WO2008117345A1 - Linear motor and its control method - Google Patents
Linear motor and its control method Download PDFInfo
- Publication number
- WO2008117345A1 WO2008117345A1 PCT/JP2007/053984 JP2007053984W WO2008117345A1 WO 2008117345 A1 WO2008117345 A1 WO 2008117345A1 JP 2007053984 W JP2007053984 W JP 2007053984W WO 2008117345 A1 WO2008117345 A1 WO 2008117345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic pole
- armature
- phase angle
- linear motor
- magnetic
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/062—Linear motors of the induction type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/225—Detecting coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
Definitions
- the present invention relates to a linear motor, and more particularly to a linear motor that performs linear driving.
- Magnetic pole phase angle information (magnetic pole position information) is indispensable for driving linear motors, and in many cases, magnetic pole phase angle information is obtained using a magnetic pole phase angle sensor.
- a technology that does not require a magnetic pole phase angle sensor is being developed for the purpose of constraining the installation space of the magnetic pole phase angle sensor and reducing the cost.
- the electrical angle (magnetic pole phase angle) of a motor is calculated by using the difference in the inductance and the inductance between phases for a rotary synchronous motor.
- a method for detecting and obtaining a correct magnetic pole phase angle even when the rotor is stopped is disclosed.
- the magnetic pole phase angle estimation method as in Reference 1 above does not require a magnetic pole phase angle sensor, so that the device can be made compact and low in cost.
- the magnetic pole phase angle sensor can be realized.
- the resolution of magnetic pole position detection is inferior. Therefore, a method for estimating the magnetic pole phase angle with higher accuracy is required. Disclosure of the invention
- An object of the present invention is to provide a linear motor having a function of estimating a magnetic pole phase angle with high accuracy without using a magnetic pole phase angle sensor.
- the armature core In the linear motor according to the present invention, between the armature cores, the armature core also has an armature phase in which a magnetic material having weak magnetism is arranged, and calculates the magnetic pole phase angle of the armature phase from the self-inductance detection value of the armature phase. It is characterized by driving the duck overnight.
- the linear motor of the present invention has an armature phase in which a non-magnetic material is disposed between a plurality of armature cores, and a magnetic pole phase angle of the armature phase from a self-inductance detection value of the armature phase. And the linear motor is driven in accordance with the magnetic pole phase angle.
- the non-magnetic material includes not only a material that does not have magnetism completely but also a weak magnetic material that has some magnetism.
- FIG. 1 is an overall view showing the configuration of a linear motor control device according to the first embodiment.
- FIG. 2 is an overall view showing the configuration of the linear motor in the first embodiment.
- FIG. 3 is a detailed view showing the configuration of the linear motor in the first embodiment.
- FIG. 4 is a diagram showing a method for manufacturing an armature according to the first embodiment.
- FIG. 5 is a diagram showing the output of the inductance detector in the linear motor of the first embodiment.
- FIG. 6 shows an example of a conventional linear motor.
- FIG. 7 is a diagram showing the output of the inductance detector in the conventional linear motor shown in FIG.
- FIG. 8 is a graph showing the relationship between the deviation angle (load angle) of the initial magnetic pole phase angle of the linear motor in Example 1 and the generated thrust.
- FIG. 9 is a diagram showing the structure of the armature in the second embodiment.
- FIG. 10 is a diagram showing a configuration of an armature in the third embodiment.
- FIG. 11 is a diagram showing a configuration of an armature in the fourth embodiment.
- FIG. 12 is a diagram showing the structure of the armature in the fifth embodiment.
- FIG. 13 is a diagram showing the configuration of the armature and the mover in the sixth embodiment.
- FIG. 14 is a diagram showing the configuration of the armature and the mover in the seventh embodiment.
- FIG. 1 is an overall view showing a configuration of a linear motor control apparatus in Embodiment 1.
- FIG. Linear motor 1 0, Inductance detector 1 1, Movable position detector 1 2, Position controller 1 3, Speed controller 1 4, Current controller 1 5, Speed converter 1 6, Magnetic pole phase angle converter 17 is structured as shown in Fig. 1. Each operation is described below.
- the mover position detector 1.2 detects the position of the mover of the linear motor and outputs the detected position information to the position controller 13 and the speed converter 16.
- the position information detected by the mover position detector 12 is different from the magnetic pole phase angle information, but is the position information of the mover detected by reading the linear scale.
- the position controller 13 receives the position command and the position information from the mover position detector 12 and outputs a speed command.
- the speed converter 16 converts the position information detected by the position detector 12 into speed information and outputs this speed information to the speed controller 14.
- the speed controller 14 receives the speed command output from the position controller 13 and the speed information output from the speed converter 16, and outputs the current command to the current controller 15.
- the inductance detector 11 detects the self-inductance of the armature phase and outputs the detected inductance information to the magnetic pole phase angle converter 17.
- the magnetic pole phase angle converter 1 7 converts the inductance information received from the inductance detector into the magnetic pole phase angle information and sends it to the current controller 15. Outputs magnetic pole phase angle information.
- the current controller 15 receives the current command output from the speed controller 14 and the magnetic pole phase angle information output from the magnetic pole phase angle converter 17, and controls the current that flows to the linear motor 10. With such a configuration, it is possible to obtain information on the magnetic pole phase angle of the mover without using a magnetic pole phase angle sensor.
- FIG. 2 is an overall view showing the configuration of the linear motor in this embodiment.
- the linear motor of this embodiment is composed of a mover 6 in which a plurality of permanent magnets 7 are arranged, and an armature 2 in which an armature coil 4 is wound around each armature phase.
- Each armature phase is arranged in series in the moving direction of the motor.
- k is an arbitrary integer
- M is the number of phases of the armature.
- the armature 2 is composed of three armature phases: U phase, V phase, and W phase.
- FIG. 3 is a detailed view showing the configuration of the linear motor in this embodiment.
- the armature is composed of an armature coil 4, a permanent magnet 7, and a plurality of magnetic pole teeth that constitute a closed magnetic circuit with a structure facing both the front and back surfaces of the permanent magnet.
- the armature 2 0 2 and the magnetic pole tooth 2 0 2 are arranged with a certain gap between them, and the armature 2 0 2 It is arranged so that it is located below the mover from the other side of the child.
- the magnetic pole teeth 2 0 3 and the magnetic pole teeth 2 0 4 are arranged through a fixed gap, and the magnetic pole teeth 2 0 3 are positioned on the upper part of the mover from the other armature.
- 04 is arranged so as to be located from one end of the armature to the lower part of the mover.
- the magnetic pole teeth 2 0 1 and the magnetic pole teeth 2 0 2 And a first opposing portion constituting a closed magnetic path and a second opposing portion constituting a closed magnetic path provided with magnetic pole teeth 20 3 and 2 4 are adjacent to each other and in opposite directions. Therefore, it is possible to simplify the manufacturing process and reduce the manufacturing cost by manufacturing a linear motor with a small number of armature coils.
- the plurality of armature cores 20 having the facing portions are arranged with the nonmagnetic material 30 interposed therebetween.
- FIG. 4 is a diagram showing a method for manufacturing an armature in the present embodiment.
- the armature is composed of a plurality of armature cores 20 having opposing portions and a plurality of nonmagnetic bodies 30.
- the armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and a nonmagnetic material 30 is arranged between the armature cores 20.
- the plurality of armature cores 20 and the nonmagnetic body 30 arranged as described above are fixed integrally and wound with a common armature coil.
- FIG. 5 is a diagram showing the output of the inductance detector 1 1 in the linear motor of this embodiment.
- the vertical axis in Fig. 5 represents the self-inductance of each armature phase, and the horizontal axis represents the magnetic pole phase angle.
- the self-inductance signals of the V, ⁇ , and W phases are sinusoidal signals with a phase difference of 60 degrees.
- the amplitude of each phase, U phase, and W phase self-inductance is about 40 [mH].
- the sine wave signals of self-inductances L u, L v, L w shown in Fig. 5 are input to the magnetic pole phase angle converter 17 to calculate the magnetic pole phase angle of the linear motor To do.
- the operation of this magnetic pole phase angle converter 17 is obtained, for example, by taking the analog values of the inductance signals of L u, L v and L w with the AZD converter of the microcomputer, and using the inverse trigonometric function calculation in the microcomputer.
- the inverse depression function calculation may be performed using any of the inductance signals of L u, L V, and L w, but it is better to use two or more signals of L u, L V, and L w.
- four magnetic pole phase angle candidate values are found.
- another inductance signal it is possible to narrow down to two magnetic pole phase angle candidate values.
- the two magnetic pole phase angle candidate values have a relationship of 0 and 0 + 1 80 degrees.
- a minute current is given to the current controller 15. At this time, confirm that the position detector 12 has changed several pulses, set the command current to 0 and stop the linear motor.
- the thrust generated by the motor is reversed at ⁇ of 0 and 1800 degrees, and the force of the linear motor is reversed.
- a magnetic pole phase angle 0 estimated from the detected inductance value when a small current is applied to the current controller 15, ⁇ or ⁇ + 180 degrees is determined from the direction in which the linear motor has moved. It is possible to calculate one magnetic pole phase angle by performing calculations in this way.
- a linear motor composed of three armature phases of U phase, V phase, and W phase has been described. However, if the number of armature phases is three or more, the same method as described above is used. Thus, the magnetic pole phase angle can be calculated from the detected inductance value.
- FIG. 6 shows an example of a conventional linear motor. As shown in Fig. 6, the armature coil is wound around each armature tooth, and the mover having a permanent magnet and the armature move relatively while being supported by a support mechanism with a certain gap. To do.
- FIG. 7 is a diagram showing the output of the inductance detector in the conventional linear motor shown in FIG.
- the vertical axis in Fig. 7 represents the self-inductance of each armature phase, and the horizontal axis represents the magnetic pole phase angle.
- the self-inductance signal of each phase of V phase, U phase and W phase becomes a sine wave signal with a phase difference of 60 degrees, and each self-inductance of V phase, U phase and W phase
- the amplitude of the evening is approximately 2.5 [m H].
