+

WO2008106518A2 - Scr sur substrats de filtre de faible masse thermique - Google Patents

Scr sur substrats de filtre de faible masse thermique Download PDF

Info

Publication number
WO2008106518A2
WO2008106518A2 PCT/US2008/055138 US2008055138W WO2008106518A2 WO 2008106518 A2 WO2008106518 A2 WO 2008106518A2 US 2008055138 W US2008055138 W US 2008055138W WO 2008106518 A2 WO2008106518 A2 WO 2008106518A2
Authority
WO
WIPO (PCT)
Prior art keywords
filter
molecular sieve
wall flow
fibers
fiber matrix
Prior art date
Application number
PCT/US2008/055138
Other languages
English (en)
Other versions
WO2008106518A3 (fr
Inventor
Samuel Boorse
Joseph Dettling
Original Assignee
Basf Catalysts Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Catalysts Llc filed Critical Basf Catalysts Llc
Priority to EP08730850A priority Critical patent/EP2117681A4/fr
Priority to JP2009551820A priority patent/JP5592653B2/ja
Priority to CN2008800137327A priority patent/CN101674876B/zh
Publication of WO2008106518A2 publication Critical patent/WO2008106518A2/fr
Publication of WO2008106518A3 publication Critical patent/WO2008106518A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • NO x nitrogen oxides
  • exhausted gases such as from internal combustion engines (e.g., automobiles and trucks), from combustion installations (e.g., power stations heated by natural gas, oil, or coal), and from nitric acid production plants.
  • the SCR process uses catalytic reduction of nitrogen oxides with ammonia in the presence of atmospheric oxygen with the formation predominantly of nitrogen and steam:
  • a diesel engine exhaust contains phase materials (liquids and solids) which constitute particulates or particulate matter as well as NO x .
  • catalyst compositions and substrates on which the compositions are disposed are provided in diesel engine exhaust systems to convert certain or all of these exhaust components to innocuous components.
  • diesel exhaust systems can contain one or more of a diesel oxidaltion catalyst, a soot filter, and a catalyst for the reduction OfNO x .
  • the particulate matter emissions of diesel exhaust contain three main components. O ⁇ e component is a solid, dry, solid carbonaceous fraction or soot fraction. This dry carbonaceous matter contributes to the visible soot emissions commonly associated with diesel exhaust.
  • a second component of the particulate matter is a soluble organic fraction ("SOF").
  • the soluble organic fraction is sometimes referred to as a volatile organic fraction ("VOF").
  • the VOF can exist in diesel exhaust either as a vapor or as an aerosol (fine droplets of liquid condensate) depending on the temperature of the diesel exhaust.
  • the VOF arises from two sources: (1) lubricating oil swept from cylinder walls of the engine each time the pistons go up and down; and (2) unburned or partially burned diesel fuel.
  • a third component of th ⁇ particulate matter is a sulfate fraction.
  • the sulfate fraction is formed from small quantities of sulfur components present in the diesel fuel.
  • SO 3 Small proportions Of SO 3 are formed during combustion of the diesel, which in turn combines rapidly with water in the exhaust to form sulfuric acid.
  • the sulfuric acid collects as a condensed phase with the particulates as an aerosol, or is adsorbed onto the other particulate components, and thereby adds to the mass of total particulate matter.
  • the subject innovation described herein relates to selective catalytic reduction (SCR) filters that effectively provide simultaneous treatment of particulate matter and NO x .
  • the subject innovation also relates to emission treatment systems and emission treatment methods that involve the SCR filter.
  • the SCR filter can include a fiber matrix wall flow filter comprising a plurality of non-woven inorganic fibers and a chabazite molecular sieve SCR catalyst on the fiber matrix wall flow filter.
  • the subject innovation also relates to methods for reducing NO x concentration and particulate matter in a diesel engine exhaust.
  • the method involves injecting ammonia or an ammonia precursor a diesel engine exhaust, and passing the exhaust through a SCR filter containing a fiber matrix wall flow filter and a chabazite molecular sieve SCR catalyst on the fiber matrix wall flow filter, the fiber matrix wall flow filter containing a plurality of non-woven inorganic fibers.
  • Figure IA is a perspective view of a fiber matrix wall flow filter in accordance with one aspect of the specification.
  • Figure IB is a cutaway view of a portion of a fiber matrix wall flow filter in accordance with one aspect of the specification.
  • Figures 2A and 2B are schematic diagrams illustrating systems for treating an exhaust stream containing NO x and particulate matter in accordance with one aspect of the specification.
  • Figure 3 is a flow diagram of an exemplary methodology for reducing
  • the subject innovation described herein relates to selective catalytic reduction (SCR) filters, emission treatment systems, emission treatment methods that effectively provide simultaneous treatment of particulate matter and NO x .
  • Integration of NO x reduction and particulate removal functions into a single catalyst article can be accomplished by using a fiber matrix wall flow filter coated with a chabazite molecular sieve SCR catalyst.
  • the emission treatment system uses an integrated soot filter and SCR catalyst to significantly minimize the weight and volume required for the emissions system.
  • effective pollutant abatement can be provided for exhaust streams of varyirjg temperatures. This feature is advantageous for operating diesel engines under varying loads and engine speeds which have a significant impact on exhaust temperat ⁇ res emitted from the engines.
  • the subject innovation can be used in an application where high filtration efficiency is required.
  • the SCR filter is suitable for effectively removing particulate matter in emission treatment systems.
  • the combination of a fiber matrix wall flow filter and a chabazite molecular sieve SCR catalyst disclosed herein allows wall flow substrates to be loaded with practical levels of the SCR catalyst without ⁇ ausing excessive back pressure across the coated filter when implemented in emission treatment systems.
  • the filter contains fused fiber bundles to form a wall flow depth filter.
  • the fiber matrix wall flow filter can contain a plurality of non-woven inorganic fibers.
  • the non-woven inorganic fibers can be any suitable fiber as long as the fibers can have thermal tolerance under emission treatment processes.
  • the non- woven inorganic fibers can have one or more properties of a high melting point, low heat conductance, low coefficient of thermal expansion, ability to withstand thermal and vibrational shock, low density, and high porosity and permeability.
  • the fiber matrix wall flow filter containing the non-woven inorganic fibers can have one or more properties of a high melting point, low heat conductance, low coefficient of thermal expansion, an ability to withstand thermal and vibrational shock, a low density, a high porosity, and a high permeability.
  • non- woven inorganic fibers include alumina fibers, silica fibers, mullite fibers, silicon carbide fibers, aluminosilicate fibers, aluminum borosilicate fibers, or the like.
  • the alumina fibers typically contain about 95 wt. % or more and about 97 wt. % or less of alumina and about 3 wt. % or more and about 5 wt. % or less of silica in a fibrous form.
  • the alumina fibers can be produced by extruding or spinning a solution of precursor species.
  • the silica fibers typically contain about 90 wt. % or more of amorphous silica with low impurity levels.
  • silica fibers has a low density (e.g., about 2.1 g/cm or more and about 2.2 g/cm 3 or less), high refractoriness (about 1600 degrees Celsius), low thermal conductivity (about 0.1 W/m-K), and near zero thermal expansion.
  • the aluminosilicate fibers typically contain about 40 wt. % or more and about 80 wt. % or less of alumina, about 5 wt. % or more and about 25 wt. % or less of silica, and about 0 wt. % or more and about 20 wt. % of iron or magnesium oxides
  • the aluminum borosilicate fibers typically contain about 40 wt. % or more and about 80 wt. % or less of alumina, about 5 wt. % or more and about 25 wt. % or less of silica, and about 1 wt. % or more and about 30 wt. % of boric oxide or boron oxide.
  • the details of the aluminum borosilicate fibers can be found in, for example, U.S. Patent No. 3,795,524, which is hereby incorporated by reference.
  • the fibers can have any suitable average fiber diameter for forming the monolithic hpneycomb structure of the fiber matrix wall flow filter.
  • the fibers have about 0.5 microns or more and about 50 microns or less of average fiber diameter. In another embodiment, the fibers have about 0.7 microns or more and about 30 microns or less of average fiber diameter. In yet another embodiment, the fibers have about 1 micron or more and about 20 microns or less of average fiber dialmeter.
  • the fibers can have any suitable average tensile strength for forming the monolithic honeycomb structure of the fiber matrix wall flow filter.
  • the fibers have an average tensile strength greater than about 700 MPa (100,000 psi). In another embodiment, the fibers have an average tensile strength greater than about 1 ,200 MPa (200,000 psi). In yet another embodiment, the fibers have an average tensile strength greater than about 1,800 MPa (300,000 psi). In still yet another embodiment, the fibers have an average tensile strength greater than about 2,100 MPa (350,000 psi).
  • the fiber matrix wall flow filter can contain alumina fibers, silica fibers, mullite fibers, silicon carbide fibers, aluminosilicate fibers, aluminum borosilicate fibers, or the like at suitable weight percentage.
  • the inorganic fiber portion of the filter contains from about 50 wt. % or more to about 90 wt. % or less of silica fibers, from about 5 wt. % or more to about 50 wt. % or less of alumina fibers, and from about 10 wt. % or more to about 25 wt. % or less of aluminum borosilicate fibers.
  • the fiber matrix wall flow filter further contains additives such as binding agents and thickening agents.
  • additives such as binding agents and thickening agents.
  • Organic binders and inorganic binders such as boron binders (e.g., boron nitride) can be added.
  • boron nitride can be added to replace aluminum borosilicate fibers.
  • the filtetr contains silica fiber, alumina fiber, and boron nitride in similar weight percentage as described above.
  • the filter contains low density fused fibrous ceramic composites prepared from amorphous silica and/or alumina fibers with about 2 to about 12 % boron nitride fibers by weight.
  • the details of the low density fused fibrous ceramic composites can be found in, for example, U.S. Patent No. 5,629,186, which is hereby incorporated by reference.
  • the fiber matrix wall flow filter can have a relatively low thermal mass, which in tilirn can contribute to faster heating and shorter light-off times. Since the fiber matrix wall flow filter can be quickly heated to the catalyst activation temperature, catalysts on the filter can quickly begin to convert NO x in the exhaust gas into N 2 .
  • the fiber matrix wall flow filter can have a low coefficient of thermal expansion between about 200 degrees Celsius and about 800 degrees Celsius (CTE 200-800).
  • CTE 200-800 the filter with or without a coating of a SCR catalyst has a CTE 200-800 of about 1 x 10 "6 /degree Celsius or more and about 6 x 10 "6 /degree Celsius or less.
  • the filter with or without a coating of a SCR catalyst has a CTE 200-800 of about 2 x 10 '6 /degree Celsius or more and about 4.5 x 10 "6 /degree Celsius or less.
  • the filter with or without a coating of a SCR catalyst has a CTE 200-800 of about 3 x 10 "6 /degree Celsius or more and about 4 x 10 "6 /degree Celsius or less.
  • the fiber matrix wall flow filter can also have a low coefficient of thermal expansion between about 900 degrees Celsius and about 500 degrees Celsius (CTE 900-500).
  • the filter with or without a coating of a SCR catalyst has a CTlE 900-500 of about 200 ppm or more and about 1500 ppm or less.
  • the filter with or without a coating of a SCR catalyst has a CTE 900-500 of jabout 300 ppm or more and about 1000 ppm or less.
  • the filter with or without a coating of a SCR catalyst has a CTE 900-500 of about 350 ppm or more and about 500 ppm or less.
  • the fiber matrix wall flow filter can have an elastic or Young's modulus, Emod.
  • the Emod of the wall flow filter can be measured at room temperature or at elevated temperature from 200 to 1000 °C, for example.
  • the room temperature Emod values can range from about 0.9 to about 1.2 Mpsi for an uncoated fiber wall flow filter material.
  • the fiber filter material can have a room temperature Emod value of about 0.8 to about 1.4 when coated.
  • the fiber matrix wall flow filter can have a modulus of rupture strength (MOR).
  • MOR modulus of rupture strength
  • the filter with or without a coating of a SCR catalyst has a MOR of about 1 ,000 psi or more and about 2,000 psi or less when measured at room temperature in a typical four point bending test in a manner similar to ASTM C 1 161 -02c.
  • the filter with or without a coating of a SCR catalyst has a MOR of about 1,000 psi or more and about 1 ,800 psi or less.
  • the filter with or without a coating of a SCR catalyst has a MOR of about 1 ,000 psi or more and about 1,500 psi or less.
  • the fiber matrix wall flow filter can have a thin porous walled honeycomb structure through which a fluid stream passes without causing a great increase in back pressure or pressure across the filter.
  • the filter can have any suitable honeycomb cell density.
  • the honeycomb cell density is about 100 cell/in 2 or more and about 400 cell/in 2 or less.
  • the honeycomb cell density of the filter is about 200 cell/in 2 or more and about 300 cell/in 2 or less.
  • the honeycomb cell shape can be square, triangle, round, oval, pentagonal, Hepa, doughnut, or the like.
  • the inlet channel can be larger than outlets to reduce backpressure generation and ash storage capacity.
  • the wall thickness of the honeycomb structure can be about 10 mils or more and about 40 mils or less.
  • the wall thickness of the honeycomb structure can be about 20 mils or more and about 30 mils or less.
  • the porosity of the wall of the honeycomb structure can be about 60 % or more and about 90 % or less. In another embodiment, the porosity of the wall of the honeycomb structure is about 70 % or more and about 85 % or less. In yet another embodiment, the porosity of the wall of the honeycomb structure is about 55 % or more and about 70 % or less.
  • the pore size can be about 15 microns or m ⁇ re and about 100 microns or less. In one embodiment, the pore size can be about 15 microns or more and about 30 microns or less.
  • any fiber matrix wall flow filter having the above mentioned properties can be suitable for use in the practices of the subject innovation.
  • Specific examples of such fiber matrix wall flow filter can be found in, for example, U.S. Patent Application Publication Nos. 2004/0079060, 2005/0042151, 2006/0120937, 2007/0104621, 2007/0104622, 2007/0104620, 2007/0151799, 2007/0151233, 2007/0107395, 2007/0152364, 2007/0111878, 2007/0141255, 2007/0107396, 2007/0110645, 2007/0108647, 2007/0220871, 2007/0207070, and 2007/0104632, which are hereby incorporated by reference.
  • a molecular sieve can be zeolitic— zeolites— or non-zeolitic, and zeolitic and non-zeolitic molecular sieves can have the chabazite crystal structure, which is also referred to as the CHA structure by the International Zeolite Association.
  • Zeolitic chabazite include a naturally occurring tectosilicate mineral of a zeolite group with approximate formula: (Ca 5 Na 25 K 25 Mg)Al 2 Si 4 Oi 2 -OH 2 O (e.g., hydrated calcium aluminum silicate).
  • Three synthetic forms of zeolitic chabazite are described in "Zeolite Molecular Sieves," by D. W.
  • SSZ-13 typically contains a silica to alumina molar with a ratio of about 8 to about 50. The molar ratios can be adjusted by varying the relative ratios of the reactants in the synthesis mixture and/or by treating the zeolite with chelating agents or acids to remove aluminum from the zeolite lattice. The crystallization of SSZ-13 can be accelerated and the formation of undesirable contaminants can be reduced by adding seeds of SSZ-13 to the synthesis mixture.
  • Chabazite molecular sieves can be hydrophobic.
  • Hydrophobic chabazite molecular sieve means that the chabazite molecular sieve is hydrophobic in and of itself, or that the chabazite molecular sieve is a hydrophilicchabazite molecular sieve that is rendlered hydrophobic by application of an outer coating of a suitable hydrophobic wetting agent (e.g., the particulate material has a hydrophilic core and a hydrophobic outer surface).
  • chabazite molecular sieves can be made hydrophobic by contact with hydrophobic wetting agents. Any suitable mineral applications, especially in organic systems such as plastic composites, films, organic coatings, or rubbers, can be employed to render the chabazite molecular sieve surface hydrophobic. The details of the mineral applications are described in, for example, Jesse Edenbaum, Plastics Additives and Modifiers Handbook, Van Nostrand Reinhold, New York, 1992, pages 497-500, which is hereby incorporated by reference for teachings of surface treatment materials and their application. [0043] General examples of surface treatment materials include coupling agents such as fatty acids and silanes.
