+

WO2008108640A1 - A gene mutated in fanconi anemia complementation group i - Google Patents

A gene mutated in fanconi anemia complementation group i Download PDF

Info

Publication number
WO2008108640A1
WO2008108640A1 PCT/NL2008/000077 NL2008000077W WO2008108640A1 WO 2008108640 A1 WO2008108640 A1 WO 2008108640A1 NL 2008000077 W NL2008000077 W NL 2008000077W WO 2008108640 A1 WO2008108640 A1 WO 2008108640A1
Authority
WO
WIPO (PCT)
Prior art keywords
fanci
gene
dna
sequence
mutation
Prior art date
Application number
PCT/NL2008/000077
Other languages
French (fr)
Inventor
Josephine Christine Dorsman
Johannes Petrus De Winter
Hans Joenje
Original Assignee
Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patiëntenzorg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patiëntenzorg filed Critical Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patiëntenzorg
Publication of WO2008108640A1 publication Critical patent/WO2008108640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the current invention relates to an isolated human genomic DNA molecule on chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in complementation group I of Fanconi anemia (FA), the FANCI gene. It further relates to methods for determining a genetic defect in a patient, the defect being a mutation in the Fanconi anemia gene of complementation group I, or for complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I.
  • FA Fanconi anemia
  • the invention relates to the use of the gene and fragments, cDNA and fragments, polypeptides and fragments, and antibodies against FANCI and siRNAS against FANCI, for diagnosis of FA, determining hereditary predisposition, tumor classification, for treatment or for drug development.
  • Fanconi anemia is a genetically heterogeneous chromosomal instability disorder with both autosomal and X-linked recessive inheritance and characterized by developmental abnormalities, retarded growth, bone marrow failure, and a high risk of cancer (Joenje, H., & Patel, K.J. Nat. Rev. Genet. 2, 446-457 (2001); Levitus, M. et al . Cell. Oncol. 28, 3-29 (2006); Taniguchi, T. & D'Andrea, A. D. Blood 107, 4223-4233 (2006) .
  • MMC mitomycin C
  • diepoxybutane diepoxybutane
  • Thirteen complementation groups are currently distinguished, all of which - except group I - have been linked to distinct disease genes (Levitus, M. et al. Cell. Oncol. 28, 3-29 (2006); Taniguchi, T. & D'Andrea, A. D. Blood 107, 4223-4233 (2006); Xia, B. et al. Nat. Genet. 39, 159-161 (2007)).
  • FA proteins are supposed to function in the FA pathway of genomic maintenance. Most of these proteins assemble into a multiprotein core complex which functions as an E3 ubiquitin ligase to modify FANCD2 by monoubiquitination (Garcia-Higuera, I. et al. MoI. Cell 7, 249-262 (2001)). FANCJ/BRIPl, FANCD1/BRCA2, and FANCN/PALB2 are supposed to act downstream of this modification step, because FANCD2 ubiquitination appears normal in cells lacking these proteins.
  • the ubiquitinated form of FANCD2 is called FANDCD2-L, whereas the non- ubiquitinated form is called FANCD2-S.
  • FANCD2 ubiquitination Patient cell lines of complementation group I (FA-I cells) are deficient in FANCD2 ubiquitination and are characterized by a defect in the association of FANCD2 with chromatin (Levitus, M. et al . Cell. Oncol. 28, 3-29 (2006).).
  • FA-C complementation group C
  • the identification, cloning and sequencing of such a DNA molecule should facilitate new and improved methods of diagnosis and treatment of Fanconi anemia, and also cancer.
  • DNA deoxyribonucleic acid.
  • DNA is a polymer which comprises the genetic material of most living organisms (some viruses have genes comprising ribonucleic acid (RNA) ) .
  • the repeating units in DNA polymers are four different nucleotides, each of which comprises one of the four bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached.
  • Triplets of nucleotides, referred to as codons in DNA molecules code for amino acid in a polypeptide.
  • codon is also used for the corresponding (and complementary) sequences of three nucleotides in the ⁇ iRNA into which the DNA sequence is transcribed.
  • cDNA complementary DNA: a piece of DNA lacking internal, non-coding segments (see introns) and regulatory sequences which determine transcription. cDNA is synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells.
  • FA carrier or FA heterozygote a person who does not exhibit apparent signs and symptoms of FA but whose chromosomes contain a mutant FA gene that may be transmitted to that person's offspring.
  • FA gene a gene, the mutant forms of which are associated with the disease Fanconi anemia.
  • This definition is understood to include the various sequence polymorphisms that exist, wherein nucleotide substitutions in the gene sequence do not affect the essential functions of the gene product.
  • This term relates primarily to an isolated coding sequence but can also include some or all of the flanking 5' and 3' regulatory elements and/or intron sequences, and the so-called UTR-regions (untranslated regions) .
  • FA patient a person who carries a mutant FA gene, such that the person exhibits clinical signs and/or symptoms of FA.
  • FA-I Fanconi anemia of complementation group I.
  • FA-I carrier or FA-I heterozygote a person who does not exhibit signs or symptoms of FA but whose chromosomes contain a mutant FA-I gene that may be transmitted to that person's offspring.
  • FA-I gene or FANCI the gene, present in the human genome, mutant forms of which are associated with Fanconi anemia of complementation group I.
  • This definition is understood to include the various sequence polymorphisms that exist, wherein nucleotide substitutions in the gene sequence do not affect the essential functions of the gene product.
  • This term relates primarily to an isolated coding sequence, but can also include some or all of the flanking regulatory elements and/or intron sequences.
  • FA-I cDNA a human cDNA molecule which, when transfected into FA-I cells, is able to complement the hypersensitivity of those cells to DNA crosslinking agents.
  • the FA-I cDNA is derived by reverse transcription from the mRNA encoded by the FA-I gene and lacks internal noncoding segments present in the FA-I gene.
  • FA-I protein or polypeptide the protein encoded by a human FA-I cDNA. This definition is understood to include the various sequence polymorphisms that exist, wherein amino acid substitutions in the protein sequence do not affect the essential functions of the protein.
  • Mutant FA-I gene a mutant form of the FA-I gene which is associated with Fanconi anemia of complementation group I.
  • Mutant FA-I RNA the RNA transcribed from a mutant FA-I gene.
  • Mutant FA-I protein the protein encoded by a mutant FA-I gene.
  • ORF open reading frame. Contains a series of nucleotide triplets (codons) coding for amino acids without any termination codons . These sequences are usually translatable into protein.
  • PCR polymerase chain reaction. Describes a technique in which cycles of denaturation, annealing with primer, and then extension with DNA polymerase are used to amplify the number of copies of a target DNA sequence.
  • purified does not require absolute purity; rather, it is intended as a relative term.
  • a purified protein preparation is one in which the protein referred to is more pure than the protein in its natural environment within a cell.
  • siRNA Abbreviation for small inhibitory RNA, a short sequence of RNA which can be used to silence gene expression.
  • an isolated human DNA molecule derived from chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in FA complementation group I and in individuals predisposed to cancer.
  • chromosome 15 comprises at least one gene that has a nucleotide sequence which sequence is mutated in FA complementation group I.
  • the isolated DNA molecule does in normal and healthy person not contain a mutation, whereas in FA complementation group I said mutation might be present.
  • said mutation found in FA complementation group I contributes to the phenotype or molecular basis of FA.
  • the DNA molecule is localized to locus 15q25-26.
  • locus 15q25-26 DNA molecules can be isolated that can be advantageously utilized to solve the problem of the current invention.
  • an isolated DNA molecule from locus 15q-26 of the human genome and said molecule does in normal and healthy person not contain a mutation, whereas in
  • said mutation found in a DNA molecule isolated from locus 15q25-26 of DNA form FA complementation group I contributes to the phenotype or molecular basis of FA.
  • the DNA molecule contains a gene, wherein the (reference) gene has 38 exons with a translation start in exon 2, and encodes a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs.
  • Other splice variants do exist and are contemplated.
  • ATM/ATR phosphorylation motifs are, namely phosphorylation sites for the phosphatidyl inositol 3-kinase-like kinases ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) .
  • Intron retaining mode in this case, instead of splicing out an intron, the intron is retained in the itiRNA transcript. However, the intron must be properly encoding for amino acids. The intron 's code must be properly expressible, otherwise a stop codon or a shift in the reading frame will cause the protein to be likely to be nonfunctional.
  • Exon cassette mode in this case, certain exons are spliced out to alter the sequence of amino acids in the expressed protein.
  • Said splicing variants of the gene are in particular contemplated/comprehended in the current invention.
  • DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
  • said sequence comprising at least several introns and exons, but also including the 3' and 5' UTR (untranslated region) and being/comprising the genomic DNA molecule that contains the FANCI gene and encodes the protein, provides for the solution of the problem of the current invention.
  • said genomic gene from which for example a cDNA can be derived, is comprehended by the current invention.
  • Seq ID No 1 mutations can occur (both in exons and or introns) that might be observed in FA complementation group I and in individuals predisposed to cancer.
  • DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
  • nucleotide sequence of the genomic gene of FANCI (Seq Id No. 1)
  • complementary DNA strands which for example can be used as basis for primers and the like, useful in the polymerase chain reaction or as hybridization probes.
  • probes and primers are particularly useful in diagnosis of FA-I carriers and sufferers.
  • the isolated human FA-I genomic gene sequence also comprehended by this invention is the (reference) cDNA derived therefrom and disclosed in SEQ ID No 2.
  • the present invention also provides for the use of the FA-I cDNA and derivatives thereof, the corresponding genomic gene and derivatives thereof and of the FA-I protein and derivatives thereof, in aspects of diagnosis and treatment of FA-I.
  • a DNA molecule according to the invention is provided, the DNA molecule being a cDNA molecule selected from the group consisting of: a. a DNA molecule having the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence; b. A DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence.
  • Said cDNA allows for efficient studying and utilization of the FANCI gene in the development of, for example, methods for diagnosis of FA, for counseling of subjects carrying FANCI mutations in cancer predisposed families, for tumor classification, as target for therapy, or as a lead for drug development.
  • said cDNA can be introduced in a vector like a plasmid and brought to expression in bacteria, yeast and or other organism. Obviously it can also be used to produce protein/polypeptides, which for example can be further used for developing antibodies, finding drugs that interact with the FA pathway, ' of in particular with the FA genes and/or proteins.
  • DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
  • nucleotide sequence of the reference cDNA of FANCI (Seq Id No. 2)
  • complementary DNA strands which for example can be used as basis for primers and the like, useful in the polymerase chain reaction or as hybridization probes.
  • probes and primers are particularly useful in diagnosis of FA-I carriers and sufferers.
  • DNA molecules which differ in minor ways from those disclosed DNA molecules and nucleotide sequences which are derivatives of those specifically disclosed herein and which differ from those disclosed by the deletion, addition or substitution of nucleotides while still encoding a protein which possesses the functional characteristic of the FANCI protein are comprehended by this invention.
  • small DNA molecules which are derived from the disclosed DNA molecules. Such small DNA molecules include oligonucleotides suitable for use as hybridization probes or polymerase chain reaction (PCR) primers.
  • the degeneracy of the genetic code further widens the scope of the present invention as it enables major variations in the nucleotide sequence of a DNA molecule while maintaining the amino acid sequence of the encoded protein.
  • the nucleotide sequence of the FANCI DNA could be changed at certain position to any of those codons that encode the same amino acid, without affecting the amino acid composition of the encoded protein or the characteristics of the protein.
  • variant DNA molecules may be derived from the cDNA molecules disclosed herein using standard DNA mutagenesis techniques as described above, or by synthesis of DNA sequences.
  • an oligonucleotide comprising at least 150, preferably at least 100, more preferably at least 50, even more preferably at least 20, most preferably at least 15 consecutive nucleotides of a DNA molecule according to the invention.
  • such small DNA molecules can comprise at least a segment of the genomic gene (SEQ ID 1) molecule and, for the purposes of PCR, will comprise at least a 15 nucleotide sequence and, more preferably, a 15-20 nucleotide sequence of the genomic DNA.
  • DNA molecules and nucleotide sequences which are derived from the disclosed DNA molecules as described above may also be defined as DNA sequences which hybridize under stringent conditions to the DNA sequences disclosed, or fragments thereof.
  • a DNA molecule according to any of the previous claims, wherein a mutation has been introduced by means of insertion, deletion, and/or replacement of one or more nucleotides, and wherein said molecule encodes for a protein that, when introduced into cells from patients with Fanconi anemia of complementation group I, does not reduce the sensitivity of those cells to mitomycin C.
  • Such DNA molecule thus provides a DNA molecule that carries a mutation that contributes to the FA phenotype, in particular relates to the molecular mechanism of phenotype related to FA complementation group I. It will thus be understood by the skilled person that, for example, by random mutagenesis of DNA according to the invention and introduction thereof in cells from patients with FA, it can be easily studied whether said mutagenesis led to the formation of a DNA molecule and/or protein derived thereof that can either reduce the sensitivity to mitomycin C or not, and thus that might contain mutations that either contribute to FA or not, allowing to quickly identify such mutations. Mutations found in a manner like described above are therefore also clearly contemplated.
  • a DNA molecule according to the invention wherein a mutation has been introduced chosen from the group consisting of partial of complete exon deletion, inserted exon, protein truncation, amino acid substitution.
  • a mutation has been introduced chosen from the group consisting of partial of complete exon deletion, inserted exon, protein truncation, amino acid substitution.
  • mutations or modifications in the promoter region for example leading to silencing of the promoter and mutations in the 3' flank are also contemplated.
  • a DNA molecule wherein at least one mutation or polymorphism selected from the group consisting of mutations c.2T>C, c.670-2A>G, c.3854G>A, c.3006+3A>G, C.3853OT, c.3437_3455deletion, C.3895OT, c.l264G>C, c.3350-88A>G, C.2572OT, c.2509G>T, and c.2248T>G and polymorphism C.164OT of the nucleotide sequence as shown in SEQ ID No.2 is present. Mutation was found c.670- 2A>G in a breast cancer family negative for BRCAl and BRCA2 mutations.
  • ⁇ c.' refers to cDNA sequences
  • ⁇ +3' refers to the third nucleotide of the intron beyond an intron boundary
  • ⁇ -3' refers to a position in the intron, 3 nucleotides before the intron boundary.
  • the 670-2A>G has been found by sequencing FANCI cDNA in 90 index patients that were screened for BRCAl/BRCA2 mutations and found negative, i.e. subjects predisposed for inherited breast cancer. FANCI therefore also seems to play a role in a variety of cancers, in addition to the above-identified, such as breast cancer and ovarian cancer.
  • these mutations provide for mutants that contribute to FA in particular FA complementation group I or predispose to cancer in mono-allelic form.
  • these mutations when present in the DNA, can lead to a FA phenotype, in particular FA complementation group I lead to a FA phenotype, in particular FA complementation group I phenotype, when both alleles are affected by mutation.
  • mutants in monoallelic form of the contemplated gene can increase cancer risk.
  • mutations in monoallelic form of the contemplated gene can increase cancer risk.
  • also other mutants than can be identified as described above are contemplated.
  • a polypeptide encoded by a DNA molecule according to the invention is very useful in developing new drugs, antibodies, understanding and knowledge with respect to diagnosis, treatment and the like of FA, in particular like that is shown in- FA complementation group I patients.
  • Antibodies, both monoclonal and polyclonal, and antibody fragments, specifically recognizing FANCI protein or mutated protein as identified herein on DNA level are also encompassed by the present invention.
  • mutant polypeptides the following is noted: while the site for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence as described above are well known.
  • Amino acid substitutions are typically of single residues; insertions usually will be in the order of about from 1 to 10 amino acid residues; and deletions will usually range about from 1 to 30 residues .
  • Deletions or insertions preferably are made in adjacent pairs, i.e., a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct.
  • a method for determining a genetic defect in a patient the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprises determination of the sequence of the FANCI gene of said patient.
  • the invention further provides a method for determining whether a subject carries a mutant FANCI gene, comprising the steps of: a) providing a biological sample from the subject, which sample includes DNA and/or RNA, b) determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, c) compare the determined sequence with that of SEQ ID No 1 or SEQ ID No 2.
  • the biological sample can be any suitable sample from the (human) subject, as long as it contains representative DNA or RNA of the subject that can be sequenced by techniques, know in the art, e.g. by PCR mediated sequencing.
  • the FANCI sequence can be determined by using specific oligonucleotide probes.
  • the sequenced FANCI sequence can be compared with that of wild-type, such as that of SEQ ID No 1. It is also possible to use the corresponding wild-type cDNA, e.g. as given in SEQ ID No 2. Any genetic difference is indicative for a mutation in the FANCI gene.
  • any tumor formation is heriditary; in case of the presence of a single mutated gene (heterozygous) , there is predisposition for the tumor formation.
  • step b) comprises determining the sequence of a portion of the FANCI gene encompassing one or more of the mutations as defined above, or a corresponding portion of the FANCI mRNA.
  • the invention in another embodiment, relates to a method for classification of tumors, comprising the steps of: a) providing a biological sample from the subject, which sample includes DNA and/or RNA, and/or protein, b) determining whether the FANCI gene is expressed at the RNA and/or protein level, and c) determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, d) comparing the determined sequence with that of SEQ ID
  • FANCI gene is expressed. He can determine the presence of FANCI protein, e.g. by checking specific binding with an anti FANCI antibody, or he can determine the presence of FANCI mRNA, e.g. by RT- PCR, a well established method in the art, or he can check the methylation condition of the promoter of the FANCI gene. If the promoter is methylated, it can be concluded that the gene is not expressed. If the gene is not expressed, or to a lower extent than at normal conditions, the tumor can be classified as a FANCI defective tumor, by not expressing FANCI or to a lesser extent.
  • the next step is to establish whether the FANCI gene is mutated and to identify the said mutation(s), as explained above.
  • the sequence of the FANCI gene can be determined before, after or simultaneously with the determination of of the expression of the FANCI gene. I.e., steps b) and c) can be performed in any order, or simultaneously.
  • the classification can be made based on the mutation (s) identified.
  • the invention related to a method for drug testing, in particular for the suitability for use as an antitumorigenic drug in patients having a tumor wherein FANCI is inactive or less active, comprising the steps of: a) providing a biological sample of the patient comprising
  • DNA and/or RNA and/or protein DNA and/or RNA and/or protein, b) determining whether the FANCI gene is expressed at the RNA and/or protein level, and c) determining whether a FANCI mutation is present in the tumor DNA of the patient, d) identifying the said mutation, e) treating tumor cells from the patient ex vivo with an antitumorigenic drug, f) determine whether the antitumorigenic drug is capable of inhibiting growth of the tumor cells, g) correlating the mutation with the effectivity of the antitumorigenic drug.
  • the tumor cells from the patient can be subjected to treatment with an antitumorigenic drug, such as a polyfunctional alkylating agent, preferably a bifunctional agent, most preferably cis-platin.
  • an antitumorigenic drug such as a polyfunctional alkylating agent, preferably a bifunctional agent, most preferably cis-platin.
  • any other possible antitumorigenic drug can be used to check whether it is suitable to treat the tumor. If the drug is capable of inhibiting the growth of the tumor cells, the drug is effective for the particular tumor. So, a correlation can be made of the effectivity of the drug and the particular mutation, which is helpful for future treatments of tumors wherein the same mutations are identified. In such a case, the effectivity of one or more antitumorigenic tumors is known, and based thereon, a suitable drug therapy can be designed.
  • the tumor is preferably chosen from the group, consisting of FA, breast cancer, ovarian cancer, head-and-neck cancer, solid childhood cancer or squamous cell carcinoma.
  • the FANCI gene is possible affected, is subject of the present invention.
  • sequence shown in Seq ID No 1 contains the FANCI gene.
  • An embodiment of the present invention is thus a method for screening a subject to determine if said. subject carries a mutant
  • the method comprises the steps of: providing a biological sample obtained from the subject, which sample includes DNA or RNA, and providing an assay for detecting in the biological sample the presence of a mutant FANCI gene or a mutant FANCI mRNA.
  • This assay preferably comprises either: hybridization with oligonucleotides; PCR amplification of the FANCI gene or a part thereof using oligonucleotide primers; RT-PCR amplification of the FANCI RNA or a part thereof using oligonucleotide primers; or direct sequencing of the FANCI gene of the subjects genome using oligonucleotide primers.
  • the invention relates to a method of complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprising introducing into the cell one or more DNA molecules according to the invention, said DNA molecules having no mutations that contribute to the FA phenotype, or more particular to the FA complementation group I phenotype, or the polypeptide derived from such DNA.
  • a DNA molecule according to the invention for methods of diagnosis, treatment or drug development, in particular for methods of diagnosis, treatment or drug development directed to the diagnosis, treatment or drug testing of FA, cancer, and bone marrow failure.
  • FANCD2-S nuclear extracts of FA-I cells suggest a function for FANCI in binding FANCD2-S to the chromatin.
  • FANCD2 As both forms of FANCD2 seem to associate with the chromatin, it is possible that FANCD2 is monoubiquitinated here.
  • the faint presence of FANCD2-L in these extracts might point to a downstream function for FANCI, in binding of FANCD2 to the chromatin, but also in the stabilization of FANCD2-L (See Levitus, M. et al. Cell. Oncol. 28, 3- 29 (2006) .) .
  • FANCA Factorin A
  • FANCB FANCB
  • FANCC FANCDl/BRCA2
  • FANCD2 FANCD2
  • FANCF FANCG
  • FANCJ/BRIPl FANCL
  • FANCM FANCN/PALB2
  • a thirteenth, FANCI has now been identified by us, which is subject of this claim.
  • crosslinking agents are preferably poly or bifunctional alkylating agents, most preferably bifunctional, such as cis- platin.
  • a high-throughput screen for small molecule inhibitors of FANCI may result in the identification of agents that specifically block FANCI. Such agents, when specifically targeted to tumor cells, may result in substantial improvement of cure rates by cross-linking agents by sensitizing otherwise non-responsive cells.
  • - Molecular diagnostics for FA patients. When new FA patients are screened the current protocol will be extended to the DNA sequencing of 1) the FANCI cDNA and the 2) the genomic FANCI sequence .
  • Tumor samples can be analysed via immunohistochemistry or Western using antibodies against
  • FANCI FANCI.
  • the levels of mRNA can be determined via techniques such as quantitative RT-PCR.
  • DNA mutations can be analysed by techniques such as DNA sequencing, DNA copy number analysis of gene or exons, LOH analysis. When these analyses point to defects, tumors may be susceptible to treatment with cross- linking reagents.
  • FANCI in human cancer cell lines, such as HeLa, increases the sensitivity towards polyfunctional alkylating agents. This feature can be exploited to identify small molecules specifically inhibiting FANCI in drug screening protocols.
  • FANCI partial defect in gene A
  • a (partial) defect in gene B function on its own is not lethal.
  • Combined defects are lethal.
  • a deliberate disruption of FANCI (gene A) in a cancer cell with a specific defect to be identified (gene B) or a deliberate disruption of a to be identified gene (gene B) in a cancer cell with a defect in FANCI (gene A) may confer synthetic lethality.
  • the identification of genes of the group B group is contemplated.
  • Example 1 Patients, cell lines, and controls.
  • DNAs were isolated from blood samples obtained from The Netherlands Blood Transfusion Service; the donors were healthy and unselected for ethnic background.
  • a genome-wide scan for genetic linkage was performed using the Applied Biosystems microsatellite polymorphism linkage mapping kit MDlO and the Weber 6B Screening set, in accordance with the manufacturer's protocols and performed with the GeneAmp PCR system 9700 (Applied Biosystems microsatellite polymorphism linkage mapping kit MDlO and the Weber 6B Screening set, in accordance with the manufacturer's protocols and performed with the GeneAmp PCR system 9700 (Applied Biosystems microsatellite polymorphism linkage mapping kit MDlO and the Weber 6B Screening set, in accordance with the manufacturer's protocols and performed with the GeneAmp PCR system 9700 (Applied
  • Genomic DNA was isolated from whole blood or lymphoblastoid cell lines from patients and family members, using a Qiagen Blood mini kit (Qiagen, Venlo, The Netherlands) .
  • the genomic DNA of patient 480 was isolated from hair follicles using a 2 h incubation with proteinase K and a Qiagen Blood mini kit. Due to the lack of sufficient DNA whole genome amplification was carried out on DNA from patients 480 and 1428, using the GenomiPhi DNA amplification kit (Amersham Biosciences, Buckinghamshire, UK) .
  • Example 3 Determination of candidate regions . The initial genome-wide genetic linkage analysis with the patients
  • EUFA592 and BD952 from consanguineous families 1 and 2 ( Figure 1) and the multiplex family 4 yielded candidate regions on chromosome 2, 4, 6, 7, 8, 15, 16, 17 and 18, which were further analyzed using patient 1428 from family 2, patient EUFA1355 from family 4, and family 3.
  • the kinase DBF4/ASK (on chromosome 7q21.3) for its role in replication initiation and S-phase progression) ; the putative E2 ubiquitin conjugating enzyme FLJlIOIl (on chromosome 8q21.11 for its interaction with FANCD2 in Drosophila (FlyGrid) ; the aprataxin like HIT domain containing hydrolase LOC390637 (on chromosome 15q26.1) for its putative role in DNA repair; the RING finger Nsel (on chromosome 16pl2.1), for its role in DNA damage response as part of the SMC5/6 complex; the RING finger RNF40 (on chromosome 16pll.2), for its putative function as E3 ubiquitin ligase; and the vitamin K epoxide reductase complex subunit 1 (VKORCl on chromosome 16pll.2), for its presence in a cDNA expression
  • NP_859058.1, NP 001013679.2, NP 073581.1, XP 933746.1, and XP 934096 were subjected to a WoLFPSort and NUCDISC search (wolfpsort.org) and those were selected for which the nucleus was the most likely location and which contained at least 1 putative nuclear localization signal (NLS: pat4, pat7 or bipartite): KIAA1794 [NP_060663] ,
  • KIAA1794 is an orphan protein displaying a similar conservation as FANCD2 (human versus mouse: ⁇ 75%; both genes are present in Drosophila) . It showed an expected expression pattern for a FA gene (low and ubiquitous, but relatively prevalent in bone marrow and thymus; same pattern also found for FANCM) and contained 3 ATM/ATR motifs. C15orf42 was less conserved in the mouse than KIAA1794 (68% versus 75%) , displayed a higher level of expression than usually found for FA genes and contained 1 ATM/ATR motif. Thus in total, KIAA1794 was considered the prime candidate.
  • CTTTTTGGAAGTTTGTGGCG cFANCI.forOl TTTTTCGTAGCCAGGGCAG cFANCI.revOl CCATTTTCCAGGACCATTATTG cFANCI.for02 GGCACAGTGACAACATCCAATAG cFANCI.revO2 TCAAG ⁇ AATACC ⁇ CCTTTGGTCTATC cFANCI.for03 TTCTTCACTACTTCCAAGATCATGG cFANCI.revO3 TCTGTCTGTAACAAGAATACAAAGATTTC cFANCI.for04 GAAGAACAACTTTGAAGAACTAAGGG cFANCI.revO4 CGGAGCTA ⁇ TATCCTGTTGGAA ⁇ C • cFANCI.for05 GGCAAAAAGTTTCATTGGCG cFANCI.revO5 GGGTTTTTGCTGCTCCTGAAG cFANCI.forO ⁇ GGTCTTCGTAGAATGCCTCTTCC cFANCI.revO
  • PCR were performed under conditions known to the skilled person, using standard methodology.
  • PCR products were purified using a SAP/EXO treatment (Amersham Biosciences, Uppsala, Sweden) according to the manufacturer's instructions. Sequencing reactions were prepared using specific primers and Big Dye terminator cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) . Samples were analyzed on an ABI 3730 DNA Analyzer (Applied Biosystems) .
  • Example 7 A gene mutated in Fanconi anemia complementation group I Using the methods described in the above-mentioned samples, a genome- wide linkage study involving 4 genetically informative families, including two first cousin marriages (See Fig. 1 and Table 1) , resulted in 4 candidate regions that were considered to harbour the gene: on chromosome 7q between markers D7S2204 and D7S820 (5.6 Mb, 8.6 cM, 12 genes), on 15q between D15S653 and D15S652 (7.1 Mb, 10.5 cM, 79 genes), on 16q between VKORCl and D16S3105 (14.4 Mb, 1.5 cM, 102 genes), and on 17q between D17S1290 and D17S2059 (12.3 Mb, 15.3 cM, 158 genes), together encompassing 39.4 Mb of genomic DNA and 351 genes .
  • KIAA1794 which is localized to 15q25-26, has 38 exons with a translation start in exon 2, encoding a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs (see Seq Id No 2) .
  • Patient BD952 was homozygous for two missense mutations, C.164OT (in exon 4) and c.3854G>A (in exon 36), resulting in a Proline to Leucine substitution at position 55 and an Arginine to Glutamine substitution at position 1285, respectively (Table 2) .
  • C.164OT in exon 4
  • c.3854G>A in exon 36
  • the maternal allele contained a premature stop (c.3853OT) in exon 37, whereas the paternal allele carried a mutation (c.3350-88A>G) in intron 31 resulting in aberrant splicing. From this individual a lymphoblastoid subline had been obtained that was phenotypically reverted to MMC resistance, while these cells had regained their capacity to monoubiquitinate FANCD2 (Fig. 2a and b) .
  • FANCI A striking feature of FA-I cells is their apparent deficiency in the association of FANCD2 with chromatin.
  • FANCI possesses several strong SQD/SQE motifs for ATM- or ATR-induced phosphorylation in its C- terminal domain, a feature that suggests a role in a DNA damage response.
  • the splice site mutation in patient EUFA695 results in an in-frame deletion of exon 27, encoding one of the SQE motifs, while the missense mutation in BD952 creates an additional SQD motif.
  • FANCI could thus be a signal-regulated localizer of FANCD2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The current invention relates to an isolated human DNA molecule on chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in both alleles of individuals of complementation group I of Fanconi anemia (FA), the FANCI gene. It also relates to monoallelic mutations in individuals predisposed to cancer. It further relates to cDNA, fragment, and polypeptides and siRNAS derived thereof, and methods for determining a genetic defect in a patient, the defect being a mutation in the Fanconi anemia gene of complementation group I, or for complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I. It also relates to determining defects in individuals predisposed to cancer. Furthermore the invention relates to the use of the gene, cDNA and polypeptides and corresponding fragments and siRNAS for diagnosis of sporadic (common) cancers, treatment or drug development.