- the reason why the amplitude of the self-inductance in the conventional linear motor is smaller than the amplitude of the self-inductance in the linear motor of this embodiment is that the linear motor in this embodiment places the non-magnetic material 30 between the armature cores 20. Therefore, the magnetic circuit between the armature cores 20 constituting the closed magnetic circuit can be made independent, and the leakage flux between the adjacent armature cores is omitted. This is because a large difference in self-inductance with respect to the relative position of the magnet 30 appears.
- FIG. 8 is a graph showing the relationship between the deviation angle (load angle) of the initial magnetic pole phase angle and the generated thrust in the linear motor of this embodiment.
- the thrust generated can be improved and the performance of the linear motor can be improved. Therefore, a highly accurate estimation method is required when estimating the initial magnetic pole phase angle as in the present invention.
- the detection error of the self-inductance is 1 [m H]
- the detection error of the magnetic pole phase angle in the present embodiment and the conventional linear motor will be described with reference to FIGS. Make a comparison.
- the error of the magnetic pole phase angle is about 10 [°] as shown in FIG.
- the conventional As shown in Fig. 7, the error of the magnetic pole phase angle when the self-inductance detection error of 1 [m H] occurs in the linear motor is approximately 35 [° ⁇ .
- the amplitude of the self-inductance of the linear motor of this embodiment shown in FIG. 5 is shown in FIG. Since the amplitude of the self-inductance in the conventional linear motor is larger, the error of the magnetic pole phase angle when the error occurs in the detection of the self-inductance is a relatively small value. Therefore, the magnetic pole phase angle detection resolution is improved, and the magnetic pole phase angle can be detected with high accuracy.
- the member having the permanent magnet is the mover and the armature is the stator.
- the member having the permanent magnet is the stator and the armature is the same as the mover.
- the armature has the non-magnetic body 30.
- a structure having a magnetic body that is weaker than the armature core 20 is used.
- FIG. 9 is a diagram showing the structure of the armature in the present embodiment.
- the configuration and control method other than the armature shown in FIG. 9 of this embodiment are the same as those in the first embodiment.
- the armature in this embodiment is composed of an armature core 20 and a non-magnetic material 30. Furthermore, the armature core 20 is adjacent to the magnetic pole Teeth are arranged so that their directions are staggered, and nonmagnetic bodies 30 are arranged between the armature cores 20 and at both ends of the armature phase. In other words, the present embodiment has a configuration in which the nonmagnetic material 30 is disposed at both ends of the armature of the first embodiment.
- the leakage magnetic flux between the armature cores 20 of adjacent armature phases can be omitted. It becomes possible. For this reason, it is possible to reduce the leakage magnetic flux as compared with the first embodiment, and for the same reason as described in the first embodiment, the magnetic pole phase angle can be detected with higher accuracy than the first embodiment.
- a linear motor without a phase angle sensor can be realized.
- the member having the permanent magnet is the mover and the armature is the stator, but the member having the permanent magnet is the stator and the armature is the mover. The effect of.
- the armature has the non-magnetic body 30.
- a structure having a magnetic body that is weaker than the armature core 20 is used.
- the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the non-magnetic material, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
- FIG. 10 is a diagram showing the structure of the armature in the present embodiment.
- the configuration and control method other than the armature shown in FIG. 10 of this embodiment are the same as those of the first embodiment.
- the armature in this embodiment is composed of an armature core 20 and a nonmagnetic material 30. Furthermore, the armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and a non-magnetic material that covers the side surfaces of the armature cores 20 in the arrangement direction between the armature cores 20. 30 is placed. 0
- the non-magnetic body 30 of Example 1 does not block the armature tooth portion of the adjacent armature core, but the non-magnetic body 30 of this embodiment is about the armature tooth portion of the adjacent armature core. It has a structure that also blocks.
- the magnetic flux leaking between the armature teeth of adjacent armature cores can be omitted. Therefore, the leakage of magnetic flux can be reduced as compared with the first embodiment, and the magnetic pole phase angle can be detected with higher accuracy than the first embodiment for the same reason as described in the first embodiment.
- a linear motor having no magnetic pole phase angle sensor can be realized.
- the member having the permanent magnet is the mover and the armature is the stator.
- the member having the permanent magnet is the stator and the armature is the same as the mover.
- the armature has the non-magnetic body 30.
- a structure having a magnetic body that is weaker than the armature core 20 is used.
- FIG. 11 is a diagram showing the structure of the armature in the present embodiment.
- the configuration and control method other than the armature shown in FIG. 11 of this embodiment are the same as those of the first embodiment.
- the armature in this embodiment is composed of an armature core 20 and a nonmagnetic material 30. Furthermore, the armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and the arrangement direction of the armature cores 20 is between the armature cores 20 and between both ends of the armature phase.
- a non-magnetic material 30 is disposed to cover the side surface.
- the non-magnetic material 30 of Example 1 is an adjacent armature core. Although the armature tooth portion is not blocked, the nonmagnetic body 30 of the present embodiment is configured to block the armature tooth portion of the adjacent armature core.
- the leakage magnetic flux between the armature cores 20 of adjacent armature phases can be omitted.
- magnetic flux leaking between armature teeth of adjacent armature cores can be eliminated. Therefore, it is possible to reduce the leakage magnetic flux compared to the first embodiment, and for the same reason as described in the first embodiment, it is possible to detect the magnetic pole phase angle with higher accuracy than the first embodiment.
- a linear motor without a magnetic phase angle sensor can be realized.
- the member having the permanent magnet is the mover and the armature is the stator.
- the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect.
- the armature has the non-magnetic body 30.
- a structure having a magnetic body that is weaker than the armature core 20 is used instead of the non-magnetic body 30 of the present embodiment.
- the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the non-magnetic material, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
- FIG. 12 is a diagram showing the structure of the armature in the present embodiment.
- the configuration and control method other than the armature shown in FIG. 12 of the present embodiment are the same as those of the first embodiment.
- the armature in this embodiment is composed of a plurality of armature cores 20. Further, each armature core 20 is arranged so that the directions of adjacent magnetic pole teeth are staggered.
- the armature cores 20 face each other. 2
- Example 1 A closed magnetic circuit is formed between the armatures. Therefore, there is less magnetic flux leakage compared to the conventional linear motor as shown in Fig. 6. Therefore, for the same reason as described in Example 1, it has a magnetic pole phase angle sensor that can detect the magnetic pole phase angle with higher accuracy than the conventional linear motor shown in FIG. No linear motor can be realized.
- the member having the permanent magnet is the mover and the armature is the stator.
- the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect.
- FIG. 13 is a diagram showing the configuration of the armature and the mover in the present embodiment.
- the configuration and control method other than the armature and the mover shown in FIG. 13 of the present embodiment are the same as those of the first embodiment.
- the armature in this embodiment is composed of the armature cores 21, 2 2, the non-magnetic material 30, and the armature coil 4 wound around the armature cores 2 1, 2 2. Is done. Furthermore, the armature core 2 1 in which the armature coil 4 is wound in one direction of the mover 6 and the armature core 2 2 in which the armature coil 4 is wound in the other direction of the mover 6 are alternately arranged, A non-magnetic material 30 is disposed between the adjacent armature cores 2 1 and 2 2.
- the magnetic circuits of the armature cores 2 1 and 2 2 constituting the closed magnetic circuit can be made independent. This is effective in eliminating leakage magnetic flux between adjacent armature cores. Therefore, for the same reason as described in the first embodiment, it is possible to realize a linear motor that can detect a magnetic pole phase angle with high accuracy and does not have a magnetic pole phase angle sensor.
- the member having a permanent magnet is used as a mover, and the armature is fixed.
- the same effect as in the present embodiment can be obtained by using a member having a permanent magnet as a stator and an armature as a mover.
- the armature has the non-magnetic body 30.
- the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the body, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
- FIG. 14 is a diagram showing the configuration of the armature and the mover in the present embodiment.
- the configuration and control method other than the armature and the mover shown in FIG. 14 of the present embodiment are the same as those of the first embodiment.
- the armature in the present embodiment is composed of an armature core 20, a non-magnetic body 30, and an armature coil 4 wound around the armature core 20.
- One armature core 20 is wound around one armature core 20, and the armature core 20 is disposed in one direction of the mover 6.
- each armature core 20 is arranged with a nonmagnetic material 30 interposed therebetween.
- the magnetic circuit of the armature cores 20 constituting the closed magnetic circuit can be made independent, and the adjacent armatures This has the effect of eliminating leakage flux between cores. Therefore, for the same reason as described in the first embodiment, it is possible to realize a linear motor that does not have a magnetic pole phase angle sensor and can detect the magnetic pole phase angle with high accuracy.
- the member having the permanent magnet is the mover and the armature is the stator.
- the member having the permanent magnet is the stator and the armature is the same as the mover.
- the armature has the nonmagnetic body 30.
- the armature If the magnetic core is weaker than the core, the magnetic pole phase angle detection accuracy is inferior to that of the non-magnetic configuration. The accuracy can be increased.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Linear Motors (AREA)
- Control Of Linear Motors (AREA)
Abstract
Device of a linear motor is made compact and is reduced in cost. The linear motor is configured to have nonmagnetic bodies (30) provided between a plurality of armature cores (20) each having a magnetic pole tooth constituting a closed magnetic path, and comprises a means for detecting the self inductance of the armature of each phase of the linear motor, a conversion means for converting the detection value of inductance into the phase angle of magnetic pole of the linear motor, and a control means for driving the linear motor using the phase angle of magnetic pole obtained from the magnetic pole phase angle conversion means. A linear motorin which the phase angle of magnetic pole is estimated with high precision without using a magnetic pole phase angle sensor can be provided.
