | Milliken & Company | Acoustic composite |
EP2780150B1 (fr) * | 2011-11-17 | 2022-01-05 | President and Fellows of Harvard College | Systèmes et procédés destinés à la fabrication de fibres polymères |
KR20130057849A (ko) * | 2011-11-24 | 2013-06-03 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | 마스크 팩 |
KR101980407B1 (ko) * | 2011-12-21 | 2019-05-20 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 원심 방사 공정으로부터 섬유질 웨브를 레잉하기 위한 방법 |
KR102037543B1 (ko) | 2012-01-16 | 2019-10-28 | 메리트 메디컬 시스템즈, 인크. | 회전 방사 재료로 커버링된 의료 기구 및 제조 방법 |
EP2629305B1 (fr) * | 2012-02-20 | 2014-04-02 | ABB Technology AG | Matériaux composites pour une utilisation dans des dispositifs haute tension |
JP2013184095A (ja) * | 2012-03-06 | 2013-09-19 | Tamaru Seisakusho:Kk | 油吸着材 |
US9981439B2 (en) * | 2012-08-06 | 2018-05-29 | Clarcor Inc. | Systems and methods of heating a fiber producing device |
US9353229B2 (en) | 2012-08-14 | 2016-05-31 | Gabae Technologies Llc | Compositions incorporating dielectric additives for particle formation, and methods of particle formation using same |
CZ308269B6 (cs) * | 2012-09-17 | 2020-04-08 | Výzkumný ústav potravinářský Praha, v.v.i. | Zařízení s proměnlivou geometrií pro odstředivou výrobu mikrovláken a nanovláken |
US10507268B2 (en) | 2012-09-19 | 2019-12-17 | Merit Medical Systems, Inc. | Electrospun material covered medical appliances and methods of manufacture |
US9198999B2 (en) | 2012-09-21 | 2015-12-01 | Merit Medical Systems, Inc. | Drug-eluting rotational spun coatings and methods of use |
US9186608B2 (en) | 2012-09-26 | 2015-11-17 | Milliken & Company | Process for forming a high efficiency nanofiber filter |
US9205359B2 (en) | 2012-10-09 | 2015-12-08 | W.L. Gore & Associates, Inc. | V-panel filters |
US9796830B2 (en) | 2012-10-12 | 2017-10-24 | Gabae Technologies Inc. | High dielectric compositions for particle formation and methods of forming particles using same |
US10519569B2 (en) | 2013-02-13 | 2019-12-31 | President And Fellows Of Harvard College | Immersed rotary jet spinning devices (IRJS) and uses thereof |
US20140235129A1 (en) * | 2013-02-20 | 2014-08-21 | E I Du Pont De Nemours And Company | Nanoweb structure |
EP3988278A1 (fr) | 2013-03-13 | 2022-04-27 | Merit Medical Systems, Inc. | Matières à fibres déposées en série et dispositifs et procédés s'y rapportant |
WO2014159399A1 (fr) | 2013-03-13 | 2014-10-02 | Merit Medical Systems, Inc. | Procédés, systèmes et appareils de fabrication d'équipements tissés rotationnels |
CN105188892A (zh) | 2013-03-14 | 2015-12-23 | 纳幕尔杜邦公司 | 使用横向流过滤膜从液体流除去颗粒的方法 |
CN103160953B (zh) * | 2013-03-15 | 2016-06-08 | 武汉纺织大学 | 一种热致性液晶聚芳酯纳原纤的短流程制备方法 |
CN103305947A (zh) * | 2013-05-07 | 2013-09-18 | 青岛中科昊泰新材料科技有限公司 | 一种微分分流离心纺丝法制备纳米纤维的装置 |
CN103243483B (zh) * | 2013-05-10 | 2015-09-16 | 北京化工大学 | 一种熔体微分式注射静电纺丝装置 |
EP2999809A1 (fr) | 2013-05-21 | 2016-03-30 | Gabae Technologies, LLC | Compositions fortement diélectriques pour la formation de particules et procédés de formation de particules les utilisant |
US9775928B2 (en) | 2013-06-18 | 2017-10-03 | Covidien Lp | Adhesive barbed filament |