Description

Title: A gene mutated in Fanconi anemia complementation group I
The current invention relates to an isolated human genomic DNA molecule on chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in complementation group I of Fanconi anemia (FA), the FANCI gene. It further relates to methods for determining a genetic defect in a patient, the defect being a mutation in the Fanconi anemia gene of complementation group I, or for complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I. Furthermore the invention relates to the use of the gene and fragments, cDNA and fragments, polypeptides and fragments, and antibodies against FANCI and siRNAS against FANCI, for diagnosis of FA, determining hereditary predisposition, tumor classification, for treatment or for drug development.
Fanconi anemia (FA) is a genetically heterogeneous chromosomal instability disorder with both autosomal and X-linked recessive inheritance and characterized by developmental abnormalities, retarded growth, bone marrow failure, and a high risk of cancer (Joenje, H., & Patel, K.J. Nat. Rev. Genet. 2, 446-457 (2001); Levitus, M. et al . Cell. Oncol. 28, 3-29 (2006); Taniguchi, T. & D'Andrea, A. D. Blood 107, 4223-4233 (2006) .
Cells from FA patients are hypersensitive to cross-linking agents such as mitomycin C (MMC) or diepoxybutane . Thirteen complementation groups are currently distinguished, all of which - except group I - have been linked to distinct disease genes (Levitus, M. et al. Cell. Oncol. 28, 3-29 (2006); Taniguchi, T. & D'Andrea, A. D. Blood 107, 4223-4233 (2006); Xia, B. et al. Nat. Genet. 39, 159-161 (2007)).
All FA proteins are supposed to function in the FA pathway of genomic maintenance. Most of these proteins assemble into a multiprotein core complex which functions as an E3 ubiquitin ligase to modify FANCD2 by monoubiquitination (Garcia-Higuera, I. et al. MoI. Cell 7, 249-262 (2001)). FANCJ/BRIPl, FANCD1/BRCA2, and FANCN/PALB2 are supposed to act downstream of this modification step, because FANCD2 ubiquitination appears normal in cells lacking these proteins. The ubiquitinated form of FANCD2 is called FANDCD2-L, whereas the non- ubiquitinated form is called FANCD2-S.
Patient cell lines of complementation group I (FA-I cells) are deficient in FANCD2 ubiquitination and are characterized by a defect in the association of FANCD2 with chromatin (Levitus, M. et al . Cell. Oncol. 28, 3-29 (2006).).
Recently, a cDNA for the FA gene corresponding to complementation group C (FA-C) was cloned and located to position q22.3 on chromosome 9 (WO 93/22435) , and genetic map positions of the FA-A and FA-D genes were reported. Such progress brings the possibility of DNA-based diagnosis and therapy for Fanconi anemia significantly closer.
However it is until now unknown what the background is of the deficiency in FANCD2 ubiquitination and the defect in the association of FANCD2 with chromatin in this complementation group I, thus hampering further research and development of new drugs that might be helpful in treating a wide variety of disorders.
It is the therefore object of the present invention to provide a human DNA gene sequence for the FA-I complementation group.
The identification, cloning and sequencing of such a DNA molecule should facilitate new and improved methods of diagnosis and treatment of Fanconi anemia, and also cancer.
The goal is achieved by the subject matter- disclosed in the various claims and in the description and examples provided herewith.
In order to facilitate review of the various embodiments of the invention and an understanding of various embodiments and constituents used in making the invention, the following definition of terms is provided: DNA: deoxyribonucleic acid. DNA is a polymer which comprises the genetic material of most living organisms (some viruses have genes comprising ribonucleic acid (RNA) ) . The repeating units in DNA polymers are four different nucleotides, each of which comprises one of the four bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached. Triplets of nucleotides, referred to as codons, in DNA molecules code for amino acid in a polypeptide. The term codon is also used for the corresponding (and complementary) sequences of three nucleotides in the πiRNA into which the DNA sequence is transcribed.
cDNA (complementary DNA) : a piece of DNA lacking internal, non-coding segments (see introns) and regulatory sequences which determine transcription. cDNA is synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells.
FA: Fanconi anemia.
FA carrier or FA heterozygote: a person who does not exhibit apparent signs and symptoms of FA but whose chromosomes contain a mutant FA gene that may be transmitted to that person's offspring.
FA gene: a gene, the mutant forms of which are associated with the disease Fanconi anemia.
This definition is understood to include the various sequence polymorphisms that exist, wherein nucleotide substitutions in the gene sequence do not affect the essential functions of the gene product.
This term relates primarily to an isolated coding sequence but can also include some or all of the flanking 5' and 3' regulatory elements and/or intron sequences, and the so-called UTR-regions (untranslated regions) .
FA patient: a person who carries a mutant FA gene, such that the person exhibits clinical signs and/or symptoms of FA.
FA-I: Fanconi anemia of complementation group I. FA-I carrier or FA-I heterozygote : a person who does not exhibit signs or symptoms of FA but whose chromosomes contain a mutant FA-I gene that may be transmitted to that person's offspring.
FA-I gene or FANCI: the gene, present in the human genome, mutant forms of which are associated with Fanconi anemia of complementation group I. This definition is understood to include the various sequence polymorphisms that exist, wherein nucleotide substitutions in the gene sequence do not affect the essential functions of the gene product. This term relates primarily to an isolated coding sequence, but can also include some or all of the flanking regulatory elements and/or intron sequences.
FA-I cDNA: a human cDNA molecule which, when transfected into FA-I cells, is able to complement the hypersensitivity of those cells to DNA crosslinking agents. The FA-I cDNA is derived by reverse transcription from the mRNA encoded by the FA-I gene and lacks internal noncoding segments present in the FA-I gene.
FA-I protein or polypeptide: the protein encoded by a human FA-I cDNA. This definition is understood to include the various sequence polymorphisms that exist, wherein amino acid substitutions in the protein sequence do not affect the essential functions of the protein.
Intron: The DNA base sequence interrupting the protein coding sequence of a gene; this sequence is transcribed into RNA but is cut out of the message before it is translated into protein.
Mutant FA-I gene: a mutant form of the FA-I gene which is associated with Fanconi anemia of complementation group I.
Mutant FA-I RNA: the RNA transcribed from a mutant FA-I gene.
Mutant FA-I protein: the protein encoded by a mutant FA-I gene.
ORF: open reading frame. Contains a series of nucleotide triplets (codons) coding for amino acids without any termination codons . These sequences are usually translatable into protein. PCR: polymerase chain reaction. Describes a technique in which cycles of denaturation, annealing with primer, and then extension with DNA polymerase are used to amplify the number of copies of a target DNA sequence.
Purified: the term "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified protein preparation is one in which the protein referred to is more pure than the protein in its natural environment within a cell.
siRNA: Abbreviation for small inhibitory RNA, a short sequence of RNA which can be used to silence gene expression.
Additional definitions of common terms in molecular biology may be found in Lewin, B. "Genes IV" published by Oxford University Press.
In particular, there is provided an isolated human DNA molecule derived from chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in FA complementation group I and in individuals predisposed to cancer.
As will be exemplified in the examples, it has surprisingly been found that chromosome 15 comprises at least one gene that has a nucleotide sequence which sequence is mutated in FA complementation group I. In other words, the isolated DNA molecule does in normal and healthy person not contain a mutation, whereas in FA complementation group I said mutation might be present.
In a preferred embodiment said mutation found in FA complementation group I contributes to the phenotype or molecular basis of FA.
According to another embodiment the DNA molecule is localized to locus 15q25-26. As will be exemplified in the examples, it has been found that in particular from the locus 15q25-26 DNA molecules can be isolated that can be advantageously utilized to solve the problem of the current invention. In other words, there is provided an isolated DNA molecule from locus 15q-26 of the human genome and said molecule does in normal and healthy person not contain a mutation, whereas in
FA complementation group I said mutation might be present.
In a preferred embodiment said mutation found in a DNA molecule isolated from locus 15q25-26 of DNA form FA complementation group I contributes to the phenotype or molecular basis of FA. According to another embodiment of the invention, the DNA molecule contains a gene, wherein the (reference) gene has 38 exons with a translation start in exon 2, and encodes a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs. Other splice variants do exist and are contemplated.
The person skilled in the art knows what ATM/ATR phosphorylation motifs are, namely phosphorylation sites for the phosphatidyl inositol 3-kinase-like kinases ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) .
It has surprisingly been found that in particular a DNA molecule that contains a gene, wherein the gene has 38 exons with a translation start in exon 2, and encodes a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs provides a solution for solving the problem of the current invention. In other words, in particular in such gene it was found that in contrast to healthy humans or cells not showing any phenomena related to FA, in particular as those observed in FA complementation group I, mutations might be present in FA complementation group I, mutations that appear to contribute to the phenotype or molecular basis of FA.
It is contemplated that also alternative splicing forms of the genomic gene is comprehended by the current invention.
The skilled person knows that there are at least four known modes of alternative splicing:
Alternative selection of promoters: this is the only method of splicing which can produce an alternative N-terminus domain in proteins . Alternative selection of cleavage/polyadenylation sites: this is the only method of splicing which can produce an alternative C-terminus domain in proteins. In this case, different sets of polyadenylation sites can be spliced with the other exons .
Intron retaining mode: in this case, instead of splicing out an intron, the intron is retained in the itiRNA transcript. However, the intron must be properly encoding for amino acids. The intron 's code must be properly expressible, otherwise a stop codon or a shift in the reading frame will cause the protein to be likely to be nonfunctional.
Exon cassette mode: in this case, certain exons are spliced out to alter the sequence of amino acids in the expressed protein.
Said splicing variants of the gene are in particular contemplated/comprehended in the current invention.
According to a next embodiment of the current invention, there is provided a DNA molecule according to any of the previous claims selected from the group consisting of
-a DNA molecule having the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence;
-a DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
It has surprisingly been found, as exemplified in the examples, that in particular said sequence, comprising at least several introns and exons, but also including the 3' and 5' UTR (untranslated region) and being/comprising the genomic DNA molecule that contains the FANCI gene and encodes the protein, provides for the solution of the problem of the current invention. Thus said genomic gene, from which for example a cDNA can be derived, is comprehended by the current invention. In other words, it has been found that in the sequence disclosed in Seq ID No 1 mutations can occur (both in exons and or introns) that might be observed in FA complementation group I and in individuals predisposed to cancer. Also comprehended is a DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
Having herein provided the nucleotide sequence of the genomic gene of FANCI (Seq Id No. 1), correspondingly provided are the complementary DNA strands, which for example can be used as basis for primers and the like, useful in the polymerase chain reaction or as hybridization probes. Such probes and primers are particularly useful in diagnosis of FA-I carriers and sufferers.
Having provided the isolated human FA-I genomic gene sequence, also comprehended by this invention is the (reference) cDNA derived therefrom and disclosed in SEQ ID No 2. The present invention also provides for the use of the FA-I cDNA and derivatives thereof, the corresponding genomic gene and derivatives thereof and of the FA-I protein and derivatives thereof, in aspects of diagnosis and treatment of FA-I.
More in particular, in another embodiment a DNA molecule according to the invention is provided, the DNA molecule being a cDNA molecule selected from the group consisting of: a. a DNA molecule having the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence; b. A DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence.
Said cDNA allows for efficient studying and utilization of the FANCI gene in the development of, for example, methods for diagnosis of FA, for counseling of subjects carrying FANCI mutations in cancer predisposed families, for tumor classification, as target for therapy, or as a lead for drug development. For example said cDNA can be introduced in a vector like a plasmid and brought to expression in bacteria, yeast and or other organism. Obviously it can also be used to produce protein/polypeptides, which for example can be further used for developing antibodies, finding drugs that interact with the FA pathway,' of in particular with the FA genes and/or proteins.
Also comprehended is a DNA molecule that shows at least 80%, more preferable 90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence.
Having herein provided the nucleotide sequence of the reference cDNA of FANCI (Seq Id No. 2), correspondingly provided are the complementary DNA strands, which for example can be used as basis for primers and the like, useful in the polymerase chain reaction or as hybridization probes. Such probes and primers are particularly useful in diagnosis of FA-I carriers and sufferers.
DNA molecules which differ in minor ways from those disclosed. DNA molecules and nucleotide sequences which are derivatives of those specifically disclosed herein and which differ from those disclosed by the deletion, addition or substitution of nucleotides while still encoding a protein which possesses the functional characteristic of the FANCI protein are comprehended by this invention. Also within the scope of this invention are small DNA molecules which are derived from the disclosed DNA molecules. Such small DNA molecules include oligonucleotides suitable for use as hybridization probes or polymerase chain reaction (PCR) primers.
The degeneracy of the genetic code further widens the scope of the present invention as it enables major variations in the nucleotide sequence of a DNA molecule while maintaining the amino acid sequence of the encoded protein. Thus, the nucleotide sequence of the FANCI DNA could be changed at certain position to any of those codons that encode the same amino acid, without affecting the amino acid composition of the encoded protein or the characteristics of the protein. Based upon the degeneracy of the genetic code, variant DNA molecules may be derived from the cDNA molecules disclosed herein using standard DNA mutagenesis techniques as described above, or by synthesis of DNA sequences. According to another embodiment of the invention, there is provided an oligonucleotide comprising at least 150, preferably at least 100, more preferably at least 50, even more preferably at least 20, most preferably at least 15 consecutive nucleotides of a DNA molecule according to the invention.
As described above, such small DNA molecules can comprise at least a segment of the genomic gene (SEQ ID 1) molecule and, for the purposes of PCR, will comprise at least a 15 nucleotide sequence and, more preferably, a 15-20 nucleotide sequence of the genomic DNA. DNA molecules and nucleotide sequences which are derived from the disclosed DNA molecules as described above may also be defined as DNA sequences which hybridize under stringent conditions to the DNA sequences disclosed, or fragments thereof.
In another embodiment of the invention, there is provided a DNA molecule according to any of the previous claims, wherein a mutation has been introduced by means of insertion, deletion, and/or replacement of one or more nucleotides, and wherein said molecule encodes for a protein that, when introduced into cells from patients with Fanconi anemia of complementation group I, does not reduce the sensitivity of those cells to mitomycin C.
Such DNA molecule thus provides a DNA molecule that carries a mutation that contributes to the FA phenotype, in particular relates to the molecular mechanism of phenotype related to FA complementation group I. It will thus be understood by the skilled person that, for example, by random mutagenesis of DNA according to the invention and introduction thereof in cells from patients with FA, it can be easily studied whether said mutagenesis led to the formation of a DNA molecule and/or protein derived thereof that can either reduce the sensitivity to mitomycin C or not, and thus that might contain mutations that either contribute to FA or not, allowing to quickly identify such mutations. Mutations found in a manner like described above are therefore also clearly contemplated.
According to another embodiment, there is provided a DNA molecule according to the invention, wherein a mutation has been introduced chosen from the group consisting of partial of complete exon deletion, inserted exon, protein truncation, amino acid substitution. In addition, also mutations or modifications in the promoter region, for example leading to silencing of the promoter and mutations in the 3' flank are also contemplated.
From intensive study it has been found that in particular these types of mutation might contribute to the FA phenotype (see examples) , in particular to the FA complementation group I. Such mutations can thus provide information with respect to the FA phenotype, and are helpful in the study, diagnosis, treatment, and drug development, for example for FA, but also to other diseases influenced by said mutations.
In particular there is provided a DNA molecule, wherein at least one mutation or polymorphism selected from the group consisting of mutations c.2T>C, c.670-2A>G, c.3854G>A, c.3006+3A>G, C.3853OT, c.3437_3455deletion, C.3895OT, c.l264G>C, c.3350-88A>G, C.2572OT, c.2509G>T, and c.2248T>G and polymorphism C.164OT of the nucleotide sequence as shown in SEQ ID No.2 is present. Mutation was found c.670- 2A>G in a breast cancer family negative for BRCAl and BRCA2 mutations.
It is to be understood that the established nomenclature for mutations is used herein, which nomenclature is e.g. also practiced and prescribed by the scientific journal Nature Genetics. Accordingly, Λc.' refers to cDNA sequences, and λ+3' refers to the third nucleotide of the intron beyond an intron boundary. Accordingly, Λ-3' refers to a position in the intron, 3 nucleotides before the intron boundary. The 670-2A>G has been found by sequencing FANCI cDNA in 90 index patients that were screened for BRCAl/BRCA2 mutations and found negative, i.e. subjects predisposed for inherited breast cancer. FANCI therefore also seems to play a role in a variety of cancers, in addition to the above-identified, such as breast cancer and ovarian cancer.
As will be exemplified in the examples, in a first assessment, in particular these mutations (and the consequent changes in the polypeptide) provide for mutants that contribute to FA in particular FA complementation group I or predispose to cancer in mono-allelic form. In order words, these mutations, when present in the DNA, can lead to a FA phenotype, in particular FA complementation group I lead to a FA phenotype, in particular FA complementation group I phenotype, when both alleles are affected by mutation. As set-out above, also other mutants than can be identified as described above are contemplated. In other words, mutations in monoallelic form of the contemplated gene can increase cancer risk. As set-out -above, also other mutants than can be identified as described above are contemplated.
In another aspect of the invention, there is provided a polypeptide encoded by a DNA molecule according to the invention. Such protein, either in mutant form or normal, are very useful in developing new drugs, antibodies, understanding and knowledge with respect to diagnosis, treatment and the like of FA, in particular like that is shown in- FA complementation group I patients. Antibodies, both monoclonal and polyclonal, and antibody fragments, specifically recognizing FANCI protein or mutated protein as identified herein on DNA level are also encompassed by the present invention.
With respect to mutant polypeptides, the following is noted: while the site for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence as described above are well known.
Amino acid substitutions are typically of single residues; insertions usually will be in the order of about from 1 to 10 amino acid residues; and deletions will usually range about from 1 to 30 residues .
Deletions or insertions preferably are made in adjacent pairs, i.e., a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct. In another aspect of the invention, there is provided a method for determining a genetic defect in a patient, the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprises determination of the sequence of the FANCI gene of said patient.
The invention further provides a method for determining whether a subject carries a mutant FANCI gene, comprising the steps of: a) providing a biological sample from the subject, which sample includes DNA and/or RNA, b) determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, c) compare the determined sequence with that of SEQ ID No 1 or SEQ ID No 2.
The biological sample can be any suitable sample from the (human) subject, as long as it contains representative DNA or RNA of the subject that can be sequenced by techniques, know in the art, e.g. by PCR mediated sequencing. The FANCI sequence can be determined by using specific oligonucleotide probes. The sequenced FANCI sequence can be compared with that of wild-type, such as that of SEQ ID No 1. It is also possible to use the corresponding wild-type cDNA, e.g. as given in SEQ ID No 2. Any genetic difference is indicative for a mutation in the FANCI gene.
It is to be noted that in case both alleles of the subject are mutated, any tumor formation is heriditary; in case of the presence of a single mutated gene (heterozygous) , there is predisposition for the tumor formation.
Preferably, step b) comprises determining the sequence of a portion of the FANCI gene encompassing one or more of the mutations as defined above, or a corresponding portion of the FANCI mRNA.
In another embodiment, the invention relates to a method for classification of tumors, comprising the steps of: a) providing a biological sample from the subject, which sample includes DNA and/or RNA, and/or protein, b) determining whether the FANCI gene is expressed at the RNA and/or protein level, and c) determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, d) comparing the determined sequence with that of SEQ ID
No 1 or SEQ ID NO 2, and establish the differences therebetween.
The skilled person will be aware of suitable methods to assess whether the FANCI gene is expressed. He can determine the presence of FANCI protein, e.g. by checking specific binding with an anti FANCI antibody, or he can determine the presence of FANCI mRNA, e.g. by RT- PCR, a well established method in the art, or he can check the methylation condition of the promoter of the FANCI gene. If the promoter is methylated, it can be concluded that the gene is not expressed. If the gene is not expressed, or to a lower extent than at normal conditions, the tumor can be classified as a FANCI defective tumor, by not expressing FANCI or to a lesser extent. On the other hand, if the tummor does express FANCI, the next step is to establish whether the FANCI gene is mutated and to identify the said mutation(s), as explained above. The sequence of the FANCI gene can be determined before, after or simultaneously with the determination of of the expression of the FANCI gene. I.e., steps b) and c) can be performed in any order, or simultaneously. The classification can be made based on the mutation (s) identified.
In another embodiment, the invention related to a method for drug testing, in particular for the suitability for use as an antitumorigenic drug in patients having a tumor wherein FANCI is inactive or less active, comprising the steps of: a) providing a biological sample of the patient comprising
DNA and/or RNA and/or protein, b) determining whether the FANCI gene is expressed at the RNA and/or protein level, and c) determining whether a FANCI mutation is present in the tumor DNA of the patient, d) identifying the said mutation, e) treating tumor cells from the patient ex vivo with an antitumorigenic drug, f) determine whether the antitumorigenic drug is capable of inhibiting growth of the tumor cells, g) correlating the mutation with the effectivity of the antitumorigenic drug.
The determination of FANCI expression as well as determination of the presence and identification of a FANCI mutation can be established as explained above, wherein again both determinations can be performed in any order or simultaneously. Then, the tumor cells from the patient can be subjected to treatment with an antitumorigenic drug, such as a polyfunctional alkylating agent, preferably a bifunctional agent, most preferably cis-platin. However, any other possible antitumorigenic drug can be used to check whether it is suitable to treat the tumor. If the drug is capable of inhibiting the growth of the tumor cells, the drug is effective for the particular tumor. So, a correlation can be made of the effectivity of the drug and the particular mutation, which is helpful for future treatments of tumors wherein the same mutations are identified. In such a case, the effectivity of one or more antitumorigenic tumors is known, and based thereon, a suitable drug therapy can be designed.
The tumor is preferably chosen from the group, consisting of FA, breast cancer, ovarian cancer, head-and-neck cancer, solid childhood cancer or squamous cell carcinoma. However at least any tumor wherein the FANCI gene is possible affected, is subject of the present invention.
As described, the sequence shown in Seq ID No 1 contains the FANCI gene. An embodiment of the present invention is thus a method for screening a subject to determine if said. subject carries a mutant
FANCI gene. The method comprises the steps of: providing a biological sample obtained from the subject, which sample includes DNA or RNA, and providing an assay for detecting in the biological sample the presence of a mutant FANCI gene or a mutant FANCI mRNA. This assay preferably comprises either: hybridization with oligonucleotides; PCR amplification of the FANCI gene or a part thereof using oligonucleotide primers; RT-PCR amplification of the FANCI RNA or a part thereof using oligonucleotide primers; or direct sequencing of the FANCI gene of the subjects genome using oligonucleotide primers. The efficiency of these molecular genetic methods should permit a more accurate and more rapid classification of FA patients than is possible with the labor intensive method of classical complementation analysis. All said approaches are to be understood to be included in the term "determination of the sequence of the FANCI gene of said patient". According to another embodiment the invention relates to a method of complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprising introducing into the cell one or more DNA molecules according to the invention, said DNA molecules having no mutations that contribute to the FA phenotype, or more particular to the FA complementation group I phenotype, or the polypeptide derived from such DNA.
It is now for the first time possible to complement a genetic defect in the Fanconi anemia gene of complementation group I, by introducing a DNA molecule as disclosed herein.
According to another aspect of the invention, there is provided the use of a DNA molecule according to the invention, cDNA, siRNA or polypeptides according to the invention for methods of diagnosis, treatment or drug development, in particular for methods of diagnosis, treatment or drug development directed to the diagnosis, treatment or drug testing of FA, cancer, and bone marrow failure.
The following further underline the importance of the current finding:
Although the protein defective in the FA-I complementation group was unknown so far, a clue about its function and position within the FA pathway was deduced from the characteristics of FA-I cell lines. By- focusing on the interactions of the FA proteins within these cell lines, it has become evident that in FA-I cells the core complex is properly formed. This indicates that FANCI, like FANCD2, FANCD1/BRCA2 and FANCJ, does not belong to this core complex and must function downstream or independent. However, FANCD2 is not / barely monoubiquitinated in FA-I cells, suggesting that its function is upstream of FANCD2 activation, but downstream of the FA core complex. FANCI may assist FANCL in the activation of FANCD2. The reduced presence of FANCD2-S in nuclear extracts of FA-I cells suggest a function for FANCI in binding FANCD2-S to the chromatin. As both forms of FANCD2 seem to associate with the chromatin, it is possible that FANCD2 is monoubiquitinated here. However, the faint presence of FANCD2-L in these extracts might point to a downstream function for FANCI, in binding of FANCD2 to the chromatin, but also in the stabilization of FANCD2-L (See Levitus, M. et al. Cell. Oncol. 28, 3- 29 (2006) .) .
In addition, cancer results from alterations in the genome of somatic cells. These alterations can accumulate due to a genomic instability that is thought to exist in the premalignant phase of tumor development. This state of genomic instability is caused by a somatically acquired defect in a genomic maintenance mechanism. Many different maintenance mechanisms have been described. A mechanism that has recently been identified is the "Fanconi anemia pathway of genomic maintenance". This pathway is controlled by at least 13 different proteins, each of which is equally essential for the pathway to function. Twelve genes/proteins have already been identified: FANCA, FANCB, FANCC, FANCDl/BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCJ/BRIPl, FANCL, FANCM, and FANCN/PALB2. A thirteenth, FANCI, has now been identified by us, which is subject of this claim.
Two important features are associated with the FA pathway (and with defects thereof) , which lead to applicability in cancer therapy. First, cells with a FA pathway defect possess an unstable genome and as a result will accumulate genomic alterations at accelerated speed, leading to full-blown tumor cells with high probability. Second, cells with a FA pathway defect are highly sensitive to a specific class of chemotherapeutic agents known as "polyfunctional alkylating" or "cross-linking" agents (examples: cisplatinum, mitomycin C, cyclophosphamide) . Tumors that have resulted from a FA defective premalignant cell are thus likely to be responsive to treatment with cross-linking agents. There is evidence for a proportion of common cancers to show such a FA pathway defect as a result of mutations in or silencing of one of the FA genes, for example by promoter methylation.
Applications of the current finding thus include: - With the discovery of a new FA gene, FANCI, we are now in a position to classify tumors as being defective in this gene or not. In case a defect is found, this result may become an indication to choose a cross-linking agent for chemotherapy that most probably will be effective to cure the patient. Such crosslinking agents are preferably poly or bifunctional alkylating agents, most preferably bifunctional, such as cis- platin.
- A high-throughput screen for small molecule inhibitors of FANCI may result in the identification of agents that specifically block FANCI. Such agents, when specifically targeted to tumor cells, may result in substantial improvement of cure rates by cross-linking agents by sensitizing otherwise non-responsive cells. - -Molecular diagnostics for FA patients. When new FA patients are screened the current protocol will be extended to the DNA sequencing of 1) the FANCI cDNA and the 2) the genomic FANCI sequence .
- Classification of tumors. Tumor samples can be analysed via immunohistochemistry or Western using antibodies against
FANCI. The levels of mRNA can be determined via techniques such as quantitative RT-PCR. DNA mutations can be analysed by techniques such as DNA sequencing, DNA copy number analysis of gene or exons, LOH analysis. When these analyses point to defects, tumors may be susceptible to treatment with cross- linking reagents.
- Counseling of subjects carrying FANCI mutations in e.g. cancer predisposed families, in particular FA, breast, and ovary and orphan cancer. Difference should be made for counseling of individuals carrying two mutations, thus being FA patients and individuals with monoallelic patients which can be at increased risk for cancer. In the case of the mono-allelic mutations, counseling will take place using the guidelines for counseling individuals carrying low-risk cancer predisposition genes. In the case of the bi-allelic mutations, the patients are at high risk for cancer and will be counseled accordingly.
- FANCI as target for therapy, e.g. by sensitizing cell for drugs such as MMC and cisplatin. In-vitro systems have indicated that knocking-down via siRNA of FA genes, including
FANCI, in human cancer cell lines, such as HeLa, increases the sensitivity towards polyfunctional alkylating agents. This feature can be exploited to identify small molecules specifically inhibiting FANCI in drug screening protocols.
- FANCI as target in other drug development schemes, such as synthetic lethality. The concept of synthetic lethality is defined as follows. A (partial) defect in gene A (herein FANCI) function on its own is not lethal. A (partial) defect in gene B function on its own is not lethal. Combined defects are lethal. Thus a deliberate disruption of FANCI (gene A) in a cancer cell with a specific defect to be identified (gene B) , or a deliberate disruption of a to be identified gene (gene B) in a cancer cell with a defect in FANCI (gene A) may confer synthetic lethality. The identification of genes of the group B group is contemplated.
EXAMPLES
The current invention is further disclosed by means of the following non-limiting examples. It is to be understood by the skilled person that conditions, chemicals and parameters described in the following examples are typical and can with respect to concentrations of chemicals, temperatures and other numerical values be varied within a range of approximately 30%, preferably 20%, more preferably 10% without falling outside the scope of the current invention. Indeed these conditions, chemicals and parameters used in the example and the range set-out above, are each and independently to be considered as preferred embodiments of the current invention.
Example 1. Patients, cell lines, and controls.
The 4 FA-I cell lines, EUFA592, EUFA816, BD952, and EUFA961, which were all hypersensitive to growth inhibition by mitomycin C, have previously been assigned to complementation group I (Levitus et al 2004) . Following the same methods (see for example Dorsman et al) patients EUFA695 and EUFA1399 were subsequently classified as FA-I based on the lack of complementation after hybridization with FA-I lymphoblasts; hybrids were checked for ploidy to exclude lack of complementation due to loss of complementing chromosomes. All patients and families analyzed so far in this study are summarized in Figure 1. Clinical features of the patients are summarized in Table 1. Control
DNAs were isolated from blood samples obtained from The Netherlands Blood Transfusion Service; the donors were healthy and unselected for ethnic background.
Example 2. Genome-wide scan.
A genome-wide scan for genetic linkage was performed using the Applied Biosystems microsatellite polymorphism linkage mapping kit MDlO and the Weber 6B Screening set, in accordance with the manufacturer's protocols and performed with the GeneAmp PCR system 9700 (Applied
Biosystems, Foster City, CA, USA) . Combination of both sets, each of which is composed of approximately 400 markers (10 cM apart, on average) , results in an average marker spacing of 5 cM. Samples were analyzed on ABI 3730 DNA Analyzer (Applied Biosystems) . Genomic DNA was isolated from whole blood or lymphoblastoid cell lines from patients and family members, using a Qiagen Blood mini kit (Qiagen, Venlo, The Netherlands) . The genomic DNA of patient 480 was isolated from hair follicles using a 2 h incubation with proteinase K and a Qiagen Blood mini kit. Due to the lack of sufficient DNA whole genome amplification was carried out on DNA from patients 480 and 1428, using the GenomiPhi DNA amplification kit (Amersham Biosciences, Buckinghamshire, UK) .
Example 3. Determination of candidate regions . The initial genome-wide genetic linkage analysis with the patients
EUFA592 and BD952 from consanguineous families 1 and 2 (Figure 1) and the multiplex family 4 yielded candidate regions on chromosome 2, 4, 6, 7, 8, 15, 16, 17 and 18, which were further analyzed using patient 1428 from family 2, patient EUFA1355 from family 4, and family 3. The following potential candidate genes in these regions were sequenced: the kinase DBF4/ASK (on chromosome 7q21.3) for its role in replication initiation and S-phase progression) ; the putative E2 ubiquitin conjugating enzyme FLJlIOIl (on chromosome 8q21.11 for its interaction with FANCD2 in Drosophila (FlyGrid) ; the aprataxin like HIT domain containing hydrolase LOC390637 (on chromosome 15q26.1) for its putative role in DNA repair; the RING finger Nsel (on chromosome 16pl2.1), for its role in DNA damage response as part of the SMC5/6 complex; the RING finger RNF40 (on chromosome 16pll.2), for its putative function as E3 ubiquitin ligase; and the vitamin K epoxide reductase complex subunit 1 (VKORCl on chromosome 16pll.2), for its presence in a cDNA expression library- Λcomplemented' FA-I cell line.
In DBF4/ASK and VKORCl heterozygous polymorphisms were found in the consanguineous patient EUFA592, which narrowed down the candidate regions in these parts of the chromosomes. Polymorphisms described in LOC390637 were found to be homozygous in both consanguineous patients BD952 and EUFA592, strengthening the idea that this was a candidate region.
Because of the degree of consanguinity in the parents (first cousins) relatively large candidate regions were to be expected in the single consanguineous patients. Relatively large regions in at least one of the consanguineous patients that were compatible with the additional families and family members helped to define the candidate regions.
Thus the regions on chromosomes 7q, 15q, 16q, and 17q were identified as best candidate regions for further analysis.
Example 4. Bioinformatics and data mining. The positions of DNA markers were identified via NCBI map viewer
(option STS) (http://www.ncbi.nlm.nih.gov/mapview/maps) followed by gene identification in the relevant regions (option Gene) . In these regions, first known genes were selected and excluded (see Determination of candidate regions) . For the novel genes, the following strategy was used. Proteins were firstly selected for which mouse proteins exist with a 50 to 85% identity with the human amino acid sequence (http: //www.ncbi .nlm.nih. gov/sutils/blink. cgi) . Pseudogenes were not further analysed. This yielded 11 proteins, 3 of which were excluded based on unlikely properties. The remaining 8 proteins (KIAA1794 [NPJD60663] , C15Orf42/NP_689472, NP_064597.1,
NP_859058.1, NP 001013679.2, NP 073581.1, XP 933746.1, and XP 934096) were subjected to a WoLFPSort and NUCDISC search (wolfpsort.org) and those were selected for which the nucleus was the most likely location and which contained at least 1 putative nuclear localization signal (NLS: pat4, pat7 or bipartite): KIAA1794 [NP_060663] ,
C15Orf42/NP_689472, NP_064597.1 and NP_859058.1. These 4 genes/proteins - with a focus on the two highest rankers of the pSORT analysis - were compared for 1) degree of evolutionary conservation, 2) orphan status, 3) iriRNA expression patterns in normal tissues (e.g. http: //bioinfo2.weizmann.ac. il/cgi-bin/genenote/home page .pi) , 4) protein modification motifs (phosphorylation motifs: http: //www. cbs .dtu.dk/services/NetPhos/) , and 5) protein motifs/domains (http: //smart .embl-heidelberg. de/) .
KIAA1794 is an orphan protein displaying a similar conservation as FANCD2 (human versus mouse: ~75%; both genes are present in Drosophila) . It showed an expected expression pattern for a FA gene (low and ubiquitous, but relatively prevalent in bone marrow and thymus; same pattern also found for FANCM) and contained 3 ATM/ATR motifs. C15orf42 was less conserved in the mouse than KIAA1794 (68% versus 75%) , displayed a higher level of expression than usually found for FA genes and contained 1 ATM/ATR motif. Thus in total, KIAA1794 was considered the prime candidate.
Example 5. Amplification of FJiNCI sequences.
Primer sequences for amplification of FANCI cDNA and genomic DNA and
PCR were:
Primer set 1 for cDNA/mRNA FANCI (NCBI site)
CTTGTTGTTACGGGTAACGGAAG LOC55215.for01
CCACAAATTCCACCTCTTCTGC LOC55215. revO1
GATCAGCAATATGTAATCCAACTCAC LOC55215. for02
GAATCCATCAAAATGAAACCAAG LOC55215.rev02 GTTCCTCATAGATCTTATGTTTCAACC LOC55215.for03
AATTGTAATGGCTGTGAACATCC LOC55215. revO3
GTTTTTGCTGCTCCTGAAGAAC LOC55215.for04
TAAGCTCAGAATGTCCTCAAACC LOC55215. revO4
TCTGTGCTTTTCTTGTGATGGG LOC55215. for05 TGCAGGCTGAAGAGCAAGTTC LOC55215.rev05
TTATCCTGGACATCAAAGATTTGC LOC55215. forOβ
AAAGATGAGGTTAGGGATTGGC LOC55215. revO6
GGAGAGAAAAAGGAGAAACCTGC LOC55215. for07
AAAAACGAAGCCAGCCTGG LOC55215.rev07
Primer set 2 bases on FANCI/KIAA1794 consensus coding sequence
(including exon24)
CTTTTTGGAAGTTTGTGGCG cFANCI.forOl TTTTTCGTAGCCAGGGCAG cFANCI.revOl CCATTTTCCAGGACCATTATTG cFANCI.for02 GGCACAGTGACAACATCCAATAG cFANCI.revO2 TCAAGΆAATACCΆCCTTTGGTCTATC cFANCI.for03 TTCTTCACTACTTCCAAGATCATGG cFANCI.revO3 TCTGTCTGTAACAAGAATACAAAGATTTC cFANCI.for04 GAAGAACAACTTTGAAGAACTAAGGG cFANCI.revO4 CGGAGCTAΆTATCCTGTTGGAAΆC • cFANCI.for05 GGCAAAAAGTTTCATTGGCG cFANCI.revO5 GGGTTTTTGCTGCTCCTGAAG cFANCI.forOβ GGTCTTCGTAGAATGCCTCTTCC cFANCI.revOβ TTGTATTCTGACCCAAGGAGATAAG cFANCI.for07 TTCATGGACAAAAGACTATCACTTG cFANCI.revO7 ATAATATCTGTGCTTTTCTTGTGATGG cFANCI.for08 CACTGAAGTAGGAATTGAAGTGTATCTC cFANCI.revO8 CCATGAΆATTTGTGTCCAGTCTTC cFANCI.for09 TGGAATGCTGTTCTCTGAGTGAC cFANCI.revO9 ACAGTTCTATCAGCCCAAGATTCAG cFANCI.forlO CΆCTATTGCAAAGTGGTTTGTTTTC cFANCI.revlO TGTTTCGTATAAGAGTCCTGTCATTC cFANCI.forll CATATTTTTTGGAATTCCTCCG cFANCI.revll AGACAGCTCTGCCATCAGGC cFANCI.forl2 GCAGAAGCCCCAΆAGTTCAC cFANCI.revl2
Primer sequences of genomic DNA based on genomic sequence FANCI/KIAA1794 K1794 exl.for CGCCCGCAGGTACCCG
K1794_exl.rev ATTTAACAGAAGGGGCTCCGA K1794_ex2.for GTTGAGCACCCATTGCATAAT K1794_ex2.rev ΆGTAGATGAΆGAAGCAGCGTA K1794_ex3.for GCGTCTCTGAATGATCTGA K1794_ex3.rev ACTGCTGCTGTAGTTGATTCT K1794_ex4.for GCACTTTTTCAAAGCCCTTA K1794_ex4.rev CTATGCTAGGTTGGGCACTTA K1794_ex5nβ.for TTGGATTTCTGCTTGAGATT K1794_ex5n6.rev GACTTAAAACCTCCAGACATA K1794_ex7. for CACCAACATTGGGTATCATCA K1794_ex7. rev AGGAGTGAGGAGGGAATCTGT K1794 exδ.for TTCTCTGCTCCCAAGTTTC K1794_ ex8. rev ATGATCCTTTTACCAGACCAA
K1794_ ex9. for GCCACATTTTCTTTGCGGAGG
K1794_ ex9. rev GAGGTGAAGGTAGGCGGTGAG
K1794_ exlO .for GAATGCCACCACATCG
K1794 exlO .rev CCAGGGTCATTTTACΆGTATT
K1794_ exll.for (a CTAAGCCAGGAGGATCCG
K1794_ exll.rev(a) CCAGAGAACAGAGGGGACATA
K1794_ exll.for (b) AAATGACTTCCTTTTGGTTGC
K1794_ exll . rev (b) AGAAAGAΆACAΆΆΆTGGCA
K1794_ _exl2. for TGAATGGCAGCTCATAGGAA
K1794_ _exl2. rev AAGAAAATGAACCTCGATGTG
K1794_ _exl3.for GCCTGCTGTTCCCATTAT
K1794_ _exl3.rev ATACTCAAATTTCCTTGTCCA
K1794_ exl4.for CAAGGGGAAAGTTGAGTGA
K1794_ exl4. rev TCCTTTATTGGCATCCTATCA
K1794_ _exl5.for ACATTTCTTTCTCCGTAT
K1794_ _exl5.rev TGCCTCTGTAAATCTATTGTA
K1794__exl6_l . forCCTAAGGCTAATAAGCAAAC
K1794__exl6_l . revTGCTCCACCACCAACTACTGT
K1794_ exlβ_2. forGCAGGATAGAAGGAAGTAGAG
K1794__exl6_2. revATGCACATGAATGATACGC
K1794_ _exl7.for CATGTGGAGGAAGCTAAGT
K1794_ _exl7. rev GCTACTGGTGCTGACTACATC
K1794_ _exl8. for TTATATTAGGGCATTTAGG
K1794_ _exl8. rev CAGACAGGTAAGTGGTGACCG
K1794_ _exl9.for GTGTGTTAGAAGGCATTAGAC
K1794_ exl9. rev TAGTAAAGGGCTAACAT
K1794_ _ex20. for TGCTGGTTATGAACAACTTTA
K1794_ _ex20. rev TGCCAATACTGGTGCTC
K1794_ _ex21. for CTGGAAGACTTTGAACTGGT
K1794 _ex21. rev CTGGGAAATTCTGAGTAAGTG
K1794_ ex22.for GCTGTGACCTGGGAGTATTA
K1794 _ex22. rev TACTGTAAACAATCCAAACGA
K1794 _ex23. for GGCAGCCATAGCAGTG
K1794_ ex23. rev TCCTAAAATATGTCCAACCTC
K1794_ _ex24. for GGGAGATTACACAACCATGT
K1794_ _ex24. rev GTACCAATCCTGAATCCACTA
K1794_ ex25. for TGGCTGGAAAATGGAATATAG
K1794 ex25. rev ATGTCCTGTTGCCTGTATGAC K1794_ex26. for TGGGTACATAGTTCATTATCT
K1794_ex26. rev CACTTTTATGATGCAATAATC
K1794_ex27. for GGACCTCAGTAAGGACATAGA
Kl794_ex27. rev TTGCCAACAATTCGAC K1794_ex28n29.for CACTGCACTTGGCCACAACTT
K1794_ex28n29. rev CAAGCCGCTATAGGACAC
K1794_ex30. for GGCCAGGTGACCACAGTTATT
Kl794_ex30. rev CACATTCAAACCCAACTTCGT
K1794_in30n31. for GAAGTGGACTGGCTAATCACC K1794_in30n31.rev CTCGTGGAAAAATGTAAGCAG
K1794_ex31. for TCTGCATATTGAATGTTCGTT
K1794_ex31. rev TGCCTGCCACCTACTGAC
Kl794_ex32n33. for GGCTCACTGCAGCAGTCACTT
K1794_ex32n33. rev GTCCCCTGGGCATGTA K1794_ex34.for CACTAGCATGCTAGCTCCACA
K1794_ex34. rev CCATACCGTTTTTAGCTGTC
Kl794_ex35. for CCTCAGCCATTTTCTAGATA
K1794_ex35. rev AGTCTCTTTTCCTCCATTGTA
Kl794_ex36.for GCGTGCTTGCTTTAGGTAGA Kl794_ex36.rev GACCCACAGCAGGACATTGTT
K1794_ex37. for TGGAGCAGGTTTATCACGTTA
Kl794_ex37.rev CTTGGAAAAACGAAGCC
Additional primers for exon24 FANCI
FANCI_ex24. for . aGAGAGTCTGCCAGTCGGAAC
FANCI_ex24. rev. aCTGCCACCTGGCTAATGTTT
FANCI_ex24. for .bGTCGGAACTTACTGGCAAGC
FANCI_ex24. rev. bGAGAGTCTTGCCCTGTCACC
PCR were performed under conditions known to the skilled person, using standard methodology.
Total RNA was isolated from lymphoblasts (after 4.5 hours of cycloheximide (5 mg/ml) treatment for EUFA592, BD952, EUFA816, EUFA961, and EUFA1399) using the High Pure RNA Isolation Kit (Roche
Applied Science, Almere, The Netherlands) , from which cDNA was prepared using iScript™ cDNA Synthesis Kit (BioRad Laboratories,
Veenendaal, The Netherlands) . The PCR reactions for amplification of FANCI were performed on cDNA using Platinum Taq polymerase
(Invitrogen) and sequenced as described below.
Example 6. Sequencing of FANCI. PCR products were purified using a SAP/EXO treatment (Amersham Biosciences, Uppsala, Sweden) according to the manufacturer's instructions. Sequencing reactions were prepared using specific primers and Big Dye terminator cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) . Samples were analyzed on an ABI 3730 DNA Analyzer (Applied Biosystems) .
Example 7. A gene mutated in Fanconi anemia complementation group I Using the methods described in the above-mentioned samples, a genome- wide linkage study involving 4 genetically informative families, including two first cousin marriages (See Fig. 1 and Table 1) , resulted in 4 candidate regions that were considered to harbour the gene: on chromosome 7q between markers D7S2204 and D7S820 (5.6 Mb, 8.6 cM, 12 genes), on 15q between D15S653 and D15S652 (7.1 Mb, 10.5 cM, 79 genes), on 16q between VKORCl and D16S3105 (14.4 Mb, 1.5 cM, 102 genes), and on 17q between D17S1290 and D17S2059 (12.3 Mb, 15.3 cM, 158 genes), together encompassing 39.4 Mb of genomic DNA and 351 genes .
Next, we identified in those regions known genes connected with DNA repair/chromatin and with cellular roles compatible with the FA cellular phenotype, as described above. After excluding those genes by DNA-sequencing we selected novel genes via data mining and bioinformatics incorporating known features of already identified FA genes/proteins .
It has been proposed that some human FA genes encode orphan proteins, whose mouse orthologs displayed a 50 to ~80% amino acid identity. We first selected genes according to evolutionary conservation, which resulted in 8 candidates. We next selected on the basis of predicted nuclear localization. This screen resulted in 4 candidates: with the two highest ranking being KIAA1794/NP_060663 and C15orf 42/NP 689472, both on chromosome 15. KIAA1794 was considered the prime candidate based on its orphan status, tissue distribution, and the presence of multiple ATR/ATM motifs .
KIAA1794, which is localized to 15q25-26, has 38 exons with a translation start in exon 2, encoding a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs (see Seq Id No 2) .
Example 8. Mutations in a gene mutated in Fanconi anemia complementation group I
Using the methods and results described in the above-mentioned samples, sequence analysis of this new gene in 8 FA individuals assigned to complementation group FA-I revealed mutations in all these affected individuals (Table 2) .
Mutations appeared homozygous in the patients from consanguineous marriages .
Patient BD952 was homozygous for two missense mutations, C.164OT (in exon 4) and c.3854G>A (in exon 36), resulting in a Proline to Leucine substitution at position 55 and an Arginine to Glutamine substitution at position 1285, respectively (Table 2) . We tested 96 healthy individuals for the occurrence of these variants and found C.164OT heterozygously present in 9 individuals, whereas c.3854G>A was not detected. This indicates that C.164OT is a polymorphism and that c.3854G>A is thought to represent a pathogenic mutation. The latter mutation creates an additional ATM/ATR phosphorylation motif, which might disturb the protein's proper regulatory response.
In the affected individual from the second consanguineous family, patient EUFA592, a homozygous mutation c.2T>C was found, which eliminates the translation initiation site of the gene; the unaffected sib was homozygous for the normal allele. This mutation was not detected in the panel of 96 healthy control individuals.
This also applied to the additional mutations encountered in the remaining affected individuals, which included three (partial) exon deletions, one inserted exon, three protein truncations, and one . amino acid substitution (Table 2) .
Example 9. Phenotypic Reversion
In EUFA816 the maternal allele contained a premature stop (c.3853OT) in exon 37, whereas the paternal allele carried a mutation (c.3350-88A>G) in intron 31 resulting in aberrant splicing. From this individual a lymphoblastoid subline had been obtained that was phenotypically reverted to MMC resistance, while these cells had regained their capacity to monoubiquitinate FANCD2 (Fig. 2a and b) .
When investigating cDNA-amplified fragments from MMC-sensitive EUFA816 cells we noted that amplification of the sequence encompassing exons 31 and 32 generated an additional larger fragment, which appeared weaker in the reverted cells (Fig. 2c) . Sequencing of the cDNA from the reverted cells showed partial restoration of normal splicing from one of the alleles and the presence of an additional mutation in intron 31 (c.3349+97T>G) , which reduced the splice acceptor score for the aberrant exon (Fig. 2d) . This indicated that phenotypic reversion was associated with a secondary DNA alteration at the locus under study, thus confirming the identity of KIAA1794 as the disease gene for this individual. Taken together with the mutational data presented for the other FA-I individuals, we conclude that KIAA1794 is the disease-causing gene in FA complementation group I, FANCI.
A striking feature of FA-I cells is their apparent deficiency in the association of FANCD2 with chromatin. FANCI possesses several strong SQD/SQE motifs for ATM- or ATR-induced phosphorylation in its C- terminal domain, a feature that suggests a role in a DNA damage response. Interestingly, the splice site mutation in patient EUFA695 results in an in-frame deletion of exon 27, encoding one of the SQE motifs, while the missense mutation in BD952 creates an additional SQD motif. FANCI could thus be a signal-regulated localizer of FANCD2.

