WO2008115329A1 - Articles revêtus à faible émissivité et leurs procédés de fabrication - Google Patents
Articles revêtus à faible émissivité et leurs procédés de fabrication Download PDFInfo
- Publication number
- WO2008115329A1 WO2008115329A1 PCT/US2008/001997 US2008001997W WO2008115329A1 WO 2008115329 A1 WO2008115329 A1 WO 2008115329A1 US 2008001997 W US2008001997 W US 2008001997W WO 2008115329 A1 WO2008115329 A1 WO 2008115329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- window unit
- coated article
- shgc
- glass
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 4
- 239000011521 glass Substances 0.000 claims abstract description 78
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 35
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 28
- 229910052709 silver Inorganic materials 0.000 claims description 25
- 239000004332 silver Substances 0.000 claims description 24
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 23
- 229910001120 nichrome Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 238000005496 tempering Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- -1 Si3N4) Chemical compound 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3607—Coatings of the type glass/inorganic compound/metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3618—Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3626—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3655—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing at least one conducting layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/366—Low-emissivity or solar control coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3681—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- the low- E coated articles may or may not be heat treated (e.g., thermally tempered, heat bent, or heat strengthened).
- the low-E coated articles may be designed so as to realize a combination of good visible transmission (T V j S ) and an excellent solar heat gain coefficient (SHGC) so has to have an improved (i.e., higher) T vis /SHGC ratio.
- the low-E coated articles may have approximately the same color characteristics as viewed by the naked eye both before and after heat treatment (i.e., a low ⁇ E* value) in certain example instances.
- Such coated articles may be used in insulating glass (IG) units, windows, and/or other suitable applications.
- Coated articles are known in the art for use in window applications such as insulating glass (IG) window units, vehicle windows, and/or the like.
- designers of coated articles may strive for a combination of good visible transmission, low emissivity (or emittance), and blockage of undesirable radiation such as infrared (IR) radiation to prevent or reduce undesirable heating of building or vehicle interiors.
- High visible transmission for example may permit coated articles to be more desirable in certain window applications, whereas low emissivity (low-E), low SHGC (solar heat gain coefficient), and low SF (solar factor, or g-value) characteristics permit coated articles to block significant amounts of undesirable radiation so as to reduce, for example, undesirable heating of building or vehicle interiors.
- SF calculated in accordance with DIN standard 67507 or EN410: 1998, relates to a ratio between the total energy entering a room or the like through a glazing and the incident solar energy.
- low SF values are indicative of good solar protection against undesirable heating of rooms or the like protected by windows/glazings.
- a low SF value is indicative of a coated article that is capable of keeping a room fairly cool in summertime months during hot ambient conditions.
- the SHGC of an article/window is the fraction of incident solar radiation that is admitted through the article/window (e.g., see NFRC 100-2001 hereby incorporated herein by reference).
- U.S. Patent No. 5,688,585 discloses a solar control coated article including: glass/Si 3 N 4 /NiCr/Si 3 N 4 .
- One object of the '585 patent is to provide a sputter coated layer system that after heat treatment is matchable colorwise with its non-heat treated counterpart. While the coating systems of the '585 patent are excellent for their intended purposes, they suffer from certain disadvantages. In particular, they tend to have rather high emissivity values (e.g., because no silver (Ag) layer is disclosed in the '585 patent).
- Low-emissivity (low-E) coating systems are also known in the art.
- U.S. Patent No. 6,475,626 discloses: glass/Si 3 N 4 /NiCr/Ag/NiCr/Si 3 N 4 .
- Low-E coating systems of the '626 Patent provide good visible transmission and low-E characteristics.
- coating systems of the '626 Patent cannot achieve a combination of good visible transmission (Ty 15 ) and good solar heat gain coefficient (SHGC).
- the coating systems of the '626 Patent have undesirably low T v , s /SHGC ratios.
- Example 1 of the '626 Patent in the context of an insulating glass (IG) unit was only able to realize a T V1S /SHGC ratio of about 128.
- Example 2 of the '626 Patent in the context of an insulating glass (IG) unit was only able to realize a T v , s /SHGC ratio of about 127, and Example 2 of the '626 Patent monolithically was only able to realize a T VIS /SHGC ratio of about 1 14.
- U.S. Patent No. 6,782,718 also discloses glass/Si 3 N 4 /NiCr/Ag/NiCr/Si 3 N 4 .
- the coating systems of the '718 Patent have undesirably low T VIS /SHGC ratios.
- the Example in column seventeen of the '718 Patent in the context of an insulating glass (IG) unit was only able to realize a T v i s /SHGC ratio of about 127 (heat treated or HT) or 123 (not HT).
- U.S. Patent No. 5,800,933 discloses another example coated article.
- coated articles of the '933 Patent have undesirably high SHGC values thereby indicating inefficient solar protection against undesirable heating of rooms or the like.