US10119214B2 (en) | 2013-07-17 | 2018-11-06 | Sabic Global Technologies B.V. | Force spun sub-micron fiber and applications |
US20150024185A1 (en) * | 2013-07-17 | 2015-01-22 | Sabic Global Technologies B.V. | Force spun sub-micron fiber and applications |
CN103397396B (zh) * | 2013-07-30 | 2015-10-28 | 苏州豪建纺织有限公司 | 一种可变径熔丝结构 |
CN104370565A (zh) * | 2013-08-12 | 2015-02-25 | 苏州宏久航空防热材料科技有限公司 | 一种红外加热离心盘的装置 |
EP3033447A1 (fr) | 2013-08-15 | 2016-06-22 | SABIC Global Technologies B.V. | Fibres sous-micrométriques filées par cisaillement |
CN105658859A (zh) | 2013-10-21 | 2016-06-08 | 纳幕尔杜邦公司 | 驻极体纳米纤维网 |
JP6554462B2 (ja) * | 2013-10-21 | 2019-07-31 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 空気濾過媒体としてのエレクトレットナノファイバーウェブ |
US10233568B2 (en) | 2013-10-22 | 2019-03-19 | E I Du Pont De Nemours And Company | Apparatus for production of polymeric nanofibers |
US11203132B2 (en) * | 2013-11-20 | 2021-12-21 | Trusscore Inc. | Method and system for forming composites |
CN103726111A (zh) * | 2013-12-28 | 2014-04-16 | 吴江市振中纺织品有限公司 | 螺旋式熔丝结构 |
JP6172677B2 (ja) * | 2014-04-25 | 2017-08-02 | 国立大学法人秋田大学 | 繊維の製造装置およびこれを用いた不織布の製造装置 |
CN105019039B (zh) * | 2014-04-30 | 2017-01-04 | 崔建中 | 熔融静电纺丝方法以及该方法制备的纳米纤维 |
KR20210115050A (ko) | 2014-06-26 | 2021-09-24 | 이엠디 밀리포어 코포레이션 | 개선된 먼지 포집 능력을 갖는 필터 구조 |
JP6896625B2 (ja) | 2014-10-30 | 2021-06-30 | テクスタイル−ベイスド デリバリー,インコーポレイテッド | 送達システム |
WO2016081937A1 (fr) * | 2014-11-21 | 2016-05-26 | E. I. Du Pont De Nemours And Company | Procédé de filage de fibre de charge in-situ pour la production d'un électret non tissé |
JP6659688B2 (ja) * | 2014-11-21 | 2020-03-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 呼吸装置およびフェイスマスク用の溶融紡糸濾過媒体 |
DK3261589T3 (da) | 2015-02-26 | 2020-12-14 | Merit Medical Systems Inc | Lagdelte medicinske indretninger |
CN104674360B (zh) * | 2015-03-05 | 2017-03-22 | 北京化工大学 | 一种气流辅助熔体微分离心纺丝装置及方法 |
CN107208338A (zh) | 2015-03-16 | 2017-09-26 | 东丽精细化工株式会社 | 无纺布及其制造方法 |
JP6786519B2 (ja) | 2015-04-17 | 2020-11-18 | イー・エム・デイー・ミリポア・コーポレイシヨン | 接線流濾過モードで作動するナノファイバー限外濾過膜を用いた、試料中の目的の生物学的物質を精製する方法 |
US10108033B2 (en) | 2015-08-04 | 2018-10-23 | Rogers Corporation | Subassemblies comprising a compressible pressure pad, methods for reducing ripple effect in a display device, and methods for improving impact absorption in a display device |
WO2017142021A1 (fr) * | 2016-02-16 | 2017-08-24 | 三井化学株式会社 | Tissu non tissé, filtre et procédé de fabrication de tissu non tissé |
CN105887554A (zh) * | 2016-04-08 | 2016-08-24 | 深圳市东城绿色投资有限公司 | 一种含有聚烯烃纳米纤维的纳米纸及其湿法造纸方法 |
CN106075596B (zh) * | 2016-07-21 | 2021-02-09 | 南开大学 | 一种三层人工血管制备技术 |
CN106551423B (zh) * | 2016-12-02 | 2020-01-17 | 武汉纺织大学 | 一种负离子熔喷超细纤维香烟滤嘴材料及其制备方法 |
US11376534B2 (en) | 2017-06-08 | 2022-07-05 | Ascend Performance Materials Operations Llc | Polyamide nanofiber nonwovens for filters |
WO2018227069A1 (fr) | 2017-06-08 | 2018-12-13 | Ascend Performance Materials Operations Llc | Non-tissés en nanofibres de polyamide |
CN107376000B (zh) * | 2017-07-14 | 2019-08-06 | 广州迈普再生医学科技股份有限公司 | 微纤维态止血材料及其制备方法和止血制品 |