Description
明 細 書 Specification
リニアモータ及びその制御方法 技術分野 Linear motor and control method thereof Technical Field
本発明は、 リニアモー夕に関し、 特に直線駆動を行うリニアモータに 関する。 背景技術 The present invention relates to a linear motor, and more particularly to a linear motor that performs linear driving. Background art
リニアモー夕の駆動に際しては、 磁極位相角情報 (磁極位置情報) が 不可欠であり、 多くは磁極位相角センサの利用により磁極位相角の情報 を得ている。 しかしながら、 磁極位相角センサの取り付けスペースの制 約や低コスト化を目的に、 との磁極位相角センサを必要としない技術の 開発が行われている。 例えば、 日本出願の特開平 7— 1 7 7 7 8 8号公 報では、 回転型同期モータに対して各相間のィンダ.クタンスの相違を利 用してモータの電気角 (磁極位相角) を検出し、 回転子が停止している 状態であっても、 正しい磁極位相角を得る方法が開示されている。 Magnetic pole phase angle information (magnetic pole position information) is indispensable for driving linear motors, and in many cases, magnetic pole phase angle information is obtained using a magnetic pole phase angle sensor. However, a technology that does not require a magnetic pole phase angle sensor is being developed for the purpose of constraining the installation space of the magnetic pole phase angle sensor and reducing the cost. For example, in Japanese Laid-Open Patent Application No. 7-1 7 7 8 8 8 filed in Japan, the electrical angle (magnetic pole phase angle) of a motor is calculated by using the difference in the inductance and the inductance between phases for a rotary synchronous motor. A method for detecting and obtaining a correct magnetic pole phase angle even when the rotor is stopped is disclosed.
しかし、 上記の引例 1のような磁極位相角の推定方法は、 磁極位相角 センサを不要とするため、 装置のコンパク ト化及び低コス ト化を実現で きるが、 その反面、 磁極位相角センサと比べ磁極位置検出の分解能が劣 る。 そのため、 より高精度に磁極位相角を推定する方法が求められる。 発明の開示 However, the magnetic pole phase angle estimation method as in Reference 1 above does not require a magnetic pole phase angle sensor, so that the device can be made compact and low in cost. However, on the other hand, the magnetic pole phase angle sensor can be realized. The resolution of magnetic pole position detection is inferior. Therefore, a method for estimating the magnetic pole phase angle with higher accuracy is required. Disclosure of the invention
本発明の目的は、 磁極位相角センサを用いることなく、 高精度に磁極 位相角を推定する機能を有するリニアモ一タを提供することにある。 An object of the present invention is to provide a linear motor having a function of estimating a magnetic pole phase angle with high accuracy without using a magnetic pole phase angle sensor.
本発明のリニアモー夕は、 複数の電機子コアの間に、 電機子コアより
も磁性の弱い磁性体を配置する電機子相を有し、 前記電機子相の自己ィ ンダク夕ンス検出値から前記電機子相の磁極位相角を算出し、 前記磁極 位相角に応じてリ二ァモ一夕を駆動することを特徴とするものである。 In the linear motor according to the present invention, between the armature cores, the armature core Also has an armature phase in which a magnetic material having weak magnetism is arranged, and calculates the magnetic pole phase angle of the armature phase from the self-inductance detection value of the armature phase. It is characterized by driving the duck overnight.
また、 本発明のリニアモー夕は、 複数の電機子コアの間に、 非磁性体 を配置する電機子相を有し、 前記電機子相の自己ィンダクタンス検出値 から前記電機子相の磁極位相角を算出し、 前記磁極位相角に応じてリ二 ァモータを駆動することを特徴とするものである。 (ここで、本発明にお いて、 非磁性体とは完全に磁性を有さないものだけでなく、 若干の磁性 を有する弱磁性体も含むものとする。) Further, the linear motor of the present invention has an armature phase in which a non-magnetic material is disposed between a plurality of armature cores, and a magnetic pole phase angle of the armature phase from a self-inductance detection value of the armature phase. And the linear motor is driven in accordance with the magnetic pole phase angle. (Here, in the present invention, the non-magnetic material includes not only a material that does not have magnetism completely but also a weak magnetic material that has some magnetism.)
図面の簡単な説明 Brief Description of Drawings
第 1図は実施例 1におけるリニアモー夕制御装置の構成を示す全体図。 第 2図は実施例 1におけるリニアモータの構成を示す全体図。 FIG. 1 is an overall view showing the configuration of a linear motor control device according to the first embodiment. FIG. 2 is an overall view showing the configuration of the linear motor in the first embodiment.
第 3図は実施例 1におけるリニアモータの構成を示す詳細図。 FIG. 3 is a detailed view showing the configuration of the linear motor in the first embodiment.
第 4図は実施例 1 における電機子の製造方法を示す図。 FIG. 4 is a diagram showing a method for manufacturing an armature according to the first embodiment.
第 5図は実施例 1のリニアモータにおけるインダク夕ンス検出器の出 力を示す図。 FIG. 5 is a diagram showing the output of the inductance detector in the linear motor of the first embodiment.
第 6図は従来のリニアモータの一例を示す図。 FIG. 6 shows an example of a conventional linear motor.
第 7図は第 6図に示す従来のリニァモータにおけるインダク夕ンス検 出器の出力を示す図。 FIG. 7 is a diagram showing the output of the inductance detector in the conventional linear motor shown in FIG.
第 8図は実施例 1 におけるリニアモー夕の初期磁極位相角のずれ角 (負荷角) と発生推力との関係を示す図。 FIG. 8 is a graph showing the relationship between the deviation angle (load angle) of the initial magnetic pole phase angle of the linear motor in Example 1 and the generated thrust.
第 9図は実施例 2における電機子の構成を示す図。 FIG. 9 is a diagram showing the structure of the armature in the second embodiment.
第 1 0図は実施例 3における電機子の構成を示す図。 FIG. 10 is a diagram showing a configuration of an armature in the third embodiment.
第 1 1図は実施例 4における電機子の構成を示す図。 FIG. 11 is a diagram showing a configuration of an armature in the fourth embodiment.
第 1 2図は実施例 5における電機子の構成を示す図。
第 1 3図は実施例 6における電機子および可動子の構成を示す図。 第 1 4図は実施例 7における電機子および可動子の構成を示す図。 発明を実施するための最良の形態 FIG. 12 is a diagram showing the structure of the armature in the fifth embodiment. FIG. 13 is a diagram showing the configuration of the armature and the mover in the sixth embodiment. FIG. 14 is a diagram showing the configuration of the armature and the mover in the seventh embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例のリニアモータ制御方法について、 図面を参 照しながら説明する。 Hereinafter, a linear motor control method according to an embodiment of the present invention will be described with reference to the drawings.
[実施例 1 ] 第 1図は実施例 1におけるリニアモー夕制御装置の構成を 示す全体図である。 リニアモータ 1 0, インダクタンス検出器 1 1 , 可 動子位置検出器.1 2, 位置制御器 1 3, 速度制御器 1 4, 電流制御器 1 5, 速度変換器 1 6, 磁極位相角変換器 1 7は第 1図に示すように構 成される。 以下に、 それぞれの動作について説明する。 [Embodiment 1] FIG. 1 is an overall view showing a configuration of a linear motor control apparatus in Embodiment 1. FIG. Linear motor 1 0, Inductance detector 1 1, Movable position detector 1 2, Position controller 1 3, Speed controller 1 4, Current controller 1 5, Speed converter 1 6, Magnetic pole phase angle converter 17 is structured as shown in Fig. 1. Each operation is described below.
可動子位置検出器 1 .2はリニアモ一夕の可動子の位置を検出し、 この 検出した位置情報を位置制御器 1 3及び速度変換器 1 6に出力する。 こ こで可動子位置検出器 1 2.の検出する位置情報は磁極位相角の情報とは 異なり、 リニアスケールを読み取ることなどにより検出される可動子の 位置情報である。 位置制御器 1 3は、 位置指令と可動子位置検出器 1 2 からの位置情報を受け取り、 速度指令を出力する。 速度変換器 1 6は位 置検出器 1 2の検出する位置情報を速度情報に変換し、 この速度情報を 速度制御器 1 4に出力する。 速度制御器 1 4は、 位置制御器 1 3の出力 する速度指令及び速度変換器 1 6の出力する速度情報を受け取り、 電流 制御器 1 5へ電流指令を出力する。 The mover position detector 1.2 detects the position of the mover of the linear motor and outputs the detected position information to the position controller 13 and the speed converter 16. Here, the position information detected by the mover position detector 12 is different from the magnetic pole phase angle information, but is the position information of the mover detected by reading the linear scale. The position controller 13 receives the position command and the position information from the mover position detector 12 and outputs a speed command. The speed converter 16 converts the position information detected by the position detector 12 into speed information and outputs this speed information to the speed controller 14. The speed controller 14 receives the speed command output from the position controller 13 and the speed information output from the speed converter 16, and outputs the current command to the current controller 15.
次に、 インダク夕ンス検出器 1 1は電機子相の自己インダク夕ンスを 検出し、 この検出したインダクタンス情報を磁極位相角変換器 1 7に出 力する。 磁極位相角変換器 1 7はインダクタンス検出器から受け取った インダクタンス情報を磁極位相角情報に変換し、 電流制御器 1 5へこの
磁極位相角情報を出力する。 電流制御器 1 5は、 速度制御器 1 4の出力 する電流指令及び磁極位相角変換器 1 7の出力する磁極位相角情報を受 け取り、 リニアモー夕 1 0に流す電流を制御する。 このような構成によ り、 磁極位相角センサを用いることなく、 可動子の磁極位相角の情報を 得ることが可能となる。 Next, the inductance detector 11 detects the self-inductance of the armature phase and outputs the detected inductance information to the magnetic pole phase angle converter 17. The magnetic pole phase angle converter 1 7 converts the inductance information received from the inductance detector into the magnetic pole phase angle information and sends it to the current controller 15. Outputs magnetic pole phase angle information. The current controller 15 receives the current command output from the speed controller 14 and the magnetic pole phase angle information output from the magnetic pole phase angle converter 17, and controls the current that flows to the linear motor 10. With such a configuration, it is possible to obtain information on the magnetic pole phase angle of the mover without using a magnetic pole phase angle sensor.