- U.S. Patent Nos. 6,014,872 and 5,800,933 disclose a heat treatable low-E layer system including: glassTiO 2 /Si 3 N 4 /NiCr/Ag/NiCr/Si 3 N 4 . Unfortunately, when heat treated this low-E layer system is not approximately matchable colorwise with its non-heat treated counterpart (as viewed from the glass side).
- this low-E layer system has a ⁇ E* (glass side) value of greater than 4.1 (i.e., for Example B, ⁇ a* G is 1.49, ⁇ b* G is 3.81 , and ⁇ L* (glass side) is not measured; using Equation (1) below then ⁇ E* on the glass side must necessarily be greater than 4.1 and is probably much higher than that).
- a currently coating has a stack of: glass/Si 3 N 4 (14.3 nm)/NiCr(3.8 nm)/Ag(10.6 nm)/NiCr(2.4 nm)/Si 3 N 4 (48.4 nm). While this coated article has a glass side ⁇ E* value of less than 2 (monolithic) and a SHGC value of 0.35 (monolithic) or 0.30 (IG unit), it can only achieve a visible transmission of 48.4% (monolithic) or 43.4% (IG unit).
- T vis /SHGC ratio is only 138 (monolithic), or 144 (IG, with a low visible transmission of 43.4%).
- the double-silver coatings of U.S. Patent No. 7, 138,182 realize a low SHGC, but at the expense of low visible transmission.
- the ' 182 coatings are undesirable in that they both: require two silver layers, and sacrifice visible transmission in order to realize a low SHGC.
- the coated article if heat treated may also have a low ⁇ E* value indicating thermal stability upon heat treatment (HT).
- HT thermal stability upon heat treatment
- low-E coated articles relate to low-E (low emissivity) coated articles.
- the low- E coated articles may or may not be heat treated (e.g., thermally tempered, heat bent, or heat strengthened).
- the low-E coated articles may be designed so as to realize a combination of good visible transmission (T v j S ) and an excellent solar heat gain coefficient (SHGC) so has to have an improved (i.e., higher) T V j S /SHGC ratio.
- a low-E coated article may have a T vis /SHGC ratio of at least 140, more preferably of at least 145, even more preferably of at least 150 or 153.
- the coated article may have an SHGC value of no greater than 0.36, more preferably no greater than 0.35, even more preferably no greater than 0.34 or 0.33.
- the coated article may have a visible transmission (T V j S ) of from about 40-65%, more preferably from about 45-60%, and most preferably from about 48-57% or from about 49-56%.
- the low-E coated articles may have approximately the same color characteristics as viewed by the naked eye both before and after heat treatment (i.e., a low ⁇ E* value) in certain example instances.
- Such coated articles may be used in insulating glass (IG) units, windows, and/or other suitable applications.
- the coated article may have a glass side reflective ⁇ E* value of no greater than about 3.0, more preferably no greater than about 2.75, even more preferably no greater than about 2.5, and possibly no greater than about 2.25 or 2.0.
- an insulating glass (IG) window unit comprising: first and second glass substrates coupled to each other proximate their respective edges so as to form an insulating space therebetween; a layer system supported by one of the glass substrates proximate the insulating space, said layer system comprising an infrared (IR) reflecting layer comprising silver located between at least first and second dielectric layers, wherein said layer system includes only one IR reflecting layer comprising silver (or gold, or platinum); and wherein the IG window unit has a visible transmission (Ty 15 ) of 47-60%, a SHGC Of no greater than 0.36, and a T V1S /SHGC ratio of at least 140.
- IR infrared
- a coated article comprising: a coating supported by a glass substrate, said coating comprising an infrared (IR) reflecting layer comprising silver located between at least first and second dielectric layers, wherein said coating includes only one IR reflecting layer comprising silver; and wherein the coated article measured monolithically has a visible transmission (T V1S ) of 50-65%, a SHGC Of no greater than 0.41, and a T v15 ZSHGC ratio of at least 140.
- IR infrared
- a method of making such a coated article may also be provided, where each of the layers may be sputter-deposited or otherwise deposited on the glass substrate, and optionally thereafter the glass substrate with the coating thereon may be heat treated (e.g., thermally tempered).
- Fig. 1 is a partial side cross sectional view of an embodiment of a layer system according to this invention.
- FIG. 2 is a partial cross-sectional view of an IG unit as contemplated by an example embodiment of this invention, in which the layer system of Fig. 1 may be used.
- Fig. 3 is a chart setting forth data of Examples 1 -4 according to example embodiments of this invention, based on modeling.
- Certain embodiments of this invention provide a coating or layer system that may be used in applications such as IG units, vehicle windows, vehicle windshields, and other suitable applications.
- Certain example embodiments of this invention relate to low-E (low emissivity) coated articles.
- the low-E coated articles may or may not be heat treated (e.g., thermally tempered, heat bent, or heat strengthened).