CN111107927A (zh) | 2017-07-21 | 2020-05-05 | 默克密理博有限公司 | 无纺纤维膜 |
EP3598526A1 (fr) * | 2018-07-17 | 2020-01-22 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Réseau de fibres métalliques, procédé de production d'un réseau de fibres métalliques électrode et batterie |
EP3911784A4 (fr) | 2019-01-14 | 2022-10-19 | President and Fellows of Harvard College | Dispositifs rotatifs de filature à jet d'air ciblé et procédés d'utilisation associés |
KR102202190B1 (ko) | 2019-03-08 | 2021-01-13 | 주식회사 성창오토텍 | 강유전체 나노분말을 함유하는 정전 초극세섬유 |
CN110523142B (zh) * | 2019-08-23 | 2023-04-18 | 天津工业大学 | 一种仿树皮聚丙烯/聚碳酸酯纳米纤维熔喷空气滤料及其制备方法 |
CN111485328B (zh) * | 2020-03-18 | 2021-06-18 | 浙江恒澜科技有限公司 | 一种阻燃纳米纤维复合材料的制备方法及装置 |
CN113522183A (zh) * | 2020-04-18 | 2021-10-22 | 东莞东阳光科研发有限公司 | 聚乙烯纤维气凝胶及其制备工艺 |
CN111996670B (zh) * | 2020-08-21 | 2022-07-08 | 北自所(常州)科技发展有限公司 | 一种用于成型无纺布的生产工艺 |
KR102463876B1 (ko) | 2020-11-20 | 2022-11-04 | 금오공과대학교 산학협력단 | 액정 고분자 섬유, 및 이의 제조방법 |
KR102481109B1 (ko) * | 2020-12-07 | 2022-12-27 | (주) 로도아이 | 나노섬유 제조 장치 |
CN113564735A (zh) * | 2021-08-20 | 2021-10-29 | 北京化工大学 | 一种气流辅助的离心静电纺丝装置 |
WO2024085211A1 (fr) * | 2022-10-21 | 2024-04-25 | 東洋紡エムシー株式会社 | Matériau de filtration et filtre |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2433000A (en) | 1943-09-29 | 1947-12-23 | Fred W Manning | Method for the production of filaments and fabrics from fluids |
US4397020A (en) | 1980-09-11 | 1983-08-02 | Bell Telephone Laboratories, Incorporated | Error monitoring in digital transmission systems |
US4937020A (en) | 1988-01-16 | 1990-06-26 | Bayer Aktiengesellschaft | Production of very fine polymer fibres |
US6752609B2 (en) | 2001-03-12 | 2004-06-22 | Microfaser Produktionsgesellschaft Mbh | Device for forming synthetic fiber materials |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609566A (en) * | 1948-12-31 | 1952-09-09 | Owens Corning Fiberglass Corp | Method and apparatus for forming fibers |
US2587710A (en) * | 1951-11-01 | 1952-03-04 | United States Gypsum Co | Apparatus and process for making mineral wool |
US3097085A (en) * | 1959-07-02 | 1963-07-09 | Wallsten Hans | Method and means for the manufacture of fibres of thermoplastic material |
NL279172A (fr) * | 1961-06-02 | |||
US3475198A (en) * | 1965-04-07 | 1969-10-28 | Ransburg Electro Coating Corp | Method and apparatus for applying a binder material to a prearranged web of unbound,non-woven fibers by electrostatic attraction |
JPS49110910A (fr) | 1973-03-02 | 1974-10-22 | ||
US4323524A (en) * | 1977-03-11 | 1982-04-06 | Imperial Chemical Industries Limited | Production of fibres |
US4277436A (en) * | 1978-04-26 | 1981-07-07 | Owens-Corning Fiberglas Corporation | Method for forming filaments |
JPS5530467A (en) * | 1978-08-28 | 1980-03-04 | Denki Kagaku Kogyo Kk | Production of alumina fiber precursor and device therefor |
US4536361A (en) * | 1978-08-28 | 1985-08-20 | Torobin Leonard B | Method for producing plastic microfilaments |
US4451276A (en) * | 1982-08-18 | 1984-05-29 | Barthe Marie Pierre | Method and apparatus for glass fiberization |
