+

WO2008100163A1 - Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten - Google Patents

Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten Download PDF

Info

Publication number
WO2008100163A1
WO2008100163A1 PCT/PL2007/000007 PL2007000007W WO2008100163A1 WO 2008100163 A1 WO2008100163 A1 WO 2008100163A1 PL 2007000007 W PL2007000007 W PL 2007000007W WO 2008100163 A1 WO2008100163 A1 WO 2008100163A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
cellulose
nanoparticles
silver nanoparticles
fibers
Prior art date
Application number
PCT/PL2007/000007
Other languages
English (en)
Inventor
Ryszard Kozlowski
Bogumil Laszkiewicz
Piotr Kulpinski
Malgorzata Muzyczek
Piotr Czarnecki
Marcin Rubacha
Barbara Niekraszewicz
Jolanta Jedrzejczak
Bogdan Peczek
Original Assignee
Instytut Wlókien Naturalnych
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Wlókien Naturalnych filed Critical Instytut Wlókien Naturalnych
Priority to EP07709262.5A priority Critical patent/EP2126146B1/fr
Priority to PCT/PL2007/000007 priority patent/WO2008100163A1/fr
Publication of WO2008100163A1 publication Critical patent/WO2008100163A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • D06M11/65Salts of oxyacids of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the subjects of the invention are a method of manufacturing silver nanoparticles of 1 to 350 nm in size, a method of manufacturing cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, the use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers and a wound dressing that contains silver nanoparticles.
  • Silver nanoparticles are characterized by a considerable and selective biological activity due to which they are bactericidal, bacteriostatic and fungicidal.
  • Advantages of nanoparticle-sized silver are its very large active surface that enables its use at very low concentrations, no risk of increasing susceptibility to mycosis and non-causing potentially hazardous mutations of bacteria.
  • silver nanoparticles can be employed directly in the form of spinning solution of cellulose for the manufacture of cellulosic fibers and nanofibers of bactericidal properties.
  • Silver is a recognized therapeutic agent since antiquity.
  • the first inorganic and organic silver compounds such as nitrate (lunar caustic), bromide, lactate, acetate and formate, were synthesized.
  • Silver nitrate has been applied to the treatment of burns since 1935. Although the mechanism of silver role in biology of burn wound still requires a better recognition, three basic properties of silver, that are of importance to wound treatment, have been established: antimicrobial, anti-inflammatory and wound-healing stimulation [Demling R. H.: (2001) The beneficial effects of silver on the burn wound (basic concepts). The Role of Silver in Burn Wound. Management. Official Satellite Symposium of the 9 th Congress of the European Burns Association, Lyon, 13.15 Sep. 2001]. At concentrations of 0.5 - 1%, the drug affects Gram-positive and Gram-negative bacteria, does not trigger allergies and pain complaints, however, it does not permeate through necrotic scab, it colors skin and clothing brown.
  • the mechanism of antimicrobial action of silver ions consists in blocking of breathing cycle of a host at the cell level.
  • Silver ions after being bound to DNA of a bacterial cell, exert cytotoxic action by blocking electron transfer inside the cell.
  • Such a mechanism causes that, in practice, no resistance of bacteria to the action of silver ions is observed and the range of silver ion activity includes many Gram-positive and Gram-negative bacteria and fungi.
  • silver ions are not toxic to human cells, therefore they are a relatively safe drug, and reported undesired effects result from vehicles used in pharmaceutical preparations.
  • classical silver-containing preparations contained silver nitrate and sulfadiazine silver salt [Monafo W. W., Bessey P. Q.: Wound care, [in:] Herndon D. N. (ed.) Total burn care. W. B. Saunders Company Ltd., London (1996), pp. 88.97].
  • Destructive effect of silver nanoparticles on pathogens comes down to three recently found mechanisms.
  • the presence of silver results in a disordering their water balance.
  • the destructive effect of nanoparticles consists in causing a disturbance of electric potentials of cell membrane (the latter determine the transfer of substances and energy appropriate to life of bacteria), flagellae (locomotor serving for mechanical generation of transport of substances present in the aqueous habitat of bacteria), nucleus and mitochondria.
  • the destructive effect on viruses consists in depriving them of ability to catalytic decomposition of lipid-protein substrate and to receiving lipid-protein material from a carrier. In normal conditions, the decomposition results in virus development that is accompanied by the degradation of protein structure of cells and tissues.