- the low-E coated articles may be designed so as to realize a combination of good visible transmission (T v ⁇ s ) and an excellent solar heat gain coefficient (SHGC) so has to have an improved (i.e., higher) T V1S /SHGC ratio. This ratio may be called a light to solar gain ratio in certain instances.
- a low-E coated article may have a T V1S /SHGC ratio of at least 140, more preferably of at least 145, even more preferably of at least 150 or 153.
- T v , s visible transmission
- these T V1S /SHGC ratios would be considered at least 1.40, more preferably of at least 1.45, even more preferably of at least 1.50 or 1.53.
- the coated article may have an SHGC value of no greater than 0.36, more preferably no greater than 0.35, even more preferably no greater than 0.34 or 0.33.
- the coated article may have a visible transmission (Ty 15 ) of from about 40-65%, more preferably from about 45-60%, and most preferably from about 48-57% or from about 49-56%.
- Ty 15 visible transmission
- the above data may be in the context of an IG unit and/or monolithic in different example embodiments of this invention.
- the low-E coated articles may have approximately the same color characteristics as viewed by the naked eye both before and after heat treatment (i.e., a low ⁇ E* value) in certain example instances.
- Certain embodiments of this invention provide a layer system that has excellent color stability (i.e., a low value of ⁇ E* and/or a low value of ⁇ a*; where ⁇ is indicative of change in view of heat treatment) with heat treatment (e.g., thermal tempering, bending, or thermal heat strengthening) monolithically and/or in the context of dual pane environments such as IG units or windshields.
- the coated substrate may have a glass side reflective ⁇ E* value of no greater than about 3.0, more preferably no greater than about 2.75. even more preferably no greater than about 2.5, and possibly no greater than about 2.25 or 2.0.
- Figure 1 is a side cross sectional view of a coated article according to an example embodiment of this invention.
- the coated article includes substrate 1 (e.g., clear, green, bronze, grey, blue, or blue-green glass substrate from about 1.0 to 12.0 mm thick, e.g., about 6 mm thick), first dielectric layer 3 (e.g., of or including silicon nitride (e.g., Si 3 N 4 ), titanium dioxide, titanium nitride, zirconium oxide, zirconium nitride, tin oxide, silicon oxide, silicon dioxide, silicon oxynitride, or zinc oxide), metallic or substantially metallic nickel (Ni) or nickel-chrome (NiCr) inclusive layer 5 (other oxidation resistant materials may be used instead of Ni or NiCr in alternative embodiments of this invention), metallic or substantially metallic IR reflecting silver (Ag) based layer 7, metallic or substantially metallic nickel (Ni) or nickel-chrome (NiCr) inclusive layer 9 (other oxidation resistant materials may be
- layer(s) below or above the illustrated coating system may also be provided.
- the layer system is “on” or “supported by” substrate 1 (directly or indirectly), other layer(s) may be provided therebetween.
- the layer system of Fig. 1 may be considered “on” the substrate 1 even though other layer(s) may be provided therebetween.
- IR reflecting Ag layer 7 is preferably Ag metal, although it is possible that some small amount of oxidation could occur with respect thereto.
- layers 5, 7 and 9 are no more than about 25% oxidized, more preferably no more than about 10% oxidized, and most preferably no more than about 1 , 2 or 4, or even up to 7- 8% oxidized and/or nitrided.
- layers 5 and/or 9 are of non-nitrided and nonoxidized nickel or nickel alloy (e.g., nichrome of, by weight percent, 80/20 nickel/chrome).
- Layers 3, 5, 7, 9 and 1 1 may be deposited on the glass substrate via sputtering, or via any other suitable technique.
- layers 3 and 1 1 comprise silicon nitride (e.g., Si 3 N 4 or any other suitable stoichiometry)
- a target including Si employed to form these layers may be admixed with up to 6-20% by weight aluminum or stainless steel (e.g. SS#316), with about this amount then appearing in the layers so formed.
- layers 5 and 9 may be metallic nickel, a nichrome preferably consisting essentially of, by weight about 80-90% Ni and 10-20% Cr (or 50/50 Ni/Cr), may be employed in certain example embodiments.
- Other metals or alloys may also be used in alternative embodiments, e.g., alloy(s) include 10% or more Ni.
- layer 7 herein consists essentially of metallic silver in certain embodiments of this invention.
- An example of layers 5 and 9 includes not only SS-316 which consists essentially of 10% Ni and 90% other ingredients, mainly Fe and Cr, but Haynes 214 alloy as well, which by weight consists essentially of (as a nominal composition):
- Fig. 2 illustrates the coating or layer system 22 of Fig. 1 being utilized on surface #2 of an IG window unit.
- the IG unit includes outside glass pane or sheet 21 (or 1) and inside glass pane or sheet 23. These two glass substrates (e.g. float glass 2 mm to 12 mm thick) are sealed at their peripheral edges by a sealant 25 or the like, and may be provided with a conventional desiccant strip 27. The panes are then retained in a conventional window or door retaining frame (shown in partial schematic form).
