+

WO2008108758A1 - Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration - Google Patents

Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration Download PDF

Info

Publication number
WO2008108758A1
WO2008108758A1 PCT/US2007/005734 US2007005734W WO2008108758A1 WO 2008108758 A1 WO2008108758 A1 WO 2008108758A1 US 2007005734 W US2007005734 W US 2007005734W WO 2008108758 A1 WO2008108758 A1 WO 2008108758A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
flap
wing
lead body
catheter
Prior art date
Application number
PCT/US2007/005734
Other languages
English (en)
Inventor
John M. Swoyer
Original Assignee
Enpath Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enpath Medical, Inc. filed Critical Enpath Medical, Inc.
Priority to EP07752434A priority Critical patent/EP2134412A1/fr
Priority to PCT/US2007/005734 priority patent/WO2008108758A1/fr
Publication of WO2008108758A1 publication Critical patent/WO2008108758A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor

Definitions

  • the present invention is related generally to implantable medical devices. More specifically, the present invention is related to implantable medical electrical leads.
  • Implantable medical devices include implantable electrical stimulation leads.
  • Such electrical stimulation leads can be inserted through the skin, through the ligamentum flavum, and into the epidural space or epidural potential space. The lead can then be run along the spinal cord, over the dura membrane, without puncturing the dura membrane. The electrical stimulation lead can then be advanced to a particular position in the epidural space, carefully positioned over the proper location along the spinal cord. The proper location can be determined by the implanting physician using fluoroscopy and interaction with the patient.
  • one or more of these several surface electrodes of the lead are utilized while other surface leads are not utilized. Again, the electrode selection can be determined through interaction with the patient. When the patient's pain is masked, the lead is in the proper position and the proper electrode or electrodes have been selected. This placement procedure can be rather time- consuming. With the proper surface electrodes selected and connected to the proper end connectors, the lead can be connected to an electrical signal generator and/or sensing device.
  • the lead once placed, remain in place.
  • the lead is preferably not dislodged during the remainder of the surgicarprocedure.
  • a suture is used to anchor an intermediate part of the lead to the body.
  • the lead also preferably remains in place during all subsequent physical activity by the patient. Longitudinal displacement of the lead can move the surface electrodes, making them bear on a different portion of the spinal cord, no longer masking the pain.
  • a transverse or side to side movement of the lead can have the same effect, and can also move the surface electrodes further from the spinal cord, weakening the signal, and/or requiring greater power to reach the spinal cord. Increased power consumption can decrease battery life, which may require more frequent surgical replacement of the implanted battery.
  • a stiffening member or stylet is positioned within the lead during the insertion procedure and later removed.
  • the stylet is typically very thin, adapted to fit within a small lumen of the rather small diameter lead. This stylet may buckle during the implantation procedure. Using a stiffer member to implant the lead might prove advantageous.
  • the present invention provides implantable medical electrical leads, which can include an elongate lead body having a length, a proximal region, and a distal region; at least one electrical conductor disposed along the length of the lead body; and at least one electrode disposed in the lead body distal region and in electrical continuity with the conductor.
  • At least one flap can be secured to the distal region where the flap has a first position in which the flap is disposed close to the lead body and a second position in which the flap is extended away from the lead body.
  • the lead body distal region has a first side and a second side disposed substantially opposite the first side. The electrode can be disposed on the first side, and the flap secured to the second side.
  • the flap can be biased to move from the first position to the second position when unconstrained.
  • the flap has a first portion extending in a first direction transversely away from a longitudinal lead body axis and a second portion extending in a second direction transversely away from the lead body longitudinal axis, in which the first and second directions are substantially opposite directions from each other.
  • Some leads have a flap with a first portion extending on a first side of the lead central longitudinal axis and a second portion extending on a second, side of the longitudinal axis opposite the first side.
  • the flap first and second portions may lie in substantially the same plane when unconstrained in some leads. The plane does not extend through the central longitudinal axis in some embodiments.
  • the flap may be configured to move from the first to the second position by varying in angular position with respect to the lead longitudinal center axis when viewed from the distal end, and to vary in transverse extension from the lead longitudinal center axis when viewed from the top.
  • the flap movement does not substantially vary in longitudinal position when viewed from the side.
  • the lead flap can thus be configured to move from the First to the second position without substantially changing in longitudinal position with respect to the lead and can be configured to move from the first to the second position such that a point on the wings moves substantially within a plane that is orthogonal to the lead longitudinal center axis.