Claims

1. An isolated human DNA molecule derived from chromosome 15 wherein said DNA molecule has a nucleotide sequence which sequence is mutated in FA complementation group I .
2. DNA molecule according to claim 1 which is localized to locus 15q25- 26.
3. DNA molecule according to claim 2 containing a gene, wherein the gene encoded by said DNA molecule has 38 exons with a translation start in exon 2, and encodes a 1328 amino acid protein with 3 nuclear localization and 3 ATM/ATR phosphorylation motifs.
4. DNA molecule according to any of the previous claims selected from the group consisting of: a. a DNA molecule having the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence; b. A DNA molecule that shows at least 80%, more preferable
90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 1, or the complementary strand of said nucleotide sequence
5. DNA molecule according to any of the previous claims, that is a cDNA molecule selected from the group consisting of: a. a DNA molecule having the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence; b. A DNA molecule that shows at least 80%, more preferable
90%, even more preferable 95%, most preferable 98% homology with the nucleotide sequence shown in SEQ ID No. 2, or the complementary strand of said nucleotide sequence.
6. An oligonucleotide comprising at least 150, preferably at least 100, more preferably at least 50, even more preferably at least 20, most preferably at least 15 consecutive nucleotides of a DNA molecule according to any of the claims 1-5.
7. A DNA molecule according to any of the previous claims, wherein a mutation has been introduced by means of insertion, deletion, and/or replacement of one or more nucleotides, and wherein said molecule encodes for a protein that, when introduced into cells from patients with Fanconi anemia of complementation group I, does not reduce the sensitivity of those cells to mitomycin C.
8. A DNA molecule according to any of the previous claims, wherein a mutation has been introduced chosen from the group consisting of partial of complete exon deletion, inserted exon, protein truncation, amino acid substitution.
9. A DNA molecule according to any of the previous claims, wherein at least one mutation or polymorphism is selected from the group consisting of mutations c.2T>C, c.670-2A>G, c.3854G>A, c.3006+3A>G,
C.3853OT, c.3437_3455deletion, C.3895OT, c.l264G>C, c.3350-88A>G,
C.2572OT, c.2509G>T, and c.2248T>G and polymorphism C.164OT of the nucleotide sequence as shown in SEQ ID No .2 is present.
10. Polypeptide encoded by a DNA molecule according to any of the claims 1-9.
11. Method for determining a genetic defect in a patient, the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprises determination of the sequence of the FANCI gene of said patient.
12. Method for determining whether a subject carries a mutant FANCI gene, comprising the steps of: i. providing a biological sample from the subject, which sample includes DNA and/or RNA, ii. determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, iii. comparing the determined sequence with that of SEQ ID No 1 or SEQ ID No 2.
13. Method according to claim 12, wherein step b) comprises determining the sequence of a portion of the FANCI gene encompassing one or more of the mutations as defined in claim 8, or a corresponding portion of the FANCI mRNA.
14. Method for classification of tumors, comprising the steps of i. providing a biological sample from the subject, which sample includes DNA and/or RNA and/or protein, ii. determining whether the FANCI gene is expressed at the
RNA and/or protein level, and iii. determining the sequence of the FANCI gene or FANCI mRNA, or a portion thereof, iv. comparing the determined sequence with that of SEQ ID No 1 or SEQ ID No 2 to establish the differences therebetween.
15. Method according to claim 14, wherein step b) comprises determination of the presence of the FANCI protein, in particular by- binding to specific antibodies, or by determination of the presence of FANCI mRNA, in particular by quantitative RT-PCR, or by determination of methylation of the promoter of the FANCI gene, e.g. by methylation specific PCR or determination of DNA changes of the promoter of the FANCI gene, e.g. by DNA sequencing.
16. Method for drug testing, in particular for the suitability for use as an antitumorigenic drug in patients having a tumor wherein FANCI is inactive or less' active, comprising, the steps of: i. Providing a biological sample of the patient comprising DNA and/or RNA and/or protein ii. determining whether the FANCI gene is expressed at the
RNA and/or protein level, and iii. determining whether a FANCI mutation is present in the tumor DNA of the patient, iv. identifying the said mutation, v. incubating tumor cells from the patient ex vivo with an antitumorigenic drug, vi. determine whether the antitumorigenic drug is capable of inhibiting growth of the tumor cells, vii. correlating the mutation with the effectivity of the antitumorigenic drug.
17. Method according to claim 17, wherein the antitumorigenic drug is a polyfunctional alkylating agent, preferably a bifunctional agent, most preferably cis-platin.
18. Method according to any of the claims 14 - 17, wherein the tumor is chosen from the group, consisting of FA, breast cancer, ovarian cancer, head-and-neck cancer, solid childhood cancer or prostate cancer.
19. Method of complementing a genetic defect in an isolated cell, the defect being a mutation in the Fanconi anemia gene of complementation group I, the method comprising introducing into the cell one or more DNA molecules according to claims 1-6 or the polypeptide according to claim 10.
20. Use of a DNA molecule according to claims 1-9 and/or a polypeptide according to claim 10 for methods of diagnosis, treatment, drug development, molecular diagnostics of FA patients carrying biallelic FANCI mutations, counseling and surveillance of subjects carrying^ a biallelic FANCI mutation for a highly increased tumor risk and bone marrow failure, counseling and surveillance of subjects carrying a monoallelic FANCI mutation for a moderately increased tumor risk, tumor classification by determining FANCI defects, as target for therapy or as lead in drug development schemes.
21. Use according to claim 20, wherein said methods of diagnosis, treatment or drug development are directed to the diagnosis, treatment or drug testing of FA, cancer, bone marrow failure.
Figures and Tables
Table 2 Sequence variants at the KIAAlI'94 locus in FA-I patients'
Maternal Allele
Paternal Allele
Patient Origin DNA Effect DNA Effect ID
EUFA59213 Turkey- , e . 2T>C p .Metl ? c.2T>C "p.Metl?
1 BD952b India c . 164OT a p . Pro55Leu c.164OT p.Pro55Leu c .3854G>A p .Argl285Gln c.3854G>A p.Argl285Gln
EUFA695 U . S .A. c . 3006+3A>G p .Arg964_Glrxl00 c7l264G>C p.Gly422Arg 0 2del
L EUFA816 Hungary C . 3853OT p .Argl285X c.3350- p.Glulll7fs 88A>G d j EUFA961 ' Austria |c.3437__3455 p,Glulll7fs ? C.2572OT r p.His858_Arg879 i ,dele del
EUFA1399 Germany C.3895OT p.Argl299X C.3895OT g p.Argl299X
VU1301h NL c.2509G>T p.E837X
VU1466h U. S.A c.2248T>G p.C750G C.2509OT P-E837X
a Description of variants refers to the sequence in Supplementary Figure 2 online. Mutations were found by cDNA sequencing, followed by- sequencing of the genomic DNA. Variant C.164OT was observed in 9/96 healthy controls (from The Netherlands) and was therefore considered a polymorphism. None of the other sequence variants were observed in the control panel, nor in the public databases that list common polymorphisms and were therefore considered pathogenic. b Consanguineous marriages (parents are first cousins). c Changes splice donor site score from 0.92 to 0.43, which results in in-frame deletion of exon 27. d Generates a new splice donor site resulting in an additional exon (see Fig. Id) . e This 19-base pair deletion leads to skipping of the entire exon 32. f Creates splice donor site in exon 24 leading to an in-frame deletion of base pairs 2571 to 2636 from the cDNA. g The maternal mutation appeared homozygous in the patient, but hemizygosity can not be excluded, since DNA from the father was not available for analysis. hPatients VU1301 and VU1466 were not used for identification of the FANCI gene. DNA sequence mutations were obtained afterwards. The mutations were not detected in a panel of 96 control individuals.
Figure 2 Compensatory sequence alteration in KIAA1794 associated with phenotypic reversion in FA-I patient-derived lymphoblasts . (a) A subline of lymphoblasts derived from patient EUFA816 was phenotypically reverted to mitomycin C (MMC) resistance (EUFA816R) , as shown by MMC-induced growth inhibition curves; HSC93, wild type lymphoblasts. (b) Monoubiquitination of FANCD2 (formation of D2-L) is absent in EUFA816 lymphoblasts, but restored in the reverted cells. D2-S, non-ubiquitinated form of FANCD2. (c) Amplification of base pairs 3019 to 3765 of the KIAA1794 cDNA, encompassing exons 31 and 32, generated an extra (larger) fragment in EUFA816, which appeared weaker in the reverted cells, EUFA816R. Patient BD952 (who carries no mutations in the amplified region) served as a control. The lower band in both EUFA816 cells (wt) represents the other allele containing the premature stop mutation C.3853OT in exon 37 (Table 1). (d) Genomic sequence showing exon 31 and 32 (red) and the additional exon (blue) resulting from the pathogenic mutation c.3350-88A>G (lower arrow) which creates a splice donor site with a score of 0.85 according to http: //www. fruitfly.org/cgi-bin/seq tools/splice. html . In EUFA816R cells a second mutation is observed (c.3349+97T>G, upper arrow), which reduces the splice acceptor score for the additional exon from 0.45 to 0.33, allowing the normal splicing to take place with a probability that appears sufficient to correct the cellular phenotype.
Figure 2 . Compensatory sequence alteration in KIAAI l 94 associated with phenotypic reversion in FA-I patient-derived lymphoblasts .
Figure imgf000037_0001
MMC (nM)
Figure imgf000037_0002
c.3350-88A>G
Figure 1 FA-I families and patients analyzed to identify the gene defect in individuals of FA complementation group I.
Figure imgf000038_0001
595 592 961 962 965 816 480 1355
1. 2. 3. 4.
Figure imgf000038_0002
EUFA EUFA 695 1399
Filled-in symbols are the affected individuals. Families 1-4 were used to delineate the candidate regions for FANCI by homozygosity mapping (patients EUFA592, BD952, and 1428 in consanguineous families 1 and 2) and linkage analysis (families 3 and 4) . DNA was not available from the parents of family 2 and from the patients EUFA695 and EUFA1399.
Table 1 Clinical features of the FA-I individuals studied
Patient Retarde Thumb/radi Kidney/hea Onset Age at Comments ID d us rt marrow death growth anomalies anomalies failure (yr)
(yr)
EDFA592 Yes Yes ,Yes 2.5 6.5 'Consanguine i OUS
I BD952 Yes No No 7.3 23 Consanguine ous 1428 Yes No No 7.3 115 Consanguine
IOUS
L_
EUFA695 12 No details knowna
IΕDFA816 [Yes i No No 12' J Died after
'[transplant i
EUFA480 Yes No No 4.8 Age 24, transplante d at age 8.5 yr
EUFA961 Yes 'Yes Yes _>1 Died after i transplant
EUFA1399 Yes Yes Yes Age 30.5 yr EUFA 1301 Yes No No Alive at 8 years
EUFAl466 Yes Yes Yes 1.5
a Clinical details for this patient, including cause of death, could not be filed. Lymphoblasts were hypersensitive to mitomycin C and used for cell fusion analysis leading to classification as FA-I. SEQ ID No. 2: KIAAl 794/FANCI coding sequence (human cDNA) , including amino acid sequence of polypeptide derived thereof. This sequence represents a splicing variant in the database, which differs from the reference sequence by the presence of an additional exon (exon 24, underlined) . The reading frame starts in exon 2. All (varying) splicing variants are also contemplated, including the one without exon 24.
2
-90 ' TCTTGTTGTTACGGGTAACGGAAGTGTGGCGGCGTTGGGTTGAGCGGGCTTTTTGGAAGT
2 -30 TTGTGGCGGAGTTCTGTGATATGAGCAACA
1 2 ->
1 ATGGACCAGAAGATTTTATCTCTAGCAGCAGAAAAAACAGCAGACAAACTGCAAGAATTT 60 1 M D Q K I L S L A A E K T A D K L Q E F 20
3
61 CTTCAAACCCTGAGAGAAGGTGATTTGACTAATCTCCTTCAGAATCAAGCAGTGAAAGGA 120 21 L Q T L R E G D L T N L L Q N Q A V K G 40
4
121 AAAGTTGCTGGAGCACTCCTGAGAGCCATCTTCAAAGGTTCCCCCTGCTCTGAGGAAGCT 41 K V A G A L L R A I F K G S P C S E E A 60
181 GGAACACTTAGGAGACGTAAGATATACACTTGTTGTATCCAGTTGGTGGAATCGGGGGAT
61 G T L R R R K I Y T C C I Q L V E S G D 80
5
241 TTGCAGAAAGAAATAGCGTCTGAGATCATAGGATTACTGATGCTGGAGGCTCACCATTTT 300
81 L Q K E I A S E I I G L L M L E A H H F 100
301 CCAGGACCATTATTGGTTGAATTAGCCAATGAGTTTATTAGTGCTGTCAGAGAAGGCAGC 360 101 P G P L L V E L A N E F I S A V R E G S 120
361 CTAGTGAATGGAAAATCTTTGGAGTTACTACCTATCATTCTCACTGCCCTGGCTACGAAA 420 121 L V N G K S L E L L P I I L T A L A T K 140
6
421 AΆGGAAAATCTGGCTTATGGAAAΆGGTGTACTGAGTGGGGAΆGAATGTAΆGΆAACAGTTG 480 141 K E N L A Y G K G V L S G E E C K K Q L 160
7
481 ATTAACACCCTGTGTTCTGGCAGGTGGGATCAGCAATATGTAATCCAACTCACCTCCATG 540
161 I N T L C S G R W D Q Q Y V I Q L T S M 180
8
541 TTCAAGGATGTCCCTCTGACTGCAGAAGAGGTGGAATTTGTGGTGGAAAAAGCATTGAGC 600
181 F K D V P L T A E E V E F V V E K A L S 200
601 ATGTTCTCCAΆGATGAΆTCTTCAAGAAΆTACCACCTTTGGTCTATCAGCTTCTGGTTCTC 660 201 M F S K M N L Q E I P P L V Y Q L L V L 220
9
661 TCCTCCAAGGGAAGCAGAAAGAGTGTTTTGGAAGGAATCATAGCCTTCTTCAGTGCACTA 720 221 S S K G S R K S V L E G I I A F F S A L 240
10 721 GATAAGCAGCACAATGAGGAACAGAGTGGTGACGAGCTATTGGATGTTGTCACTGTGCCA 780
241 D K Q H N E E Q S G D E L L D V V T V P 260
781 TCAGGTGAACTTCGTCATGTGGAAGGCACCATTATTCTACACATTGTGTTTGCCATCAAA 840
261 S G E L R H V E G T I I L H I V F A I K 280
11
841 TTGGACTATGAACTAGGCAGAGAΆCTCGTGAAACACTTAAAGGTAGGACAGCAΆGGAGAT 900 281 L D Y E L G R E L V K H L K V G Q Q G D 300
901 TCCAATAATAACTTAAGTCCCTTCAGCATTGCTCTTCTTCTGTCTGTAACAAGAATACAA 960
301 S N N N L S P F S I A L L L S V T R I Q 320
12
961 AGATTTCAGGACCAGGTGCTTGATCTTTTAAAGACTTCGGTTGTAAAGAGCTTTAAGGAT 1020 321 R F Q D Q V L D L L K T S V V K S F K D 340
1021 CTTCAACTCCTCCAAGGCTCAAAATTTCTTCAGAATCTAGTTCCTCATAGATCTTATGTT 1080 341 L Q L L Q G S K F L Q N L V P H R S Y V 360
13 1081 TCAACCATGATCTTGGAAGTAGTGAAGAATAGCGTTCATAGCTGGGACCATGTTACTCAG 1140 361 S T M I L E V V K N S V H S W D H V T Q 380
1141 GGCCTCGTAGAACTTGGTTTCATTTTGATGGATTCATATGGGCCAAAGAAGGTTCTTGAT 1200 381 G L V E L G F I L M D S Y G P K K V L D 400
1201 GGAAAAACTATTGAAACCAGCCCAAGTCTTTCTAGAATGCCAAACCAGCATGCATGTAAG 1260
401 G K T I E T S P S L S R M P N Q H A C K 420
14
1261 CTCGGAGCTAATATCCTGTTGGAAACTTTTAAGATCCATGAGATGATCAGACAAGAAATT 1320 421 L G A N I L L E T F K I H E M I R Q E I 440
1321 TTGGAGCAGGTCCTCAACAGGGTTGTTACCAGAGCATCTTCTCCCATCAGTCATTTCTTA 1380 441 L E Q V L N R V V T R A S S P I S H F L 460
15
1381 GACCTGCTTTCAAATATCGTCATGTATGCACCCTTAGTTCTTCAAAGTTGTTCTTCTAAA 1440 461 D L L S N I V M Y A P L V L Q S C S S K 480
1441 GTCACAGAAGCTTTTGACTATTTGTCCTTTCTGCCCCTTCAGACTGTACAAAGGCTGCTT 1500 481 V T E A F D Y L S F L P L Q T V Q R L L 500
16
1501 AAGGCAGTGCAGCCCCTTCTCAAAGTCAGCATGTCAATGAGAGACTGCTTGATACTTGTC 1560 501 K A V Q P L L K V S M S M R D C L I L V 520
17
1561 CTTCGGAAAGCTATGTTTGCCAACCAGCTTGATGCCCGAAAATCTGCAGTTGCTGGGTTT 1620 521 L R K A M F A N Q L D A R K S A V A G F 540
1621 TTGCTGCTCCTGAAGAACTTTAAAGTTTTAGGCAGCCTGTCATCCTCTCAGTGCAGTCAG 1680 541 L L L L K N F K V L G S L S S S Q C S Q 560
18
1681 TCTCTCAGTGTCAGTCAGGTTCATGTGGATGTTCACAGCCATTACAATTCTGTCGCCAAT 1740
561 S L S V S Q V H V D V H S H Y N S V A N 580 1741 GAAACTTTTTGCCTTGAGATCATGGATAGTTTGAGGAGATGCTTAAGCCAGCAAGCTGAT 1800 581 E T F C L E I M D S L R R C L S Q Q A D 600
19
1801 GTTCGACTCATGCTTTATGAGGGGTTTTATGATGTTCTTCGAAGGAACTCTCAGCTGGCT 1860 601 V R L M L Y E G F Y D V L R R N S Q L A 620
20
1861 AATTCAGTCATGCAAACTCTGCTCTCACAGTTAAAACAGTTCTATGAGCCAAAACCTGAT 1920 621 N S V M Q T L L S Q L K Q F Y E P K P D 640
1921 CTGCTGCCTCCTCTGAAATTAGAAGCTTGTATTCTGACCCAAGGAGATAAGATCTCTCTA 1980 641 L L P P L K L E A C I L T Q G D K I S L 660
21
1981 CAAGAACCACTGGATTATCTGCTGTGTTGTATTCAGCATTGTTTGGCCTGGTATAAGAAT 2040 661 Q E P L D Y L L C C I Q H C L A W Y K N 680
2041 ACAGTCATACCCTTACAGCAGGGAGAGGAGGAAGAGGAGGAGGAAGAGGCATTCTACGAA 2100 681 T V I P L Q Q G E E E E E E E E A F Y E 700
2101 GACCTAGATGATATATTGGAGTCCATTACTAATAGAATGATTAAGAGTGAGCTGGAAGAC 2160 701 D L D D I L E S I T N R M I K S E L E D 720
22
2161 TTTGAACTGGATAAATCAGCAGATTTTTCTCAGAGCACCAGTATTGGCATAAAAAATAAT 2220 721 F E L D K S A D F S Q S T S I G I K N N 740
2221 ATCTGTGCTTTTCTTGTGATGGGAGTTTGTGAGGTTTTAATAGAATACAATTTCTCCATA 2280 741 I C A F L V M G V C E V L I E Y N F S I 760
23 2281 AGTAGTTTCAGTAAGAATAGGTTTGAGGACATTCTGAGCTTATTTATGTGTTACAAAAAA 2340
761 S S F S K N R F E D I L S L F M C Y K K 780
2341 CTCTCTGACATTCTTAATGAAAAAGCGGGTAAAGCCAAAACTAAAATGGCCAACAAGACA 2400 781 L S D I L N E K A G K A K T K M A N K T 800 24
2401 AGTGATAGTCTTTTGTCCATGAAATTTGTGTCCAGTCTTCTCACTGCTCTTTTCAGGGAT 2460 801 S D S L L S M K F V S S L L T A L F R D 820
2461 AGTATCCAAAGCCACCAAGAAAGCCTTTCTGTTCTCAGGTCCAGCAATGAGTTTATGCGC 2520 821 S I Q S H Q E S L S V L R S S N E F M R 840
2521 TATGCAGTGAATGTAGCTCTGCAGAAGGTACAGCAGCTAAAGGAAACAGGGCATGTGAGT 2580 841 Y A V N V A L Q K V Q Q L K E T G H V S 860
25 2581 GGCCCTGATGGCCAAAACCCAGAAAAGATCTTTCAGAACCTCTGTGACATAACTCGAGTC 2640
861 G P D G Q N P E K I F Q N L C D I T R V 880
2641 TTGCTATGGAGATACACTTCAATTCCTΆCTTCAGTGGAAGAGTCGGGAΆΆGAAAGAGAAA 2700 881 L L W R Y T S I P T S V E E S G K K E K 900
2701 GGAAAGAGCATCTCACTGCTGTGCTTGGAGGGTTTACAGAAAATATTCAGTGCTGTGCAA 2760 901 G K S I S L L C L E G L Q K I F S A V Q 920
26
2761 CAGTTCTATCAGCCCAAGATTCAGCAGTTTCTCAGAGCTCTGGATGTCACAGATAAGGAA 2820 921 Q F Y Q P K I Q Q F L R A L D V T D K E 940
2821 GGAGAAGAGAGAGAAGATGCAGATGTCAGTGTCACTCAGAGAACAGCATTCCAGATCCGG 2880 941 G E E R E D A D V S V T Q R T A F Q I R 960
27 2881 CAATTTCAGAGGTCCTTGTTGAATTTACTTAGCAGTCAAGAGGAAGATTTTAATAGCAAA 2940
961 Q F Q R S L L N L L S S Q E E D F N S K 980
2941 GAAGCCCTCCTGCTAGTCACGGTTCTTACCAGTTTGTCCAAGTTACTGGAGCCCTCCTCT 3000
981 E A L L L V T V L T S L S K L L E P S S 1000
28 29
3001 CCTCAGTTTGTGCAGATGTTATCCTGGACATCAAAGATTTGCAAGGAAAACAGCCGGGAG 3060
1001 P Q F V Q M L S W T S K I C K E N S R E 1020 3061 GATGCCTTGTTTTGCAAGAGCTTGATGAACTTGCTCTTCAGCCTGCATGTTTCGTATAAG 3120 1021 D A L F C K S L M N L L F S L H V S Y K 1040
3121 AGTCCTGTCATTCTGCTGCGTGACTTGTCCCAGGATATCCACGGGCATCTGGGAGATATA 3180 1041 S P V I L L R D L S Q D I H G H L G D X 1060
30
3181 GACCAGGATGTAGAGGTGGAGAAAACAAACCACTTTGCAATAGTGAATTTGAGAACGGCT 3240 1061 D Q D V E V E K T N H F A I V N L R T A 1080
31
3241 GCCCCCACTGTCTGTTTACTTGTTCTGAGTCAGGCCGAGAAGGTTCTAGAAGAAGTGGAC 3300 1081 A P T V C L L V L S Q A E K V L E E V D 1100
32
3301 TGGCTAATCACCAAGCTTAAGGGACAAGTGAGCCAAGAAACCTTATCAGAAGAGGCCTCT 3360 1101 W L I T K L K G Q V S Q E T L S E E A S 1120
3361 TCTCAGGCAACCCTACCAAATCAGCCTGTTGAGAAAGCTATCATCATGCAACTGGGAACT 3420 1121 S Q A T L P N Q P V E K A I I M Q L G T 1140
3421 CTGCTTACATTTTTCCACGAGCTGGTGCAGACAGCTCTGCCATCAGGCAGCTGTGTGGAC 3480 1141 L L T F F H E L V Q T A L P S G S C V D 1160
33
3481 ACCTTGTTAAAGGACTTGTGCAAAATGTACACCACACTTACAGCCCTTGTCAGATATTAT 3540 1161 T L L K D L C K M Y T T L T A L V R Y Y 1180
34
3541 CTCCAGGTGTGTCAGAGCTCCGGAGGAATTCCAAAAAATATGGAAAAGCTGGTGAAGCTG 3600 1181 L Q V C Q S S G G I P K N M E K L V K L 1200
35
3601 TCTGGTTCTCATCTGACCCCCCTGTGTTATTCTTTCATTTCTTACGTACAGAATAAGAGT 3660 1201 S G S H L T P L C Y S F I S Y V Q N K S 1220
3661 AAGAGCCTGAACTATACGGGAGAGAAAAAGGAGAAACCTGCTGCCGTTGCCACAGCCATG 3720 1221 K S L N Y T G E K K E K P A A V A T A M 1240
36
3721 GCCAGAGTTCTTCGGGAAACCAAGCCAATCCCT AACCTCATCTTTGCCATAGAACAGTAT 3780 1241 A R V L R E T K P I P N L I F A I E Q Y 1260
37
3781 GAAAAATTTCTCATCCACCTTTCTAAGAAGTCCAAGGTGAACCTGATGCAGCACATGAAG 3840 1261 E K F L I H L S K K S K V N L M Q H M K 1280
3841 CTCAGCACCTCACGAGACTTCAAGATCAAAGGAAACATCCTAGACATGGTTCTTCGAGAG 3900 1281 L S T S R D F K I K G N I L D M V L R E 1300
38
3901 GATGGTGAAGATGAAAATGAAGAGGGCACTGCATCAGAGCATGGGGGACAGAACAAAGAA 3960 1301 D G E D E N E E G T A S E H G G Q N K E 1320
3961 CCAGCCAAGAAGAAAAGGAAAAAATAAATGAAATGCCTGAGTTAATGTGAACTTTGGGGC 4020 1321 P A K K K R K K X
Seq ID No . 1
Human genomic sequence of FANCI gene, including exons and introns .
1 CCTGTCGGGACACCGCGCTGGGCACGCTCAGGTCCCACCGCGCGTGCTCATCGGCGGTCC 60
61 CTAGCGCGAGTTCGGACAGGCAGCGCCCCCCTCCGACTGTGAGCTGGGACGCTCCCGCAC 120 121 GCTTCCCGGCACCCCTTCAGTCTTCATGGTACACCCCGCCCGCAGGTACCCGGACGGCGG 180 181 AAGTGAGCCGCGGGGGCGGATCTTGTTGTTACGGGTAACGGAAGTGTGGCGGCGTTGGGT 240 241 TGAGCGGGCTTTTTGGAAGTTTGTGGCGGAGGTGAGGCCGAGGTGACTGCAGAGCGGCTC 300
10 301 GCGAGGTGCTCGGGCTGTGGGACTGGGCCCCTGGGAGGGAGCGGTTCTGTGGGGGAAAGG 360 361 AGGCTCCTGTCCTGACTTGGCGTTCTGGTATTTTCTCTGGCGTGGAAAGTAGGCGCGCTC 420 421 CGCTGTCTCCCGCCGCCTGCCTCAGCTTTCGCGGTTCCCTCCTAGGGGTGTGCCTCAGTC 480 481 GGAGCCCCTTCTGTTAAATTCTTCCCCCTTGGCCGAGGGTGAGCTCTTACTTCTGAGAAA, 540 541 TTTCCCTTAACCTTGCTTTGCATTTGTTGTCCGGTCGCGGTCTCCATCACCAGCTGCTTC 600
15 601 GTGTTATAGTTTTTGTATTTGCGCTCACGGCTTGTTAACTGAAGAACCCGGAAGGGAAGG 660 661 CCGCGGCGTTTCCCGCCGGCGGGGCTCTGCCATTCTCGGATCTTGGCTTCAGATCTCTGA 720 721 TGCTCCCCAGCGTCTCTTGGCAAGGAATCTACTTCGCGTTCAGGGAATTCACAGCCACCC 780 781 GCCTCTGGTCTTACCTCTGGTTTTAGGATGATTTTAGCAAATGTGCCTAGGTTGATTTAA 840 841 ACGTATCCCCCTCCGAAGCCGCCTGCCCCTTCTGGCTGGACACCTTTTTAGGTTGGTGTG 900
20 901 TCCTGTTTGCATCCGGTAGTTCAAAGCATGGGATCTTGGAGTCCGGAGCTGGACAGACTC 960 961 GGGTTTCACTTCTCTCTCTGCCACTTGGTAGCCTTCTAATCTTGGGGGAAATTCCCTAAT 1020
1021 CTCTGAATCCCAAAAGTTGTTCATCTAAAATGGGGCTAATATTACACCTACCTAGTAGGT 1080
25 1081 GGTGTTGTGGGAGTCATGTTAATGAATGTAAAGTGCTGGGTTCAGTGTTTTCCCTATTAT 1140
1141 AGGGGTTCAATAATTTGTTCAACAAACATTTGTTACCTAGTTTGAGCTAGGTACTGTGCT 1200
1201 AAGTGCTGGAGATACAATGATAAACAΆAACCAGCTACGGCCCGTGTCCTTAGGGGACTTA
30 1260
1261 TAGTCTAGTGGGAGATAACATTTGTTAATCTGATAATTACACATGTAATATTAAAAATTG 1320
1321 GTGACAGTATGTAAGAGAGTTTACTGGTGCCATGAGAGGATGTACTAGGGGAACGTTTAA 1380
35 1381 CAΆCCTATACTGAGCTTTTCTTTTCTTTTCTTTTCTTTTTTTTTTGAGACAGAGTCTCCC 1440
1441 TCTGTTGCCAGGCTGGAGTGCAGTGGCGCGATCTCGGCTCACTGCAACCTCCGCCTCCTG 1500
1501 AGTTCAAGTGATTCTCCTGCCTCAGCCTCACAAGTAGCTGGGACTACAGGTGCGTGCCGT
40 1560
1561 CACGCCCAGCTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTATTTTTAGTA 1620
1621 GAGACGGGGTTTCACCATCTTGGCCAGGAAGGTCTGGATGTCTTGACCTAGTGATCCGCC 1680