  • hydrophobic agents include: organic titanates such as Tilcom® obtained from Tioxide Chemicals; organic zirconate or alunjiinate coupling agents obtained from Kenrich Petrochemical, Inc.; organofunctional silanes such as Silquest® products obtained from Witco or Prosil® products obtained from PCR; modified silicone fluids such as the DM-Fluids obtained from Shin Etsu; and fatty acids such as Hystrene® or Industrene® products obtained from Witco Corporation or Emersol® products obtained from Henkel Corporation.
  • fatty acids and salts thereof e.g., stearic acid and stearate salts
  • stearic acid and stearate salts are employed to render a particle surface of chabazite molecular sieves hydrophobic.
  • the hydrophobicity refers to the physical property of a surface of the chabazite molecular sieve to dislike or repel water. Hydrophobicity can be described by using contact angle measurements.
  • the contact angle is defined by equilibrium forces that occur when a liquid sessile drop is placed on a smooth surface.
  • the tangent to the surface of the convex liquid drop at the point of contact among the three phases, solid (S) 1 liquid (L), and vapor (V) is the contact angle ⁇ .
  • Dynamic contact angle measurements provide both an advancing and receding contact angles.
  • the advancing contact angle is a measurement of the surface hydrophobicity upon initial contact with a liquid, while the receding contact angle measures the hydrophobicity after the surface has been wetted with a liquid.
  • "hydrophobic" or "hydrophobicity” when used in reference to chabazite molecular sieve, chabazite molecular sieve particles have an advancing and/or receding contact angle of about 90 degrees or more, In another embodiment, chabazite molecular sieve particles have an advancing and/or receding contact angle of about 100 degrees or more.
  • chabazite molecular sieve particles have an advancing and/or receding contact angle of about 1 10 degrees or more. In still yet another embodiment, chabazite molecular sieve particles have an advancing and/or receding contact angle of about 120 degrees or more.
  • chabazite molecular sieve particles have a receding contact angle of about 90 degrees or more. In another embodiment, chabazite molecular sieve particles have a receding contact angle of about 100 degrees or more, In yet another embodiment, chabazite molecular sieve particles have a receding contact angle of about 1 10 degrees or more. In still yet another embodiment, chabazite molecular sieve particles have a receding contact angle of about 120 degrees or more.
  • the dynamic contact angles are based on a gravimetric principle of the Wilhelmy plate technique and are determined by measurement on a Dynamic Contact Angle Instrument which can measure both advancing and receding contact angles of powdejred samples.
  • a dynamic contact angle analysis system (model DCA 315) from ATI Cahn Instruments Inc. can be used for contact angle measurements.
  • the surface tension ( ⁇ ) of deionized water is determined with a standard platinum calibration plate.
  • Powder samples are deposited on dual sided adhesive tape.
  • the perimeter (p) of the tape is determined with a caliper.
  • the impregnated tape is placed in the DCA 315 and lowered and raised in the deionized water at a rate of 159 microns/second for two immersion cycles.
  • the contact angles can be determined from the advancing and receding wetting hysteresis curves of the first immersion cycle.
  • Chabazite molecular sieves in the subject innovation can be ion exchanged chab ⁇ zite molecular sieves.
  • Cations of the ion exchanged chabazite molecular sieve can be any suitable metal cation. Examples of metal cations include a transition metal selected from the group consisting of copper, chromium, iron, cobalt, nickel, iridium, cadmium, silver, gold, platinum, manganese, and mixtures thereof.
  • Resulting ion exphanged chabazite molecular sieve can be Cu-exchanged chabazite molecular sieve, Fe-exchanged chabazite molecular sieve, or the like.
  • the degree of desired ion exchange is not narrowly critical.
  • Chabazite mole ⁇ ular sieves can be exchanged with such a cation to a point at which the exchanged cation represents any suitable ratio of exchanged ions to Al cations.
  • ion-exchanged chabazite molecular sieve contains about 0.3 exchanged ions to Al atomic ratio or more.
  • ion-exchanged chabazite molecular sieve contains about 0.6 exchanged ions to Al atomic ratio or more.
  • ion-exchanged chabazite molecular sieve contains about 0.7 exchanged ions to Al atomic ratio or more.
  • ion-exchanged chabazite molecular sieve contains about 0.8 exchanged ions to Al atomic ratio or more.
  • the ion-exchanged chabazite molecular sieve can be formed by exchanging cations of a precursor chabazite molecular sieve with other cations. Exchanging cations can be achieved in any suitable technique such as immersion techniques.
  • a precursor chabazite molecular sieve can be immersed into a solution containing soluble salts of metal species. The pH of the solution can be adjusted by addition of amm ⁇ nium hydroxide, to induce precipitation of the metal cations onto the precursor chabazlite molecular sieve.
  • a precursor chabazite molecular sieve is immersed in a solution containing a soluble salt, e.g., copper nitrate, for a time sufficient t ⁇ allow the incorporation of the copper cations into the precursor chabazite molecular sieve by ion exchange, and then ammonium hydroxide is added to incorporate the copper ions in the solution onto the precursor chabazite molecular sieve by precipitation.
  • the chabazite molecular sieve can then be washed, dried, and calcined.
  • chabazite molecular sieve particles in the subject innovation can be finely divided particulate materials.
  • the term "finely divided” when utilized herein means that the particulate materials have a median individual particle size of about 10 microns or less.
  • chabazite molecular sieve particles have a particle size distribution wherein at least about 90% by weight has a particle siae of about 10 microns or less.
  • chabazite molecular sieve particles have a particle size distribution wherein at least about 90% by weight has a particle size of about 3 microns or less.
  • chabazite molecular sieve particles have a particle size distribution wherein at least about 90% by weight has a particle size of about 1 micron or less.
  • the fiber matrix wall flow filter can be coated with a chabazite molecular sieve iby any suitable technique.
  • the fiber matrix wall flow filter is coated with chabazite molecular sieve by immersion techniques.
  • the fiber matrix wall flow filter can be immersed vertically in a portion of a chabazite molecular sieve tslurry.
  • the top of the filter can be located just above the surface of the slurry. In this manner slurry contacts the inlet face of each honeycomb wall, but is prevented from Contacting the outlet face of each wall.
  • the filter can be left in the slurry for about 30 seconds.
  • the filter can be removed from the slurry, and excess slurry is removed from the filter first by allowing it to drain from the channels, then by blowing with compressed air (against the direction of slurry penetration), and then by pulling a vacuum from the direction of slurry penetration.
  • the catalyst sluriry permeates the walls of the filter, yet the pores are not occluded to the extent that undue back pressure will build up in the finished filter.
  • the term "permeate" when used to describe the dispersion of the catalyst slurry on the filter means that the catalyst composition is dispersed throughout the wall of the filter.
  • the resulting fiber matrix wall flow filter containing the chabazite molecular sieve SCR catalyst may be referred to as a SCR filter.
  • the coated filters can be dried and then calcined. In one embodiment, th ⁇ coated filter is dried at about 100 degrees Celsius and calcined at a higher temperatilire of about 300 degrees Celsius or more and about 450 degrees Celsius or less. After calcining, the catalyst loading can be determined by calculation of the coated and uncoated weights of the filter. Catalyst loading can be modified by altering the solids content of the coating slurry. In one embodiment, repeated immersions of the filter in the coating slurry can be conducted, followed by removal of the excess slurry as described above.
  • the coated filter can have any suitable concentration of chabazite molecular sieve SCR catalyst compositions to ensure that the desired NO x reduction and particulate removal levels are achieved and/or to secure adequate durability of the catalyst over extended use.
  • SCR catalyst compositions are deposited on the filter at a concentration of about 1 g/in 3 or more and about 3 g/in 3 or less.
  • SCR catalyst compositions are deposited on the filter at a concentration of about 1.2 g/in 3 or more and about 2.8 g/in 3 or less.
  • SCR catalyst compositions are deposited on the filter at a concentration of about 1.4 g/in or more and about 2.6 g/in 3 or less.
  • SCR catalyst compositions are deposited on the filter at a concentration of about 1.5 g/in 3 or more and about 2.5 g/in 3 or less.
  • FIGS. IA and IB illustrate a fiber matrix wall flow filter 100 which has a plurality of passages 102.
  • the passages 102 can be tubularly enclosed by the internal walls 104 of the filter substrate.
  • the filter can have an inlet end 106 and an outlet end 108.
  • Alternate passages can be plugged at the inlet end 106 with inlet plugs 1 10, and at the outlet end 108 with outlet plugs 1 12 to form opposing checkerboard patterns at the inlet 106 and outlet 108.
  • a gas stream 1 14 enters through the unplugged channel inlet 116, is stopped by outlet plug 1 12 and diffuses through porous channel walls 104 to the outlet side 1 18.
  • the exhaust gas cannot pass directly throughlthe filter without crossing the walls because of inlet plugs 1 10.
  • the fiber matrix wall flow filter can be catalyzed in that the wall of filter has thereon or contained therein one or more catalytic materials. Catalytic materials can be present on the inlet side of the element wall alone, the outlet side alone, or both the inlet and outlet sides.
  • FIGS. 2A and 2B are schematic diagrams illustrating systems for treating an exhalust stream containing NO x and particulate matter.
  • Figure 2A illustrates an exemplary emission treatment system 200A for treating an exhaust stream containing NO x and particulate matter using a SCR filter.
  • an exhaust 202 containing gaseous pollutants (including unburned hydrocarbons, carbon monoxide, and NO x ) and particulate matter is conveyed from an engine 204 to a SCR filter 206.
  • An oxidation catalyst (DOC) 208 can be optionally used between the engine 204 and the SCR filter 206.
  • the system 200A does not include an oxidation catalyst.
  • unburned gaseous, nonvolatile hydrocarbons (e.g., volatile organic fraction (VOF)) and carbon monoxide can be combusted to form carbon dioxide and water. Removal of substantial proportions of the VOF using the oxidation catalyst can help to mitigate a deposition (e.g., clogging) of particulate matter on the SCR filter 206, which is positioned downstream in the system.
  • a substantial portion of the NO of the NO x in the exhaust is oxidized to NO 2 in the oxidation catalyst.
  • Ammonia or ammonia precursor can be injected as a spray via a nozzle (not shown) into the exhaust stream.
  • aqueous urea shown on one line 210 serves as an ammonia precursor which can be mixed with air on another line 212 in a mixing device (MD) 214.
  • a valve 216 can be used to meter precise amounts of aqueous urea which are converted in the exhaust stream to ammonia.
  • the exhaust stream with the added ammonia or ammonia precursor is conveyed to the SCR filter 206.
  • the NO x component is converted to NO by the particulate matter (e.g., soot cake) trapped on the SCR filter, and then NO is converted through the selective catalytic reduction of NO with ammonia to nitrogen.
  • the particulate matter including the soot fraction and the VOF can be also largely removed by the SCR filter 206. In one embodiment, about 80 wt. % or more of the particulate matter is removed by the SCR filter. In another embodiment, about 85 wt. % or more of the particulate matter is removed by the SCR filter. In yet another embodiitnent, about 90 wt. % or more of the particulate matter is removed by the SCR filter.
  • the particulate matter deposited on the SCR filter 206 can be combusted through regeneration of the filter.
  • Figure 2B illustrates another exemplary emission treatment system
  • the emission treatment system 200B includes a slip oxidation catalyst 218 downstream of a SCR filter 206.
  • the slip oxidation catalyst 218 can contain a composition containing base metals and less than about 0.5 wt % of platinum.
  • the silip oxidation catalyst can be used to oxidize any excess NH 3 before it is vented to the atmosphere.
  • An oxidation catalyst 208 can be optionally used between the engine and the SCR filter.
  • Figure 3 illustrates an exemplary methodology 300 for reducing NO x concentration arid particulate matter in a diesel engine exhaust.
  • ammonia or an ammonia precursor is injected into a diesel engine exhaust.
  • the exhaust is passed through a SCR filter containing a fiber matrix wall flow filter and a chabazite molecular sieve SCR catalyst on the fiber matrix wall flow filter, the fiber matrix wall flow filter contajining a plurality of non-woven inorganic fibers.
  • the method further involves passing the exhaust through an oxidation catalyst before injecting ammonia or ammonia precursor into the exhaust.
  • the fiber matrix wall flow filter contains at least one of alumina fibers, silica fibers, mullite fibers, silicon carbide fibers, aluminosilicate fibers, aluminum borosilicate fibers, or combinations thereof.
  • the fiber matrix wall flow filter can have a coefficient of thermal expansion of about 1 x 10 "6 /degree Celsius or more and about 6 x 10 "6 /degree Celsius or less.
  • the fiber matrix wall flow filter can have a modulus of rupture strength of about 1,000 psi or more and about 2,000 psi or less.
  • the chabazite molecular sieve SCR catalyst comprises hydrophobic chabazite molecular sieve.
  • the chabazite molecular sieve SCR catalyst can contain metal exchanged chabazite molecular sieve.
  • the chabazite molecular sieve SCR catalyst contains at least one of Cu-exchanged chabazite molecular sieve, Fe-exchanged chabazite molecular sieve, or a combination thereof.
  • Example 1 shows evaluation of a back pressure for coated fiber matrix wall flow filters.
  • a fiber matrix wall flow filter having dimensions of 1 x 3 inches, an average pore size of 15 microns, and 67 % wall porosity is used to prepare a catalyst-coated filter.
  • a catalyst slurry is formed from copper-exchanged 3 % chabazite molecular sieve (containing 3 wt. % of copper based on the weight of the chabazite molecular sieve) and de-ionized water.
  • the catalyst is deposited on the fiber matrix wall flow filter by (1) dipping the filter into the slurry to a depth sufficient to coat the channels of the filter along the entire axial length of the filter from one direction; (2) air-knifing the filter from the side opposite the coating direction (e.g., the dry side); (3) vacuuming the filter from the ooated side; and (4) drying the filter at about 93 degrees Celsius for about 1 hour in flowing air, and calcining the filter at about 400 degrees Celsius for about 1 hour. Actions (1) through (4) are then repeated from the opposite side.
  • the resulting fiber matrix wall flow filter is designated as FMWFF. Pressure drop across of the resulting fiber matrix wall flow filters having three different catalyst loadings is shown in Table 1.
  • the first cordierite ceramic wall flow filter has dimensions of 1 x 6 inches, an average pore size of 18 microns, and 59 % wall porosity.
  • the Second cordierite ceramic wall flow filter has dimensions of 1 x 6 inches, an avertage pore size of 22 microns, and 65 % wall porosity.
  • the first and second cordierite ceramic wall flow filters are designated as CCWFFl and CCWFF2, respectively. Pressure drop across the cordierite ceramic wall flow filters is shown in Table 1 . [0071] Table 1
  • Example 2 shows evaluation OfNO x conversion and NH 3 conversion by a coated fibeir matrix wall flow filter and as a comparative example, a cordierite ceramic wall flow filter (e.g., a SCR filter).
  • FMWFF and CCWFF2 of Example 1 are used Both of the wall flow filter parts have dimensions of 1 x 6 inches
  • the SCR catalyst is deposited on both of the cordierite ceramic wall flow filter with a catalyst loading of 2 g/in 3 in the manner as described in Example 1.
  • Nitrogen oxides selective catalytic reduction (SCR) efficiency and selectivity of the fresh catalyst cores is measured by adding a feed gas mixture of 500 ppm of NO, 500 ppm of NH3, 10% O 2 , 5% H 2 O, balanced with N 2 to a steady state reactor containing a 1"D x 3"L catalyst core.
  • the reaction is carried at a space velocity of 40,000 hr "1 across a 150 0 C to 460 0 C temperature range.
  • the resulting NOx conversions are presented in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

