WO2008153591A1 - Système de conversion d'énergie vectorielle omar - Google Patents
Système de conversion d'énergie vectorielle omar Download PDFInfo
- Publication number
- WO2008153591A1 WO2008153591A1 PCT/US2007/083865 US2007083865W WO2008153591A1 WO 2008153591 A1 WO2008153591 A1 WO 2008153591A1 US 2007083865 W US2007083865 W US 2007083865W WO 2008153591 A1 WO2008153591 A1 WO 2008153591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- integral
- mechanic
- gaseous fluid
- electrical conversion
- movement absorption
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 15
- MCNQUWLLXZZZAC-UHFFFAOYSA-N 4-cyano-1-(2,4-dichlorophenyl)-5-(4-methoxyphenyl)-n-piperidin-1-ylpyrazole-3-carboxamide Chemical compound C1=CC(OC)=CC=C1C1=C(C#N)C(C(=O)NN2CCCCC2)=NN1C1=CC=C(Cl)C=C1Cl MCNQUWLLXZZZAC-UHFFFAOYSA-N 0.000 title 1
- 230000033001 locomotion Effects 0.000 claims abstract description 44
- 238000010521 absorption reaction Methods 0.000 claims abstract description 33
- 238000003860 storage Methods 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims description 15
- 230000005611 electricity Effects 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 230000006837 decompression Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000000153 supplemental effect Effects 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- This invention relates generally to the transformation of the kinetic energy into electrical power, more specifically to a method and system for the generation of electrical power by storing compressed air associated to the movement of objects or bodies and the usage of said stored compressed air for the actuation of a motor/generator set.
- Oil refineries can pose huge threats to the environment.
- Harvesting, processing, and distributing fossil fuels create problems such as oil spills, massive fires, soil poisoning and decrease air quality.
- offshore oil drilling may create a hazard for aquatic organisms and big spills can affect miles and miles of shorelines.
- Coal mining methods, particularly mountaintop removal and strip mining, have been causes for concern.
- Transportation of coal requires the use of diesel-powered locomotives, while crude oil is typically transported by tanker ships. Each of these requires the combustion of fossil fuels.
- environmental-awareness groups are encouraging consumers to shy away of oil, coal and nuclear generated power in favor of cleaner alternatives such as sun-powered cells and windmills. Windmills while a clean alternative based on a free resource, it is dependent of weather behavior to a point at which if air currents are non -existent, power will not be generated.
- One prior art attempt provides a regenerative heat storage compressed air power system wherein the heat of compression is stored underground in a compressed air storage cavern when it is cooled and thereafter stored in an air storage cavern. When energy is needed, the air is drawn back through the heat storage cavern where it is heated and then applied to assist in the heating of gases passing between the turbines.
- Another prior art attempt provides a method of electricity production wherein a plurality of windmills turn air compressors and the air is stored in a storage tank sealed by water and is available for work such as driving an air turbine to operate an electric generator. It is also known to use a wind operated heating system wherein wind, through a cyclic control device, communicates with heat storing liquid in pipes stored in a thermally insulated tank.
- the fluid in the pipes begins to oscillate in a motion which produces viscous dissipation and heat which may be distributed to an enclosure.
- the prior art also provides a heating and cooling system capable of using solar heat.
- a tank of liquid is heated by solar heat which in turn warms stones in a container.
- a blower circulates air from a space to be heated through a filter into the container where the stones warm the air. The warmed air is then circulated back to the space to be heated.
- the invention comprises a movement absorption element that selectively directs air into a pipeline system whenever said movement absorption element is actuated.
- the pipeline system is interconnected to a compressing device which facilitates the flow of air into an air storage tank.
- a motor/generator set is connected to the air storage tank through the pipeline system. The motor/generator set is configured to provide electrical power to an exterior load when said motor is actuated by the compressed air stored in the storage tank.
- V is the volume [m3] of the vessel containing n moles of gas, n is the amount of substance of gas [mol],
- R is the gas constant [8.314472 m3 Pa K-l mol-1],
- T is the temperature in kelvins [K].
- R The ideal gas constant (R) depends on the units used in the formula. The value given above, 8.314472, is for the SI units of pascal cubic meters per mole per kelvin, which is equal to joule per mole per kelvin (J mol-1 K-I ). Another value for R is 0.082057 L atm mol-l K-1)
- R has a different value for each different unit of pressure and the other quantities used.