45 1681 CGCCTTGGCCTCCCAAAGTGCTGAGATTACAGGCGTGAGCTACTGCGCCTGGCCTAGACT 1740
1741 GAGCTTTTGAGGAGATGTGGATTGAGCTAAGATCTGAAGGATTTGTAGGAATTAGTAATA 1800
1801 AAAGATTGGGGGGCAGTGGATGGAAGCAGGAATATTTATTTAAGTTCCAGATGGAAACAT
50 1860
1861 GTGGAAGGGCCTGTGGCAGAAAGAACTTGGAGATTTGAAGGACTGGAAGCAΆTTCTGCAT 1920
1921 GGCTGGAGCAGAGTGATGAAAGGGAGGTAGGCATGGGTCAGAACTTGCAGGACTTATTTT 1980
55 1981 ATCCTTACTTAAGGGTTTTGGACTGATAAAGCAATGGAAGCCACTGAAGAGCTTTAAGAT 2040 2041 GAGGATGGCATGGAGGGAΆGATAAGTCACATAATCAGGTTTGTGTTTCAAAΆACATCACT
2100
2101 TTAGTTGCTGCGTAGAAGGGAACAAGTTAGGAAACGATTGCAGTAGTTCAGGTGAGAGAT 2160
5 2161 GGTGGTGGCTTGGGGTAATGTGTCAGTAGTGGAGATGGAGAAAAGTAGACAGATTTGGGA 2220
2221 GATATTTAGTAGGTAACATTGACAGGACTTGGTAATGGATGTGGTGAAGGATGAAGGCAA 2280
2281 AGTTGTTAAGAATGTTACCTAGGTTTCTGGTCTGAGCAGCTGAGTGGATGATGGTACCAT 10 2340
2341 TTATGGAGACGGGAAACACAGGAGGAAGAAGAGGAGGAACAGATTTTCTTTCTACTAGGC 2400
2401 TGTACTTCCCCCTTCTATTTTCATAGCTACTCACTGAATTCTATCTGCTTCATGTGCCTC 2460
15 2461 CATTTCATCCCATCTTTTCTGTTCTCCAGTCACCACCCTAGTACAGGTCTTTATCATTTC 2520
2521 CACTAAAATAACTTCCAAATGGTCTCTTAGCATTTGCTGTTTCTTCTTACCTTCTCCCCA 2580
2581 CTTTAATCTGCACAAAGATGCTAGGTTCTGTTTCCTCAAACACTTGCAATCTTGTGAGAT 20 2640
2641 TGTCTTTTGCTCAAATTTTTTAATGGTTCTCAGTAATTTACGAAATAGAATCTAAATTCC 2700
2701 TTAACCTGTTTACTTCCAGCCTATCTTTCCAGACTTCCTACTCACTATTTTCCTACTTGG 2760
25 2761 ATTCTACCTCAGCCATTTTACTCATTTTCCCCCAAAGAAATTTCTCATTTCCCGTATGAA 2820
2821 TGCCTTTGTTCATGATACCCTTCTCCATAATGTATACAACCTGGTTGTCTGGACTACCTA 2880
2881 TATTTAATCTCTAAGTTCCAGTTCAAGCTTTCCTCTGCTGCGAAACCTTGACATTTAAGA 30 2940
2941 ACACAGTTACATCTTTTACCTTGTTAACTTCTCAGCTTTTCTTTCTTTCTTTCTTCCTTT 3000
3001 CTTTTTTTTTTTTTTTTTTTTGAGACAGAGCCTCGCTCTGTCGCCCAGGCTGGAGTGCAG 3060
35 3061 TGGCGTGATCTCCGCTCACTGCAAGCTCCTCCTCCCGGGTTCACGCCATTCTCCTGCCTC 3120
3121 AGCCTCCCGAGTAGCTGGGACTATAGGCGCCCGCCACCACGCCCAGCTAATTTTTTTTTG 3180
3181 TATTTTTGGTAGAGACGGGGGTTTCACCGTGTTAGCCAAAATGGTCTCGATCTCCTGACT 40 3240
3241 TCGTGATCTGCCCTCCTCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACGGTGC 3300
3301 CGGCCTCTTTTTTTTTTTTTTTTTAAGAGACAGGGTCTTACCTTGTTGCCTAGGCTGGAG 3360
45 3361 TACTGTGGCATGATCATAGCTCACTGCAGCCTCACACTCTTGGGCTCCCCTTCTCACTTG 3420
3421 TTTTTATACCATTTAATTGGCACATAGCATTTATAGTGCTATTGGTTTATTCATTTATTT 3480
3481 GTCAAATACTTTATTACATGCTTATGGTAATATATAATGTATTACATACTTGATATGCTG 50 3540
3541 TTAAATGGAAGCTTTGTTCTAGGTAGTATGGTGAGTAGATGGTAACAAGTGTGGGCAAAA 3600
3601 ATTATGAAACCACTTGATTAGAATACAGATTCCTAATAAGGCAATTCCAGGGAATTTTCA 3660
55 3661 GGATTATTTTGGTTAGGTTAAGAATCATCTTGCCACTGAGCTTAAGAAGAAGAAGAAAAA 3720
3721 AGAATCAGCTACTTAAAGATAGTCCTAAGTTTGTTGAGCACCCATTGCATAATAGGTATG 3780 3781 AAATATTCAGTTAACAGGGAAGGAAAACAAATCAAGTTTGTTTATTTCTGGAATCTTCAC 3840
3841 CCACCTCTGACGTTTTTCCCTTGTAGTTCTGTGATATGAGCAACAATGGACCAGAAGATT 3900 3901 TTATCTCTAGCAGCAGAAAAAACAGCAGACAAACTGCAAGAATTTCTTCAAACCCTGAGA 3960
3961 GAAGGTGATGTGAGTATTAGGAAGCATGTTCTGCTAAAAGTAAATGTCAGGCATGATGAC 4020
4021 ACATTCAAAGGACATGTGAGAAAGAAAAATTACGCTGCTTCTTCATCTACTCCCCATTCA 4080
4081 CTGTAGGAGACAAGGATTTATTTAATAATAATTTATAGATGTAAAGAAATTGGGGTGAGG 4140
4141 GAATGAGAGAAATAGACTACTTGAGGGCATTTGTGACCAAGTTTAAACCTGAAATAGTTT 4200 4201 AAGAATAGAATGCTTTTACAACTGTATTTATAAAAGCAATTAGTATACTTTTATGGTCCT 4260
4261 CAGAACAATCCTATTTGATGATAATATCCAGACTATAGTTACTGATTGAGACATTAGTTT 4320
4321 TGCATTTTGATGCTTCTCTGTATTTTTCCGTAAAGAAATTAAGTTTATAAGCGGCAAAAT 4380
4381 ATTTTGAAATTATTAGTAAAAATTAGGGCCTCTGTTTTCACTATAAGTGTAGGATTATAA 4440
4441 AATGGGATAGTAATTGCCTTATATGTTAGGCTGTTTCTTCTCCCTAATGTTCTTTCTCAG 4500 4501 CTGATATACTGCTCCTTTTTCCATAAGTGATCTCATCCTATCCAGGTCCCTGCCTGGAAA 4560
4561 AGAATCCCTCTTCAAGGTATATGTACAAACAAGTAAAGACATTGAGTATCATGGGATTTT 4620
4621 TTTCCTTTTTCTGTCAATTGATGAGTATTATGTTTTTAAGGGAATTTCTTTGTGTTAATG 4680
4681 TTGTAGTTATTGAAGGAAGGTGCATCTTAGTGTGTGTTATCTGACATACTAACTAGGAAT 4740
4741 TGATGCAGTGTTGCTCTTTGATTTTTTTTTCTTTGAAATTATCCAAGATTGCCTTTATAG 4800 4801 CTATTTTTTGAGATGACTTGTTGCATGAGTTGTAACTTGAATCATTCTATAGACAAGATT 4860
4861 TGATTGAAACTAGCATTTAAATTATTTATTTAAAGTTTCATGCCTCAAATTGAAGGCGTG 4920
4921 AACACTGTCAAATTGAAGACAGTGTTCCAGATGTTTTCTGACTCTAGGATAGAGTAATGC 4980
4981 TAATATTTCCCTCATTTTTCCATTAATGCAAAATCAGCTTTTTGGCAGCAACATTATATT 5040
5041 GTAGTCTCATTGCTCTTATATTTATTTTTGTATATGTTGATAAGTTGCTAAGTTTCCTTT 5100 5101 ATCTCTGAAGTCCTTTTAGAATCCATGTTAAAAACTATATATAGGCCAGGCATGGTGACT 5160
5161 TACACCTGTAGTCCCAGCACTTTGGGAGGATTCCTTTAGGCCAGGAGTTCGAGATCAGCT 5220
5221 TAGGCAACATAGTGAGACCCAGTTTCTAAAAACAACTACCAAAACAACAAACTTTATATC 5280
5281 TGTTAACTGTCACCTTTTTTAGATTCATCTTGTTTTACTCCATCAAGATCATTTTGTATG 5340
5341 ATTCTGCTGACCGTATTAATCAGCTTTTTATCCTCTACAAATTTGTTAAGCATGTCAGTA 5400 5401 ATATATGCAGGCAGTTCATTTGATAAAATGTCCCACAGAAGATGAACTCAGAGTAAAAAA 5460
5461 TTATAAAACACATAAAGAAGTCCTGTGGCAAGAΆAGACTCAAΆCAGAAATGGGAΆAATTC
5520 5521 ATATTCAAGGATTTAGAGCAATCTGAAAAAAATCTTTAATTATTTAACACAAATACTTAA 5580
5581 TACAGTATTTAACTTTATTTATTTAAAGGTGGGATCTCACCCTTGCACAGGCTGGAGTGC 5640 5641 AGTGGGGCGATCTCGGCACACTGCAGCCTCAACCTCCTGGGCTCATGCGATCCTCCCACC 5700
5701 TCAGCCTCCTGAGTAGCTGGGAGTACAAGCATGTGCCACCATGTCCGACTAATTTTTGTA 5760
5761 TTTTTAGCAGAGATGGGGTTTCGCCATGCTTTCCAGGCTGGTCTTGAACTCCTGAGCTCA 5820
5821 AGCAATCCACCCACCTCAGCCTCCCACAGTGCCGGGATTACACGTGTGAGCCACTCTGCC 5880
5881 TGACCTAGTATTTAAAATATTTGAAGATGTAAATGAAGGAATAGAACTCACAAAATAAGG 5940 5941 GATGGATTTAGAΆAACAΆTGAAAGACAACTTCTTGAAΆTGAAAACCTCAGTAGGTGGTTT
6000
6001 AΆCAGTAGΆCAAAACATTGCTAAAGAGAAAATTAGTAΆAGTGGAATACAGAGCTGAGGAT
6060
6061 AACTAAATAAAGCACAGATTGTAAAGAGGTGGAAAATATAAAGAATATTTAAAATATATG 6120
6121 CAGAGAACTTTGATAAGAATATATTATCTTCTTAAACACATAGAATGTTCATAAAAATTA 6180
6181 ATCACATGTCATATACTAGAGCACAAAGAAAACATGGGTAGGTCCCATAAGGTAGAATTA 6240 6241 TTACAAACTATTCTCTGTGATCACAATGCAATAAAACTGGAAATGAAAACCGAAACTAAA 6300
6301 AGTCAAAAAGCAAAGACACTTTTACTTGGAAATTAAAATACCTTCTATTCAACCATTGTG 6360
6361 GAAGACAGTGTGGCGATTTCTCAGGGΆTCTΆGAACTAGAΆATACCΆTTTGACCCAGTGAT 6420
6421 CCCATTACTGGGTATATACCCAAAGGACTGTAAATCATGCTGCTATAAAGACACATTCAC 6480
6481 ACGTATGTTTATTGCGGCACTATTCACAATAGCAAAGACTTGGAACCAACCCAAGTGTCC 6540 6541 AACAATGATAGACTGGATTAAGAAAATGTGGCACATCTACACCATGGAATACTATGCAGC 6600
6601 CATAAAAAATGATGAGTTCATGTCCTTTGTAGGGACATGGATGAAGCTGGAAGCCATCAT 6660
6661 TCTCAGCAAACTATCGCAAGGACAAAAAAACCAAACCCCACATGTTCTCACTCATAGGTG 6720
6721 GGAATTGAACAGTGAGAACACTTGGACACGGGAATGGGAACATCACACACCGGGGCCTGT 6780
6781 TGTGGAGTGAGGGGAGGGGGGAGGGATAGCATTAGGAGATACACCTAATGTAAATGACGA 6840 6841 GTTAATGGGTGCAGCACACCAACATGGCACATGTACGCATATGTAACAAACCTGCATGTT 6900
6901 GTGCACATGTACCCTAGAACTTAAAGTATAATAAAAATATATATATATATAAAAATAAAA 6960
6961 AAATACCTTCTAAATAACTCTTGGAGGAAAAGAGATACAAACAAATTACAGGATTTTTGA 7020
7021 AGAATAATTACAGATAACAAAAATACTACATGTTAAAAATCCATGGAATAATGTTAAAAA 7080
7081 CAAGTGTTTAACAAATGAAATAATGAAATCAATACAAATGAAATAATGAAAATAAATAAA 7140 7141 TTCCCAACTCAAAAACCTAGΆΆAAAΆGAGΆAAGTAAΆCΆACΆΆCAΆAΆAΆACACAAGAAA
7200
7201 CTACTAAAGATAAAAGTGGAAΆTTAATAAAGTAGAGAACAGAΆAΆATΆGTGGATCAAATT
7260 7261 AATCAAAATCTTGGTTCTTTGTGGGGGAAAAAAACACCATTAATTAATATAATAATCAAA 7320
7321 ACAGTGGAGTAAAAACATGCACAAAATGAGAAATGACAAGGGAGAAATACTGTTAATACA 7380 7381 GAGAAAATCTCAAAAAATACTGTGAGACTACAGTAGATTCCTGTGCAAATAAATTTGAAA 7440
7441 ACCTAGAGGAAATGGATAATTTCTTAGGCACGTACAGTTTAATAAAATTGAGCCAATTTG 7500
7501 AGATGGAAAGCTTAAGCAGACCAGTTTCCATAGAAGAAAAGAGAAAGTTATGAAGGAACT 7560
7561 ACTTCGTACAAAAACACCAGGCCCAGATAGATTGGCAGGAAACTTCTGTCAAACCTTTAG 7620
7621 AGATCAGGTAGATAGTCCTAATGCTACATAAATTGTTTTAGAGCATAAATAATAAAGGAA 7680 7681 AACTTCCAAGTTCTTTGAATGAAGCAAGTATAACATTGAATTAAACAAATATAACATTGA 7740
7741 TTTTTTTATGCTATCTTTATCAGGTATAACCTTAAACCTCATAAAGATAGCATAGAAAAA 7800
7801 AGAGGATATAGACTAATGTAACTTACGAATATTGATATAAAAGTCTTAAATATTAGGGGA 7860
7861 CAGATTGCAACACCACATTTAAAAAAAGTACACCATGATCAAGTGGGATTTAATAGCAGG 7920
7921 AATACAAGGTTGGTTCAGTATTTGAAAGTATATTACTATAAAGATTATACGATTATCTTC 7980 7981 ATGGATCAGAGAAAGCCTTTGACAAAATTCAACACTCATTCCTAATAAAAGCTTGAGAAA 8040
8041 AATCAGAATGGGTGGCTGTTTCCTTTACATCATAAAATGTATATATCTAAATTCTAGAGT 8100
8101 CAGCATCTTAGTGGGAAACCATAGAGACATTTCCTCTAAGGCCGGGAACAAAGCAATGAT 8160
8161 GCCTACTGTCTCCATTACTATATAATGTTCTGATTGGCTAGCCTATGCATTTAACCTAGA 8220
8221 GAAAACAATCACAGGCATAATAΆTGGAAAΆATAAAGGCTGAGTGCAGTGGCTCACACCCA
8280 8281 TAATCCCAACGCTTTGGGAGGCCAAGGTGGGCAGATCACTTGAGGTCAGGAGTTCGAAAC 8340
8341 CAGCCTGGCCAACATGGTGAAACCCCTTCTCTACTAAAAATATAAAAATTAGCTGGGCGT 8400
8401 GGTGGTGTGTGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGAAGAATCACTTGAAC 8460
8461 CTGGGAGGTGGAGGTTGCAGTGAGCCCAGATTGCACCATTGCACTTCAACCTGGGTAAAC 8520
8521 AAAGTGAGATTCCATCTAAΆAAΆAAΆAAAΆAGAAAATATAAAACGTCTCTCTTTGTAGAT
8580 8581 GGCATGATAGTATACCTGGAAAACCCTGGAGAATCTGTGATAAAACCATCTATAAACGAA 8640
8641 TTCATCAAGGTAGCAGAATATAAAATTAATATGCAAAAATCAGTAGCATTCATACATAAT 8700
8701 AGCCAGTTAGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACC 8760
8761 TGAGGTGAGGAGTTCTAAACTAGCCTGGCCAACATGGTGAAACCTCAACTCTACTAAAAA 8820
8821 TAGAAAAATTAGCTGGGCGTGGTGGTGCACGCCTGTAGTCTCAGCTACTCAGGAGGCTGA 8880 8881 GGCAGGAGAATTGCTTGAACCCGGGAGGTGGAAGTTGCAGTGAGCTGAGATCACGCCACT 8940
8941 GTACTCCAGCCTGGGCCCCATTTACAATAGCAACAGAAAAGTTAAAACAGGAATAAACCT 9000 9001 GAGAAATGTCCAAAACCCATGCGAAAAAAAACTATGAAACACTTCTGAAGGACAAAGTAG 9060
9061 AAAACTAAGAAGATATCCCCTGTTCTTGATTGGGGAGTCTCAACATCACGAAAATGTCAA 9120 9121 TTCTTCCAAAGTTAATTTATCAATTTAATACCAGTAAAAATCCCATTGAGCTATATATAT 9180
9181 AAGTTGACTGCAAAATTCATATAGCAAATTGTACACACAGGGATAGTTAGGGAAAAGCTG 9240
9241 AAAAGAGCTCTGAGAGAGGATTAACCATAGCAGAGACTAAACACCACAAAAACTTTTATA 9300
9301 AATAAGAGTGCAGTACTGGTACATGAGTAGATAAACAGAAACGGAATAGGATACAAAGAA 9360
9361 TAGAATAGGTAATGCATAAGAATGGAAAGTCTCAAAATAGACCCAACTACAAGTAAAATC 9420 9421 TAGTATATAATAAAATTACATCTTAAAACACTGAAATAAAGATAATCTTTGACAAATGAT 9480
9481 ATTGGAACAACTGGATGGACATTTGGAAAAAATAGATGAAATTAGATGTGTTTCTCATAT 9540
9541 TCAAGAGAAAGCTCCAAATGAATCAGAAATTTAAATGTAAAAAACAAATCTAAATAAATG 9600
9601 TTAGGGCTGGGCACAGGGGCTTATCCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGG 9660
9661 AAGATCGCTTGAGCCACGAGGTTCAGATTACAGTGAGCTATGATTGTGCCACTGCACTTC 9720 9721 AACGGGTGAAAGTGAGACTCTGTCTCTTΆAAAATAAATAΆATAAATAAATAAATAAATAA
9780
9781 ATAAGTATATGTTAGAAGAΆAACATGGATGAATTTCTCTTTAΆGCTCAGTGCAGTGAAAΆ
9840
9841 GCTTTCTAACTGTCATACAAAGTATAGATGCAAGAAAAGATAAGTTTGTCTACATATAAG 9900
9901 TTAAAAAGTTTGTGTGGCCAGAAATACCATAAGCAGAGTCAAAAGACAAATGGCAAACTG
9960 9961 GGAAAAAATATTTGTAACGTATCACAGAAAAAGGATTAATATCCCTAATTCATAAATAAC
10020 10021 TTGTGGGGGGGGGGGGGAAGATAAACTGTATTTTAAAAAGGCAAAAAACATGAGAATAAT
10080
10081 CACTAAAAGATATATAAAAATGGCCTTAAACATAAGAAAATATGCTCAACTTCACTCATA
10140
10141 ATAAGAGAAAAATAAAATAAAAGATAGTGATCCACCTGCCTTGGCCTCACAAAGTGCTGG 10200
10201 GATTACAGGCAGGAGCCACCATGCCTGGCCCCATGTATATTTTTATGTGTATAAACATGC
10260
10261 ATACATTTCCTGGCTCTCTCCAATGAAAGAACCATGAAGCAAAGATGCCATAGTTGCTCG
10320 10321 GTGCGGTGGCTCACGCCTGTAATCCCAACACTTTGGGAAACTGCGTGGGTGGATCACTTG
10380
10381 AGTCCGGGAGTTCAAGACCAGTTTGGGCAACGTGGTCAAATCCTGTCTCTATAAAAAAAT
10440
10441 AAATAAATAAATTTTAAAAAGATGCCTTAGTAACAACAAACACACCCATCACCTAGATCT 10500
10501 TTGCTGTTTCATAΆCCATTCCTCACTCAΆGGGAΆCCAGGGCTCTTCΆGAGAAACGGATAA
10560
10561 GTTTATGCGTGGGCAGGATGGATACAAGATGAACCTGGAACATCTTGCTATACCAGAAAG 10620 10621 TAAAGAAGTGCTCAAAAAAGACAGTGGGGGCGTGTCACAAAGACAGAAGAGCCAGCTTGA 10680
10681 AGGGTTTCCCTTTGGCCAAATCTGGGACTATTTGAGCATCAAAATAAGTTCAATAATGAA 10740 10741 CCATTGAAAAATACAGAGATTTATAAGTCCATACTCATAATTAATAAATAAATTACTTTG
10800
10801 GGAGTTCGAGGACGGAGGATCACTTGAGTCCAGGAGTTTGAGACCAGCTTGGACAACATA
10860 10861 GTGAGAACCCACCTCTACAAAAAAATAATTTAAAAAATTAGCATGGCATATCAGCACACG
10920
10921 CTTGTATTCCTAGCTAACTGGAGGGTTGCTGAGGCAGGAGAATTGCTTGAGCCCAGGAGT
10980
10981 TTCAAGTTATAGTGAGCTATGACTGTGCCACTGCAGTCCAGCCAGGGTGACAAAGAAGAC 11040
11041 TCTGTCTCTAAGGTAAGTAAAGTAAGTAAATGAATACATGGGTAGAAAGGAGTTCTCTTG
11100
11101 CTTACAGTGCAGGAGTTGGAAAATCATTCCTTTGCAATTGTAATGGTAAAGATTGAACCA
11160 11161 GACAAGAAATACCAATGGATGTTAAATCCAGGGGGACTTTAAAAACATTGATACGATACA
11220
11221 ATTAATGAAGCTAAGAACCTTATTCCAACTCTCCCCAGTAATTATTTCACTAATGTTCTC
11280
11281 TTTATGTTCCAGGATCCCACTCAGCATCCTACATTGCTCTTAGTTGTCATTTCCCCCTGA 11340
11341 TTTCCTACACTCTGCAATAGTTCTCAGTCTTTCCTTATCTCTGTTGATCATGATAGCCCT
11400
11401 GAGGAGTATTGATTAGTTGTTTTGCTGAATGTGTCTCATTTAGGGCCTGTTTGGTGGTGT
11460 11461 CTCATGATTGGACCAATGTCTTGTATCCCTGGCATAAGGACCACAGAAATGGTACCATGC
11520
11521 CCTTTTTAGTGTATCAAATCACTGAGCTCTTGATGTCAGTGTTATTCCTGGTGATACTGA
11580
11581 CTTTGATAACCTGGTAACAGTGGTTTCTGCTGGGCTTTTCCATTTTACAGGAAGAAAATT 11640
11641 AGATGAGGAGCAAGATATTTGCATGATCTTAAAGTGTCTCCCTATAAATTGCTTACTGGT
11700
11701 GGCAAAGGGACAGGGTGGGGGAAGTAATTATAAAGTGGGATCAGAATATCACCAATGAGG
11760 11761 GACAGATGGACATCATGTGCTTCCTGATGTGATACTCCGAGAATGACATGATATCACCTG
11820
11821 TGTTCTTGTGAGACCGCATAAACTCAATCTAGCCACAAGGAAACATCAGACAACACAAAA
11880
11881 TGAGGAATGTTCTATTTTTTAAAAACTAAAATTTATTTGGATTATGCTGTTAACTTGGTA 11940
11941 GTTACAGTCTGCCAATTAATTTTAAAGCCTTCTGAGGTAACAGGGATACTTAAATCTTAC
12000
12001 TTGCTCTATTTCTGAGTTTTAAAΆTGTAGTAAAΆAGCATAACTGAΆCATGGTCAΆAΆGAΆ
12060 12061 AGACTGAAGATCACATAAGTGGAAGGAGGAAGAAGGGGAGTAGAGGACAGAGTCAATAGA
12120
12121 AGAAAATTAACATTCGTTGAGTACTTGTCGTGTGTTAGGCTCTGTGCAAATTCTTCTCCC
12180
12181 CTTTATCTCAGTCCTTTGAGGTGGGGAAATGGACACACATAACAGATTAAGTTGCCTGAG 12240
12241 GTTTTATAGCTAGTAAATGGCATAGCTAGGATTTACATCCAGGGCTTCTGATTCTGGATC
12300
12301 CAGCTTTTTTTCCCTCTTCCTATGCCACACTGCTTTCTGTTGAAACTGAACTATTTCAAA
12360 12361 AAGAGTCAACAGCTTCTCAGCCTTGGCAGTGCTCACGTTTTGGCTCGGATAAATCTTTGT
12420
12421 TGTGGTGGGCTGTCCAGTGCATTGCAGAATGTTTGATAGCATCTCTTACCTCTACCCACT
12480 12481 AGATTCCAACAGCATCCTTCCAGTTGTGACAACCAGAAATGTTTCTAGACATTGTCTAGT
12540
12541 GTCCCCTGGGGGACAAAAATCACTGGTTGAGAACTGCTGCTCTAAGGGTTATGTCAAGGA
12600 12601 CCAAGTACTCTGTTGGAAGGTATAGGCAAGAGTAGTCAGATACTTCTTTATTATATATTT
12660
12661 AATAGAGAGATGGACTCCAGCTAGAAACACCAGCCTCATGTACTTGTGGAAGAGAGAGTT
12720
12721 TATTGTTTTATTAGTCTTGGCTTCTGTGACACCTCTCTCTCGAGATTATCCTCCAATGTT 12780
12781 ATTGACTTCACTTTCTCCATTGTCTTTGCTGGCAGCTGCTTCTCTTTTTAATGACTGACT
12840
12841 CTTGGTGTTTCTCTTCTTTATATTCTTTCCTGGATGGTCTCATCTGTTTCCATTGATGCT
12900 12901 CCACTTGGCATATTTCATTGTCATCTATTTGGCACTTCCACTTGGATATCTCAGAGTAGT
12960
12961 GGTTCTGAGCCTCACAGCAGACCCGAATCATAAACTGTGGGTAGATCCTGGAAATTTAGT
13020
13021 AAGCTCTCAGGGTGATTTAGATGCTTCCTTAATCCCAAATTTTCAGCACGTAAACAGATG 13080
13081 GTGCCACTATCCACCAGCTAGCTGCTTAAGCCAGAAATTTAGGAATCCTCCTTGATTTCT
13140
13141 TTCTTTTTTGTTGTTTTTTTTTGATATGGAGTCTCGCTCTGTCACCCAGGCTAGAGTGCA
13200 13201 GGGGCGTGAGCTCGGCTCACTGCAAGCTCCGCTTCCCGGGTTCATGCCATTCTCCTGCCT
13260
13261 CAGCCTCCCAAGTAGCTGGGACTACAGGTGCCCGCCACCACGCCCGGCTAATTTTTTGTA
13320
13321 TTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTCTTGATCTCCTGACCTTG 13380
13381 TGATCTGCCCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCACGCTTG
13440
13441 GCCAGATTTCTTTTCCTTCATCACCACCCCCTACTTCCCTTCCAAACTAAGGAATTTCTA
13500 13501 TTCTTAGTTCTCAAATATTTATCTTAGATCTATCTACTTTTCTTCATCGCCTGTATTAGT
13560
13561 GTGCTAGGGCTGCTGTTACAATGTATCACAAATTGGGTAGCTTAAATAGCAGCAATGTAA
13620
13621 TGTTTCACAGTTCTGGAGACTAGAAGTGCAAGATCAAGTGTTGTCAGGGTTGGTTCCTTT 13680
13681 TGAGGGCTATGAGAATTTGTTCTGTGTCTCTCACCTAGCTTCTGGTGGTTTGTTGGCAAC
13740
13741 CTTTAGCATTCCTTGGCTTGTATCACCTGATATCTGCTTTCATCTTCACCTGACATTCCC
13800 13801 CCTGTTTGTGTTTCTGTGTCCAGAGTTCCCCTTTTTATAAGGGCATTAGTCTTTGGATTA
13860
13861 GGACCCATCCTAATGACCTCAACTAATCTCACCTACAAGAAGAGCCCAATTTCCAAATAA
13920
13921 GGTCACATTCTGAAATACTGGGGGTTAGAGCTTCAACATATGAAATTTGGGGTTGTGGGG 13980
13981 AGGACACAATTCAATTCATAATGCCTCTATTACTTTGGTCTAGGCCACTGTCATCTCTCT
14040
14041 CTTAAACATGGTAGCAGTCTACTAACAGGTATCCCCATTTCACTCTTAAACCCCCATAAC
14100 14101 TCATTCTCCACACAAGGAGCAAGGATGATTTTTGAAAAATCTATCATCCCATTTCCTTCT
14160
14161 TTTCTCTTTAGTAACTTCCGTTGCACTTAGAGAAAAGCTAAACTTCCTACCATGGCCTGT
14220 14221 AAGATTCTTCATAATCTGGTCCTTTCCCGTTTCTCTTCAAACTCATCTTCTACTACTCTT
14280
14281 TTCTTTATTATTCTCCAGCCATGTTGATTTTTTTTTTTTTAAGCAAGGCTTTGGCCTCAA
14340 14341 ATATGCCAAGTTCTTTGCTGCTTCTTGGACATTGCACGTGATCATACTTCCATCTGGAAT
14400
14401 ATCCTTCTCTAACGCCTTTGAATAATTAGCTCCTTCTTGTCCGCCAGGTCTCTACTTAAA
14460
14461 TGTCACCTACTTCTGAGAAGCTTCCCCTTACTACCCTAGAGGAAATTTCCTTCCTTTCCT 14520
14521 CACTTATTGTCTATCTCAGCCTCTTATTTGGTTCTTTTACAATTTTTTTCTGCCATCCTT
14580
14581 TCCCCTCCTGCTCTGTTATGAACTCTGAGTCAAATTACTATGTCTGTTTTGTTCATCTTT
14640 14641 ATAACATGCCTAAGGAAAATAACATGCTCAAAAAGTATTTGTTGGATGAATGTATGTTCC
14700
14701 CAACTTAGTGCTAAGTTATAΆΆCATAAATGTTTATAGΆATGAGTAΆGAATAGATTTTAGT
14760
14761 CTTGACAATCCAGGATCATATTAAGATATACCCTCCTCTGTCTΆAAΆATTATGGTGTTTG 14820
14821 TAATACTTGGCGTCTCTGAATGATCTGAACGTGACAGAAGAGTACTTTTTCATATTGAGT
14880
14881 GTTTAGGTCATTGGGGTAAAAGACTGTTGCCAGAGACTTGTACCTTTTTCTTTCTTTGCA
14940 14941 GTTGACTAATCTCCTTCAGAATCAAGCAGTGAAAGGAAAAGTTGCTGGAGCACTCCTGAG
15000
15001 AGCCATCTTCAAAGGTAATAATAATTAATGTCACTTCTGTCTGTCTCCTGCATTCATTGG
15060
15061 TAGATTTGTTTAGTTTTCGTACTTTTCTTACGGTTTGAAGCCCCACTGGAACATTTTCCA 15120
15121 TGTTTTGAGGATTCTACAGAATCAACTACAGCAGCAGTTTCCTGTCTAGTGGACTTAAGT
15180
15181 AATTTTACTGAAGGGAGTTTGAAGTGGCTACCTGAGATTGCGTTGCTGATTTGGGGGCCT
15240 15241 ATAATTACAGAATGTGCTTTTCGTAAAATCTGCTTTGGTTTACTTGTGCTTTTAAGATTG
15300
15301 TGGAGAAGAGAACAGCAATGTTTAATACATAATCCATGCTTAGCAAGGGGCAAGTAACCT
15360
15361 CTGGGGTTTAATGAAATGGGGTATCTTAAGGTGCCTTATATAGAGATTCTTCATGCCCGC 15420
15421 TGAGACGTATTTGTTTTCTTGTCTTGAACAAGGGCTAGTTTAAATTGTTGCAGATTGTGA
15480
15481 TTTATAGTGGTTTTATAAATTCTGGTAGGATAAAATTTTACAAGGCAAAAATTAAAAGTG
15540 15541 TCTTTGGACTCTTAATTAGGTATGTTAACTTGGTTTATTTTTCTTCCCCCAAGTAAATTA
15600
15601 GATCTCTGCTGCAAGGGTACAAAAACACATCTTCCTATTCATGAAAGAACTTTCAAGATT
15660
15661 GGTTGAGTCAACCTGTATGGAAACTTGCTAAATATTTTATAGAAATATCAGAGAAAAGGA 15720
15721 AATAATTAAAGATCAATAGCAACTGCCTACGTACACTACTACTAAATGGAAGAGCAATTC
15780
15781 TATGGCTTTTAGTATATTCAGAGTTGTGTATCCATTACCACAATTGATTTTAAAACAATT
15840 15841 TCCTTACCCCTGAAAGAAGGTTTGCATCTCTTAGATGTCACCTCTCCAAACCCCTAGTCC
15900
15901 ATTCCAGTCCTAAGAAACCACGAATCTACTTTTTGTCTCTACAGATTTGTCTATTCTGGA
15960 15961 CATTTCATTTAGTGGAATCATTCTATATATGGTCCTTTGTGACTGACTTCTTTCGTTTAT
16020
16021 AATGTTACAAAGGTTCCTCTATGTTGTAATATGTATCAGTACTTTATTTTTACTGCTGAA
16080 16081 TAATATTCCATTATGTGGATATACAACATTTTTCCATTCATGAGTTGATGAAGACTTAAG
16140
16141 TTGTATCTATTTTCTGGCCATTATAATACTACTATGAACATTTGTGTATAAATTTTTGTG
16200
16201 CGGACATGTTTTCCTTTCTCTTGGATATATATCTAGGAGTGGAATTGCCGGATCATGTGG 16260
16261 AAACTCTTATGTTTAACTGAGAAACCGCCAAACTGTTTTCCAATGTGGCTGGATTAGGAT
16320
16321 GCCAATTTTTTCACATCCTCATCAACACTTGTTATTATCTTTTTTTTTCAGTTTTGATTT
16380 16381 ATTTTCATCACTTTTTCTACATGATCCAGATATTTTAAAATGCAAAGAAAATTAACTTTA
16440
16441 ATGATATGTTCCAGGATCGGCACTAΆΆAΆAAAΆTTTTCAGACTGCAAATGAATTATACAΆ
16500
16501 ATGAAΆATATCAAATGGAGATCCCCTTATCCAAΆTGAAAGCACTCAACTTATTAAAAGTT 16560
16561 CACAAGTATTTGTATAGAGCACATTAAAAAAGTCAGCTTGCTAAATGTTTTGATTTTAAA 16620
16621 GAACGATTGCAGAAGTCTGAAGAAAΆTAGATTAGTTATTAAΆTTTGGGTTACTGGACTTC
16680 16681 TCAAAAGCTGTAAGACCTATTAGAAGGTTACTTCATCCTGTAATTATTAAAATAATAGGT
16740
16741 AGATGAAGAAAAGATGACATTTTAGTCCCTTTATTTTGGCTAAATTAAGCACTTTTTCAA
16800
16801 AGCCCTTAACCATTGCTGTTCTAAGCACCGTAGTAATCAGTCGTTTGATAATTCTGTTTT 16860
16861 TTTGTATTTAACTACAAΆCCTGTTCGTTTTTCCTATTTACCTGTCAATGTTGTAΆGACTT
16920
16921 GTTTCTGAACCCCCTGTTTAΆAACAATAAGGTTCCCCCTGCTCTGAGGAAGCTGGAΆCAC
16980 16981 TTAGGAGACGTAAGATATACΆCTTGTTGTATCCAGTTGGTGGAΆTCGGGGGATTTGCAGA
17040
17041 AAGAAATAGCGTCTGAGATCATAGGATTACTGATGCTGGAGGTAAGATGGCAAACAAAAA
17100
17101 CTTTTATTTGGGGGTAGGTTTTTGAGGGTTTGTAATTTGTTGAGGGAAGGAAAACTTAAG 17160
17161 TGCCCAACCTAGCATAGTCCTTATTTATGAGTAAGACCTGTTGTTAAAAAACAAAGAAGC
17220
17221 AGGCCGGGCATGGTGACTCACACCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGAGGAT
17280 17281 CGCTTGAGCTCAGGAGTTTGAGACCACCCTCTGCAACATGGTGAAACCCCATCTCTACCA
17340
17341 AAAATACAAAAGAAAAAAAATTAGCCGGGCTCGTGGCGCATGTCAGTGGTCACAGCTACT
17400
17401 TGGGAGGCTGAGGCAGGAAGATCGCCTGAGCCAGGGAGGCGGAGGTTGCAGTGAGCCGAG 17460
17461 ATTGCACCGCTGCAGTCCAGCCTGGGCAGCAGAGTGAGACCCCGTCTCAAAAAAAAAGCA
17520
17521 GATGAATGGGTTATAATCCACTTAGGTGTATATATTACATTTCTGGTACCATGGACATAT
17580 17581 ATCTCTTTGAAGAGCTGGCATATCTGAAAACATCAGGGAACCGATACAGGATTCTAACTT
17640
17641 TTGAAGCCCTTCACAATTATAACTACGTACCAGACΆGAGCAGΆATGATTCCATAΆΆTCCC
17700 17701 TTATGGGACCAGTTCTGGATCTCGGTCAATTCATTTATTTCAGCAAAAGACTTTATTTCT 17760
17761 TAGAAAGATTTATCAAACATTGGATTTCTGCTTGAGATTTCCTTTATCCTGTGAACTTTT 17820
5 17821 AGGCTGSLCCATTTTCCAGGACCATTATTGGTTGAATTAGCCAATGAGTTTATTAGTGCTG 17880
17881 TCAGAGAAGGCAGCCTAGTGAATGGAAAATCTTTGGAGTTACTACCTATCATTCTCACTG 17940
17941 CCCTGGCTACGAAAAAGGAAAATCTGGCTTATGGAAAAGGTAATTTTCTTCCGACTTTAG 10 18000
18001 TGGCTTTTTCTCTATGCACATAATCAAATTCATTGCTCAGTATATTTTGCATTTCTAGGT
18060
18061 GTACTGAGTGGGGAAGAATGTAAGAAACAGTTGATTAACACCCTGTGTTCTGGCAGGTGA
18120
15 18121 GTCTTGTTAATATGTATAΆCTTTCTTAGGAΆTACAΆGTGGCGGAAAAAAAΆCCACTTTAT
18180
18181 TTCAGGAATTTATGTCTGGAGGTTTTAAGTCCTTCTTTTTTGTTGTTTTTAATATAACAC
18240
18241 TATAAAACTATTTAGTCTGCAATGAATTAGTGAGAAAGAAATGATTTACTATATTCTGTC 20 18300
18301 CTCTAAGACTGTTCATATAGTTTTATTTGCTTGACTGTATCTTCTTACAGCAATTTAGTG
18360
18361 TGTTAAGATACACATAATTAAATGTTAATTTAGTGTGTTTAATGCTCCAATCTAAGCATT
18420 25 18421 ATTGGAGTCTCAAGGTCGTGAAGGCTGGGAAAGTCACCCTGCTGCTGCATCTTTTCTTTT
18480
18481 TTTCTTTTTTCTTTTTTTTTTGAGGGAGTAGAATATACAAGTGATGTATCCTTTAACCAG
18540
18541 TAATTGTATTTCTGGGAATCTACATTAAAGAATGACTGCAACATACAAGAAAATCCTCAC 30 18600
18601 ATATGAACATGTTCAACACAGAAATTTGTGACCAGTATAAGCATACAGTAATAGAGACAT
18660
18661 GTAAACTATGTAAGTTAAGGTAGAGCCACTCCATGACATTTATACCTATTΆΆAAGTGAAA
18720
35 18721 TGTATACATCAAΆGATGAAΆAATTCTAACCATATAATTAACΆAΆGAGATTACTATGTTAT
18780
18781 ATAATACTGTGATTGCGTGTAGGTTTGTTAAAAAGAΆCAΆGAAGGGAATACCCAAGATTA
18840
18841 TCTAAACCAGAGATAATTGCTTTTATGGTTCCTTACATAAGATCCCTTACATAAATCATT 40 18900
18901 TTAAGCATGTATTTGTCAATTAATTTGTTTTTAATTACACAAGAGTTTATTCAATACATA
18960
18961 CTGTAATATACCTTGCATTTTTTATTTAATACAACTGTCCATGTCAGCATATACAACTCT
19020 45 19021 ACATCATTCTTTTTAATGGTTTGCAGTAATCTATTATTTGGCTAATCTACAATTGTCAGA
19080
19081 TTATTTGGTTATTTCCAGTTTTTGTGCTATTACAAAGAGTGTTGCAATGAATGTCTTTTT
19140
19141 TAATTTTAAATAGAGATGGGAATCTTGCTTTATTGGCCAGGCTGGTCTCTTGAACTCCTG 50 19200
19201 GCCTCAAGGGATCCTCCTCCTTTGGCCTCCCAAAGTGTTGGGATAATAAGCATGAGCCAC
19260
19261 TGCACCTGGCCTGAACATCTTTATATATCTAGATGACCTTTTATAAGCATGTACATGGCA
19320 55 19321 TATATTTCAAATAGTAAATTGGGTAGATCTGTGATTATGTGCATTTTTAAAGTTGATAAC
19380
19381 TACTGCCAGCTTGTCATACATTCCCTAAAACGGTATGTGAATAGAGTTTGTTTTCCACAA
19440 19441 TCTCACCAACATTGGGTATCATCAGAATTTTGATTTTGCGAGTCGGGTAGGTTAACAACT
19500
19501 GCTATTTCATTGTTTTAAATGGTATTTATTTGATCTTGTTTCTCGGTATTGCAAAATCAA
19560 5 19561 ACTTGAATTGGCCCTGTTTTTTTGTCCTCATTAATTTTACAAAGTTATATCTAAATAAGT
19620
19621 TGTAAAGAAATAAACTTTGTCATTTTCTTCTACCAGGTGGGATCAGCAATATGTAATCCA
19680
19681 ACTCACCTCCATGTTCAAGTAAGCATCATCTTTTCCCTTTTCTTTGTGTATCCTGCTTTG 10 19740
19741 TGAACTTACTTGCTAGAAATTAAACTATAGCAAACGTAAACATCACTCTCTCCTGATTGT
19800
19801 AAGAATATTAGTAGTTATGTTTTCTGTTACAGATTCACAGATTCCCTCCTCACTCCTGCC