- insulating space 30 may be at a pressure less than atmospheric pressure in certain alternative embodiments, although this of course is not necessary in all embodiments.
- Either inner wall 24 or 26 (or both) may be provided with a coating 22 (see Fig. 1) of this invention.
- inner wall 24 (i.e., surface #2) of outside glass sheet 21 has been provided with a sputter-coated layer system of Fig. 1 thereon.
- the preferred thicknesses and materials for the respective layers on the glass substrate 1 are as follows (note that stoichiometrics such as Si 3 N 4 are used for purposes of example only and without limitation):
- Si 3 N 4 (layer 3) 150-900 A 200-350 A 230-320 A
- NiCr layer 5-1080 (or 10-40) A 15-40 A 17-30 A
- NiCr layer 9) 10-80 (or 10-40) A 15-40 A 17-30 A
- Si 3 N 4 (layer 1 1) 400-600 A 450-560 A 465-540 A
- the Ag layer 7 has been thickened, the top silicon nitride layer 1 1 has been thickened, and the bottom silicon nitride layer 3 may be thinned.
- the NiCr layers have also been thinned.
- An example excellent thickness range for layer 5 and/or 9 is from about 18-23 angstroms. Surprisingly, it is believed that one or more of these changes results an improved (higher) T V , S /SHGC ratio without significantly sacrificing visible transmission or ⁇ E* values in optional heat treated embodiments. Note that the thicknesses are physical thicknesses.
- HT thermal tempering, heat bending, or the like.
- ⁇ E* values are calculated is set forth in U.S. Patent No. 6,475.626, which is incorporated herein by reference.
- low glass side reflective ⁇ E* values indicate that two glass substrates having the same coating system thereon (one heat treated after deposition and the other not heat treated) appear to the naked human eye to look substantially the same when viewed from the glass side of the product (i.e. looking through at least one substrate of glass before viewing the coating).
- values ⁇ E* and ⁇ a* are important in determining whether or not there is matchability, or substantial matchability, between a HT and non-HT product having the same coating (or between a given product before compared to after it has been HT).
- color herein is described by reference to the conventional a*, b* values, and the term ⁇ a* is simply indicative of how much color value a* changes due to heat treatment (HT).
- ⁇ E* is calculated in a known manner using the CIE LAB Scale L*, a*, b* values which are known.
- coated articles herein provided on clear monolithic glass substrates have color as follows before heat treatment, as viewed from the glass side of the coated article (R 0 %):
- layer systems provided on clear monolithic glass substrates have color characteristics ⁇ E* and ⁇ a* as follows, when viewed from the glass (G) side (as opposed to the layer side) of the coated article:
- monolithic coated articles according to certain embodiments of this invention have a ⁇ E* value (glass side) of no greater than 3.0, more preferably no greater than 2.5, and even more preferably no greater than 2.0; and have a ⁇ a* value (glass side) of no greater than about 2.0, more preferably no greater than 1.5.
- ⁇ E* value glass side
- ⁇ a* value glass side
- b* values are not deemed as important as a* values, because a* changes are believed to be more noticeable to the naked human eye than are b* changes in certain instances.
- Table 4 sets forth example characteristics of monolithic coated articles according to example embodiments of this invention. The values in Table 4 apply to non-HT and/or HT products, except that ⁇ E* is applicable only to HT products, and assume a clear substrate for purposes of example only.
- EXAMPLES 1-4 [0035] Four example coated articles are set forth in Fig. 3. Each of these examples had a layer stack of: glass/Si 3 N 4 /NiCr/Ag/NiCr/Si 3 N 4 , and the thicknesses of the layers are set forth in Fig. 3 in units of run. Note that no titanium oxide (TiO2) layer was present in any of these example as the bottom-most layer, although this is possible in certain instances.
- the data relating to Examples 1-4 is also set forth in Fig. 3, both with respect to monolithic (mono) and IG unit (IGU). The glass substrates in these examples were about 6 mm thick and were clear. The data in Fig. 3 was taken prior to optional HT.
- the T V j S /SHGC ratio is a function of the number of Ag or Au based IR reflecting layers. For instances, if there were two IR reflecting layers, the ratio would be significantly higher (e.g., 190 (or 195) or above for two silver IR reflecting layers).
- Intensity of reflected visible wavelength light i.e. "reflectance” is defined by its percentage and is reported as R x Y or R x (i.e. the Y value cited below in ASTM E-308- 85), wherein "X” is either “G” for glass side or “F” for film side.
- Glass side e.g. “G”
- film side i.e. “F”
- heat treatment and "heat treating” as used herein mean heating the article to a temperature sufficient to enabling thermal tempering, bending, or heat strengthening of the glass inclusive article.