L'invention concerne des filtres à réduction catalytique sélective (SCR) qui fournissent de manière efficace un traitement simultané de matière particulaire et de NOx. Il est également proposé des procédés pour réduire la concentration en NOx et la matière particulaire dans un échappement de moteur diesel en utilisant les filtres SCR. Le filtre SCR peut comprendre un filtre de flux de paroi de matrice de fibre comprenant une pluralité de fibres inorganiques non tissées et un catalyseur SCR de tamis moléculaire de chabasite sur le filtre de flux de paroi de matrice de fibre. En combinant un filtre de flux de paroi de matrice de fibre avec un catalyseur SCR de tamis moléculaire de chabasite, on peut obtenir une charge de catalyseur élevée sans provoquer de contre-pression excessive dans le filtre lorsqu'il est mis en œuvre dans des systèmes de traitement d'émission.
PCT/US2008/055138 2007-02-27 2008-02-27 Scr sur substrats de filtre de faible masse thermique WO2008106518A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08730850A EP2117681A4 (fr) 2007-02-27 2008-02-27 Scr sur substrats de filtre de faible masse thermique
JP2009551820A JP5592653B2 (ja) 2007-02-27 2008-02-27 低熱容量のフィルター基材上のscr
CN2008800137327A CN101674876B (zh) 2007-02-27 2008-02-27 在低热质过滤器基底上的scr

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89183507P 2007-02-27 2007-02-27
US60/891,835 2007-02-27

Publications (2)

Publication Number Publication Date
WO2008106518A2 true WO2008106518A2 (fr) 2008-09-04
WO2008106518A3 WO2008106518A3 (fr) 2008-11-06

Family

ID=39453455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/055138 WO2008106518A2 (fr) 2007-02-27 2008-02-27 Scr sur substrats de filtre de faible masse thermique

Country Status (10)