19860 15 19861 TCCTTTTTGGCTTTACTTACTTATTTAAAACATAACTTTATTTTTTTTATAAGAATGACT
19920
19921 TTGCTTAGGTAΆGGTTATTGGTTCCCTTAAAGGTTCTTCATTAGAGAAAAΆTCAAΆΆGGG
19980
19981 ACAGTTATAATAATCTATTATCTCTTTAATTCTCTGCTCCCAAGTTTCATTTCTTAAAAT 20 20040
20041 ATGTTTAATGGAATTTTAACCACTGTAAAGCCCTGAATTGAATTTCTGAAAACAAGGCAG
20100
20101 TTAGACACTGTCTATAGCCTTTAGAATCTTTGATCCACAGGGATGTCCCTCTGACTGCAG
20160 25 20161 AAGAGGTGGAATTTGTGGTGGAAAAAGCATTGAGCATGTTCTCCAAGATGAATCTTCAAG
20220
20221 AAATACCACCTTTGGTCTATCAGCTTCTGGTTCTCTCCTCCAAGGTACAAATGGAAAATT
20280
20281 GTTTCTCCTTAGTTCTGGTGGTATGACCAGTTATGACCATTCAACTTATTCATACCCTTG 30 20340
20341 GTTTATATAGCAGAGCAAACATAGCCGAACATAGATGCTTTCATTTCACGTGAGCAAACA
20400
20401 TAGCCGAACATAGATGCTTTCATTTCACATATAGTGGTTTGGTCTGGTAAAAGGATCATA
20460 35 20461 CTTCTCATCCAAGGAAAACATGCATTATCTCTTGTATTGCCACATTTTCTTTGCGGAGGT
20520
20521 AAAAGGGATAAAGATCTCAGAAAGGGTAGACTATAGGCCCCATAAATTCTTACAGTAAGA
20580
20581 GGTATTTCAAATCTTGTTTCAACATGAAAGTGTTCTATACATTCTTAGTTTGAGTCTAAG 40 20640
20641 TCATAGATTATTTATTTAAATTTGTACTGGAGAATTCTTTAAGCTGAAAACTACTTTGAA
20700
20701 TTCAAATTGGTTATTTTGCTGTTAATTGGGAGACCTTACCAATTTTGTATTGTTTTCAGG
20760 45 20761 GAAGCAGAAAGAGTGTTTTGGAAGGAATCATAGCCTTCTTCAGTGCACTAGATAAGCAGC
20820
20821 ACAATGAGGAACAGAGTGGTGACGAGTGAGTAATATAGTGTAGAAATAAAGATCATTTTT
20880
20881 ACAAATTCATCTTCTCATTGTGTATTTTAGCTATTTCATTTTCTTCTCTCTCACCGCCTA 50 20940
20941 CCTTCACCTCAGCACAAAACTTTTCTAATCTTCTCTTAGCTACTCAGTAATAAAGAGAAT
21000
21001 AACATGATCTCTTCAGCTCTTTCATTTTCACCTTTCCAGGAAAATAATTGTCCTATAAGC
21060 55 21061 TGCAAGTTTAAAACCTATTTATTAGGTGTCAGCTCTCTGCCAGGAACTGTTTAGCCTTGG
21120
21121 GGCTACCGTGCTGAACCAGTCAGACAATGTCCCTGCTCTTGTAGAACTTCAATTTTAGTG
21180 21181 AGAAGAGGAAAGAAAATAAATAACAAGAAAAATGTTATAGTAAAAGTGCTATGCAGGTAA
21240
21241 TTCAAATGGATGATCTACCACTGACAGTATAGCTACTTTAGATTGGGTCAGGGAAAACCT
21300 5 21301 CTCTCAGATGTGCTATTTTAACTGAAGCCTGAATGATAAGATCCATAATATATAGATCAG
21360
21361 AGAACATTCTCAGGTAGGGAAATAATACAAAGGCAGAAGAACAGTGTGACATGTCTGAGA
21420
21421 AAGAGGATTTTGGGTTTTTTTTGTTTCATTTTGTTTTGTTTTTGAGACAGAGTGTAGCTC 10 21480
21481 TGTGGCCCAGGCTGGAGTACATTGGCATGATCTCAGCTCACTGCATCTTCCACCTCCCAG
21540
21541 GTTCAAGTGATTCTCCTGCCTCAGCCTCCTGAGTATCTGGTACTACAGGTGCGCACCACT
21600 15 21601 ACGCCCAGCTAATTTTTGTATTTTTAGCAGAGACAGGGTTTGCCATGTTGGCCAGGCTGG
21660
21661 TCTCAAACTCCTGGCCTGAAGTGATTCACCCTCCTCGGTCTCTCAAAGTGCTGGGATTAC
21720
21721 AGACATGAGCCACTGTGCCTGGCCAAGGATTTTTGTTTTTTCTTTCTTTCTTTTTTTTTG 20 21780
21781 AGATGGGGTCTCACTCTGTTGCCCAGACTGGAGTGCAGTGGTACGATCTCGGCTCAGTGC
21840
21841 AACCTCCACCTCCTGGGTTCAAGAGATTCTCCTCCCTCAGCCTCCTGAGTAGCTGAGATT
21900 25 21901 GCAGGCATGCGCCACCACGCCCAGCTAACTTTTTGTATTTTTAGTAGCGATGGGGTTTCA
21960
21961 CCATGTTGGCCAGGCTGGTCTTGAACTGACCTCAGGTGATCCACCTGCCTCGGCCTCCCA
22020
22021 AAGTGCTGGGATCACAGGCGTGAGCCACCGTGCCTGGCCGGATTTTTTGTTTTTTAAGCA 30 22080
22081 AACATTTGTAGGATGTTCATTCTGTGCCAGGGGCTATTCTAAGCACTTTAAACCTCACAA
22140
22141 CCCTATTTTACCTCTACTTTATGGATATGGAAATCGAGAGACAAAGAATTTAGTTAGTTT
22200 35 22201 GGCTTGAGCAATTTATTAGAGGTGGTTTCTTATTTCTTTTTTTTTTTTTTTTTTAAGAGT
22260
22261 GTCTTGCCCTGTTGTCCAGGTTGGAGTACAGTGGCACCATCATAGCTCACTACAGCCTCC
22320
22321 AATTCCTGGGCTCAAGTGACCCTCCAGCCTCTGCTTCCCAAGTAGCTGGGACTATAGGCA 40 22380
22381 CGTGACACCAAGCCTGGCTACTGTTTTTTTTTTTTTTTTTTGAGATGGAGTCTCTGTCAC
22440
22441 CCAGGCTGGAGTACAGTGGTGTGATCTCGGCTCACTGCAACCTCTGCTTCCCAAGTTCAA
22500 45 22501 GTGATTCTCTTGCCTCAGCCTCCCAAGTGGCTGGCATTACAGGCACCCACCACTATGCCT
22560
22561 GGCTAATTTTTTTTTTTTTTTTTTGAGAGGAAGTCTCACTGTGTTGCCCAGGCTGGAGTA
22620
22621 CATTGGCATGATGTCAGGTCACTGCAAACTCTGCCTCCTGGGTTCAAGCGATCCTCCTGC 50 22680
22681 CTCAGCCTCCCTAGTAGCTGGGGTTACAGGTGCGTGCCACCACGCCCGGCTACTTTTTGT
22740
22741 ATTTTTAGTAGAGACGGGCTTTCACCATATTGGCCAGGCTGGTCTCGAACTCCTGACCTC
22800 55 22801 AAGTGATCCGCCTACCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCAC
22860
22861 CTGGCCCAAGCCTGGCTAATTTTAAAAATTTTTTCTAGAGATGGTCTCACTGTGTTGCCC
22920 22921 AGGCTGGTCTTGAACTCCTAGCTTCAGGCGATCTCCTGCCTCAGCCTCCCAAAGTGCTGG
22980
22981 AATTACAGGAGCAAGCTGCCACACCCAGCAGAGAAGGTGGTCTTAGATACTAAATTAGAA
23040 23041 TAAGCTGACAGAGAATCAGATTTTGGAGAAAATAATTAGCTCACTTTTTTTTTTTTAATT
23100
23101 AGCTCACTTTTGACCACACTAGGTTTGAGATATATATTAGGGTCCCATAAGGAGATATTA
23160
23161 AGCAGGTACTCTGGAGTAGTAGGGAGAGGGCTGAACTGGGGATAAGACTGGAAGGGACTA 23220
23221 AAGCCAAGAGACTGGATGGGATTATCAAGGGAAAGCATGAAGAAAAACCTAAGACTGAGT
23280
23281 TCAGAGGCATTCCACCATTTCAAGGTCAAGCACTTTGGGAGGCCGAGGCAGGCAGATTGC
23340 23341 TTGAGCTCAGGAGTTCAAGACCAGCCTGGATGACATGGTAAAAACCTATCTCTACAAAAA
23400
23401 GTACAAAAATAGCCAGGCGCAGTGGCTCATGCCTGTAGTCCCAACTACTTGGGAGGCTGA
23460
23461 GGCAGGAGAATCACTTGAGCTCAGGAGGCGGAGGTTGCAGTGAGCTGAGATTGCACCTTT 23520
23521 GCATTCCATCCTGGGCAΆTGGGAGTGAΆTCCTTGTCTCAAAAAAAAAΆAΆTTTTTTTTTT
23580
23581 TTTTTTTGAGAAGAGGCCAGTGATGATGCCCTGGAAGCTAAGAGAAGAAAATTTTTCAAG 23640 23641 AAAGAAGTAGTTAATTGTGTCAGATCTGAGATGTTAATTAAGATGGGACTTTATTGTTTT 23700
23701 TGACAACTTGGAGGTCATTTGTGACCCTTGAAAAAATAATCTAATGTTATTGTGGGGGTG 23760
23761 AGGGTAGAAAGAGGATAGAAGCCTGATTGAATTGGATTGTACTGGGAAGAGATTGTGAGA 23820
23821 TAAAAAAGGAGAAATTATGACTATACACATTTATTTTACGAAATCTTGTAAAAAGAAGCA 23880
23881 GAGTCTGGGCACAGTGAATCGTGCCTGTGATCCCAACGTTTTGGGAGGCTGAGGCATGAG 23940 23941 AATCACTTGAGCCCAGGAGTTCAAAACCAGCTGGGCAATATAGTGAAACTCCATCTCTAC
24000
24001 CAAAAAATAGAAAAATTAGCCGGGCATAGTGGCACATGCCTGTAGTCCCAGCTACTCAGG
24060
24061 AGGCTGAGGTGGGAGGATCGTTTGAGCCTGGGAGGTTGAGGCCACAGTGAGCTATGATCA 24120
24121 TGCCATTGCACACCAGCCTGAGTGACAGAGCGAGACCCTGTCTCAGATAAATAGATGGAT
24180
24181 AGATAGATAGACAGACAGACAGGAGCAGAAAATTGGGCAGTAGAATTTCTAGTAAACACC
24240 24241 TGCCTTCAGTGATTGTATGAGTTTAGCTTGAGTTGGTCTACTTGCTCATCGTAGCACCTG
24300
24301 TCCTTGTCTCTCACTCAAAAACCATAGCTCATACCTTTTTTTTGTTGTTGTTGAGACAGG
24360
24361 GTCTCTCTGTTGCCTAGGCTGAAGTGCAATGGCACAATCTTGGCTCACGGCAACGTCCAC 24420
24421 CTTCCGGGCTGAAGCAATCCTCCCACCTCAGCCTCCCAAGTAGCTGGGACTATAGGAATG
24480
24481 CCACCACATCGGGCTGATTTTTTTGTATTTTTAGTAGAGGCTGGTCTTGAACTCCTGGGA
24540 24541 TCAAGTGATGCGCCCGCCTTGGCCTCCCAAAGTGCTGGCATTACAGGCATGAGCCACTGC
24600
24601 ACCTTATAGCTCATAACTTTCTGTTGAATCTTTTAGGCTATTGGATGTTGTCACTGTGCC
24660 24661 ATCAGGTGAACTTCGTCATGTGGAAGGCACCATTATTCTACACATTGTGTTTGCCATCAA
24720
24721 ATTGGACTATGAACTAGGCAGAGAACTCGTGAAACACTTAAAGGTAGCATCAAACTTGTA 24780
5 24781 AGGTGATCTGGGTCTCTTTTGAATGAAAGTGTTTGAACTTAAGCCACTGTTATGCCAGTT 24840
24841 AΆTGACAGGAAATAΆATACTGTAAAATGACCCTGGGTGTGGAGGATCTCTTTTTTTTTTT
24900
24901 TTACTTTAΑAAGTGGAAAATACATGATGTTACCACACTCCCTTTTTTTTAATGTCCTCAC 10 24960
24961 TTTAGCAGTATACCACATCCTTAAGCAAGCCAGAAAGTTCTATTTAAAAAAACCCTCAAA
25020
25021 AGTTCTAACGCAAAAAAGTGGGAAAAAAGGTGAGAACTATTCAGCAGGAAACTCAAAATC
25080 15 25081 TAATTCTAAGTAGATTATGTGTCACTGTCTTATGTGACCTTCAGCTATGGCCTCTGCTTT
25140
25141 CTCATTTATGAACTAGGATGTTGCATCTAGTAGTATATCGTGGAGTTGTGTGATGCTAAG
25200
25201 TCATTCATCATGAAGTATTTGTAΆAGCAGTAAAATAΆAACTCAGAAGTGTTTTAAACTAT
20 25260
25261 ATTAAAAGTAGTGTACAGATATATTTGTTCCTCCAACTTTTTAGTTTGAAAATTCTAACT
25320
25321 CAGAΔAAGTTAAAACACTACATAGCGTGAAGAACACCTATGTTCCCTTCACCTAGATTGA
25380 25 25381 CCAATTATTAGACACTTTGCCACATTTACCTCACTTTTTCTCTCATACATATTCTTTTTC
25440
25441 TGAACATTTAAAAGTAAGATGCAGAAACCCAAACCCTAACACTTCAATGCCTGAATATTT
25500
25501 CAGCATGCTAΆGAATAAGGACACATTATCACAATACCATCATCACATCTAAGAAAATTAA
30 25560
25561 CAATAATTCCATAATATTATTTAATTTATATTCCCTATTCACATTTTCACAGTTGTCTCT
25620
25621 AAAATGTCTTTTGCAGCTGTGTTTTTTTTTTCCTCTGCTCCAGGCTCTCATCAGGCTTCA
25680 35 25681 TGCATTGCATTTGGTTGTTCTTTCTTTCTAGTTTTAGACTGATTTTTTTGAAGCATCAGC
25740
25741 CCACTTGTCTTGTGTAATGTCCCACATTTTTGGATTTATCTGATTGTTTCCTCACGATTG
25800
25801 GGTTCAAGTTAAACATTTTTGGCAAGAATACTTCGTAAGTGATGTGTACATTTTCTTGCA 40 25860
25861 AGGGCCAGATACTAATATTTTACACTTTGCAGGCCATGCAGGTTCTGTCACAACTACTCA
25920
25921 GCTTTACGGTTCCAGCAAGAAGGCAGCCATAGACAAAATGTACTAACGAGTGTGGCTGTT
25980 45 25981 TTCCCATTTATGGACACTGAAATCTGAATTTTATTCCGTTTTTATATTGTGGGATATTAT
26040
26041 TCTTCCTTTGATTTGTTTTTTTTTTTTGGACAGAGTCTCACTGTGTCACCCAAGCTAGAG
26100
26101 TGCCGTGGCCCAATCTTGGCTCACTGCAACCTCCACCTCCCAGGTTCAAGTGATTCTCAT 50 26160
26161 GCCTCAGCCTCCCAAGTAGCTGGGACTACAAGTGCGTGCCACCACGCCTGGCTAATTTTC
26220
26221 GTATTTTTAATAGAGGTGGGGTTTCGCCATATTGGCCAGGCTGGTCTTCAACTCCTGGCC
26280 55 26281 TCAAGTGATCTGCCTGCCTTGGCCTCCCAAAGTGCTGAGATTACAGGCGTGAGCCACTGC
26340
26341 ACTGGCCTTCCTTTGATTTTTTTTTTCCCCCAACCATTTAAAACCATAAAAACCAGTGTT
26400 26401 AGCTCATGGGTTGCACAAAAACAGGTAGTGGGTTGGATTTGGCCAACAGGCTGTATGTAG
26460
26461 TTTGCCAACCACTGTTCTGTGCATTACATCAGGAGGAACATAGTATTAGCTACCTTACTA
26520 5 26521 TTTGTGAGGCTGAATCATTTGCTTTTAAGAAAATGACCATTGATTTTCTTCATTTATAGG
26580
26581 TACATATGTATCCCTTTGTATTAGAAAGAAATCTATAGGATCATAGTTCGAGATAGTATT
26640
26641 CAAAATCCTTTTCCCAACAACATTTCACAGAAGGTTTTCGTTTTCCCATCTATTGATGAT 10 26700
26701 TCTTGGCCTAAATCAGTAATTATACCAGGAATTCAAATTTTATATCTTATTTTTTTTTTC
26760
26761 TTTTTTTTGTCCTCACAATCTGTTCCCAAGGAATTCTAATTTTAATTAGAAAATTTTAAT
26820 15 26821 TGCATCTTTCTTTCGGCATTATTAGCTGGCATTCTTCTGTAAAAAGAGCCTCTCCTTTCC
26880
26881 CTATTGTTTTGAATATCATTATGCACTCATGAACCTTTTTAAATTCAATGTACTTATTAT
26940
26941 TCATTACTGTCATTATTTGTTTTGAGCACAAAATTACCCAAATTTAGCCAGTTGGATCCT 20 27000
27001 TCAAGTCAGCTTATGTGTTCTTTTGATGTGACCCCATTTAGTCTTTGAGCTTGTGGCATG
27060
27061 ATATGCCCAAGGCTCACCATAGTACTTTCTTTGCCCCATCCTGATGCTAGCCATGTCTCT
27120 25 27121 AAAAAGCCCTGGGTCCCTTCTGTAGGAAAGGATATTTAAAGACCATAATCTGAGTAGGCT
27180
27181 TTAAAACTTCTTTATCTTCTCTGTATCTGTTCACTCTTTTTTTAAATTTAGGTTCGTAGT
27240
27241 AACTATATTGCTGGCCTTTTTACCAGCTTTATGTATTTTGATCCAGTCTGTTGTTTTCTT 30 27300
27301 TTTGTTTTCCATTTGATTGCTGTTTTATTTTACATTTTTTTTGTTTTACTAGTATCTTTT
27360
27361 CTAGGCCTTGAAAATGTATTCTTTAAACTTTTTGAGGCACAATTTACATAGCACAAAATT
27420 35 27421 ATTTTATTCTAAGCATGCAATCCAGTGATTTTTTTTCATAAATTTACCTAGTTTTGTAAC
27480
27481 TGTCACTATAATCCAATTTTAGAACATTTTTTATCACCCTGTAAGATCTTTTATGCCCAT
27540
27541 TTAATCTGCATTAGCACTCCCAGTCCCAGGTAACCACTAATCTACTTTCTGTCTCTATAG 40 27600
27601 ATTTACCTTTCCTAGATATTTTGTATAAATGGAATTATATGATATGTGGTCTTTTGTGTA
27660
27661 TGTCTTCTTTCATTAAGTGTAATGTTTTCAGGATTCACCTGTGTTGTAGCGTATGTCAGT
27720 45 27721 ATTTCATTTCTTTTTATTGTTTTGTTTGTTTTAGGAGACATGGTCTCACTCTGTCACCTA
27780
27781 GGGTGGAGTGCAATATCATGATCATGGCTCACTGCACCCTCAAACTCCTGGCCTCAAGTG
27840
27841 ATCCTCCCACTGTAGAGTTCTGACTAGCTAGGACCGCAGGCGCACACCACCATGCCTGGC 50 27900
27901 TAATTTGTAAACAATTTTTTTAAGAGATGGAGGTCTTGCTGTGAACTCCTGACCTCAAGT
27960
27961 GATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGTGTGAGCTACCATATCAGG
28020 55 28021 CTCATTTCTTTTTATTGTTGAATAGTATTCCATTGTGTGGATATATATGAGTTTTGTTTA
28080
28081 GCAGTCTCCCAGCTGGTGGACATTTGAATTGTTTCTACTGTTTGGCTATTACAAATAATG
28140 28141 CTGCCACTAACATTCAAATGTAAGTCTTTGTGTGGACATACATTTTATTTCTTTTGTGCA
28200
28201 TATATCCAGGAGTAGAACTGCTGGCTTATATGAGAAATTTATGTTTATATTTTTAAGAAA
28260 5 28261 CTGCCTGTTTTCCAAAACGGTATCATTTTACATTCCCACTATCACTATGTGAGGGTTCCT
28320
28321 ATTTCTCTGTGTCTTGGCCAACATTTGTTATTGTCTGTCTTTTTTATTATATCCATTCTA
28380
28381 ATGGGTATGAAACAGTACCTCATTGAGGTTTAACTTTGCATTTTCTTAATGACTGATGAT 10 28440
28441 AATTGAGCATCTTTTCATGTGCTCATTAACTGTTCTAATACCTTCTTTGGTGAAATGTCT
28500
28501 ATTCAAATCTTTTGCCCGTTTTTTGAGTGTGTTGTTTGTCTTCTTAATTAAAATTCTTTG
28560 15 28561 TATATTCTACTGACAAGCTCTTTTTTATTTTTTCAATAACTTTGTTATGAATGGTGACAA
28620
28621 GTTCTTTATCAGGTATATAATTAGCAAATATTTTTTCTCAGTCTGTGACTTGTCTTTTTA
28680
28681 TTTTCTTAATGGTATCTTTTGAAGTACAAAAGTTTTAAATTTTGGTGAGGTCCAGTTTAT 20 28740
28741 CAATTTTTTCTTGTAGAAATTATGCTTTTGGTATTGTATGTAAGCAATCTTTACTTAATC
28800
28801 CAAGGTCTTGAAATTTTTCTATATGTTTTCCTCTAAAAATATTACAATTTTTGCTCTTAC
28860 25 28861 ATTTGGATTTCTGATCCATTCAAGGACCTATTTTTATTTTTTATTACTATTAAAAAATGT
28920
28921 TTTTTATGTCTCTCGAGTCATAAGGACTTTTTTGGGGGATGCAGTGGCGCAATCTGAGCT
28980
28981 CACTGCAACCTTCGCCTCCCAGATTCAAGTGATTCTCCTGCCTCAACCTCCCGAGTAGCT 30 29040
29041 GGGATTACAGGTGTGTGCCACCACTCCCAGCTAATTTTTGTACTTTACAAGACAGGGTTT
29100
29101 CACCATGTTGGCCAGACTGATCTTGAACTCCTGACCTCAAGTGACCCACCTGCCTCAGTC
29160 35 29161 TCCCAAAGTGCTGGCATTACAGGCATAAGCCACCACACCCGGCCAAGGGACTTACTGTTA
29220
29221 AATAGGCTGTTATACTTTTAAGATGTATGTAATGGGACCAGGTGTGGTGGTTCACACCTG
29280
29281 TAATCCCAGCACTTTGAGAGACCAAGGTGGGAGGATCACTTGAGGCCAGGAGTTTGAGAC 40 29340
29341 TCTCCTGGGCAACATAGTGAGACTTCATCTCTCCAAAAAAATTAAAAATTAAAAATTAAA
29400
29401 AAATTAGCCAGGCATGGTATAGTCCCAGCTACTTGGGAGGCTAAGCCAGGAGGATCCGTT
29460 45 29461 GAGCCTGGGAAATCAAGGCTGCAGTGAGCTATGATTGCATCACTGCACTCTAGCCTGGGC
29520
29521 AACAGAGAGACCCAATCTTTTTTTTTTTAAAAAΆAAAAAAAAAAGAΆΆAAAGAAAATGTA
29580
29581 AGTAAATGACTTCCTTTTGGTTGCTCTCTTCTAGGTAGGACAGCAAGGAGATTCCAATAA 50 29640
29641 TAACTTAAGTCCCTTCAGCATTGCTCTTCTTCTGTCTGTAACAAGAATACAAAGATTTCA
29700
29701 GGACCAGGTATTTTTTTAAAATGCCATTTTGTTTCTTTCTGTAGTTGGTAAAAAAAAAAA 29760
55 29761 AAAAAAAAAAAAATCACAGTAATCTGTTTTTGTTGTATCCGTTCCTAAACAATTTTATCC 29820
29821 CCTTCCTGCCAGCAGCAAAGCTGCAATAAGACATGTATGTCCCCTCTGTTCTCTGGGGAT 29880 29881 TGATGGAAAACTTTTACAGGTTTTTGGTTTATTCCTCCGTTTCCTGTTGTGTGGTAAGCT
29940
29941 AGGTAGTGAGGTGGGAATAAGAGTGGAAGGATACCACACAGCCCCAGTTGGAGGAAGGGA
30000 5 30001 CAATTTAGCTGGATATTCACCAGCAGTTTTACTATGTTGTAGCTTTCCAAGAGTAGGTTA
30060
30061 GTTGCAAGGATGAAATTTACAATTTTTTTCTTATATGTGTTCCAGGTTGTGGGTAATATT
30120
30121 TATATTGACTTTTAGCCTTTTTTCCCCCTTTTTTCTTAAGGAAGGCTTGTCTTCAGCTCC 10 30180
30181 TTAAAGTTCCCACTGAATGTCATAATTTTTGTAACATCTTCATCTAGTTAAAATAGTTGT
30240
30241 CATAGGGATATATGTGAATGGCAGCTCATAGGAACAGTTATAAGGTTAAGATTTATAGCA
30300 15 30301 TGAGCTATATAATATTTGCTTTATTTTCTTATTTCTTTCATTCTGTTAGGTGCTTGATCT
30360
30361 TTTATTTATTTATTTTTTCATTTATTTTTATTAACTATACTCAAGGTGCTTGATCTTTTA
30420
30421 AAGACTTCGGTTGTAAAGAGCTTTAAGGATCTTCAACTCCTCCAAGGCTCAΆAATTTCTT
20 30480
30481 CAGAATCTAGTTCCTCATAGATCTTATGTTTCAACCATGATCTTGGAAGTAGTGAAGAAT
30540
30541 AGGTAAGTTGGTGAACCATATCTCAAAAGGTTTATAAGGTGTTTAATGTTAGAAAATGCA
30600 25 30601 ATGTGATATCATACTTGCAGCCTGTGAGGGGAAACTGATGACTTAACAGCTGTTGACGTC
30660
30661 ACACATCGAGGTTCATTTTCTTAAAACTGGTAGAGGATACTTTTTCCCTATGGAAATATC
30720
30721 CTTGAATCTCAGGCCCTGGTTTCTTGGCCACCTTGACAGCAAGCATACAAAACTGAATTA 30 30780
30781 GTTGCTTTTGTTTATTCCATGATATTACAATTCTCTATTTTCCTTTTCTTTCTTTCCTTT
30840
30841 TTTTTTTTTTTTTTTTTTTTGAGACAGAGTCTCACTCTGTCACCGAGGCTGGAGTGTAGT
30900 35 30901 GCCACAATCTTGGCTCACTGCACCCTTGACCTCCTGGGCTCAAGCAATCCTCCCACCTGA
30960
30961 ACCTCTCGAGTACCTGGTATTACAGGCATGCTCCACCATGCCCAAGTAATTTTTGCGTTT
31020
31021 TTTGTAGAGACAGAGTTTCGCCATATTGCCCAGGCTGGTCTTGAACTTCTGAGCTCAAGC 40 31080
31081 AATCCACCTGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCTTGAGCCACCGGTCCTGG
31140
31141 CCGTTTCTTTTCCTTTTTAAAGGAAACAGTCTCACTATGTTGCCCAGGCTGGAGTGCAAT
31200 45 31201 GGCTATTCACAGGCTCTATTATAGCACGGTAAAGCCTCAAACTCCTGGCCTCAAGTGATG
31260
31261 CTCCCACCTCAGTAGCTGGGACTATAGGCATGTAGCCCTGTGCCTGGCTTGGCCTTTCTT
31320
31321 CTTTTTTTTTTTTTTTTTTTTCTGAAGACGTAGGAACTTTTCACTATGTTGCCCAGGCTA 50 31380
31381 GACTTGATCTTCTGGGCTCAACTGATCCTCCTGCCTCAGCCTCTCAAGTAGCTGGGACAA
31440
31441 TAATAGGTGCATGCCACTGCATCTGACTCATGGCCTCTTTTTAAAGTGAGTAAAAAACAT
31500 55 31501 TAAGAGTTTTATTTACTTTGTTGAAATTTGGAGCGTACAGTTGGAATTCAATTATTGATT
31560
31561 AGCCAGTTTAGAGAAATTCATTTAAAACCACATGGAΆΆΆCATCAGTAACTGTCCTGGTTT
31620 31621 TTATTTTAATTTCAGGATATACATTAGCTGTTGTAACAGTCTTTACTATGTCATGCTTTC
31680
31681 ACTGTGTATTAAATATATTTTAAAGTTTCATAATTTAAGCATAATTTATGGTAGGCCTCT
31740 31741 TCTAGGCCTGGAATTCTTGTTTATTAATAGATTGAATTTACATGAGCTTTGCAGTAGGGC
31800
31801 AAATTTGAAATTAGAGTTTATTGTTTGAGTGTTTTACCCATTGTTAGGCCTTAAAGCTTT
31860
31861 TTAATCTTTGTATCTCATTATTCTTTTTCCTGAGGTTTATACTTGTGTCTCCAGTATTTT 31920
31921 CCCAACCCAATCTCTTAAAGTTGGGCTAAAGAAGGAGGTACTCACTAACCAGGAAATTCC
31980
31981 TGGAAAGCTTCCCATCTTCTGGAAATCTCAACTGTCATAGGACTTGAAAGCATCTCCATG
32040 32041 TATAATTAGCCTGGAGTGGGTACTTGCCACTGGGTGGGACCAAACCTCAGCTGGGAGAGA
32100
32101 TTTGGATAGCCTTATTAGATCCTCTAAAATAACTGGCTGGTTAGTTACACATGCTTGCCC
32160
32161 CAGTCAGTTAATGAACCTTTAAATAATGCATTCTCCATTTTATGTAATTGAATTTTTGGC 32220
32221 TCTTCAGAGTATGAATATTGTTAACTCTGTTAAAGTCTTATAATTTATCCATAACTGTCT
32280
32281 ACTTCATTCTGTAGTGCTGCATTATAATTTGTTGCAATTTAACAGGTAGATATAATGGAT
32340 32341 AAAGGTTATATTCACATTATTTCCACTGTGGGGTATAACATTAAGTGGTATAAAACCACC
32400
32401 AATGATTCTACTCTTTTACAAAAGATTATTTGTAGTTTTAGCTTATGCTGTTGATACCAG
32460
32461 ATCACTCATCCATTTATAGTATAAATATCTACTGAGTGTCTTTTATATGCCACCCTTGTG 32520
32521 CTAAGCAATGTGGGTAAAAATATGACTATACTATGACCTCTCTCCTAGAGAATCTCTGTC
32580
32581 TTTGGAGGGGAGCTAATTTGTAAGCCTCTACATAAGCGTTGTCAGTGCTGTAGGGTAATA
32640 32641 GAAGAGGCAGCAATGAACTTCTCATCATGAAATCTTGAATAGGAATCTTTAATTTTTTTA
32700
32701 ATACTCTCTAGCTTCTGGATTTTCCCAGTATTCTGTGTGTCATTGGAGACCACTTGCCTG
32760
32761 CTGTTCCCATTATGGTACATTTAGGAATTCAGAATTCTGTCAGACGATGTGTGTAAAGAA 32820
32821 AAGGTTTATATGCAGAGTACGTTGATTATCTAGGTCAAGTTTGGGAAATGTATAACAGGG
32880
32881 CAATGAGTATAAAGGTAAGAATATCTCACTAAGTTTTTCTTTTTTAACTAAGCTTTGTGT
32940 32941 TCTTGTAGCGTTCATAGCTGGGACCATGTTACTCAGGGCCTCGTAGAACTTGGTTTCATT
33000
33001 TTGATGGATTCATATGGGCCAAAGAAGGTTCTTGATGGAAAAACTATTGAAACCAGCCCA
33060
33061 AGTCTTTCTAGAATGCCAAACCAGCATGCATGTAAGCTCGGAGCTAATATCCTGTTGGAA 33120
33121 ACTTTTAAGGTGAGACACTATTTTGGCAACCACTCCCTAATTTTGTTTAAATAATCCAAG
33180
33181 TAGGGCTTGGCATTTGCCTGGGAGTTTGGTGGACAAGGAAATTTGAGTATGTATTAGTTT
33240 33241 GACAGAGGATATATGACAGAGATTAGGATAATATTGAAACATTATAGATCCAGTTTGATG
33300
33301 GAATACTTACTTACGTATTCTTCTATGTAAGTTTTTCATTTATTCCACTTAATCCAATTG
33360 33361 TTTCTGACCTAGAAGTTTGAATATAAGACAGCTTTTTCATGATTTTTCCTTCTTCTTCCA
33420
33421 GAAGTAAACCATTTCTAGTTTTTGTTTTGTTTTGTTTTAATGCTGTTCCTTTACACAGAA
33480 5 33481 GAAATTTTTTTAGGTCACTGTAGAGCATCAAGCTTAAAGAATCATGCTTAAGAATTTTTA
33540
33541 CTGAAAATAAAACAAAAAAAGAATCATGCTTGGTCGGGCATGGTGGCTCAAGCCTATAAT
33600
33601 CCCAACACTTTGGGAGGCTGAGGTGGGCAGATCACTTGAGCTCAGGAGTTTGAGACCAGC 10 33660
33661 CTGGGCAACGTGGCGAAACCTCATCTCTACAAAAAACACAAAAATTAGCCAGGTGTGGTG
33720
33721 GCACGCACCTGCAGTCCCAGCTACTTAGGTGACTGAGGTGGATCACTTGAGCCCAGGAAG
33780 15 33781 TCAAGGCTACAGTGAGCTGTGTTTGCACCACTGCACTCCAGCCTGGGTAACAAAGTGAGA
33840
33841 TCCTATCTCAAAAAAAAAAAAAAAAAAAAAGAATCATACTTATTGGTTCATTGTTTCTGA
33900
33901 AGAAACCAAAATGGGAAATGTACATTTTTTTGACATTATTACCAAATTATCACTGACATC 20 33960
33961 TCAATCTTAATTACTGAAACAGTTTTCAAAAATTTATTTTCTCTTGAATAAAAAAATGCT
34020
34021 AGATCATATCTGAGGTTAAACAACTTTTCTAGTAATTCCTCTAAGTCTTCTTGATGTTCA
34080 25 34081 ATTGTTTAATGTAGCTACACACCAAGAGTGTCTGCTGAAAATGTTTATTTGGGAGGCTGA
34140
34141 TCTAAATGTAAATCTAGTGTTCTAATCCAGAACTATGAAGTAAATGTCAGAATAGTTCTT
34200
34201 GAGAGTTATCAGTGTATTTGATGATATAAATTACCCTGCTTAACAGTGATATTGTTAAAG 30 34260
34261 ACATTATCTTAGAGTATGTTTTTATATTTAAATTATTATTTTTCAAAACTAAAGAGGCTC
34320
34321 CATTTGATTTCACATGGATGTCGGCTTTATCAAGGCATCTTTATAAATTGCTACTAAGTC
34380 35 34381 ACTAACAGTCTGAGGTCTGAACGAATTAGTCTGTACCATAAAGTAATCAAGTTGAAGTAA
34440
34441 GAATTTTAACTACAATTCAAGTGAAAATTCAGAATGGGTCTTTTTAACAGCAACTGCTGT
34500
34501 GCTTCTAGAAACTGAGAAAGGGGTTAGGGAAGATCTTTTAAGTTTCTAGAAATCTTCATG 40 34560
34561 GGCTTTTACATTTTAATTTTTAGAATAAAAGTTATGTATACTGTCAGGAATATGGATATT
34620
34621 GTCAGGTAATGGATACCTAAGTAGAATTGATCCTGTTTGATGCTGAACCTTATATGTAGC
34680 45 34681 AATAGTTTAATGTGATCTGTACTTTTAGGCTAATAAACATGGTATTTATCCTACTAATGA
34740
34741 ATCATCTAAGCACAGAACAAGGGGAAAGTTGAGTGATTCTGTCTTTCCAGATGATTCACA
34800
34801 TTATATTCTGATTTTTTGAGTTTTACTCATATCCAAACGGTTCTTCATGCTGCCTGACAT 50 34860
34861 GCATTGATATACTTAAAAGCTGAAGGGTCACCCAGGAATATTTTATTTATTCTGTTCTTT
34920
34921 ϊ'TAGATCCATGAGATGATCAGACAAGa-AATTTTGGAGCAGGTCCTCAACAGGGTTGTTAC1
34980 55 34981 CAGAGCATCTTCTCCCATCAGTCATTTCTTAGGTATTCAACTTTGAAAGAATGAATAAAG
35040
35041 TTTTTAGAAATATTTTCATTTCAATGTCATAATCATTTGGTCCTGGGAAAAAAATTTTAA
35100 35101 TGAGCATTTAAATGCAGTATCTTTGATAGGATGCCAATAAAGGAAATCCATTTATGTTGT
35160
35161 CTGGGATTGTCAGTTGTCAAAAAGGCTGTAGCTGTTAGTAAGGAAAGCAACAATTAACCA
35220 35221 ATAAGTAAAACTTCCATTTTGCTCAACATTTTCTCTTTTTGTTAATACCTCTCAAATGAG
35280
35281 TGCTGTCCTGCTGCTGCCACTCATTGACTTCCTAGTCCTTTTAGCCTTGACATTTGGACT
35340
35341 GCACAGTGTTTCTCTCTGGTAACCTCTGAATTTGCTGTTTTGTTGTTGTTGTTGTTGTTG 35400
35401 TTGTTGTTGTTTCTTTTTTAGACACAGTTTCACTCTGTTGCCTGGAGTGCAGTGGCGCAA
35460
35461 TCTCAGCTCACTGCAACCTCTGCCTCCTGGGTTCACGCAGTTCTCGTGTCTCAGCCTCCT
35520 35521 CAGTAGCTGGGATTACAGGCGCACGCTACCACACCCAGTTAATTTTTGTATTATTAGTAG
35580
35581 AGACAGGGTTTCGCCATGCTGGCCAGGCTGGTCTCGAACTCCTGACTTCAGGTGATCCAC
35640
35641 CCACCTTAGCTTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCATGCTTGGCCTGAAT 35700
35701 TTGCTGTTTTTAATACATAACTCCTAATGTCTAAATTTACTAGCCTTCATCACAAATTTT
35760
35761 AAAAATTTCTCCGTGTCATTCATCACTGTTTATAACTCCCCTGAAACTTTTTAGGTAAGT
35820 35821 TCTCTGATTACTGTAAGAGTCTGCTTCTTTTCCTGCCTGTGACCAGTTTTCCTTTTACCT
35880
35881 CAAATATAATACAGTTCCCTTCAAACAAATTTTCCTTTTCATTGCTCCTATTTCCATTAT
35940
35941 TTGAAGCATGGTTCTCCAGGTCCTGGAGGCTGGAATTACCTTTTATTTTCTCAAACACAA 36000
36001 GTTCTGTCATTTTTCTCCCTCATACTGTCATTGTTTCTATCTTTTTATTCCCTCCTCCTC
36060
36061 CCAACCTCACATCCAGTGTCTAATTCCTATTCTTACTACCTTGAATTTAGACTACTGCCA
36120 36121 CAGCTTTCTAACTGGTTTCCTGGCTTTTTCTTCTCCCTGCAGCAATTTAACCTGCATATT
36180
36181 ACCACACATTAGTATTCCTAAAATACCACCTTATGACTACAGAATCATCAATATGTTCTT
36240
36241 TAGTAAATTGTCAGCTCTTTTTGTTTGTTTGTTTTTTGAGATGGAGTCTCACTCTGTCAC 36300
36301 CCAGGCTGGAGGGCAGTGGTGTGATCTCAGCTCACTGCAACCTCCGCCTCCCGGGTTCAA
36360
36361 GCAATTCTCCTGCCTCAGCCTTGAGAGTAGCTGGGACTGCAGGCACGTGCCACCACACCC
36420 36421 AGCTAATTTTTGTATTTTTAGTAGGGATGGTGTTTCACCATGTTGGCCAGGATGGTCTCA
36480
36481 ATCTCTTGACCTCGTGATCCACCTGCCTCAGGCTTCCAAAGTGCTGGGATTACAGGCGTG
36540
36541 AGCCACCACACCTGGCCAAATTGTCAGCTCTTTATCCTGGCACTGAAGGTGCTTGACAAG 36600
36601 TTGATCCCACCCTACCTTTCCATTGTTAAAGTCAGTTATTTACTTTCCTGGATTCTTCAC
36660
36661 CCCAGCATCATTGATTTCCCTACCATCTTCTGAATATGTCTTAAACTTACCTTTCTCATA
36720 36721 CCTTTACTCATACTTTTCCCTTTATATATGTAGGCCTTTCTGGTGCTTTGTGCATTTAAA
36780
36781 TGTTCCCCATCTTTTAGAACCTAGTTTAAGTTCCTTCTCCTCATTGCTTTCCTAATATAT
36840 36841 ACCAACTCATAATGAGCTCTTCTTCCTTTGAACTCCTATTTAAACTCTCCCTTTACCATT
36900
36901 TGGTAGGCAATAAACTATGTTTGGAATTAATAGATATTTGATATTGCTCTGTGATTTACC
36960 36961 TCTTTAATTCTTTAAAAAAATTTTTTTACTTCCAACTAAATTATTAAAATTTTTGAAGAA
37020
37021 AGACTATGTTTTATACTTTTATGTTCCTAATAGGACCATATTACGCTTGTGCATAGTAAA
37080
37081 AATTCAGAAATATTTATTGATTTATTTTAGCTTAGAAGTAAGAAGATGTGTGCTACTACT 37140
37141 TATGTCTAGGCAGTGTAATCGGTTTCTTCCTTTCTTTTAGGCAGTTTAATTTTTATAGAA
37200
37201 ATTGAAACTATCATAGAAAAAAGCTAAAATTATCCTGGTTACATTGGAGAAAAAGTATAT
37260 37261 ATAGAATCAGTAGAAATTTGTATTGCAGTATACTTGACTTATTTGAGAAAGGAAACAAAA
37320
37321 GACTTCACATTTCTTTCTCCGTATTTTTCTTTTATTTCAGTTATCTTTAGTTATTTGAGA
37380
37381 CAACTGATTATAGATTCTGTTTTTCAGACCTGCTTTCAAATATCGTCATGTATGCACCCT 37440
37441 TAGTTCTTCAAAGTTGTTCTTCTAAAGTCACAGAAGCTTTTGACTATTTGTCCTTTCTGC
37500
37501 CCCTTCAGACTGTACAAAGGCTGCTTAAGGCAGTGCAGGTAAGTCTTCAGATTCCCAAGT
37560 37561 AACTTGCCAAAACTGAGGTTTAACTGTCTAGTGGAAGTCTGATGCATTTTTGTATAAATA
37620
37621 TATATGTCTAAGAAATTCTATTCCACTTTAGTCTGAAACATAAAATTTGCATTAAAAGGG
37680
37681 CAAGAGCATTGAGCAAGACTGTTTTCCAGGTTTATTTCCTATCCATAACACTATTCTCTC 37740