JPS6010127B2 (ja) | 1982-09-20 | 1985-03-15 | 株式会社佐藤技術研究所 | 融体から特定サイズの繊維を製造する方法 |
US5637357A (en) * | 1995-12-28 | 1997-06-10 | Philips Electronics North America Corporation | Rotary electrostatic dusting method |
US6315806B1 (en) * | 1997-09-23 | 2001-11-13 | Leonard Torobin | Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby |
US6183670B1 (en) * | 1997-09-23 | 2001-02-06 | Leonard Torobin | Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby |
US6524514B1 (en) * | 1998-01-07 | 2003-02-25 | Microfaser-Repro-Gmbh | Method and device for producing fibrous materials from thermoplastic materials |
JP2001288664A (ja) * | 2000-03-31 | 2001-10-19 | Polymer Processing Res Inst | 遠心紡糸されたヨコ延伸フィラメントウェブの製法 |
US6641773B2 (en) * | 2001-01-10 | 2003-11-04 | The United States Of America As Represented By The Secretary Of The Army | Electro spinning of submicron diameter polymer filaments |
JP4229115B2 (ja) * | 2002-10-23 | 2009-02-25 | 東レ株式会社 | ナノファイバー集合体 |
WO2004101459A1 (fr) * | 2003-05-16 | 2004-11-25 | Paramount Glass Manufacturing Co., Ltd. | Procede et appareil de fabrication de fibres de verre |
US7134857B2 (en) | 2004-04-08 | 2006-11-14 | Research Triangle Institute | Electrospinning of fibers using a rotatable spray head |
US7326043B2 (en) * | 2004-06-29 | 2008-02-05 | Cornell Research Foundation, Inc. | Apparatus and method for elevated temperature electrospinning |
US20060012084A1 (en) * | 2004-07-13 | 2006-01-19 | Armantrout Jack E | Electroblowing web formation process |
CN101065521A (zh) * | 2004-09-30 | 2007-10-31 | 苏拉有限及两合公司 | 熔融纺造细的非织造纤维的熔喷法及实施该方法的装置 |
US20060135020A1 (en) * | 2004-12-17 | 2006-06-22 | Weinberg Mark G | Flash spun web containing sub-micron filaments and process for forming same |
JP4992186B2 (ja) * | 2005-03-02 | 2012-08-08 | 東レ株式会社 | 電池セパレータ |
DE102005048939A1 (de) * | 2005-07-01 | 2007-01-11 | Carl Freudenberg Kg | Vorrichtung, Anordnung und Verfahren zur Herstellung von Fasern und eine solche Fasern umfassende Anordnung |
US7582247B2 (en) * | 2005-08-17 | 2009-09-01 | E. I. Du Pont De Nemours And Company | Electroblowing fiber spinning process |
ES2405945T3 (es) | 2006-03-28 | 2013-06-04 | Lnk Chemsolutions, Llc. | Método de manufactura de apósitos hemostáticos fibrosos |
US8303874B2 (en) | 2006-03-28 | 2012-11-06 | E I Du Pont De Nemours And Company | Solution spun fiber process |
US10041188B2 (en) * | 2006-04-18 | 2018-08-07 | Hills, Inc. | Method and apparatus for production of meltblown nanofibers |
US7666343B2 (en) * | 2006-10-18 | 2010-02-23 | Polymer Group, Inc. | Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same |
WO2009055413A1 (fr) * | 2007-10-23 | 2009-04-30 | Ppg Industries Ohio, Inc. | Fabrication d'une fibre par filage électromécanique |
US9834865B2 (en) * | 2007-12-17 | 2017-12-05 | E I Du Pont De Nemours And Company | Centrifugal solution spun nanofiber process |
-
2008
- 2008-03-18 US US12/077,355 patent/US8277711B2/en active Active
- 2008-03-27 CN CN201110402996.5A patent/CN102534829B/zh active Active
- 2008-03-27 CN CN2008800173840A patent/CN101755081B/zh active Active