Country Link
US (12) US7998423B2 (fr)
EP (5) EP2656913B1 (fr)
JP (3) JP5592653B2 (fr)
KR (1) KR101473030B1 (fr)
CN (1) CN101674876B (fr)
ES (3) ES2618416T3 (fr)
MY (1) MY150864A (fr)
PL (1) PL2656913T3 (fr)
RU (1) RU2449834C2 (fr)
WO (1) WO2008106518A2 (fr)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054034A3 (fr) * 2008-11-06 2010-07-29 Basf Catalysts Llc Catalyseurs en zéolite de type chabazite présentant de faibles rapports de la silice à l'alumine
WO2010121257A1 (fr) 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Catalyseurs à base de cuivre supportés par des tamis moléculaires à petits pores, durables vis-à-vis d'un vieillissement pauvre/riche pour la réduction d'oxyde d'azotes
DE102010027883A1 (de) 2009-04-17 2011-03-31 Johnson Matthey Public Ltd., Co. Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess
JP2012505744A (ja) * 2008-10-15 2012-03-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー アルミノシリケートゼオライト含有遷移金属
JP2012507400A (ja) * 2008-11-03 2012-03-29 ビー・エイ・エス・エフ、コーポレーション 選択的アンモニア酸化のための二元金属触媒
JP2012518537A (ja) * 2009-02-26 2012-08-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 圧縮点火エンジンから排出される排ガスから微粒子状物質を集塵するためのフィルタ
JP2012522636A (ja) * 2009-04-03 2012-09-27 ビーエーエスエフ コーポレーション アンモニア生成触媒およびscr触媒を備える排出処理システム
WO2013064887A3 (fr) * 2011-11-02 2013-07-04 Johnson Matthey Public Limited Company Filtre catalysé pour traiter les gaz d'échappement
JP2013534463A (ja) * 2010-06-02 2013-09-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ディーゼルパティキュレートフィルター
EP2150328B1 (fr) * 2007-04-26 2015-03-11 Johnson Matthey PLC PROCÉDÉ ET SYSTÈME SCR UTILISANT CATALYSEUR ZÉOLITIQUE À BASE DE Cu/SAPO-34
EP2898941A1 (fr) * 2008-05-07 2015-07-29 Umicore AG & Co. KG Dispositif pour le traitement des gaz d'échappement de moteurs diesel contenant des oxydes d'azote et des hydrocarbures
JP2017024000A (ja) * 2010-04-19 2017-02-02 ビーエーエスエフ コーポレーション ガソリン微粒子フィルターを有するガソリンエンジン排出処理システム
EP2382031B1 (fr) 2008-12-24 2017-05-17 BASF Corporation Systèmes et procédés de traitement d'émissions employant un filtre rcs catalysé et un catalyseur rcs aval
US9694322B2 (en) 2013-02-27 2017-07-04 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
EP2736628B1 (fr) 2011-07-28 2018-04-11 Johnson Matthey Public Limited Company Filtres catalytiques à zones pour un traitement de gaz d'échappement
US9999879B2 (en) 2013-05-30 2018-06-19 Corning Incorporated Formed ceramic substrate composition for catalyst integration
US10022672B2 (en) 2014-03-13 2018-07-17 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and SCR catalyst
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
EP3315478B1 (fr) * 2016-10-24 2019-12-04 The Boeing Company Matériau précurseur pour la fabrication additive de pièces en céramique et procédés de fabrication associés
US10889503B2 (en) 2016-12-02 2021-01-12 Heesung Catalysts Corporation Zeolite having specific ratio of divalent copper ions supported thereon, and preparation method therefor and catalyst composition comprising same
WO2023285829A1 (fr) * 2021-07-15 2023-01-19 Microtech Ceramics Limited Procédé d'imprégnation
WO2023001863A1 (fr) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Système de gaz d'échappement permettant de purifier des gaz d'échappement d'un moteur à essence
DE102021118803A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102023101779A1 (de) 2022-04-11 2023-10-12 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen
WO2023198570A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à allumage par étincelle fonctionnant principalement de manière stœchiométrique, comprenant un catalyseur permettant de réduire les émissions d'ammoniac
US12247505B2 (en) 2021-07-21 2025-03-11 Umicore Ag & Co. Kg Exhaust gas purification system for purifying exhaust gases of internal combustion engines