37741 AACTCATTTTCAAGTTAATGAAATAATTAAAACTCTCTTAGAACATTATTGACTACAATA
37800
37801 GATTTACAGAGGCATTTGCAACCAGTTTCATTTTAGTGTTTCAGAGTATACTATTGTCCT
37860 37861 TGTTAACTGTAATAAACATTAAAACGTATATAAAACAGAAGTAAGCTTCCTTATAGAAGC
37920
37921 CATATGGTAACAGTATTGGGTAGAAATGACCTAAGGCTAATAAGCAAACTTGTTCTGTTT
37980
37981 TTACCCACTGATTCTTTTTCAGCCCCTTCTCAAAGTCAGCATGTCAATGAGAGACTGCTT 38040
38041 GATACTTGTCCTTCGGAAAGCTATGTTTGCCAAGTATGTAGCATCTTTTTCTATCATAGG
38100
38101 AAGACGTTGTCTTCTAATGTTGGAGCTAAAGTTATCTCTGCCATCTCCTAGTACCACCTG
38160 38161 TTCACAGTGATCATGAGAATTCCTAGCCCCGCAGAGCAATTTCATCAAATAAGGCATTTT
38220
38221 GCTAAGTGCTTTATGTGCTTTTTTCATTTAGTCTTCAGAGCAACCCTATGAAGTAAGAAT
38280
38281 TATTGCAATTCCCATTTTACAGATAAGAAAAGTTAGGCTTAGAGAAGATGAGTGACTTTC 38340
38341 CAAAAGTAAAACAGTAGTTGGTGGTGGAGCAAGGATTCAAAGTCAGGTCTAACATCAGAG
38400
38401 CTTGTGATGTCAAGTACTTTGCTCTACTACATTAGAATAATCTTCAGGGTAATGTTCTAG
38460 38461 TGTCAAATACTCTGAAACCTGAGCTGGCAGCAGTTCCAAAGGGGAAAGTACCTTAGTCAA
38520
38521 GAAGATTATACTTAAGAATCTCATTTTAGTGAACATCTGAATTATGATCTAGAGGCTAGT
38580 38581 AGATCAAATTAATTGTTGAGGGGAATGAGTTTTATTTGTAGCTTAGCCAGTCCCTCCTAA
38640
38641 CATCTCTTCCTTTATTTCTTAGTATATAAGCTAGAGATGATCTTGCCATCTCCTAAAAAT
38700 5 38701 ATAAGACAGTAATATGTGAAAAGCATTTGGTACTTTGAGGATAAGATGCCCAATTAATAT
38760
38761 CACATTGGCCATATTATAATATATTCATGGGTGTCCAGAGGAACAACTAAGCCATATGCT
38820
38821 ATTATCTTTGTTCTAGAATTAAAAGTTTTTGTTACTCCTCACCCAAAGGCATAGCGAATA 10 38880
38881 GACTGAGATATTACGTTGTAACATCTTTAACATGAATTAATCATTGCGCCTCAGTGAGAA
38940
38941 GACAAGTGTGACATTTTCTGGATGGACAGTTTACATGGCATCAAATATTACATTATCCTA
39000 15 39001 TGATGAAAGAGAGCATATGAAGGGAAGCACTCCTTCAAACATGGCAAAATCAGCAATTTC
39060
39061 TTACATTTGAGTAACCAGCCAATTTTACAGTCTCTCAGCAGTCTTCTTATTCCTCACATA
39120
39121 GACTTGAGAGCAGGATAGAAGGAAGTAGAGTATCATGAGTTAAGTATTGAAAAAAGTCAG 20 39180
39181 TTGAATTTCTGTACTATAAATTGCTTTGAACAGCTGATACCTTATTTTGAGTACATAAAT
39240
39241 TCACTTTGTTTTGCTCTACGCTTCATTGTTTATACATATGCCTTCTCTGTATGCAACTAG
39300 25 39301 CTGGATTTTTCTGACCCAGAAGCATATTCCTGTGAAATAGTACTGTTTGTTAACTTCTCT
39360
39361 ATTTCTGAGCTAGCCAGCTTGATGCCCGAAAATCTGCAGTTGCTGGGTTTTTGCTGCTCC
39420
39421 TGAAGAACTTTAAAGTTTTAGGCAGCCTGTCATCCTCTCAGTGCAGTCAGTCTCTCAGTG 30 39480
39481 TCAGTCAGGTAAGGATTATTTACGTTAACTTGCAGTGTGTGCGTATCATTCATGTGCATC
39540
39541 GATGAAATGCACGCTGTTTTCTTTTATTCCTGTTATGGTTGTAAGAATGATCCTAGAACT
39600 35 39601 AAAGAGTCTGATGATGATGATGGTGCTGATGATGATGATGATGATGATATTGGCTAACAC
39660
39661 TCATTAATGGCAGATTTACTGTATGCTAAACTGTGCTATCCAGTATGGTAGCCACTGTCC
39720
39721 TCAGTGTGGCTATTGAATGGAACATTTGATTGAAATGTGGCTAGTCCACATTGTGTTGTG 40 39780
39781 CTATACATGCAAAATTCATACCAGATTTTGAAATAAAAGAATGTAAAAATCTAATAATTT
39840
39841 TTAATATTGATTACATCTTCAGAGAGAATTTTGTATGTGTTGGGTTACAGAAAACATTAA
39900 45 39901 AATTTGACTTTATCTCTTTCTCTTTTTTAATGTGGCTACTAGAAAATATAAAATTACATA
39960
39961 CATGGCTTGCATTTGTGGTTCATATTATATTTCTTTCTTTTTTTTTTTTTGAGACGGAGT
40020
40021 CAGTCTGTCACCCAGGCTGGAGTGCAGTGGCGCGATCTCGGCTCACTGCAACTCACTGCA 50 40080
40081 AGCTCTGCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTA
40140
40141 CAGGCGCCTGCTACCGTGCCTGGCTAATTTTTTGTATTTTTAGTAGAGATGGGGTTTCAT
40200 55 40201 TGTGTTAGTCAGGAGGTCTCGATCTCCTGACCTCGTGATCCACCCGCCTCGGCCTCCCAA
40260 40261 AGTGCTGGGATTACAGGCGTGAACCACCACACCCGGCCCATATTATATTTCTTTTGGATA
40320
40321 GCACGGTGCTAGATATTGTGCCAAAATGCTTTACATTTATTATCTCATTTAATCTTCACA
40380 40381 GCAGTCCTCTGAGGCTAGATACTATTATTATCCCATTTTCTTACGTCATTGTATTTACTT
40440
40441 TGCACAGGAACATATATTACACCTTGTAATCTGGGAAAACAAAACTTTTTATAATAATCT
40500
40501 GGTAATCTAGGCTTTGGAGCAATAAAATTGTCTTCATAATTTAAATGATGTACTATAAGA 40560
40561 TTTATAAATAGGAGACATTTATATATAACAGTTTGACTAGGAATCCTCACTTTATTGCTT
40620
40621 TGGTATAACTACATAAAGCTTTGTCTATAACATATAGCATAGATTAAATATTAGGAACAC
40680 40681 TAGATATCATTTGTGTGTTATTATCCCCATTTTAAAGACAGGGAAACTGAGGCTGAGCCA
40740
40741 GGTTAAATAACTTGCCCAAGGTTATATAACCAAGAAAGGGTGGAAGAAGGATTTGGCCTC
40800
40801 AGGCAGTATGAACTACATTACTGTGATGCCTGGAGTAAGGATTAGGAATTCTTGGTCTAT 40860
40861 AATTGCTGATTTTATTATGTAATTTACACAAAGGATGTCAGTTCTTTGTCATGTCCATTT
40920
40921 CTAAΆCAAAAGACTGTCTTCCTCTCAΆCCTTTCTAGAΆTTTGTGGAATAGTGAGATTCTT
40980 40981 CTAGCTATTGAAGAAGTCTTAGACCTTTTAAATAAAATTATGTATATTGTTACTACTGGA
41040
41041 TTCTAGTGGCTTGAAATAAGCAGTGTACCTTCCTAAGCAATTGATATTGTCAAGGAAACC
41100
41101 TTAAGGAATATGAACAGTTAATTTTGTTAAAATGCTTAAAAATTCTCTTATTCCAAACCA 41160
41161 GAATAAGAGTGACACTTACTACTGCATGGTAATGATTATACTGTGTGTCTCACCCCTGGG
41220
41221 GTTTGGCATGTGGAGGAAGCTAAGTTTTTTCGACCAAGAACATAGGCTCATTTAGCTCCT
41280 41281 TATTGGAAACAGCTTTGGTAAGATAGACGTGAATTGGCCTGTCTTCCTTTCAGGTTCATG
41340
41341 TGGATGTTCACAGCCATTACAATTCTGTCGCCAATGAAACTTTTTGCCTTGAGATCATGG
41400
41401 ATAGTTTGAGGAGATGCTTAAGCCAGCAAGCTGATGTTCGACTCATGCTTTATGAGGTAA 41460
41461 GTCCGTAGAATGGAAAGAATGTAGCAAAACCCCAACTAATAATTTTTATTTTAGTAATTT
41520
41521 TTTTCCTGATTATAAAAGTACAATAGCTATGCTCTTACTTGATGTAGTCAGCACCAGTAG
41580 41581 CTAGTGATGTTTAGTCAAAAAGTTGTTTAAGGCAGGGCACAGTGGCTCACACCTGTAATC
41640
41641 CCAACACCTTGTGAGGCCAAGGCAGGAGGATCAAGCAAGACTCTGTCTTTACAAAAAATA
41700
41701 ΆGAAAATAAΆAAACATTAGCTGGGTGTGGTGGCATGCGCCCGTGGTCCCAGCTACTCAGG 41760
41761 AGGCTGAGGCAGGAGGATCCCAGCAGTGAGGCTGCAGTGAGCTATGATCACACCACTGCC
41820
41821 CTCCAACCCAGGCAACAGTGAGACCTTGTCTCTCAAAAAAATTTTTTTAAGGTGAGAAAT
41880 41881 CATAAAACACAGTTGATAGACCTTAAATATTTTATTTTAATTTGAAATATTTAAATATAC
41940
41941 TATAAΆTTTGCCAGTCTTAAGACTAAGTCCTTTTTTTTGCTTTGTTAΆTGATTACΆAGTT
42000 42001 TACTTCCTGCCTCTCATACAAACCCATACCCTTAATTTATTGCCTATAGTTTCAAATTTG
42060
42061 TGTTTACCTAAAGTGGTATGAAAACTTTAAGCTACCTCAGATACAGTTTAGCACAAAAAT
42120 42121 CTTTTAGATAGCTTCAGTTTTTTCTCTTTTTACAATTGTGTTACCTCTAATTTATCAGAA
42180
42181 ATTGGTTTGAGAGACTGACTTTCCAAACATTGTTCCAAACTTAGTTTTTTTTTTTCTTTG
42240
42241 GGACAGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAGTGGCACAATCTCGGTTCACTGC 42300
42301 AGCCTCCATCCTCCATCTCCTGGGTTCAAGCAGTTCTCCTGCTTCTCAACCTCCCAAGTA
42360
42361 CCTGGGATTACAGCCATGCACCACCATGCCCAGCTGATTTTTGTATTTTTAGTAGAGATG
42420 42421 GGATTTCACCATGTTGGCCAGGCTGGTCTTGTACTCCTGGCCTCAAGTGATCCACCTGTC
42480
42481 TCGGCATCCCAAAGTATTGGGATTACAGGCGTGAGCCACCATGCCTGGCCTAACTTAGTT
42540
42541 TTTATAAAAGCAACTTCTTTTTCTTTTTGCACTGGGTTTTCAACAGTTTACTGAACGTCT 42600
42601 GATTAAATCACTAGTTATTATGACAGTACAGCTAAGAGAAATACAACTACTGACTTGTGA
42660
42661 TTAGCATATAACTCACCCAGAGGATATTGTGGTAGCATATGTGAAAACAACATTCATCTT
42720 42721 TCTGTACATTTCCATCAGAGCTCTTAGATGCCTAGGTGCACTATCAATGAGCAGTAATAT
42780
42781 TTTGAGAAGAATCTTTTTTTTTCTGAGCAGTAGGTCTCAACAGTGGGCTTAAAATATTCA
42840
42841 GCAAACCATGCTATAAACAGATGTGTTATCATGCAGGCTTTGCTTTTCCATTTATAAAGC 42900
42901 ACAGGCAGAGTAGATGTAGCATAATTCTTAAGGGCCCTAGGATTTTTGGAATAGTAAATG
42960
42961 AGCATTGATTTCAACTTAAAGTCAGCAGCTACATTAACCCCTAACAAGACAGTCAGCCTG
43020 43021 TCCTTTGAAGCCAGGCATTGACTTCTCCTCCCTAGCTAGGCAAGTCCCAGATAAAGTCTT
43080
43081 CTTCCAATATAAGGCTATTTCATCTACATTGAAAATCTGTTGTTTAATATAACCACCTCG
43140
43141 ATCAATTATGTTAGCTATATCTTCTGGATAATTTGCCTCAGCTTCTCCATCAGCATTTGC 43200
43201 TGCTTCACCTTGCACTTTTTTTTTTTTTTTTTTTTTGAGTCTCACTCTGTCACAAGGCTG
43260
43261 TAGTGCAGTGGCACAATCTCGGCTCACTGCAACCTCCGCCACCCAGGTTCAAGTGATTCT
43320 43321 CCTGCCTCAGCCTCCCAAGTAGCTGGGACTATAGGCTCACGCCACCATACCCAGCTAATT
43380
43381 TTTGTATTTTTAGTAGAGACTGGGGTTTCACCATGTTGGCCAGGATGGTCTCAATCTCTT
43440
43441 GACCTCGTGATCTGCCCGCCTCGGCCTCCTAAAGTGCTGGGATTACAGGCGTGAGCCACT 43500
43501 GCGCCCAGCCCCTTGCACTTTTATGTTATGGAGATGGCTTCTTTCCTTAAACCTCATGAA
43560
43561 CCAACCTCTGCTCGCTTCAGCTTTTCTTTGGCAGCTTCCTCATCTCTTTCAGGCTTTATA
43620 43621 GAATTGAAGAGTTTGGTCCTTGCTCTGGATTAGGCTTTGACTTAAGGGAATGTTGTGGCT
43680
43681 GGCTTGGTCTTTTACCAGACCACTAAAACTTTCTTCACATCAGCAATAAGGCTGTTTTGC
43740 43741 TTTCTAATCATTCATATGTTCACTGGAATAGCACTTTAAATTTCCTTTAAGAGCATTTTC
43800
43801 TTTGCATTCACAACTTGGCTCTTTGGTGCAAGAAGCCTAGCTTTTGACTTGCCTCAGCTT
43860 43861 GTAACATGCCTTACTAAACTGGATCATTTCTAGCTTTTGATTTAAAGTGAGAGACGTGCG
43920
43921 ACTCTTCCTTTCACTTGAATACTTATAGGTCATTGTAGGGGTTATTAATTGACCTAATTT
43980
43981 CAATATTGTTTTGTCTCAGTGAATAGGGAGGCCTGAGGAGAGGTGGAGAGATGGGATGAT 44040
44041 GGCCCAGTCAGTGGAACCAGTCAGAACATACACAGCATTTATCAATTAAGTTCACTATCT
44100
44101 TATATAGACACAATTCGTGACTCTTCAAACCAATTGCAATAGTAATGTCAAAGATCATTT
44160 44161 ATCATAGATCCCCATAACACATACAATAATAAAGAGAAAGTTTGAAATATTATGAGAATT
44220
44221 ACCAAAATGTGACACAGAGACATGCAGTGAGCACATGCTTTTGGAAAAATGGTACTGAGA
44280
44281 GACTTGCTTGATGTAGGGTTGCCACAAACCTTTAATTTGTAAACGTAATATCTGCGAAGT 44340
44341 GCAATCAAGCAACTTGCAATAAAATTAGGTACGCCCATATTCTGTATAAACCACATTGTT
44400
44401 TAAACAGTTAAGGCACAGTGAGCCACTCTTCTTTAGGGTGAGCTTTGTGTCAGTGTAAGT
44460 44461 AACTGTTTACCAGCTAAATTCTCAGCCACCAGCTGGCAAAGGTGCACTAAGGATAGGCAG
44520
44521 TCTTAGACTTCATGTGTTAACTCTTGTGCAGTCCTTGATATGCCCCTTCCCCCCCAAAAA
44580
44581 AAATCTTCACCCTTATTTAGCTCTAAAGTAAAAAAAATTAACATGAAGTGGATCATAGAC 44640
44641 TTAAACCTATTAGAATATTGCTGTTCATTTATTCATCAGTCTTAGTATATCATTGGTATA
44700
44701 TAAAAATACCTTATGTAGTGATAAAACTTGTCATATTTGTTGCAAGTGTATGCCAGATTG
44760 44761 CCATTTGCTTTTTTTTTAATATGATCCTTTTACACTTAAATAATAATTTTTGGTTACTAA
44820
44821 ATCTATTGATTTTCTTCCTCTGAGATGTCTTCTATTACTTTTTTTTTTTTTTTAAGAGAC
44880
44881 AGAGTCTTCCTCTGTTATCCAGGCTGGAGTGCACTAGTGCAGTCTAACTCACTGCAGCCT 44940
44941 CCAGCTCCTAGGCTCAAATAATCCTCTTGCCTCAGCCCCATCCCCAAACGATTGGGACCA
45000
45001 TAGGCACAAGCCACTGCACCCAGCTAATTTTTCTGTTTGTTTTTTTTTTTAACCTTTTGT
45060 45061 AGAGACAGGGTCTCACTTTGTTGCCCAGGATGGTCTCAAATGCCCTGGCTTCAAGCGATC
45120
45121 CTCCTGCCTCAGTCTTCCAAAGTGCTGGGATTAAAAGCATGAGCTACCGTGCCCGGCCCA
45180
45181 TCTTTATTATTATTTTATCTGTAGAAAGTCCAAATCCTTCCAATGAATATTCACTAACAT 45240
45241 TTTCTTTGAGGTTTTTTTTTTTATGCATTTGTTTTTGACGTTTAGCTACTTAATTCATCC
45300
45301 TGAATTTGTATGATAATATATATGAGGAGCTTTTCCCCCAAGCTAACCATTTGTTCAGAC
45360 45361 ATCATTGCCTCCTTAATGTGTACTATGTATCTCTGTATGCCATTTTAAAATTTTGCCTGT
45420
45421 AGATTTTTGTGCCAAGACAAAGTGTCTTTTTATTATTATTACACATTCATAAAATATTTT
45480 45481 AATTGCTGTTAGGATTAATTTTCCTTTGTTCCGTTCCTTTCCCCTTTCCCCTTTTTCCGT
45540
45541 TTTCCTTTCCTTTCCGATGGAGTCTCACTCTGTTGCCCAGACTGGAATGCAGTGGTGCGG
45600 45601 TCTCGGGTCTCAGCTCACCACAACCTCCCCATCCCCAGTTTAAGCGATTCTCCTGCCTCA
45660
45661 GCCTCCCAAGTAGCTGGGATCACAGGCGTGCATCACCATGCCTGGCTAATTTTTATATTT
45720
45721 TTAGTAGAGATGGGGTTTCACCATGTTGACCAGGCTGGTCTCGACTTCCTGACCTCAGGT 45780
45781 GATCCCTCCTGCCTTGGCCTTCCAAAGTGCTGGGATTACAGGCATGAGCCACCGTGTCTG
45840
45841 GCCTGTTTCTTTTCTTTAAACAAAAAAATTTTTTTGATCAATTCTCATTTGCTTTTACTC
45900 45901 ACAGATGAACTGTATAACCTCTTTTCCAGGTTCCAGAATGAAAGTTCTCCCCAGGATTTT
45960
45961 TTTTTTTTTTAAGACAGAGTTTTGCTCTATTGCCCAGGCTGGAGTGCACTGGTGTGATCT
46020
46021 CAGCTCACTGCAACCTTCATACCTCAGCCTCCCGAGTAGCTGTGATTACAGGCATGTGCC 46080
46081 ACCACACCTGGCTAATTTTTGTATTTTTTAGTAGAGACAGGGTTTTGCTGTGTTGGCCAG
46140
46141 GCTGGTCTCGAGCTCTTGGCCTCAAGTGATCTGCCTGTCTCAGCCTCCCACAGTGCTGGG
46200 46201 ATTACAGGTGTGAGTTACTTCACCTGGCTTCCCCAGGATTTTACTCTGAGCAGTTCTTAA
46260
46261 CTAAGACTAGGACATTTTGGGTGGGAAAAAAATATGGTCATTTATATTAGGGCATTTAGG
46320
46321 ACTGTCAAATATGGTCTCAATAGGAAAAAACTGAGAAGAGGATAAAGAAAGTGTTATTTT 46380
46381 TAAGTTATGATTGTCCAGATCACTAGTATCTCTGTTAAAGTGCTTATTTCTTCTCTTTGA
46440
46441 TTCCTCTTAGGGGTTTTATGATGTTCTTCGAAGGAACTCTCAGCTGGCTAATTCAGTCAT
46500 46501 GCAAACTCTGCTCTCACAGGTAAAATACATTTTTATGGATATATGGAAAACAGACCATCA
46560
46561 AGGATCGAGAGACAGTTGATGGTTTTCAGACCTTTCAAAATATAAAATAATTCCCAACTA
46620
46621 GTACATTAGTACTTTGTGAACATGCTGTGGGTATGTTATGCTGTTCTGGGTTGTCTTATC 46680
46681 TCGGTCACCACTTACCTGTCTGCCATAATACCATCATCTAGCAGTTATCCTTGTGAATTA
46740
46741 ACAGTCTGTATCCTAAGTCAGAAGGACATTTTGAAGAACCATTTATATAAGGACCATTGC
46800 46801 AACTGTATCCATTATGTTATATTTCTGAAAGAAAAAAGAAATCCAAAACAAATATAGCAA
46860
46861 AATATTATTTCTTAAATCTGGGTAATGGATACATGGATGTCTTTTACATTCCTTTCTGCA
46920
46921 CTTTTCAGTTAACAAATTTTTAAATTAGAAGATTAAATTCTTCTAATCTTCAAGACTAGA 46980
46981 AGAATTCATATAGAGACTCTCTACCAGGAGGGTTCCTTTAGACCCCTAGTCTATCATTTT
47040
47041 GTTTGCTGTCTCTCAATGCCATTGCTTTGTGATAGTTATGAAATTTCATTTAAAATTAAG
47100 47101 GTCTCAGATGTGTGAAATTATTGGAAGTTCCCATACTGTCCATCAAAAGCTTTTCATCTG
47160
47161 GCCTTAGGCTTGATCCTATATAAAATTTATATTCTGTCAGCTATATTGTATCTTTCAAAC
47220 47221 TGTAATCAACACATCTACATTCACACGTTTAACAAAAATAGAAAATTATGTTTGAAGGCA
47280
47281 TAGAATAGCGCTTTCTGACTCAGGTTAATATGCAGGACAGTAAAATTCTGCAGACTCCAA
47340 5 47341 AAGTTAAAAGGAGAAAAATAATAACTCATATTTTTTTTGGCTGTCTTATATGCCAAATAC
47400
47401 TGTTTGAAGTACTTTACATGTATTGTCATGTTTAATCCTTATACAATGATTATTAATAAT
47460
47461 ATCCTCATTTTTAAGATGAGGAATCACGGTACAGATACTTTTATAAAAACCAGTAATAAG 10 47520
47521 TAGTGGTACTGGGATCTTGGACTCAGCCAGTCTGACTCTGGATCCTGTATTTTTAACCTC
47580
47581 CAAGTTAACTGAAAATGTTGATTGCATGTACAAGTTTAGGAATAGAAGGAATTGGAATAG
47640 15 47641 GAAAGATGATCCTAATCTGTACAATATCCAAAGCAAGAGCACAGGATGTGGGTGAGCCAA
47700
47701 AGAAATAAAAACTTGGCTGCATTGTTCTTTGAACAGTTGGGAAATGTGTGTTAGAAGGCA
47760
47761 TTAGACATTAAAGATACCTTTCACCTGAGAAGTTAAAAAAGTAAAAAGCATTTATGAGCC 20 47820
47821 AAGATGTCTTTTTTTTCTTACTATACACAGTTAAAACAGTTCTATGAGCCAAAACCTGAT
47880
47881 CTGCTGCCTCCTCTGAAATTAGAAGCTTGTATTCTGACCCAAGGAGATAAGATCTCTCTA
47940 25 47941 CAAGAACCACTGGTGAGACTTTTATTCTTCCTTCAACCATTATTTTTAGTATTAAGGATA
48000
48001 GGGTTGAACTTTGCAAAGAGATACCTTTCCCTGTGAAACTCTCTTCCTGGTTCTTCCAAT
48060
48061 GAATGTTTACTTTTAAGTCTTCCCTGCTTATCATTTCTGAACCATTATCATTTTGGATCT 30 48120
48121 ATTGGTAAGTTATCTCCATGTTAGCCCTTTACTAAATCAAGGCTTCCATCACTTCCCCCA
48180
48181 GAGAATATTTTATCTCATTTATGAATCTTTGATTACATTCACTAAATAAATGTACTTTAG
48240 35 48241 AATGGGGAGAGGGATGATGTCACCTACGAACAGATGAACCTAGGGGACCTGCTTCATTAG
48300
48301 TCTAGAGGAAGTATATGATTTAGGCTGAACTAGGATTGGCACTGTTGAACCTTCAGAGGA
48360
48361 GCTAGGCCTGGTTGACTTTCTGTTCTTATCTAGCCTCAGAAGGACAGCGAAGAGGATAAA 40 48420
48421 AATGGAAACTCCCACCCCAAGTGACTTATAACTCATGGCAGAAGAAAGGAGGAAGTCTTT
48480
48481 CAGTTGTCATATCTTGCCTTCATTTTTGTGCCTTCTGTGACATGAGATGTCCTCAGCCTA
48540 45 48541 GATCTAAGATGCTGTGTTGGTCTCCTAAAGATTCCCTCAACATAAACCTCTATCTTTAGA
48600
48601 ATAGCCTCTGGGACTCAAATGAACTAGAGAAGATTTAACTTCACCACCTAGCTCCAGGGT
48660
48661 TATTTATCAGACCAGAGATAGCACATCTAATGTTGCATTTTGAGGTGTCAGCCACTTAGG 50 48720
48721 CCAATTTTCGGGGGGAAGCATTAGAAAAGGATGCTGCTGTTCAATTAATTTTCCCAGTTT
48780
48781 TGTTAATTTAGATGGACTTAATTTGTAACGCCAATGAATCATTTTCTTTAGCCTTATAGA
48840 55 48841 TAAGAATTATTTGCTGGTTATGAACAACTTTATAAGTTATCCATCAACACTCAAGAGTAT
48900
48901 TTAATTTACTTATTTTCTCCTACAGGATTATCTGCTGTGTTGTATTCAGCATTGTTTGGC
48960 48961 CTGGTATAAGAATACAGTCATACCCTTACAGCAGGGAGAGGAGGAAGAGGAGGAGGAAGA 49020
49021 GGCATTCTACGAAGACCTAGATGATATATTGGAGTCCATTACTAATAGAATGATTAAGAG 49080 49081 TGAGCTGGAAGACTTTGAACTGGTAATTGCTAAGTCCTCAGCTGTATTGAATGATGGAGT
49140
49141 TCTTTAGTAGCTTGTTAATTTTTATCTTGTGTCTTTTAGGATAAATCAGCAGATTTTTCT
49200
49201 CAGAGCACCAGTATTGGCATAAAAAATAATATCTGTGCTTTTCTTGTGATGGGAGTTTGT 49260
49261 GAGGTTTTAATAGAATACAATTTCTCCATAAGTAGTTTCAGGTAAGGTTTTGCTATAACT
49320
49321 CCATTTGTAATTTGATGAATTCTCCATTTTATTTACATATTTTTACTGTAGCAGTATTCT
49380 49381 AGGCAGTAAACAGACCACAGACGATGACACTGTCTCTTAAATGAGCACCTAGTCTAAGAC
49440
49441 TAAACTGTGTTCTTTCCACTAGAGAGCGCTGAAGTATATGCTTACCAGGCCTATAAAATG
49500
49501 AAAGCCTTCCAGCAGGGTTTCACTTACTCAGAATTTCCCAGACCCTGAATTCAAGAACTC 49560
49561 CTAATTTTAACATGGAAATTTTGATTGGTGGTAGTATTGGACTTTAATACTCTGCAGGGA
49620
49621 CTGGTATAAATAAGGGAGGGGAGGCCAGGTGCGGTGGCTCACGCCTGTAATCCCAGAACT
49680 49681 TTGGGAGGCCAAGCTGGGTGTATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAAC
49740
49741 ATGGTGAAACCCCATCTCTACTAATAATGTAAAACTTAGCCAGGTGTTAGTGCCTGGGAC
49800
49801 CTGTAGTCCTAGCTACTCGGGAGGCTGAGGCAGGGGAATCACTTGAGCCTGGGAGGCGGA 49860
49861 GGTTGCAGTGAGCCAAGGTCACACCAGGGGAAACAAAACCCAGATAGATTGCTGTGACCT
49920
49921 GGGAGTATTATATTAATGAAGTTCTATTCATTTATAATGTTACGTCTAAAATATGACATT
49980 49981 TAAAGAAGCATTGTGATTATTATCATATGTAAAAGTAAACCACAATATTCTGATGTTTGT
50040
50041 CCTTAGCGGTCTCTTTTTTGTTTTTTACAGTAAGAATAGGTTTGAGGACATTCTGAGCTT
50100
50101 ATTTATGTGTTACAAAAAACTCTCTGACATTCTTAATGAAAAAGCGGGTAAAGCCAAAAC 50160
50161 TAAAATGGCCAACAAGACAAGTGATAGTCTTTTGTCCATGAAATTTGTGTCCAGTCTTCT
50220
50221 CACTGCTCTTTTCAGGTAAGGTTCTGCTAGAGTGCTTAAAGACAGCCACTCCCTGAGGAT
50280 50281 CGTATACCTACCTAGGCTCACTTGTTTCACCTCGTTTGGATTGTTTACAGTAAGAAATAA
50340
50341 GTCAGGAGGTTTTATTTTTCTTGAAATAAAAGCTGGACAATCCTAGGTAGGTACTTTAAG
50400
50401 TAGGTACCTTGAATTATTAAAGGACAAATGAGAAACAGTGGGCCAATAAATGAAAAGATA 50460
50461 GGGATGAΆTTCCAGCAGGGTGTTTTAAGAAAΆTCTATGTAAGTAGCTTGTACAAGATAΆC
50520
50521 AGATATAAAAAGGTAGGGGGTGCCAGGCATGGTGCCTCACTCCTGTAATCCCAGTACTTT 50580 50581 GGTAGACTGAGGTGGGTGGATCACCTGAGGTCAAAAGTTCAAGATCAGCCATGACCGATA 50640
50641 TGGTGCGACCTCATCTCTACTAAAAATACAAAATTAGCCGGGCATGGTGGTGCGCACCTG 50700 50701 TAGTCCCGGCTACTTGGGAGGCCGAGGCAGGAGACTCACTTGAACCCAGGAGGCAGAGGT
50760
50761 TGCAGTGAGCCGAGATCATGCCATTGCACTCCAGCCTGGGCAACAAGAACAAAATTCTGC
50820 50821 CTAAATAAΆTAAAAAGGTAGGGGGGGTGACTGAATTAAAAATACAAAGGGACAAΆΆΆAAA
50880
50881 ACCTAAAAGACTAAGACTGACATTTAAATTTTATCAAAGTAAAGGATTTGGGGAGGGAGA
50940
50941 GAAAATGAGGAACCACTAAGAATAACGATTATAAAAGGGCAGCCATAGCAGTGACTATAG 51000
51001 CTTGGGCTGCCTAGAGAGTCTGCCAGTCGGAACTTACTGGCAAGCTCTGTTGGGTGCTGC
51060
51061 TGTTCTGAACAATTTCTAGAAAGCTTAATTCCATATACCAATAGCAGTAAGGGAATCTTC
51120 51121 CTTTTTCTTTCTCTCTCTCTGTCTCTCTCTAGGGATAGTATCCTkAAGCCACCAAGAAAGC
51180
51181 CTTTCTGTTCTCAGGTCCAGCAATGAGTTTATGCGCTATGCAGTGAATGTAGCTCTGCAG
51240
51241 AAGGTACAGCAGCTAAAGGAAACAGGGCATGTGAGTGGCCCTGATGGCCAAAACCCAGAA 51300
51301 AAGATCTTTCAGAACCTCTGTGACATAACTCGGTAAGCCACTCCCACCCCTTAGAAACTT
51360
51361 ATTCCACTTGGCTGTGGTGTCTCCAAGAGAACAAACTGGGAACAGAGGATGAAGGTAATT
51420 51421 TGAGGTTGGACATATTTTAGGAGTGAAAGAATATAAAACATTAGCCAGGTGGCAGGCACT
51480
51481 TGTAATCCCAGCTACTCAGGAAGCTGAGGCAAGAGAATCACTTGAACCAGGAGGTGGAGG
51540
51541 TCGCAGTGAGCTGAGTTCATACCACTGCACTCTAGCCTGGGTGACAGGGCAAGACTCTCA 51600
51601 AΆAGAΆAAΆAAAAAΆAAAΆAAAGCCAGACATGGCAGCTCATGCCTGTAATCCCAGCACTT
51660
51661 TGGGAGGCTGAGCCGGGTGGATTACCTGAGGTTGGGAGTTCGAGACCAGTCTGACCAACA
51720 51721 TGGAGAAACCCTATCTCTACTAAAAATACAAAAATTAGCCTGGCATGGTGGCACATGCCT
51780
51781 GTCATACCAGCTACTCGGGAGGCTGAGGCAGGAGAATTGCTCGAACCTGGGAGGCGGAGG
51840
51841 TTGCAGTGAGCCTAGATTGTGCCATTGCACTCTAGCCTGGGCAACAAGAGCGAAACTCCA 51900
51901 TCTTAAAAGAGTGAAAAAAAGTGCAGTCATTGACATAGGGTCTTTTTTCTAGTCTTGCCT
51960
51961 TCCCCTGGCGCCCCCCCCACCTTTTTTTTTTTGTTGTTGTTGTTGTTTTGGCTTTTTTTT
52020 52021 TGGCTTTTTTTGAGAGAGTCTCGCTCTATTGCCCAGGGTGGAATGCCGTGGTGCAATCTC
52080
52081 GGCTCACTACAACCCCTTCCTCCGAGGTTCAAGCAGTCCTTCCACTGCAGCTTTCTGAGT
52140
52141 AGCTGGGACTACAGGTGCACACCACCATGCCCAACTACTTTTTAATTTTTAATTTTAGTT 52200
52201 TATTTTATTTACTACTTTTTTTGGAGACAGGGTCTTGCTCTGTCACCCAGGCTAGAGTGC
52260
52261 AGTGGCGTGATCTTGGCTTACTGCAACCTCGGCCTCCCCGGTTCAAGTGATCCTCCTGCC
52320 52321 TCAGTCTCCCAAGTAGCTGGGATTACAGGGCACCACCATGCCCTGCTAATTTTTGTATTT
52380
52381 TTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTCAGGT
52440 52441 GATCCACCACCCTGGCCTCCCAAAGTGCTGGGTTTACAGGCGTGAGCCACTGCACCTGGC
52500
52501 CCTTATTTTTTTTTTTTTAATTTTCTGTAGAGATAGGATTTCACCATATTGCCCAGGCTG
52560 52561 GTCTTGAACTCCTGGGCTCAAGCGATACGCCCATCTCAGCCTCCCAAAGTGCTGGGATTA
52620
52621 CAGGCCTGAGCCACTGTGGCTTTTGTTTTTTCGTTTTTTTTGTTTTGTTTTGTTTTTGTT
52680
52681 TTTGTTTTTGTTTTTCCATTTAACCCTGAGTGGACACAGCACATGTTTCAGAGAGCACGG 52740
52741 GGTTGCGGGTAAGGTCACAGATCAACAGGATCCCAAGGCAGAAGAATTTTTCTTAGTACA
52800
52801 GAACAAAATGAAAAGTCTCCCATGTCTACTTCTTTCTACATAGACATGGCAACCATCCGA
52860 52861 TTTCTCAATCTTTTCCCCACCTTTCCCCCCTTTCTATTCCACAAAACCGCCATTGTCATC
52920
52921 GTGGCCCGTTCTCAATGAGCTGTTGGGTACACCTCCCAGACGGGGTGGTGGCTGGGCAGA
52980
52981 GGGGCTCCTCACTTCCCAGTAGGGGCCCCTCACCTCCCAGACGGGGCGGCTGGCCAGGTG 53040
53041 GGGGGCTGACCCCCCCACCTCCCTCCCGGACGGGGCGGCTGGCCGGGCAGAGGGGCTCCT
53100
53101 CACTTCCCAGTAGGGGCCCCTCACCTCCCGGACGGGGCGGCTGGCCGGGCGGGGGGCTGA
53160 53161 CCCCCCCACCTCCCTCCCGGACGGGGCGGCTGGCCGGGCGGGGGGCTGACCCCCCCCACC
53220
53221 TCCCTCCCGGACGGGGCGGCTGGCCTGGCGGGGGCTGACCCCCACCTCCCTCCTGGACGG
53280
53281 GGTGGCTGCCGGGTGGAGACGCTCCTCACTTCCCAGACGGGGTGGCTGCCGGGCGGAGGG 53340
53341 GCTCCTCACTTCTCAGACGGGGCGGCTGCCGGGCGGCAGGGCTCCTCACTTCTCAGACGG
53400
53401 GGCGGCCGGGCAGAGGTGCTCCTCACATCCCAGACGGGGCGGCGGGGCAGAGGCGCTCCC
53460 53461 CACATCTCAGGCGATGGGCGGCCAGGCAGAGACGCTCCTCACTTCCCAGATGGGATGGCG
53520
53521 GCCGGGAAGAGGCGCTCCTCACCTCCTAGATGGGATTGCGGCCGGGCAGAGACGCTCCTC
53580
53581 ACTTCCCAGACGGGGTGGCGGCTGGGCAGAGGCTGCAATCTCGGCACTTTGGGAGGCCAA 53640
53641 GGCAGGCGGCTGGGAGGTGGAGGTTGTAGCGAGCCGAGATCACGCCACTGCACTCCAGCC
53700
53701 TGGGCACCATTGAGCACTGAGTGAACGAGACTCCGTCTGCAATCCCGGCACCTCGGGAGG
53760 53761 CCGAGGCTGGCGGATCACTCGTGGTTAGGAGCTGGAGACCAACCCGGCCAACACAGCGAA
53820
53821 ACCCCGTCTCCATCAAAAAAATACGAAAACCAGTCAGGTGTGGCGGCAATTGCAGGCACT
53880
53881 CGGCAGGCTGAGGCAGGAGAATCAGGCAGGGAGGTTGCAGTGAGCCGAGATGGCAGCAGT 53940
53941 ACAGTCCAGCTTTGGCTCGGCATCAGAGGGAGACCGTGGAAAGAGAGGGAGAGGGAGACC
54000
54001 GTGGGGAGAGGGAGGGGGAGGGGGAGGGGGCTCGTTTGTTTTTTTGTTTTTGTTTTTTTT
54060 54061 TCATTTAAAGAGATGGGGTTTGCAGTGTTGCCCAGGCTGGCCTTGAGCTCTTGGGTTCCC
54120
54121 AGGGCTTCTAGTCTTGCTTTGATATGGATTGTTAGTCACATATAAAATGTTATGCTATTA
54180 54181 TTGGGGAAAAAAAGAGGGATATTACATAATGGTTAAGTGATTCAAAATACTTAAAGCAAA
54240
54241 AACTGATGGAACTGAAGGAAAAATAGACAAATCCTTAATTAATGTAATCAGCCCTCTCTC
54300 54301 CATAGTCAAAAAACAGAAAACAAAACAAAAAAAAACCAGTAGATAGAAAATCTACTGAAA
54360
54361 GGAGGTAGAAGAAGTGAACAACACTGTCACCCAGCTTGATTTAATTGACACTTATAAGAA
54420
54421 CACTCCACAGCACCTTCAAAATACACACTTCTTTTTAGGTGCACATGGTGTATTCACCAA 54480
54481 GATGAGCCATATTTTGGGCCATAAAACTCAGCAAATTAAAAAAAAGTAGAAATTCTCTGA
54540
54541 CCAAACAGAATTAAAGAAGAAAGCAGTAACAGAAAGATATCTAGATAATCCCCATATATT
54600 54601 AGAAATTAAATGCATTTTTAAATAGCCCATAGTCAAAAAGTCGTCAGGGAAATTAGAAAA
54660
54661 CATCTTGAATAGAATGGAAACAAACAGACAACATGTCAAAAGATATGATCCAGCCAAAGT
54720
54721 GCTATTGAGGAAATTAAAGCAGTTAGTGATTTAAAAATCTCAGATCTCCCATATAAACTT 54780
54781 CCACATTAAGAAAATAGAAAAAGAAGAGCAAATTATAATGAAAGTAATCAGAAGGAAGGA
54840
54841 AATAGACAAAΆGCACAACTATGAAGAAGCAGAAAATTAAAATAGAAAΆCATTAΆAΆGAAA
54900 54901 GCTGGTTCTTTGAGAΆGATCAATAAATTTAΆTGAACTTTAGCCAGACTAΆTCAGGAAAAG
54960
54961 AGAAGACACATTACAAATTGCAGAATTGAGGAAGAAGGGACATCACTACTGATCCTACAG
55020
55021 ATGCTAAAAAATAGATAATAGAATATTAACGATTTTATGCCAGTAAACTTTTAAGTTTAA 55080
55081 TGGACAGATTTCTTGAAAGCTCACTCAACAAAAAATAGGCAACCTGGCCGGGCGTGGTAG
55140
55141 CTCACATCTGTAATCCCAGCACTTTTGGGAGGCCGAAGCAGGTGGATCACCTGAGGTCAG
55200 55201 CAGTTCAAGACCAGTCTGGCCAACATGGTGAAACCCCAGCTCTACTAAAAAAAATACAAA
55260
55261 AATTAGCTGGGCGTGGTGGTATGCACTTGTAGTCCCAGCTACTCAGGAAGCTGAGGCAGG
55320
55321 AAGACCACTTGAATCTGGGAGGTGTGAGTTTGCAGTGAGATCACCCCACTGCACTCCAGC 55380
55381 CTGGGTGACAGAGTGAGACTCTGTCTCAAAAAAAAAAAAAAAACCTGAGTAATCTTATCT
55440
55441 CTATTCAAAAAAACCTGAGTAATCTTATCTCTATTCAAAGAAATTGAATTTGTGGTTCAA
55500 55501 ACTTTTTTCACAAAACTTAAGATCTAGGTCTATTCCGTGGTAAATTCATCCAAACATTTA
55560
55561 AGGGAGAAGTAATGTAAATTCTGTGCAAATTCTTCCAGGAAATAGGAGAGAACATATTCC
55620
55621 ACCTCATTTAATTAATGAGGTCAGCATTACCCTGATACCAAACCAGACCCAGACCATTGC 55680
55681 AAGAAAACTGCATAGCAATATCCCTGATGAATATAGAGTCTGCTGTGTTAAAGGCAGACT
55740
55741 CAGAAGGCTATATACTGAATGATAACCATTTTTGTATGATGTTTCGTAGAAAGTAAAACC