  • the flap does not carry any electrodes in preferred embodiments, and the flap is configured to move from the first to the second position such that the flap moves away from the surface electrode.
  • the present invention also provides a system including the leads described above, and further includes a tubular catheter having a lumen configured to receive the lead while in the lead second position.
  • the system may also include a pusher element adapted to be disposed along the lead body to urge the lead distally from the delivery catheter, where the pusher element may be a pusher tube adapted to be received over the lead body and within the catheter lumen.
  • the catheter has at least one electrically conductive distal region and an electrical conductor disposed along at least some of the catheter length and in electrical communication with the conductive distal region.
  • the present invention also provides methods for placing an implantable medical lead along the spinal cord.
  • the method can include: advancing a catheter having a lumen, with the implantable medical lead disposed within the lumen into the epidural space, wherein the lead has a proximal region, a distal region, at least one electrode disposed near the distal region, and an electrical conductor extending from the proximal region to the electrode and wherein the lead has at least one wing secured to the lead body and constrained toward the lead body.
  • the method can also include forcing the lead distal region and wing out of the catheter near the spinal cord, allowing the wing to extend away from the spinal cord and allowing the electrode to bear toward the spinal chord.
  • the forcing may include urging a pusher element disposed along the lead body to force the lead out of the catheter.
  • the pusher element is a pusher tube and the forcing includes urging the pusher tube disposed over the lead body and within the catheter lumen to force the lead out of the catheter.
  • the forcing can include bringing the pusher tube to bear on the lead wing. Allowing the wing to extend is often substantially limited such that the wing does not change its longitudinal position with respect to the lead body during the extension.
  • the lead wing can extend on either side of a longitudinal center axis of the lead body and on an opposite side of the longitudinal center axis from the electrode, such that the wing extending can force the lead electrode against the spinal cord and toward the spinal cord center if the lead wings are extended against surrounding tissue.
  • the catheter has an electrically conductive distal region
  • the methods further include urging the catheter electrically conductive region against the spinal cord and determining electrical and/or physiological properties using the electrically conductive distal portion.
  • the determining electrical properties may include stimulating the spinal cord using the electrically conductive catheter distal region.
  • FIG 1 is a perspective view of a system including a neurological electrical lead, a pusher tube, and a delivery catheter.
  • FIG 2 is a fragmentary, perspective view of the neurological lead of FIG 1 having fixation wings or flaps in an unwrapped or unconstrained configuration.
  • FIG 3 is a fragmentary, perspective view of the lead of FIG 2, with the fixation wings or flaps shown in a constrained or wrapped configuration.
  • FIG 4 is a fragmentary, perspective, cut-away view of the system of FIG 1, having the lead partially extended from the delivery catheter, being pushed by the pusher tube.
  • FIG 5 is a fragmentary, perspective view of the lead of FlG 4, being further pushed from the delivery catheter, allowing the most distal wing to unwrap.
  • FIG 6 is a fragmentary, perspective view of the lead of FIG 5, showing the lead further pushed from the delivery catheter, allowing the second fixation wings or flap to unwrap.
  • FIG 7 is a fragmentary, perspective view of the lead of FIG 6, showing the pusher tube and delivery catheters being proximally retracted.
  • FlG 8 is a perspective view of one lead body section having the wings or flap wrapped or curled about the lead body.
  • FIG 9 is a perspective view of the lead body section of FIG 8, showing the fixation wings or flap in an unconstrained configuration.
  • FIG 10 is a side view of a stylet that can be used to stiffen and/or push some leads into position.
  • FIG 1 1 is a transverse, cross-sectional view through a vertebra, showing a lead according to the present invention with the fixation wing extended within the epidural space.
  • FlG 1 illustrates a system 20 for delivering a neurological lead.
  • System 20 includes a neurological lead 22, a pusher element or pusher tube 24, and a delivery catheter 26.
  • Neurological lead 22 includes generally an atraumatic distal tip 28, a first electrode 34, a first Fixation wing or flap 30 secured to a first lead tubular section 36, a second electrode 38, and a second fixation wing or flap 32 secured to a second lead tubular section 40.
  • Pusher tube 24 includes a distal region 42 which may be used to push lead 22 distally.
  • Delivery catheter 26 includes a distal region 44 which may be advanced to near the target site.
  • the delivery catheter is between about 10 and 100 cm long and has an outer diameter of between about 0.5 mm and 5 mm. In a preferred range of embodiments, the delivery catheter is between about 20 and 80cm long and has an outer diameter of between about 1 mm and 3.5 mm. In a more preferred range of embodiments, the delivery catheter is between about 30 and 65 cm long and has an outer diameter of between about 1.5 mm and 2.5 mm.