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886869B1 (fr) * 2005-06-14 2007-08-31 Saint Gobain Ct Recherches Structure et filtre catalytique pour la filtration d'un gaz comprenant un ciment hydrophobe ou oleophobe
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
WO2009052274A1 (fr) * 2007-10-16 2009-04-23 Aspen Products Group, Inc. Dispositif de purification et procédé pour purifier un courant de fluide
US10052610B1 (en) * 2007-12-13 2018-08-21 University Of Puerto Rico Removal of carbon dioxide from gas mixtures using ion-exchanged silicoaluminophosphates
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
DE102008008786A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
DE102008008785A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Verminderung von Dibenzo-Dioxin-, Dibenzo-Furan- und Partikel-Emissionen
DE102008008748A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Ag Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
US8778831B2 (en) * 2008-03-27 2014-07-15 Umicore Ag & Co. Kg Base metal and base metal modified diesel oxidation catalysts
US9403151B2 (en) 2009-01-30 2016-08-02 Umicore Ag & Co. Kg Basic exchange for enhanced redox OS materials for emission control applications
WO2010002486A2 (fr) 2008-03-27 2010-01-07 Umicore Ag& Co.Kg Régulation continue des suies de diesel avec une pénalité minimale de contre-pression à l’aide de substrats d’écoulement conventionnels et d’un catalyseur actif d’oxydation directe des suies disposé sur ceux-ci
EP3778484A1 (fr) * 2008-05-21 2021-02-17 Basf Se Procédé pour la synthèse directe de cu contenant des zéolites ayant une structure cha
EP2138681B1 (fr) 2008-06-27 2019-03-27 Umicore AG & Co. KG Procédé et dispositif de nettoyage de gaz d'échappement diesel
DE102008046381B4 (de) * 2008-09-09 2011-12-22 Man Truck & Bus Ag Verfahren zur Verminderung von Stickoxiden im Abgasstrom von Brennkraftmaschinen
US20100077727A1 (en) * 2008-09-29 2010-04-01 Southward Barry W L Continuous diesel soot control with minimal back pressure penatly using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
DE102008055890A1 (de) * 2008-11-05 2010-05-12 Süd-Chemie AG Partikelminderung mit kombiniertem SCR- und NH3-Schlupf-Katalysator
EP2373405B1 (fr) * 2008-12-08 2013-01-09 Haldor Topsøe A/S Procédé et catalyseur pour extraction d oxydes d azote dans un gaz de combustion
JP5482179B2 (ja) * 2008-12-22 2014-04-23 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
US8844274B2 (en) * 2009-01-09 2014-09-30 Ford Global Technologies, Llc Compact diesel engine exhaust treatment system
US8187353B2 (en) * 2009-01-21 2012-05-29 Corning Incorporated Filtration structures for improved particulate filter performance
US8231701B2 (en) * 2009-01-21 2012-07-31 Corning Incorporated Particulate filters and methods for regenerating particulate filters
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
EP2687284A1 (fr) * 2009-06-08 2014-01-22 Basf Se Silicoaluminophosphate contenant du Cu (Cu-SAPO-34)
NL2002986C2 (nl) * 2009-06-09 2010-12-13 Daf Trucks Nv Inrichting voor het nabehandelen van uitlaatgas van een dieselverbrandingsmotor.
US8904760B2 (en) * 2009-06-17 2014-12-09 GM Global Technology Operations LLC Exhaust gas treatment system including an HC-SCR and two-way catalyst and method of using the same
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
ES2569923T3 (es) * 2010-01-25 2016-05-13 Peugeot Citroën Automobiles SA Dispositivo de postratamiento de los gases de escape de un motor de combustión interna
US8440586B2 (en) * 2010-02-26 2013-05-14 Corning Incorporated Low pressure drop extruded catalyst filter
GB201003784D0 (en) * 2010-03-08 2010-04-21 Johnson Matthey Plc Improvement in control OPF emissions
US8745970B2 (en) 2010-04-27 2014-06-10 GM Global Technology Operations LLC Ammonia slip catalyst diagnostic methods and systems
US8293182B2 (en) 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
US20120042637A1 (en) * 2010-08-18 2012-02-23 Caterpillar Inc. Tall vertical scr
CN103298557B (zh) * 2010-12-02 2016-10-12 庄信万丰股份有限公司 含有金属的沸石催化剂
DE102010055728A1 (de) * 2010-12-22 2012-06-28 Süd-Chemie AG Verfahren zur Umsetzung stickstoffhaltiger Verbindungen
JP5895510B2 (ja) * 2010-12-22 2016-03-30 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
WO2012133717A1 (fr) 2011-03-30 2012-10-04 日本ポリエチレン株式会社 Polymère à base d'éthylène, composition de résine polyéthylène et utilisation de celle-ci, ingrédient de catalyseur pour la polymérisation d'oléfines, catalyseur pour la polymérisation d'oléfines contenant ledit ingrédient, et procédé de production d'un polymère à base d'éthylène utilisant ledit catalyseur
US9011583B2 (en) 2011-04-29 2015-04-21 Corning Incorporated Article for CO2 capture having heat exchange capability
US8950176B2 (en) * 2011-06-29 2015-02-10 Electro-Motive Diesel, Inc. System for reducing engine emissions and backpressure using parallel emission reduction equipment
EP2726176A2 (fr) * 2011-07-01 2014-05-07 Toyota Jidosha Kabushiki Kaisha Système d'épuration des gaz d'échappement d'un moteur à combustion interne
US9999877B2 (en) 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams
EP2766119B1 (fr) * 2011-10-05 2025-03-19 Basf Se CATALYSEUR ZÉOLITE MIXTE CU-CHA/FE-BEA/Fe-MFI ET PROCÉDÉ POUR LE TRAITEMENT DE NOX DANS DES COURANTS GAZEUX
US9062586B2 (en) * 2012-04-05 2015-06-23 Corning Incorporated Impermeable polymer coating on selected honeycomb channel surfaces
GB2513364B (en) * 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
US8997461B2 (en) 2012-05-21 2015-04-07 Cummins Emission Solutions Inc. Aftertreatment system having two SCR catalysts
CN104918884B (zh) 2012-09-28 2018-01-09 太平洋工业发展公司 在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
US9878313B2 (en) * 2012-12-12 2018-01-30 Haldor Topsoe A/S One-pot method for the synthesis of Cu-SSZ-13, the compound obtained by the method and use thereof
KR101416409B1 (ko) * 2012-12-31 2014-07-08 기아자동차 주식회사 차량의 요소수 분사량 제어장치 및 방법
DE102013003112B4 (de) 2013-02-25 2017-06-14 Umicore Ag & Co. Kg SCR-Katalysator mit verbessertem NOx-Umsatz
US20140286857A1 (en) * 2013-03-21 2014-09-25 Basf Corporation Methods of preparing metal containing inorganic ion exchangers
GB2512648B (en) * 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
US20140357474A1 (en) * 2013-05-30 2014-12-04 Corning Incorporated Formed ceramic substrate composition for catalyst integration
GB2517034B (en) * 2013-05-31 2016-02-17 Johnson Matthey Plc Catalyzed filter for treating exhaust gas
CN105247179B (zh) * 2013-05-31 2019-03-08 庄信万丰股份有限公司 用于处理废气的经催化的过滤器
GB2556231B (en) * 2013-07-30 2019-04-03 Johnson Matthey Plc Ammonia slip catalyst
CN110394188B (zh) * 2013-08-30 2022-07-15 庄信万丰股份有限公司 用于处理包含NOx的废气的沸石共混物催化剂
GB2522527B (en) 2013-12-02 2018-01-24 Johnson Matthey Plc Mixed template synthesis of high silica Cu-CHA
US10512905B2 (en) * 2013-12-03 2019-12-24 Johnson Matthey Public Limited Company SCR catalyst
KR102383420B1 (ko) * 2013-12-06 2022-04-07 존슨 맛쎄이 퍼블릭 리미티드 컴파니 귀금속 및 소기공 분자체를 포함하는 수동 NOx 흡착제
DE102015000955B4 (de) 2014-01-20 2025-01-23 Cummins Inc. Systeme und Verfahren zur Minderung von NOx- und HC-Emissionen
US9512761B2 (en) 2014-02-28 2016-12-06 Cummins Inc. Systems and methods for NOx reduction and aftertreatment control using passive NOx adsorption
RU2565697C1 (ru) * 2014-03-26 2015-10-20 Закрытое акционерное общество "Молекулярные технологии и новые материалы" Цеолитный адсорбент
FR3019062B1 (fr) * 2014-03-26 2016-04-15 Peugeot Citroen Automobiles Sa Ensemble de depollution des gaz de combustion
US9567888B2 (en) 2014-03-27 2017-02-14 Cummins Inc. Systems and methods to reduce reductant consumption in exhaust aftertreament systems
BR112016021428B1 (pt) * 2014-04-07 2022-03-03 Haldor Tops0E A/S Método para a preparação de um silicoaluminofosfato microporoso com troca de cobre ou misturas contendo materiais de silicoaluminofosfato microporoso com troca de cobre
DE112015002186T5 (de) * 2014-05-09 2017-01-19 Johnson Matthey Public Limited Company Ammoniak-Sperrkatalysator mit auf hochporösen Substraten imprägniertem Platin
US10399024B2 (en) 2014-05-15 2019-09-03 Hollingsworth & Vose Company Surface modified filter media
US10195542B2 (en) * 2014-05-15 2019-02-05 Hollingsworth & Vose Company Surface modified filter media
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
US9616384B2 (en) * 2014-06-11 2017-04-11 Basf Se Base metal catalyst
US9889437B2 (en) 2015-04-15 2018-02-13 Basf Corporation Isomorphously substituted catalyst
US10850265B2 (en) 2014-06-18 2020-12-01 Basf Corporation Molecular sieve catalyst compositions, catalytic composites, systems, and methods
CN106660021B (zh) * 2014-06-18 2020-09-11 巴斯夫公司 分子筛催化剂组合物、催化复合材料、系统和方法
US9764313B2 (en) 2014-06-18 2017-09-19 Basf Corporation Molecular sieve catalyst compositions, catalyst composites, systems, and methods
JP6233215B2 (ja) * 2014-07-07 2017-11-22 トヨタ自動車株式会社 パティキュレートフィルタに触媒を担持させる方法
JP6393591B2 (ja) 2014-11-12 2018-09-19 日立造船株式会社 アルデヒド分解触媒および排ガス処理設備ならびに排ガス処理方法
JP6546738B2 (ja) * 2014-11-12 2019-07-17 日立造船株式会社 アルデヒド分解触媒および排ガス処理設備ならびに排ガス処理方法
US10377638B2 (en) * 2015-04-09 2019-08-13 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
US9937489B2 (en) * 2015-06-18 2018-04-10 Johnson Matthey Public Limited Company Exhaust system without a DOC having an ASC acting as a DOC in a system with an SCR catalyst before the ASC
BR112017027160B1 (pt) 2015-06-18 2021-09-28 Johnson Matthey Public Limited Company Artigo catalisador, sistema de escape, motor, veículo, métodos para melhorar o rendimento de n2 a partir de amônia em um gás de escape e para reduzir a formação de n2o a partir de nh3,em um gás de escape
US10201807B2 (en) 2015-06-18 2019-02-12 Johnson Matthey Public Limited Company Ammonia slip catalyst designed to be first in an SCR system
CN107847863B (zh) * 2015-06-18 2021-08-27 庄信万丰股份有限公司 分区的排气系统
CN105214723B (zh) * 2015-07-23 2018-05-04 清华大学苏州汽车研究院(吴江) 含铜的氨氧化催化剂及其制备方法
DE112016002717B4 (de) * 2015-08-03 2025-03-13 Cummins Emission Solutions Inc. Sensorkonfiguration für ein Nachbehandlungssystem umfassend einen SCR mit Filter
US9757691B2 (en) 2015-11-06 2017-09-12 Paccar Inc High efficiency and durability selective catalytic reduction catalyst
US10188986B2 (en) 2015-11-06 2019-01-29 Paccar Inc Electrochemical reductant generation while dosing DEF
US9764287B2 (en) 2015-11-06 2017-09-19 Paccar Inc Binary catalyst based selective catalytic reduction filter
US9737877B2 (en) 2015-11-06 2017-08-22 Paccar Inc Surface-modified catalyst precursors for diesel engine aftertreatment applications
US10058819B2 (en) 2015-11-06 2018-08-28 Paccar Inc Thermally integrated compact aftertreatment system
CA3005574A1 (fr) * 2015-11-17 2017-05-26 Basf Corporation Catalyseur pour le traitement de gaz d'echappement
KR101713743B1 (ko) * 2015-12-08 2017-03-08 현대자동차 주식회사 선택적 환원 촉매가 코팅된 디젤 매연 필터의 재생 방법 및 배기 가스 정화 장치
CN106179472A (zh) * 2015-12-10 2016-12-07 华中科技大学 一种Cu-SSZ-13分子筛催化剂的制备方法及其用途
CN106927474B (zh) * 2015-12-30 2018-10-30 中触媒新材料股份有限公司 一种ssz-13分子筛及其制备方法与应用
WO2017134581A1 (fr) * 2016-02-03 2017-08-10 Basf Corporation Catalyseur de chabazite d'échange conjoint de cuivre et de fer
EP3205398A1 (fr) * 2016-02-12 2017-08-16 Hyundai Motor Company Procédé de préparation d'un catalyseur zéolite
US10343925B2 (en) 2016-02-12 2019-07-09 Hyundai Motor Company Method for preparing zeolite catalyst
CN109072753B (zh) * 2016-02-19 2021-01-29 洋马动力科技有限公司 发动机装置
WO2017153894A1 (fr) 2016-03-08 2017-09-14 Basf Corporation Catalyseur à tamis moléculaire à échange d'ions présentant des émissions de n2o réduites
CN105709572B (zh) * 2016-04-12 2017-12-29 华中科技大学 一种减少so2对scr催化剂毒害的装置及方法
JP6929302B2 (ja) 2016-04-26 2021-09-01 ビーエーエスエフ コーポレーション 酸化触媒の組合せのためのゾーン化構成
CN105944753A (zh) * 2016-05-09 2016-09-21 清华大学 一种核壳结构Cu-SSZ-13分子筛催化剂及其制备和应用
KR101982040B1 (ko) 2016-06-21 2019-05-24 삼성전기주식회사 팬-아웃 반도체 패키지
KR102477786B1 (ko) * 2016-08-05 2022-12-15 바스프 코포레이션 선택적 접촉 환원 물품 및 시스템
MX2019004771A (es) 2016-10-24 2019-08-05 Basf Corp Catalizador de reduccion catalitica selectiva (scr) integrado y trampa de nox (lnt) para la reduccion del nox.
CN109963812B (zh) 2016-10-25 2020-08-04 日挥触媒化成株式会社 基材涂布用菱沸石型沸石
JP7125391B2 (ja) * 2016-10-31 2022-08-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス処理のための骨格外の鉄及び/又はマンガンを有するlta触媒
CN110312565A (zh) 2016-12-07 2019-10-08 索尔维公司 使用碱性吸附剂和包含Ca缺陷型羟基磷灰石的DeNOx负载型催化剂的多污染物气体净化方法
JP7069797B2 (ja) 2017-02-22 2022-05-18 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
CN106830007B (zh) * 2017-03-17 2019-03-19 中触媒新材料股份有限公司 具有多级孔ssz-13分子筛催化剂及其合成方法和应用
BR112019020841A2 (pt) 2017-04-04 2020-04-28 Basf Corp artigo catalítico de filtro de fluxo de parede monolítico, veículos, sistemas de tratamento de gases de escape e métodos para tratar uma corrente de escape
KR102568461B1 (ko) 2017-04-04 2023-08-21 바스프 코포레이션 촉매작용에 의한 오염 저감을 위한 수소 환원제
WO2018185663A1 (fr) 2017-04-04 2018-10-11 Basf Corporation Génération d'ammoniac et d'hydrogène embarquée dans un véhicule
BR112019020432A2 (pt) 2017-04-04 2020-04-28 Basf Corp sistemas de controle de emissões e de tratamento de emissões e método para tratar uma corrente de gás de escape
WO2018185665A1 (fr) 2017-04-04 2018-10-11 Basf Corporation Système de réduction des émissions intégré assisté par hydrogène
WO2018185660A1 (fr) 2017-04-04 2018-10-11 Basf Corporation Génération d'hydrogène à bord de véhicule et utilisation dans des flux d'échappement
US10675586B2 (en) 2017-06-02 2020-06-09 Paccar Inc Hybrid binary catalysts, methods and uses thereof
US10835866B2 (en) 2017-06-02 2020-11-17 Paccar Inc 4-way hybrid binary catalysts, methods and uses thereof
CN110869125B (zh) 2017-06-09 2023-08-18 巴斯夫公司 催化制品和废气处理系统
WO2018224651A2 (fr) 2017-06-09 2018-12-13 Basf Se Article catalytique et systèmes de traitement de gaz d'échappement
CN107537558B (zh) * 2017-06-27 2020-05-22 中国第一汽车股份有限公司 具有锚定增强去除NOx的载体催化剂制备方法
WO2019049069A1 (fr) * 2017-09-07 2019-03-14 Basf Corporation Zéolite à teneur réduite en aluminium extra-charpente
JP6743796B2 (ja) * 2017-09-29 2020-08-19 株式会社デンソー 電気加熱式触媒
JP6743795B2 (ja) * 2017-09-29 2020-08-19 株式会社デンソー 電気加熱式触媒
DE102017123447A1 (de) * 2017-10-10 2019-04-11 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage
JP2020536727A (ja) 2017-10-12 2020-12-17 ビーエーエスエフ コーポレーション NOx吸収体およびSCR触媒の組み合わせ
KR102659805B1 (ko) * 2017-11-10 2024-04-23 바스프 코포레이션 암모니아 산화가 감소된 촉매화된 매연 필터
JP7158141B2 (ja) * 2017-11-27 2022-10-21 エヌ・イーケムキャット株式会社 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
US10898889B2 (en) * 2018-01-23 2021-01-26 Umicore Ag & Co. Kg SCR catalyst and exhaust gas cleaning system
FR3077507B1 (fr) * 2018-02-06 2022-07-15 Psa Automobiles Sa Catalyseur pour le traitement de l’ammoniac issu de la reduction selective des nox
US10953366B2 (en) * 2018-04-20 2021-03-23 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US20190376426A1 (en) * 2018-06-08 2019-12-12 GM Global Technology Operations LLC Control apparatus and method with nox sensor cross sensitivity for operating an internal combustion engine
US20190376427A1 (en) * 2018-06-08 2019-12-12 GM Global Technology Operations LLC Control apparatus and method having a control closed loop observer configuration for scr/scrf component
CN108786900A (zh) * 2018-06-21 2018-11-13 上海纳米技术及应用国家工程研究中心有限公司 Cu-SSZ-13分子筛催化剂的制备方法及其产品和应用
EP3830032A1 (fr) * 2018-08-02 2021-06-09 Basf Se Procédé de synthèse continue de matériaux zéolitiques à l'aide de germes cristallins chargés d'une matrice organique
KR20210082506A (ko) * 2018-10-30 2021-07-05 바스프 코포레이션 사전-교환된 구리 제올라이트성 물질에 대한 동일반응계 구리 이온 교환
CN109731609B (zh) * 2019-01-07 2020-10-30 上海国瓷新材料技术有限公司 一种涂层可控的Cu-SSZ-13/多孔陶瓷催化剂及其制备方法与应用
GB201900484D0 (en) * 2019-01-14 2019-02-27 Johnson Matthey Catalysts Germany Gmbh Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites
CN109647500B (zh) * 2019-01-17 2022-01-07 广州市威格林环保科技有限公司 一种用于内燃机尾气净化系统的氨氧化催化剂及其制备方法
US11007514B2 (en) 2019-04-05 2021-05-18 Paccar Inc Ammonia facilitated cation loading of zeolite catalysts
US10906031B2 (en) 2019-04-05 2021-02-02 Paccar Inc Intra-crystalline binary catalysts and uses thereof
CN110694638B (zh) * 2019-10-14 2022-12-09 西安热工研究院有限公司 具有疏水性的改性低温scr活性焦催化剂及其制备方法
US10934918B1 (en) 2019-10-14 2021-03-02 Paccar Inc Combined urea hydrolysis and selective catalytic reduction for emissions control
CN110523432A (zh) * 2019-10-29 2019-12-03 山东国瓷功能材料股份有限公司 含铜分子筛Cu-CHA及其催化剂、应用
WO2023244279A1 (fr) 2022-06-17 2023-12-21 Basf Corporation Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac
WO2021126935A1 (fr) 2019-12-19 2021-06-24 Basf Corporation Système de traitement d'échappement pour véhicules alimentés par ammoniac
US11098629B2 (en) 2020-01-23 2021-08-24 Cnh Industrial America Llc Sensor shields for exhaust treatment systems of work vehicles
KR20210142496A (ko) * 2020-05-18 2021-11-25 현대자동차주식회사 선택적 촉매 환원법 촉매의 성능 평가용 표준물질, 이의 제조방법 및 이를 이용한 촉매의 성능 평가 방법
EP3919165A1 (fr) * 2020-06-03 2021-12-08 Johnson Matthey Public Limited Company Procédé de préparation d'un système catalytique
EP4171808A1 (fr) * 2020-06-25 2023-05-03 BASF Corporation Procédé de préparation d'une zéolite activée par du cuivre
RU2736265C1 (ru) * 2020-07-14 2020-11-12 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (Институт катализа СО РАН, ИК СО РАН) Способ приготовления медьсодержащих цеолитов и их применение
CN111871456A (zh) * 2020-08-20 2020-11-03 江苏博霖环保科技有限公司 一步法合成具有cha结构的含铜scr催化剂的制备方法
JP2023540136A (ja) 2020-09-08 2023-09-21 ビーエーエスエフ コーポレーション 排気ガス水素濃縮を介した触媒の性能強化
CN112360600A (zh) * 2020-10-30 2021-02-12 凯龙高科技股份有限公司 基于进气流量的内燃机测试台架用scr喷射控制系统
CN112360599A (zh) * 2020-10-30 2021-02-12 凯龙高科技股份有限公司 基于进气流量的发电内燃机用scr喷射控制系统
US11415034B2 (en) 2020-11-23 2022-08-16 Caterpillar Inc. Aftertreatment system and method of treating exhaust gases
CN112675637A (zh) * 2020-12-31 2021-04-20 蚌埠国威滤清器有限公司 一种蜂窝滤芯
CN113351244B (zh) * 2021-05-25 2022-09-16 吉林大学 一种cha分子筛及其制备方法、脱硝催化剂及其制备方法与应用
CN113457731B (zh) * 2021-07-06 2022-08-19 中国科学院过程工程研究所 一种分子筛催化无机纤维及其制备方法和除尘脱硝一体化应用
US12201966B2 (en) * 2021-09-14 2025-01-21 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas
EP4405096A1 (fr) 2021-09-24 2024-07-31 Umicore AG & Co. KG Article catalytique pour éliminer l'ammoniac de systèmes de post-traitement d'échappement diesel ayant un faible poids et un chauffage plus rapide
CN118265565A (zh) * 2021-12-20 2024-06-28 庄信万丰股份有限公司 压缩天然气燃烧和排气系统
CN115364856B (zh) * 2022-09-20 2023-11-07 西北工业大学 一种用于果糖加氢制甘露醇的催化剂及其制备方法