- This definition includes, for example, heating a coated article using temperature(s) of at least about 550 degrees C, more preferably at least about 580 or 600 degrees C, for a sufficient period to enable tempering or heat bending.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Abstract
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08725609T PL2118032T3 (pl) | 2007-03-15 | 2008-02-15 | Niskoemisyjne artykuły powleczone i sposoby ich wytwarzania |
CA2676780A CA2676780C (fr) | 2007-03-15 | 2008-02-15 | Articles revetus a faible emissivite et leurs procedes de fabrication |
EP08725609.5A EP2118032B1 (fr) | 2007-03-15 | 2008-02-15 | Articles revêtus à faible émissivité et leurs procédés de fabrication |
BRPI0808928A BRPI0808928B1 (pt) | 2007-03-15 | 2008-02-15 | unidade de janela de vidro isolante |
RU2009138030/03A RU2469003C2 (ru) | 2007-03-15 | 2008-02-15 | Низкоэмиссионные покрытые изделия |
MX2009009617A MX2009009617A (es) | 2007-03-15 | 2008-02-15 | Articulos con recubrimiento de low-e y metodos para hacer los mismos. |
ES08725609.5T ES2673901T3 (es) | 2007-03-15 | 2008-02-15 | Artículos revestidos con baja emisividad y métodos para su fabricación |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/724,327 US7655313B2 (en) | 2007-03-15 | 2007-03-15 | Low-E coated articles and methods of making same |
US11/724,327 | 2007-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008115329A1 true WO2008115329A1 (fr) | 2008-09-25 |
Family
ID=39496134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/001997 WO2008115329A1 (fr) | 2007-03-15 | 2008-02-15 | Articles revêtus à faible émissivité et leurs procédés de fabrication |
Country Status (9)
Country | Link |
---|---|
US (2) | US7655313B2 (fr) |
EP (1) | EP2118032B1 (fr) |
BR (1) | BRPI0808928B1 (fr) |
CA (1) | CA2676780C (fr) |
ES (1) | ES2673901T3 (fr) |
MX (1) | MX2009009617A (fr) |
PL (1) | PL2118032T3 (fr) |
RU (1) | RU2469003C2 (fr) |
WO (1) | WO2008115329A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2928913A1 (fr) * | 2008-03-18 | 2009-09-25 | Saint Gobain | Substrat muni d'un empilement a proprietes thermiques |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655313B2 (en) * | 2007-03-15 | 2010-02-02 | Guardian Industries Corp. | Low-E coated articles and methods of making same |
JP5016961B2 (ja) * | 2007-03-30 | 2012-09-05 | 株式会社神戸製鋼所 | 刃部材 |
KR101642708B1 (ko) * | 2010-01-19 | 2016-07-28 | 삼성전자주식회사 | 화상형성장치와 그 프리뷰 이미지 디스플레이방법, 및 서버와 그 프리뷰 이미지 제공방법 |
US8834976B2 (en) | 2010-02-26 | 2014-09-16 | Guardian Industries Corp. | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US8939606B2 (en) | 2010-02-26 | 2015-01-27 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
FR2963343B1 (fr) * | 2010-07-28 | 2012-07-27 | Saint Gobain | Vitrage pourvu d'un revetement contre la condensation |
US8808882B2 (en) | 2010-09-17 | 2014-08-19 | Guardian Industries Corp. | Coated article having boron doped zinc oxide based seed layer with enhanced durability under functional layer and method of making the same |
US8815420B2 (en) | 2010-09-17 | 2014-08-26 | Guardian Industries Corp. | Coated article having zinc oxide seed layer with reduced stress under functional layer and method of making the same |
US8445111B2 (en) | 2010-10-14 | 2013-05-21 | Guardian Industries Corp. | Gadolinium oxide-doped zirconium oxide overcoat and/or method of making the same |
US20120090246A1 (en) | 2010-10-15 | 2012-04-19 | Guardian Industries Corp. | Refrigerator/freezer door, and/or method of making the same |
US8434904B2 (en) | 2010-12-06 | 2013-05-07 | Guardian Industries Corp. | Insulated glass units incorporating emitters, and/or methods of making the same |
CN102603209A (zh) * | 2011-01-25 | 2012-07-25 | 鸿富锦精密工业(深圳)有限公司 | 镀膜玻璃及其制备方法 |
US8557391B2 (en) | 2011-02-24 | 2013-10-15 | Guardian Industries Corp. | Coated article including low-emissivity coating, insulating glass unit including coated article, and/or methods of making the same |
US8709604B2 (en) * | 2011-03-03 | 2014-04-29 | Guardian Industries Corp. | Barrier layers comprising Ni-inclusive ternary alloys, coated articles including barrier layers, and methods of making the same |
US8790783B2 (en) | 2011-03-03 | 2014-07-29 | Guardian Industries Corp. | Barrier layers comprising Ni and/or Ti, coated articles including barrier layers, and methods of making the same |