- the compressed air electrical power generator can be of great use to a small entity as the air that is compressed and later stored may not only come from the power generated by windmills or water currents, but from a foot operated pedal or a car weight-operated apparatus installed on a driveway or road.
- the compressed air is stored for later use and may be use as a back-up way for powering a house that is primarily served by the local electricity supply company.
- FIG. 1 shows an energy conversion system according to a preferred embodiment of invention.
- FIG. 2 shows a macro diagram of the energy conversion system according to a preferred embodiment of invention.
- Fig. 1 shows a preferred embodiment of the present invention.
- the system of the present invention comprises a movement absorption element 1 that generates a movement every time a force is applied against any of its surfaces.
- the movement absorption element 1 experiences a linear compression/decompression effect every time a force is applied against one of its surfaces.
- at least one movement absorption element 1 is adapted to be position below a street road 7. When a vehicle 8 travels over the road 7, the weight of the vehicle 8 imposes a gravitational linear force against the road which in turns applies a proportional force against the movement absorption element 1.
- additional movement absorption elements 1 can be adapted to be positioned below other surfaces.
- an additional movement absorption element 1 is positioned below a sidewalk 10.
- a pipeline system 2 is interconnected to said movement absorption elements 1 to allow the flow and distribution of air throughout the system
- a compressor 3 is connected to said pipeline system 2 and adapted to direct to flow of air to a storage tank 5 which in turn is connected to a motor/generator set 6.
- the motor/generator set 6 comprises a pneumatic motor and an electric generator.
- other types of motors could be used such as : thermodynamic and hydraulic motors depending on the application.
- the output of the electric generator is selectively connected to supply electrical energy to an external load 11.
- FIG. 2 shows a general diagram of the power conversion system of the invention.
- the first part of the invention is represented by block 1.
- the movement absorption element of the invention can be implemented in a variety of embodiments. For example, it can be positioned below a parking lot, so that the vehicle traffic imposes the necessary weight to actuate the movement absorption element. In another embodiment, it can be selectively connected to a railway so that the weight and/or the movement of a train actuates the movement absorption element. Alternatively, the motion generated by windmills or the flow of water at a dam can be advantageously used to actuate the movement absorption element. It is also envisioned, that the movement absorption element can be adapted to a flexible fluid pipe system.
- the flexible pipe When installed in a residential environment, every time a person actuates a fluid flow regulating element such as a water faucet or shower or uses the washer machine; the flexible pipe will be compressed/decompressed. The compression/decompression effect will actuate the movement absorption element according to the invention.
- the concept of the invention is to combine all the direct and indirect movement received in any direction to generate electrical power by means of the inventive concept.
- the compressed air is directed to a storage tank 5.
- the compressed air can be directed to any storage element.
- a storage element can be adapted to positioned inside a power distribution pole or any kind of utility pole such as cable TV, telephone or telegraphic poles, inside a wall of a residential or commercial structure, or below ground or road level.
- the storage tank 5 is adapted to be integrated into existing structures.
- the storage tank unit may be disposed in or on any surface of a structure, such as a roof, a ceiling, a wall, a column or a floor of commercial or residential structures.
- the air stored in the tank is directed to a motor/generator set 6 to produce electrical power usable by any external load 11.
- the generated power can be directly connected to residential/commercial structure to serve as a primary power source. Alternatively, it can be connected through an electrical transfer switch in order to provide backup or supplemental power to any residential/commercial structure. It is also envisioned, that the electrical power generated by the system can be connected to a utility power distribution/transmission system to supplement the power grid and/or sell it to the utility power company.
- Another embodiment of the invention uses the inverse polarity to repel two magnets.
- One of the magnets is disposed on a substantially bottom portion of a vehicle and the other magnet is disposed on the top portion of a movement absorption element. When the vehicle is right above the movement absorption element the magnets will repel each other, thus causing the movement absorption element to be pressed down and to go back to its original position once the vehicle is substantially far.
- Another of the embodiments of the invention utilizes pressurized air with temperatures lower than its surrounding environment to provide with an air conditioning sub-system. Field tests show that the temperature of the environment was lower as measures were taken closer to the storage tank. On large- scales vectorial energy conversion systems, some of the cold air could be redirected to an air conditioning sub-system. An additional benefit will be savings on electricity consumption due to the fact that no electrical energy will be needed to cool down air or water.
- Another embodiment of the invention utilizes the counterweight of an elevator system to move a cylinder/piston arrangement.
