WO2008106813A1 - Capteur constitué de matériaux organiques pour mesurer puis interpréter des grandeurs mécaniques - Google Patents
Capteur constitué de matériaux organiques pour mesurer puis interpréter des grandeurs mécaniques Download PDFInfo
- Publication number
- WO2008106813A1 WO2008106813A1 PCT/CH2008/000082 CH2008000082W WO2008106813A1 WO 2008106813 A1 WO2008106813 A1 WO 2008106813A1 CH 2008000082 W CH2008000082 W CH 2008000082W WO 2008106813 A1 WO2008106813 A1 WO 2008106813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- intrinsically conductive
- printing
- sensor
- strain gauge
- Prior art date
Links
- 239000011368 organic material Substances 0.000 title claims abstract description 8
- 238000011156 evaluation Methods 0.000 title claims description 4
- 238000005259 measurement Methods 0.000 title abstract description 4
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 21
- 230000003068 static effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 7
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 7
- 238000007639 printing Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 3
- 229960002796 polystyrene sulfonate Drugs 0.000 claims description 3
- 239000011970 polystyrene sulfonate Substances 0.000 claims description 3
- 238000007646 gravure printing Methods 0.000 claims description 2
- 238000007641 inkjet printing Methods 0.000 claims description 2
- 238000007645 offset printing Methods 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 34
- 230000001133 acceleration Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 2
- 229920005570 flexible polymer Polymers 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000012528 membrane Substances 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2287—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
- G01L1/2293—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B1/00—Measuring instruments characterised by the selection of material therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/12—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
- G01P15/123—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
Definitions
- the present invention relates to a sensor for measuring dynamic and static mechanical magnitudes according to the preamble of claim 1, to a method for its production and to a use according to claim 5.
- the present invention is concerned with the measurement of dynamic and static mechanical magnitudes.
- the signal supplied by the sensor can be transmitted by means of a measuring bridge (Wheatstone bridge) and an amplifier to a transmitting device for wireless reading by external reading devices, to a display or only to tapping contacts.
- All modules of the system shown in FIG. 1 are said to consist of organic materials due to the general advances in the field of organic electronics.
- FIG. 2 shows how accelerations can be measured with the aid of a bending beam 1 with seismic mass 2 at the end. Due to the inertia of the seismic mass, the beam 1 is deflected, which leads to strains in the edge, which can be measured by an intrinsically conductive polymer 3, which is structured meandering into a strain gauge (DMS).
- the further modules 4 shown in FIG. 1, which comprise a measuring bridge, an amplifier and a transmitting device, an optical display or electrodes, can be integrated on the substrate 5.
- a frame 6 can be provided which simplifies the handling of the overall system and can protect the bending beam against mechanical influences in the substrate plane.
- FIG. 3 shows a possibility for measuring pressures.
- a membrane 7 is deformed by pressure differences, which leads to strains on the membrane surface, which in turn can be measured with a DMS.
- the sensor effect is based in both cases on the piezoresistive effect in electrical conductors.
- the elongation changes the length and cross-sectional area and thus also the resistance.
- the piezoresistive effect is to be exploited in intrinsically conductive organic conductors.
- the document US Pat. No. 5,505,093 discloses a process with which, on the one hand, solvent-based intrinsically conductive polymers, such as polyaniline, can be structured into DMS.
- non-intrinsically conductive solvent-based polymers such as polystyrene are partially rendered conductive by ion implantation.
- the production of lateral structures in the micron range takes place by means of photoresist layers as masking layers and subsequent dry etching by means of reactive ion etching.
- the primary objective of this research is to produce these RFID tags for wholesalers to identify individual goods.
- RFID tags are achieved. However, no sensor elements are integrated yet.
- the present invention therefore has for its object to provide sensors for measuring mechanical magnitudes, which can be combined with elements for evaluation to form a new overall system.
- sensors In order to achieve a low-cost production, such materials and methods are to be used, which are compatible with the aforementioned radio tags.
- sensors having the features designated in claim 1.
- By embedding mechanical sensors for measuring dynamic or static mechanical magnitudes it is possible to check, for example, during shipment of packages with sensitive contents, whether inadmissible stresses such as falls or impacts have occurred on the transport path when the system is to measure accelerations according to claim 10.