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE394541C (de) 1922-10-24 1924-04-22 Gutberlet & Co A Seitenziehmarke fuer Druckpressen, Falzmaschinen u. dgl.
US3346328A (en) 1967-03-30 1967-10-10 Francis J Sergeys Method of treating exhaust gases
US4220632A (en) 1974-09-10 1980-09-02 The United States Of America As Represented By The United States Department Of Energy Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia
JPS51147470A (en) 1975-06-12 1976-12-17 Toa Nenryo Kogyo Kk A process for catalytic reduction of nitrogen oxides
JPS5242489A (en) * 1976-05-20 1977-04-02 Toa Nenryo Kogyo Kk Nox-reduction catalyst and method of producing thereof
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
US4297328A (en) 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4567029A (en) 1983-07-15 1986-01-28 Union Carbide Corporation Crystalline metal aluminophosphates
JPS60125250A (ja) 1983-12-08 1985-07-04 Shiyuuichi Kagawa 窒素酸化物の接触分解触媒及びその使用方法
JPS60125250U (ja) 1984-02-03 1985-08-23 河合 秀俊 前側方確認用ミラ−装置
JPS61155181A (ja) 1984-12-28 1986-07-14 株式会社東芝 エレベ−タの位置検出装置
US4735927A (en) 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4735930A (en) 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4732584A (en) 1986-05-22 1988-03-22 Air Products And Chemicals, Inc. Process for the purification of permanent gases using chabazite adsorbents
JPS6351948A (ja) * 1986-08-21 1988-03-05 Mitsubishi Heavy Ind Ltd 排煙脱硝触媒
JPH0611381B2 (ja) 1986-10-17 1994-02-16 株式会社豊田中央研究所 排ガス浄化方法
US4861743A (en) 1987-11-25 1989-08-29 Uop Process for the production of molecular sieves
US4874590A (en) 1988-04-07 1989-10-17 Uop Catalytic reduction of nitrogen oxides
US4867954A (en) 1988-04-07 1989-09-19 Uop Catalytic reduction of nitrogen oxides
US5011667A (en) 1988-09-08 1991-04-30 Engelhard Corporation Self-bound sodium chabazite aggregates and methods for preparation thereof
DE68916186T2 (de) 1988-11-18 1995-01-26 Corning Inc Molekularsieb-Palladium-Platinum-Katalysator auf einem Substrat.
JP2557712B2 (ja) 1988-12-27 1996-11-27 株式会社豊田中央研究所 排気ガス浄化方法
FR2645141B1 (fr) 1989-03-31 1992-05-29 Elf France Procede de synthese de precurseurs de tamis moleculaires du type silicoaluminophosphate, precurseurs obtenus et leur application a l'obtention desdits tamis moleculaires
US5024981A (en) 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US4961917A (en) 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
JP2533371B2 (ja) 1989-05-01 1996-09-11 株式会社豊田中央研究所 排気ガス浄化用触媒
US5477014A (en) 1989-07-28 1995-12-19 Uop Muffler device for internal combustion engines
JPH04193710A (ja) * 1990-11-26 1992-07-13 Tosoh Corp 銅含有ゼオライトの製造方法
US5233117A (en) 1991-02-28 1993-08-03 Uop Methanol conversion processes using syocatalysts
JPH0557194A (ja) 1991-07-06 1993-03-09 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JP2887984B2 (ja) 1991-09-20 1999-05-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3303341B2 (ja) 1992-07-30 2002-07-22 三菱化学株式会社 ベータ型ゼオライトの製造方法
US6171556B1 (en) 1992-11-12 2001-01-09 Engelhard Corporation Method and apparatus for treating an engine exhaust gas stream
JP3321214B2 (ja) * 1992-11-16 2002-09-03 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒
EP0950800B1 (fr) 1992-11-19 2003-04-09 Engelhard Corporation Procédé et appareil permettant de traiter un courant de gaz d'échappement
US6248684B1 (en) 1992-11-19 2001-06-19 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
JPH06238131A (ja) * 1992-12-24 1994-08-30 Tosoh Corp 窒素酸化物の除去方法
EP0624393B1 (fr) 1993-05-10 2001-08-16 Sakai Chemical Industry Co., Ltd., Catalyseur pour la réduction catalytique d'oxydes d'azote
US5417949A (en) 1993-08-25 1995-05-23 Mobil Oil Corporation NOx abatement process
ES2132590T3 (es) 1993-11-09 1999-08-16 Union Carbide Chem Plastic Absorcion de mercaptanos.
JPH07155614A (ja) 1993-12-07 1995-06-20 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JPH07232035A (ja) 1994-02-21 1995-09-05 Toray Ind Inc 窒素酸化物の浄化方法および浄化装置
DE4416862A1 (de) 1994-05-13 1996-02-22 Basf Ag Expandierbare Styrolpolymerisate
US5589147A (en) * 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
US5529686A (en) 1994-07-15 1996-06-25 Minnesota Mining And Manufacturing Company Composite membranes for solid phase extractions and reactions
JP3375790B2 (ja) 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
JPH0938464A (ja) * 1995-07-27 1997-02-10 Idemitsu Kosan Co Ltd 排ガス浄化用触媒及びこれを使用した排ガスの浄化方法
US6133185A (en) 1995-11-09 2000-10-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH10180041A (ja) 1996-12-20 1998-07-07 Ngk Insulators Ltd 排ガス浄化用触媒及び排ガス浄化システム
JPH10272341A (ja) * 1997-03-28 1998-10-13 Sekiyu Sangyo Kasseika Center 窒素酸化物の除去方法
JPH11114413A (ja) 1997-10-09 1999-04-27 Ngk Insulators Ltd 排ガス浄化用吸着材
US6162415A (en) 1997-10-14 2000-12-19 Exxon Chemical Patents Inc. Synthesis of SAPO-44
JPH11179158A (ja) 1997-10-15 1999-07-06 Ngk Insulators Ltd 小細孔多孔体を含む自動車排ガス浄化用の吸着材及び吸着体、これを用いた排ガス浄化システム及び排ガス浄化方法
AU3765299A (en) 1998-05-07 1999-11-23 Engelhard Corporation Catalyzed hydrocarbon trap and method using the same
DE19820515A1 (de) * 1998-05-08 1999-11-11 Alsi Penta Zeolithe Gmbh Verfahren zur Herstellung eines Katalysators für die Reinigung von Abgasen, die Stickstoffoxide in Gegenwart von Sauerstoff und Wasser enthalten
JP3580163B2 (ja) 1998-06-04 2004-10-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6576203B2 (en) 1998-06-29 2003-06-10 Ngk Insulators, Ltd. Reformer
ES2194490T3 (es) 1998-07-29 2003-11-16 Exxonmobil Chem Patents Inc Tamices moleculares cristalinos.
EP1005904A3 (fr) 1998-10-30 2000-06-14 The Boc Group, Inc. Adsorbants et méthode de séparation par adsorption
DE19854502A1 (de) 1998-11-25 2000-05-31 Siemens Ag Katalysatorkörper und Verfahren zum Abbau von Stickoxiden
KR100293531B1 (ko) 1998-12-24 2001-10-26 윤덕용 이산화탄소로부터탄화수소생성을위한혼성촉매
US6316683B1 (en) 1999-06-07 2001-11-13 Exxonmobil Chemical Patents Inc. Protecting catalytic activity of a SAPO molecular sieve
US6503863B2 (en) 1999-06-07 2003-01-07 Exxonmobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
US6395674B1 (en) 1999-06-07 2002-05-28 Exxon Mobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
JP3350707B2 (ja) * 1999-08-02 2002-11-25 独立行政法人産業技術総合研究所 金属イオン交換ゼオライトを用いた第三級カルボン酸及びそのエステルの製造方法
JP4352516B2 (ja) 1999-08-03 2009-10-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
DK1129764T3 (da) 2000-03-01 2006-01-23 Umicore Ag & Co Kg Katalysator til rensning af udstödningsgas fra dieselmotorer og fremgangsmåde til dens fremstilling
US6606856B1 (en) 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
US6416732B1 (en) 2000-03-23 2002-07-09 Engelhard Corporation Method of forming aluminosilicate zeolites
DE10020100A1 (de) * 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Verfahren und Katalysator zur Reduktion von Stickoxiden
US6826906B2 (en) 2000-08-15 2004-12-07 Engelhard Corporation Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
JP3571642B2 (ja) 2000-11-16 2004-09-29 トヨタ自動車株式会社 排気浄化装置用の還元剤
DE10059520A1 (de) 2000-11-30 2001-05-17 Univ Karlsruhe Verfahren zur Abtrennung von Zeolith-Kristallen aus Flüssigkeiten
US6794141B2 (en) 2000-12-22 2004-09-21 Arcturus Bioscience, Inc. Nucleic acid amplification
US20020084223A1 (en) 2000-12-28 2002-07-04 Feimer Joseph L. Removal of sulfur from naphtha streams using high silica zeolites
EP2826553B1 (fr) 2001-01-05 2019-03-06 Air Products And Chemicals, Inc. Procédé de fabrication de stratifiés d'adsorbant pour l'adsorption modulée en pression à haute fréquence
WO2002065093A2 (fr) 2001-02-14 2002-08-22 Baylor College Of Medicine Procedes et compositions d'amplification d'arn
US20050096214A1 (en) 2001-03-01 2005-05-05 Janssen Marcel J. Silicoaluminophosphate molecular sieve
JP5189236B2 (ja) 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6914026B2 (en) 2001-09-07 2005-07-05 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
US7014827B2 (en) 2001-10-23 2006-03-21 Machteld Maria Mertens Synthesis of silicoaluminophosphates
US6696032B2 (en) 2001-11-29 2004-02-24 Exxonmobil Chemical Patents Inc. Process for manufacturing a silicoaluminophosphate molecular sieve
US6660682B2 (en) 2001-11-30 2003-12-09 Exxon Mobil Chemical Patents Inc. Method of synthesizing molecular sieves
US6685905B2 (en) 2001-12-21 2004-02-03 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieves
CN1282632C (zh) 2002-01-03 2006-11-01 埃克森美孚化学专利公司 酸催化剂的稳定方法
JP2003290629A (ja) 2002-04-02 2003-10-14 Nissan Motor Co Ltd 排ガス浄化システム
JP4680591B2 (ja) 2002-07-08 2011-05-11 ビーエーエスエフ コーポレーション 金属化合物の除去
JP2005514319A (ja) 2002-10-24 2005-05-19 エクソンモービル・ケミカル・パテンツ・インク 酸触媒の安定化
US6928806B2 (en) 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
DE10257113A1 (de) 2002-12-05 2004-06-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfalle mit beschichteter Faserlage
US7049261B2 (en) 2003-02-27 2006-05-23 General Motors Corporation Zeolite catalyst and preparation process for NOx reduction
JP4413520B2 (ja) 2003-04-17 2010-02-10 株式会社アイシーティー 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法
WO2004101749A2 (fr) 2003-05-09 2004-11-25 Genisphere, Inc. Procedes pour amplifier des sequences d'acides nucleiques par ligature decalee
WO2005000445A1 (fr) * 2003-06-10 2005-01-06 Ibiden Co., Ltd. Corps a structure a nid d'abeilles
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
CN1246223C (zh) 2003-09-03 2006-03-22 中国石油化工股份有限公司 合成硅磷铝分子筛的方法
US7094389B2 (en) 2003-12-23 2006-08-22 Exxonmobil Chemical Patents Inc. Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
CA2563802C (fr) * 2004-04-28 2011-01-04 Geo2 Technologies, Inc. Composites non-tisses et produits et procedes afferents
NL1026207C2 (nl) 2004-05-17 2005-11-21 Stichting Energie Werkwijze voor de decompositie van N2O, katalysator daarvoor en bereiding van deze katalysator.
WO2006006702A1 (fr) 2004-07-15 2006-01-19 Nikki-Universal Co., Ltd. Catalyseur utilisé pour purifier un gaz d’échappement contenant un composé azoté organique et procédé d’épuration d’un tel gaz d’échappement
WO2006015033A1 (fr) 2004-07-26 2006-02-09 Dow Global Technologies Inc. Filtre à suie catalysé amélioré
US7481983B2 (en) 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
JP2006089300A (ja) 2004-09-21 2006-04-06 Nippon Gas Gosei Kk Sapo−34の製造方法、および、プロパンを主成分とする液化石油ガスの製造方法
US20060115403A1 (en) 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
EP1837489B9 (fr) 2004-12-17 2012-09-12 Usui Kokusai Sangyo Kaisha Limited Moyen de traitement electrique pour gaz d'echappement de moteur diesel et son dispositif
US8580216B2 (en) 2005-02-28 2013-11-12 Ecs Holdings, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
WO2006103754A1 (fr) 2005-03-30 2006-10-05 Sued-Chemie Catalysts Japan, Inc. Catalyseur de decomposition de l'ammoniac et procede de decomposition de l'ammoniac au moyen dudit catalyseur
SG169976A1 (en) 2005-04-27 2011-04-29 Grace W R & Co Compositions and processes for reducing nox emissions during fluid catalytic cracking
JP4497484B2 (ja) * 2005-05-30 2010-07-07 国立大学法人東京工業大学 導電性マイエナイト型化合物の製造方法
US7550264B2 (en) 2005-06-10 2009-06-23 Datascope Investment Corporation Methods and kits for sense RNA synthesis
US7879295B2 (en) 2005-06-30 2011-02-01 General Electric Company Conversion system for reducing NOx emissions
EP1904229A4 (fr) 2005-07-06 2014-04-16 Heesung Catalysts Corp Catalyseur d'oxydation de nh3 et appareil pour traiter une emission ou un residu de nh3