  • Metallic silver in the form of nanoparticles is characterized by very high electric conduction, which causes that when it adheres to bacterial cell membrane, naturally occurring electric potential gradient, generated by living cell membrane of bacteria, becomes disturbed. This, in turn, brings about a significant disorder of living functions of cytoplasma membrane, resulting in disruption of the transfer of energy and substances.
  • bacteria cease to feed and excrete products of metabolism, thus being killed by toxins of their own.
  • Silver when contacted with flagellum immobilizes it, and when permeates to the interior, it causes disorder of mitochondria and cell nucleus. Bacteria are unable to create an effective defense ' mechanism against such an action. [MJ. Pike-Biegunski, Nanotechnology in medicine and pharmacy. Lekw> Polsce (in Polish), vol. 15 nr 9'05 (207)].
  • Nanoparticles destroy fungi by causing disorder of water balance, bacteria - by disturbing cell electric potentials, and viruses - by depriving of catalytic activity for the decomposition of lipid-protein substrate of a carrier.
  • the method of the preparation of silver nanoparticles described in Colloid Journal [v. 67 no.l, 2005 pp.7984], consists in dissolving silver nitrate in water and adding this solution to a solution containing tannin as a reducing agent, as well as gelatin, sodium carbonate, or poly( vinyl alcohol). Vigorous stirring of these solutions results in obtaining a stable aqueous suspension of silver nanoparticles sized 200- 800 nm.
  • Nanoparticles prepared by such a method are dispersed in a solution containing tannin, sodium carbonate or poly( vinyl alcohol), which limits the application of suspension of nanoparticles prepared in the such a way, because of their contamination with components of the mixture.
  • a process for preparing nano-Ag sol includes such steps as preparing the reverse-phase microemulsion from glucolipide-type surfactant, mixing the microemulsion containing reducer with the microemulsion containing silver nitrate, while high-speed stirring, preparing Ag nanoparticles, demulsifying, separating, washing, and distributing them in nonpolar solvent. Its advantages are high stability and high antibacterial effect.
  • the invention concerns a method for depositing nanoparticles of a metal or of an alloy of said metal, the metal being selected among the metals of columns VIIIB and IB of the periodic table, dispersed on a substrate, by chemical vapor deposition (CVD), from one or more precursors, wherein the deposition is carried out in the presence of a gas comprising over 50 vol. % of an oxidizing reactive gas.
  • CVD chemical vapor deposition
  • the invention also concerns a substrate comprising at least one surface whereon are dispersed nanoparticles of metal or metal alloy, for example, of silver or a silver alloy.
  • the invention further concerns the use of the substrate for catalyzing a chemical reaction.
  • the Ag nanoparticles with a particle diameter of 1 to 20 nm comprising the ammino complex of silver nitrate as a dispersing agent can be obtained by mixing silver nitrate, a reducing agent which does not show reducibility in an organic solvent and alkylamine in an organic solvent.
  • silver/polymer composite nanospheres obtained by depositing silver nanoparticles on the surface of polymeric support and a process for preparation thereof were presented.
  • the silver/polymer composite nanospheres according to the invention may not cause general discoloration and cohesion by colloidal silver and thereby can be used as a preservative having strong antimicrobial activity.
  • the silver/polymer composite nanospheres can preserve cosmetics during a long period, not using conventional preservatives. Accordingly, the invention relates to silver/polymer composite nanospheres to be used as a cosmetic preservative and to cosmetic compositions containing the same.
  • a process for preparing silver/polymer composite nanospheres which comprises the following steps of (1) dissolving monomer, crosslinking agent and initiator in a solvent to give a monomer solution; (2) emulsifying said monomer solution in the presence of dispersion stabilizer to give an emulsion ; (3) polymerizing said emulsion and then removing the solvent to collect porous polymer particles; and (4) depositing silver nanoparticles formed by reducing silver salts with a reducing agent, on the surface of the porous polymer particles collected in step (3).
  • the presented invention is aimed at delivering means for the development of a method of manufacturing metallic silver in the form of nanoparticles generated directly in an organic solvent that serves at the same time as an excellent solvent of cellulose and other polymers which could be used for obtaining bactericidal cellulosic fibers containing silver nanoparticles of long-lasting bactericidal effect and bactericidal activity being unchanged after multiple washings.