55800 55801 ATAGGGACAGAAATTAGATCAGTAGTTGCTTGGAAATGGGAGGAGAGAATTGACTATCAG
55860
55861 TGAGCACAAGGGAACTTTTAGAGTGATAGAAATACCTTGATTGTGGGGAGATTACACAAC
55920 55921 CATGTAAGTTTTTTTAAACTTCTAGAACTGTTCACCTACAGGGTAAGAATTTTACTGTTT
55980
55981 GTTATTTTATCTCGGTGAACCTGTCTTTAAAAACAATACCACTTTCTCCTGCTTCAGAGT
56040 5 56041 CTTGCTATGGAGATACACTTCAATTCCTACTTCAGTGGAAGAGTCGGGAAAGAAAGAGAA
56100
56101 AGGAAAGAGCATCTCACTGCTGTGCTTGGAGGGTTTACAGAAAATATTCAGTGCTGTGCA
56160
56161 ACAGTTCTATCAGCCCAAGATTCAGCAGTTTCTCAGAGCTCTGGGTAAGCATTGCAGTAT 10 56220
56221 CAATAAATAGGCTTGATTTAGGTTTCTCCTTAGCTCAACCCCTTAATTCCATTTGTTAAC
56280
56281 CTACCAGAAGACACTTGAGAACAGTCCTAATGTTGCTAAGGAGTGACATCTAGTGGATTC
56340 15 56341 AGGATTGGTACCTACTGGATTACATTCAACCACAAAGAGTGGCTGGAAAATGGAATATAG
56400
56401 TATTAAGAAATCACAAAATTTTAGAAATTTAAGTCTGCCTTTAGACTTTTTTTTGGCTTT
56460
56461 CAAAAATTTTAGCTATTAAAAGGCCAAAAAGTATGAGTTTATATCAAAGAAGACAAGAGT 20 56520
56521 TTCTTTTCCATTCCTAGATGTCACAGATAAGGAAGGAGAAGAGAGAGAAGATGCAGATGT
56580
56581 CAGTGTCACTCAGAGAACAGCATTCCAGATCCGGCAATTTCAGGTGAGAAGCCTTGCAAA
56640 25 56641 GCTGCTGTACTGGCCTGAGAGGCTTTGCAAAGGAACTGTTAGCAGGGGCAGCTGGTAAGA
56700
56701 ATGGGCAGACAGTGACCAAGTAGGAGAAGAATTTTTTCTGGGTCATACAGGCAACAGGAC
56760
56761 ATAGCTCTCAGAATGGAAGATAATGTATTTAAAAGGACCCTAGTGAGGATAGGTATTTAG 30 56820
56821 CCACCCCAACCTGCAATACTCATTACTTCTAAGGACCACTGTTTGAGTTGATGTAAACAG
56880
56881 AAAGGAGTCTTCAAGGCATAGAGTCTGTGTTTTTGTTTTCTGAGTCTGTGGTATAATTTG
56940 35 56941 GCTTGGTCTGACAGACAACGTAAACACTGGACAATAAAGTTTGTTAGTTTCTAACCAATA
57000
57001 GTTGTCAAAATATCAGGATGTTCTATCACAGGAGTTTTTTATTTAACAAGTAATTCTGAA
57060
57061 GTTCCTACCATGTGCCAGAAACAGTTCTAGGTGCTGGGGATGTAGCAGGGAACAAAAGAG 40 57120
57121 ACAAAATATTCCTATCCTTATGGAGCTTACATTATAGTAGAAAGACACTGACAAATAATC
57180
57181 AAATACATAGTTATTTCAGGTAACAGGGAAGGTATATAAGCATTGCTGGGTTTGGTGCCT
57240 45 57241 TGTCTAAGCCTGAGATCAATGGATAGGCTCCAGGGAGCTGTGAGCCACCAGAAATTGGGT
57300
57301 ACATAGTTCATTATCTACATTTTGCATGGGGTTGGAACGGAAAGAGTCAGTTTTCAGGAG
57360
57361 CATTCTCAGAGAGGTTTATGGTCAAAAACAGCTTAGGAAACTACTGCTCAATTCAGGTGT 50 57420
57421 ATTTTCAGATTTTATCCTCTTAGAATTTTGGTAGCTTTGAATTCTTTCTGTCCTAGTCTT
57480
57481 AGGAGTCTCTGACTAGATGCCTCTTCTTCCTGATAGGAACGTGTCTGCTAACATTGCTTG
57540 55 57541 CTGTGTGTGCCTTCCTTTCTCAGAGGTCCTTGTTGAATTTACTTAGCAGTCAAGAGGAAG
57600
57601 ATTTTAATAGCAAAGAAGCCCTCCTGCTAGTCACGGTTCTTACCAGTTTGTCCAAGTTAC
57660 57661 TGGAGCCCTCCTCTCCTCAGGTACTAGTACCGCTAACTTAATCCCATTTAGCATTCCTCA
57720
57721 GAAGGCAAGGATTATTGCATCATAAAAGTGTATATCTAAATGTCCTCTTGAAATTGAGCT
57780 5 57781 TATTTTACATAATGTGTTTAATTATACACCTGAGTTAATATAAGACCTATAAGATGTATT
57840
57841 CTTTCCTGTGTAATGCGTCTACCACAGCATACTTACATGCAGCCATACAGGGCAAGAACA
57900
57901 TACTGCTTTTGTTTTGTTTGTTCAGGGTAGAGTGAAACACCACAGAAAGAATCCTGTGTT 10 57960
57961 GATCTTTGGTGCCTTCAACCTTCTTAAACCTGTGTTCTTTGCCACTCTTGGTGTTTACTT
58020
58021 CTTTTCTAAGAAGAAAATTTGTTAATTATGAAGAAGGCAGTTGACATTCAGCAGTTGACT
58080 15 58081 TTCTCAGCACAGTTACCTGGTACTGACTTTGGAGGAAATTCAACCAAAGATGATTAATTC
58140
58141 AGAAAGTGTAACTATAGTCCCAAAGCAGAAACACCTCTGCAGAGATAGGTTGTATGTATG
58200
58201 TTTGTGTAAGTGTGCACACGTAGATGTAGAGCTGTGTACCCACATGAGCGTTCACACACA 20 58260
58261 GAAGAATAAGAGAAGGACCACTTGTTGGGGGTCTGTACCATTCAGGAGTAATTTTCCTGT
58320
58321 AGGATGATAGAGTACCTTCAGGAGCCCAGGACTGTGTGCTCCTACCACATCTACTTCCTG
58380 25 58381 GGCTTGAGAAAGACAATGAAGCCCTGCGGTATACTCCTCTTTATGTGAGCCCTTGCCTCA
58440
58441 GAAGACTGTAGCCTGGGAGTATGAAGGCGTTTGGGCACTAGAAAGCAGAGCTGCTTCCTG
58500
58501 TCGTCCTACTTCCAGGTTTGCCCAAAGAAAGTCCCTTTGGTTACTTCATCCCAGTTCCAA 30 58560
58561 ACAGCTCACCCCCACTTTGCTCTCATCATCGTTCTTTCATACTGCTGTTTTTGCTGCAAA
58620
58621 GAGGAAAGGACTGAGAAAGAAATAGCTAATTGGGGCAGGGGGAAATTTGAGAGAAAATAA
58680 35 58681 ATGGATTTAGGAAGGCTAAAATGTTCAGGAAAATTTAAAAATTTTTCTTTTTTAAACTTT
58740
58741 TAAACTTTTAGATTTTTAAACGTTTTACCACCTACCCCTTCTCCCTTAACTTCAGGTAGT
58800
58801 CTCTTTAAAAAAAAATTTTTTTTTTTTTTGAGACAGAGTCTCGCTCTGTCTCCCAGGCTG 40 58860
58861 GAGTGTAGTGGCGCCATCTCAGCTCACTGCAGGCGCCGCCTTCCGGGTTCACGCCATTCT
58920
58921 CCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGCCTGCCACAACACCCGGCTAATT
58980 45 58981 TTTTGTATTTTTAATAGAGACGGGGTTTCACCGTGTTAGCCAGGATGATCTCGATCTCCT
59040
59041 GACCTCGTGATTCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACC
59100
59101 GCGCCTGGCCAAAAATTTTTAATTTTAATTTTGAATGGGTAATAAAGTCCTATGATTTGA 50 59160
59161 AAACCAGAGATTATCAAGAGATTTATGGTAAATGGTGTCCCCCACCCATGTCCTCCATCT
59220
59221 GTTCAGTTCCTCCTCTCCCCAAATAAGTAAACACCTTTAGTTTTTTGTGTCCTTCAACCT
59280 55 59281 TCTTTATTCCCTTCCAAGTAAATATAGAGTTTTATTCCCAATCCTACCCCTCTTCACACA
59340
59341 AAAACTTGTTCTGCATCCTGCTTATTTCATTGAGCACGGTATTCTGAAGATCTTTTAATA
59400 59401 TCAGTTTGTAGAGAGCTTTCAGTTAGCCTCTTAATTTACCTTTTCCTCAACAGATCAAAA
59460
59461 CTGCATTTTTGTTAGTCATTTACACTTAAGTATAACGGCATTTCGGTGCCTTTGTAGCTG
59520 59521 AAAGAACTGCTGAAGCAGAAAGTTGACTGTGTGTCTGGTGATGCAGATGCTTGCTATCTG
59580
59581 AAGACCTTAAGTCTCCTTCACTTAGCTAAGAAAATGCTGTCTGGTTTCTTGCCTCTTTTA
59640
59641 TTTCTCTTTTTTCTGCCCTTCTCTCTTCTAACCTCCTTTGTTCTTTTGGCTTCTAAATGC 59700
59701 TAATTCTACTGTTCTTATAGCTAGGTTTTCTCTTTCCCACACCTTTCTGATAACCTAATA
59760
59761 TCCTCAAGTGGAGAGTCTGGGGGCATGGGAAAGAAAAGAGGGCGCTTTAGCCCTAGACCA
59820 59821 CTATGGTAGAAGCAGAGGAAGTTCAGGTGTAAGGACCCTAAAACTTTTGGACCTCAGTAA
59880
59881 GGACATAGACATTGAGAATTAAATTATATATTATTCTCATAATTCTTAGAATTTTGGACT
59940
59941 TATTTTTATGCCCTTCATCATATATTACCACTTGAGATCTAAGGACATGTTTTGGCAGCT 60000
60001 GATTTGCTTAGATATGGAAAGGTCTAGAACTCTTCTGTTCTGACAACACCTAGGTCTATC
60060
60061 TCTGGCATGTTTCTTTAATATCTGAATGATCTCTAATTTAGTTTGTGCAGATGTTATCCT
60120 60121 GGACATCAAAGATTTGCAAGGAAAACAGCCGGGGTAAGTTTACTGCCATGTTTTCCTAAA
60180
60181 GGCTTTATATAAAATCACTATCCTCCAGTGGCATTTGGAAAAGAAAAGGTATTCCCCATT
60240
60241 CATTACACATTCACCAGAGTGGCCAAAATGAAΆCAGΆCACCTAATACCAAGTCGAATTGT 60300
60301 TGGCAAGAATGTAGAGTAGTTGGACCTTTCATTCACTGGGGGTGGAGGTAGAAATTGGTA 60360
60361 TAACCACTATGGΆAAACTGTTCAGCAATATCTACTAΆAATTAAΆCATATGCCTATGACTC
60420 60421 AACAATTCGAATCACAACAGAAAAΆTGTGGAΆGAATTCTCTTAGCAGCACTATTTTAGTA
60480
60481 GGTAAAACAAACCTAAGTGTTCATCAGCAGTAGAAAGGΆTAΆAΆGAΆTTATGATATATTC
60540
60541 ACACAGTGGAATCCTATACAGCAAATAAGCATGAACAAACTACATGTACACACAACTTGG 60600
60601 AGAGGATCTCACAAATGTACTGTAAAACAAAAGAAGCCAGACACAAGAAAGGGTACTTAC
60660
60661 TGTAGAATTCCGTTTAGATGAAGTTCAAAATTAGACAAAATTTATCTGTGATGTTAGAAG
60720 60721 TCAGGATAGCAGTTTCCTTGGCGGGGCAAGTTAGGAGGGAGTCCCTAGAATACTCGTAAT
60780
60781 GTACTTGATCTGGATGCTAGTTACACAGTAATCTTAACTAATGATGGGAAATGTCTGCCT
60840
60841 TCTTTGGGCATGTGGATAAAGAGGCATCATTGCAGACTAGCTGCTTGGCTGTAGTATGTG 60900
60901 TAΆCACTGGGATGTTGTGCCTGΆGACACGACAΆGCTACCTCCTGTTCTGGTTAGGCACTC
60960
60961 CACCCCACACACCCTGTACACATACCTGAGGGACCTGACTGGGTTATAACTTAACTTTTT 61020 61021 TTTTTTTTTTTGAGACAGAGTTTCACTCTTGTTGCCCAGGCAGGAATGCAATGGCACGGT 61080
61081 CTTGGCTGACCGCAGCCTCCGCCTCCTGGGTTCAAGCAATTCTCGTGCCTCAGCCTCCCA 61140 61141 AGTAGCTGGGATTACAGGCATGCGCCACCATGCCCGGCTAATTTTATATTTTTAGTAGAG
61200
61201 ACGGGGTTTCTCCATGTTGGTGAGGCTGGTCTTGAATTCCTGACCTCAGGTGATCCACCC
61260 61261 GCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCACTTGGCCACAACTT
61320
61321 ACCTTTTAATTTGCTTTTCTTCCTATTCCTAGAGGATGCCTTGTTTTGCAAGAGCTTGAT
61380
61381 GAACTTGCTCTTCAGCCTGCATGTTTCGTATAAGAGTCCTGTCATTCTGCTGCGTGACTT 61440
61441 GTCCCAGGATATCCACGGGCATCTGGGAGATATAGACCAGGTACTATAATGAGCCTTCAG
61500
61501 TACAATACCCTGTGTGGGGATGGGGGTCAAGGGAACAACCTTACTGTCATTAGGTCTCAC
61560 61561 CTCTCTTCTTTTCCCCAGGATGTAGAGGTGGAGAAAACAAACCACTTTGCAATAGTGAAT
61620
61621 TTGAGAACGGCTGCCCCCACTGTCTGTGTAAGTGTTGTACCTGAGCCATGGGGAATAGCT
61680
61681 TTGTCATTCTTTCCATTCTACTCCATGTGAAGTGACTTGTGTCCTATAGCGGCTTGTGTC 61740
61741 CTGAGGCCTGTAACCCACCTGTAGGTGGCCAGGTGACCACAGTTATTATATTACCCCCAC
61800
61801 AGCTGTGTGTAGTGAATCACACCAGGCACTCTTTTCTTTCAGTTACTTGTTCTGAGTCAG
61860 61861 GCCGAGAAGGTTCTAGAAGAAGTGGACTGGCTAATCACCAAGCTTAAGGGACAAGTGAGC
61920
61921 CAAGAAACCTTATCAGGTAAGATAAGTTCAACTGGGATTCCAGGAATTGACATGAGCAAG
61980
61981 GTCAAAATTCATATTGGGTCGGTGCATAAAAATGGAGCCCCTGAGCTAAATTTCTTATTT 62040
62041 GCCTTTAAGCTAGATTTTTTCCTATGTGATGAAAGAAGTAGAAGATCATATGTCTTATCA
62100
62101 CAGCACGATTAATTCACTCTGCATATTGAATGTTCGTTTTTCCATAAAGACTTTCTAGTT
62160 62161 AGTAGTAATCAATTTCTAAATCTCCTTTACTCTTAATTAGAAAACGAAGTTGGGTTTGAA
62220
62221 TGTGCCAATTTTATTTCCCTTTAGAAGAGGCCTCTTCTCAGGCAACCCTACCAAATCAGC
62280
62281 CTGTTGAGAAAGCTATCATCATGCAACTGGGAACTCTGCTTACATTTTTCCACGAGCTGG 62340
62341 TGCAGACAGCTCTGCCATCAGGCAGCTGTGTGGACACCTTGTTAAAGGACTTGTGCAAAA
62400
62401 TGTACACCACACTTACAGCCCTTGTCAGATATGTGAGTATTTGAGACAAGCAGATTCGCC
62460 62461 CCACCATTCTACCCCAGTGAGCCAGGAGATGAGGATGGGGCAGCAGCCCACTGCTGCAGA
62520
62521 ATGCCCCTAAACAAGAGAGCATTTGCCTCCATCTTGGCAGGTCATGGTTTCATTTTAGTT
62580
62581 TGGTCAGTAGGTGGCAGGCATCTCCACAGGCCAGGGAAAAACAGTTTATAATTCTAATCT 62640
62641 GCTTTTGGGCCTGTCACGGTGGTTCATGCCTGTAATCCCAGCACTTTGGTAGGCTGAGAC
62700
62701 GGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGT
62760 62761 CTCTACTAAAAATACAAAAAGTAGCTGGGCGTGGTGGTGGGCACCTGTAATCCCAGCTAC
62820
62821 TCAGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCTGA
62880 62881 GATTGTGCCACTGTACTCCAGCGTTGGCAATAGAGTGAGACTCCATCTCAAAAATTAAAA
62940
62941 AAATAAAGTAAAAATCTGCTTTTGGAGGCCCTTAATTCTTTGGCATGTATGTGGCACCTG
63000 63001 ATTGAGAATGAATGCCTCTTTTAAATACCTTCTAAGGTTTAATCTAAACTATAACTATCC
63060
63061 TAGAATTAAATCTGGGCCCATAATGCATAGAAATTATACCATTTCTAACCAGTCTGGACA
63120
63121 CTTAAAGAGATGTTTATTCCTTTTTTCATTCCTTTAACATGTAGGTGTTAAATGCCTTAT 63180
63181 AGATCAAATACTAAGGTGGGGAAGAAAATTATTTTTTATAAAAATACAAGGCATACCCTG
63240
63241 CCCTTACTGTTTATGTTCCTAGCAATGATCCATATTAAATACTTAGAAAGGCACAGATAA
63300 63301 TCCAAGAAAGATGTGGACCACCCCGCATCACAGCAGTGTGGCTCTCTCAGAATGTGTAGC
63360
63361 TCTAGCTACATGTGGCTAAGCTGCTGTAGTGGAAATACTGAGAGCCTCTTCTCTTTATTG
63420
63421 GCATCTTTAAAAGGAAAAACAGCAAAGTTGTTGGTTTTTTACATGCAGGGACTACCAGCC 63480
63481 TGAGGAATTTTTAAAGAAATGAGCAAATCAGAAACAAACCCTTCATTACTTATTGTCTGG
63540
63541 GAAGCTTAGGAGCTTTGGAGGAGAGGAATAAGGAAGCTTGTGTCTTGGCTTCTCTGTGAA
63600 63601 TTTTGTTTTTCCTCTTCAGTCAGAATGATGAGTCACACTCCATAGGCTCACTGCAGCAGT
63660
63661 CACTTGTAGTTTCATAGGACAGTCTACTAAATCTAGGAATCTTTTTTTATTAGTATCTCC
63720
63721 AGGTGTGTCAGAGCTCCGGAGGAATTCCAAAAAATATGGAAAAGCTGGTGAGTTGAGAAT 63780
63781 GCCTTTCCTAGGAATGGGGGAAGCACTTTTACTGCTGGTTACATTGGTTTCCTTCTCCCT
63840
63841 TGTTGTGCAGGTGAAGCTGTCTGGTTCTCATCTGACCCCCCTGTGTTATTCTTTCATTTC
63900 63901 TTACGTACAGGTAAGAGATTCAGAGGCAGTACCCAATAGGTCTTCAAGAAAGGATTTCTT
63960
63961 ACATGCCCAGGGGACTATTGATCACCTGAACTGAGCATATATAAACTTTTTTCCCTGCTT
64020
64021 ACCACAAGCTGGAGGCACCCATCAGAGACCAAGCCAAGGCTTGAGGGCTTTGCAGCAAGG 64080
64081 ACATCTTTATGTAAAGAAAACTGTTTCACTTAATTTGGAGAAAGGAAGCATATATGTTTG
64140
64141 CATTTGGAGCAAGGAAGGAACAAGCATGCTCAGGCTCAAGGACTTGGTTTATTCCTGGGT
64200 64201 GACTGAAAGTCCATGCCATGAGGCATCCTCTGGGAATGTGAGCAGAGTAGCAGCAAGCAC
64260
64261 ATGAAGAAGGGTTGTGATGAGACGGCAGTGCAGTGAGGGCACTTTCAGGGAAGTGGAAGG
64320
64321 ACGTGGCTTTGTAAGTGTCATTTGGTCCTAAATACCATCAGATTCCTGCAGTACTTGAAT 64380
64381 CTCCTTTACTGTTTGCTTAAACCAGTTTTTTAACCTCACCACTATTGACATGTTGCGCTA
64440
64441 GATAATTCTTTGTTGTGGGACCTGTTCTGTGCATTTTGGGATGTTGAGTAGCATCCCTGG
64500 64501 CCTCCACCTACCAGATGCCAGTAGCAGCCCCCTAGTTTTAACAGCCAAAAATGTCTCCAG
64560
64561 AAATTGCCAGTTGTCCTTAAGGGACAGAATCACCCCTCGTTGGAAAGAGGAAGAAACGAG
64620 64621 AGATCTACTGTCTCCTAAGGCCACTTAGTCATGCAGTAAATGTATCACAGGGCTGTTACT 64680
64681 GATCTTTGAGGAATCAAAGAGAATGGGTCCACTAAGTGTCAATCTCAGCCAAGATTCTAG 64740 64741 AACCAATTATTAAAGCAATGGATCGTGACCACTTTGGTAGTGATGCTTCACTTGTTTTCT 64800
64801 GCCTCTGCATCACTTACAGGCACAATATCATTCTATCAGTAACTTGCCTCATTATGTGTA 64860
64861 TTCAGGGTGCCTCTTCCCCTCCCTTTAAGAATCAGCAATCAGCTGGGCACAGTGGCTCAT 64920
64921 GCCTGTAATTGCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACCTGAGGTCAGGACTTC 64980
64981 AAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACAAΆAAATACAAAAΆΆTTAGCT
65040 65041 GAGCATGCTGGCGGGCACCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGC 65100
65101 CTGAACCTGGAGGGCGGAGGTTGCAGTGAGCAAAGATCGCACTGTTGTGCTCCAGCCTAG 65160
65161 CAACAAGAGCGAAACTCCGTCTCAAAAAAΆAAAΆAΆATAAAGΆΆTCAGCCATCAAGTGGG 65220
65221 CTGTCATCTGGGTTTAGCTGAAGGAGTTCTTAGTAATGGGCTGATAGTTGAGACTCTCTG
65280
65281 TCACCTTGCCTTTGTATCAGTTTTGTGATCTGGGTCAGGAATGCATCATCCATTTTCTAT
65340 653-41 ATCCAGCCATCCAGCCAGTAGTCAACTGTCATAAAGCTATTACTTCTGGTCCTCTCCTTT
65400
65401 TΆTCTCACCCAΆATGCTTGCΆGGAΆTGCTTTCTCAΆACCTCATGCTTGTAΆATTTTCATG
65460
65461 TGGGTGCCATTCGTCAAACAAATCTGTTGTCTATATATAGGATATATATCTGTCCATTCC 65520
65521 CATATTTGGGTTTTGAGTTTCCTCATCTCCAAGTCTTAATGATACCTATAAAGACACATT
65580
65581 TCACAAAATATGCTATATAGACTGAGACAGTCCTCAAAAAAAAAAGGAATTCAGGGAGAG
65640 65641 ATGCTCATACCGTATATCTCTCACCTTAGAGATTCGTGGTGTCCATTTGCATATTAAAGG
65700
65701 TGCTGAGACCAGTCATGGTGGTTAATGGAGGCTGAGGTAAGAAGATCACTTGAGGCCAGG
65760
65761 AGTTCAAGACCAGCCTGGGCAACATAGTGAGΆCCCCGTCTCTACAAAAAΆTTTAAAΆTTT 65820
65821 AAGCCAGGTGTTTGCCTATAGTCCCAGTTACTTGGGAGGCTGAGGCAGGAAGATCACTTG 65880
65881 AGCCTAGGACTTGAAGGCTGCAGTGAGCCATGATCATGCCACTGTACTCCAAGGCAACAG 65940 65941 CGTGAGACCCTGTCTCAΆGAAAAATAΆΆAΆCAGTGCTGAGAGTTCCAACAGTATGTTCAT
66000
66001 TAGTAGTTTTCAGACCTATTCAAGAACATTTTTAAAAAAATAACAAATGTTACTATTTGG
66060
66061 CAGAATAATGTTCCATAGAGTACAGTTTGGGAAATACTGCTGTTAAATGCTATTTACTAC 66120
66121 CCTTGTTATGATTCAAAAGTCACATTGTCTAATAATTTTATTAGAACAGGTAATGCTTAG
66180
66181 AGAACCTCTACCTTGTGTCTGATGTGTTAAGCTCTTTTCATACATCATCTCATTCATCCT
66240 66241 AGCTATAGGTTATGATTAGTAGTTATCCCCATATGCATGATGAGAAAGGTTAATCAGAAT
66300
66301 GCCCAAGAACAGACCATGAGTAAAAGGCAGATCTGAGACTTGAACCCAGCTAGTTAGACT
66360 66361 CGATAGCAGGAATTGGCACACTTTTTCTGTAΆAGGGCCAGATAGTAAATGTGGGTCATAC
66420
66421 AGTCTCTATCACACCTACTCAACTCTACTATTAGAACATAAAAGCAGCCATAGATAACTT
66480 66481 ACAAATAAACGAGCATGGCTATGTTCCAATGAAATTTTCTTATCAAAAACAGGCAGTGGG
66540
66541 CCAGATTTATACTATGGGCTATAGTCAGTCAACCATTGCTCTAGAGTCATACCTGGTACT
66600
66601 TGTTGACATGTAAAATGTTGGAAGGTTTTGATTTTCGTGTTTCTGACCCCATTTTCAAGC 66660
66661 ATTTTCTTCTGGGAATCACTACTACTTCCTAGACTGCTATTATTTTCCCCTCATTACACA
66720
66721 GTAATCAGTTTCATTTCCTCCCTAGGCATTTTCCTCCTCCTCCATCCATATTTGACTTAA
66780 66781 AGCCTTACTGACAAGTCAGCTGATCTGCAGGCAAACATTTTACATTTTTCTGTTTTTGTG
66840
66841 AGATGTATTTAATGAGTGCCCCCTGGGCAAGAGCCCATGCATGGTTCCATTAACTCCAGC
66900
66901 TCTTAACTAGAAATGGGGATTGCATTTTCCACACCTCTCAGTGAACTGTTAATTCTCTTG 66960
66961 TAGCCCCCTCTTCATTTCCCCAGTTCCTTAGATCTCAATGGGAAGAAAGCAACGAAAACC
67020
67021 ATTGCTGCAACTCTTAGCATCCTGCCCAGAACTGTATACCTTTAAAAGATGCTTCTCAAG
67080 67081 GGTCGGACATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGAGAA
67140
67141 TCACAΆGGTCTGGAGTTTGAGACCAGCCTGGCCAACATGGTGAΆΆTCCCGTCTCAΆCTAA
67200
67201 AGATACAAAAAATAGCAGGGCACGGTGGCTCACACCTGTAATCTCAGCATTTTGGGAGGC 67260
67261 TGAGGCAGGCGGATCACAAGGTCAGGAGTTCGAAACTAGCCCGGCCAACATGGTGAAACC
67320
67321 CCATTTCTACTAAAAAAAATACAAAAATTAGCTGGGCATGGTGGCAGGCGCCTGTAATCC
67380 67381 CAGCTACTCGGGAGGCTGAGGCAGGAGAATTGCTTGAACCCGGGAGGTGGAGGTTGCAGT
67440
67441 GAGATGAGATCACACCACTGCACTCCAGCCTGGGCAACAGAGCATGACTCTGTCTCAAAA
67500
67501 AAAAAAATTAGCCGGGCATGGTAGTGCGTGCCTGTAATCCCAGCTACTCGGGAAGCTGAG 67560
67561 GCAGGAGAATCGCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCACCATTG
67620
67621 TACTCCAGCCTGGGCGACAGAGTGAAACTCCACCTCAAAAAAAGATGCTTCTCTTCTGGC
67680 67681 TCTAATTTTAGTCCTGCCCGCCCGGATCAGTTGGAATGGGCAGGGAACAGGGTTGATCTA
67740
67741 AGGAGTTCCAACAGGGCCCCATCTTGGACACAACCTCTGGGAAGATGGTTCACTTCCCAC
67800
67801 TTGGTCAGTGAGGTCGATCCGTGACTGCTTCCTTGCCCTCTTCTGCTGCCTTCACCCTCT 67860
67861 TCCATGCTCTACCCTGCCTTCCAGGGCCAAAAACAGATTACTGCATACCAGCCCCTCTGG
67920
67921 AATGTCTGCAGTTCCTTATTTTCCAGAACGTGGCATGTGGAACAAGTCTCCTGTTTCTCT
67980 67981 CATGGCTCCAGTTGCAGAGCCTCTCTGTATTTTCAGGTCTGTTTCTTTATTCTGTTGCCC
68040
68041 TCGTGGAGCATGGTATGTTCCCTTCCTAAGAAGGTTTAGAACTCCCCTTGAGGTAAAAAG
68100 68101 CTGCCTACATTTCTGTACCGTACCTTACATTTGGGTGGTTTTTCTCCCCAGTCTCTCCTG
68160
68161 ACTCAAGTCTTGATTTTCTTTTGCTTTATCAGAATCTTACACTTTTTGGTTCCTTTTATT
68220 68221 AGTTATTCATCCCTCTCCAGGAGCTCTTTATTACCCAATAATTTACAACACAGGGAAGTG
68280
68281 TTCTGTGACCCTTTTAACCCTTCTTGAGCATGATAACCCATTGCACATAAAATATATCTG
68340
68341 GTTTTGGCTTTGCTGAGTAACGAAAATAAAATATATCTGGTGATTGCCTGTAAGTGGGAA 68400
68401 GACTGCAGGGCCCTGCAGCAGCCTCCTCAGCTTCCTCTCCTTTATGGGATCCTTCTAGCC
68460
68461 CACTGGCTAAAATAGAAATAGAAATGAATATTCCTGCTACCACCTTGACAGTCCCCATTT
68520 68521 TAACCATTCTTTAGTACCTCACCAGCCCCTTGGCTGACCCACTGCAGTAATAGTCCTGCC
68580
68581 TTCAACTTCCATGTGCCAGCTCTAAGAACAACAGATTGTAAACCTCTCAACAACTAAAAA
68640
68641 AGAAAAAATATCTGAGGATTACAAAGCATCCATTTTTTCCCTATCTTCTAACATCTGTTG 68700
68701 CACAGATAGTCCTGTTTACTCCAGACTTGGTCCTCATACCCTGTGTAATTACCTTCTAAG
68760
68761 AAAATTGCCACTAGTTGGTGGGCATGGTGGCTTAGGCCTGTAATCCCAGCACTTTGGGAG 68820 68821 GCTGAGGCCGGCAGATCACCTGAGGCCAGGAGTTCGAGACCAGCCTGGCCAACATGGCAA 68880
68881 AACACCGTCTCTACTAAAAATACAAAAATTAGCTGAGTGTGGTGGCACGTGCCTGTAGTC 68940
68941 CCAGCTACTCGGGAGGCTGAGGCACAAGAATCACTTAACTCGGGGCGCAGAGGTTACAGT 69000
69001 GGGTCGACATCACGCCACTGCACACCAGCCTGGGTGACAGCAAΆGCTCTGTCTTAAAAΆΆ
69060
69061 AAAAAAAAAAAAATTAGCACTAGCATGCTAGCTCCACAGAAAAATCATCAGGAATAAGAG
69120 69121 AATGTGTTTCTATTTCTTTAGAATAAGAGTAAGAGCCTGAACTATACGGGAGAGAAAAAG
69180
69181 GAGAAACCTGCTGCCGTTGCCAGAGCCATGGTAAGCTGCTGACACTGACCGTTAAAATAT
69240
69241 GCTTGTTGGTGAACCCGAAAACATGAAGCGGAAGAAGCCAGTGACAAAAAGACCACGTGT 69300
69301 TGTATGATTCCATTTTCATGAAGTGCCCAGAATAAATCATCTAAAAAGGCAAACTAGATT
69360
69361 AGTGGTAGCGTAGAGCTAGGTGGGTTGGAAGATGGGGAGACTGGGGTGACAGCTAAAAAC
69420 69421 GGTATGGAATTTCTTTTGGGGGTGATGAAAATGTTTTAGAATTGACTGTGATGATGGTTG
69480
69481 CACAACTCTGCAΆATACTGAΆAAAΆAAGTACATTGTGAGTGAΆTTGTATGGTATATGAAT
69540
69541 TACAGCTCTATCAAGCTGTTAGAAAAAATTGTGTGTATTATATACATGGCTGCTTCTCAA 69600
69601 CTCAGGGATTTTATGATCAGATGGAGCATCTTATTTTTCCTCTGAACCAAAAACATGTTT
69660
69661 TATTCACGAAGCACCAGAAAATCTTGAGTTGAAATGGAAATAGTAAAATAACTTACGATA
69720 69721 CTCAATTGGGAGAAATTATTTTTAGGTAAAGTTGGTGAATGCAAAAGGTGCTCCCTAAAA
69780
69781 GATGTGTAAGAGTCAGCGGGGGTACAGGAAAGGAGGCACTTAGTACATTGCTGGCAAAGG
69840 69841 TGAAAATTAGTACAGCCTCTCCAGAGGCTTAGCAATGACTACTGAATCCCATTCTGATGT
69900
69901 AGCAGTTTCACTTTTAGGATATACAGGCCTGTGTACAGGATGGTCCTCACAACATTATTT
69960 5 69961 ATAAAAGTGAAATATTAGAAACAAAGATATCCATTAATAGAGGACTGGCTAAATAGGTTA
70020
70021 TAATATATTTATACTGGAGAGATATGAAAAAAATAAACATCTAAATGTTCAGCTCTCTGG
70080
70081 AATTATCTCCAAGATAATGTTAAAAAAAATTTGTACAGTATCCTCATGGGTTAAAAATAC 10 70140
70141 ACACACACACACACACACACACACGTAGGACCTACAAATTACAATTCACGTTAGGGGGAA
70200
70201 AGATATATAATCACACACACACACACACACACACACACACAAATGTAGGACCTACAAATT
70260 15 70261 ACAGTTCACGTTAGGGGGAAAGATATATAATCACAGACACACACACACACACACAAATGT
70320
70321 AGGACCTACAAATTACAATTCACGTTAGGAGGAAAGACACACACACAAAAACGTAGGACC
70380
70381 ACACACAAAAATGTAGGACCTTTCGTTAGGGGGAAAGACACACACACACACACGTAGAAC 20 70440
70441 CTACAAΆTTACAΆTTCACGTTAGGGGGAAΆGATATΆTAATCCCAGCAGTGAAAATTCATA
70500
70501 CCCAGACCAGAACAAGGAAATAGAGCTAGGGCCAAAATAGGCTTAAGAATTTCAAGTCAG 70560
25 70561 AAAAGCAACTAAATTTCTACAAGTGATCCTGCCCTCCTCAGCCATTTTCTAGATAACAAC 70620
70621 AAATΆCTGGAATTATAΆATGAΆATGGATCAGTGCAATTATCTCTACTGGCATTTGGGTCC
70680
70681 TTCCAGATTGAACTGCCAAAAATTTTAGATTACTGGTATACAACTGCATTTGATTGGGAG 30 70740
70741 ACAGACTAGTTTTCCCCTAAAGCCATACAGTTTTGTAAGTGACAGCTTCAGAGGAAAACT 70800
70801 TCΆAΆAACCATTGAΆCCTGAAΆTTTAAGTCTTATGTTCTTTGCCCTTAGGCCAGAGTTCT
70860 35 70861 TCGGGA2y^CCi^GCCΑATCCeTΑA^
70920
70921 C^TCCACCTTTCTi^GiyiLGTCCaAGGTAAACATTCTCTTATTATGTGCTACCATTCCCAT
70980
70981 TTACCTTCTTGACAGATCTGGCAAACTGAAGCAGCACAACTACAATGGAGGAAAAGAGAC 40 71040
71041 TCTGGGCCATTTGTGTGTTTGCCATCCCCCCTCTCCCCCCCCCCCCCTTTTTTTTTTTGA
71100
71101 GACTGTGTCTCATTCTGTCACCCAGGCTGGAGTGCACATTCAAGTGATCCTCTGGCCTCA
71160 45 71161 GCCTCCAGAGTAGCTGGGACTACAGTCATATGCCATCATACCCCACTAGTTTTTTGGGTT
71220
71221 TGTTTTTGTAGAGATGGGGTCTCACTATGCTGCCCAGGCTGGTCTCAAACTCCTGGCCTG
71280
71281 AAGTGATCCTTCCACCTTGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCACAC 50 71340
71341 TCAGCCTCTTTGCTGTTCTTGATCTGATGACCTGAACCCCAGCATACAGAAGGAAGTGGG
71400
71401 TGCGTGCTTGCTTTAGGTAGAAATGGAAAGGTTTCTCAGAGGTGAACTAAAAATGGCTTA
71460 55 71461 AGCTGTTCTGGCAGGACCTATGAGTAGGGAGATGTCCCATGCTTACAATCTTGTCATAGG
71520
71521 TGΛΑCCTGATGCAGCACATGAAGCTCAGCACCTCACGAGACTTCAaGATCAAAGGAΑACA
71580 71581 TCCTAGACATGGTTCTTCGAGAGGATGGTGAAGATGAZkAATGSAGAGGTCAGTGCTGGCT
71640
71641 TCTGTCTGGAGCCCAGCCACTCTTCCTAGCTGGTTAGCAGCCTATCTGGGAGCAGTCACA
71700 5 71701 GATTAGTGGAAGGGCAACAGAATGGGAAAGGGCTAAAAGGTGATCAGGCAAAGATGAGAG
71760
71761 CAAAGGACTCTCAGAAGGGTTGTAAACTTTGGACCACACAAAATCCTATGAAGTTGCCCC
71820
71821 GACTTGTTTGATAAACACTTCCAGGAAGCAGGTGGTAACAAAACAATGTCCTGCTGTGGG 10 71880
71881 TCCTCTTCCTGTTAATCTTTTAAACTACTGGATGATGACCAGCTATAGCAGTCTGGCTCA
71940
71941 GAAACTAGTTTACCTCTCATGTCATGCCCTCATTCAAAGGCCACTCATTAGTTTGGGTTA
72000 15 72001 AGGCTTCTTCCTTCAATTCATGCCAATGTCTTGTCCTTTTCCCTTGTGGTTTGTTCCTCT
72060
72061 CCCTTTACTCTTAGCAAGTGACAGTACCGCATCCCCATCCCTGCACCACCTTTGAAACAG
72120
72121 AACCCAATGTTTCCTTACTTCTAGCACCTAAAATTTTCATCTTAGGTTTGTCTAATAAGT 20 72180
72181 AGCAAATCAGTAGCCCACTCCCATTTCAAAACTGGAAGTTTACATACAAGTGCCCTGGAT
72240
72241 TTCAGAATTTTGAACATGCATTCTTCAGATGATCACACTCCAGGCTCTAATGTACCTGGC
72300 25 72301 CCCATCCACTCTCTTTACCCACTTGGCAGCTGCACTCAGGAGAGTCATGTAGCATTTTGA
72360
72361 TGTCAATGGCTTCTTCTCTTGTCATTTTGTCCCATAAGTATCCTCAGTATAGCΔAAAGTC
72420
72421 CTAAAAGGAGGTGCCACTGTCTTATTACTCTACACTTTGGAGGACTCCTTCCTCTTCTTC 30 72480
72481 AACAACATAATTACCTCCTGTGAGTGGGAAAGTGGGGAAAGCATGACTAACAAAGGCTTT
72540
72541 GATGAGAAGATAGAGTCTTTTTTTTCCTTCTTTTTATTTCCACTGCCTTGGAGCAGGTTT
72600 35 72601 ATCACGTTAGAGCATTAATTCTTTCCCCTTCTAGGGCACTGCATCAGAGCATGGGGGACA
72660
72661 GAACAAAGAACCAGCCAAGAAGAAAAGGAAAAAATAAATGAAATGCCTGAGTTAATGTGA
72720
72721 ACTTTGGGGCTTCTGCTTCATTTTTACCCAACAAGCAACAATGCCCCTTGTCCTGTAGTC 40 72780
72781 CACACCGATGTTGGCATCTTGGTTCTGAACCCACTGAATTCAACTGCACCTTCAGTTAGA
72840
72841 AGGAATCTTCTTGGCAGGTCCTGCTACTGAAAAATGGCTGGCCTTAGGCAAGCCCTTTTG
72900 45 72901 CAAAAAGCACAGCTGAAAGCCTGAGTTTGGGAGCCTGCACCACCCCGATGAAGCTCCACG
72960
72961 GGAGCAAATACAGAGCCTCCAGGCAGTGCTATGGTCCAGGCTGGCTTCGTTTTTCCAAGG
73020
73021 AGCCTTTGGTGAGTTCAATTATCTGGTAAATATCCAGCGCTTCACCTGAAAGATAGTGCA 50 73080
73081 AATTGGTTAGGATGCCACCTCAAGAACTGTAACTGAGAGCTCAGAAGTGAGCAAAGGAGC
73140
73141 TTAATGCTAAGGTCAAAAGGAGAGTGAAAGGTTGAGAΆCAATTGCCACGAACGGTAΆTGT
73200
55 73201 TACATGTTAGGAGGGTCTGTTTTCTTTTTATATAAGTGTGTCTTAGATATATTTTAAATA 73260 73261 GAAAATAAGCTTTCTGATTTACTTGTTTGGTATTTAAAGCACAGTTTGTTTTTCTGTCAC
73320 73321 CTATAGAGTGCAAGAATGCACTCTATAGAATAi^ATTATCTTTA2\ACATTTCTTCTGTGGT 73380
73381 TGAAGTAGGGGACAGGTACAGGTAGAATATTTGAAGCTCTGCTGCCTTCATTTCTGAAAC 73440
5 73441 ATCATATCACATTCACTCTGGACACAGGGCACCTTATAAACTGAAATTAGCCTAGAATAT 73500
73501 AGCCTGAGTCAAGAGTGGATTCTCTGGGGCCCCAAGTTTCCTGTTCTCCAAGACCCACTT 73560
73561 TCTAGTCCA 10 73569
PCT/NL2008/000077 2007-03-07 2008-03-07 A gene mutated in fanconi anemia complementation group i WO2008108640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007000060 2007-03-07
NPPCT/NL2007/000060 2007-03-07