次に、 リニアモータの構成について説明する。 第 2図は本実施例にお けるリニアモータの構成を示す全体図である。 第 2図に示すように、 本 実施例のリニアモー夕は永久磁石 7を複数個並べた可動子 6と、 各電機 子相に電機子コイル 4が巻回された電機子 2 とにより構成される。また、 隣り合う電機子相の磁極ピツチは( k · P + P Z M ) { ( k = 0 , 1 , 2 · · · ) , ( M = 2 , 3, 4 · · · ) } となるように、 各電機子相はモータの可動方 向に直列に配置される。 ここで、 kは任意の整数、 Mは電機子の相数と する。 本実施例では前記電機子 2は U相 · V相 · W相の 3つの電機子相 により構成される。 Next, the configuration of the linear motor will be described. FIG. 2 is an overall view showing the configuration of the linear motor in this embodiment. As shown in FIG. 2, the linear motor of this embodiment is composed of a mover 6 in which a plurality of permanent magnets 7 are arranged, and an armature 2 in which an armature coil 4 is wound around each armature phase. . Also, the magnetic pole pitch of the adjacent armature phases is (k · P + PZM) {(k = 0, 1, 2 · · ·), (M = 2, 3, 4 · · ·)} Each armature phase is arranged in series in the moving direction of the motor. Here, k is an arbitrary integer, and M is the number of phases of the armature. In this embodiment, the armature 2 is composed of three armature phases: U phase, V phase, and W phase.
第 3図は本実施例におけるリニアモータの構成を示す詳細図である。 第 3図に示すように、 電機子は電機子コイル 4と、 永久磁石 7 と該永久 磁石の表裏両面に対向した構造で閉磁路を構成する複数の磁極歯から構 成される。 磁極歯 2 0 1 と磁極歯 2 0 2は互いに一定のギヤップを介し て配置され、 磁極歯 2 0 1は電機子の一方から可動子の上部に位置する ように、 電機子 2 0 2は電機子の他方から可動子の下部に位置するよう に配置される。 さらに、 磁極歯 2 0 3 と磁極歯 2 0 4は互いに一定のギ ヤップを介して配置され、 磁極歯 2 0 3は電機子の他方から可動子の上 部に位置するように、 磁極歯 2 0 4は電機子の一方から可動子の下部に 位置するように配置される。 FIG. 3 is a detailed view showing the configuration of the linear motor in this embodiment. As shown in FIG. 3, the armature is composed of an armature coil 4, a permanent magnet 7, and a plurality of magnetic pole teeth that constitute a closed magnetic circuit with a structure facing both the front and back surfaces of the permanent magnet. The armature 2 0 2 and the magnetic pole tooth 2 0 2 are arranged with a certain gap between them, and the armature 2 0 2 It is arranged so that it is located below the mover from the other side of the child. Further, the magnetic pole teeth 2 0 3 and the magnetic pole teeth 2 0 4 are arranged through a fixed gap, and the magnetic pole teeth 2 0 3 are positioned on the upper part of the mover from the other armature. 04 is arranged so as to be located from one end of the armature to the lower part of the mover.
このように各磁極歯を配置することで、 磁極歯 2 0 1 と磁極歯 2 0 2
を備えて閉磁路を構成する第一の対向部と、磁極歯 2 0 3 と磁極歯 2 0 4 を備えて閉磁路を構成する第二の対向部とが隣り合い、 かつ逆向きの磁 束を構成することができるため、 少ない電機子コイルでリニアモータを 製造することで、 製造工程の簡略化と製造コストの低減を実現すること ができる。 By arranging the magnetic pole teeth in this way, the magnetic pole teeth 2 0 1 and the magnetic pole teeth 2 0 2 And a first opposing portion constituting a closed magnetic path and a second opposing portion constituting a closed magnetic path provided with magnetic pole teeth 20 3 and 2 4 are adjacent to each other and in opposite directions. Therefore, it is possible to simplify the manufacturing process and reduce the manufacturing cost by manufacturing a linear motor with a small number of armature coils.
さらに、 対向部を有する複数の電機子コア 2 0は非磁性体 3 0を挟ん で配置される。 このように非磁性体 3 0を各電機子コア 2 0の間に備え ることで、 閉磁路を構成する電機子コア 2 0の磁気回路を独立させるこ とができ、 隣り合う電機子コア同士の漏れ磁束を省く効果がある。 Further, the plurality of armature cores 20 having the facing portions are arranged with the nonmagnetic material 30 interposed therebetween. By providing the non-magnetic material 30 between the armature cores 20 in this way, the magnetic circuit of the armature cores 20 constituting the closed magnetic circuit can be made independent. This has the effect of eliminating the leakage flux.
第 4図は本実施例における電機子の製造方法を示す図である。 第 4図 に示すように、 電機子は対向部を有する複数の電機子コア 2 0 と複数の 非磁性体 3 0によって構成される。 電機子コア 2 0は隣り合う磁極歯の 向きが互い違いとなるように配列され、 さらに、 各電機子コア 2 0の間 には非磁性体 3 0が配置される。 上述のように配置された複数の電機子 コア 2 0および非磁性体' 3 0は、 一体的に固定され、 共通の電機子コィ ルが巻かれる。 FIG. 4 is a diagram showing a method for manufacturing an armature in the present embodiment. As shown in FIG. 4, the armature is composed of a plurality of armature cores 20 having opposing portions and a plurality of nonmagnetic bodies 30. The armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and a nonmagnetic material 30 is arranged between the armature cores 20. The plurality of armature cores 20 and the nonmagnetic body 30 arranged as described above are fixed integrally and wound with a common armature coil.
第 5図は本実施例のリニァモータにおけるインダクタンス検出器 1 1 の出力を示す図である。 第 5図の縦軸は各電機子相の自己ィンダクタン スを示し、 横軸は磁極位相角を示す。 本実施例では電機子相は 3相であ るため、 第 5図から分かるように V相 · υ相 · W相の各相の自己ィンダ クタンス信号は位相差が 6 0度の正弦波状の信号となり、 相 · U相 · W相の各自己インダクタンスの振幅はおよそ 4 0 [ m H〕 である。 FIG. 5 is a diagram showing the output of the inductance detector 1 1 in the linear motor of this embodiment. The vertical axis in Fig. 5 represents the self-inductance of each armature phase, and the horizontal axis represents the magnetic pole phase angle. In this example, there are three armature phases. As can be seen from Fig. 5, the self-inductance signals of the V, υ, and W phases are sinusoidal signals with a phase difference of 60 degrees. Thus, the amplitude of each phase, U phase, and W phase self-inductance is about 40 [mH].
ここで、 磁極位相角変換器 1 7の詳細な動作について第 5図を用いて 説明する。磁極位相角変換器 1 7には第 5図の自己インダクタンス L u, L v , L wの正弦波信号が入力され、 リニアモータの磁極位相角を算出
する。 この磁極位相角変換器 1 7の動作は、 例えば L u , L v, L wの インダクタンス信号のアナログ値をマイコンの A Z D変換器で取り込み、 マイコン内で逆三角関数演算等を用いて求める。 Here, the detailed operation of the magnetic pole phase angle converter 17 will be described with reference to FIG. The sine wave signals of self-inductances L u, L v, L w shown in Fig. 5 are input to the magnetic pole phase angle converter 17 to calculate the magnetic pole phase angle of the linear motor To do. The operation of this magnetic pole phase angle converter 17 is obtained, for example, by taking the analog values of the inductance signals of L u, L v and L w with the AZD converter of the microcomputer, and using the inverse trigonometric function calculation in the microcomputer.
逆 Ξ角関数演算は、 L u , L V , L wのインダクタンス信号のいずれ かで演算してもよいが、 L u , L V , L wのうち、 2つ以上の信号を用 いた方がよい。 即ち、 1つのインダクタンス信号を用いて磁極位相角に 変換した場合、 第 5図からも分かるように、 4つの磁極位相角候補値が 見つかる。 さらに、 もう 1つのインダクタンス信号を用いれば、 2つの 磁極位相角候補値に絞る事ができる。 その 2つの磁極位相角候補値は、 0 と 0 + 1 8 0度という関係となる。 The inverse depression function calculation may be performed using any of the inductance signals of L u, L V, and L w, but it is better to use two or more signals of L u, L V, and L w. In other words, when converting to a magnetic pole phase angle using one inductance signal, as can be seen from FIG. 5, four magnetic pole phase angle candidate values are found. Furthermore, if another inductance signal is used, it is possible to narrow down to two magnetic pole phase angle candidate values. The two magnetic pole phase angle candidate values have a relationship of 0 and 0 + 1 80 degrees.
前記ィンダクタンス検出値から推定した磁極位相角 0を用いて、 電流 制御器 1 5に微小電流を与える。 このとき、 位置検出器 1 2が数パルス 変化した事を確認し、 指令電流を 0にしてリニアモー夕を止める。 Using the magnetic pole phase angle 0 estimated from the detected inductance value, a minute current is given to the current controller 15. At this time, confirm that the position detector 12 has changed several pulses, set the command current to 0 and stop the linear motor.
リニアモータの場合、 モ一夕の発生する推力は、 Θが 0度と 1 8 0度 では推力が逆方向となり、 リニアモータの力は逆向きになる。 前記イン ダクタンス検出値から推定した磁極位相角 0を用いて、 電流制御器 1 5 に微小電流を与えたとき、 リニァモータの動いた方向から Θまたは Θ + 1 8 0度を決定する。 このような方法で演算を行うことにより一つの磁 極位相角を算出することが可能である。 本実施例では、 U相 · V相 · W 相の 3つの電機子相により構成されるリニアモー夕について説明したが、 電機子相の数が 3つ以上であれば、 上述と同様の方法を用いてィンダク タンス検出値から磁極位相角を算出することが可能である。 In the case of a linear motor, the thrust generated by the motor is reversed at Θ of 0 and 1800 degrees, and the force of the linear motor is reversed. Using a magnetic pole phase angle 0 estimated from the detected inductance value, when a small current is applied to the current controller 15, Θ or Θ + 180 degrees is determined from the direction in which the linear motor has moved. It is possible to calculate one magnetic pole phase angle by performing calculations in this way. In this embodiment, a linear motor composed of three armature phases of U phase, V phase, and W phase has been described. However, if the number of armature phases is three or more, the same method as described above is used. Thus, the magnetic pole phase angle can be calculated from the detected inductance value.