  • the subject of the present invention is a method of manufacturing silver nanoparticles as a result of reduction of water-soluble silver salts, characterized in that the aqueous solution of a silver salt is subjected to a reaction with aqueous solution of N-methylmorpholine N-oxide at a molar ratio of N-methylmorpholine oxide to silver ranging from 10 "6 to 0.5, at 0 - 130°C, for 5 seconds to 10 minutes, followed by the cooling of the reaction mixture containing nanoparticles of silver and separating the precipitate of silver nanoparticles and/or using the mixture directly as a solvent for cellulose in the process of the manufacture of bactericidal cellulose fibers.
  • the silver salt soluble in an aqueous solution of N-methylmorpholine N- oxide is silver nitrate.
  • silver nanoparticles of 1 - 350 nm in size are obtained.
  • the next subject of invention is a method of manufacturing cellulose fibers that contain silver nanoparticles, characterized in that the aqueous solution of silver salt is subjected to a reaction with an aqueous solution of N-methylmorpholine N-oxide at a molar ratio of silver to N-methylmorpholine oxide from 10 "6 to 0.5, at a temperature of 0 - 130°C, for 5 seconds to 10 minutes, followed by the cooling of the reaction mixture containing nanoparticles of silver and separating the precipitate of silver nanoparticles and/or using the mixture directly as a solvent for cellulose in the process of the manufacture of bactericidal cellulosic fibers.
  • the solution of N-methylmorpholine N-oxide is supplemented by cellulose, a cellulose mass stabilizer and possibly substances applied as fiber modifiers, wherein the temperature range is from 0 - 130°C, followed by the separation of silver nanoparticles from the reaction mixture that contains these nanoparticles or by a direct formation of cellulose fibers after evaporating a portion of the water from the mixture, performed in such a way that the cellulose content of the mixture exceeds 5%.
  • the silver salt soluble in the aqueous solution of N-methylmorpholine N- oxide is silver nitrate.
  • the next subject of invention are cellulose fibers, characterized in that they contain evenly distributed silver nanoparticles of 1 — 350 nm in size and their content falls in the range from 0.001 to 10%, and the above fibers are bacteriostatic, bactericidal and fungicidal and exhibit a bacteriostatic activity of 0.0 - 5.2 and bactericidal activity of 0.0 - 3.3 against Gram-positive bacteria, and bacteriostatic activity of 0.5 - 6.9 and bactericidal activity of 0.0 - 3.9 against Gram-negative bacteria and they are characterized by tenacity falling in the range of 15-33 cN/tex and ultimate elongation at break falling in the range of 6-11%.
  • the cellulose content in silver nanoparticle-containing spinning solution is above 5%.
  • the next subject of invention are cellulose nano fibers, characterized in that they contain silver nanoparticles sized 1 - 350 nm, and that these fibers are bacteriostatic, bactericidal and fungicidal and exhibit a bacteriostatic activity of 0.0 - 5.2 and bactericidal activity of 0.0 ⁇ — 3.3 against Gram-positive bacteria, and bacteriostatic activity of 0.5 — 6.9 and bactericidal activity of 0.0 - 3.9 against Gram-negative bacteria.
  • the cellulose content in silver nanoparticle-containing spinning solution is below 5%.
  • the next subject of invention is a method of manufacturing silver nanoparticle- containing cellulose nanofibers, characterized in that the aqueous solution of silver salt is subjected to the reaction with aqueous solution of N-methylmorpholine N-oxide at the mole ratio of silver to N-methylmorpholine oxide from 10 '6 to 0.5, at temperature of 0 - 130°C, for 5 seconds to 10 minutes, followed by cooling the reaction mixture that contains nanoparticles of silver and separating the precipitate of silver nanoparticles and/or using the mixture directly as a cellulose solvent in the process of the manufacture of bactericidal cellulose fibers.
  • the solution of N-methylmorpholine N-oxide is supplemented by cellulose, cellulose mass stabilizer and possibly substances applied as fiber modifiers, wherein the temperature range is from 0 - 130°C, followed by the separation of silver nanoparticles from the reaction mixture that contains these nanoparticles or by a direct formation of cellulose fibers after the evaporation of a portion of the water from the mixture, performed in such a way that cellulose content in the mixture is below 5%.
  • the silver salt soluble in the aqueous solution of N-methylmorpholine N- oxide is silver nitrate.
  • the cellulose fibers containing silver nanoparticles sized from 1 to 350 nm are obtained.
  • the next subject of invention is an use of silver nanoparticles formed as a result of reduction of silver salts soluble in aqueous solution of N-methylmorpholine N-oxide, preferentially silver nitrate, where the aqueous solution of a silver salt, preferentially silver nitrate, is subjected to a reaction with an aqueous solution of N-methylmorpholine N-oxide, preferentially at a concentration of 50-60%, supplemented by cellulose, a cellulose mass stabilizer and possibly substances applied as fiber modifiers, at molar ratio of silver to N-methylmorpholine oxide from 10 "6 to 0.5, at temperature of 0 - 130°C; excess water is evaporated off under a reduced pressure for 60 to 80 minutes and the solution obtained in such a way is used for the manufacture of bactericidal cellulose fibers and nanofibers.