US8679633B2 (en) | 2011-03-03 | 2014-03-25 | Guardian Industries Corp. | Barrier layers comprising NI-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same |
US8679634B2 (en) | 2011-03-03 | 2014-03-25 | Guardian Industries Corp. | Functional layers comprising Ni-inclusive ternary alloys and methods of making the same |
US9556066B2 (en) | 2011-12-13 | 2017-01-31 | Guardian Industries Corp. | Insulating glass units with low-E and antireflective coatings, and/or methods of making the same |
US9221713B2 (en) | 2011-12-21 | 2015-12-29 | Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) | Coated article with low-E coating having barrier layer system(s) including multiple dielectric layers, and/or methods of making the same |
US9017821B2 (en) | 2012-02-22 | 2015-04-28 | Guardian Industries Corp. | Coated article with low-E coating having multilayer overcoat and method of making same |
US9869016B2 (en) | 2012-02-22 | 2018-01-16 | Guardian Glass, LLC | Coated article with low-E coating having multilayer overcoat and method of making same |
US9919959B2 (en) | 2012-05-31 | 2018-03-20 | Guardian Glass, LLC | Window with UV-treated low-E coating and method of making same |
US9469565B2 (en) | 2012-05-31 | 2016-10-18 | Guardian Industries Corp. | Window with selectively writable image(s) and method of making same |
US9242895B2 (en) * | 2012-09-07 | 2016-01-26 | Guardian Industries Corp. | Coated article with low-E coating having absorbing layers for low film side reflectance and low visible transmission |
US8889272B2 (en) | 2012-11-19 | 2014-11-18 | Guardian Industries Corp. | Coated article with low-E coating including tin oxide inclusive layer(s) with additional metal(s) |
US8900729B2 (en) | 2012-11-19 | 2014-12-02 | Guardian Industries Corp. | Coated article with low-E coating including zinc oxide inclusive layer(s) with additional metal(s) |
US9332862B2 (en) | 2012-11-30 | 2016-05-10 | Guardian Industries Corp. | Refrigerator door/window |
US10871600B2 (en) | 2012-12-17 | 2020-12-22 | Guardian Glass, LLC | Window for reducing bird collisions |
US10461743B2 (en) * | 2013-01-11 | 2019-10-29 | Imagesurge, Inc. | Interactive display system and method for use with low emissivity glass using infrared illumination |
EP2943863A4 (fr) * | 2013-01-14 | 2016-09-28 | Imagesurge Inc | Système et procédé d'affichage interactif pour une utilisation avec un verre à faible émissivité en utilisant un rayonnement infrarouge |
US9499438B2 (en) | 2013-02-28 | 2016-11-22 | Guardian Industries Corp. | Window for attenuating RF and IR electromagnetic signals |
US8940400B1 (en) | 2013-09-03 | 2015-01-27 | Guardian Industries Corp. | IG window unit including double silver coating having increased SHGC to U-value ratio, and corresponding coated article for use in IG window unit or other window |
US9873633B2 (en) | 2013-11-20 | 2018-01-23 | Guardian Europe S.A.R.L. | Heat treatable coated article with low-E coating having zinc stannate based layer between IR reflecting layers and corresponding method |
FR3030494B1 (fr) * | 2014-12-19 | 2021-09-03 | Saint Gobain | Vitrage de controle solaire ou bas emissif comprenant une couche de protection superieure |
JP2018519237A (ja) * | 2015-06-19 | 2018-07-19 | エージーシー グラス ユーロップAgc Glass Europe | ソーラーコントロール用積層グレージング |
US11261120B2 (en) | 2015-08-18 | 2022-03-01 | Saint-Gobain Glass France | Glass-bending device and glass-bending method using a fan |
TR201907844T4 (tr) | 2015-09-08 | 2019-06-21 | Saint Gobain | Pozitif basınç destekli yer çekimi ile büküm yöntemi ve bunun için uygun düzenek. |
ES2733808T3 (es) | 2015-11-25 | 2019-12-03 | Saint Gobain | Método de curvado por gravedad reforzado por sobrepresión y dispositivo adecuado para ello |
EP3408233B1 (fr) | 2016-01-28 | 2019-10-02 | Saint-Gobain Glass France | Procede de cintrage de verre assiste par surpression et dispositif adapte |
US10100202B2 (en) | 2016-09-06 | 2018-10-16 | Guardian Europe S.A.R.L. | Coated article with IR reflecting layer and method of making same |
US10838126B2 (en) * | 2016-09-19 | 2020-11-17 | Apple Inc. | Electronic devices with infrared blocking filters |
US20200123844A1 (en) * | 2018-10-18 | 2020-04-23 | Gentex Corporation | Switchable safety glazing with solar control |
US10694607B1 (en) | 2019-06-24 | 2020-06-23 | Apple Inc. | Electronic devices with light sensor waveguides |
KR102408459B1 (ko) * | 2020-06-17 | 2022-06-13 | 한국유리공업 주식회사 | 박막 다층 코팅이 구비된 투명 기재 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0560534A1 (fr) * | 1992-03-04 | 1993-09-15 | The Boc Group, Inc. | Filtres d'interférence |