  • the delivery catheter can be made of any suitable material, for example a polymeric material. Some such polymeric materials include polyamide (nylon) and polyurethane.
  • the pusher tube is between about 12 and 110 cm long and has an outer diameter dimension to slidably fit within the delivery catheter. In a preferred range of embodiments, the pusher tube is between about 25 and 85 cm long and has an outer diameter of between about 35 and 70.
  • the pusher tube can be made of any suitable material, for example a polymeric material. Some such polymeric materials include polyamide and polyurethane.
  • the pusher tube functionality may be replaced by a shaft, which may be made of polymeric or non-polymeric materials, for example metallic materials such a Nitinol or stainless steel. Both the delivery catheter and the pusher may be reinforced with wire braid or coils in some embodiments. Both may include a lubricious inner and/or outer surface.
  • the lead is between about 15 and 120 cm long and has an outer diameter of between about 0.4 mm and 2.5 mm. In a preferred range of embodiments, the lead is between about 20 cm and 85 cm long and has an outer diameter of between about .5 mm and 2 mm. In a more preferred range of embodiments, the lead is between about 25 cm and 50 cm long and has an outer diameter of between about 0.75 mm and 1.7 mm.
  • the lead can be made of any suitable material, for example a polymeric material. Some such polymeric materials include silicone and polyurethane.
  • Neurological stimulation leads are well known to those skilled in the art and are well described in numerous patents.
  • the leads, pusher element, and delivery catheter may be made using well known techniques, including extrusion and co- extrusion.
  • FIG 2 illustrates neurological lead 22 in more detail.
  • Wings or flaps 30 and 32 are in an extended, unwrapped or unconstrained configuration.
  • Electrodes 34 and 38 are illustrated as surface electrodes which extend circumferentially around the entire lead body. In some embodiments, the electrodes are surface electrodes which extend only partially around the lead body, on the opposite side of the lead body from wings 30 and 32.
  • a coil 43 may be seen, disposed within the lead body, for delivering and/or receiving the electrical signals.
  • the coil may be formed of a multi-conductor coil or any other suitable conductor, well-known to those skilled in the art.
  • Electrodes 34 and 38 may be used to sense electrical signals and/or stimulate the body with electrical stimulation signals.
  • fixation wings or flaps 30 and 32 are secured to electrically insulating tubular sections 36 and 40.
  • wings 30 and 32 may be secured directly opposite the surface electrodes disposed on the opposite side of the lead body.
  • the unfurled or unwrapped wings or flaps may be used to more accurately and consistently position the surface electrodes, allowing the electrodes to be disposed only on the underside of the lead body, providing for more directed electrical stimulation with less power usage and longer resulting battery life.
  • the fixation wings may have an unconstrained positioned that arcs away from the lead body below.
  • the unconstrained positioned of the wings may be slightly arced toward the lead body, not extending into a full plane as illustrated in FIG 2.
  • FIG 3 illustrates lead 22, having fixation wings 30 and 32 shown in a wrapped, curled, or constrained positioned closer about the lead body.
  • the wing tips may overlap each other in the wrapped configuration. In a preferred embodiment, the wing tips do not overlap each other, but may closely approach each other in the wrapped configuration. With the wings in the wrapped configuration, the wings and lead body may be retracted proximally into the delivery catheter.
  • FIG 4 illustrates lead 22 retracted at least partially proximally into delivery catheter 24.
  • Wings 30 and 32 may be seen constrained within the outer delivery catheter 24.
  • Pusher tube distal region 42 may be seen butting against the proximal fixation wings 32.
  • a pusher element such as a wire or a shaft may be used to push out the lead.
  • Lead 22 may be further proximally retracted into delivery catheter 24, and the system prepared for lead implantation.
  • the delivery catheter may be advanced to the implantation site using methods well-known to those skilled in the art.
  • the delivery catheter body may be advanced through an introducer or needle, into the epidural space.
  • the delivery catheter may be pushed along the spine, until the catheter distal region is near the target site.
  • the delivery catheter may be formed all rather stiff, pushable material, having greater kink resistance than a neurological catheter having a thin stylet within.
  • the delivery catheter may thus be forced through the epidural space and tissue with less concern for kinking or bending of the neurological lead, which may be protected by the outer catheter during at least part of the delivery process.
  • the neurological lead can be deployed distally from the delivery catheter, either by pushing the pusher catheter further distally or maintaining the position of the pusher tube while retracting the outer delivery catheter.
  • the final placement of the lead is preceded or accompanied by mapping using a mapping electrode or device having similar functionality.
  • a separate mapping lead is used to determine the optimal position for a stimulation or sensing lead placement.
  • the delivery catheter itself carries external or surface electrodes which may be used to map the optimal location.