- the system can also be used according to claim 10.
- FIG. 1 shows a block diagram of the basic mode of operation when the sensor is in a
- FIG. 4 process flow of production:
- FIG. 6 structuring of the substrate by laser or water cutting
- FIG. 8 Structuring of the Substrate by Punching
- FIG. 9 Membrane Production
- FIG. 10 Microstructuring of intrinsically conductive polymers by so-called lift-off
- FIG. 11 Microstructuring of intrinsically conductive polymers by inkjet printing
- FIG. 12 Microstructuring of Intrinsically Conductive Polymers by Imprinting
- FIG. 13 Microstructuring of Intrinsically Conductive Polymers by Printing Methods
- FIG. 14 Microstructuring of Intrinsically Conductive Polymers by Vapor Deposition
- the manufacture of the sensor is shown schematically in FIGS. 4 and 5.
- a first possibility consists in firstly structuring the substrate 5 and then first applying the organic functional layers 3 and 4; the second possibility is the reverse process order.
- the substrate 5 may consist of thermoplastic polyesters such as polyethylene terephthalate (PET) or polyimide (PI), for example, but is not limited thereto. However, when selecting the substrate material, it must be ensured that it has sufficient flexibility to be used for roll-to-roll production.
- FIG. 6 shows a first variant for structuring the substrate 5
- FIG. 7 shows a possible structuring of the substrate 5 when the substrate 5 consists of photolithographically structurable polymers such as the polyimide PI 2723 from HD Microsystems GmbH (Bad Homburg, Germany).
- the polymer is first applied to another auxiliary substrate 9. Methods for this purpose are distributing by means of a doctor blade or pipetting up and then allowing to run.
- the auxiliary substrate must be flexible so that it can also be used in printing presses in a roll-to-roll process.
- a mask 10 is required which covers the areas not to be exposed during the irradiation with UV light 11. Subsequently, it is developed with a developer solution, whereby the later form stops and other areas are removed.
- the auxiliary substrate 9 should be chosen so that it also dissolves in the developer and thus only the main substrate 5 stops.
- FIG. 8 shows the possibility that the mold 1, 2 is defined by punching out of the substrate 5 with the aid of a correspondingly shaped tool 12. In order to allow roll-to-roll production, material which later does not belong to the substrate 5 is punched out.
- Figure 9 shows a roll-to-roll fabrication compatible method of making a membrane.
- a heated stamp 13 is pressed into the flexible thermoplastic substrate 5 so far that the softened polymer is partially displaced until only a thin layer remains and thus creates a membrane.
- the previous steps involved the structuring of the substrate 5.
- the structuring of the sensitive material 3 will be described in the following steps.
- the intrinsically conductive and in aqueous dispersion present poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT / PSS) or other intrinsically conductive polymers can be used.
- FIG. 10 shows a structuring option if the intrinsically conductive polymer 3 and the substrate 5 can not be dissolved in organic solvents. This is the case, for example, with PEDOT / PSS.
- the method used is in the field of In the process, a photoresist layer 14 is first photolithographically patterned on the substrate and subsequently the intrinsically conductive polymer 3 is deposited by spin-coating, spray coating or pattering, after drying the layer either in air or by heat As with a hot plate or a hair dryer, the layer composite is immersed in organic solvent, whereby the photoresist areas 14 and other layers located thereon are dissolved in.
- the said method was presented in [3].
- Figure 11 shows another possibility.
- the intrinsically conductive polymer 3 can also be deposited as defined by an ink jet printer 15. It is a cost effective method because complicated photolithography steps can be dispensed with.
- FIG. 12 shows another cost-effective way of depositing.
- a structured stamp 16 for example of polydimethylsiloxane (PDMS)
- PDMS polydimethylsiloxane
- Figure 13 shows a process which is very suitable for roll-to-roll production.
- the structures are printed on the substrate 5 by, for example, a cylinder 17 using standard printing methods such as flexographic printing, offset printing, gravure printing or screen printing.
- Wireless tags without sensor function produced by this method will be launched in the near future by PoIyIC (Fürth, Germany).