US8048402B2 (en) 2005-08-18 2011-11-01 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins
US7211232B1 (en) * 2005-11-07 2007-05-01 Geo2 Technologies, Inc. Refractory exhaust filtering method and apparatus
US20070149385A1 (en) 2005-12-23 2007-06-28 Ke Liu Catalyst system for reducing nitrogen oxide emissions
US8383080B2 (en) 2006-06-09 2013-02-26 Exxonmobil Chemical Patents Inc. Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins
US7576031B2 (en) 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
JP5345530B2 (ja) 2006-07-08 2013-11-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 還元剤としてのアンモニアの使用下でリーンバーンエンジンの排ガス中の窒素酸化物を還元するための構造化scr触媒
CN101121532A (zh) 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 一种小孔磷硅铝分子筛的金属改性方法
WO2009057181A1 (fr) * 2007-10-29 2009-05-07 Shikoku Kakoh Co., Ltd. Film de conditionnement de nourriture
US8800268B2 (en) 2006-12-01 2014-08-12 Basf Corporation Zone coated filter, emission treatment systems and methods
KR20150038645A (ko) 2007-01-31 2015-04-08 바스프 카탈리스트 엘엘씨 다공벽 벌집을 포함하는 기체 촉매
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US7645718B2 (en) 2007-03-26 2010-01-12 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US10384162B2 (en) 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
CN102974390A (zh) 2007-04-26 2013-03-20 约翰逊马西有限公司 过渡金属/沸石scr催化剂
US8541331B2 (en) 2007-08-13 2013-09-24 Pq Corporation Iron-containing aluminosilicate zeolites and methods of making and using same
US8151558B2 (en) 2008-01-31 2012-04-10 Caterpillar Inc. Exhaust system implementing SCR and EGR
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
KR102180723B1 (ko) 2009-04-17 2020-11-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US9120056B2 (en) 2010-02-16 2015-09-01 Ford Global Technologies, Llc Catalyst assembly for treating engine exhaust
US8101146B2 (en) 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
US8789356B2 (en) * 2011-07-28 2014-07-29 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2117681A4 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2150328B1 (fr) * 2007-04-26 2015-03-11 Johnson Matthey PLC PROCÉDÉ ET SYSTÈME SCR UTILISANT CATALYSEUR ZÉOLITIQUE À BASE DE Cu/SAPO-34
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
US12064727B2 (en) 2007-04-26 2024-08-20 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
EP3300791B1 (fr) 2007-04-26 2019-03-27 Johnson Matthey Public Limited Company Catalyseurs scr de zéolithe/métal de transition
JP2019076895A (ja) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 遷移金属/ゼオライトscr触媒
EP2918330A1 (fr) * 2008-05-07 2015-09-16 Umicore Ag & Co. Kg Procédé de réduction d'oxyde d'azote dans des gaz d'échappement contenant des hydrocarbures à l'aide d'un catalyseur réducteur catalytique sélectif doté d'un tamis moléculaire
EP2898941A1 (fr) * 2008-05-07 2015-07-29 Umicore AG & Co. KG Dispositif pour le traitement des gaz d'échappement de moteurs diesel contenant des oxydes d'azote et des hydrocarbures
JP2012505744A (ja) * 2008-10-15 2012-03-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー アルミノシリケートゼオライト含有遷移金属
JP2012507400A (ja) * 2008-11-03 2012-03-29 ビー・エイ・エス・エフ、コーポレーション 選択的アンモニア酸化のための二元金属触媒
US10632423B2 (en) 2008-11-03 2020-04-28 Basf Corporation Bimetallic catalysts for selective ammonia oxidation
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
US11660585B2 (en) 2008-11-06 2023-05-30 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
KR101632766B1 (ko) * 2008-11-06 2016-06-22 바스프 코포레이션 낮은 알루미나에 대한 실리카 비를 갖는 캐버자이트 제올라이트 촉매
JP2012508096A (ja) * 2008-11-06 2012-04-05 ビー・エイ・エス・エフ、コーポレーション 低シリカ/アルミナ比を有する菱沸石ゼオライト触媒
KR20110082603A (ko) * 2008-11-06 2011-07-19 바스프 코포레이션 낮은 알루미나에 대한 실리카 비를 갖는 캐버자이트 제올라이트 촉매
WO2010054034A3 (fr) * 2008-11-06 2010-07-29 Basf Catalysts Llc Catalyseurs en zéolite de type chabazite présentant de faibles rapports de la silice à l'alumine
JP2016093809A (ja) * 2008-11-06 2016-05-26 ビーエーエスエフ コーポレーション 低シリカ/アルミナ比を有する菱沸石ゼオライト触媒
KR101735255B1 (ko) * 2008-11-06 2017-05-12 바스프 코포레이션 낮은 알루미나에 대한 실리카 비를 갖는 캐버자이트 제올라이트 촉매
EP2382031B2 (fr) 2008-12-24 2022-12-14 BASF Corporation Systèmes et procédés de traitement d'émissions employant un filtre rcs catalysé et un catalyseur rcs aval
EP2382031B1 (fr) 2008-12-24 2017-05-17 BASF Corporation Systèmes et procédés de traitement d'émissions employant un filtre rcs catalysé et un catalyseur rcs aval
JP2012518537A (ja) * 2009-02-26 2012-08-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 圧縮点火エンジンから排出される排ガスから微粒子状物質を集塵するためのフィルタ
US9261004B2 (en) 2009-02-26 2016-02-16 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
JP2012522636A (ja) * 2009-04-03 2012-09-27 ビーエーエスエフ コーポレーション アンモニア生成触媒およびscr触媒を備える排出処理システム
EP2995367A1 (fr) 2009-04-17 2016-03-16 Johnson Matthey Public Limited Company Catalyseurs durables a base de cuivre supportes par un tamis moleculaire a petits pores contre le vieillissement pauvre/riche pour la reduction d'oxydes d'azote
EP2698193A1 (fr) 2009-04-17 2014-02-19 Johnson Matthey Public Limited Company Purification de gaz d'echappement avec un catalyseur comprennant du cuivre supporté par un tami moléculaire des pores petites
WO2010121257A1 (fr) 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Catalyseurs à base de cuivre supportés par des tamis moléculaires à petits pores, durables vis-à-vis d'un vieillissement pauvre/riche pour la réduction d'oxyde d'azotes
JP2015164729A (ja) * 2009-04-17 2015-09-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company リーン/リッチエージングに対する耐久性を有する窒素酸化物の還元のための小細孔分子篩担持銅触媒
DE102010027883A1 (de) 2009-04-17 2011-03-31 Johnson Matthey Public Ltd., Co. Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess
US9802156B2 (en) 2009-04-17 2017-10-31 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
EP2995367B1 (fr) 2009-04-17 2017-12-20 Johnson Matthey Public Limited Company Catalyseurs durables a base de cuivre supportes par un tamis moleculaire a petits pores contre le vieillissement pauvre/riche pour la reduction d'oxydes d'azote
US7998443B2 (en) 2009-04-17 2011-08-16 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
EP4112168A1 (fr) 2009-04-17 2023-01-04 Johnson Matthey Public Limited Company Catalyseur durable à base de cuivre supporté par un tamis moléculaire à petits pores contre le vieillissement pauvre/riche pour la réduction d'oxydes d'azote
US8101147B2 (en) 2009-04-17 2012-01-24 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
EP2698192A1 (fr) 2009-04-17 2014-02-19 Johnson Matthey Public Limited Company Purification de gaz d'echappement avec un catalyseur comprennant du cuivre supporté par un tami moléculaire des pores petites
EP3456413A2 (fr) 2009-04-17 2019-03-20 Johnson Matthey Public Limited Company Catalyseur durable à base de cuivre supporté par un tamis moléculaire à petits pores contre le vieillissement pauvre/riche pour la réduction d'oxydes d'azote
JP2017024000A (ja) * 2010-04-19 2017-02-02 ビーエーエスエフ コーポレーション ガソリン微粒子フィルターを有するガソリンエンジン排出処理システム
JP2013534463A (ja) * 2010-06-02 2013-09-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ディーゼルパティキュレートフィルター
US9352277B2 (en) 2010-06-02 2016-05-31 Johnson Matthey Plc Diesel particulate filter
EP2736628B1 (fr) 2011-07-28 2018-04-11 Johnson Matthey Public Limited Company Filtres catalytiques à zones pour un traitement de gaz d'échappement
WO2013064887A3 (fr) * 2011-11-02 2013-07-04 Johnson Matthey Public Limited Company Filtre catalysé pour traiter les gaz d'échappement
RU2649005C2 (ru) * 2011-11-02 2018-03-29 Джонсон Мэтти Паблик Лимитед Компани Каталитический фильтр для обработки выхлопного газа
US9694322B2 (en) 2013-02-27 2017-07-04 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
US9999879B2 (en) 2013-05-30 2018-06-19 Corning Incorporated Formed ceramic substrate composition for catalyst integration
US10022672B2 (en) 2014-03-13 2018-07-17 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and SCR catalyst
US10532953B2 (en) 2016-10-24 2020-01-14 The Boeing Company Precursor material for additive manufacturing of low-density, high-porosity ceramic parts and methods of producing the same
EP3315478B1 (fr) * 2016-10-24 2019-12-04 The Boeing Company Matériau précurseur pour la fabrication additive de pièces en céramique et procédés de fabrication associés
US10889503B2 (en) 2016-12-02 2021-01-12 Heesung Catalysts Corporation Zeolite having specific ratio of divalent copper ions supported thereon, and preparation method therefor and catalyst composition comprising same
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
WO2023285829A1 (fr) * 2021-07-15 2023-01-19 Microtech Ceramics Limited Procédé d'imprégnation
WO2023001863A1 (fr) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Système de gaz d'échappement permettant de purifier des gaz d'échappement d'un moteur à essence
DE102021118802A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118803A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
WO2023001865A1 (fr) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Système de purification de gaz d'échappement pour purifier des gaz d'échappement de moteurs à essence
US12247505B2 (en) 2021-07-21 2025-03-11 Umicore Ag & Co. Kg Exhaust gas purification system for purifying exhaust gases of internal combustion engines
US12188392B2 (en) 2021-07-21 2025-01-07 Umicore Ag & Co. Kg Exhaust gas system for purifying exhaust gases of gasoline engine
DE102023101772A1 (de) 2022-04-11 2023-10-12 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen
WO2023198570A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à allumage par étincelle fonctionnant principalement de manière stœchiométrique, comprenant un catalyseur permettant de réduire les émissions d'ammoniac
WO2023198573A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à combustion interne à fonctionnement principalement stœchiométrique, comprenant un catalyseur pour réduire les émissions d'ammoniac
WO2023198577A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à combustion interne fonctionnant principalement de manière stœchiométrique, comprenant un catalyseur pour réduire les émissions d'ammoniac
WO2023198569A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Catalyseur de blocage d'ammoniac pour moteurs à combustion interne stoechiométrique
WO2023198574A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à combustion interne principalement à fonctionnement stœchiométrique, comprenant un catalyseur pour réduire les émissions d'ammoniac
WO2023198575A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à combustion interne à fonctionnement principalement stœchiométrique, comprenant un catalyseur pour réduire les émissions d'ammoniac
WO2023198572A1 (fr) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Système de gaz d'échappement pour moteurs à combustion interne principalement à fonctionnement stoechiométrique, comprenant un catalyseur pour réduire les émissions d'ammoniac
DE102023101763A1 (de) 2022-04-11 2023-10-12 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen
DE102023101768A1 (de) 2022-04-11 2023-10-12 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen
DE102023101779A1 (de) 2022-04-11 2023-10-12 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene Verbrennungsmotoren aufweisend einen Katalysator zur Verminderung der Ammoniakemissionen