  • the delivery catheter is suitably transparent to the electrical stimulation signals from the lead within, for example, though holes suitably placed through the delivery catheter wall. Mapping may also be performed by partially advancing the stimulation lead and using the exposed electrodes.
  • the final placement of the lead is preceded by mapping using the lead electrode for the mapping.
  • the distal most lead electrode is forced from the delivery catheter and used to perform the mapping, for example, test stimulation. After proper placement, the delivery catheter can be removed to expose any remaining electrodes and flaps or wings.
  • FIG 5 illustrates lead 22 being urged from within distal region 44 of delivery catheter 26.
  • First wing or flap 30 may be seen as released, unfurled, or unconstrained from delivery catheter 26.
  • FIG 6 illustrates lead 22 further urged from delivery catheter distal region 44.
  • First wing 30 and second wing 32 are now both deployed and pushed from delivery catheter distal region 44 by pusher tube distal region 42.
  • FIG 7 illustrates both pusher tube just a region 42 and delivery catheter distal region 44 being proximal Iy retracted from about lead 22.
  • FIG 8 illustrates a lead body section 50 with a tubular portion 52, and a wing 56 in the constrained, wrapped configuration.
  • Directional arrows 70 and 71 indicate the direction of the unfurling of wing 56 and the general direction of the force applied by the two wing portions against the surrounding tissue.
  • Directional arrow 72 indicates the resultant movement of lead body section 52, which results from the urging of the wing portions against the surrounding tissue, which can act to force the lead body and surface electrode against the dura, in the direction of the spinal cord.
  • Lead body section 50 also includes a lumen within, which can extend over part or most of its length. The lumen can receive a removable stiffening member such as a stylet within. The stylet can be used to stiffen and/or to push the lead from the delivery catheter, either alone or in conjunction with a pusher tube. Some lead bodies have no lumen within and is used with a pusher tube without a stylet.
  • FIG 9 illustrates lead section 50 in the unwrapped or unconstrained configuration.
  • Wing 56 may be seen to have two portions, 60 and 58. Wing tips 62 and 64 may also be seen.
  • a surface electrode 54 may be seen disposed on the surface of lead body tubular region 52, forced against highly diagrammatic dura matter 51. Surface electrode 54 covers only a portion of tubular section 52, which can allow for reduced power consumption in the electrical stimulation unit and battery. Wing 56 can thus act to force surface electrode 54 against dura matter 51, closer to the spinal cord.
  • FIG 10 illustrates a stylet 80 that can be used with some leads.
  • FIGS 8 and 9 show that the wing is circumferentially disposed about the lead body in the wrapped or constrained configuration.
  • Wing tips 62 and 64 may be seen to move away from lead body 52, but not to move longitudinally with respect to lead body 52. This means that the wing unwrapping does not urge the lead body to move longitudinally. This also means that the wing unwrapping does not act to dislodge the lead from the previous position.
  • a plane or several planes maybe viewed as passing through the lead body and being transversely or orthogonally disposed with respect to the longitudinal central axis of the lead body. At least one plane may be viewed as passing through the lead body in the region of fixation of the wing to the tubular lead body. Such a plane describes a path over the surface of the wing while in the wrapped or constrained configuration. When the wing is unwrapped or released, the same plane may describe the same surface line on the wing in many embodiments of the present invention, as the wing has not moved longitudinally with respect to the lead body.
  • Releasing the wrapped wing portions may thus act to urge the portion of the lead body opposite the wing attachment region in a direction opposite to the wing attachment region, when the wings are disposed within tissue or a viscous environment.
  • This may be contrasted with wing portions wrapped or constrained longitudinally along the lead body longitudinal axis, where the wing tips move longitudinally with respect to the lead body once released.
  • Such a longitudinal wing tip movement would act to move the lead body longitudinally when the wings are disposed within tissue or a viscous environment.
  • the lead placement is tested after the wings are deployed, with the lead body moved longitudinally after deployment, to further adjust the lead position.
  • This adjustment may . be based on testing using the lead surface electrodes in some methods. Selection of which electrodes to connect may be done at this time in some methods.
  • FIG 1 1 illustrates a winged lead 100 having a body 102 and wing 104 disposed within an epidural space 114, with lead body 102 urged against dura matter 110.
  • Lead body 102 is just urged close to spinal cord 1 12.
  • Spinal cord 1 12 may be seen disposed between vertebral body portions 106 and 108.
  • FIG 11 shows that winged lead 100 can have two advantages.
  • the correct orientation of the surface electrode may be maintained as the rotation of the lead about its center is inhibited by the wings. This may allow the use of a surface electrode disposed over only a portion of the lead body, in a direction toward the spinal cord.
  • the movement of the surface electrode and lead away from the spinal cord may also be inhibited by the wings.
  • the lead wings may be passively fixed over time by the body. This can provide improved resistance to lead displacement during physical exertion by the patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