第 6図は従来のリニアモータの一例を示す図である。 第 6図に示すよ うに電機子コイルは各電機子歯に巻かれ、 永久磁石を有する可動子と電 機子とは支持機構により一定のギヤップを支持されながら相対的に移動
する。 FIG. 6 shows an example of a conventional linear motor. As shown in Fig. 6, the armature coil is wound around each armature tooth, and the mover having a permanent magnet and the armature move relatively while being supported by a support mechanism with a certain gap. To do.
第 7図は、 第 6図に示す従来のリニアモータにおけるィンダク夕ンス 検出器の出力を示す図である。 第 7図の縦軸は各電機子相の自己ィンダ クタンスを示し、 横軸は磁極位相角を示す。 第 7図から分かるように V 相 · U相 · W相の各相の自己ィンダクタンス信号は位相差が 6 0度の正 弦波状の信号となり、 V相 · U相 · W相の各自己インダク夕ンスの振幅 はおよそ 2 . 5 [ m H ] である。 FIG. 7 is a diagram showing the output of the inductance detector in the conventional linear motor shown in FIG. The vertical axis in Fig. 7 represents the self-inductance of each armature phase, and the horizontal axis represents the magnetic pole phase angle. As can be seen from Fig. 7, the self-inductance signal of each phase of V phase, U phase and W phase becomes a sine wave signal with a phase difference of 60 degrees, and each self-inductance of V phase, U phase and W phase The amplitude of the evening is approximately 2.5 [m H].
従来のリニァモータにおける自己インダクタンスの振幅が、 本実施例 のリニアモータにおける自己インダクタンスよりも振幅よりも小さい要 因は、 本実施例のリニアモー夕が非磁性体 3 0を各電機子コア 2 0の間 に備え、 閉磁路を構成する電機子コア 2 0間の磁気回路を独立させるこ とができ、 隣り合う電機子コア同士の漏れ磁束を省く構成となっている ため、 電機子コア 2 0 と永久磁石 3 0の相対位置に対する自己ィンダク タンスの差が大きく現れるからである。 The reason why the amplitude of the self-inductance in the conventional linear motor is smaller than the amplitude of the self-inductance in the linear motor of this embodiment is that the linear motor in this embodiment places the non-magnetic material 30 between the armature cores 20. Therefore, the magnetic circuit between the armature cores 20 constituting the closed magnetic circuit can be made independent, and the leakage flux between the adjacent armature cores is omitted. This is because a large difference in self-inductance with respect to the relative position of the magnet 30 appears.
第 8図は本実施例のリニァモータにおける初期磁極位相角のずれ角 (負荷角) と発生推力との関係を示す図である。 第 8図から分かるよう に、 初期磁極位相角を正確に検出することで、 発生推力を向上させるこ とができ、 リニアモータの高性能化を図ることができる。 そのため、 本 発明のように初期磁極位相角の推定を行う際には、 高精度な推定方法が 求められる。 FIG. 8 is a graph showing the relationship between the deviation angle (load angle) of the initial magnetic pole phase angle and the generated thrust in the linear motor of this embodiment. As can be seen from Fig. 8, by accurately detecting the initial magnetic pole phase angle, the thrust generated can be improved and the performance of the linear motor can be improved. Therefore, a highly accurate estimation method is required when estimating the initial magnetic pole phase angle as in the present invention.
ここで、 自己インダクタンスの検出誤差が 1 [ m H ] 生じた際の、 本 実施例と従来のリ二ァモ一夕における磁極位相角の検出誤差について、 第 5図および第 7図を用いて比較を行う。 本実施例のリニアモータにお いて自己インダクタンスの検出誤差が 1 [ m H ] 生じた際の磁極位相角 の誤差は、 第 5図に示すように約 1 0 [° ]となる。 これに対し、 従来の
リニアモータにおいて自己インダクタンスの検出誤差が 1 [ m H ] 生じ た際の磁極位相角の誤差は、 第 7図に示すように約 3 5 [° 〗となる。 Here, when the detection error of the self-inductance is 1 [m H], the detection error of the magnetic pole phase angle in the present embodiment and the conventional linear motor will be described with reference to FIGS. Make a comparison. In the linear motor of this embodiment, when the self-inductance detection error is 1 [m H], the error of the magnetic pole phase angle is about 10 [°] as shown in FIG. In contrast, the conventional As shown in Fig. 7, the error of the magnetic pole phase angle when the self-inductance detection error of 1 [m H] occurs in the linear motor is approximately 35 [°〗.
このように、 本実施例の隣り合う電機子コア 2 0間の漏れ磁束を省く 構成により、 第 5図に示す本実施例のリニアモータにおける自己ィンダ ク夕ンスの振幅は、 第 6図に示す従来のリニァモータにおける自己イン ダクタンスの振幅よりも大きな値となるため、 自己インダクタンスの検 出に誤差が生じた際の磁極位相角の誤差は相対的に小さな値となる。 よ つて磁極位相角の検出分解能が向上し、 高精度に磁極位相角を検出する ことが可能とな ¾。 In this way, the amplitude of the self-inductance of the linear motor of this embodiment shown in FIG. 5 is shown in FIG. Since the amplitude of the self-inductance in the conventional linear motor is larger, the error of the magnetic pole phase angle when the error occurs in the detection of the self-inductance is a relatively small value. Therefore, the magnetic pole phase angle detection resolution is improved, and the magnetic pole phase angle can be detected with high accuracy.
つまり、 本実施例により、 磁極位相角センサを有さずに、 高精度に磁 極位相角を推定するリニアモータを提供することが可能となる。 That is, according to the present embodiment, it is possible to provide a linear motor that estimates a magnetic pole phase angle with high accuracy without having a magnetic pole phase angle sensor.
なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機 子コア 2 0よりも磁性の弱い磁性体を備える構成とすると、 非磁性体を 備える構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従 来のリニアモ一夕よりも磁束の漏れを省くため、 磁極位相角の検出精度 を高くすることが可能である。 In this embodiment, the member having the permanent magnet is the mover and the armature is the stator. However, the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect. Further, in this embodiment, the armature has the non-magnetic body 30. However, instead of the non-magnetic body 30 of the present embodiment, a structure having a magnetic body that is weaker than the armature core 20 is used. Although the detection accuracy of the magnetic pole phase angle is inferior to the configuration with a non-magnetic material, the leakage accuracy of the magnetic pole phase angle can be increased because the leakage of magnetic flux is eliminated compared to the conventional linear motor shown in Fig. 6. It is.
[実施例 2 ] 本実施例では、 実施例 1 とは異なる他の実施例について説 明する。第 9図は本実施例における電機子の構成を示す図である。なお、 本実施例の第 9図に示す電機子以外の構成及び制御方法は、 実施例 1 と 同様であるものとする。 [Example 2] In this example, another example different from Example 1 will be described. FIG. 9 is a diagram showing the structure of the armature in the present embodiment. The configuration and control method other than the armature shown in FIG. 9 of this embodiment are the same as those in the first embodiment.
第 9図に示すように、 本実施例における電機子は電機子コア 2 0と非 磁性体 3 0により構成される。 さらに、 電機子コア 2 0は隣り合う磁極
歯の向きが互い違いとなるように配列され、 各電機子コア 2 0の間と電 機子相の両端とには非磁性体 3 0が配置される。 つまり、 本実施例は実 施例 1の電機子の両端部に非磁性体 3 0を配置した構成である。 As shown in FIG. 9, the armature in this embodiment is composed of an armature core 20 and a non-magnetic material 30. Furthermore, the armature core 20 is adjacent to the magnetic pole Teeth are arranged so that their directions are staggered, and nonmagnetic bodies 30 are arranged between the armature cores 20 and at both ends of the armature phase. In other words, the present embodiment has a configuration in which the nonmagnetic material 30 is disposed at both ends of the armature of the first embodiment.
本実施例のような電機子の構成により、 例えば、 複数の電機子相が直 列に配置される時などに、 隣り合う電機子相の電機子コア 2 0同士の漏 れ磁束を省く ことが可能となる。 そのため、 実施例 1よりも漏れ磁束を 少なくすることが可能となり、 実施例 1で述べた理由と同様の理由で、 実施例 1よりも高精度に磁極位相角を検出することが可能な、 磁極位相 角センサを有さないリニァモータを実現することができる。 なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と伺様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機 子コア 2 0よりも磁性の弱い磁性体を備える構成とすると、 非磁性体を 備える構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従 来のリニアモ一夕よりも磁極位相角の検出精度を高くすることが可能で ある。 With the configuration of the armature as in the present embodiment, for example, when a plurality of armature phases are arranged in series, the leakage magnetic flux between the armature cores 20 of adjacent armature phases can be omitted. It becomes possible. For this reason, it is possible to reduce the leakage magnetic flux as compared with the first embodiment, and for the same reason as described in the first embodiment, the magnetic pole phase angle can be detected with higher accuracy than the first embodiment. A linear motor without a phase angle sensor can be realized. In this embodiment, the member having the permanent magnet is the mover and the armature is the stator, but the member having the permanent magnet is the stator and the armature is the mover. The effect of. Further, in this embodiment, the armature has the non-magnetic body 30. However, instead of the non-magnetic body 30 of the present embodiment, a structure having a magnetic body that is weaker than the armature core 20 is used. Although the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the non-magnetic material, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
[実施例 3 ] 本実施例では、 他の実施例について説明する。 第 1 0図は 本実施例における電機子の構成を示す図である。 なお、 本実施例の第 1 0図に示す電機子以外の構成及び制御方法は、 実施例 1 と同様である ものとする。 [Example 3] In this example, other examples will be described. FIG. 10 is a diagram showing the structure of the armature in the present embodiment. The configuration and control method other than the armature shown in FIG. 10 of this embodiment are the same as those of the first embodiment.