EP0567735A1 (fr) * | 1992-04-30 | 1993-11-03 | Guardian Industries Corp. | Verre E du type "bas" de haute performance et durable et procédé de sa fabrication |
US5376455A (en) * | 1993-10-05 | 1994-12-27 | Guardian Industries Corp. | Heat-treatment convertible coated glass and method of converting same |
US5514476A (en) * | 1994-12-15 | 1996-05-07 | Guardian Industries Corp. | Low-E glass coating system and insulating glass units made therefrom |
US5688585A (en) | 1993-08-05 | 1997-11-18 | Guardian Industries Corp. | Matchable, heat treatable, durable, IR-reflecting sputter-coated glasses and method of making same |
US5800933A (en) | 1995-11-02 | 1998-09-01 | Guardian Industries Corp. | Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom |
US6475626B1 (en) | 1999-12-06 | 2002-11-05 | Guardian Industries Corp. | Low-E matchable coated articles and methods of making same |
WO2003048061A2 (fr) * | 2001-11-29 | 2003-06-12 | Guardian Industries Corp. | Article revetu avec systeme a une ou plusieurs couches anti-reflechissantes |
US20030175527A1 (en) * | 2002-03-14 | 2003-09-18 | Lingle Philip J. | Insulating glass (IG) window unit including heat treatable coating with silicon-rich silicon nitride layer |
US6782718B2 (en) | 1999-12-06 | 2004-08-31 | Guardian Industries Corp. | Method of making matchable low-E I.G units and laminates |
US7138182B2 (en) | 2002-07-31 | 2006-11-21 | Cardinal Cg Compay | Temperable high shading performance coatings |
EP1734019A2 (fr) * | 2005-06-07 | 2006-12-20 | Centre Luxembourgeois de Recherches pour le Verre et la Céramique S.A. | Article revenu avec couche de réflexion Ir et procédé de fabrication de cet article |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6495263B2 (en) * | 1999-12-06 | 2002-12-17 | Guardian Industries Corp. | Low-E matchable coated articles and methods of making same |
FR2818272B1 (fr) * | 2000-12-15 | 2003-08-29 | Saint Gobain | Vitrage muni d'un empilement de couches minces pour la protection solaire et/ou l'isolation thermique |
US7067195B2 (en) * | 2002-04-29 | 2006-06-27 | Cardinal Cg Company | Coatings having low emissivity and low solar reflectance |
ES2627198T5 (es) * | 2002-05-03 | 2020-08-21 | Vitro Flat Glass Llc | Sustrato que tiene revestimiento de gestión térmica para una unidad de vidrio aislante |
US7122252B2 (en) * | 2002-05-16 | 2006-10-17 | Cardinal Cg Company | High shading performance coatings |
US7217460B2 (en) * | 2004-03-11 | 2007-05-15 | Guardian Industries Corp. | Coated article with low-E coating including tin oxide interlayer |
US7419725B2 (en) * | 2004-09-01 | 2008-09-02 | Guardian Industries Corp. | Coated article with low-E coating including IR reflecting layer(s) and corresponding method |
US7339728B2 (en) * | 2005-10-11 | 2008-03-04 | Cardinal Cg Company | Low-emissivity coatings having high visible transmission and low solar heat gain coefficient |
US7655313B2 (en) | 2007-03-15 | 2010-02-02 | Guardian Industries Corp. | Low-E coated articles and methods of making same |
-
2007
- 2007-03-15 US US11/724,327 patent/US7655313B2/en active Active - Reinstated
-
2008
- 2008-02-15 BR BRPI0808928A patent/BRPI0808928B1/pt active IP Right Grant
- 2008-02-15 PL PL08725609T patent/PL2118032T3/pl unknown
- 2008-02-15 ES ES08725609.5T patent/ES2673901T3/es active Active
- 2008-02-15 MX MX2009009617A patent/MX2009009617A/es active IP Right Grant
- 2008-02-15 WO PCT/US2008/001997 patent/WO2008115329A1/fr active Application Filing
- 2008-02-15 EP EP08725609.5A patent/EP2118032B1/fr active Active
- 2008-02-15 CA CA2676780A patent/CA2676780C/fr not_active Expired - Fee Related
- 2008-02-15 RU RU2009138030/03A patent/RU2469003C2/ru active
-
2009
- 2009-12-23 US US12/654,594 patent/US7964284B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0560534A1 (fr) * | 1992-03-04 | 1993-09-15 | The Boc Group, Inc. | Filtres d'interférence |
EP0567735A1 (fr) * | 1992-04-30 | 1993-11-03 | Guardian Industries Corp. | Verre E du type "bas" de haute performance et durable et procédé de sa fabrication |
US5688585A (en) | 1993-08-05 | 1997-11-18 | Guardian Industries Corp. | Matchable, heat treatable, durable, IR-reflecting sputter-coated glasses and method of making same |
US5376455A (en) * | 1993-10-05 | 1994-12-27 | Guardian Industries Corp. | Heat-treatment convertible coated glass and method of converting same |