  • the silver nanoparticles are separated from the reaction mixture that contains these nanoparticles or, after the evaporation of a portion of the water from the above mixture, the latter is used for the direct formation of bactericidal cellulose fibers when the cellulose content in the mixture is above 5% or bactericidal cellulose nanofibers when the cellulose content in the said solution is below 5%.
  • the next subject of invention is a wound dressing for external use, made of silver nanoparticle-containing cellulose fibers and/or nanofibers, characterized in that the dressing consists of cellulose fibers and/or nanofibers of a width of up to 10 cm, in which the cellulose content is at least 5% and silver nanoparticles are 1 - 350 nm in size and their content is in the range of 0.001 do 10%, wherein also the dressing is bacteriostatic, bactericidal and fungicidal.
  • NMMO N-methylmorpholine-N-oxide
  • AgNO 3 silver nitrate
  • fibers were formed from the residue at 120°C using an 18-orifice spinneret.
  • the fibers formed have shown bacteriostatic activity of 6.3 and bactericidal activity of 3.7 against E. coli and bacteriostatic activity of 5.2 and bactericidal activity of 3.3 against S . aureus.
  • the fibers were characterized by tenacity of 31 cN/tex and ultimate elongation at break of 8%.
  • fibers were formed at 120°C using an 18-orifice spinneret.
  • the fibers have shown bacteriostatic activity of 6.9 and bactericidal activity of 3.9 against E. coli and bacteriostatic activity of 2.6 and bactericidal activity of 0.85 against S. aureus.
  • the fibers were characterized by tenacity of 30 cN/tex and ultimate elongation at break of 7%.
  • the size of silver particles was determines as in example 1.
  • the obtained mixture was heated at 105 0 C and used for the formation at voltage of 15 kV of nanofibers of 120 nm in diameter that characterized by water retention of 1250%.
  • the fibers have shown bacteriostatic activity of 2.1 and bactericidal activity of 0.72 against E. coli.
  • NMMO-water-cellulose-silver nanoparticles-nanosilica mixture was obtained from which nanofibers were formed at 12O 0 C using an 18-orifice spinneret.
  • the obtained fibers were characterized by tenacity of 29 cN/tex and ultimate elongation at break of 10%. They have shown bacteriostatic activity of 6.3 and bactericidal activity of 3.7 against E. coli and bacteriostatic activity of 5.2 and bactericidal activity of 3.3 against S . aureus.
  • the obtained fibers were characterized by tenacity of 28 cN/tex and ultimate elongation at break of 11%. They have shown bacteriostatic activity of 6.8 and bactericidal activity of 3.7 against E. coli and bacteriostatic activity of 2.9 and bactericidal activity of 1.9 against S . aureus.
  • NMMO-celMose-silver nanoparticles-nanosilica mixture was obtained from which nanofibers were formed at 117 0 C using an 18-orif ⁇ ce spinneret.
  • the obtained fibers were characterized by tenacity of 32 cN/tex and ultimate elongation at break of 11%. They have shown bacteriostatic activity of 6.2 and bactericidal activity of 2.9 against E. coli and bacteriostatic activity of 2.4 and bactericidal activity of 1.4 against S . aureus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention se rapporte à un procédé de fabrication de nanoparticules d'argent d'une taille comprise entre 1 et 350 nm, à un procédé de fabrication de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, à des fibres et des nanofibres contenant des particules d'argent, à l'utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques et à un pansement contenant des nanoparticules d'argent. Les nanoparticules d'argent sont caractérisées par une activité biologique considérable et sélective qui leur confère des propriétés bactéricides, bactériostatiques et fongicides. Les nanoparticules d'argent ont l'avantage de posséder une très grande surface active, ce qui permet de les utiliser à de très faibles concentrations, sans risque d'augmenter la susceptibilité aux mycoses ni de causer des mutations bactériennes potentiellement dangereuses. Selon l'invention, on peut employer les nanoparticules d'argent directement sous la forme d'une solution de filage de cellulose dans la fabrication de fibres et nanofibres cellulosiques aux propriétés bactéricides. On obtient lesdites nanoparticules d'argent en procédant à la réduction de sels d'argent hydrosolubles en présence d'une solution aqueuse de N-méthylomorpholine-N-oxyde.
PCT/PL2007/000007 2007-02-13 2007-02-13 Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten WO2008100163A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07709262.5A EP2126146B1 (fr) 2007-02-13 2007-02-13 Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement contenant de nanoparticules d`argent.
PCT/PL2007/000007 WO2008100163A1 (fr) 2007-02-13 2007-02-13 Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/PL2007/000007 WO2008100163A1 (fr) 2007-02-13 2007-02-13 Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten

Publications (1)

Publication Number Publication Date
WO2008100163A1 true WO2008100163A1 (fr) 2008-08-21

Family

ID=38608751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2007/000007 WO2008100163A1 (fr) 2007-02-13 2007-02-13 Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement conten

Country Status (2)

Country Link
EP (1) EP2126146B1 (fr)
WO (1) WO2008100163A1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132798A1 (fr) * 2008-04-30 2009-11-05 Politecnico Di Milano Procédé de fabrication de fibres naturelles ou synthétiques contenant des nanoparticules d’argent
EP2230321A1 (fr) * 2009-03-20 2010-09-22 Unilever PLC Procédé pour la préparation de nanoparticules métallique avec support
EP2103364B1 (fr) * 2006-12-20 2013-02-13 Servicios Administrativos Peñoles SA de CV Procédé de fabrication d'argent métallique nanométrique, monodispersé et stable et produit obtenu
EP2636775A4 (fr) * 2010-11-03 2014-04-02 Guangdong Baihe Medical Technologies Ltd Fibre antimicrobienne, tissu et pansement contenant du nano-métal et son procédé de préparation
CN103785857A (zh) * 2014-02-25 2014-05-14 南开大学 一种用于抗菌敷料的纳米银及制备方法
CN105908368A (zh) * 2016-06-23 2016-08-31 北京石油化工学院 一种抗菌无纺布及其制备方法与应用
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
TWI551739B (zh) * 2015-05-11 2016-10-01 Acelon Chem & Fiber Corp 製備奈米銀掺混天然纖維素紡黏不織布的方法
CN106283241A (zh) * 2015-05-11 2017-01-04 聚隆纤维股份有限公司 制备纳米银掺混天然纤维素纤维的方法
TWI565853B (zh) * 2015-05-11 2017-01-11 Acelon Chem & Fiber Corp Preparation of nano - silver blended natural cellulose melt - blown non - woven
US10043598B2 (en) * 2011-08-01 2018-08-07 National Institute For Materials Science Process for precipitation of conducting polymer/metal composites, and conducting polymer/metal composites
US10278395B2 (en) 2013-03-11 2019-05-07 North Carolina State University Functionalized environmentally benign nanoparticles
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法
US10870741B2 (en) 2016-04-06 2020-12-22 Novel Technologies Holdings Limited Silver containing antimicrobial materials
CN113209385A (zh) * 2021-04-21 2021-08-06 华南理工大学 一种纳米硒复合纤维组织工程支架及其制备方法
CN113662008A (zh) * 2021-06-30 2021-11-19 南京凯创协同纳米技术有限公司 一种常温固化型微纳锌长效抗菌防霉剂的制备方法
CN116036344A (zh) * 2023-02-14 2023-05-02 中国人民解放军总医院第一医学中心 一种抗感染敷料及其制备方法
CN116640339A (zh) * 2023-06-19 2023-08-25 广东裕泰实业集团有限公司 一种抗菌防霉塑料薄膜及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2619704C1 (ru) * 2016-05-20 2017-05-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Способ получения текстильного материала с антибактериальными свойствами для спецодежды