- the movement of the cylinder/piston arrangement generates the air that can be compressed and stored for electrical energy generation.
- a system of weights is disposed on the body of the storage tank unit The weights are moved by a small amount of compressed air leaving the storage tank unit Movement of the weights will cause air to be generated, this air can also be used to generate power
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Wind Motors (AREA)
Abstract
L'invention comprend un élément d'absorption de mouvement qui dirige sélectivement l'air dans un système de conduites quand l'élément d'absorption de mouvement est actionné. Le système de conduites est interconnecté à un dispositif de compression qui facilite l'écoulement d'air dans un réservoir de stockage d'air. Un ensemble moteur/générateur est relié au réservoir de stockage d'air par l'intermédiaire du système de conduites. L'ensemble moteur/générateur est configuré de façon à fournir une alimentation électrique à une charge extérieure quand ledit moteur est actionné par l'air comprimé stocké dans le réservoir de stockage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94269207P | 2007-06-08 | 2007-06-08 | |
US60/942,692 | 2007-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008153591A1 true WO2008153591A1 (fr) | 2008-12-18 |
Family
ID=40129999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/083865 WO2008153591A1 (fr) | 2007-06-08 | 2007-11-07 | Système de conversion d'énergie vectorielle omar |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008153591A1 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7900444B1 (en) | 2008-04-09 | 2011-03-08 | Sustainx, Inc. | Systems and methods for energy storage and recovery using compressed gas |
US7958731B2 (en) | 2009-01-20 | 2011-06-14 | Sustainx, Inc. | Systems and methods for combined thermal and compressed gas energy conversion systems |
US7963110B2 (en) | 2009-03-12 | 2011-06-21 | Sustainx, Inc. | Systems and methods for improving drivetrain efficiency for compressed gas energy storage |
US8037678B2 (en) | 2009-09-11 | 2011-10-18 | Sustainx, Inc. | Energy storage and generation systems and methods using coupled cylinder assemblies |
US8046990B2 (en) | 2009-06-04 | 2011-11-01 | Sustainx, Inc. | Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems |
US8104274B2 (en) | 2009-06-04 | 2012-01-31 | Sustainx, Inc. | Increased power in compressed-gas energy storage and recovery |
US8117842B2 (en) | 2009-11-03 | 2012-02-21 | Sustainx, Inc. | Systems and methods for compressed-gas energy storage using coupled cylinder assemblies |
US8171728B2 (en) | 2010-04-08 | 2012-05-08 | Sustainx, Inc. | High-efficiency liquid heat exchange in compressed-gas energy storage systems |
US8191362B2 (en) | 2010-04-08 | 2012-06-05 | Sustainx, Inc. | Systems and methods for reducing dead volume in compressed-gas energy storage systems |
US8225606B2 (en) | 2008-04-09 | 2012-07-24 | Sustainx, Inc. | Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression |
US8234863B2 (en) | 2010-05-14 | 2012-08-07 | Sustainx, Inc. | Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange |
US8240146B1 (en) | 2008-06-09 | 2012-08-14 | Sustainx, Inc. | System and method for rapid isothermal gas expansion and compression for energy storage |
US8240140B2 (en) | 2008-04-09 | 2012-08-14 | Sustainx, Inc. | High-efficiency energy-conversion based on fluid expansion and compression |
US8250863B2 (en) | 2008-04-09 | 2012-08-28 | Sustainx, Inc. | Heat exchange with compressed gas in energy-storage systems |
US8448433B2 (en) | 2008-04-09 | 2013-05-28 | Sustainx, Inc. | Systems and methods for energy storage and recovery using gas expansion and compression |
US8474255B2 (en) | 2008-04-09 | 2013-07-02 | Sustainx, Inc. | Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange |
US8479505B2 (en) | 2008-04-09 | 2013-07-09 | Sustainx, Inc. | Systems and methods for reducing dead volume in compressed-gas energy storage systems |
US8495872B2 (en) | 2010-08-20 | 2013-07-30 | Sustainx, Inc. | Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas |
US8539763B2 (en) | 2011-05-17 | 2013-09-24 | Sustainx, Inc. | Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems |
US8578708B2 (en) | 2010-11-30 | 2013-11-12 | Sustainx, Inc. | Fluid-flow control in energy storage and recovery systems |
US8667792B2 (en) | 2011-10-14 | 2014-03-11 | Sustainx, Inc. | Dead-volume management in compressed-gas energy storage and recovery systems |
US8677744B2 (en) | 2008-04-09 | 2014-03-25 | SustaioX, Inc. | Fluid circulation in energy storage and recovery systems |
US8733095B2 (en) | 2008-04-09 | 2014-05-27 | Sustainx, Inc. | Systems and methods for efficient pumping of high-pressure fluids for energy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108077A (en) * | 1974-06-07 | 1978-08-22 | Nikolaus Laing | Rail vehicles with propulsion energy recovery system |
US6223846B1 (en) * | 1998-06-15 | 2001-05-01 | Michael M. Schechter | Vehicle operating method and system |
-
2007
- 2007-11-07 WO PCT/US2007/083865 patent/WO2008153591A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108077A (en) * | 1974-06-07 | 1978-08-22 | Nikolaus Laing | Rail vehicles with propulsion energy recovery system |
US6223846B1 (en) * | 1998-06-15 | 2001-05-01 | Michael M. Schechter | Vehicle operating method and system |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8627658B2 (en) | 2008-04-09 | 2014-01-14 | Sustainx, Inc. | Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression |
US8448433B2 (en) | 2008-04-09 | 2013-05-28 | Sustainx, Inc. | Systems and methods for energy storage and recovery using gas expansion and compression |
US8250863B2 (en) | 2008-04-09 | 2012-08-28 | Sustainx, Inc. | Heat exchange with compressed gas in energy-storage systems |
US8677744B2 (en) | 2008-04-09 | 2014-03-25 | SustaioX, Inc. | Fluid circulation in energy storage and recovery systems |
US8479505B2 (en) | 2008-04-09 | 2013-07-09 | Sustainx, Inc. | Systems and methods for reducing dead volume in compressed-gas energy storage systems |
US8474255B2 (en) | 2008-04-09 | 2013-07-02 | Sustainx, Inc. | Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange |
US7900444B1 (en) | 2008-04-09 | 2011-03-08 | Sustainx, Inc. | Systems and methods for energy storage and recovery using compressed gas |
US8713929B2 (en) | 2008-04-09 | 2014-05-06 | Sustainx, Inc. | Systems and methods for energy storage and recovery using compressed gas |
US8733094B2 (en) | 2008-04-09 | 2014-05-27 | Sustainx, Inc. | Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression |
US8240140B2 (en) | 2008-04-09 | 2012-08-14 | Sustainx, Inc. | High-efficiency energy-conversion based on fluid expansion and compression |
US8763390B2 (en) | 2008-04-09 | 2014-07-01 | Sustainx, Inc. | Heat exchange with compressed gas in energy-storage systems |
US8209974B2 (en) | 2008-04-09 | 2012-07-03 | Sustainx, Inc. | Systems and methods for energy storage and recovery using compressed gas |
US8225606B2 (en) | 2008-04-09 | 2012-07-24 | Sustainx, Inc. | Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression |
US8733095B2 (en) | 2008-04-09 | 2014-05-27 | Sustainx, Inc. | Systems and methods for efficient pumping of high-pressure fluids for energy |
US8240146B1 (en) | 2008-06-09 | 2012-08-14 | Sustainx, Inc. | System and method for rapid isothermal gas expansion and compression for energy storage |
US8234862B2 (en) | 2009-01-20 | 2012-08-07 | Sustainx, Inc. | Systems and methods for combined thermal and compressed gas energy conversion systems |
US8122718B2 (en) | 2009-01-20 | 2012-02-28 | Sustainx, Inc. | Systems and methods for combined thermal and compressed gas energy conversion systems |
US7958731B2 (en) | 2009-01-20 | 2011-06-14 | Sustainx, Inc. | Systems and methods for combined thermal and compressed gas energy conversion systems |
US7963110B2 (en) | 2009-03-12 | 2011-06-21 | Sustainx, Inc. | Systems and methods for improving drivetrain efficiency for compressed gas energy storage |
US8104274B2 (en) | 2009-06-04 | 2012-01-31 | Sustainx, Inc. | Increased power in compressed-gas energy storage and recovery |
US8479502B2 (en) | 2009-06-04 | 2013-07-09 | Sustainx, Inc. | Increased power in compressed-gas energy storage and recovery |