Publications (1)

Publication Number Publication Date
WO2008108640A1 true WO2008108640A1 (en) 2008-09-12

Family

ID=39539485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2008/000077 WO2008108640A1 (en) 2007-03-07 2008-03-07 A gene mutated in fanconi anemia complementation group i

Country Status (1)

Country Link
WO (1) WO2008108640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280258A1 (en) * 2007-03-12 2013-10-24 Miltenyi Biotec Gmbh Prognostic, diagnostic, and cancer therapeutic uses of fanci and fanci modulating agents

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681942A (en) * 1992-04-29 1997-10-28 Hsc Research & Development Limited Partnership Fanconi Anemia Type C gene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681942A (en) * 1992-04-29 1997-10-28 Hsc Research & Development Limited Partnership Fanconi Anemia Type C gene

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [online] 11 June 2002 (2002-06-11), "Homo sapiens chromosome 15, clone RP11-217B1, complete sequence.", XP002486637, retrieved from EBI accession no. EMBL:AC124068 Database accession no. AC124068 *
DATABASE EMBL [online] 13 August 2003 (2003-08-13), "Diagnostic and screening method.", XP002486636, retrieved from EBI accession no. EMBL:BD249887 Database accession no. BD249887 *
DORSMAN JOSEPHINE C ET AL: "Identification of the Fanconi anemia complementation group I gene, FANCI", CELLULAR ONCOLOGY, vol. 29, no. 3, 2007, pages 211 - 218, XP009102622, ISSN: 1570-5870 *
LEVITUS MARIEKE ET AL: "Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes", BLOOD, vol. 103, no. 7, 1 April 2004 (2004-04-01), pages 2498 - 2503, XP002486634, ISSN: 0006-4971 *
SIMS ASHLEY E ET AL: "FANCI is a second monoubiquitinated member of the Fanconi anemia pathway", NATURE STRUCTURAL & MOLECULAR BIOLOGY, vol. 14, no. 6, June 2007 (2007-06-01), pages 564 - 567, XP002486632, ISSN: 1545-9985 *
SMOGORZEWSKA AGATA ET AL: "Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair", CELL, vol. 129, no. 2, April 2007 (2007-04-01), pages 289 - 301, XP002486633, ISSN: 0092-8674 *
STRATHDEE C A ET AL: "CLONING OF CDNAS FOR FANCONI'S ANAEMIA BY FUNCTIONAL COMPLEMENTATION", NATURE (LONDON), vol. 356, no. 6372, 1992, pages 763 - 767, XP002486635, ISSN: 0028-0836 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280258A1 (en) * 2007-03-12 2013-10-24 Miltenyi Biotec Gmbh Prognostic, diagnostic, and cancer therapeutic uses of fanci and fanci modulating agents

Similar Documents

Publication Publication Date Title
Dorsman et al. Identification of the Fanconi anemia complementation group I gene, FANCI
McKie et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13)
Rodenhuis et al. The ras oncogenes in human lung cancer 1− 3
Harland et al. Germline mutations of the CDKN2 gene in UK melanoma families
Weston et al. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II
Tepel et al. Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11. 2 in primary glioblastoma
Gotoh et al. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy
Barragán et al. Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa
EP1824997B1 (en) Genetic alteration useful for the response prediction of malignant neoplasia to taxane-based medical treatment
WO2017035017A1 (en) Methods of treating autoimmune conditions in patients with genetic variations in dcr3 or in a dcr3 network gene
JP2011013231A5 (en) Vitamin K Epoxide Reductase Complex Subunit 1 Therapeutic Targets for VKORC1, Coumarin and its Derivatives
US20150275315A1 (en) Protein Tyrosine Phosphatase Mutations in Cancers
US20100285475A1 (en) Fused genes
Lesueur et al. Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma
Bonatti et al. RNA-based analysis of BRCA1 and BRCA2 gene alterations
Wilda et al. Level of MYC overexpression in pediatric Burkitt's lymphoma is strongly dependent on genomic breakpoint location within the MYC locus
Schollen et al. Comparative analysis of the phosphomannomutase genes PMM1, PMM2 and PMM2ψ: the sequence variation in the processed pseudogene is a reflection of the mutations found in the functional gene
Maier et al. Germline mutations of the MSR1 gene in prostate cancer families from Germany
Harland et al. Intronic sequence variants of the CDKN2A gene in melanoma pedigrees
Kaneko et al. Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8
WO2008108640A1 (en) A gene mutated in fanconi anemia complementation group i
Schoetz et al. [Chapter 7] Molecular biology studies of Ukrainian thyroid cancer after Chernobyl
EP1402070B1 (en) Methods for the diagnosis of cancer based on the obcam and ntm genes
Haider et al. Evaluation and molecular characterization of EHD1, a candidate gene for Bardet–Biedl syndrome 1 (BBS1)
Haeusler et al. Association of a CAV‐1 haplotype to familial aggressive prostate cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08723849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08723849

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载