- 2008-03-27 BR BRPI0807306-6A2A patent/BRPI0807306A2/pt not_active IP Right Cessation
- 2008-03-27 EP EP12181094.9A patent/EP2527503B1/fr active Active
- 2008-03-27 WO PCT/US2008/004081 patent/WO2008121338A2/fr active Application Filing
- 2008-03-27 JP JP2010501009A patent/JP5394368B2/ja not_active Expired - Fee Related
- 2008-03-27 EP EP08727205.0A patent/EP2129816B1/fr active Active
- 2008-03-27 KR KR1020097022684A patent/KR101519169B1/ko active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2433000A (en) | 1943-09-29 | 1947-12-23 | Fred W Manning | Method for the production of filaments and fabrics from fluids |
US4397020A (en) | 1980-09-11 | 1983-08-02 | Bell Telephone Laboratories, Incorporated | Error monitoring in digital transmission systems |
US4937020A (en) | 1988-01-16 | 1990-06-26 | Bayer Aktiengesellschaft | Production of very fine polymer fibres |
US6752609B2 (en) | 2001-03-12 | 2004-06-22 | Microfaser Produktionsgesellschaft Mbh | Device for forming synthetic fiber materials |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8721319B2 (en) | 2008-03-17 | 2014-05-13 | Board of Regents of the University to Texas System | Superfine fiber creating spinneret and uses thereof |
US8828294B2 (en) | 2008-03-17 | 2014-09-09 | Board Of Regents Of The University Of Texas System | Superfine fiber creating spinneret and uses thereof |
EP2257660A4 (fr) * | 2008-03-17 | 2012-01-04 | Univ Texas | Procédés et appareils pour réaliser des fibres superfines |
US8777599B2 (en) | 2011-02-07 | 2014-07-15 | Fiberio Technology Corporation | Multilayer apparatuses and methods for the production of microfibers and nanofibers |
US8658067B2 (en) | 2011-02-07 | 2014-02-25 | Fiberio Technology Corporation | Apparatuses and methods for the deposition of microfibers and nanofibers on a substrate |
US8709309B2 (en) | 2011-02-07 | 2014-04-29 | FibeRio Technologies Corporation | Devices and methods for the production of coaxial microfibers and nanofibers |
US8647540B2 (en) | 2011-02-07 | 2014-02-11 | Fiberio Technology Corporation | Apparatuses having outlet elements and methods for the production of microfibers and nanofibers |
US8778240B2 (en) | 2011-02-07 | 2014-07-15 | Fiberio Technology Corporation | Split fiber producing devices and methods for the production of microfibers and nanofibers |
US8647541B2 (en) | 2011-02-07 | 2014-02-11 | Fiberio Technology Corporation | Apparatuses and methods for the simultaneous production of microfibers and nanofibers |
US9394627B2 (en) | 2011-02-07 | 2016-07-19 | Clarcor Inc. | Apparatuses having outlet elements and methods for the production of microfibers and nanofibers |
US9242024B2 (en) | 2011-03-29 | 2016-01-26 | University-Industry Cooperation Group Of Kyung-Hee University Et Al | Three-dimensional nanofiber scaffold for tissue repair and preparation method thereof |
WO2013157969A1 (fr) | 2012-04-17 | 2013-10-24 | Politechnika Łodzka | Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins |
WO2015061377A1 (fr) * | 2013-10-22 | 2015-04-30 | E. I. Du Pont De Nemours And Company | Voile nanofibreux fin en polypropylène filé à l'état fondu |
EP3396039A4 (fr) * | 2015-12-21 | 2019-01-09 | Panasonic Intellectual Property Management Co., Ltd. | Ensemble de fibres |
US11408096B2 (en) | 2017-09-08 | 2022-08-09 | The Board Of Regents Of The University Of Texas System | Method of producing mechanoluminescent fibers |
US11427937B2 (en) | 2019-02-20 | 2022-08-30 | The Board Of Regents Of The University Of Texas System | Handheld/portable apparatus for the production of microfibers, submicron fibers and nanofibers |
Also Published As
Publication number | Publication date |
---|---|
EP2129816B1 (fr) | 2016-12-21 |
JP5394368B2 (ja) | 2014-01-22 |
JP2010522835A (ja) | 2010-07-08 |
US8277711B2 (en) | 2012-10-02 |
US20080242171A1 (en) | 2008-10-02 |
CN102534829A (zh) | 2012-07-04 |
EP2527503B1 (fr) | 2025-02-26 |
KR20090127371A (ko) | 2009-12-10 |
BRPI0807306A2 (pt) | 2014-05-20 |
EP2129816A2 (fr) | 2009-12-09 |
EP2527503A1 (fr) | 2012-11-28 |
CN102534829B (zh) | 2017-04-12 |
CN101755081A (zh) | 2010-06-23 |
CN101755081B (zh) | 2012-10-10 |
KR101519169B1 (ko) | 2015-05-11 |
WO2008121338A3 (fr) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8277711B2 (en) | Production of nanofibers by melt spinning | |
Almetwally et al. | Technology of nano-fibers: Production techniques and properties-Critical review | |
EP2222903B1 (fr) | Procédé de nanofibres tissés en solution centrifugée | |
US8668854B2 (en) | Process and apparatus for producing nanofibers using a two phase flow nozzle | |
EP1999304B2 (fr) | Procede de filage de fibres en solution | |
JP2653651B2 (ja) | 繊維形成装置 | |
JP2010522835A5 (fr) | ||
US10590565B2 (en) | Polymeric nanofibers and nanofibrous web | |
JP2005029931A (ja) | 不織布及びその製造方法 | |
US20170088980A1 (en) | Method for manufacturing ultrafine fiber | |
JP2010275663A (ja) | 繊維集合物及び熱接着不織布の製造方法 | |
Yang et al. | Melt electrospinning | |
JP2010285720A (ja) | 不織布の製造方法および製造装置 | |
Nayak et al. | Nanotextiles and recent developments | |
Wongpajan et al. | Development of cotton candy method for high productivity polypropylene fibers webs | |
US20250163621A1 (en) | Biodegradable and hydrophobic polylactic acid (pla ) non-woven material and process for manufacturing thereof | |
Annibaldi | 4 Melt electrospinning | |
CN120024092A (zh) | 生物可降解且具疏水性的聚乳酸非织造材料及其制备方法 | |
Bhat et al. | NANOFIBER NONWOVENS: PRODUCTION TECHNOLOGIES, PROPERTIES, AND APPLICATIONS | |
Weimin et al. | Melt Electrospinning | |
JPH1121753A (ja) | スリット紡糸メルトブロー不織布の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880017384.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08727205 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5167/DELNP/2009 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2008727205 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008727205 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010501009 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20097022684 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0807306 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090818 |