第 1 0図に示すように、 本実施例における電機子は電機子コア 2 0 と 非磁性体 3 0により構成される。 さらに、 電機子コア 2 0は隣り合う磁 極歯の向きが互い違いとなるように配列され、 各電機子コア 2 0の間に は各電機子コア 2 0の配列方向の側面を覆う非磁性体 3 0が配置される。
0 As shown in FIG. 10, the armature in this embodiment is composed of an armature core 20 and a nonmagnetic material 30. Furthermore, the armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and a non-magnetic material that covers the side surfaces of the armature cores 20 in the arrangement direction between the armature cores 20. 30 is placed. 0
実施例 1の非磁性体 3 0は隣り合う電機子コアの電機子歯の部分を遮つ ていないが、 本実施例の非磁性体 3 0は隣り合う電機子コアの電機子歯 の部分についても遮るような構成となっている。 The non-magnetic body 30 of Example 1 does not block the armature tooth portion of the adjacent armature core, but the non-magnetic body 30 of this embodiment is about the armature tooth portion of the adjacent armature core. It has a structure that also blocks.
本実施例のような電機子の構成により、 隣り合う電機子コアの電機子 歯の間で漏れる磁束を省く ことができる。 そのため、 実施例 1よりも磁 束の漏れを少なくすることができ、 実施例 1で述べた理由と同様の理由 により、 実施例 1よりも高精度に磁極位相角を検出することが可能な、 磁極位相角センサを有さないリニァモータを実現することができる。 With the configuration of the armature as in this embodiment, the magnetic flux leaking between the armature teeth of adjacent armature cores can be omitted. Therefore, the leakage of magnetic flux can be reduced as compared with the first embodiment, and the magnetic pole phase angle can be detected with higher accuracy than the first embodiment for the same reason as described in the first embodiment. A linear motor having no magnetic pole phase angle sensor can be realized.
なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機 子コア 2 0よりも磁性の弱い磁性体を備える構成とすると、 非磁性体を 備える構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従 来のリニアモータよりも磁極位相角の検出精度を高くすることが可能で ある。 In this embodiment, the member having the permanent magnet is the mover and the armature is the stator. However, the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect. Further, in this embodiment, the armature has the non-magnetic body 30. However, instead of the non-magnetic body 30 of the present embodiment, a structure having a magnetic body that is weaker than the armature core 20 is used. Although the detection accuracy of the magnetic pole phase angle is inferior to the configuration provided with the nonmagnetic material, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
[実施例 4 ] 本実施例では、 他の実施例について説明する。 第 1 1図は 本実施例における電機子の構成を示す図である。 なお、 本実施例の第 1 1図に示す電機子以外の構成及び制御方法は、 実施例 1 と同様である ものとする。 [Example 4] In this example, other examples will be described. FIG. 11 is a diagram showing the structure of the armature in the present embodiment. The configuration and control method other than the armature shown in FIG. 11 of this embodiment are the same as those of the first embodiment.
第 1 1図に示すように、 本実施例における電機子は電機子コア 2 0 と 非磁性体 3 0により構成される。 さらに、 電機子コア 2 0は隣り合う磁 極歯の向きが互い違いとなるように配列され、 各電機子コア 2 0の間と 電機子相の両端とには各電機子コア 2 0の配列方向の側面を覆う非磁性 体 3 0が配置される。 実施例 1の非磁性体 3 0は隣り合う電機子コアの
電機子歯の部分を遮っていないが、 本実施例の非磁性体 3 0は隣り合う 電機子コアの電機子歯の部分についても遮るような構成となっている。 本実施例のような電機子の構成により、 例えば、 複数の電機子相が直 列に配置される時などに、 隣り合う電機子相の電機子コア 2 0同士の漏 れ磁束を省く ことが可能となり、 さらに、 隣り合う電機子コアの電機子 歯の間で漏れる磁束を省くことができる。 そのため、 実施例 1よりも漏 れ磁束を少なくすることが可能となり、 実施例 1で述べた理由と同様の 理由で、 実施例 1 よりも高精度に磁極位相角を検出することが可能な、 磁極位相角センサを有さないリニアモー夕を実現することができる。 なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機 子コア 2 0よりも磁性の弱い磁性体を備える構成とすると、 非磁性体を 備える構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従 来のリニアモー夕よりも磁極位相角の検出精度を高くすることが可能で ある。 As shown in FIG. 11, the armature in this embodiment is composed of an armature core 20 and a nonmagnetic material 30. Furthermore, the armature cores 20 are arranged so that the directions of adjacent magnetic pole teeth are staggered, and the arrangement direction of the armature cores 20 is between the armature cores 20 and between both ends of the armature phase. A non-magnetic material 30 is disposed to cover the side surface. The non-magnetic material 30 of Example 1 is an adjacent armature core. Although the armature tooth portion is not blocked, the nonmagnetic body 30 of the present embodiment is configured to block the armature tooth portion of the adjacent armature core. With the configuration of the armature as in the present embodiment, for example, when a plurality of armature phases are arranged in series, the leakage magnetic flux between the armature cores 20 of adjacent armature phases can be omitted. In addition, magnetic flux leaking between armature teeth of adjacent armature cores can be eliminated. Therefore, it is possible to reduce the leakage magnetic flux compared to the first embodiment, and for the same reason as described in the first embodiment, it is possible to detect the magnetic pole phase angle with higher accuracy than the first embodiment. A linear motor without a magnetic phase angle sensor can be realized. In this embodiment, the member having the permanent magnet is the mover and the armature is the stator. However, the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect. Further, in this embodiment, the armature has the non-magnetic body 30. However, instead of the non-magnetic body 30 of the present embodiment, a structure having a magnetic body that is weaker than the armature core 20 is used. Although the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the non-magnetic material, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
[実施例 5 ] 本実施例では、 他の実施例について説明する。 第 1 2図は 本実施例における電機子の構成を示す図である。 なお、 本実施例の第 1 2図に示す電機子以外の構成及び制御方法は、 実施例 1 と同様である ものとする。 [Example 5] In this example, other examples will be described. FIG. 12 is a diagram showing the structure of the armature in the present embodiment. The configuration and control method other than the armature shown in FIG. 12 of the present embodiment are the same as those of the first embodiment.
第 1 2図に示すように、 本実施例における電機子は複数の電機子コア 2 0により構成される。 さらに、 各電機子コア 2 0は隣り合う磁極歯の 向きが互い違いとなるように配列される。 As shown in FIG. 12, the armature in this embodiment is composed of a plurality of armature cores 20. Further, each armature core 20 is arranged so that the directions of adjacent magnetic pole teeth are staggered.
本実施例のような電機子の構成により、 各電機子コア 2 0の対向する
2 Due to the configuration of the armature as in this embodiment, the armature cores 20 face each other. 2
電機子間に閉磁路を構成する。 そのため、 第 6図に示すような従来のリ ニァモー夕と比較し、 磁束の漏れが少ない。 よって、 実施例 1で述べた 理由と同様の理由で、 第 6図に示す従来のリニアモータと比較して高精 度に磁極位相角を検出することが可能な、 磁極位相角センサを有さない リニアモータを実現することができる。 A closed magnetic circuit is formed between the armatures. Therefore, there is less magnetic flux leakage compared to the conventional linear motor as shown in Fig. 6. Therefore, for the same reason as described in Example 1, it has a magnetic pole phase angle sensor that can detect the magnetic pole phase angle with higher accuracy than the conventional linear motor shown in FIG. No linear motor can be realized.
なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 In this embodiment, the member having the permanent magnet is the mover and the armature is the stator. However, the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect.
[実施例 6 ] 本.実施例では、 他の実施例について説明する。 第 1 3図は 本実施例における電機子および可動子の構成を示す図である。 なお、 本 実施例の第 1 3図に示す電機子及び可動子以外の構成及び制御方法は実 施例 1 と同様であるものとする。 [Embodiment 6] In this embodiment, another embodiment will be described. FIG. 13 is a diagram showing the configuration of the armature and the mover in the present embodiment. The configuration and control method other than the armature and the mover shown in FIG. 13 of the present embodiment are the same as those of the first embodiment.
第 1 3図に示すように、 本実施例における電機子は電機子コア 2 1, 2 2と非磁性体 3 0および電機子コア 2 1 , 2 2に巻かれた電機子コィ ル 4により構成される。 さらに、 可動子 6の一方方向に電機子コイル 4 が巻かれる電機子コア 2 1 と、 可動子 6の他方方向に電機子コイル 4が 巻かれる電機子コア 2 2 とを、交互に配列し、隣り合う電機子コア 2 1 , 2 2の間には非磁性体 3 0が配置される。 As shown in FIG. 13, the armature in this embodiment is composed of the armature cores 21, 2 2, the non-magnetic material 30, and the armature coil 4 wound around the armature cores 2 1, 2 2. Is done. Furthermore, the armature core 2 1 in which the armature coil 4 is wound in one direction of the mover 6 and the armature core 2 2 in which the armature coil 4 is wound in the other direction of the mover 6 are alternately arranged, A non-magnetic material 30 is disposed between the adjacent armature cores 2 1 and 2 2.
本実施例のように非磁性体 3 0を各電機子コア 2 1 , 2 2の間に備え ることで、 閉磁路を構成する電機子コア 2 1 , 2 2の磁気回路を独立さ せることができ、隣り合う電機子コア同士の漏れ磁束を省く効果がある。 そのため、 実施例 1で述べた理由と同様の理由で、 高精度に磁極位相角 を検出することが可能な、 磁極位相角センサを有さないリニアモー夕を 実現することができる。 By providing the non-magnetic material 30 between the armature cores 2 1 and 2 2 as in this embodiment, the magnetic circuits of the armature cores 2 1 and 2 2 constituting the closed magnetic circuit can be made independent. This is effective in eliminating leakage magnetic flux between adjacent armature cores. Therefore, for the same reason as described in the first embodiment, it is possible to realize a linear motor that can detect a magnetic pole phase angle with high accuracy and does not have a magnetic pole phase angle sensor.
なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固
3 In this embodiment, the member having a permanent magnet is used as a mover, and the armature is fixed. Three
定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機 子コアよりも磁性の弱い磁性体を備える構成とすると、 非磁性体を備え る構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従来の リニアモ一夕よりも磁極位相角の検出精度を高くすることが可能である。 Although the stator is used, the same effect as in the present embodiment can be obtained by using a member having a permanent magnet as a stator and an armature as a mover. In this embodiment, the armature has the non-magnetic body 30. However, if the armature has a magnetic body weaker than the armature core instead of the non-magnetic body 30 of the present embodiment, the non-magnetic body 30 Although the detection accuracy of the magnetic pole phase angle is inferior to that of the configuration including the body, the detection accuracy of the magnetic pole phase angle can be made higher than that of the conventional linear motor shown in FIG.
[実施例 7 ] 本実施例では、 他の実施例について説明する。 第 1 4図は 本実施例における電機子および可動子の構成を示す図である。 なお、 本 実施例の第 1 4図に示す電機子および可動子以外の構成および制御方法 は実施例 1 と同様であるものとする。 [Example 7] In this example, other examples will be described. FIG. 14 is a diagram showing the configuration of the armature and the mover in the present embodiment. The configuration and control method other than the armature and the mover shown in FIG. 14 of the present embodiment are the same as those of the first embodiment.
第 1 4図に示すように、 本実施例における電機子は電機子コア 2 0と 非磁性体 3 0と電機子コア 2 0に巻かれる電機子コイル 4により構成さ れる。 一つの電機子コア 2 0には一つの前記電機子コア 2 0が巻かれ、 さらに、 電機子コア 2 0は可動子 6の一方方向に配置される。 また、 各 電機子コア 2 0は非磁性体 3 0を挟んで配列される。 As shown in FIG. 14, the armature in the present embodiment is composed of an armature core 20, a non-magnetic body 30, and an armature coil 4 wound around the armature core 20. One armature core 20 is wound around one armature core 20, and the armature core 20 is disposed in one direction of the mover 6. In addition, each armature core 20 is arranged with a nonmagnetic material 30 interposed therebetween.
本実施例のように非磁性体 3 0を各電機子コア 2 0の間に備えること で、 閉磁路を構成する電機子コア 2 0の磁気回路を独立させることがで き、 隣り合う電機子コア同士の漏れ磁束を省く効果がある。 そのため、 実施例 1で述べた理由と同様の理由で、 高精度に磁極位相角を検出する ことが可能な、 磁極位相角センサを有さないリニアモータを実現するこ とができる。 By providing the non-magnetic material 30 between the armature cores 20 as in this embodiment, the magnetic circuit of the armature cores 20 constituting the closed magnetic circuit can be made independent, and the adjacent armatures This has the effect of eliminating leakage flux between cores. Therefore, for the same reason as described in the first embodiment, it is possible to realize a linear motor that does not have a magnetic pole phase angle sensor and can detect the magnetic pole phase angle with high accuracy.
なお、 本実施例では永久磁石を有する部材を可動子とし、 電機子を固 定子としたが、 永久磁石を有する部材を固定子とし、 電機子を可動子と しても本実施例と同様の効果を奏する。 また、 本実施例では電機子に非 磁性体 3 0を有するとしたが、 本実施例の非磁性体 3 0の代わりに電機
子コアよりも磁性の弱い磁性体を備える構成とすると、 非磁性体を備え る構成よりも磁極位相角の検出精度が劣るものの、 第 6図に示す従来の リニアモー夕よりも磁極位相角の検出精度を高くすることが可能である。 産業上の利用可能性 In this embodiment, the member having the permanent magnet is the mover and the armature is the stator. However, the member having the permanent magnet is the stator and the armature is the same as the mover. There is an effect. In this embodiment, the armature has the nonmagnetic body 30. However, instead of the nonmagnetic body 30 of the present embodiment, the armature If the magnetic core is weaker than the core, the magnetic pole phase angle detection accuracy is inferior to that of the non-magnetic configuration. The accuracy can be increased. Industrial applicability
従来のリニアモータはホール I Cなどの磁極位相角の検出手段を用い てシステム構成を行っているが、 本発明は自己ィンダク夕ンスの位相差 を明確に検出することで部品点数を少なく したシステム構成が可能であ り、 特に簡易サーポシステムに有効である。
Conventional linear motors have a system configuration using magnetic pole phase angle detection means such as Hall ICs, but the present invention clearly detects the phase difference of the self-inductance and reduces the number of components. This is particularly effective for simple service systems.
Claims
1 .進行方向に沿って配置された複数の永久磁石を備える一次側部材と、 前記永久磁石の表裏両面に対向した磁極歯を有する電機子コアを複数備 える二次側部材と、を有するリニアモータにおいて、前記二次側部材は、 電機子コイルの巻かれた複数の前記電機子コアと、 前記電機子コアより も磁性の弱い磁性体を前記電機子コアの間に配置された複数の電機子相 とを備え、 前記電機子相の自己ィンダクタンスを検出するインダクタン ス検出部と、 前記インダク夕ンス検出部の検出した自己インダクタンス 検出値から前記電機子相の磁極位相角を算出する磁極位相角算出部と、 前記磁極位相角算出部の算出した磁極位相角に応じて前記リニアモ一夕 を駆動する制御部と、 を有することを特徴とするリニアモータ。 1. a linear member having a primary side member having a plurality of permanent magnets arranged along the traveling direction, and a secondary side member having a plurality of armature cores having magnetic pole teeth opposed to both front and back surfaces of the permanent magnet In the motor, the secondary side member includes a plurality of armature cores wound with an armature coil, and a plurality of electric machines in which a magnetic material that is weaker than the armature core is disposed between the armature cores. And an inductance detection unit that detects the self-inductance of the armature phase, and a magnetic pole that calculates a magnetic pole phase angle of the armature phase from the self-inductance detection value detected by the inductance detection unit. A linear motor comprising: a phase angle calculation unit; and a control unit that drives the linear motor according to the magnetic pole phase angle calculated by the magnetic pole phase angle calculation unit.
2 . 請求項 1において、 前記磁極位相角算出部は、 前記リニアモー夕を 微小距離動作させたときの動作方向情報を用いて磁極位相角を決定する 磁極位相角決定部と有することを特徴とするリニアモー夕。 2. The magnetic pole phase angle calculation unit according to claim 1, wherein the magnetic pole phase angle calculation unit includes a magnetic pole phase angle determination unit that determines a magnetic pole phase angle using operation direction information when the linear motor is operated by a minute distance. Linear Moru evening.
3 . 請求項 1において、 前記磁極位相角算出部は、 逆三角関数演算を用 いて磁極位相角の候補値を演算する逆三角関数演算部と、 前記リニアモ 一夕を微小距離動作させたときの動作方向情報を用いて磁極位相角を決 定する磁極位相角決定部と、 を有することを特徴とするリニアモータ。 3. The magnetic pole phase angle calculation unit according to claim 1, wherein the magnetic pole phase angle calculation unit includes an inverse trigonometric function calculation unit that calculates a candidate value of the magnetic pole phase angle using an inverse trigonometric function calculation, and the linear motor is operated at a minute distance. And a magnetic pole phase angle determining unit that determines the magnetic pole phase angle using the operation direction information.
4 . 請求項 1 において、 前記磁性体は、 前記電機子コイルに電流が流れ た際に、 前記電機子コアの生成する磁束が隣り合う前記電機子コア間で 漏れるのを防ぐ磁束漏れ防止手段であることを特徴とするリニアモー夕。4. The magnetic body according to claim 1, wherein the magnetic body is magnetic flux leakage prevention means for preventing a magnetic flux generated by the armature core from leaking between adjacent armature cores when a current flows through the armature coil. There is a linear motor.
5 . 請求項 1において、 前記磁性体は、 前記電機子相の可動方向の前後 両側面に配置されることを特徴とするリニアモータ。 5. The linear motor according to claim 1, wherein the magnetic body is disposed on both front and rear side surfaces in the movable direction of the armature phase.
6 . 巻線が巻回された磁性体を有する第一の部材を有し、 前記第一の部 材は磁極歯同士が対向し閉磁路を構成する複数の電機子コアを有し、 前
6 6. It has a first member having a magnetic body around which windings are wound, and the first member has a plurality of armature cores in which magnetic pole teeth are opposed to each other to form a closed magnetic circuit, 6
記対向部を構成する磁極歯の間に複数の永久磁石を有する第二の部材が 配置されることを特徴とするリニアモータにおいて、 前記複数の電機子 コアの間に非磁性体を備える電機子相を複数個有し、 前記電機子相の自 己インダクタンスを検出するインダクタンス検出部と、 前記ィンダク夕 ンス検出部の検出した自己インダクタンス検出値を前記電機子相の磁極 位相角に変換する磁極位相角変換部と、 前記磁極位相角変換部の変換し た磁極位相角に応じて前記リニアモー夕を駆動する制御部と、 を有する ことを特徴とするリニアモータ。 A linear motor in which a second member having a plurality of permanent magnets is disposed between magnetic pole teeth constituting the opposed portion, wherein the armature includes a non-magnetic material between the plurality of armature cores. An inductance detection unit that detects a self-inductance of the armature phase; and a magnetic pole phase that converts a self-inductance detection value detected by the inductance detection unit into a magnetic pole phase angle of the armature phase. A linear motor comprising: an angle conversion unit; and a control unit that drives the linear motor according to the magnetic pole phase angle converted by the magnetic pole phase angle conversion unit.