US5514476A (en) * | 1994-12-15 | 1996-05-07 | Guardian Industries Corp. | Low-E glass coating system and insulating glass units made therefrom |
US6014872A (en) | 1995-11-02 | 2000-01-18 | Guardian Industries Corp. | Methods of making insulating glass units with neutral, high performance, durable low-E glass coating systems |
US5800933A (en) | 1995-11-02 | 1998-09-01 | Guardian Industries Corp. | Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom |
US6475626B1 (en) | 1999-12-06 | 2002-11-05 | Guardian Industries Corp. | Low-E matchable coated articles and methods of making same |
US6782718B2 (en) | 1999-12-06 | 2004-08-31 | Guardian Industries Corp. | Method of making matchable low-E I.G units and laminates |
WO2003048061A2 (fr) * | 2001-11-29 | 2003-06-12 | Guardian Industries Corp. | Article revetu avec systeme a une ou plusieurs couches anti-reflechissantes |
US20030175527A1 (en) * | 2002-03-14 | 2003-09-18 | Lingle Philip J. | Insulating glass (IG) window unit including heat treatable coating with silicon-rich silicon nitride layer |
US7138182B2 (en) | 2002-07-31 | 2006-11-21 | Cardinal Cg Compay | Temperable high shading performance coatings |
EP1734019A2 (fr) * | 2005-06-07 | 2006-12-20 | Centre Luxembourgeois de Recherches pour le Verre et la Céramique S.A. | Article revenu avec couche de réflexion Ir et procédé de fabrication de cet article |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2928913A1 (fr) * | 2008-03-18 | 2009-09-25 | Saint Gobain | Substrat muni d'un empilement a proprietes thermiques |
WO2009122090A3 (fr) * | 2008-03-18 | 2009-12-10 | Saint-Gobain Glass France | Substrat muni d'un empilement a proprietes thermiques |
EA021052B1 (ru) * | 2008-03-18 | 2015-03-31 | Сэн-Гобэн Гласс Франс | Упаковка тонких слоев для остекления |
Also Published As
Publication number | Publication date |
---|---|
US7964284B2 (en) | 2011-06-21 |
EP2118032A1 (fr) | 2009-11-18 |
EP2118032B1 (fr) | 2018-04-18 |
BRPI0808928A2 (pt) | 2014-10-14 |
PL2118032T3 (pl) | 2018-07-31 |
RU2009138030A (ru) | 2011-04-20 |
US20100104840A1 (en) | 2010-04-29 |
MX2009009617A (es) | 2009-09-21 |
US20080226925A1 (en) | 2008-09-18 |
CA2676780C (fr) | 2012-06-05 |
US7655313B2 (en) | 2010-02-02 |
RU2469003C2 (ru) | 2012-12-10 |
CA2676780A1 (fr) | 2008-09-25 |
BRPI0808928B1 (pt) | 2018-10-16 |
ES2673901T3 (es) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655313B2 (en) | Low-E coated articles and methods of making same | |
US6475626B1 (en) | Low-E matchable coated articles and methods of making same | |
CA2588146C (fr) | Article revetu par un revetement a faible emissivite comprenant une ou plusieurs couches de reflexion ir et procede correspondant | |
US8142622B2 (en) | Coated article with low-E coating including IR reflecting layer(s) and corresponding method | |
CA2593990C (fr) | Article revetu par un revetement a faible emissivite comprenant une ou plusieurs couches de reflexion ir et procede correspondant | |
JP2888507B2 (ja) | 金属真空被覆物品とその製造方法 | |
EP2284135B1 (fr) | Article revêtu d'un revêtement à faible émissivité incluant des couches réfléchissant les ir et procédé correspondant | |
AU2016397940A1 (en) | Bronze colored heat treatable coated article having low solar factor value | |
EP3529221B1 (fr) | Article revêtu de couleur grise avec un revêtement à faible émissivité comprenant une couche d'absorbeur et présentant une faible transmission dans le spectre visible | |
EP3529073B1 (fr) | Article revêtu coloré à l'argent disposant d'un revêtement à faible émissivité ayant une couche absorbante et une faible transmission visible | |
US10221092B2 (en) | Green colored heat treatable coated article having low solar factor value | |
AU2016397941B2 (en) | Blue colored heat treatable coated article having low solar factor value | |
EP1362015B1 (fr) | Articles revetus a faible pouvoir d'emission pouvant etre apparies et leurs procedes de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08725609 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2676780 Country of ref document: CA Ref document number: 4881/DELNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008725609 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/009617 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009138030 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0808928 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090915 |