- FIG. 14 shows a structuring possibility for organic substances whose molecules consist only of short chains and can thus be vaporized.
- a shadow mask 18 areas of the substrate 5 to which no material is to be vapor-deposited are covered.
- Another possible structuring of the intrinsically conductive polymer 3 results when the substrate material 5 is transparent to Nd-YAG laser.
- [5] it is described how structures made of PEDOT / PSS can be produced by Nd. ⁇ AG laser cutting.
- the previous embodiments have shown the variant of the process sequence shown in FIG.
- the other variant in FIG. 5 is based on first applying one of the possibilities shown in FIGS. 10-14 for structuring the intrinsically conductive polymer 3 and then, in a second step, one of the possibilities for structuring the substrate shown in FIGS 5th
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
Abstract
L'invention concerne un capteur qui est constitué de matériaux organiques et peut être utilisé pour mesurer des grandeurs mécaniques statiques et dynamiques. Les accélérations sont mesurées à l'aide d'une tige flexible (1) pourvue d'une masse sismique (2) à l'extrémité, la tige et la masse étant constituées d'un polymère flexible. L'inertie de la masse sismique fait dévier la tige, ce qui produit dans le bord de la tige flexible (1) des extensions qui peuvent être mesurées à l'aide d'un polymère intrinsèquement conducteur (3) qui est structuré en une jauge extensométrique. Les autres modules (4), qui comprennent un pont de mesure, un circuit amplificateur ainsi qu'un organe émetteur, un affichage optique ou des électrodes, sont intégrés sur le substrat (5). Un cadre (6) peut être en outre prévu, qui simplifie la manipulation de l'ensemble du système et peut protéger la tige flexible d'effets latéraux. Le substrat (5) et le cadre (6) sont constitués du même polymère flexible que la tige flexible (1) et la masse sismique (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH337/07 | 2007-03-02 | ||
CH3372007 | 2007-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008106813A1 true WO2008106813A1 (fr) | 2008-09-12 |
Family
ID=39522208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH2008/000082 WO2008106813A1 (fr) | 2007-03-02 | 2008-02-29 | Capteur constitué de matériaux organiques pour mesurer puis interpréter des grandeurs mécaniques |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008106813A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009155367A3 (fr) * | 2008-06-17 | 2010-02-25 | Lumimove, Inc., D/B/A Crosslink | Capteurs de contrôle d'état des systèmes compatibles et sans fil pour structures composites |
AT511330A4 (de) * | 2011-06-03 | 2012-11-15 | Piezocryst Advanced Sensorics | Sensor für die messung von druck und/oder kraft |
CN109238438A (zh) * | 2018-09-13 | 2019-01-18 | 太原理工大学 | 一种基于纳米材料的柔性薄膜声矢量传感器 |
CN111551269A (zh) * | 2020-05-11 | 2020-08-18 | 浙江大学 | 一种基于形状记忆聚合物的结构健康监测系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060071286A1 (en) * | 2004-08-17 | 2006-04-06 | California Institute Of Technology | Polymeric piezoresistive sensors |
ES2264900A1 (es) * | 2005-07-13 | 2007-01-16 | Fundacion Cidetec | Sensores de presion distribuidos de gran superficie basados en politiofenos. |
EP1912051A2 (fr) * | 2005-07-13 | 2008-04-16 | Fundacion Cidetec | Capteurs de pression repartis sur une grande surface, a base de polythiophenes |
-
2008
- 2008-02-29 WO PCT/CH2008/000082 patent/WO2008106813A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060071286A1 (en) * | 2004-08-17 | 2006-04-06 | California Institute Of Technology | Polymeric piezoresistive sensors |
ES2264900A1 (es) * | 2005-07-13 | 2007-01-16 | Fundacion Cidetec | Sensores de presion distribuidos de gran superficie basados en politiofenos. |