7 . 請求項 6において、 前記磁極位相角変換部は、 前記リニアモ一夕を 微小距離動作させたときの動作方向情報を用いて磁極位相角を決定する 磁極位相角決定部を有することを特徴とするリニアモ一夕。 7. The magnetic pole phase angle conversion unit according to claim 6, wherein the magnetic pole phase angle conversion unit includes a magnetic pole phase angle determination unit that determines a magnetic pole phase angle using operation direction information when the linear motor is operated by a minute distance. Linearmo overnight.
8 . 請求項 6において、 前 磁極位相角変換部は、 逆三角関数演算を用 いて磁極位相角の候補値を演算する逆三角関数演算部と、 前記リニアモ 一夕を微小距離動作させたときの動作方向情報を用いて磁極位相角を決 定する磁極位相角決定部と、 を有することを特徴とするリニアモータ。 8. The front magnetic pole phase angle conversion unit according to claim 6, wherein the front magnetic pole phase angle conversion unit uses an inverse trigonometric function calculation to calculate a magnetic pole phase angle candidate value; And a magnetic pole phase angle determining unit that determines the magnetic pole phase angle using the operation direction information.
9 . 請求項 6において、 前記非磁性体は、 前記リニアモータを駆動する 際に、 前記電機子コアに発生する磁束が隣り合う前記電機子コアへの漏 れ磁束を低減する磁束漏洩防止材であることを特徵とするリニアモー夕。9. The magnetic flux leakage preventing material according to claim 6, wherein the non-magnetic material is a magnetic flux leakage prevention material that reduces a magnetic flux leaking to the adjacent armature core when a magnetic flux generated in the armature core is driven when the linear motor is driven. A linear motor evening specializing in being.
1 0 . 請求項 6において、 前記非磁性体は、 前記電機子相の可動方向の 前後両側面に配置されることを特徴とするリニアモー夕。 10. The linear motor according to claim 6, wherein the non-magnetic material is disposed on both front and rear side surfaces in the movable direction of the armature phase.
1 1 . 巻線が巻回された磁性体を有する第一の部材と、 前記第一の部材 は磁極歯同士が対向する複数の電機子コアと、 前記対向部を構成する磁 極歯の間に複数の永久磁石とを有する第二の部材が配置されるリニアモ —夕の制御方法において、 前記第一の部材は、 前記電機子コアよりも磁 性の弱い磁性体を隣り合う前記電機子コアの間に配置された電機子相を
備え、 前記電機子相の自己インダクタンスを検出すること、 前記自己ィ ンダクタンスを前記電機子相の磁極位相角に変換すること、 前記磁極位 相角に応じて前記リニアモータを制御することを特徴とするリニアモー 夕の制御方法。 1 1. A first member having a magnetic body around which windings are wound, a plurality of armature cores each having a magnetic pole tooth facing each other, and a magnetic pole tooth constituting the facing portion. In a linear motor control method in which a second member having a plurality of permanent magnets is disposed on the armature core, the first member includes a magnetic material that is less magnetic than the armature core and is adjacent to the armature core. The armature phase placed between Detecting the self-inductance of the armature phase, converting the self-inductance into a magnetic pole phase angle of the armature phase, and controlling the linear motor in accordance with the magnetic pole phase angle. Linear motor evening control method.
1 2 . 請求項 1 1において、 前記自己インダクタンスを前記電機子相の 磁極位相角に変換する際には、 前記リニァモータを微小距離動作させ、 該微小距離動作の動作方向情報を用いて磁極位相角を決定することを特 徴とするリニァモータの制御方法。 1 2. In Claim 11, when converting the self-inductance into the magnetic pole phase angle of the armature phase, the linear motor is operated for a minute distance, and the magnetic phase angle is obtained using the operation direction information of the minute distance operation. A linear motor control method characterized by determining
1 3 . 請求項 1 1において、 前記自己ィンダク夕ンスを前記電機子相の 磁極位相角に変換する際には、 逆三角関数演算を用いて磁極位相角の候 補値を演算すること、 前記リニアモータを微小距離動作させること、 該 微小距離動作の動作方向情報を用いて磁極位相角を決定することを特徴 とするリニアモー夕の制御方法。
1 3. In claim 11, when converting the self-inductance into the magnetic pole phase angle of the armature phase, calculating a candidate value of the magnetic pole phase angle using inverse trigonometric function calculation, A linear motor control method, comprising: operating a linear motor by a minute distance; and determining a magnetic pole phase angle using operation direction information of the minute distance operation.
要 約 書 リニアモー夕の装置のコンパク ト化および低コスト化が課題である。 この課題を解決するために、 閉磁路を構成する磁極歯を有する複数の電 機子コア 2 0間に非磁性体 3 0を備えた構成をすると共に、 前記リニア モータの各相の電機子自己インダクタンスを検出する検出手段と、 この インダクタンス検出値からリニアモータの磁極位相角に変換する変換手 段と、 前記磁極位相角変換手段で生成された磁極位相角を用いて前記リ ニァモータを駆動する制御手段とを備えたものである。 Summary The challenge is to reduce the size and cost of linear motor equipment. In order to solve this problem, a configuration in which a nonmagnetic body 30 is provided between a plurality of armature cores 20 having magnetic pole teeth constituting a closed magnetic circuit, and the armature self of each phase of the linear motor is provided. Detection means for detecting the inductance, conversion means for converting the detected inductance value into the magnetic pole phase angle of the linear motor, and control for driving the linear motor using the magnetic pole phase angle generated by the magnetic pole phase angle conversion means Means.
本発明によれば、 磁極位相角センサを用いることなく高精度に磁極位 相角を推定するリニアモ一夕を提供することができる。
According to the present invention, it is possible to provide a linear motor that estimates a magnetic pole phase angle with high accuracy without using a magnetic pole phase angle sensor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009506058A JPWO2008117345A1 (en) | 2007-02-23 | 2007-02-23 | Linear motor and control method thereof |
PCT/JP2007/053984 WO2008117345A1 (en) | 2007-02-23 | 2007-02-23 | Linear motor and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2007/053984 WO2008117345A1 (en) | 2007-02-23 | 2007-02-23 | Linear motor and its control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008117345A1 true WO2008117345A1 (en) | 2008-10-02 |
Family
ID=39788090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/053984 WO2008117345A1 (en) | 2007-02-23 | 2007-02-23 | Linear motor and its control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008117345A1 (en) |
WO (1) | WO2008117345A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101013588B1 (en) | 2008-10-14 | 2011-02-14 | 한국철도기술연구원 | Position detection device of linear synchronous motor |
KR20110084329A (en) * | 2008-11-18 | 2011-07-21 | 히다찌긴조꾸가부시끼가이사 | Movers, armatures and linear motors |
CN109546838A (en) * | 2018-12-04 | 2019-03-29 | 珠海格力电器股份有限公司 | Linear motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309636A (en) * | 2000-03-17 | 2001-11-02 | Festo Ag & Co | Linear drive |
JP2005151714A (en) * | 2003-11-17 | 2005-06-09 | Honda Motor Co Ltd | Brushless motor controller |
-
2007
- 2007-02-23 WO PCT/JP2007/053984 patent/WO2008117345A1/en active Application Filing
- 2007-02-23 JP JP2009506058A patent/JPWO2008117345A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309636A (en) * | 2000-03-17 | 2001-11-02 | Festo Ag & Co | Linear drive |
JP2005151714A (en) * | 2003-11-17 | 2005-06-09 | Honda Motor Co Ltd | Brushless motor controller |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101013588B1 (en) | 2008-10-14 | 2011-02-14 | 한국철도기술연구원 | Position detection device of linear synchronous motor |
KR20110084329A (en) * | 2008-11-18 | 2011-07-21 | 히다찌긴조꾸가부시끼가이사 | Movers, armatures and linear motors |
KR101657276B1 (en) * | 2008-11-18 | 2016-09-13 | 히다찌긴조꾸가부시끼가이사 | Movable element, armature, and linear motor |
CN109546838A (en) * | 2018-12-04 | 2019-03-29 | 珠海格力电器股份有限公司 | Linear motor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008117345A1 (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8872449B2 (en) | Distributed-arrangement linear motor and control method of distributed-arrangement linear motor | |
US8653766B2 (en) | Linear motor driving system and linear motor control method | |
CN102804566B (en) | Position detection device for movable magnet type linear motor | |
US6791293B2 (en) | Sensorless control device for synchronous electric motor | |
JP2010011637A (en) | Permanent magnet rotary electric machine and elevator winding machine using the same | |
US8970142B2 (en) | Control apparatus for linear motor, and linear motor apparatus | |
JP2012119472A (en) | Flexible magnet, manufacturing method of the flexible magnet, magnetic encoder, and actuator | |
JP2004056892A (en) | Linear motor apparatus | |
TW201025800A (en) | Dispersed linear motors and driving system for dispersed linear motors | |
JP5529637B2 (en) | Linear motor position detection system | |
Luu et al. | Magnetic sensor design for a permanent magnet linear motor considering edge-effect | |
WO2008117345A1 (en) | Linear motor and its control method | |
JP5101309B2 (en) | MOTOR POSITION DETECTION METHOD, MOTOR DRIVE DEVICE, AND PUMP | |
WO2011115098A1 (en) | Control device and control method | |
US8013562B2 (en) | Driving mechanism having position encoder for two-dimensional positioning | |
JP6576285B2 (en) | Thrust measuring device and thrust measuring method | |
JP3944471B2 (en) | Driving device and XY table using the same | |
JP5863361B2 (en) | Actuator | |
JP3219133B2 (en) | Linear DC brushless motor | |
JP2002191156A (en) | Pole position detecting device for motor | |
JP2004064940A (en) | Linear drive device and manufacturing device using the same | |
JP2010048774A (en) | Position sensor | |
JP2000134903A (en) | Motor and stage device | |
JP2004104858A (en) | Linear motor | |
JP2010124583A (en) | Operation processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07715134 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009506058 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07715134 Country of ref document: EP Kind code of ref document: A1 |