L'invention porte sur des dispositifs et procédés permettant d'implanter une électrode médullaire neurologique munie d'au moins une aile ou lambeau s'étendant transversalement à partir du corps de l'électrode. L'aile peut avoir une première configuration enveloppée dans laquelle elle est maintenue contre le corps de l'électrode et une seconde configuration non-enveloppée dans laquelle elle est libérée et peut s'étendre vers l'extérieur. L'aile peut être inclinée diagonalement au moment de sa libération, de manière à ce que les embouts de l'aile présentent des modifications de la position angulaire lorsque vus depuis l'extrémité et de l'extension transversale lorsque vus de haut, mais ne présentent aucune modification de la position longitudinale lorsque vus de côté. Un tube de poussée peut être utilisé pour libérer l'électrode d'un cathéter d'administration, cette opération permettant à l'aile (ou aux ailes) de s'étendre et ainsi de pousser une électrode de surface vers la moelle épinière, de maintenir une position longitudinale et de rester passivement fixe au fil du temps. De telles électrodes peuvent procurer une amélioration de la stabilité longitudinale dès lors que la position dans laquelle elles sont fixées par rapport à la moelle épinière est correcte.
PCT/US2007/005734 2007-03-07 2007-03-07 Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration WO2008108758A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07752434A EP2134412A1 (fr) 2007-03-07 2007-03-07 Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration
PCT/US2007/005734 WO2008108758A1 (fr) 2007-03-07 2007-03-07 Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/005734 WO2008108758A1 (fr) 2007-03-07 2007-03-07 Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration

Publications (1)

Publication Number Publication Date
WO2008108758A1 true WO2008108758A1 (fr) 2008-09-12

Family

ID=38134571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/005734 WO2008108758A1 (fr) 2007-03-07 2007-03-07 Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration

Country Status (2)

Country Link
EP (1) EP2134412A1 (fr)
WO (1) WO2008108758A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590949A (en) * 1984-11-01 1986-05-27 Cordis Corporation Neural stimulating lead with stabilizing mechanism and method for using same
US4658835A (en) * 1985-07-25 1987-04-21 Cordis Corporation Neural stimulating lead with fixation canopy formation
US4800898A (en) * 1983-10-07 1989-01-31 Cordis Corporation Neural stimulator electrode element and lead
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US20050033393A1 (en) 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
WO2006012050A2 (fr) * 2004-06-30 2006-02-02 Cvrx, Inc. Structures de connexion pour un corps conducteur a electrodes extravasculaires
US20070055332A1 (en) * 2005-09-03 2007-03-08 Enpath Medical, Inc. Self fixing spinal cord stimulation lead and delivery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060161235A1 (en) * 2005-01-19 2006-07-20 Medtronic, Inc. Multiple lead stimulation system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800898A (en) * 1983-10-07 1989-01-31 Cordis Corporation Neural stimulator electrode element and lead
US4590949A (en) * 1984-11-01 1986-05-27 Cordis Corporation Neural stimulating lead with stabilizing mechanism and method for using same
US4658835A (en) * 1985-07-25 1987-04-21 Cordis Corporation Neural stimulating lead with fixation canopy formation
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US20050033393A1 (en) 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
WO2006012050A2 (fr) * 2004-06-30 2006-02-02 Cvrx, Inc. Structures de connexion pour un corps conducteur a electrodes extravasculaires
US20070055332A1 (en) * 2005-09-03 2007-03-08 Enpath Medical, Inc. Self fixing spinal cord stimulation lead and delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2134412A1 *

Also Published As

Publication number Publication date
EP2134412A1 (fr) 2009-12-23

Similar Documents

Publication Publication Date Title
US7640064B2 (en) Self fixing spinal cord stimulation lead and delivery system
US10987134B2 (en) Introduction and anchoring tool for an implantable medical device element
US6512958B1 (en) Percutaneous medical probe and flexible guide wire
US8634932B1 (en) Minimally invasive methods for implanting a sacral stimulation lead
US7187982B2 (en) Medical electrical lead anchoring
US8892214B2 (en) Multi-electrode peripheral nerve evaluation lead and related system and method of use
US7184842B2 (en) Medical electrical lead anchoring
EP2089095B1 (fr) Derivation medicale implantable avec fixation filetee
US6606521B2 (en) Implantable medical lead
CN110072474B (zh) 在组织中形成通道的设备以及相关联的介入式医疗系统
US11116966B2 (en) Retention mechanism for an implantable lead
US20130267837A1 (en) Electrical lead positioning systems and methods
US10555726B2 (en) Percutaneous tools for minimally invasive access to the carotid sheath for vagus nerve stimulation
EP2134412A1 (fr) Électrode de stimulation de la moelle épinière à fixation automatique et système d'administration
CN112469464B (zh) 用于可植入导线的保持机构
US20230211152A1 (en) Device and method for electrotherapy and/or electrophysiology
US20240066293A1 (en) Spinal cord stimulation device implantation methods and related systems and devices
US20240390032A1 (en) Spinal cord stimulation device implantation methods and related systems and devices
CN116209404A (zh) 可植入医疗引线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07752434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007752434

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载