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905289A2 (fr) * 1997-09-30 1999-03-31 Kenji Nakamura Fibre de cellulose antibactérienne et procédé pour sa production
WO2003018166A1 (fr) * 2001-08-20 2003-03-06 Zimmer Aktiengesellschaft Procede de retrait de metaux lourds contenus dans des substances comprenant des metaux lourds au moyen d'un corps moule en lyocell, corps moule cellulosique ayant adsorbe des metaux lourds et son utilisation
WO2003080911A2 (fr) * 2002-03-27 2003-10-02 Cc Technology Investment Co., Ltd Fil antimicrobien comprenant des nanoparticules d'argent et ses procedes de fabrication
KR20040058866A (ko) 2002-12-27 2004-07-05 엘지전자 주식회사 은을 함유한 치약
WO2004081267A1 (fr) 2003-03-10 2004-09-23 Politechnika Lódzka Procede pour produire des fibres de cellulose modifiees
KR20040085132A (ko) 2004-09-14 2004-10-07 이현숙 진주분말과 나노 은이 함유된 기능성 비누 및 그 제조방법
US20050008861A1 (en) 2003-07-08 2005-01-13 Nanoproducts Corporation Silver comprising nanoparticles and related nanotechnology
WO2005077329A1 (fr) 2004-02-11 2005-08-25 Amorepacific Corporation Nanocomposites colloidaux d'argent/polymere, procede de fabrication et compositions cosmetiques les renfermant
GB2412083A (en) * 2004-03-19 2005-09-21 Tencel Ltd Making anti-microbial lyocell fibres containing silver and phosphate
US20060045916A1 (en) 2004-08-31 2006-03-02 The Curators Of The University Of Missouri Methods for producing silver nanoparticles
CN1759962A (zh) 2005-11-11 2006-04-19 华东理工大学 一种纳米银溶胶的制备方法
JP2006118010A (ja) 2004-10-22 2006-05-11 Toda Kogyo Corp Agナノ粒子及びその製造方法、Agナノ粒子の分散溶液
KR100588763B1 (ko) 2005-03-07 2006-06-09 이정훈 은나노입자-함유 항균섬유의 제조방법 및 제조된 항균섬유
WO2006070130A2 (fr) 2004-12-23 2006-07-06 Commissariat A L'energie Atomique Procede de preparation de nanoparticules d'un metal ou d'un alliage de metaux, dispersees sur un substrat, par depot chimique en phase vapeur
US20060202382A1 (en) 2005-03-09 2006-09-14 Taiwan Textile Research Institute Method of fabricating nano-silver fibers