Also Published As

Publication number Publication date
EP2653220A1 (fr) 2013-10-23
MY150864A (en) 2014-03-14
US20150132206A1 (en) 2015-05-14
ES2618416T3 (es) 2017-06-21
KR20100014604A (ko) 2010-02-10
EP2979758A1 (fr) 2016-02-03
JP6325024B2 (ja) 2018-05-16
JP2010519037A (ja) 2010-06-03
US20080202107A1 (en) 2008-08-28
EP2653220B1 (fr) 2016-12-07
US20110268635A1 (en) 2011-11-03
US10654031B2 (en) 2020-05-19
EP2656913B1 (fr) 2016-12-07
JP5965501B2 (ja) 2016-08-03
US20200261895A1 (en) 2020-08-20
US11529619B2 (en) 2022-12-20
US9138732B2 (en) 2015-09-22
CN101674876B (zh) 2012-07-04
EP2656913A1 (fr) 2013-10-30
US20130195731A1 (en) 2013-08-01
US20180056281A1 (en) 2018-03-01
RU2449834C2 (ru) 2012-05-10
EP2653219A1 (fr) 2013-10-23
US9656254B2 (en) 2017-05-23
US20160101412A1 (en) 2016-04-14
ES2618458T3 (es) 2017-06-21
JP2015131297A (ja) 2015-07-23
US20160101411A1 (en) 2016-04-14
EP2653219B1 (fr) 2016-12-07
KR101473030B1 (ko) 2014-12-16
US20150139897A1 (en) 2015-05-21
CN101674876A (zh) 2010-03-17
US8735311B2 (en) 2014-05-27
US9162218B2 (en) 2015-10-20
RU2009135862A (ru) 2011-04-10
US20230081351A1 (en) 2023-03-16
JP5592653B2 (ja) 2014-09-17
US20240091751A1 (en) 2024-03-21
US11845067B2 (en) 2023-12-19
PL2656913T3 (pl) 2017-09-29
WO2008106518A3 (fr) 2008-11-06
ES2618452T3 (es) 2017-06-21
EP2117681A4 (fr) 2010-09-22
US20140219879A1 (en) 2014-08-07
US7998423B2 (en) 2011-08-16
US9839905B2 (en) 2017-12-12
EP2117681A2 (fr) 2009-11-18
JP2017013057A (ja) 2017-01-19
US8119088B2 (en) 2012-02-21

Similar Documents

Publication Publication Date Title
US8119088B2 (en) SCR on low thermal mass filter substrates
JP7304383B2 (ja) バイメタルモレキュラーシーブ触媒
US11311867B2 (en) Copper and iron co-exchanged chabazite catalyst
KR101477338B1 (ko) 촉매된 scr 필터 및 하류 scr 촉매를 사용한 배출물 처리 시스템 및 방법
US8544260B2 (en) Emissions treatment systems and methods with catalyzed SCR filter and downstream SCR catalyst
US9032709B2 (en) Method of forming a catalyzed selective catalytic reduction filter
KR20110082603A (ko) 낮은 알루미나에 대한 실리카 비를 갖는 캐버자이트 제올라이트 촉매
WO2019180663A1 (fr) Matériau de zéolite cha et procédé de synthèse associé
CN114728802B (zh) 沸石合成
KR20230079420A (ko) 비스무트를 함유하는 디젤 산화 촉매

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013732.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08730850

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009551820

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008730850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097020120

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载