EP1912051A2 (fr) * | 2005-07-13 | 2008-04-16 | Fundacion Cidetec | Capteurs de pression repartis sur une grande surface, a base de polythiophenes |
Non-Patent Citations (2)
Title |
---|
A SAWHNEY ET AL: "Piezoresistive Sensors on Textiles by Inkjet Printing and Electroless Plating", MRS SYMPOSIUM PROCEEDINGS, vol. 920, 2006, XP002485382 * |
MATEIU ET AL: "Reliability of poly 3,4-ethylenedioxythiophene strain gauge", MICROELECTRONIC ENGINEERING, ELSEVIER PUBLISHERS BV., AMSTERDAM, NL, vol. 84, no. 5-8, 8 February 2007 (2007-02-08), pages 1270 - 1273, XP022061995, ISSN: 0167-9317 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009155367A3 (fr) * | 2008-06-17 | 2010-02-25 | Lumimove, Inc., D/B/A Crosslink | Capteurs de contrôle d'état des systèmes compatibles et sans fil pour structures composites |
AT511330A4 (de) * | 2011-06-03 | 2012-11-15 | Piezocryst Advanced Sensorics | Sensor für die messung von druck und/oder kraft |
AT511330B1 (de) * | 2011-06-03 | 2012-11-15 | Piezocryst Advanced Sensorics | Sensor für die messung von druck und/oder kraft |
CN109238438A (zh) * | 2018-09-13 | 2019-01-18 | 太原理工大学 | 一种基于纳米材料的柔性薄膜声矢量传感器 |
CN111551269A (zh) * | 2020-05-11 | 2020-08-18 | 浙江大学 | 一种基于形状记忆聚合物的结构健康监测系统 |
CN111551269B (zh) * | 2020-05-11 | 2021-09-10 | 浙江大学 | 一种基于形状记忆聚合物的结构健康监测系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7700402B2 (en) | Method for production of a film | |
Mäkelä et al. | Continuous roll to roll nanoimprinting of inherently conducting polyaniline | |
EP2092468B1 (fr) | Procédé pour apposer des signes caractéristiques sur des surfaces de supports par un procédé de transfert | |
Lang et al. | Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges | |
WO2008051512A3 (fr) | Plaques d'impression en motifs et traitements pour imprimer des éléments électriques | |
WO2008106813A1 (fr) | Capteur constitué de matériaux organiques pour mesurer puis interpréter des grandeurs mécaniques | |
EP1457099B1 (fr) | Systeme de production de circuits de commutation electriques et integres | |
CN1977280A (zh) | 用于生产rfid标签的方法 | |
EP2071496A1 (fr) | Procédé destiné à la fabrication d'un emballage flexible doté d'un transpondeur RFID | |
DE202010014408U1 (de) | Baugruppe mit wenigstens einer UHF-Dipol-Antenne | |
EP1567359B1 (fr) | Film d'emballage pourvu d'une marque de securite partiellement appliquee | |
WO2016091964A1 (fr) | Ensemble pour capteur humidite et procédé de fabrication de l'ensemble pour capteur d'humidité | |
EP1743510A1 (fr) | Procede pour imprimer des structures electriques et/ou electroniques et feuille a utiliser dans ce procede | |
DE102004041497B4 (de) | "Organisches Elektronik-Bauteil sowie Verfahren zur Herstellung eines solchen" | |
EP1699637B1 (fr) | Procede permettant d'imprimer egalement la conductivite electrique | |
EP2187335B1 (fr) | Agencement de code sur une carte d'enregistrement d'informations | |
DE102004056238B3 (de) | Verfahren und Anordnung zur Herstellung von RFID-Tags | |
KR101106108B1 (ko) | 인쇄 전자용 인쇄롤의 미세 선폭 가공 방법 | |
DE112007002911T5 (de) | Gedruckte elektronische Vorrichtung und Verfahren zum Bestimmen ihrer elektrischen Größe | |
Krzyżkowski et al. | Investigation on lineworks printed with different types of flexographic printing forms for purposes of printed electronics | |
DE102006013606A1 (de) | Verfahren zum Programmieren einer elektronischen Schaltung sowie elektronische Schaltung | |
DE212011100020U1 (de) | Flexible Transponderanordnung | |
JP2002264461A (ja) | 積層パターン形成方法 | |
EP1698483A1 (fr) | Matériau d'emballage interactif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08706382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08706382 Country of ref document: EP Kind code of ref document: A1 |