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905289A2 (fr) * 1997-09-30 1999-03-31 Kenji Nakamura Fibre de cellulose antibactérienne et procédé pour sa production
WO2003018166A1 (fr) * 2001-08-20 2003-03-06 Zimmer Aktiengesellschaft Procede de retrait de metaux lourds contenus dans des substances comprenant des metaux lourds au moyen d'un corps moule en lyocell, corps moule cellulosique ayant adsorbe des metaux lourds et son utilisation
WO2003080911A2 (fr) * 2002-03-27 2003-10-02 Cc Technology Investment Co., Ltd Fil antimicrobien comprenant des nanoparticules d'argent et ses procedes de fabrication
US6979491B2 (en) 2002-03-27 2005-12-27 Cc Technology Investment Co., Ltd. Antimicrobial yarn having nanosilver particles and methods for manufacturing the same
KR20040058866A (ko) 2002-12-27 2004-07-05 엘지전자 주식회사 은을 함유한 치약
WO2004081267A1 (fr) 2003-03-10 2004-09-23 Politechnika Lódzka Procede pour produire des fibres de cellulose modifiees
US20050008861A1 (en) 2003-07-08 2005-01-13 Nanoproducts Corporation Silver comprising nanoparticles and related nanotechnology
WO2005077329A1 (fr) 2004-02-11 2005-08-25 Amorepacific Corporation Nanocomposites colloidaux d'argent/polymere, procede de fabrication et compositions cosmetiques les renfermant
GB2412083A (en) * 2004-03-19 2005-09-21 Tencel Ltd Making anti-microbial lyocell fibres containing silver and phosphate
US20060045916A1 (en) 2004-08-31 2006-03-02 The Curators Of The University Of Missouri Methods for producing silver nanoparticles
KR20040085132A (ko) 2004-09-14 2004-10-07 이현숙 진주분말과 나노 은이 함유된 기능성 비누 및 그 제조방법
JP2006118010A (ja) 2004-10-22 2006-05-11 Toda Kogyo Corp Agナノ粒子及びその製造方法、Agナノ粒子の分散溶液
WO2006070130A2 (fr) 2004-12-23 2006-07-06 Commissariat A L'energie Atomique Procede de preparation de nanoparticules d'un metal ou d'un alliage de metaux, dispersees sur un substrat, par depot chimique en phase vapeur
KR100588763B1 (ko) 2005-03-07 2006-06-09 이정훈 은나노입자-함유 항균섬유의 제조방법 및 제조된 항균섬유
US20060202382A1 (en) 2005-03-09 2006-09-14 Taiwan Textile Research Institute Method of fabricating nano-silver fibers
CN1759962A (zh) 2005-11-11 2006-04-19 华东理工大学 一种纳米银溶胶的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"The method of the preparation of silver nanoparticles", COLLOID JOURNAL, vol. 67, no. L, 2005, pages 7984
BIEGUNSKI: "Nanotechnology in medicine and pharmacy", LEK W POLSCE (IN POLISH), vol. 15
DEMLING R. H.: "Management", 13 September 2001, article "The beneficial effects of silver on the burn wound (basic concepts). The Role of Silver in Burn Wound"
M.J. PIKE-BIEGUNSKI, NANOTECHNOLOGY IN MEDICINE AND PHARMACY. LEK W POLSCE (IN POLISH), vol. 15, no. 9'05, pages 207
M.J. PIKE-BIEGUNSKI: "Nanotechnology in medicine and pharmacy", LEK W POLSCE (IN POLISH), vol. 15, no. 9'05, pages 207
MONAFO W. W.; BESSEY P. Q.: "Total burn care", 1996, W. B. SAUNDERS COMPANY LTD., article "Wound care", pages: 88.97

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103364B1 (fr) * 2006-12-20 2013-02-13 Servicios Administrativos Peñoles SA de CV Procédé de fabrication d'argent métallique nanométrique, monodispersé et stable et produit obtenu
US9371572B2 (en) 2006-12-20 2016-06-21 Servicios Administrativos Penoles S.A. De C.V. Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
WO2009132798A1 (fr) * 2008-04-30 2009-11-05 Politecnico Di Milano Procédé de fabrication de fibres naturelles ou synthétiques contenant des nanoparticules d’argent
EP2230321A1 (fr) * 2009-03-20 2010-09-22 Unilever PLC Procédé pour la préparation de nanoparticules métallique avec support
EP2636775A4 (fr) * 2010-11-03 2014-04-02 Guangdong Baihe Medical Technologies Ltd Fibre antimicrobienne, tissu et pansement contenant du nano-métal et son procédé de préparation
US10043598B2 (en) * 2011-08-01 2018-08-07 National Institute For Materials Science Process for precipitation of conducting polymer/metal composites, and conducting polymer/metal composites
US9440001B2 (en) 2013-03-06 2016-09-13 Specialty Fibres and Materials Limited Absorbent materials
US10278395B2 (en) 2013-03-11 2019-05-07 North Carolina State University Functionalized environmentally benign nanoparticles
CN103785857A (zh) * 2014-02-25 2014-05-14 南开大学 一种用于抗菌敷料的纳米银及制备方法
TWI565853B (zh) * 2015-05-11 2017-01-11 Acelon Chem & Fiber Corp Preparation of nano - silver blended natural cellulose melt - blown non - woven
CN106283241A (zh) * 2015-05-11 2017-01-04 聚隆纤维股份有限公司 制备纳米银掺混天然纤维素纤维的方法
TWI551739B (zh) * 2015-05-11 2016-10-01 Acelon Chem & Fiber Corp 製備奈米銀掺混天然纖維素紡黏不織布的方法
US10870741B2 (en) 2016-04-06 2020-12-22 Novel Technologies Holdings Limited Silver containing antimicrobial materials
CN105908368A (zh) * 2016-06-23 2016-08-31 北京石油化工学院 一种抗菌无纺布及其制备方法与应用
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法
CN113209385A (zh) * 2021-04-21 2021-08-06 华南理工大学 一种纳米硒复合纤维组织工程支架及其制备方法
CN113662008A (zh) * 2021-06-30 2021-11-19 南京凯创协同纳米技术有限公司 一种常温固化型微纳锌长效抗菌防霉剂的制备方法
CN113662008B (zh) * 2021-06-30 2022-08-02 南京凯创协同纳米技术有限公司 一种常温固化型微纳锌长效抗菌防霉剂的制备方法
CN116036344A (zh) * 2023-02-14 2023-05-02 中国人民解放军总医院第一医学中心 一种抗感染敷料及其制备方法
CN116036344B (zh) * 2023-02-14 2023-09-12 中国人民解放军总医院第一医学中心 一种抗感染敷料及其制备方法
CN116640339A (zh) * 2023-06-19 2023-08-25 广东裕泰实业集团有限公司 一种抗菌防霉塑料薄膜及其制备方法
CN116640339B (zh) * 2023-06-19 2024-03-08 广东裕泰实业集团有限公司 一种抗菌防霉塑料薄膜及其制备方法