US8046990B2 (en) | 2009-06-04 | 2011-11-01 | Sustainx, Inc. | Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems |
US8109085B2 (en) | 2009-09-11 | 2012-02-07 | Sustainx, Inc. | Energy storage and generation systems and methods using coupled cylinder assemblies |
US8468815B2 (en) | 2009-09-11 | 2013-06-25 | Sustainx, Inc. | Energy storage and generation systems and methods using coupled cylinder assemblies |
US8037678B2 (en) | 2009-09-11 | 2011-10-18 | Sustainx, Inc. | Energy storage and generation systems and methods using coupled cylinder assemblies |
US8117842B2 (en) | 2009-11-03 | 2012-02-21 | Sustainx, Inc. | Systems and methods for compressed-gas energy storage using coupled cylinder assemblies |
US8171728B2 (en) | 2010-04-08 | 2012-05-08 | Sustainx, Inc. | High-efficiency liquid heat exchange in compressed-gas energy storage systems |
US8661808B2 (en) | 2010-04-08 | 2014-03-04 | Sustainx, Inc. | High-efficiency heat exchange in compressed-gas energy storage systems |
US8245508B2 (en) | 2010-04-08 | 2012-08-21 | Sustainx, Inc. | Improving efficiency of liquid heat exchange in compressed-gas energy storage systems |
US8191362B2 (en) | 2010-04-08 | 2012-06-05 | Sustainx, Inc. | Systems and methods for reducing dead volume in compressed-gas energy storage systems |
US8234863B2 (en) | 2010-05-14 | 2012-08-07 | Sustainx, Inc. | Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange |
US8495872B2 (en) | 2010-08-20 | 2013-07-30 | Sustainx, Inc. | Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas |
US8578708B2 (en) | 2010-11-30 | 2013-11-12 | Sustainx, Inc. | Fluid-flow control in energy storage and recovery systems |
US8539763B2 (en) | 2011-05-17 | 2013-09-24 | Sustainx, Inc. | Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems |
US8806866B2 (en) | 2011-05-17 | 2014-08-19 | Sustainx, Inc. | Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems |
US8667792B2 (en) | 2011-10-14 | 2014-03-11 | Sustainx, Inc. | Dead-volume management in compressed-gas energy storage and recovery systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008153591A1 (fr) | Système de conversion d'énergie vectorielle omar | |
CN110998200B (zh) | 用于产生热和电的联产系统和方法 | |
CN202055876U (zh) | 超临界低温空气能发电装置 | |
WO2011024928A1 (fr) | Générateur d'électricité hybride accouplé à un générateur d'électricité à gravité qui utilise une bascule comportant un dispositif de charge de pression | |
CN1894502A (zh) | 生活和工业用设施的独立电能/热能供应系统 | |
WO2021177028A1 (fr) | Système d'alimentation électrique à grande surface | |
US20110227345A1 (en) | System and method for generating and storing clean energy | |
US5317904A (en) | Method of and apparatus for conditioning air | |
AU2009223725A1 (en) | Adsorption-enhanced compressed air energy storage | |
WO2020256155A2 (fr) | Appareil de conversion d'énergie | |
JP4659818B2 (ja) | 電気エネルギーへの変換のための熱エネルギー蓄積装置 | |
KR102734422B1 (ko) | 차량 하중을 이용한 공압 및 증기압발전시스템 | |
CN110203080B (zh) | 一种多相可增程蓄能系统及具有其的车辆和能源基站 | |
WO2012142420A2 (fr) | Récupération de l'énergie d'une route | |
US8387379B2 (en) | Electricity generation device using hot gas engine | |
JP3153668U (ja) | 路盤発電装置 | |
GB2464488A (en) | Using otherwise wasted thermal energy from engines | |
US20120187699A1 (en) | Compressed Air Accumulation System For Power Generation | |
WO2024100646A1 (fr) | Chambres d'expansion périphériques dans un moteur à volant générant et accumulant de l'énergie | |
RU2598859C2 (ru) | Комбинированная ветросиловая энергоустановка | |
WO2018236824A1 (fr) | Moteur et générateur entraînés par une force de levier | |
CN107574841A (zh) | 一种双通道压力发电井盖装置 | |
RU2431047C2 (ru) | Комплексная энергетическая станция | |
DE10031491A1 (de) | Multiples Energie-Erzeugungs-Speicherungs-Versorgungsnetz Haustechnik Solar-/Umweltwärme-Energiegewinn-System | |
EP1647709A2 (fr) | Système utilisant les différences naturelles de température pour la production d'énergie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07873601 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT ON 31/03/10) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07873601 Country of ref document: EP Kind code of ref document: A1 |