Also Published As

Publication number Publication date
EP2126146B1 (fr) 2015-07-15
EP2126146A1 (fr) 2009-12-02

Similar Documents

Publication Publication Date Title
EP2126146B1 (fr) Procédé de fabrication de nanoparticules d'argent, de fibres et de nanofibres cellulosiques contenant des nanoparticules d'argent, fibres et nanofibres contenant des nanoparticules d'argent, utilisation de nanoparticules d'argent dans la fabrication de fibres et de nanofibres cellulosiques, et pansement contenant de nanoparticules d`argent.
Lee et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity
Abdelgawad et al. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems
Kahdestani et al. Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel
Thenmozhi et al. Electrospun nanofibers: New generation materials for advanced applications
Dastjerdi et al. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties
Abdel-Mohsen et al. A novel in situ silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations
US9249334B2 (en) Silver nanoplate compositions and methods
Zille et al. Application of nanotechnology in antimicrobial finishing of biomedical textiles
El-Aassar et al. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing
EA012635B1 (ru) Способ изготовления слоя нановолокон
CN105776179B (zh) 一种水溶性季铵盐化碳纳米球及其制备方法与应用
Gnanasekar et al. Natural honeycomb flavone chrysin (5, 7-dihydroxyflavone)-reduced graphene oxide nanosheets fabrication for improved bactericidal and skin regeneration
CN106139224A (zh) 一种含纳米金抗菌敷料及其制备方法
Song et al. Thermally responsive copper alginate/nano ZnO/quaternary ammonium chitosan triple antimicrobial fiber
Su et al. Low-temperature trigger nitric oxide nanogenerators for anti-biofilm and wound healing
Evdokimova et al. Fast and simple approach for production of antibacterial nanocellulose/cuprous oxide hybrid films
Branch et al. Electrospun ZnO and GSH co-loaded PU/CS nanofibrous films as potential antibacterial wound dressings
Ergashovich et al. Formation, structure, and morphology of nanofiber mat on the base sodium‐carboxymethylcellulose/polyvinyl‐alcohol/silver nanoparticles composite
Chen et al. Influences of processing and sterilizing strategies on reduced silver nanoparticles in poly (vinyl alcohol) electrospun membranes: Optimization and preservation of antibacterial activity
Holubnycha et al. Effect of ultrasound treatment on chitosan-silver nanoparticles antimicrobial activity
CN115671280B (zh) 一种铜源异质结纳米抗菌剂及其制备方法和应用
Samanta et al. Nano-silver stabilized Pickering emulsions and their antimicrobial electrospun fibrous matrices
GB2600143A (en) Nanoparticles for use in anti pathogenic applications
Moreno et al. Modulation of bactericidal action in polymer nanocomposites: Light-tuned Ag+ release from electrospun PMMA fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07709262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007709262

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载